Science.gov

Sample records for dimethyl sulfoxide skin

  1. Protection against adriamycin-induced skin necrosis in the rat by dimethyl sulfoxide and alpha-tocopherol.

    PubMed

    Svingen, B A; Powis, G; Appel, P L; Scott, M

    1981-09-01

    Extravasation of Adriamycin during i.v. infusion can cause serious local complications. We have used a rat skin model to study the protection afforded by dimethyl sulfoxide and alpha-tocopherol (vitamin E) against Adriamycin-induced skin necrosis. Topical daily application of 1 ml dimethyl sulfoxide for 2 days produced a small decrease in ulcer diameter of up to 11% at 2 weeks. Topical daily applications of 1 ml 10% alpha-tocopherol succinate in dimethyl sulfoxide for 2 days produced a marked decrease in ulcer diameter at 2 weeks of up to 68%. Daily topical application of 1 ml 10% alpha-tocopherol succinate in dimethyl sulfoxide for 7 days offered no greater protection than 2-day application. alpha-Tocopherol acetate appeared to have activity slightly less than that of alpha-tocopherol succinate in reducing ulcer size, and both compounds were considerably more active than was alpha-tocopherol alcohol. Administration of alpha-tocopherol succinate or alpha-tocopherol acetate i.p. had no significant effect upon ulcer diameter. Topically applied dimethyl sulfoxide and alpha-tocopherol may provide an effective way of treating accidentally extravasated Adriamycin in cancer patients.

  2. Morphological study of rat skin flaps treated with subcutaneous dimethyl sulfoxide combined with hyperbaric oxygen therapy.

    PubMed

    Almeida, K G; Oliveira, R J; Dourado, D M; Filho, E A; Fernandes, W S; Souza, A S; Araújo, F H S

    2015-01-01

    This study investigated the effects of hyperbaric oxygen therapy (HBOT) and dimethyl sulfoxide (DMSO) in tissue necrosis, genotoxicity, and cell apoptosis. Random skin flaps were made in 50 male Wistar rats, randomly divided into the following groups. Control group (CT), wherein a rectangular skin section (2 x 8 cm) was dissected from the dorsal muscle layer, preserving the cranial vessels, lifted, and refixed to the bed; distilled water (DW) group, in which DW was injected into the distal half of the skin flap; DMSO group, wherein 5% DMSO was injected; HBOT group, comprising animals treated only with HBOT; and HBOT + DMSO group, comprising animals treated with 100% oxygen at 2.5 atmospheres absolute for 1 h, 2 h after the experiment, daily for 10 consecutive days. A skinflap specimen investigated by microscopy. The percentage of necrosis was not significantly different between groups. The cell viability index was significantly different between groups (P < 0.001): 87.40% (CT), 86.20% (DW), 84.60% (DMSO), 86.60% (DMSO + HBO), and 91% (HBO) (P < 0.001), as was the cell apoptosis index of 12.60 (CT), 12.00 (DW), 15.40 (DMSO), 9.00 (HBO), and 12.00 (DMSO + HBO) (P < 0.001). The genotoxicity test revealed the percentage of cells with DNA damage to be 22.80 (CT), 22.60 (DW), 26.00 (DMSO), 8.80 (DMSO + HBO), and 7.20 (HBO) (P < 0.001). Although the necrotic area was not different between groups, there was a significant reduction in the cellular DNA damage and apoptosis index in the HBOT group. PMID:26782463

  3. Morphological study of rat skin flaps treated with subcutaneous dimethyl sulfoxide combined with hyperbaric oxygen therapy.

    PubMed

    Almeida, K G; Oliveira, R J; Dourado, D M; Filho, E A; Fernandes, W S; Souza, A S; Araújo, F H S

    2015-12-28

    This study investigated the effects of hyperbaric oxygen therapy (HBOT) and dimethyl sulfoxide (DMSO) in tissue necrosis, genotoxicity, and cell apoptosis. Random skin flaps were made in 50 male Wistar rats, randomly divided into the following groups. Control group (CT), wherein a rectangular skin section (2 x 8 cm) was dissected from the dorsal muscle layer, preserving the cranial vessels, lifted, and refixed to the bed; distilled water (DW) group, in which DW was injected into the distal half of the skin flap; DMSO group, wherein 5% DMSO was injected; HBOT group, comprising animals treated only with HBOT; and HBOT + DMSO group, comprising animals treated with 100% oxygen at 2.5 atmospheres absolute for 1 h, 2 h after the experiment, daily for 10 consecutive days. A skinflap specimen investigated by microscopy. The percentage of necrosis was not significantly different between groups. The cell viability index was significantly different between groups (P < 0.001): 87.40% (CT), 86.20% (DW), 84.60% (DMSO), 86.60% (DMSO + HBO), and 91% (HBO) (P < 0.001), as was the cell apoptosis index of 12.60 (CT), 12.00 (DW), 15.40 (DMSO), 9.00 (HBO), and 12.00 (DMSO + HBO) (P < 0.001). The genotoxicity test revealed the percentage of cells with DNA damage to be 22.80 (CT), 22.60 (DW), 26.00 (DMSO), 8.80 (DMSO + HBO), and 7.20 (HBO) (P < 0.001). Although the necrotic area was not different between groups, there was a significant reduction in the cellular DNA damage and apoptosis index in the HBOT group.

  4. Revisiting optical clearing with dimethyl sulfoxide (DMSO)

    PubMed Central

    Bui, Albert K.; McClure, R. Anthony; Chang, Jennell; Stoianovici, Charles; Hirshburg, Jason; Yeh, Alvin T.; Choi, Bernard

    2009-01-01

    Functional optical characterization of disease progression and response to therapy suffers from loss of spatial resolution and imaging depth due to scattering. Here we report on the ability of dimethyl sulfoxide (DMSO) alone to reduce the optical scattering of skin. We observed a three-fold reduction in the scattering of skin with topical DMSO application. With an in vivo window chamber model, we observed a three-fold increase in light transmittance through the preparation and enhanced visualization of subsurface microvasculature. Collectively, our data demonstrate the potential of DMSO alone to mitigate effects of scattering, which we expect will improve molecular imaging studies. PMID:19226579

  5. Measurement of skin-fold thickness in the guinea pig. Assessment of edema-inducing capacity of cutting fluids, acids, alkalis, formalin and dimethyl sulfoxide.

    PubMed

    Wahlberg, J E

    1993-03-01

    The rabbit has been used for decades for predictive testing of skin irritancy, but in recent years, the guinea pig has been suggested as an alternative, especially for assessment of one of the components of the irritant reaction: edema (fluid accumulation). A method based on skin-fold measurements with Harpenden calipers has been developed and modified. In previous papers, experience with sodium lauryl sulphate, nonanoic acid and industrial solvents was reported. The present results concern the use of cutting fluids, buffered and unbuffered acid and alkaline solutions, formalin and dimethyl sulfoxide. This inexpensive and comparatively unsophisticated method afforded clear dose-response relationships and good discriminating power. The only exception was the acid and alkaline solutions, where no changes in skin-fold thickness were observed despite their documented irritant potential. The appearance of erythema (visual scoring) and the increase in skin-fold thickness, and their relationship, are discussed with some illustrative examples. The method described is now well standardized and is suited for predictive testing of the edema-inducing capacity of chemicals and products.

  6. Dimethyl sulfoxide: history, chemistry, and clinical utility in dermatology.

    PubMed

    Capriotti, Kara; Capriotti, Joseph A

    2012-09-01

    Dimethyl sulfoxide is a colorless liquid derived as a by-product from wood pulp in the production of paper. This colorless liquid found immediate application as a polar, aprotic solvent miscible with water and able to dissolve an enormous catalog of polar and nonpolar small molecules. It is presently scarcely used in dermatology, but given its useful properties as a penetration-enhancing solvent excipient and active anti-inflammatory pharmaceutical agent, dimethyl sulfoxide has the potential to be used in a much broader capacity. The authors review the history, chemistry, and clinical utility of dimethyl sulfoxide as it pertains to dermatology.

  7. Acidity of Strong Acids in Water and Dimethyl Sulfoxide.

    PubMed

    Trummal, Aleksander; Lipping, Lauri; Kaljurand, Ivari; Koppel, Ilmar A; Leito, Ivo

    2016-05-26

    Careful analysis and comparison of the available acidity data of HCl, HBr, HI, HClO4, and CF3SO3H in water, dimethyl sulfoxide (DMSO), and gas-phase has been carried out. The data include experimental and computational pKa and gas-phase acidity data from the literature, as well as high-level computations using different approaches (including the W1 theory) carried out in this work. As a result of the analysis, for every acid in every medium, a recommended acidity value is presented. In some cases, the currently accepted pKa values were revised by more than 10 orders of magnitude. PMID:27115918

  8. Lithium solvation in dimethyl sulfoxide-acetonitrile mixtures

    SciTech Connect

    Semino, Rocío; Zaldívar, Gervasio; Calvo, Ernesto J.; Laria, Daniel

    2014-12-07

    We present molecular dynamics simulation results pertaining to the solvation of Li{sup +} in dimethyl sulfoxide-acetonitrile binary mixtures. The results are potentially relevant in the design of Li-air batteries that rely on aprotic mixtures as solvent media. To analyze effects derived from differences in ionic size and charge sign, the solvation of Li{sup +} is compared to the ones observed for infinitely diluted K{sup +} and Cl{sup −} species, in similar solutions. At all compositions, the cations are preferentially solvated by dimethyl sulfoxide. Contrasting, the first solvation shell of Cl{sup −} shows a gradual modification in its composition, which varies linearly with the global concentrations of the two solvents in the mixtures. Moreover, the energetics of the solvation, described in terms of the corresponding solute-solvent coupling, presents a clear non-ideal concentration dependence. Similar nonlinear trends were found for the stabilization of different ionic species in solution, compared to the ones exhibited by their electrically neutral counterparts. These tendencies account for the characteristics of the free energy associated to the stabilization of Li{sup +}Cl{sup −}, contact-ion-pairs in these solutions. Ionic transport is also analyzed. Dynamical results show concentration trends similar to those recently obtained from direct experimental measurements.

  9. Isolation of dimethyl sulfone-degrading microorganisms and application to odorless degradation of dimethyl sulfoxide.

    PubMed

    Kino, Kuniki; Murakami-Nitta, Takako; Oishi, Masashi; Ishiguro, Seiji; Kirimura, Kohtaro

    2004-01-01

    With the objective of developing an odorless biodegradation process for dimethyl sulfoxide (DMSO), Hyphomicrobium sp. WU-OM3 was isolated. During the cultivation of strain WU-OM3 cells with 20 mM dimethyl sulfone (DMSO2) as the sole carbon source, DMSO2 was completely consumed within 48 h and sulfate ion accumulated in the culture broth. Methanesulfonate was also detected as an intermediate of DMSO2 degradation. By combining the DMSO-oxidizing microorganism and strain WU-OM3 cells, 0.64 mM (50 mg/l) DMSO was degraded to sulfate ion with 80% molar conversion ratio. PMID:16233595

  10. Effects of dimethyl sulfoxide on lipid membrane electroporation.

    PubMed

    Fernández, M Laura; Reigada, Ramon

    2014-08-01

    Pores can be generated in lipid membranes by the application of an external electric field or by the addition of particular chemicals such as dimethyl sulfoxide (DMSO). Molecular dynamics (MD) has been shown to be a useful tool for unveiling many aspects of pore formation in lipid membranes in both situations. By means of MD simulations, we address the formation of electropores in cholesterol-containing lipid bilayers under the influence of DMSO. We show how a combination of physical and chemical mechanisms leads to more favorable conditions for generating membrane pores and, in particular, how the addition of DMSO to the medium significantly reduces the minimum electric field required to electroporate a lipid membrane. The strong alteration of membrane transversal properties and the energetic stabilization of the hydrophobic pore stage by DMSO provide the physicochemical mechanisms that explain this effect.

  11. A new reliable method for dimethyl sulfoxide analysis in wastewater: dimethyl sulfoxide in Philadelphia's three water pollution control plants.

    PubMed

    Cheng, Xianhao; Peterkin, Earl

    2007-05-01

    A simple but reliable procedure was developed to analyze dimethyl sulfoxide (DMSO) in wastewater. The isotope DMSO_d6 was used as the internal standard to ensure accuracy. The DMSO was reduced with stannous chloride and measured as dimethyl sulfide (DMS) with purge-and-trap gas chromatography/mass spectrometry. The method detection limit was at the sub-microgram-per-milliliter level; precision, as measured by standard deviation, was better than +/- 0.5%; and the recoveries were between 95 and 105% at the level of 2 microg/mL. The procedure could use standard analytical instrumentation used for volatile organic compound analysis. A field study was conducted to validate the method and quantify DMSO concentration range in the three water pollution control plants (WPCPs) in the city of Philadelphia, Pennsylvania. Results showed that, when a local chemical facility discharged, DMSO concentration could be as high as 12 mg/L in the influent to a WPCP. This would lead to the formation of a toxic "canned corn" DMS odor during the treatment processes. PMID:17571849

  12. Does dimethyl sulfoxide increase protein immunomarking efficiency for dispersal and predation studies?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marking biological control agents facilitates studies of dispersal and predation. This study examines the effect of a biological solvent, dimethyl sulfoxide (DMSO), on retention of immunoglobulin G (IgG) protein solutions applied to Diorhabda carinulata (Desbrochers) (Coleoptera: Chrysomelidae) eit...

  13. 21 CFR 524.981d - Fluocinolone acetonide, dimethyl sulfoxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... solution. 524.981d Section 524.981d Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... NEW ANIMAL DRUGS § 524.981d Fluocinolone acetonide, dimethyl sulfoxide solution. (a) Specifications. Each milliliter of solution contains 0.01 percent fluocinolone acetonide and 20 percent...

  14. Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm

    SciTech Connect

    Blank, D.A.; North, S.W.; Stranges, D.

    1997-04-01

    When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH{sub 3}SOCH{sub 3}) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH{sub 3} intermediate prior to dissociation to define a stepwise dissociation: (1) CH{sub 3}SOCH{sub 3} {r_arrow} 2CH{sub 3} + SO; (2a) CH{sub 3}SOCH{sub 3} {r_arrow} CH{sub 3} + SOCH{sub 3}; and (2b) SOCH{sub 3} {r_arrow} SO + CH{sub 3}. Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH{sub 3} and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH{sub 3} intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2.

  15. Crystal structure of hexa-kis-(dimethyl sulfoxide-κO)manganese(II) diiodide.

    PubMed

    Glatz, Mathias; Schroffenegger, Martina; Weil, Matthias; Kirchner, Karl

    2016-07-01

    The asymmetric unit of the title salt, [Mn(C2H6OS)6]I2, consists of one Mn(II) ion, six O-bound dimethyl sulfoxide (DMSO) ligands and two I(-) counter-anions. The isolated complex cations have an octa-hedral configuration and are grouped in hexa-gonally arranged rows extending parallel to [100]. The two I(-) anions are located between the rows and are linked to the cations through two weak C-H⋯I inter-actions. PMID:27555928

  16. Effect of dimethyl sulfoxide addition on ultrasonic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Shimakage, Kaho; Kobayashi, Daisuke; Naya, Masakazu; Matsumoto, Hideyuki; Shimada, Yuichiro; Otake, Katsuto; Shono, Atsushi

    2016-07-01

    The ultrasonic degradation of methylene blue was carried out in the absence and presence of dimethyl sulfoxide (DMSO) as a radical scavenger for various frequencies, and the effects of DMSO addition on the degradation rate constant estimated by assuming first-order kinetics were investigated. The degradation reaction rate decreased with DMSO addition, and hydroxyl radicals were observed to play important roles in the degradation of methylene blue. However, the degradation reaction did not stop with DMSO addition, and the degradation rate constant in the presence of DMSO was not affected by ultrasonic frequency.

  17. Crystal structure of hexa­kis­(dimethyl sulfoxide-κO)manganese(II) diiodide

    PubMed Central

    Glatz, Mathias; Schroffenegger, Martina; Weil, Matthias; Kirchner, Karl

    2016-01-01

    The asymmetric unit of the title salt, [Mn(C2H6OS)6]I2, consists of one MnII ion, six O-bound dimethyl sulfoxide (DMSO) ligands and two I− counter-anions. The isolated complex cations have an octa­hedral configuration and are grouped in hexa­gonally arranged rows extending parallel to [100]. The two I− anions are located between the rows and are linked to the cations through two weak C—H⋯I inter­actions. PMID:27555928

  18. Comparison of Dimethyl Sulfoxide and Water as Solvents for Echinocandin Susceptibility Testing by the EUCAST Methodology

    PubMed Central

    Alastruey-Izquierdo, Ana; Gómez-López, Alicia; Arendrup, Maiken C.; Lass-Florl, Cornelia; Hope, William W.; Perlin, David S.; Rodriguez-Tudela, Juan L.

    2012-01-01

    Ninety-six strains of Candida, including 29 resistant and 67 susceptible isolates with mutations in the FKS1 and FKS2 genes were tested by the European Committee on Antibiotic Susceptibility Testing EDef 7.1 and 7.2 methodologies to determine the impact on the MIC when water was replaced with dimethyl sulfoxide (DMSO) as the solvent for caspofungin and micafungin. The MICs were significantly lower and the MIC ranges were narrower when DMSO was used as the solvent. The use of DMSO may help to better discriminate between susceptible and resistant populations. PMID:22535988

  19. Size-exclusion chromatography of technical lignins in dimethyl sulfoxide/water and dimethylacetamide.

    PubMed

    Ringena, Okko; Lebioda, Sascha; Lehnen, Ralph; Saake, Bodo

    2006-01-13

    Well defined spent sulfite liquor samples and lignosulfonate fractions obtained by ultrafiltration were analyzed using size-exclusion chromatography. Two different eluent systems (dimethyl sulfoxide/water/lithium bromide; dimethylacetamide/lithium chloride) were compared regarding their suitability for lignin analysis. The differences of the elution profiles and calculated molar masses were discussed using conventional and universal calibration. For further validation four technical lignins from a Round Robin test were included into the study. The results indicated that both analytical systems under investigation were well suited for the analysis of technical lignins. PMID:16288767

  20. A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents

    NASA Astrophysics Data System (ADS)

    Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao

    2016-06-01

    In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions.

  1. Effect of nonionic surfactants on percutaneous absorption of salicylic acid and sodium salicylate in the presence of dimethyl sulfoxide.

    PubMed

    Shen, W W; Danti, A G; Bruscato, F N

    1976-12-01

    Fifteen nonionic surfactants, 10% (w/w), were each incorporated into white petrolatum USP ointment base containing 10% (w/w) salicylic acid or 11.6% (w/w) sodium salicylate with 10% (w/w) dimethyl sulfoxide. Percutaneous absorption was determined from blood salicylate levels in New Zealand white rabbits at regular intervals for 8 hr following application of the ointment. Percutaneous absorption of salicylic acid was increased significantly when sorbitan monopalmitate, sorbitan trioleate, poloxamer 231, poloxamer 182, polyoxyethylene 4 lauryl ether, polyoxyethylene 2 oleyl ether, or polyoxyl 8 stearate was added to the ointment containing dimethyl sulfoxide, salicylic acid, and white petrolatum. Percutaneous absorption of sodium salicylate was increased significantly when sorbitan monolaurate, sorbitan monopalmitate, or poloxamer 182 was added to the ointment containing dimethyl sulfoxide, sodium salicylate, and white petrolatum.

  2. A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents.

    PubMed

    Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao

    2016-06-01

    In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions. PMID:26994584

  3. Dimethyl sulfoxide can initiate cell divisions of arrested callus protoplasts by promoting cortical microtubule assembly

    PubMed Central

    Hahne, Günther; Hoffmann, Franz

    1984-01-01

    A serious problem in the technology of plant cell culture is that isolated protoplasts from many species are reluctant to divide. We have succeeded in inducing consecutive divisions in a “naturally” arrested system—i.e., protoplasts from a hibiscus cell line, which do not divide under standard conditions—and in an artificially arrested system—i.e., colchicine-inhibited callus protoplasts of Nicotiana glutinosa, which do readily divide in the absence of colchicine. In both cases, the reinstallation of a net of cortical microtubules, which had been affected either by colchicine or by the protoplast isolation procedure, resulted in continuous divisions of the formerly arrested protoplasts. Several compounds known to support microtubule assembly in vitro were tested for their ability to promote microtubule assembly in vivo. Best results were obtained by addition of dimethyl sulfoxide to the culture medium. Unlimited amounts of callus could be produced with the dimethyl sulfoxide method from protoplasts which never developed a single callus in control experiments. Images PMID:16593508

  4. Dimethyl sulfoxide can initiate cell divisions of arrested callus protoplasts by promoting cortical microtuble assembly

    SciTech Connect

    Hahne, G.; Hoffmann, F.

    1984-09-01

    A serious problem in the technology of plant cell culture is that isolated protoplasts from many species are reluctant to divide. We have succeeded in inducing consecutive divisions in a naturally arrested system i.e., protoplasts from a hibiscus cell line, which do not divide under standard conditions and in an artificially arrested system i.e., colchicine-inhibited callus protoplasts of Nicotiana glutinosa, which do readily divide in the absence of colchicine. In both cases, the reinstallation of a net of cortical microtubules, which had been affected either by colchicine or by the protoplast isolation procedure, resulted in continuous divisions of the formerly arrested protoplasts. Several compounds known to support microtubule assembly in vitro were tested for their ability to promote microtubule assembly in vivo. Best results were obtained by addition of dimethyl sulfoxide to the culture medium. Unlimited amounts of callus could be produced with the dimethyl sulfoxide method from protoplasts which never developed a single callus in control experiments. 30 references, 3 figures.

  5. Preferential solvation of lysozyme in dimethyl sulfoxide/water binary mixture probed by terahertz spectroscopy.

    PubMed

    Das, Dipak Kumar; Patra, Animesh; Mitra, Rajib Kumar

    2016-09-01

    We report the changes in the hydration dynamics around a model protein hen egg white lysozyme (HEWL) in water-dimethyl sulfoxide (DMSO) binary mixture using THz time domain spectroscopy (TTDS) technique. DMSO molecules get preferentially solvated at the protein surface, as indicated by circular dichroism (CD) and Fourier transform infrared (FTIR) study in the mid-infrared region, resulting in a conformational change in the protein, which consequently modifies the associated hydration dynamics. As a control we also study the collective hydration dynamics of water-DMSO binary mixture and it is found that it follows a non-ideal behavior owing to the formation of DMSO-water clusters. It is observed that the cooperative dynamics of water at the protein surface does follow the DMSO-mediated conformational modulation of the protein. PMID:27372901

  6. Onychomycosis treated with a dilute povidone–iodine/dimethyl sulfoxide preparation

    PubMed Central

    Capriotti, Kara; Capriotti, Joseph A

    2015-01-01

    Background Povidone–iodine (PVP-I) 10% aqueous solution is a well-known, nontoxic, commonly used topical antiseptic with no reported incidence of fungal resistance. We have been using a low-dose formulation of 1% PVP-I (w/w) in a solution containing dimethyl sulfoxide (DMSO) in our clinical practice for a variety of indications. Presented here is our clinical experience with this novel formulation in a severe case of onychomycosis that was resistant to any other treatment. Findings A 49-year-old woman who had been suffering from severe onychomycosis for years presented after failing to find any remedy including over the counter (OTC), topical, and systemic oral prescribed therapies. Conclusion The topical povidone–iodine/DMSO system was very effective in this case at alleviating the signs and symptoms of onychomycosis. This novel combination warrants further investigation in randomized, controlled trials to further elucidate its clinical utility. PMID:26491374

  7. Electrical conductivity of solutions of copper(II) nitrate crystalohydrate in dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul K.; Mamitova, A. D.; Mamyrbekova, Aizhan K.

    2016-06-01

    Conductometry is used to investigate the electric conductivity of Cu(NO3)2 ṡ 3H2O solutions in dimethyl sulfoxide in the 0.01-2.82 M range of concentrations and at temperatures of 288-318 K. The limiting molar conductivity of the electrolyte and the mobility of Cu2+ and NO 3 - ions, the effective coefficients of diffusion of copper(II) ions and nitrate ions, and the degree and constant of electrolytic dissociation are calculated for different temperatures from the experimental results. It is established that solutions containing 0.1-0.6 M copper nitrate trihydrate in DMSO having low viscosity and high electrical conductivity can be used in electrochemical deposition.

  8. Dimethyl sulfoxide as a mild oxidizing agent for porous silicon and its effect on photoluminescence

    SciTech Connect

    Song, J.H.; Sailor, M.J.

    1998-06-29

    Dimethyl sulfoxide acts as a mild room-temperature oxidant of luminescent porous silicon. The oxidation reaction is accompanied by a loss in photoluminescence intensity from the silicon nanocrystallites, indicating that the oxide formed under these conditions is electronically defective. The rate of oxidation is reduced if the reaction is carried out in the presence of the radical traps 2,6-di-tert-butyl-4-methylphenol (butylated hydroxytoluene, BHT) or cumene. In addition, photoluminescence intensity is preserved if the DMSO oxidation reaction is carried out in the presence of high concentrations of BHT. The BHT is proposed to form a more electronically passive oxide layer by hydrogenating the surface radicals (dangling bonds) generated during the oxidation reaction.

  9. Inactivation kinetics of polyphenol oxidase from pupae of blowfly (Sarcophaga bullata) in the dimethyl sulfoxide solution.

    PubMed

    Chen, Chao-Qi; Li, Zhi-Cong; Pan, Zhi-Zhen; Zhu, Yu-Jing; Yan, Ruo-Rong; Wang, Qin; Yan, Jiang-Hua; Chen, Qing-Xi

    2010-04-01

    The effects of dimethyl sulfoxide (DMSO) on the activity of polyphenol oxidase (PPO, EC 1.14.18.1) from blowfly pupae for the oxidation of L-3,4-dihydroxyphenylalanine were studied. The results showed that low concentrations of DMSO could lead to reversible inactivation to the enzyme. The IC(50) value, the inactivator concentration leading to 50% activity lost, was estimated to be 2.35 M. Inactivation of the enzyme by DMSO was classified as mixed type. The kinetics of inactivation of PPO from blowfly pupae in the low concentrations of DMSO solution was studied using the kinetic method of the substrate reaction. The rate constants of inactivation were determined. The results show that k(+0) was much larger than k'(+0), indicating that the free enzyme molecule was more fragile than the enzyme-substrate complex in the DMSO solution. It was suggested that the presence of the substrate offers marked protection of this enzyme against inactivation by DMSO.

  10. Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol

    PubMed Central

    Vian, Alex M.; Higgins, Adam Z.

    2015-01-01

    Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van't Hoff model. This yielded an isotonic cell volume of 378 μm3 and an osmotically inactive volume of 165 μm3. To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37 °C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21 °C of 0.18 μm atm−1 min−1. The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21 °C was 6.4, 1.0, 8.4 and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol. PMID:24269528

  11. Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol.

    PubMed

    Vian, Alex M; Higgins, Adam Z

    2014-02-01

    Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking, and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van't Hoff model. This yielded an isotonic cell volume of 378 μm(3) and an osmotically inactive volume of 165 μm(3). To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37°C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21°C of 0.18 μmatm(-1)min(-1). The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21°C was 6.4, 1.0, 8.4, and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol. PMID:24269528

  12. 1,1′:4′,1′′-Terphenyl-2′,5′-dicarb­oxy­lic acid dimethyl sulfoxide-d 6 disolvate

    PubMed Central

    Pop, Lucian C.; Preite, Marcelo; Manriquez, Juan Manuel; Vega, Andrés; Chavez, Ivonne

    2012-01-01

    The asymmetric unit of the title solvate, C20H14O4·2C2D6OS, contains half of the substituted terephthalic acid mol­ecule and one solvent mol­ecule. The centroid of the central benzene ring in the acid mol­ecule is coincident with a crystallographic inversion center. Neither the carboxyl nor the phenyl substituents are coplanar with the central aromatic ring, showing dihedral angles of 53.18 (11) and 47.83 (11)°, respectively. The dimethyl sulfoxide solvent mol­ecules are hydrogen bonded to the carb­oxy­lic acid groups. PMID:22606132

  13. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (VMSD1212, LB5136_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (VMSD1212, LB5136_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  14. Heat of Mixing and Solution of Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (HMSD1111, LB4314_H)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'heat of Mixing and Solution of Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (HMSD1111, LB4314_H)' providing data from direct low-pressure calorimetric measurement of molar excess enthalpy at variable mole fraction and constant temperature.

  15. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (VMSD1111, LB5133_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (VMSD1111, LB5133_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  16. Bis(dimethyl sulfoxide-κO)bis­(mercapto­acetato-κ2 O,S)tin(IV)

    PubMed Central

    Song, Li

    2009-01-01

    In the title compound, [Sn(C2H2O2S)2(C2H6OS)2], the mercaptoacetato ligands chelate to SnIV through S and one O atoms. The metal centre is also coordinated by two dimethyl sulfoxide (DMSO) ligands through the O atom, leading to an overall distorted octahedral coordination environment for the SnIV atom. The mol­ecular adduct lies on a twofold rotation axis. PMID:21578179

  17. Iodine-Catalyzed Cross Dehydrogenative Coupling Reaction: A Regioselective Sulfenylation of Imidazoheterocycles Using Dimethyl Sulfoxide as an Oxidant.

    PubMed

    Siddaraju, Yogesh; Prabhu, Kandikere Ramaiah

    2016-09-01

    A regioselective formation of C-S bonds has been achieved using a cross dehydrogenative coupling (CDC) protocol using iodine as a catalyst and dimethyl sulfoxide as an oxidant under green chemistry conditions. This strategy employs the reaction of easily available heterocyclic thiols or thiones with imidazoheterocycles. This protocol provides an efficient, mild, and inexpensive method for sulfenylation of imidazoheterocycles with a diverse range of heterocyclic thiols and heterocyclic thiones. PMID:27490357

  18. Variation of Spectral Characteristics of Coelenteramide-Containing Fluorescent Protein from Obelia Longissima Exposed to Dimethyl Sulfoxide

    NASA Astrophysics Data System (ADS)

    Petrova, A. S.; Alieva, R. R.; Belogurova, N. V.; Tirranen, L. S.; Kudryasheva, N. S.

    2016-08-01

    Effect of dimethyl sulfoxide (DMSO), a widespread biomedical agent, on spectral-luminescent characteristics of coelenteramide-containing fluorescent protein - discharged obelin - is investigated. Contributions of violet and blue-green spectral components to fluorescence of discharged obelin are elucidated and characterized at different photoexcitation energies. Dependences of these contributions on the DMSO concentration are presented. Spectral changes are related to the destructive effect of DMSO on fluorescent protein and decreasing efficiency of proton transfer to electronically excited states of fluorophore.

  19. Charge-transfer complexation and photoreduction of viologen derivatives bearing the para-substituted benzophenone group in dimethyl sulfoxide

    SciTech Connect

    Tanaka, Chiho; Nambu, Yoko; Endo, Takeshi

    1992-08-20

    New viologen derivatives having the various para-substituted benzophenone groups connected with a -(CH{sub 2}){sub 3}-linkage were effectively photoreduced by dimethyl sulfoxide by the intramolecular charge transfer complex formation between the viologen and benzophenone groups through effective stacking. The photoreduction was enhanced by the introduction of electron-donating para-substituents on the benzophenone units which were favorable for the intramolecular charge transfer complexation. 6 refs., 5 figs.

  20. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1.

    PubMed

    Gralnick, Jeffrey A; Vali, Hojatollah; Lies, Douglas P; Newman, Dianne K

    2006-03-21

    Shewanella species are renowned for their respiratory versatility, including their ability to respire poorly soluble substrates by using enzymatic machinery that is localized to the outside of the cell. The ability to engage in "extracellular respiration" to date has focused primarily on respiration of minerals. Here, we identify two gene clusters in Shewanella oneidensis strain MR-1 that each contain homologs of genes required for metal reduction and genes that are predicted to encode dimethyl sulfoxide (DMSO) reductase subunits. Molecular and genetic analyses of these clusters indicate that one (SO1427-SO1432) is required for anaerobic respiration of DMSO. We show that DMSO respiration is an extracellular respiratory process through the analysis of mutants defective in type II secretion, which is required for transporting proteins to the outer membrane in Shewanella. Moreover, immunogold labeling of DMSO reductase subunits reveals that they reside on the outer leaflet of the outer membrane under anaerobic conditions. The extracellular localization of the DMSO reductase in S. oneidensis suggests these organisms may perceive DMSO in the environment as an insoluble compound.

  1. Dimethyl sulfoxide modulates NF-kappa B and cytokine activation in lipopolysaccharide-treated murine macrophages.

    PubMed Central

    Kelly, K A; Hill, M R; Youkhana, K; Wanker, F; Gimble, J M

    1994-01-01

    Antioxidants are protective against septic shock in animal models. Recently, free radical scavengers have been found to inhibit the activation of the NF-kappa B protein in a number of cell lines. This transcriptional regulatory protein binds to the promoters of the proinflammatory cytokines tumor necrosis factor, interleukin-6, and the macrophage inflammatory proteins. The current work examined lipopolysaccharide-induced NF-kappa B activation in the J774 macrophage-like cell line and primary peritoneal macrophages from lipopolysaccharide-responsive (C3HeB/Fej) and -nonresponsive (C3H/HeJ) murine strains. The DNA-binding activity of the NF-kappa B protein directly correlated with mRNA expression for the genes encoding the proinflammatory cytokines and the free radical scavenging enzyme, superoxide dismutase. Both the p50 and p65 NF-kappa B subunits were detected on gel supershift assays. Minimal NF-kappa B activity was observed following exposure of C3H/HeJ macrophages to lipopolysaccharide. The antioxidant dimethyl sulfoxide decreased the level of NF-kappa B activation in the J774 cells. This correlated with decreased expression of cytokine mRNAs and tumor necrosis factor bioactivity. These results suggest that modulation of NF-kappa B activation may provide a mechanism through which antioxidants protect against endotoxemia in murine models. Images PMID:8039880

  2. Solvent stimulated actuation of polyurethane-based shape memory polymer foams using dimethyl sulfoxide and ethanol

    NASA Astrophysics Data System (ADS)

    Boyle, A. J.; Weems, A. C.; Hasan, S. M.; Nash, L. D.; Monroe, M. B. B.; Maitland, D. J.

    2016-07-01

    Solvent exposure has been investigated to trigger actuation of shape memory polymers (SMPs) as an alternative to direct heating. This study aimed to investigate the feasibility of using dimethyl sulfoxide (DMSO) and ethanol (EtOH) to stimulate polyurethane-based SMP foam actuation and the required solvent concentrations in water for rapid actuation of hydrophobic SMP foams. SMP foams exhibited decreased T g when submerged in DMSO and EtOH when compared to water submersion. Kinetic DMA experiments showed minimal or no relaxation for all SMP foams in water within 30 min, while SMP foams submerged in EtOH exhibited rapid relaxation within 1 min of submersion. SMP foams expanded rapidly in high concentrations of DMSO and EtOH solutions, where complete recovery over 30 min was observed in DMSO concentrations greater than 90% and in EtOH concentrations greater than 20%. This study demonstrates that both DMSO and EtOH are effective at triggering volume recovery of polyurethane-based SMP foams, including in aqueous environments, and provides promise for use of this actuation technique in various applications.

  3. Multinuclear NMR spectroscopy for differentiation of molecular configurations and solvent properties between acetone and dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Wen, Yuan-Chun; Kuo, Hsiao-Ching; Jia, Hsi-Wei

    2016-04-01

    The differences in molecular configuration and solvent properties between acetone and dimethyl sulfoxide (DMSO) were investigated using the developed technique of 1H, 13C, 17O, and 1H self-diffusion liquid state nuclear magnetic resonance (NMR) spectroscopy. Acetone and DMSO samples in the forms of pure solution, ionic salt-added solution were used to deduce their active sites, relative dipole moments, dielectric constants, and charge separations. The NMR results suggest that acetone is a trigonal planar molecule with a polarized carbonyl double bond, whereas DMSO is a trigonal pyramidal-like molecule with a highly polarized S-O single bond. Both molecules use their oxygen atoms as the active sites to interact other molecules. These different molecular models explain the differences their physical and chemical properties between the two molecules and explain why DMSO is classified as an aprotic but highly dipolar solvent. The results are also in agreement with data obtained using X-ray diffraction, neutron diffraction, and theoretical calculations.

  4. Aggregation behavior of N-alkyl perfluorooctanesulfonamides in dimethyl sulfoxide solution.

    PubMed

    Li, Guo-Li; Gao, Yan-An; Li, Xin-Wei; Liu, Jie; Zheng, Li-Qiang; Xing, Hang; Xiao, Jin-Xin

    2010-02-15

    N-alkyl perfluorooctanesulfonamides (C8F17SO2NHCnH2n+1, FC8-HCn, n = 2, 4, 6, 8) were shown to form aggregates in dimethyl sulfoxide (DMSO). Surface tension results revealed that the dissolution of FC8-HCn reduced the surface tension of DMSO in a manner analogous to common surfactants in aqueous solutions. Maximum surface excess amount (Gamma(max)) and minimum surface area per molecule (Amin) at the air-liquid interface were estimated. Gamma(max) decreases and Amin increases with an increase of the hydrocarbon chain length of FC8-HCn. Steady-state fluorescence and NMR measurements demonstrated that both fluorocarbon and hydrocarbon chains of FC8-HCn molecules were incorporated inside the aggregates. UV-vis spectroscopy confirmed the formation of aggregates and determined the critical micelle concentration (cmc) of FC8-HC6 and FC8-HC8 solutions. The thermodynamic parameters DeltaG(0)(agg), DeltaH(0)(agg), and DeltaS(0)(agg) for the aggregate formation of FC8-HCn in DMSO derived from the temperature dependence of the cmc revealed that the aggregate formation is an enthalpy-driven process, which was further confirmed by isothermal titration calorimetry (ITC) measurements. Moreover, the absolute values of DeltaG(0)(agg) and DeltaH(0)(agg) increase with an increase of the hydrocarbon chain length of FC8-HCn at 298 K.

  5. Structural, energetic, and electronic properties of La(III)-dimethyl sulfoxide clusters.

    PubMed

    Bodo, Enrico; Chiricotto, Mara; Spezia, Riccardo

    2014-12-11

    By using accurate density functional theory calculations, we have studied the cluster complexes of a La(3+) ion interacting with a small number of dimethyl sulfoxide (DMSO) molecules of growing size (from 1 to 12). Extended structural, energetic, and electronic structure analyses have been performed to provide a complete picture of the physical properties that are the basis of the interaction of La(III) with DMSO. Recent experimental data in the solid and liquid phase have suggested a coordination number of 8 DMSO molecules with a square antiprism geometry arranged similarly in the liquid and crystalline phases. By using a cluster approach on the La(3+)(DMSO)n gas phase isolated structures, we have found that the 8-fold geometry, albeit less regular than in the crystal, is probably the most stable cluster. Furthermore, we provide new evidence of a 9-fold complexation geometric arrangement that is competitive (at least energetically) with the 8-fold one and that might suggest the existence of transient structures with higher coordination numbers in the liquid phase.

  6. Dimethyl sulfoxide induces chemotherapeutic resistance in the treatment of testicular embryonal carcinomas

    PubMed Central

    KITA, HIROKO; OKAMOTO, KEISEI; KUSHIMA, RYOJI; KAWAUCHI, AKIHIRO; CHANO, TOKUHIRO

    2015-01-01

    Dimethyl sulfoxide (DMSO) is an amphipathic molecule that is used as a solvent in biological studies and as a vehicle for drug therapy. The present study was designed to evaluate the potential effects of DMSO as a solvent in the treatment of testicular embryonal carcinomas (ECs). DMSO was applied to two human EC cell lines (NEC8 and NEC14), with the treated cells evaluated in relation to cisplatin (CDDP) resistance, differentiation (using Vimentin, Fibronectin, TRA-1-60, and SSEA-1 and -3 as markers) and stemness (denoted by expression of SOX2 and OCT3/4). Furthermore, DNA methyltransferase (DNMT-1, -3A and -3L) expression and methylation status were analyzed. DMSO induced resistance to CDDP, aberrant differentiation and reduction of stemness-related markers in each of the EC cell lines. The expression levels of DNMT-3L and -3A were reduced in response to DMSO, while this treatment also affected DNA methylation. The data demonstrated that DMSO perturbed differentiation, reduced stemness and induced resistance to CDDP in human EC cells. Therefore, DMSO could reduce drug efficacy against EC cells and its use should be carefully managed in the clinical application of chemotherapy. PMID:26622550

  7. Effect of interferon on dimethyl sulfoxide-stimulated Friend erythroleukemic cells: ultrastructural and biochemical study.

    PubMed Central

    Luftig, R B; Conscience, J F; Skoultchi, A; McMillan, P; Revel, M; Ruddle, F H

    1977-01-01

    Treatment of dimethyl sulfoxide-stimulated Friend erythroleukemic cells (clone 745) with mouse interferon (50 U/ml) led to the following changes: (i) a net decrease (40 to 60%) in both the total number of apparently newly synthesized virion particles per cell section and in the average number of cell sections containing one or more virion particles; (ii) a large decrease (80 to 90%) in the number of particles released into the supernatant fluid, as assayed by reverse transcriptase activity; (iii) an initial increase in the number of "immature" or "enveloped A-type" virions followed by an increase in the accumulation of empty, core shell-like particles; and (iv) a decrease in the number of cytoplasmic vacuolar structures, which have been implicated as a major site of virus production and which we show here by serial sectioning to be, in several instances, invaginations of the plasma membrane. The effects on virus production were noticeable 2 h after interferon addition and reached their full extent by 13 h. We conclude from these observations that interferon acts upon the late stage(s) of virion maturation, leading both to a decrease in virion production as well as to the formation of defective particles. In contrast, a small but significant increase in the rate at which globin mRNA and hemoglobin accumulate is observed after interferon treatment. Images PMID:561195

  8. Dimethyl sulfoxide at high concentrations inhibits non-selective cation channels in human erythrocytes.

    PubMed

    Nardid, Oleg A; Schetinskey, Miroslav I; Kucherenko, Yuliya V

    2013-03-01

    Dimethyl sulfoxide (DMSO), a by-product of the pulping industry, is widely used in biological research, cryobiology and medicine. On cellular level DMSO was shown to suppress NMDA-AMPA channels activation, blocks Na+ channel activation and attenuates Ca2+ influx (Lu and Mattson 2001). In the present study we explored the whole-cell patch-clamp to examine the acute effect of high concentrations of DMSO (0.1-2 mol/l) on cation channels activity in human erythrocytes. Acute application of DMSO (0.1-2 mol/l) dissolved in Cl--containing saline buffer solution significantly inhibited cation conductance in human erythrocytes. Inhibition was concentration-dependent and had an exponential decay profile. DMSO (2 mol/l) induced cation inhibition in Cl-- containing saline solutions of: 40.3 ± 3.9% for K+, 35.4 ± 3.1% for Ca2+ and 47.4 ± 1.9% for NMDG+. Substitution of Cl- with gluconate- increased the inhibitory effect of DMSO on the Na+ current. Inhibitory effect of DMSO was neither due to high permeability of erythrocytes to DMSO nor to an increased tonicity of the bath media since no effect was observed in 2 mol/l glycerol solution. In conclusion, we have shown that high concentrations of DMSO inhibit the non-selective cation channels in human erythrocytes and thus protect the cells against Na+ and Ca2+ overload. Possible mechanisms of DMSO effect on cation conductance are discussed. PMID:23531832

  9. Comparative study of halogen- and hydrogen-bond interactions between benzene derivatives and dimethyl sulfoxide.

    PubMed

    Zheng, Yan-Zhen; Deng, Geng; Zhou, Yu; Sun, Hai-Yuan; Yu, Zhi-Wu

    2015-08-24

    The halogen bond, similar to the hydrogen bond, is an important noncovalent interaction and plays important roles in diverse chemistry-related fields. Herein, bromine- and iodine-based halogen-bonding interactions between two benzene derivatives (C6 F5 Br and C6 F5 I) and dimethyl sulfoxide (DMSO) are investigated by using IR and NMR spectroscopy and ab initio calculations. The results are compared with those of interactions between C6 F5 Cl/C6 F5 H and DMSO. First, the interaction energy of the hydrogen bond is stronger than those of bromine- and chlorine-based halogen bonds, but weaker than iodine-based halogen bond. Second, attractive energies depend on 1/r(n) , in which n is between three and four for both hydrogen and halogen bonds, whereas all repulsive energies are found to depend on 1/r(8.5) . Third, the directionality of halogen bonds is greater than that of the hydrogen bond. The bromine- and iodine-based halogen bonds are strict in this regard and the chlorine-based halogen bond only slightly deviates from 180°. The directional order is iodine-based halogen bond>bromine-based halogen bond>chlorine-based halogen bond>hydrogen bond. Fourth, upon the formation of hydrogen and halogen bonds, charge transfers from DMSO to the hydrogen- and halogen-bond donors. The CH3 group contributes positively to stabilization of the complexes.

  10. Marmoset induced pluripotent stem cells: Robust neural differentiation following pretreatment with dimethyl sulfoxide.

    PubMed

    Qiu, Zhifang; Mishra, Anuja; Li, Miao; Farnsworth, Steven L; Guerra, Bernadette; Lanford, Robert E; Hornsby, Peter J

    2015-07-01

    The marmoset is an important nonhuman primate model for regenerative medicine. For experimental autologous cell therapy based on induced pluripotent (iPS) cells in the marmoset, cells must be able to undergo robust and reliable directed differentiation that will not require customization for each specific iPS cell clone. When marmoset iPS cells were aggregated in a hanging drop format for 3 days, followed by exposure to dual SMAD inhibitors and retinoic acid in monolayer culture for 3 days, we found substantial variability in the response of different iPS cell clones. However, when clones were pretreated with 0.05-2% dimethyl sulfoxide (DMSO) for 24 hours, all clones showed a very similar maximal response to the directed differentiation scheme. Peak responses were observed at 0.5% DMSO in two clones and at 1% DMSO in a third clone. When patterns of gene expression were examined by microarray analysis, hierarchical clustering showed very similar responses in all 3 clones when they were pretreated with optimal DMSO concentrations. The change in phenotype following exposure to DMSO and the 6 day hanging drop/monolayer treatment was confirmed by immunocytochemistry. Analysis of DNA content in DMSO-exposed cells indicated that it is unlikely that DMSO acts by causing cells to exit from the cell cycle. This approach should be generally valuable in the directed neural differentiation of pluripotent cells for experimental cell therapy. PMID:26070112

  11. Ion transport properties of magnesium bromide/dimethyl sulfoxide non-aqueous liquid electrolyte

    PubMed Central

    Sheha, E.

    2015-01-01

    Nonaqueous liquid electrolyte system based dimethyl sulfoxide DMSO and magnesium bromide (MgBr2) is synthesized via ‘Solvent-in-Salt’ method for the application in magnesium battery. Optimized composition of MgBr2/DMSO electrolyte exhibits high ionic conductivity of 10−2 S/cm at ambient temperature. This study discusses different concentrations from 0 to 5.4 M of magnesium salt, representing low, intermediate and high concentrations of magnesium salt which are examined in frequency dependence conductivity studies. The temperature dependent conductivity measurements have also been carried out to compute activation energy (Ea) by least square linear fitting of Arrhenius plot: ‘log σ − 1/T. The transport number of Mg2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.7. A prototype cell was constructed using nonaqueous liquid electrolyte with Mg anode and graphite cathode. The Mg/graphite cell shows promising cycling. PMID:26843967

  12. Solvation structure and transport properties of alkali cations in dimethyl sulfoxide under exogenous static electric fields

    SciTech Connect

    Kerisit, Sebastien; Vijayakumar, M. E-mail: karl.mueller@pnnl.gov; Han, Kee Sung; Mueller, Karl T. E-mail: karl.mueller@pnnl.gov

    2015-06-14

    A combination of molecular dynamics simulations and pulsed field gradient nuclear magnetic resonance spectroscopy is used to investigate the role of exogenous electric fields on the solvation structure and dynamics of alkali ions in dimethyl sulfoxide (DMSO) and as a function of temperature. Good agreement was obtained, for select alkali ions in the absence of an electric field, between calculated and experimentally determined diffusion coefficients normalized to that of pure DMSO. Our results indicate that temperatures of up to 400 K and external electric fields of up to 1 V nm{sup −1} have minimal effects on the solvation structure of the smaller alkali cations (Li{sup +} and Na{sup +}) due to their relatively strong ion-solvent interactions, whereas the solvation structures of the larger alkali cations (K{sup +}, Rb{sup +}, and Cs{sup +}) are significantly affected. In addition, although the DMSO exchange dynamics in the first solvation shell differ markedly for the two groups, the drift velocities and mobilities are not significantly affected by the nature of the alkali ion. Overall, although exogenous electric fields induce a drift displacement, their presence does not significantly affect the random diffusive displacement of the alkali ions in DMSO. System temperature is found to have generally a stronger influence on dynamical properties, such as the DMSO exchange dynamics and the ion mobilities, than the presence of electric fields.

  13. [Permeability of isolated rat hepatocyte plasma membranes for molecules of dimethyl sulfoxide].

    PubMed

    Kuleshova, L G; Gordienko, E A; Kovalenko, I F

    2014-01-01

    We have studied permeability of isolated rat hepatocyte membranes for molecules of dimethyl sulfoxide (DMSO) at different hypertonicity of a cryoprotective medium. The permeability coefficient of hepatocyte membranes κ1 for DMSO molecules was shown to be the differential function of osmotic pressure between a cell and an extracellular medium. Ten-fold augmentation of DMSO concentration in the cryoprotective medium causes the decrease of permeability coefficients κ1 probably associated with the increased viscosity in membrane-adjacent liquid layers as well as partial limitations appeared as a result of change in cell membrane shape after hepatocyte dehydration. We have found out that in aqueous solutions of NaCl (2246 mOsm/l) and DMSO (2250 mOsm/l) the filtration coefficient L(p) in the presence of a penetrating cryoprotectant (L(pDMSO) = (4.45 ± 0.04) x 10(-14) m3/Ns) is 3 orders lower compared to the case with electrolyte (L(pNaCl) = (2.25 ± 0.25) x 10(-11) m3/Ns). This phenomenon is stipulated by the cross impact of flows of a cryoprotectant and water at the stage of cell dehydration. Pronounced lipophilicity of DMSO, geometric parameters of its molecule as well as the presence of large aqueous pores in rat hepatocyte membranes allow of suggesting the availability of two ways of penetrating this cryoprotectant into the cells by non-specific diffusion through membrane lipid areas and hydrophilic channels.

  14. Effects of Dimethyl Sulfoxide on Neuronal Response Characteristics in Deep Layers of Rat Barrel Cortex

    PubMed Central

    Soltani, Narjes; Mohammadi, Elham; Allahtavakoli, Mohammad; Shamsizadeh, Ali; Roohbakhsh, Ali; Haghparast, Abbas

    2016-01-01

    Introduction: Dimethyl sulfoxide (DMSO) is a chemical often used as a solvent for water-insoluble drugs. In this study, we evaluated the effect of intracerebroventricular (ICV) administration of DMSO on neural response characteristics (in 1200–1500 μm depth) of the rat barrel cortex. Methods: DMSO solution was prepared in 10% v/v concentration and injected into the lateral ventricle of rats. Neuronal spontaneous activity and neuronal responses to deflection of the principal whisker (PW) and adjacent whisker (AW) were recorded in barrel cortex. A condition test ratio (CTR) was used to measure inhibitory receptive fields in barrel cortex. Results: The results showed that both PW and AW evoked ON and OFF responses, neuronal spontaneous activity and inhibitory receptive fields did not change following ICV administration of DMSO. Conclusion: Results of this study suggest that acute ICV administration of 10% DMSO did not modulate the electrophysiological characteristics of neurons in the l deep ayers of rat barrel cortex. PMID:27563414

  15. Protective effect of dimethyl sulfoxide on acute myocardial infarction in rats.

    PubMed

    Parisi, Antonio; Alfieri, Alessio; Mazzella, Marialuisa; Mazzella, Antonio; Scognamiglio, Mattia; Scognamiglio, Gianluigi; Mascolo, Nicola; Cicala, Carla

    2010-01-01

    Dimethyl sulfoxide (DMSO) is an organic compound widely used as solvent in biological studies and as vehicle for drug administration. DMSO has been shown to possess several biological effects, including antioxidant, anti-inflammatory, antinociceptive effects, and it has been proposed to be therapeutic in several disorders, such as gastrointestinal diseases, rheumatologic diseases, and for the treatment of several manifestations of amyloidosis. To better define the biological profile of DMSO, we investigated its effect on an in vivo model of acute myocardial infarction in rats, caused by left anterior descending coronary artery ligation. Our results show that pretreatment of rats with intraperitoneal (ip) DMSO (500 microL/Kg) for 3 consecutive days before left anterior descending coronary artery ligation significantly (P < 0.05) reduced cardiac damage from 18.75 +/- 4.88% (n = 12) to 4.46 +/- 2.01% (n = 8); serum levels of troponin I from 29.35 +/- 12.32 ng/mL (n = 8) to 2.95 +/- 1.32 ng/mL (n = 4); and serum levels of myoglobin from 46.86 +/- 10.35 ng/mL (n = 7) to 13.75 +/- 0.85 ng/mL (n = 4). Our data demonstrate that DMSO has a protective effect in a model of acute myocardial infarction in rats. PMID:19904216

  16. The Role of Dimethyl Sulfoxide in the Reductive Dissolution of Iron in Marine Aerosols

    NASA Astrophysics Data System (ADS)

    Key, J. M.; Johansen, A. M.

    2003-12-01

    Very little is known about the effects of atmospheric iron (Fe) deposition from aeolian dusts into the remote oceans and the role it plays as a key nutrient for photosynthesis in marine phytoplankton in high nutrient low chlorophyll (HNLC) waters. Several in situ iron fertilization studies in HNLC regions have reported increases in chlorophyll a concentrations, nutrient and carbon uptake, and the release of various biogenic gases which have the potential to directly and indirectly impact global climate. Of particular interest in the present study is the indirect effect of dimethyl sulfoxide (DMSO) as part of a positive feedback cycle that may exist between such biogenically derived reduced sulfur compounds and crustal derived iron in the atmosphere over remote oceanic regions. To determine whether DMSO can lead to larger atmospheric concentrations of bioavailable iron in the form of Fe(II), photochemical simulation experiments were carried out using synthetic ferrihydrite (Fe5HO8ṡ4H2O) in the presence of DMSO. During these experiments DMSO oxidation products, such as methane sulfonic acid (MSA), methane sulfinic acid (MSIA), and sulfate (SO42-), were quantified by means of ion chromatography (IC), while Fe(II) was determined spectrophotometrically by complexation with ferrozine. Preliminary results suggest that current ambient DMSO levels are too low to play a significant role in the reductive dissolution of iron hydroxide in aerosol particles. However, increased DMSO levels may enhance bioavailability of iron, thus potentially closing the gap in the positive feedback cycle.

  17. Dimethyl Sulfoxide Perturbs Cell Cycle Progression and Spindle Organization in Porcine Meiotic Oocytes

    PubMed Central

    Li, Xuan; Wang, Yan-Kui; Song, Zhi-Qiang; Du, Zhi-Qiang; Yang, Cai-Xia

    2016-01-01

    Meiotic maturation of mammalian oocytes is a precisely orchestrated and complex process. Dimethyl sulfoxide (DMSO), a widely used solvent, drug, and cryoprotectant, is capable of disturbing asymmetric cytokinesis of oocyte meiosis in mice. However, in pigs, DMSO’s effect on oocyte meiosis still remains unknown. We aimed to evaluate if DMSO treatment will affect porcine oocyte meiosis and the underlying molecular changes as well. Interestingly, we did not observe the formation of the large first polar body and symmetric division for porcine oocytes treated with DMSO, contrary to findings reported in mice. 3% DMSO treatment could inhibit cumulus expansion, increase nuclear abnormality, disturb spindle organization, decrease reactive oxygen species level, and elevate mitochondrial membrane potential of porcine oocytes. There was no effect on germinal vesicle breakdown rate regardless of DMSO concentration. 3% DMSO treatment did not affect expression of genes involved in spindle organization (Bub1 and Mad2) and apoptosis (NF-κB, Pten, Bcl2, Caspase3 and Caspase9), however, it significantly decreased expression levels of pluripotency genes (Oct4, Sox2 and Lin28) in mature oocytes. Therefore, we demonstrated that disturbed cumulus expansion, chromosome alignment, spindle organization and pluripotency gene expression could be responsible for DMSO-induced porcine oocyte meiotic arrest and the lower capacity of subsequent embryo development. Our results provide new insights on DMSO’s effect on porcine oocyte meiosis and raise safety concerns over DMSO’s usage on female reproduction in both farm animals and humans. PMID:27348312

  18. Electrochemical machining of gold microstructures in LiCl/dimethyl sulfoxide.

    PubMed

    Ma, Xinzhou; Bán, Andreas; Schuster, Rolf

    2010-02-22

    LiCl/dimethyl sulfoxide (DMSO) electrolytes were applied for the electrochemical micromachining of Au. Upon the application of short potential pulses in the nanosecond range to a small carbon-fiber electrode, three-dimensional microstructures with high aspect ratios were fabricated. We achieved machining resolutions down to about 100 nm. In order to find appropriate machining parameters, that is, tool and workpiece rest potentials, the electrochemical behavior of Au in LiCl/DMSO solutions with and without addition of water was studied by cyclic voltammetry. In waterless electrolyte Au dissolves predominantly as Au(I), whereas upon the addition of water the formation of Au(III) becomes increasingly important. Because of the low conductivity of LiCl/DMSO compared with aqueous electrolytes, high machining precision is obtained with moderately short pulses. Furthermore, the redeposition of dissolved Au can be effectively avoided, since Au dissolution in LiCl/DMSO is highly irreversible. Both observations render LiCl/DMSO an appropriate electrolyte for the routine electrochemical micromachining of Au. PMID:20017182

  19. Dissolution of brominated epoxy resins by dimethyl sulfoxide to separate waste printed circuit boards.

    PubMed

    Zhu, Ping; Chen, Yan; Wang, Liangyou; Qian, Guangren; Zhang, Wei Jie; Zhou, Ming; Zhou, Jin

    2013-03-19

    Improved methods are required for the recycling of waste printed circuit boards (WPCBs). In this study, WPCBs (1-1.5 cm(2)) were separated into their components using dimethyl sulfoxide (DMSO) at 60 °C for 45 min and a metallographic microscope was used to verify their delamination. An increased incubation time of 210 min yielded a complete separation of WPCBs into their components, and copper foils and glass fibers were obtained. The separation time decreased with increasing temperature. When the WPCB size was increased to 2-3 cm(2), the temperature required for complete separation increased to 90 °C. When the temperature was increased to 135 °C, liquid photo solder resists could be removed from the copper foil surfaces. The DMSO was regenerated by rotary decompression evaporation, and residues were obtained. Fourier transform infrared spectroscopy (FT-IR), thermal analysis, nuclear magnetic resonance, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to verify that these residues were brominated epoxy resins. From FT-IR analysis after the dissolution of brominated epoxy resins in DMSO it was deduced that hydrogen bonding may play an important role in the dissolution mechanism. This novel technology offers a method for separating valuable materials and preventing environmental pollution from WPCBs.

  20. Specific reduction of N,N-dimethylnitrosamine mutagenicity in Drosophila melanogaster by dimethyl sulfoxide

    SciTech Connect

    Brodberg, R.K.; Mitchell, M.J.; Smith, S.L.; Woodruff, R.C.

    1988-01-01

    Dimethyl sulfoxide (DMSO) used as a solvent has been observed to complicate mutagenicity screens by interacting with tested chemicals to yield false positive or negatives. The authors have used DMSO as a solvent in the Drosophila melanogaster recessive sex-linked lethal mutation assay and find that it reduces, but does not abolish, the detectable mutagenicity of N,N-dimethylnitrosamine (DMN). Its use as a solvent with procarbazine, another promutagen, shows no effect on mutagenicity in Drosophila. DMSO does not exhibit a general inhibitory action on microsome activity when ecdysone 20-monooxygenase activity is used as a measure of cytochrome P-450 activity. They were unable to detect the low DMN demethylase activity in the strain used. Hence, the inhibitory effect of DMSO in Drosophila at both the physiological and biological level appears to be limited and not general in action. Because DMN and DMSO are similar in structure, it is possible that DMSO is interacting with a DMN demethylase in Drosophila. This might lead to a reduction in the conversion of DMN to a mutagen. Consequently, from the results of this study and others DMSO should be used cautiously as a solvent in Drosophila mutagen screening.

  1. Ion transport properties of magnesium bromide/dimethyl sulfoxide non-aqueous liquid electrolyte.

    PubMed

    Sheha, E

    2016-01-01

    Nonaqueous liquid electrolyte system based dimethyl sulfoxide DMSO and magnesium bromide (MgBr2) is synthesized via 'Solvent-in-Salt' method for the application in magnesium battery. Optimized composition of MgBr2/DMSO electrolyte exhibits high ionic conductivity of 10(-2) S/cm at ambient temperature. This study discusses different concentrations from 0 to 5.4 M of magnesium salt, representing low, intermediate and high concentrations of magnesium salt which are examined in frequency dependence conductivity studies. The temperature dependent conductivity measurements have also been carried out to compute activation energy (Ea ) by least square linear fitting of Arrhenius plot: 'log σ - 1/T. The transport number of Mg(2+) ion determined by means of a combination of d.c. and a.c. techniques is ∼0.7. A prototype cell was constructed using nonaqueous liquid electrolyte with Mg anode and graphite cathode. The Mg/graphite cell shows promising cycling.

  2. Semisolid formulations containing dimethyl sulfoxide and alpha-tocopherol for the treatment of extravasation of antiblastic agents.

    PubMed

    Casiraghi, Antonella; Ardovino, Paola; Minghetti, Paola; Botta, Cinzia; Gattini, Arrigo; Montanari, Luisa

    2007-07-01

    The topical treatment with dimethyl sulfoxide (DMSO) and/or alpha-tocopherol (alpha-T) is widely used in order to prevent the local complications of extravasation of cytostatic drugs and protect patients against skin ulceration. Till now, DMSO and alpha-T have been mainly used in solution. The goal of this study was to formulate semisolid preparations for cutaneous application differing in the hydrophilic and lipophilic properties and containing DMSO and alpha-T in combination. With respect to solutions, the use of semisolid preparations containing DMSO and alpha-T could be advantageous in patients having extravasation as DMSO and alpha-T can remain in contact with the skin over an extended period of time. As a consequence, the action of the active principles can be limited specifically on the injured skin area, reducing the cutaneous irritative effects of DMSO. The following types of semisolid formulations containing 50% m/m DMSO and 2.5% m/m alpha-T were prepared: hydrophilic ointment, o/w emulsion, hydrophilic gel and lipophilic gel. The ex vivo skin permeation of DMSO and alpha-T was evaluated by using modified Franz's diffusion cells and human stratum corneum and epidermis (SCE) as a membrane. The permeated and retained amounts of DMSO and alpha-T were determined. The oleogel preparation, the hydrophilic gel and the o/w emulsion were uniform in colour and aspect, without any evidences of phase separation over the period of the study. Hydrophilic ointments were discarded as they showed phase separation after 12 h. All formulations had a different behaviour in terms of skin permeability. In particular, hydrogel and o/w emulsion showed the best control on the drug release considering the interactions of the vehicle components with the SCE and the drugs partition between the vehicle and the SCE. The DMSO permeated amount after 24 h was 4.1 mg/cm(2) for hydrogel and 2.5 mg/cm(2) for emulsion while the permeated amount of pure DMSO after 24 h was 47.5 mg/cm(2

  3. Microbial Activity in Aquatic Environments Measured by Dimethyl Sulfoxide Reduction and Intercomparison with Commonly Used Methods

    PubMed Central

    Griebler, Christian; Slezak, Doris

    2001-01-01

    A new method to determine microbial (bacterial and fungal) activity in various freshwater habitats is described. Based on microbial reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), our DMSO reduction method allows measurement of the respiratory activity in interstitial water, as well as in the water column. DMSO is added to water samples at a concentration (0.75% [vol/vol] or 106 mM) high enough to compete with other naturally occurring electron acceptors, as determined with oxygen and nitrate, without stimulating or inhibiting microbial activity. Addition of NaN3, KCN, and formaldehyde, as well as autoclaving, inhibited the production of DMS, which proves that the reduction of DMSO is a biotic process. DMSO reduction is readily detectable via the formation of DMS even at low microbial activities. All water samples showed significant DMSO reduction over several hours. Microbially reduced DMSO is recovered in the form of DMS from water samples by a purge and trap system and is quantified by gas chromatography and detection with a flame photometric detector. The DMSO reduction method was compared with other methods commonly used for assessment of microbial activity. DMSO reduction activity correlated well with bacterial production in predator-free batch cultures. Cell-production-specific DMSO reduction rates did not differ significantly in batch cultures with different nutrient regimes but were different in different growth phases. Overall, a cell-production-specific DMSO reduction rate of 1.26 × 10−17 ± 0.12 × 10−17 mol of DMS per produced cell (mean ± standard error; R2 = 0.78) was calculated. We suggest that the relationship of DMSO reduction rates to thymidine and leucine incorporation is linear (the R2 values ranged from 0.783 to 0.944), whereas there is an exponential relationship between DMSO reduction rates and glucose uptake, as well as incorporation (the R2 values ranged from 0.821 to 0.931). Based on our results, we conclude that

  4. Aflatoxin and dimethyl sulfoxide influence on radiomanganese distribution and retention in neonate mice

    SciTech Connect

    Thompson, J.S.; Llewellyn, G.C.

    1984-01-01

    The LD50 (7 d) for aflatoxin B/sub 1/ (AFB/sub 1/) in CD-1 neonate mice (3.1 g; 5 d of age) was determined to be 13.3 mg/kg. The vehicle was dimethyl sulfoxide (DMSO), given intraperitoneally, at 0.01 ml/animal (7 mg/kg). The solvent was nontoxic and caused no significant change in body weight in animals during an 11-d experimental period (17 d of age). Aflatoxin B/sub 1/ at 5.0 mg/kg and above caused reduced body weight gain. DMSO animals had a mean loss of more than 17% of the radiolabel over a 9-d period. Aflatoxin treatments reversed the DMSO loss of /sup 54/Mn in a concentration-related fashion, and generally, AFB/sub 1/ caused a conservation of the radioisotope. The radiolabel was redistributed into the following organs/tissues: liver > brain > bone > muscle = lungs > blood. Aflatoxin-treated animals showed a twofold increase of radiolabel in the liver as compared to controls. The DMSO itself failed to influence /sup 54/Mn influx into the liver. In general, control neonate mice, by 17 d of age, were retaining and redistributing the /sup 54/MnCl/sub 2/ and had not reached the time for sudden emergence of excretion common in rodents. DMSO was found not to be the most satisfactory solvent to use in the administration of aflatoxins, especially when manganese metabolism is being studied. Generally, both DMSO and AFB/sub 1/ influenced radiomanganese distribution, DMSO having a substantial influence. 27 references, 3 figures, 2 tables.

  5. Combined experimental and theoretical investigation of interactions between kaolinite inner surface and intercalated dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Liu, Qinfu; Cheng, Hongfei; Zeng, Fangui

    2015-03-01

    Kaolinite intercalation complex with dimethyl sulfoxide (DMSO) was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry-differential scanning calorimetry (TG-DSC) combined with molecular dynamics simulation. The bands assigned to the OH stretching of inner surface of kaolinite were significantly perturbed after intercalation of DMSO into kaolinite. Additionally, the bands attributed to the vibration of gibbsite-like layers of kaolinite shifted to the lower wave number, indicating that the intercalated DMSO were strongly hydrogen bonded to the alumina octahedral surface of kaolinite. The slightly decreased intensity of 1031 cm-1 and 1016 cm-1 band due to the in-plane vibration of Sisbnd O of kaolinite revealed that some DMSO molecules formed weak hydrogen bonds with the silicon tetrahedral surface of kaolinite. Based on the TG result of kaolinite-DMSO intercalation complex, the formula of A12Si2O5(OH)4(DMSO)0.7 was obtained, with which the kaolinite-DMSO complex model was constructed. The molecular dynamics simulation of kaolinite-DMSO complex directly confirmed the monolayer structure of DMSO in interlayer space of kaolinite, where the DMSO arranged almost parallel with kaolinite basal surface with all methyl groups being distributed near the interlayer midplane and oxygen atoms orienting toward to the alumina octahedral surface. The radial distribution function between kaolinite and intercalated DMSO verified the strong hydrogen bonds forming between hydroxyl hydrogen atoms of alumina octahedral surface and oxygen atoms of DMSO. Moreover, some methyl groups of DMSO were weakly hydrogen bonded to the oxygen atoms of silicon tetrahedral surface through the hydrogen atoms. The mean square displacement of DMSO oxygen atoms and hydrogen atoms in z direction kept unchanged during the simulation time because of the hydrogen-bond interaction between inner surface of kaolinite and DMSO, which constrained the mobility

  6. Hydrogen-bonding interactions between [BMIM][BF4] and dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Zheng, Yan-Zhen; He, Hong-Yan; Zhou, Yu; Yu, Zhi-Wu

    2014-07-01

    Mixtures of Ionic liquids and small polar organic solvent are potential green solvents for cellulose dissolution under mild conditions. In this work, the interactions between a representative imidazolium-based ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) and dimethyl sulfoxide (DMSO) were investigated in detail by attenuated total reflection infrared spectroscopy (ATR-IR) and density functional theory calculations (DFT). The main conclusions are: (1) C2-H is the main interaction site in forming cation-anion, cation-DMSO, and [BMIM][BF4]-DMSO complexes. (2) The two turning points of the wavenumber shift changes of C2-H may indicate that the dilution process can be divided into several stages: from larger ion clusters to smaller ion clusters, then to ion pairs, and finally to individual ions. The solvent molecules cannot break apart the strong Coulombic interaction between [BMIM]+ and [BF4]- but can break apart the ion clusters into ion pairs when the mole fraction of DMSO is less than 0.9. When the mole fraction of DMSO is greater than 0.9, ion pairs can be broke into ions. (3) The hydrogen-bonds of the aromatic C-Hs in [BMIM]+ are strengthened in the dilution process while those of the alkyl C-Hs of [BMIM]+ are weakened. (4) The aromatic C-Hs of the [BMIM]+ cation strength before the weakening of the alkyl C-Hs. These in-depth studies on the properties of the ionic liquid-DMSO mixed solvents may shed light on exploring their applications as mixed solvents in cellulose dissolution and other practices.

  7. Theoretical Spectroscopic Characterization at Low Temperatures of Dimethyl Sulfoxide: The Role of Anharmonicity.

    PubMed

    Senent, M L; Dalbouha, S; Cuisset, A; Sadovskii, D

    2015-09-17

    The structural and spectroscopic parameters of dimethyl sulfoxide (DMSO) are predicted from CCSD(T)-F12 calculations that can help to resolve the outstanding problem of the rovibrational spectroscopy. DMSO is a near oblate top that presents a trigonal pyramidal geometry. Rotational parameters are determined at the equilibrium and in selected vibrational states. For the ground state, the rotational constants were calculated to be A0 = 7031.7237 MHz, B0 = 6920.1221 MHz, and C0 = 4223.3389 MHz, at few megahertz from the previous experimental measurements. Ab initio calculations allow us to assert that DMSO rotational constants are strongly dependent on anharmonic effects. Asymmetry increases with the vibrational energy. Harmonic frequencies, torsional parameters, and a two-dimensional potential energy surface (2D-PES) focused to describe the internal rotation of the two methyl groups are determined at the CCSD(T)-F12 level of theory. For the medium and small amplitude motions, anharmonic effects are estimated with MP2 theory getting an excellent agreement with experimental data for the ν11 and ν23 fundamentals. Torsional energies and transitions are computed variationally form the 2D-PES that denotes strong interactions between both internal tops. The vibrationally corrected V3 torsional barrier is evaluated to be 965.32 cm(-1). The torsional splitting of the ground vibrational state has been estimated to be lower than 0.01 cm(-1). Although the ν13 torsional fundamental is found at 229.837 cm(-1) in good agreement with previous assessment, there is not accord for the low intense transition ν24. A new assignment predicting ν24 to lie between 190 and 195 cm(-1) is proposed.

  8. Continuous degradation of dimethyl sulfoxide to sulfate ion by Hyphomicrobium denitrificans WU-K217.

    PubMed

    Murakami-Nitta, Takako; Kurimura, Hiroyuki; Kirimura, Kohtaro; Kino, Kuniki; Usami, Shoji

    2002-01-01

    With the objective of removing dimethyl sulfoxide (DMSO) contained in wastewater from semiconductor or liquid crystal display factories, biodegradation of DMSO, particularly at a low concentration, was examined. Through the screening of DMSO-degrading microorganisms, Hyphomicrobium denitrificans WU-K217 utilizing DMSO as the sole source of carbon was isolated from soil. DMSO at less than 20 mM was degraded to sulfate ion by WU-K217 with 100% molar conversion ratio based on DMSO added during 60-h cultivation at 30 degrees C under aerobic conditions. Even in the presence of 116 mM or 225 mM DMSO, WU-K217 showed growth although the amount of DMSO degraded was only 33 mM or 10 mM, respectively. Similar to the growing cells, the resting cells of WU-K217 degraded DMSO at over a wide range of temperature, 20-40 degrees C. The highest DMSO-degradation activity was obtained at 30 degrees C, and 0.64 mM (50 mg/l) DMSO was completely degraded to sulfate ion with 100% molar conversion ratio within only 15 min. Furthermore, to examine whether WU-K217 would be useful for the removal of DMSO contained in wastewater exhausted in large amounts, continuous degradation of DMSO was examined. When 0.64 mM DMSO was added to the resting cells periodically at 15-min intervals, DMSO was completely degraded to sulfate ion without any decrease of the degradation activity at least during the twelve times of DMSO addition. PMID:16233269

  9. Effect of sodium chloride on efficiency of cisplatinum dissolved in dimethyl sulfoxide: an in vitro study.

    PubMed

    Doun, Seyed Kazem Bagherpour; Khor, Sohrab Halal; Qujeq, Dardi; Shahmabadi, Hasan Ebrahimi; Alavi, Seyed Ebrahim; Movahedi, Fatemeh; Akbarzadeh, Azim

    2014-04-01

    Cisplatinum (Cispt) is an anti-cancer drug with a low level of solubility. One of Cispt's solvents is dimethyl sulfoxide (DMSO) which can be substituted with chlorine of drug as Cispt's solvent. Applying such a solvent in biological studies is impossible due to intense reduction in activity. On the other hand, it is specified that Cispt's stability is increased in aqueous media by increasing sodium chloride (NaCl) concentration up to 0.9 %. Consequently, we intended to study the effect of DMSO on cytotoxicity of Cispt in presence of sodium. MTT assay was employed to study cytotoxicity effect of Cispt + NaCl + DMSO and Cispt + DMSO on G-292 cell line. Cytotoxicity in dilutions of 300 and 9 (p < 0.01) of Cispt in Cispt + NaCl + DMSO formulation was equal to 78 and 7 %. These values were estimated 79 and 18 % for Cispt + DMSO formulation and 79 and 24 % for free drug. IC50 values demonstrated reduction of 45 % in cytotoxicity of Cispt in Cispt + DMSO formulation. Studying chemical structure of Cispt and Cispt dissolved in DMSO showed that NaCl cannot inhibit inactivating effect of DMSO on Cispt and effect of this solvent on Cispt is independent from presence of NaCl. Results represented that using NaCl does not result in stability and keeping cytotoxicity properties of Cispt in DMSO. Findings suggest more studies for using DMSO as a solvent of Cispt.

  10. Inhibition of differentiation and function of osteoclasts by dimethyl sulfoxide (DMSO).

    PubMed

    Yang, Chunxi; Madhu, Vedavathi; Thomas, Candace; Yang, Xinlin; Du, Xeujun; Dighe, Abhijit S; Cui, Quanjun

    2015-12-01

    Dimethyl sulfoxide (DMSO) is an FDA-approved organosulfur solvent that is reported to have therapeutic value in osteoarthritis and osteopenia. DMSO is used as a cryoprotectant for the cryopreservation of bone grafts and mesenchymal stem cells which are later used for bone repair. It is also used as a solvent in the preparation of various scaffolds used for bone tissue engineering purposes. DMSO has been reported to inhibit osteoclast formation in vitro but the mechanism involved has remained elusive. We investigated the effect of DMSO on osteoclast differentiation and function using a conventional model system of RAW 264.7 cells. The differentiation of RAW 264.7 cells was induced by adding 50 ng/ml RANKL and the effect of DMSO (0.01 and 1% v/v) on RANKL-induced osteoclastogenesis was investigated. Addition of 1% DMSO significantly inhibited RANKL-induced formation of TRAP+, multinucleated, mature osteoclasts and osteoclast late-stage precursors (c-Kit(-) c-Fms(+) Mac-1(+) RANK(+)). While DMSO did not inhibit proliferation per se, it did inhibit the effect of RANKL on proliferation of RAW 264.7 cells. Key genes related to osteoclast function (TRAP, Integrin αVβ3, Cathepsin K and MMP9) were significantly down-regulated by DMSO. RANKL-induced expression of RANK gene was significantly reduced in the presence of DMSO. Our data, and reports from other investigators, that DMSO enhances osteoblastic differentiation of mesenchymal stem cells and also prevents bone loss in ovarietcomized rats, suggest that DMSO has tremendous potential in the treatment of osteoporosis and bone diseases arising from uncontrolled activities of the osteoclasts.

  11. Swelling behavior of halthane 73-18 polyurethane adhesive in dimethyl sulfoxide (DMSO)

    SciTech Connect

    LeMay, J. D., LLNL

    1996-06-01

    To insure safe performance during the launch and flight of the W79 Artillery Fired Atomic Projectile (AFAP), the assembly gaps in the high explosive assembly were filled with a continuous film of polyurethane elastomer adhesive called Halthane 73-18. To disassemble bonded weapons like the W79, Lawrence Livermore and Mason & Hanger, Pantex Plant have developed a chemical dissolution process that safely removes the high explosive, thereby facilitating the recovery of the pit. The solvent of choice for the W79 AFAP was dimethyl sulfoxide (DMSO). In the W79 dissolution process, a continuous spray of DMSO is emitted through nozzles mounted in manifold assembly that encircles the HE assembly. The operating pressure and temperature of the DMSO are less than 100 psig and less than 160{degrees}F. Although warm DMSO readily dissolves the LX-10{sup 1} explosive, it cannot dissolve the Halthane 73-18 adhesive due to its chemically crosslinked structure. DMSO does, however, swell the Halthane adhesive. The resulting swollen films are soft and unable to support their own weight, yet they are not necessarily so fragile that they will tear or shred readily under the force of the DMSO spray. Indeed, the swollen Halthane films encountered in several W79 Type 6B 2048 units tested in the Pantex Workstation proved to be quite tenacious. They remained intact under the action of DMSO spray and became an encapsulating barrier that shielded the remaining undissolved HE. This effectively stopped the dissolution process, forcing manual removal in order to complete the dissolution process. By comparison, the swollen Halthane film was readily shredded and eliminated under the action of the DMSO spray nozzles in tests at LLNL in workstation of a different design. This apparent difference in response is the subject of this report.

  12. Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave dielectric relaxation spectroscopy.

    PubMed

    Lu, Zijie; Manias, Evangelos; Macdonald, Digby D; Lanagan, Michael

    2009-11-01

    Dielectric spectra of dimethyl sulfoxide (DMSO)/water mixtures, over the entire concentration range, have been measured using the transmission line method at frequencies from 45 MHz to 26 GHz and at temperatures of 298-318 K. The relaxation times of the mixtures show a maximum at an intermediate molar fraction of DMSO. The specific structure of mixtures in different concentration regions was determined by the dielectric relaxation dynamics, obtained from the effect of temperature on the relaxation time. A water structure "breaking effect" is observed in dilute aqueous solutions. The average number of hydrogen bonds per water molecule in these mixtures is found to be reduced compared to pure water. The increase in the dielectric relaxation time in DMSO/water mixtures is attributed to the spatial (steric) constraints of DMSO molecules on the hydrogen-bond network, rather than being due to hydrophobic hydration of the methyl groups. The interaction between water and DMSO by hydrogen bonding reaches a maximum at a DMSO molar fraction of 0.33, reflected by the maximum activation enthalpy for dielectric relaxation in this concentration, suggesting the formation of a stoichiometric compound, H2O-DMSO-H2O. In highly concentrated solutions, negative activation entropies are observed, indicating the presence of aggregates of DMSO molecules. A distinct antiparallel arrangement of dipoles is obtained for neat DMSO in the liquid state according to the Kirkwood correlation factor (g(K) = 0.5), calculated from the static permittivity. The similarity of the dielectric behavior of pure DMSO and DMSO-rich mixtures suggests that dipole-dipole interactions contribute significantly to the rotational relaxation process in these solutions.

  13. Effect of sodium chloride on efficiency of cisplatinum dissolved in dimethyl sulfoxide: an in vitro study.

    PubMed

    Doun, Seyed Kazem Bagherpour; Khor, Sohrab Halal; Qujeq, Dardi; Shahmabadi, Hasan Ebrahimi; Alavi, Seyed Ebrahim; Movahedi, Fatemeh; Akbarzadeh, Azim

    2014-04-01

    Cisplatinum (Cispt) is an anti-cancer drug with a low level of solubility. One of Cispt's solvents is dimethyl sulfoxide (DMSO) which can be substituted with chlorine of drug as Cispt's solvent. Applying such a solvent in biological studies is impossible due to intense reduction in activity. On the other hand, it is specified that Cispt's stability is increased in aqueous media by increasing sodium chloride (NaCl) concentration up to 0.9 %. Consequently, we intended to study the effect of DMSO on cytotoxicity of Cispt in presence of sodium. MTT assay was employed to study cytotoxicity effect of Cispt + NaCl + DMSO and Cispt + DMSO on G-292 cell line. Cytotoxicity in dilutions of 300 and 9 (p < 0.01) of Cispt in Cispt + NaCl + DMSO formulation was equal to 78 and 7 %. These values were estimated 79 and 18 % for Cispt + DMSO formulation and 79 and 24 % for free drug. IC50 values demonstrated reduction of 45 % in cytotoxicity of Cispt in Cispt + DMSO formulation. Studying chemical structure of Cispt and Cispt dissolved in DMSO showed that NaCl cannot inhibit inactivating effect of DMSO on Cispt and effect of this solvent on Cispt is independent from presence of NaCl. Results represented that using NaCl does not result in stability and keeping cytotoxicity properties of Cispt in DMSO. Findings suggest more studies for using DMSO as a solvent of Cispt. PMID:24757310

  14. Trichlorido(dimethyl sulfoxide-κO)(di-2-pyridyl-amine-κ(2)N,N')indium(III).

    PubMed

    Shirvan, Sadif A; Haydari Dezfuli, Sara; Golabi, Elyas

    2012-10-01

    In the title compound, [InCl(3)(C(10)H(9)N(3))(C(2)H(6)OS)], the In(III) atom is six-coordinated in a distorted octa-hedral geometry by two N atoms from a chelating di-2-pyridyl-amine ligand, one O atom from a dimethyl sulfoxide ligand and three Cl atoms. Inter-molecular C-H⋯Cl hydrogen bonds and π-π contacts between the pyridine rings [centroid-centroid distance = 3.510 (3) Å] are present in the crystal.

  15. Trichlorido(6-methyl-2,2'-bipyridine-κ(2)N,N')(dimethyl-sulfoxide-κO)indium(III).

    PubMed

    Shirvan, Sadif A; Haydari Dezfuli, Sara; Golabi, Elyas; Gholamzadeh, Mohammad Amin

    2012-11-01

    In the title compound, [In(C(11)H(10)N(2))Cl(3)(C(2)H(6)OS)], the In(III) cation is six-coordinated in a distorted octa-hedral configuration by two N atoms from the chelating 6-methyl-2,2'-bipyridine ligand, one O atom from a dimethyl-sulfoxide group and three Cl(-) anions. Weak inter-molecular C-H⋯O and C-H⋯Cl hydrogen bonds and intra-molecular C-H⋯Cl hydrogen bonds are present in the structure.

  16. Dimethyl sulfoxide inhibits zymosan-induced intestinal inflammation and barrier dysfunction

    PubMed Central

    Li, Yu-Meng; Wang, Hai-Bin; Zheng, Jin-Guang; Bai, Xiao-Dong; Zhao, Zeng-Kai; Li, Jing-Yuan; Hu, Sen

    2015-01-01

    AIM: To investigate whether dimethyl sulfoxide (DMSO) inhibits gut inflammation and barrier dysfunction following zymosan-induced systemic inflammatory response syndrome and multiple organ dysfunction syndrome. METHODS: Sprague-Dawley rats were randomly divided into four groups: sham with administration of normal saline (SS group); sham with administration of DMSO (SD group); zymosan with administration of normal saline (ZS group); and zymosan with administration of DMSO (ZD group). Each group contained three subgroups according to 4 h, 8 h, and 24 h after surgery. At 4 h, 8 h, and 24 h after intraperitoneal injection of zymosan (750 mg/kg), the levels of intestinal inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-10] and oxides (myeloperoxidase, malonaldehyde, and superoxide dismutase) were examined. The levels of diamine oxidase (DAO) in plasma and intestinal mucosal blood flow (IMBF) were determined. Intestinal injury was also evaluated using an intestinal histological score and apoptosis of intestinal epithelial cells was determined by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The intestinal epithelial tight junction protein, ZO-1, was observed by immunofluorescence. RESULTS: DMSO decreased TNF-α and increased IL-10 levels in the intestine compared with the ZS group at the corresponding time points. The activity of intestinal myeloperoxidase in the ZS group was higher than that in the ZD group 24 h after zymosan administration (P < 0.05). DMSO decreased the content of malondialdehyde (MDA) and increased the activity of superoxide dehydrogenase (SOD) 24 h after zymosan administration. The IMBF was lowest at 24 h and was 49.34% and 58.26% in the ZS group and ZD group, respectively (P < 0.05). DMSO alleviated injury in intestinal villi, and the gut injury score was significantly lower than the ZS group (3.6 ± 0.2 vs 4.2 ± 0.3, P < 0.05). DMSO decreased the level of DAO in plasma compared with the ZS

  17. Dipolar Self-Assembling in Mixtures of Propylene Carbonate and Dimethyl Sulfoxide as Revealed by the Orientational Entropy.

    PubMed

    Płowaś, Iwona; Świergiel, Jolanta; Jadżyn, Jan

    2016-08-18

    This article presents the results of static dielectric studies performed on mixtures of two strongly polar liquids important from a technological point of view: propylene carbonate (PC) and dimethyl sulfoxide (DMSO). The dielectric data were analyzed in terms of the molar orientational entropy increment induced by the probing electric field. It was found that the two polar liquids in the neat state reveal quite different molecular organization in terms of dipole-dipole self-assembling: PC exhibits a dipolar coupling of the head-to-tail type, whereas in DMSO one observes extreme restriction of dipolar association in any form. In PC + DMSO mixtures, the disintegration of the dipolar ensembles of PC molecules takes place and the progress of that process is strictly proportional to the concentration of DMSO. The static permittivity of mixtures of such differently self-organized liquids exhibits a positive deviation from the additive rule and the deviation develops symmetrically within the concentration scale. PMID:27458791

  18. Free energy landscape for glucose condensation and dehydration reactions in dimethyl sulfoxide and the effects of solvent.

    PubMed

    Qian, Xianghong; Liu, Dajiang

    2014-03-31

    The mechanisms and free energy surfaces (FES) for the initial critical steps during proton-catalyzed glucose condensation and dehydration reactions were elucidated in dimethyl sulfoxide (DMSO) using Car-Parrinello molecular dynamics (CPMD) coupled with metadynamics (MTD) simulations. Glucose condensation reaction is initiated by protonation of C1--OH whereas dehydration reaction is initiated by protonation of C2--OH. The mechanisms in DMSO are similar to those in aqueous solution. The DMSO molecules closest to the C1--OH or C2--OH on glucose are directly involved in the reactions and act as proton acceptors during the process. However, the energy barriers are strongly solvent dependent. Moreover, polarization from the long-range electrostatic interaction affects the mechanisms and energetics of glucose reactions. Experimental measurements conducted in various DMSO/Water mixtures also show that energy barriers are solvent dependent in agreement with our theoretical results. PMID:24631668

  19. Effect of dimethyl sulfoxide on ionic liquid 1-ethyl-3-methylimidazolium acetate pretreatment of eucalyptus wood for enzymatic hydrolysis.

    PubMed

    Wu, Long; Lee, Seung-Hwan; Endo, Takashi

    2013-07-01

    Ground eucalyptus wood was pretreated with 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc)-dimethyl sulfoxide (DMSO) solutions with different mixing ratios under various conditions. The changes in the composition and structure of the biomass were investigated; and the enzymatic hydrolysis performance of the pretreated biomass was evaluated. [EMIM]OAc-DMSO pretreatment had a relatively mild effect on the composition of the biomass, but excessively high pretreatment temperatures led to massive loss of xylan after pretreatment. The enzymatic digestibility of the biomass was significantly improved with increased pretreatment temperature. X-ray diffraction analysis revealed that the disruption of cellulose crystal structure by [EMIM]OAc at a sufficiently high temperature was primarily responsible for the remarkable improvement in the digestibility. Appropriate addition of DMSO could help minimize the consumption of [EMIM]OAc without impairing the performance of the ionic liquid, and contribute to the improvement in pretreatment efficiency due to the viscosity reduction effect on the pretreatment liquor. PMID:23685645

  20. Modification of electrical properties of PEDOT:PSS/p-Si heterojunction diodes by doping with dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Pathak, C. S.; Singh, J. P.; Singh, R.

    2016-05-01

    We report about the fabrication and electrical characterization of heterojunction diodes between poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) doped with dimethyl sulfoxide (DMSO) and p-Si. Electrical characterization of the heterojunction diodes was performed using current-voltage (I-V) measurements. The heterojunction diodes showed good rectifying behavior. Interestingly, for 5 vol.% doping concentration of DMSO, the heterojunction diode showed the best diode characteristics with an ideality factor of 1.9. The doping of DMSO into PEDOT:PSS solution resulted in an increase in the conductivity of films by two orders of magnitude and the films showed high optical transmission (>85%) in the visible region.

  1. Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O2 Batteries Based on a Dimethyl Sulfoxide Electrolyte.

    PubMed

    Marinaro, M; Balasubramanian, P; Gucciardi, E; Theil, S; Jörissen, L; Wohlfahrt-Mehrens, M

    2015-09-21

    Although still in their embryonic state, aprotic rechargeable Li-O2 batteries have, theoretically, the capabilities of reaching higher specific energy densities than Li-ion batteries. There are, however, significant drawbacks that must be addressed to allow stable electrochemical performance; these will ultimately be solved by a deeper understanding of the chemical and electrochemical processes occurring during battery operations. We report a study on the electrochemical and chemical stability of Li-O2 batteries comprising Au-coated carbon cathodes, a dimethyl sulfoxide (DMSO)-based electrolyte and Li metal negative electrodes. The use of the aforementioned Au-coated cathodes in combination with a 1 M lithium bis(trifluoromethane)sulfonimide (LiTFSI)-DMSO electrolyte guarantees very good cycling stability (>300 cycles) by minimizing eventual side reactions. The main drawbacks arise from the high reactivity of the Li metal electrode when in contact with the O2 -saturated DMSO-based electrolyte.

  2. Depression of the ice-nucleation temperature of rapidly cooled mouse embryos by glycerol and dimethyl sulfoxide.

    PubMed Central

    Rall, W F; Mazur, P; McGrath, J J

    1983-01-01

    The temperature at which ice formation occurs in supercooled cytoplasm is an important element in predicting the likelihood of intracellular freezing of cells cooled by various procedures to subzero temperatures. We have confirmed and extended prior indications that permeating cryoprotective additives decrease the ice nucleation temperature of cells, and have determined some possible mechanisms for the decrease. Our experiments were carried out on eight-cell mouse embryos equilibrated with various concentrations (0-2.0 M) of dimethyl sulfoxide or glycerol and then cooled rapidly. Two methods were used to assess the nucleation temperature. The first, indirect, method was to determine the in vitro survival of the rapidly cooled embryos as a function of temperature. The temperatures over which an abrupt drop in survival occurs are generally diagnostic of the temperature range for intracellular freezing. The second, direct, method was to observe the microscopic appearance during rapid cooling and note the temperature at which nucleation occurred. Both methods showed that the nucleation temperature decreased from - 10 to - 15 degrees C in saline alone to between - 38 degrees and - 44 degrees C in 1.0-2.0 M glycerol and dimethyl sulfoxide. The latter two temperatures are close to the homogeneous nucleation temperatures of the solutions in the embryo cytoplasm, and suggest that embryos equilibrated in these solutions do not contain heterogeneous nucleating agents and are not accessible to any extracellular nucleating agents, such as extracellular ice. The much higher freezing temperatures of cells in saline or in low concentrations of additive indicate that they are being nucleated by heterogeneous agents or, more likely, by extracellular ice. Images FIGURE 5 FIGURE 6 PMID:6824748

  3. 6-(2-Chloro­benzyl­amino)purinium tetra­chlorido(dimethyl sulfoxide-κO)(nitrosyl-κN)ruthenate(III) monohydrate

    PubMed Central

    Trávníček, Zdeněk; Matiková-Maľarová, Miroslava; Štěpánková, Kamila

    2008-01-01

    The asymmetric unit of the title complex salt, (C12H11ClN5)[RuCl4(NO)(C2H6OS)]·H2O, contains a 6-(2-chloro­benzyl­amino)purinium cation, a tetra­chlorido(dimethyl sulfoxide)nitro­sylruthenate(III) anion and one solvent water mol­ecule. The RuIII atom is octa­hedrally coordinated by four Cl atoms in the equatorial plane, and by a dimethyl sulfoxide O atom and a nitrosyl N atom in axial positions. The cation is an N3-protonated N7 tautomer. Inter­molecular N–H⋯N hydrogen bonds connect two cations into centrosymmetric dimers, with an N⋯N distance of 2.821 (4) Å. The crystal structure also involves N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds. PMID:21202003

  4. Complex formation of peptide antibiotic Ro09-0198 with lysophosphatidylethanolamine: sup 1 H NMR analyses of dimethyl sulfoxide solution

    SciTech Connect

    Wakamatsu, Kaori; Choung, Seyoung; Kobayashi, Tetsuyuki; Inoue, Keizo; Higashijima, Tsutomu ); Miyazawa, Tatsuo )

    1990-01-09

    Ro09-0198 is a peptide antibiotic and immunopotentiator produced by Streptoverticillium griseoverticillatum which exhibits antitumor and antimicrobial activities. The chemical structure has been determined. This peptide specifically interacts with (lyso)phosphatidylethanolamine, causing hemolysis and enhancing permeability in phosphatidylethanolamine-containing vesicles. The highly specific nature of the interaction was studied by two dimensional proton NMR analyses. Proton resonances of the peptide were observed in dimethyl sulfoxide solution in the presence of 1-dodecanoyl-sn-glycerophosphoethanolamine. By comparison to the chemical shifts in the absence of lysophosphatidylethanolamine and by analysis of intermolecular cross-peaks in NOESY spectra, amino acid residues involved in the binding with the phospholipid were identified. The ammonium group of the phospholipid interacts with the carboxylate group of {beta}-hydroxyaspartic acid-15 but not with that of the carboxylate terminus. The secondary ammonium group of lysinoalanine-19/6 is probably bound to the phosphate group of the lipid. The peptide does not interact strongly with the fatty acid chain of the lipid. A folded structure of the central part (from Phe{sup 7} to Ala(S){sup 14}) of the peptide opens on binding with the phospholipid and accommodates the glycerophoethanolamine head group.

  5. The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis.

    PubMed

    Schwalb, Carsten; Chapman, Stephen K; Reid, Graeme A

    2003-08-12

    The tetraheme c-type cytochrome, CymA, from Shewanella oneidensis MR-1 has previously been shown to be required for respiration with Fe(III), nitrate, and fumarate [Myers, C. R., and Myers, J. M. (1997) J. Bacteriol. 179, 1143-1152]. It is located in the cytoplasmic membrane where the bulk of the protein is exposed to the periplasm, enabling it to transfer electrons to a series of redox partners. We have expressed and purified a soluble derivative of CymA (CymA(sol)) that lacks the N-terminal membrane anchor. We show here, by direct measurements of electron transfer between the purified proteins, that CymA(sol) efficiently reduces S. oneidensis fumarate reductase. This indicates that no further proteins are required for electron transfer between the quinone pool and fumarate if we assume direct reduction of CymA by quinols. By expressing CymA(sol) in a mutant lacking CymA, we have shown that this soluble form of the protein can complement the defect in fumarate respiration. We also demonstrate that CymA is essential for growth with DMSO (dimethyl sulfoxide) and for reduction of nitrite, implicating CymA in at least five different electron transfer pathways in Shewanella.

  6. Palliative treatment for advanced biliary adenocarcinomas with combination dimethyl sulfoxide-sodium bicarbonate infusion and S-adenosyl-L-methionine.

    PubMed

    Hoang, Ba X; Tran, Hung Q; Vu, Ut V; Pham, Quynh T; Shaw, D Graeme

    2014-09-01

    Adenocarcinoma of the gallbladder and cholangiocarcinoma account for 4% and 3%, respectively, of all gastrointestinal cancers. Advanced biliary tract carcinoma has a very poor prognosis with all current available modalities of treatment. In this pilot open-label study, the authors investigated the efficacy and safety of a combination of dimethyl sulfoxide-sodium bicarbonate (DMSO-SB) infusion and S-adenosyl-L-methionine (ademetionine) oral supplementation as palliative pharmacotherapy in nine patients with advanced nonresectable biliary tract carcinomas (ABTCs). Patients with evidence of biliary obstruction with a total serum bilirubin ≤300 μmol/L were allowed to join the study. The results of this 6-month study and follow-up of all nine patients with ABTC indicated that the investigated combination treatment improved pain control, blood biochemical parameters, and quality of life for the patients. Moreover, this method of treatment has led to a 6-month progression-free survival for all investigated patients. The treatment was well tolerated for all patients without major adverse reactions. Given that ABTC is a highly fatal malignancy with poor response to chemotherapy and targeted drugs, the authors consider that the combination of DMSO-SB and ademetionine deserves further research and application as a palliative care and survival-enhancing treatment for this group of patients. PMID:25102038

  7. Effect of dimethyl sulfoxide on bond durability of fiber posts cemented with etch-and-rinse adhesives

    PubMed Central

    Shafiei, Fereshteh; Sarafraz, Zahra

    2016-01-01

    PURPOSE This study was undertaken to investigate whether use of an adhesive penetration enhancer, dimethyl sulfoxide (DMSO), improves bond stability of fiber posts to root dentin using two two-step etch-and-rinse resin cements. MATERIALS AND METHODS Forty human maxillary central incisor roots were randomly divided into 4 groups after endodontic treatment and post space preparation, based on the fiber post/cement used with and without DMSO pretreatment. Acid-etched root dentin was treated with 5% DMSO aqueous solution for 60 seconds or with distilled water (control) prior to the application of Excite DSC/Variolink II or One-Step Plus/Duo-link for post cementation. After micro-slicing the bonded root dentin, push-out bond strength (P-OBS) test was performed immediately or after 1-year of water storage in each group. Data were analyzed using three-way ANOVA and Student's t-test (α=.05). RESULTS A significant effect of time, DMSO treatment, and treatment × time interaction were observed (P<.001). DMSO did not affect immediate bonding of the two cements. Aging significantly reduced P-OBS in control groups (P<.001), while in DMSO-treated groups, no difference in P-OBS was observed after aging (P>.05). CONCLUSION DMSO-wet bonding might be a beneficial method in preserving the stability of resin-dentin bond strength over time when fiber post is cemented with the tested etch-and-rinse adhesive cements. PMID:27555893

  8. Acid-base equilibrium dynamics in methanol and dimethyl sulfoxide probed by two-dimensional infrared spectroscopy.

    PubMed

    Lee, Chiho; Son, Hyewon; Park, Sungnam

    2015-07-21

    Two-dimensional infrared (2DIR) spectroscopy, which has been proven to be an excellent experimental method for studying thermally-driven chemical processes, was successfully used to investigate the acid dissociation equilibrium of HN3 in methanol (CH3OH) and dimethyl sulfoxide (DMSO) for the first time. Our 2DIR experimental results indicate that the acid-base equilibrium occurs on picosecond timescales in CH3OH but that it occurs on much longer timescales in DMSO. Our results imply that the different timescales of the acid-base equilibrium originate from different proton transfer mechanisms between the acidic (HN3) and basic (N3(-)) species in CH3OH and DMSO. In CH3OH, the acid-base equilibrium is assisted by the surrounding CH3OH molecules which can directly donate H(+) to N3(-) and accept H(+) from HN3 and the proton migrates through the hydrogen-bonded chain of CH3OH. On the other hand, the acid-base equilibrium in DMSO occurs through the mutual diffusion of HN3 and N3(-) or direct proton transfer. Our 2DIR experimental results corroborate different proton transfer mechanisms in the acid-base equilibrium in protic (CH3OH) and aprotic (DMSO) solvents.

  9. Anti-cytochrome P450 IIE1 (anti IIE1) and dimethyl sulfoxide inhibit acetaminophen and dimethylnitrosamine oxidation similarly

    SciTech Connect

    Jaw, S.; Jeffery, E.H. ); Roberts, D.W. )

    1991-03-11

    To evaluate specificity of dimethyl sulfoxide (DMSO), the authors compared anti IIE1 and DMSO inhibition of P450 oxidations. Hepatic microsomes from control and acetone-induced female Swiss-Webster mice were preincubated with polyclonal anti IIE1 or IgG for 20 min at 4C before addition of an NADPH-generating system, DMSO or buffer, and substrate (Ethylmorphine, EM; dimethylnitrosamine, DMN; or acetaminophen, AP; 1 mM final concentration). After 20 min at 37C, the incubations were terminated by adding 20% trichloroacetic acid or methanol. Formaldehyde was determined by the Nash method when using EM or DMN as substrate. AP-glutathione conjugate was determined by HPLC when using AP as substrate. Anti IIE1 and DMSO did not inhibit EM demethylation in control or acetone microsomes. However, DMSO inhibited DMN demethylation by 26% and 64% in control and 30% and 75% in acetone microsomes. Anti IIE1 inhibited DMN demethylation by 44% and 24% in control and acetone microsomes, respectively. DMSO inhibited AP metabolism by 31% and 56% and anti IIE1 inhibited AP metabolism by 33%, in control microsomes. The inhibitions of DMN and AP metabolism by anti IIE1 and DMSO were only additive at submaximal inhibitor concentrations and confirm that DMSO specifically inhibits IIE1 activity.

  10. A theoretical investigation of the interactions between hydroxyl-functionalized ionic liquid and water/methanol/dimethyl sulfoxide.

    PubMed

    Zhao, Shuang; Tian, XinZhe; Ren, YunLai; Wang, JianJi; Liu, JunNa; Ren, YunLi

    2016-08-01

    Density functional calculations have been used to investigate the interactions of 1-(2-hydroxyethyl)-3-methylimidazolium ([C2OHmim](+))-based ionic liquids (hydroxyl ILs) with water (H2O), methanol (CH3OH), and dimethyl sulfoxide (DMSO). It was found that the cosolvent molecules interact with the anion and cation of each ionic liquid through different atoms, i.e., H and O atoms, respectively. The interactions between the cosolvent molecules and 1-ethyl-3-methylimizolium ([C2mim](+))-based ionic liquids (nonhydroxyl ILs) were also studied for comparison. In the cosolvent-[nonhydroxyl ILs] systems, a furcated H-bond was formed between the O atom of the cosolvent molecule and the C2-H and C6-H, while there were always H-bonds involving the OH group of the cation in the cosolvent-[hydroxyl ILs] systems. Introducing an OH group on the ethyl side of the imidazolium ring may change the order of solubility of the molecular liquids. PMID:27480880

  11. Viscosities of the ternary solution dimethyl sulfoxide/water/sodium chloride at subzero temperatures and their application in cryopreservation.

    PubMed

    Zhang, Shaozhi; Yu, Xiaoyi; Chen, Zhaojie; Chen, Guangming

    2013-04-01

    Vitrification is considered as the most promising method for long-term storage of tissues and organs. An effective way to reduce the accompanied cryoprotectant (CPA) toxicity, during CPA addition/removal, is to operate at low temperatures. The permeation process of CPA into/out of biomaterials is affected by the viscosity of CPA solution, especially at low temperatures. The objective of the present study is to measure the viscosity of the ternary solution, dimethyl sulfoxide (Me2SO)/water/sodium chloride (NaCl), at low temperatures and in a wide range of concentrations. A rotary viscometer coupled with a low temperature thermostat bath was used. The measurement was carried out at temperatures from -10 to -50°C. The highest mass fraction of Me2SO was 75% (w/w) and the lowest mass fraction of Me2SO was the value that kept the solution unfrozen at the measurement temperature. The concentration of NaCl was kept as a constant [0.85% (w/w), the normal salt content of extracellular fluids]. The Williams-Landel-Ferry (WLF) model was employed to fit the obtained viscosity data. As an example, the effect of solution viscosity on modeling the permeation of Me2SO into articular cartilage was qualitatively analyzed.

  12. Loss of irreversibility of granulocytic differentiation induced by dimethyl sulfoxide in HL-60 sublines with a homogeneously staining region.

    PubMed

    Kitajima, K; Haque, M; Nakamura, H; Hirano, T; Utiyama, H

    2001-11-16

    The human HL-60 acute leukemia cell line harbors double minutes (dmins) during early passages. During its continuous culture for a long term, a single marker chromosome with a homogeneously staining region (HSR) replaces the dmins. The both structures harbor amplified c-MYC sequences. Here we ask how the cellular phenotype is altered by the c-MYC integration into a HSR. Treatment with dimethyl sulfoxide induces granulocytic differentiation in the both types of cells. In contrast to HL-60/dmin cells, however, no apoptosis followed differentiation and the differentiation phenotype was reverted upon withdrawal of the drug in HL-60/HSR cells. Terminal differentiation and loss of DNase I hypersensitivity sites at c-MYC P2 promoter appeared to be unlinked in the both types of cells. By comparison with HL-60/dmin cells, we conclude that the integration into a HSR of an extrachromosomal gene(s) but not c-MYC likely leads to the loss of irreversibility of the differentiation phenotype.

  13. Effect of Cytochalasin B, Lantrunculin B, Colchicine, Cycloheximid, Dimethyl Sulfoxide and Ion Channel Inhibitors on Biospeckle Activity in Apple Tissue.

    PubMed

    Kurenda, Andrzej; Pieczywek, Piotr M; Adamiak, Anna; Zdunek, Artur

    2013-01-01

    The biospeckle phenomenon is used for non-destructive monitoring the quality of fresh fruits and vegetables, but in the case of plant tissues there is a lack of experimentally confirmed information about the biological origin of the biospeckle activity (BA). As a main sources of BA, processes associated with the movement inside the cell, such as cytoplasmic streaming, organelle movement and intra- and extracellular transport mechanisms, are considered. The aim of this study is to investigate the effect of metabolism inhibitors, connected with intracellular movement such as cytochalasin B, lantrunculin B, colchicine, cycloheximid, dimethyl sulfoxide (DMSO) and mixture of ion channel inhibitors, injected into apples, on BA. Two methods of BA analysis based on cross-correlation coefficient and Laser Speckle Contrast Analysis (LASCA) were used. DMSO, lantrunculin B and mixture of ion channel inhibitors have a significant effect on BA, and approximately 74 % of BA of apple tissue is potentially caused by biological processes. Results indicate that the functioning of actin microfilaments and ion channels significantly affect BA.

  14. Homogeneous graft copolymerization of styrene onto cellulose in a sulfur dioxide-diethylamine-dimethyl sulfoxide cellulose solvent

    SciTech Connect

    Tsuzuki, M.; Hagiwara, I.; Shiraishi, N.; Yokota, T.

    1980-12-01

    Graft copolymerization of styrene onto cellulose was studied in a homogeneous system (SO/sub 2/(liquid)- diethylamine (DEA)-dimethyl sulfoxide (DMSO) medium)) by ..gamma..-ray mutual irradiation technique. At the same time, homopolymerization of styrene was also examined separately in DMSO, SO/sub 2/-DMSO, DEA-DMSO, and SO/sub 2/-DEA-DMSO media by the same technique. Polymerization of styrene hardly occurs on concentrations above 10 mole SO/sub 2/-DEA complex per mole glucose unit. Maximum percent grafting was obtained in concentrations of 4 mole, after which it decreased rapidly. Total conversion and percent grafting increased with the irradiation time. The value (=0.55) of the slope of the total conversion rate plotted against the dose was only a little higher than the 1/2 which was expected from normal kinetics. No retardation in homopolymerization of styrene in DMSO, SO/sub 2/-DMSO, and DEA-DMSO was evident, while the retardation of homopolymerization in the SO/sub 2/-DEA-DMSO medium was measurable. Sulfur atoms were detected in the polymers obtained in both of SO/sub 2/-DMSO and SO/sub 2/-DEA-DMSO solutions. All of the molecular weights of polymers obtained in the present experiment were very low (3.9 x 10/sup 3/-1.75 x 10/sup 4/).

  15. Time-resolved chemiluminescence of firefly luciferin generated by dissolving oxygen in deoxygenated dimethyl sulfoxide containing potassium tert-butoxide

    PubMed Central

    Yanagisawa, Yuki; Hasegawa, Kosuke; Wada, Naohisa; Tanaka, Masatoshi; Sekiya, Takao

    2015-01-01

    Chemiluminescence (CL) of firefly luciferin (Ln) consisting of red and green emission peaks can be generated by dissolving oxygen (O2) gas in deoxygenated dimethyl sulfoxide containing potassium tert-butoxide (t-BuOK) even without the enzyme luciferase. In this study, the characteristics of CL of Ln are examined by varying the concentrations of both Ln ([Ln]) and t-BuOK ([t-BuOK]). The time courses of the green and the red luminescence signals are also measured using a 32-channel photo sensor module. Interestingly, addition of 18-crown-6 ether (18-crown-6), a good clathrate for K+, to the reaction solution before exposure to O2 changes the luminescence from green to red when [t-BuOK] = 20 mM and [18-crown-6] = 80 mM. Based on our experimental results, we propose a two-pathway model where K+ plays an important role in the regulation of Ln CL to explain the two-color luminescence observed from electronically excited oxyluciferin via dioxetanone. PMID:27493856

  16. Effects of Dimethyl Sulfoxide in Cholesterol-Containing Lipid Membranes: A Comparative Study of Experiments In Silico and with Cells

    PubMed Central

    de Ménorval, Marie-Amélie; Mir, Lluis M.; Fernández, M. Laura; Reigada, Ramon

    2012-01-01

    Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca2+) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations. PMID:22848583

  17. Spinal neurophysiologic correlates of the analgesic actions of intravesical dimethyl sulfoxide and capsaicin in the rat.

    PubMed

    Castroman, Pablo J; Ness, Timothy J

    2002-10-01

    Peripheral analgesia produced by the intravesical instillation of dimethyl sulphoxide (DMSO) and capsaicin has been used to treat visceral pain originating in the urinary bladder. The present study sought to determine the neurophysiologic consequences of the intravesical instillation of these compounds by measuring spinal neuronal responses evoked by urinary bladder distension (UBD) in the rat. Subjects were spinally transected, decerebrate female Sprague-Dawley rats. The effect of 0.5 mL of solution of 10% or 50% DMSO, 100 micromol/L capsaicin, or the same volume of saline instilled into the bladder on excitatory neuronal responses to UBD was studied by using single-unit extracellular recordings of L6-S2 dorsal horn spinal cord neurons. Fifty-six dorsal horn neurons that were excited by UBD in a graded fashion were identified. All neurons were also excited by noxious or non-noxious cutaneous stimuli. Two hours after intravesical instillation, solutions of 50% DMSO or 100 micromol/L of capsaicin produced a reduction of the slope of stimulus-response functions for neuronal activity evoked by graded UBD. These data support a local effect of intravesical 50% DMSO or capsaicin and suggest the use of this model to study novel peripheral treatment strategies for bladder pain.

  18. Regulatory effect of Dimethyl Sulfoxide (DMSO) on astrocytic reactivity in a murine model of cerebral infarction by arterial embolization

    PubMed Central

    Rengifo Valbuena, Carlos Augusto; Ávila Rodríguez, Marco Fidel; Céspedes Rubio, Angel

    2013-01-01

    Introduction: The pathophysiology of cerebral ischemia is essential for early diagnosis, neurologic recovery, the early onset of drug treatment and the prognosis of ischemic events. Experimental models of cerebral ischemia can be used to evaluate the cellular response phenomena and possible neurological protection by drugs. Objective: To characterize the cellular changes in the neuronal population and astrocytic response by the effect of Dimethyl Sulfoxide (DMSO) on a model of ischemia caused by cerebral embolism. Methods: Twenty Wistar rats were divided into four groups (n= 5). The infarct was induced with α-bovine thrombin (40 NIH/Unit.). The treated group received 90 mg (100 μL) of DMSO in saline (1:1 v/v) intraperitoneally for 5 days; ischemic controls received only NaCl (placebo) and two non-ischemic groups (simulated) received NaCl and DMSO respectively. We evaluated the neuronal (anti-NeuN) and astrocytic immune-reactivity (anti-GFAP). The results were analyzed by densitometry (NIH Image J-Fiji 1.45 software) and analysis of variance (ANOVA) with the Graph pad software (Prism 5). Results: Cerebral embolism induced reproducible and reliable lesions in the cortex and hippocampus (CA1)., similar to those of focal models. DMSO did not reverse the loss of post-ischemia neuronal immune-reactivity, but prevented the morphological damage of neurons, and significantly reduced astrocytic hyperactivity in the somato-sensory cortex and CA1 (p <0.001). Conclusions: The regulatory effect of DMSO on astrocyte hyperreactivity and neuronal-astroglial cytoarchitecture , gives it potential neuroprotective properties for the treatment of thromboembolic cerebral ischemia in the acute phase. PMID:24892319

  19. Dimethyl sulfoxide induced structural transformations and non-monotonic concentration dependence of conformational fluctuation around active site of lysozyme

    NASA Astrophysics Data System (ADS)

    Roy, Susmita; Jana, Biman; Bagchi, Biman

    2012-03-01

    Experimental studies have observed significant changes in both structure and function of lysozyme (and other proteins) on addition of a small amount of dimethyl sulfoxide (DMSO) in aqueous solution. Our atomistic molecular dynamic simulations of lysozyme in water-DMSO reveal the following sequence of changes on increasing DMSO concentration. (i) At the initial stage (around 5% DMSO concentration) protein's conformational flexibility gets markedly suppressed. From study of radial distribution functions, we attribute this to the preferential solvation of exposed protein hydrophobic residues by the methyl groups of DMSO. (ii) In the next stage (10-15% DMSO concentration range), lysozome partially unfolds accompanied by an increase both in fluctuation and in exposed protein surface area. (iii) Between 15-20% concentration ranges, both conformational fluctuation and solvent accessible protein surface area suddenly decrease again indicating the formation of an intermediate collapse state. These results are in good agreement with near-UV circular dichroism (CD) and fluorescence studies. We explain this apparently surprising behavior in terms of a structural transformation which involves clustering among the methyl groups of DMSO. (iv) Beyond 20% concentration of DMSO, the protein starts its final sojourn towards the unfolding state with further increase in conformational fluctuation and loss in native contacts. Most importantly, analysis of contact map and fluctuation near the active site reveal that both partial unfolding and conformational fluctuations are centered mostly on the hydrophobic core of active site of lysozyme. Our results could offer a general explanation and universal picture of the anomalous behavior of protein structure-function observed in the presence of cosolvents (DMSO, ethanol, tertiary butyl alcohol, dioxane) at their low concentrations.

  20. Quantitative analysis of the kinetic constant of the reaction of N,N'-propylenedinicotinamide with the hydroxyl radical using dimethyl sulfoxide and deduction of its structure in chloroform.

    PubMed

    Akimoto, T

    2000-04-01

    N,N'-Propylenedinicotinamide (Nicaraven) is presently being developed for the treatment of cerebral stroke including subarachnoid hemorrhage. This drug is promising because some data suggest it to have an ability to scavenge the hydroxyl radical under physiological conditions in vivo, while it also has a high permeability through the blood brain barrier. Using the kinetic constant of the reaction between the hydroxyl radical and dimethyl sulfoxide, the formula derived by Babbs and Griffin (Free Rad. Biol. Med., 6 1989) was applied to obtain the kinetic constant of Nicaraven with the hydroxyl radical using a dimethyl sulfoxide-xanthine oxidase-hypoxanthine-Fe system, and this yielded the kinetic constant 3.4x10(9) M(-1) s(-1) (1 M=1 mol dm(-3)) for Nicaraven. Structurally related compounds were also investigated. The amide group of Nicaraven was thus found to play an important part in the reaction with the hydroxyl radical. Methanesulfinic acid, which was obtained from the reaction between dimethyl sulfoxide and the hydroxyl radical, was found to be stable under this adopted experimental condition and therefore was used to quantify the kinetic constant of Nicaraven. The structure of Nicaraven has also been investigated in CDCl3 using IR spectra, computer calculations and 1H-NMR analysis, and Nicaraven was thus shown to have an intramolecular hydrogen bond which forms a 7-membered ring that resembles a part of the 1H-1,4-benzodiazepines. This structure may play an important role in the penetration through the blood brain barrier.

  1. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1212, LB5137_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1212, LB5137_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  2. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1111, LB5134_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1111, LB5134_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  3. Heat of Mixing and Solution of Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (HMSD1111, LB4315_H)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'heat of Mixing and Solution of Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (HMSD1111, LB4315_H)' providing data from direct low-pressure calorimetric measurement of molar excess enthalpy at variable mole fraction and constant temperature.

  4. Lithium Hexamethyldisilazane Transformation of Transiently Protected 4-Aza/Benzimidazole Nitriles to Amidines and their Dimethyl Sulfoxide Mediated Imidazole Ring Formation.

    PubMed

    Abou-Elkhair, Reham A I; Hassan, Abdalla E A; Boykin, David W; Wilson, W David

    2016-09-16

    Trimethylsilyl-transient protection successfully allowed the use of lithium hexamethyldisilazane to prepare benzimidazole (BI) and 4-azabenzimidazole (azaBI) amidines from nitriles in 58-88% yields. This strategy offers a much better choice to prepare BI/azaBI amidines than the lengthy, low-yielding Pinner reaction. Synthesis of aza/benzimidazole rings from aromatic diamines and aldehydes was affected in dimethyl sulfoxide in 10-15 min, while known procedures require long time and purification. These methods are important for the BI/azaBI-based drug industry and for developing specific DNA binders for expanded therapeutic applications. PMID:27607538

  5. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1511, LB4270_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1511, LB4270_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  6. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1212, LB4258_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1212, LB4258_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  7. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1111, LB4256_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1111, LB4256_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  8. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1412, LB4276_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1412, LB4276_V)' providing data by calculation of isentropic compressibility from low-pressure density and thermodynamic speed of sound data at variable mole fraction and constant temperature, in the single-phase region(s).

  9. Regioselective Oxo-Amination of Alkenes and Enol Ethers with N-Bromosuccinimide-Dimethyl Sulfoxide Combination: A Facile Synthesis of α-Amino-Ketones and Esters.

    PubMed

    Prasad, Pragati K; Reddi, Rambabu N; Sudalai, Arumugam

    2016-02-01

    An unprecedented conversion of alkenes and enol ethers to the corresponding α-imido carbonyl compounds with excellent regioselectivity and yields has been developed. This oxo-amination process employs readily available N-bromosuccinimide (NBS) and secondary amines as N-sources and dimethyl sulfoxide (DMSO) as the oxidant and also leads to the production of amino alcohols in a single step on reduction, thus broadening the scope of this operationally simple reaction. For the first time, the formation of reactive Me2S(+)-O-Br species generated by the interaction of NBS with DMSO has been proven.

  10. Maxwell-Stefan diffusivities in binary mixtures of ionic liquids with dimethyl sulfoxide (DMSO) and H2O.

    PubMed

    Liu, Xin; Vlugt, Thijs J H; Bardow, André

    2011-07-01

    Ionic liquids (ILs) are promising solvents for applications ranging from CO2 capture to the pretreatment of biomass. However, slow diffusion often restricts their applicability. A thorough understanding of diffusion in ILs is therefore highly desirable. Previous research largely focused on self-diffusion in ILs. For practical applications, mutual diffusion is by far more important than self-diffusion. For describing mutual diffusion in multicomponent systems, the Maxwell-Stefan (MS) approach is commonly used. Unfortunately, it is difficult to obtain MS diffusivities from experiments, but they can be directly extracted from molecular dynamics (MD) simulations. In this work, MS diffusivities were computed in binary systems containing 1-alkyl-3-methylimidazolium chloride (C(n)mimCl, n = 2, 4, 8), water, and/or dimethyl sulfoxide (DMSO) using MD. The dependence of self- and MS diffusivities on mixture composition was investigated. Our results show the following: (1) For solutions of ILs in water and DMSO, self-diffusivities decrease strongly with increasing IL concentration. For DMSO-IL, a single exponential decay is observed. (2) In both water-IL and DMSO-IL, MS diffusivities vary by a factor of 10 within the concentration range which is, however, still significantly smaller than the variation of the self-diffusion coefficients. (3) The MS diffusivities of the IL are almost independent of the alkyl chain length. (4) ILs stay in a form of isolated ions in C(n)mimCl-H2O mixtures; however, dissociation into ions is much less observed in C(n)mimCl-DMSO systems. This has a large effect on the concentration dependence of MS diffusivities. (5) Recently, we proposed a new model for predicting the MS diffusivity at infinite dilution, that is, Đ(ij)(x(k-->)1) (Ind. Eng. Chem. Res. 2011, 50, 4776-4782). This quantity describes the friction between components i and j when both are infinitely diluted in component k. In contrast to earlier empirical models, our model is based on

  11. Improved Zn/Zn(II) redox kinetics, reversibility and cyclability in 1-ethyl-3-methylimmidazolium dicyanamide with water and dimethyl sulfoxide added

    NASA Astrophysics Data System (ADS)

    Xu, M.; Ivey, D. G.; Qu, W.; Xie, Z.

    2014-04-01

    Diluents composed of H2O and dimethyl sulfoxide (DMSO) were added to 1-ethyl-3-methylimmidazolium dicyanamide (EMI-DCA), yielding an electrolyte system that is potentially applicable for Zn-air batteries. H2O is critical for enhancing both the electrolyte conductivity and Zn/Zn(II) redox kinetics, but impairs Zn/Zn(II) redox reversibility and cyclability. DMSO has the ability to stabilize the electrolyte from H2O decomposition and is beneficial for maintaining Zn/Zn(II) redox reversibility and cyclability. Improved Zn/Zn(II) redox kinetics and reversibility, together with good cyclability up to 200 cycles, was achieved in EMI-DCA + H2O + DMSO in a mole ratio of 1:1.1:2.3.

  12. Different shapes of spherical vaterite by photo-induced cis?trans isomerization of an azobenzene-containing polymer in a mixture of dimethyl sulfoxide and water

    NASA Astrophysics Data System (ADS)

    Keum, Dong-Ki; Na, Hai-Sub; Naka, Kensuke; Chujo, Yoshiki

    2004-10-01

    We studied the crystallization of CaCO3 by the photoisomerization of azobenzene groups in poly[1-[4-[3-carboxy-4-hydroxyphenylazobenzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) in a mixture of dimethyl sulfoxide and water at 30 °C. The products were characterized by scanning electron microscopy (SEM), FT-IR, and powder X-ray diffraction (XRD) analysis. We observed that the different shapes of spherical vaterite particles were produced by the changes of configuration and polarity of the azobenzene groups in the polymer which resulted from photo-induced isomerization. The results indicate that the nucleation of primary particles of CaCO3 was inhibited by in situ photo-induced cis-trans isomerization of PAZO. Therefore, we suggest that the shapes of the spherical vaterite can be effectively modified by photoisomerization of the azobenzene groups in the polymer at the initial stage of CaCO3 crystallization.

  13. Crystal structure of di-μ-isobutyrato-κ(4) O:O'-bis-[cis-di-chlorido-(dimethyl sulfoxide-κS)rhenium(III)].

    PubMed

    Golichenko, Alexander A; Shtemenko, Alexander V

    2015-10-01

    The title compound, [Re2(C3H7COO)2Cl4{(CH3)2SO}2], comprises binuclear complex mol-ecules [Re-Re = 2.24502 (13) Å] involving cis-oriented double carboxyl-ate bridges, four equatorial chloride ions and two weakly bonded O atoms from dimethyl sulfoxide ligands in the axial positions at the Re(III) atoms. In the crystal, mol-ecules are linked into corrugated layers parallel to (101) by very weak C-H⋯Cl and C-H⋯O hydrogen-bonding inter-actions. C-H⋯Cl hydrogen bonding provides the links between layers to consolidate a three-dimensional framework.

  14. Interaction of cyclodextrins with pyrene-modified polyacrylamide in a mixed solvent of water and dimethyl sulfoxide as studied by steady-state fluorescence

    PubMed Central

    Hashidzume, Akihito; Zheng, Yongtai

    2012-01-01

    Summary The interaction of β- and γ-cyclodextrins (β-CD and γ-CD, respectively) with polyacrylamide modified with pyrenyl (Py) residues (pAAmPy) was investigated in a mixed solvent of water and dimethyl sulfoxide (DMSO) by steady-state fluorescence. In the absence of CD, the fluorescence spectra indicated that the formation of Py dimers became less favorable with increasing volume fraction of DMSO (x DMSO). The fluorescence spectra at varying x DMSO and CD concentrations indicated that β-CD and γ-CD included monomeric and dimeric Py residues, respectively. Using the fluorescence spectra, equilibrium constants of the formation of Py dimers and the complexation of β-CD and γ-CD with Py residues were roughly estimated based on simplified equilibrium schemes. PMID:23019465

  15. A highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film with the solvent bath treatment by dimethyl sulfoxide as cathode for polymer tantalum capacitor

    NASA Astrophysics Data System (ADS)

    Ma, Xiaopin; Wang, Xiuyu; Li, Mingxiu; Chen, Tongning; Zhang, Hao; Chen, Qiang; Ding, Bonan; Liu, Yanpeng

    2016-06-01

    The highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films were prepared on porous tantalum pentoxide surface as cathode for polymer tantalum capacitors (PTC). The electrical performances of PTC with PEDOT:PSS films as cathode were optimized by dimethyl sulfoxide (DMSO) bath treatment. With the DMSO-bath treatment of PTC, the equivalent series resistance (ESR) of PTC decreased from 25 mΩ to 9 mΩ. The ultralow ESR led to better capacitance-frequency performance. The device reliability investigation revealed the enhanced environmental stability of PTC. The enhanced performances were attributed to the conductivity improvement of PEDOT:PSS cathode films and the removal of excess PSS from PEDOT:PSS films.

  16. A novel method for the rapid detection of benzo(a)pyrene in liquid milk by dimethyl sulfoxide selectively enhanced synchronous fluorescence spectrometry.

    PubMed

    Lin, Li-Rong; Luo, He-Dong; Li, Xiu-Ying; Li, Na; Zhou, Na; Jia, Yu-Zhu; Liu, Yi-Hong; Li, Yao-Qun

    2014-01-01

    Based on the high solubility efficiency and strong fluorescence response of benzo(a)pyrene (BaP) in dimethyl sulfoxide in combination with the high-performance derivative constant-energy synchronous fluorescence spectroscopic (DCESFS) technique, a simple, sensitive and economic method was developed for the determination of BaP in liquid milk. This method comprises ultrasound-assisted solvent extraction, solvent replacement and DCESFS detection. No saponification or other tedious clean-up procedures were needed. The recoveries of BaP in different milk samples were greater than 82%. Detection limits in full- and low-fat milk were 0.03 and 0.04 μg kg(-1), respectively. PMID:24827591

  17. Improved in situ saccharification of cellulose pretreated by dimethyl sulfoxide/ionic liquid using cellulase from a newly isolated Paenibacillus sp. LLZ1.

    PubMed

    Hu, Dongxue; Ju, Xin; Li, Liangzhi; Hu, Cuiying; Yan, Lishi; Wu, Tianyun; Fu, Jiaolong; Qin, Ming

    2016-02-01

    A cellulase producing strain was newly isolated from soil samples and identified as Paenibacillus sp. LLZ1. A novel aqueous-dimethyl sulfoxide (DMSO)/1-ethyl-3-methylimidazolium diethyl phosphate ([Emin]DEP)-cellulase system was designed and optimized. In the pretreatment, DMSO was found to be a low-cost substitute of up to 70% ionic liquid to enhance the cellulose dissolution. In the enzymatic saccharification, the optimum pH and temperature of the Paenibacillus sp. LLZ1 cellulase were identified as 6.0 and 40°C, respectively. Under the optimized reaction condition, the conversion of microcrystalline cellulose and bagasse cellulose increased by 39.3% and 37.6%, compared with unpretreated cellulose. Compared to current methods of saccharification, this new approach has several advantages including lower operating temperature, milder pH, and less usage of ionic liquid, indicating a marked progress in environmental friendly hydrolysis of biomass-based materials. PMID:26618784

  18. Revisiting the Aqueous Solutions of Dimethyl Sulfoxide by Spectroscopy in the Mid- and Near-Infrared: Experiments and Car-Parrinello Simulations.

    PubMed

    Wallace, Victoria M; Dhumal, Nilesh R; Zehentbauer, Florian M; Kim, Hyung J; Kiefer, Johannes

    2015-11-19

    The infrared and near-infrared spectra of the aqueous solutions of dimethyl sulfoxide are revisited. Experimental and computational vibrational spectra are analyzed and compared. The latter are determined as the Fourier transformation of the velocity autocorrelation function of data obtained from Car-Parrinello molecular dynamics simulations. The experimental absorption spectra are deconvolved, and the excess spectra are determined. The two-dimensional excess contour plot provides a means of visualizing and identifying spectral regions and concentration ranges exhibiting nonideal behavior. In the binary mixtures, the analysis of the SO stretching band provides a semiquantitative picture of the formation and dissociation of hydrogen-bonded DMSO-water complexes. A maximum concentration of these clusters is found in the equimolar mixture. At high DMSO concentration, the formation of rather stable 3DMSO:1water complexes is suggested. The formation of 1DMSO:2water clusters, in which the water oxygen atoms interact with the sulfoxide methyl groups, is proposed as a possible reason for the marked depression of the freezing temperature at the eutectic point. PMID:26509778

  19. Revisiting the Aqueous Solutions of Dimethyl Sulfoxide by Spectroscopy in the Mid- and Near-Infrared: Experiments and Car-Parrinello Simulations.

    PubMed

    Wallace, Victoria M; Dhumal, Nilesh R; Zehentbauer, Florian M; Kim, Hyung J; Kiefer, Johannes

    2015-11-19

    The infrared and near-infrared spectra of the aqueous solutions of dimethyl sulfoxide are revisited. Experimental and computational vibrational spectra are analyzed and compared. The latter are determined as the Fourier transformation of the velocity autocorrelation function of data obtained from Car-Parrinello molecular dynamics simulations. The experimental absorption spectra are deconvolved, and the excess spectra are determined. The two-dimensional excess contour plot provides a means of visualizing and identifying spectral regions and concentration ranges exhibiting nonideal behavior. In the binary mixtures, the analysis of the SO stretching band provides a semiquantitative picture of the formation and dissociation of hydrogen-bonded DMSO-water complexes. A maximum concentration of these clusters is found in the equimolar mixture. At high DMSO concentration, the formation of rather stable 3DMSO:1water complexes is suggested. The formation of 1DMSO:2water clusters, in which the water oxygen atoms interact with the sulfoxide methyl groups, is proposed as a possible reason for the marked depression of the freezing temperature at the eutectic point.

  20. [1-tert-Butyl-3-(pyridin-2-ylmethyl-κN)imidazol-2-yl­idene-κC 1]carbonyl­dichlorido(dimethyl sulfoxide-κS)ruthenium(II)

    PubMed Central

    Cheng, Yong; Hua, Wen-Qian; Zhou, Ying-Hua

    2011-01-01

    In the title complex, [RuCl2(C13H17N3)(C2H6OS)(CO)], the coordination environment around the Ru atom is slightly distorted octa­hedral. The Cl atoms are mutually trans to the dimethyl sulfoxide ligand and the imidazole carbene C atom, respectively. The carbonyl ligand is located trans to the pyridine N atom. PMID:22219810

  1. Solution-processed poly(3,4-ethylenedioxythiophene) thin films as transparent conductors: effect of p-toluenesulfonic acid in dimethyl sulfoxide.

    PubMed

    Mukherjee, Smita; Singh, Rekha; Gopinathan, Sreelekha; Murugan, Sengottaiyan; Gawali, Suhas; Saha, Biswajit; Biswas, Jayeeta; Lodha, Saurabh; Kumar, Anil

    2014-10-22

    Conductivity enhancement of thin transparent films based on poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) by a solution-processed route involving mixture of an organic acid and organic solvent is reported. The combined effect of p-toluenesulfonic acid and dimethyl sulfoxide on spin-coated films of PEDOT-PSS on glass substrates, prepared from its commercially available aqueous dispersion, was found to increase the conductivity of the PEDOT-PSS film to ∼3500 S·cm(-1) with a high transparency of at least 94%. Apart from conductivity and transparency measurements, the films were characterized by Raman, infrared, and X-ray photoelectron spectroscopy along with atomic force microscopy and secondary ion mass spectrometry. Combined results showed that the conductivity enhancement was due to doping, rearrangement of PEDOT particles owing to phase separation, and removal of PSS matrix throughout the depth of the film. The temperature dependence of the resistance for the treated films was found to be in accordance with one-dimensional variable range hopping, showing that treatment is effective in reducing energy barrier for interchain and interdomain charge hopping. Moreover, the treatment was found to be compatible with flexible poly(ethylene terephthalate) (PET) substrates as well. Apart from being potential candidates to replace inorganic transparent conducting oxide materials, the films exhibited stand-alone catalytic activity toward I(-)/I3(-) redox couple as well and successfully replaced platinum and fluorinated tin oxide as counter electrode in dye-sensitized solar cells. PMID:25230160

  2. Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide-ionic liquid mixtures.

    PubMed

    Guo, Feng; Fang, Zhen; Zhou, Tie-Jun

    2012-05-01

    5-Hydroxymethylfurfural (5-HMF) was successfully produced by the dehydration of fructose and glucose using lignin-derived solid acid catalyst in DMSO-[BMIM][Cl] (dimethyl sulfoxide and 1-butyl-3-methylimidazolium chloride) mixtures. Six solid acid catalysts were synthesized by carbonization and sulfonation of raw biomass materials, i.e., glucose, fructose, cellulose, lignin, bamboo and Jatropha hulls. It was found that lignin-derived solid acid catalyst (LCC) was the most active one in the dehydration of sugars. LCC coupled with microwave irradiation was used for the 5-HMF production, 84% 5-HMF yield with 98% fructose conversion rate was achieved at 110°C for 10 min. Furthermore, 99% glucose was converted with 68% 5-HMF yield under severer condition (160°C for 50 min). LCC was recycled for five times, 5-HMF yield declined only 7%. Use of LCC combined with DMSO-[BMIM][Cl] solution and microwave irradiation is a novel method for the effective production of 5-HMF. PMID:22429401

  3. Development of Dimethyl Sulfoxide Solubility Models Using 163 000 Molecules: Using a Domain Applicability Metric to Select More Reliable Predictions

    PubMed Central

    2013-01-01

    The dimethyl sulfoxide (DMSO) solubility data from Enamine and two UCB pharma compound collections were analyzed using 8 different machine learning methods and 12 descriptor sets. The analyzed data sets were highly imbalanced with 1.7–5.8% nonsoluble compounds. The libraries’ enrichment by soluble molecules from the set of 10% of the most reliable predictions was used to compare prediction performances of the methods. The highest accuracies were calculated using a C4.5 decision classification tree, random forest, and associative neural networks. The performances of the methods developed were estimated on individual data sets and their combinations. The developed models provided on average a 2-fold decrease of the number of nonsoluble compounds amid all compounds predicted as soluble in DMSO. However, a 4–9-fold enrichment was observed if only 10% of the most reliable predictions were considered. The structural features influencing compounds to be soluble or nonsoluble in DMSO were also determined. The best models developed with the publicly available Enamine data set are freely available online at http://ochem.eu/article/33409. PMID:23855787

  4. Carrier effects of dosing the h4iie cells with 3,3′,4,4tt´etrachlorobiphenyl (PCB77) in dimethyl sulfoxide or isooctane

    USGS Publications Warehouse

    Yu, Kyung O.; Fisher, Jeff W.; Burton, G. Allen; Tillitt, Donald E.

    1997-01-01

    A rat hepatoma cell line, H4IIE serves as a bioassay tool to assess the potential toxicity of dioxin-like chemicals, including polychlorinated biphenyls (PCB) in environmental samples. PCB exposure to these cells induces cytochrome (CYP) P4501A1 activity in a dose-dependent fashion, thus allowing assessment of mixtures. The objective of this study was to determine the effect of different carriers, dimethyl sulfoxide (DMSO) and isooctane on the concentrations of PCBs in the H411E cells and induction of CYPIA1 activity as measured by ethoxyresorufm O-deethylase (EROD) activity. H4IIE cells were dosed with three micrograms of UL-14C-PCB77/ plate dissolved in DMSO or isooctane, and were harvested at sequential time periods for 4 days. PCB77 concentration and EROD activity were measured in the cells. EROD activity was greater when using DMSO as compared to isooctane, while there was no difference in the distribution of PCB77-derived radioactivities within the cell culture system based upon the carrier solvent used to deliver PCB77.

  5. Carboxymethyl Cellulose (CMC) from Oil Palm Empty Fruit Bunch (OPEFB) in the new solvent Dimethyl Sulfoxide (DMSO)/Tetrabutylammonium Fluoride (TBAF)

    NASA Astrophysics Data System (ADS)

    Eliza, M. Y.; Shahruddin, M.; Noormaziah, J.; Rosli, W. D. Wan

    2015-06-01

    The surplus of Oil Palm is the most galore wastes in Malaysia because it produced about half of the world palm oil production, which contributes a major disposal problem Synthesis from an empty fruit bunch produced products such as Carboxymethyl Cellulose (CMC), could apply in diverse application such as for paper coating, food packaging and most recently, the potential as biomaterials has been revealed. In this study, CMC was prepared by firstly dissolved the bleached pulp from OPEFB in mixture solution of dimethyl sulfoxide(DMSO)/tetrabutylammonium fluoride (TBAF) without any prior chemical modification. It took only 30 minutes to fully dissolve at temperature 60°C before sodium hydroxide (NaOH) were added for activation and monochloroacetateas terrifying agent. The final product is appeared in white powder, which is then will be analyzedby FTIR analysis. FTIR results show peaks appeared at wavenumber between 1609 cm-1 to 1614 cm-1 proved the existence of carboxymethyl groups which substitute OH groups at anhydroglucose(AGU) unit. As a conclusion, mixture solution of DMSO/TBAF is the suitable solvent used for dissolved cellulose before modifying it into CMC with higher Degree of Substitution (DS). Furthermore, the dissolution of the OPEFB bleached pulp was easy, simple and at a faster rate without prior chemical modification at temperature as low as 60°C.

  6. Applicability of the DMSO (dimethyl sulfoxide) aggregate degradation test to determine moisture-induced distress in asphalt-concrete mixes. Final report, June 1986-June 1987

    SciTech Connect

    Heinicke, J.J.; Vinson, T.S.; Wilson, J.E.

    1987-06-01

    A laboratory investigation was conducted to evaluate the effectiveness of the dimethyl sulfoxide accelerated weathering test (DMSO test) to predict moisture-induced distress in asphalt-concrete mixtures. Asphalt-concrete specimens were fabricated using aggregates from three quarries. The specimens were conditioned using vacuum saturation and a series of five freeze/thaw cycles. The resilient modulus (M{sub r}) was obtained before and after each conditioning cycle and the Index of Retained Resilient Modulus (IRM{sub r}) was determined. The results indicate the DMSO test may be used to identify the potential for moisture-induced distress in asphalt-concrete mixtures. However, no correlation was determined between the DMSO test results and the IRM{sub r} or fatigue life test results. The strain and temperature dependencies of the M{sub r} were determined for a dense-graded asphalt-concrete mixture. It was concluded that constant stress testing may result in a misinterpretation of the IRM{sub r} and tests conducted within the currently accepted temperature range may result in a plus or minus 20% deviation in the IRM{sub r}. In an accompanying analytical program, the effect of diametral test boundary conditions on the measured value of M{sub r} was evaluated using two- and three-dimensional finite element models. The results indicate that the resilient modulus diametral test is adequately represented by elastic theory and an assumed plane stress condition.

  7. Second-harmonic generation microscopy used to evaluate the effect of the dimethyl sulfoxide in the cryopreservation process in collagen fibers of differentiated chondrocytes

    NASA Astrophysics Data System (ADS)

    Andreoli-Risso, M. F.; Duarte, A. S. S.; Ribeiro, T. B.; Bordeaux-Rego, P.; Luzo, A.; Baratti, M. O.; Adur, J.; de Thomaz, A. A.; Pelegati, V. B.; Carvalho, H. F.; Cesar, C. L.; Kharmadayan, P.; Costa, F. F.; Olalla-Saad, S. T.

    2012-03-01

    Cartilaginous lesions are a significant public health problem and the use of adult stem cells represents a promising therapy for this condition. Cryopreservation confers many advantages for practitioners engaged in cell-based therapies. However, conventional slow freezing has always been associated with damage and mortality due to intracellular ice formation, cryoprotectant toxicity, and dehydration. The aim of this work is to observe the effect of the usual Dimethyl Sulfoxide (DMSO) cryopreservation process on the architecture of the collagen fiber network of chondrogenic cells from mesenchymal stem cells by Second Harmonic Generation (SHG) microscopy. To perform this study we used Mesenchymal Stem Cells (MSC) derived from adipose tissue which presents the capacity to differentiate into other lineages such as osteogenic, adipogenic and chondrogenic lineages. Mesenchymal stem cells obtained after liposuction were isolated digested by collagenase type I and characterization was carried out by differentiation of mesodermic lineages, and flow cytometry using specific markers. The isolated MSCs were cryopreserved by the DMSO technique and the chondrogenic differentiation was carried out using the micromass technique. We then compared the cryopreserved vs non-cryopreserved collagen fibers which are naturally formed during the differentiation process. We observed that noncryopreserved MSCs presented a directional trend in the collagen fibers formed which was absent in the cryopreserved MSCs. We confirmed this trend quantitatively by the aspect ratio obtained by Fast Fourier Transform which was 0.76 for cryopreserved and 0.52 for non-cryopreserved MSCs, a statistical significant difference.

  8. The use of tetrabutylammonium fluoride to promote N- and O-(11) C-methylation reactions with iodo[(11) C]methane in dimethyl sulfoxide.

    PubMed

    Kikuchi, Tatsuya; Minegishi, Katsuyuki; Hashimoto, Hiroki; Zhang, Ming-Rong; Kato, Koichi

    2013-11-01

    The N- or O-methylation reactions of compounds bearing amide, aniline, or phenol moieties using iodo[(11) C]methane (1) with the aid of a base are frequently applied to the preparation of (11) C-labeled radiopharmaceuticals. Although sodium hydride and alkaline metal hydroxides are commonly employed as bases in these reactions, their poor solubility properties in organic solvents and hydrolytic activities have sometimes limited their application and made the associated (11) C-methylation reactions difficult. In contrast to these bases, tetrabutylammonium fluoride (TBAF) is moderately basic, highly soluble in organic solvents, and weakly nucleophilic. Although it was envisaged that TBAF could be used as the preferred base for (11) C-methylation reactions using 1, studies concerning the use of TBAF to promote (11) C-methylation reactions are scarce. Herein, we have evaluated the efficiency of the (11) C-methylation reactions of 13 model compounds using TBAF and 1. In most cases, the N-(11) C-methylations were efficiently promoted by TBAF in dimethyl sulfoxide at ambient temperature, whereas the O-(11) C-methylations required heating in some cases. Comparison studies revealed that the efficiencies of the (11) C-methylation reactions with TBAF were comparable or sometimes greater than those conducted with sodium hydride. Based on these results, TBAF should be considered as the preferred base for (11) C-methylation reactions using 1. PMID:25196029

  9. Increasing the energy density of the non-aqueous vanadium redox flow battery with the acetonitrile-1,3-dioxolane-dimethyl sulfoxide solvent mixture

    NASA Astrophysics Data System (ADS)

    Herr, T.; Fischer, P.; Tübke, J.; Pinkwart, K.; Elsner, P.

    2014-11-01

    Different solvent mixtures were investigated for non-aqueous vanadium acetylacetonate (V(acac)3) redox flow batteries with tetrabutylammonium hexafluorophosphate as the supporting electrolyte. The aim of this study was to increase the energy density of the non-aqueous redox flow battery. A mixture of acetonitrile, dimethyl sulfoxide and 1-3-dioxolane nearly doubles the solubility of the active species. The proposed electrolyte system was characterized by Raman and FT-IR spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge set-up. Spectroscopic methods were applied to understand the interactions between the solvents used and their impact on the solubility. The potential difference between oxidation and reduction of V(acac)3 measured by cyclic voltammetry was about 2.2 V. Impedance spectroscopy showed an electrolyte resistance of about 2400 Ω cm2. Experiments in a charge-discharge test cell achieved coulombic and energy efficiencies of ∼95% and ∼27% respectively. The highest discharge power density was 0.25 mW cm-2.

  10. Dimethyl sulfoxide: an antagonist in scintillation proximity assay [(35)S]-GTPgammaS binding to rat 5-HT(6) receptor cloned in HEK-293 cells?

    PubMed

    Mereghetti, Ilario; Cagnotto, Alfredo; Mennini, Tiziana

    2007-03-15

    We have tested by [(35)S]-GTPgammaS binding the intrinsic activity of three full agonists (serotonin, 5-methoxytryptamine and 5-methoxy-2-methyl-N,N-dimethyltryptamine) on rat 5-HT(6) receptors cloned in HEK-293 cells, using the scintillation proximity assay. Serotonin and 5-methoxytryptamine are soluble in water, while the agonist 5-methoxy-2-methyl-N,N-dimethyltryptamine is soluble in dimethyl sulfoxide (DMSO). In [(35)S]-GTPgammaS binding 5-HT and 5-methoxytryptamine were able to increase basal binding, while 5-methoxy-2-methyl-N,N-dimethyltryptamine surprisingly showed an inverse agonist activity. So we have tested 5-HT and 5-methoxytryptamine in the presence of DMSO: in this condition the two agonists behaved as antagonists. This interfering effect of DMSO was not observed when GTP-europium filtration binding was used in place of scintillation proximity assay using [(35)S]-GTPgammaS. In addition, DMSO did not affect [(3)H]-5HT binding or cAMP accumulation in cloned HEK-293 cells expressing rat 5-HT(6) receptors. In conclusion, we demonstrated that DMSO, the most common solvent used to dissolve compounds insoluble in water, interferes with the method of scintillation proximity assay using [(35)S]-GTPgammaS. DMSO does not affect basal signal, nor the GTPgammaS binding itself, as indicated by the experiments with GTP-europium. Therefore its interfering effect is likely to occur at the binding of antibodies in the scintillation proximity assay. PMID:17049618

  11. Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent.

    PubMed

    Mi, Hao-Yang; Jing, Xin; Salick, Max R; Cordie, Travis M; Turng, Lih-Sheng

    2016-09-01

    Although phase separation is a simple method of preparing tissue engineering scaffolds, it suffers from organic solvent residual in the scaffold. Searching for nontoxic solvents and developing effective solvent removal methods are current challenges in scaffold fabrication. In this study, thermoplastic polyurethane (TPU) scaffolds containing carbon nanotubes (CNTs) or nanofibrillated cellulose fibers (NFCs) were prepared using low toxicity dimethyl sulfoxide (DMSO) as a solvent. The effects of two solvent removal approaches on the final scaffold morphology were studied. The freeze drying method caused large pores, with small pores on the pore walls, which created connections between the pores. Meanwhile, the leaching and freeze drying method led to interconnected fine pores with smaller pore diameters. The nucleation effect of CNTs and the phase separation behavior of NFCs in the TPU solution resulted in significant differences in the microstructures of the resulting scaffolds. The mechanical performance of the nanocomposite scaffolds with different morphologies was investigated. Generally, the scaffolds with a fine pore structure showed higher compressive properties, and both the CNTs and NFCs improved the compressive properties of the scaffolds, with greater enhancement found in TPU/NFC nanocomposite scaffolds. In addition, all scaffolds showed good sustainability under cyclical load bearing, and the biocompatibility of the scaffolds was verified via 3T3 fibroblast cell culture. PMID:27266475

  12. A Novel QSPR Model for Prediction of Gas to Dimethyl Sulfoxide Solvation Enthalpy of Organic Compounds Based on Support Vector Machine.

    PubMed

    Golmohammadi, Hassan; Dashtbozorgi, Zahra; Acree, William E

    2012-05-01

    In this study, a quantitative structureproperty relationship (QSPR) study is developed for the prediction of gas to dimethyl sulfoxide solvation enthalpy (ΔHSolv ) of organic compounds based on molecular descriptors calculated solely from molecular structure considerations. Diverse types of molecular descriptors were calculated to represent the molecular structures of the various compounds studied. Multiple linear regression (MLR) was employed to select an optimal subset of descriptors that have significant contributions to the ΔHSolv overall property. Our investigation revealed that the dependence of physicochemical properties on solvation enthalpy is a nonlinear observable fact and that MLR method is unable to model the solvation enthalpy accurately. It has been observed that support vector machine (SVM) and artificial neural network (ANN) demonstrates better performance compared with MLR. The standard error value of the test set for SVM is 1.731 kJ mol(-1) , while it is 2.303 kJ mol(-1) and 5.146 kJ mol(-1) for ANN and MLR, respectively. The results showed that the calculated ΔHSolv values by SVM were in good agreement with the experimental data, and the performance of the SVM model was superior to those of MLR and ANN ones.

  13. Transplantation and in vitro perifusion of rat islets of Langerhans after slow cooling and warming in the presence of either glycerol or dimethyl sulfoxide.

    PubMed

    Taylor, M J; Duffy, T J; Hunt, C J; Morgan, S R; Davisson, P J

    1983-04-01

    The cryoprotectants dimethyl sulfoxide (Me2SO) and glycerol have been used for the cryopreservation of fetal rat pancreases but only Me2SO has been reported for the cryopreservation of adult rat islets. Since glycerol may be preferred to Me2SO for clinical use, this study was undertaken to compare the effectiveness of these cryoprotectants during the slow cooling of isolated adult rat islets. Islets of Langerhans prepared from the pancreases of WAG rats by collagenase digestion were stored at -196 degrees C after slow cooling (0.3 degrees C/min) to -70 degrees C in the presence of multimolar concentrations of either Me2SO or glycerol. Samples were rewarmed slowly (approximately 10 degrees C/min) and dilution of the cryoprotectant was achieved using medium containing sucrose. Function was assessed by determination of the time course of the glucose-induced insulin release during in vitro perifusion at 37 degrees C and also by isograft transplantation. Transplants were carried out by intraportal injection of a minimum of 1700 frozen and thawed islets into streptozotocin-induced diabetic recipients and tissue function was assessed by monitoring blood glucose levels and body weight changes. Without exception the islets frozen and thawed in the presence of glycerol failed to reduce high serum glucose levels of recipient rats and in vitro dynamic release curves showed to demonstrate a glucose-sensitive insulin release pattern. Reversal of the diabetic conditions was achieved in two of five animals receiving islets which had been frozen and thawed with 2 M Me2SO; and in one of three animals receiving islets cryopreserved with 3 M Me2SO. Nevertheless, perifusion studies showed that the pattern of insulin secretion from groups of cryopreserved islets which did show an ability to secrete insulin was atypical compared with that of untreated controls, suggesting that the tissue was altered or damaged in some way. PMID:6406152

  14. Dimethyl sulfoxide-caused changes in pro- and anti-angiogenic factor levels could contribute to an anti-angiogenic response in HeLa cells.

    PubMed

    Şimşek, Ece; Aydemir, Esra Arslan; İmir, Nilüfer; Koçak, Orhan; Kuruoğlu, Aykut; Fışkın, Kayahan

    2015-10-01

    Dimethyl sulfoxide (DMSO) is widely used in biological research as a general solvent. While it has been previously demonstrated that DMSO possesses a wide range of pharmacological effects, there is no published work regarding the effects of DMSO on pro-angiogenic factor levels. This study was designed to investigate the possible effects of DMSO on the levels of three pro-angiogenic factors released from HeLa cells in vitro. Cells were treated with two different and previously determined concentrations of DMSO. The cytotoxic effects of DMSO concentrations on HeLa cells were determined via MTT. Survival rates of DMSO-treated cells were determined by Invitrogen live/dead viability/cytotoxicity kit and trypan blue exclusion assay. Changes in the pro-angiogenic levels in media were evaluated by Cayman's Substance P Enzyme Immunoassay ELISA kit. Vascular endothelial growth factor ELISA kit and interferon gamma ELISA kit for substance P, VEGF and IFNγ respectively. Changes in substance P levels were corrected by standard western blotting. Changes in VEGF and IFNγ levels were corrected both by western blot and real time PCR. Treatment with 1.4 μM DMSO caused a time-dependent inhibition of cell proliferation at 24, 48 and 72 h. 1.4 μM DMSO caused a significant reduction in VEGF levels at 72 h of incubation and sharp increases in IFNγ levels at both 48 and 72 h of incubation. According to real time PCR analyses, DMSO (1.4 μM) exhibited an inhibitory effect on VEGF but acted as an augmenter of IFNγ release on HeLa cells in vitro. This is the first report showing that the general solvent DMSO suppressed HeLa cell proliferation, decreased the levels of two pro-angiogenic factors (substance P and VEGF) and increased the release of an anti-angiogenic factor IFNγ in vitro.

  15. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.

    PubMed

    Carvalho, Nathalia F; Pliego, Josefredo R

    2015-10-28

    Absolute single-ion solvation free energy is a very useful property for understanding solution phase chemistry. The real solvation free energy of an ion depends on its interaction with the solvent molecules and on the net potential inside the solute cavity. The tetraphenyl arsonium-tetraphenyl borate (TATB) assumption as well as the cluster-continuum quasichemical theory (CC-QCT) approach for Li(+) solvation allows access to a solvation scale excluding the net potential. We have determined this free energy scale investigating the solvation of the lithium ion in water (H2O), acetonitrile (CH3CN) and dimethyl sulfoxide (DMSO) solvents via the CC-QCT approach. Our calculations at the MP2 and MP4 levels with basis sets up to the QZVPP+diff quality, and including solvation of the clusters and solvent molecules by the dielectric continuum SMD method, predict the solvation free energy of Li(+) as -116.1, -120.6 and -123.6 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively (1 mol L(-1) standard state). These values are compatible with the solvation free energy of the proton of -253.4, -253.2 and -261.1 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively. Deviations from the experimental TATB scale are only 1.3 kcal mol(-1) in H2O and 1.8 kcal mol(-1) in DMSO solvents. However, in the case of CH3CN, the deviation reaches a value of 9.2 kcal mol(-1). The present study suggests that the experimental TATB scale is inconsistent for CH3CN. A total of 125 values of the solvation free energy of ions in these three solvents were obtained. These new data should be useful for the development of theoretical solvation models.

  16. Application of HC-AFW1 Hepatocarcinoma Cells for Mechanistic Studies: Regulation of Cytochrome P450 2B6 Expression by Dimethyl Sulfoxide and Early Growth Response 1.

    PubMed

    Petzuch, Barbara; Groll, Nicola; Schwarz, Michael; Braeuning, Albert

    2015-11-01

    Various exogenous compounds, for example, the drugs bupropione and propofol, but also various cytostatics, are metabolized in the liver by the enzyme cytochrome P450 (P450) CYP2B6. Transcription from the CYP2B6 gene is regulated mainly via the transcription factors constitutive androstane receptor (CAR) and pregnane-X-receptor (PXR). Most hepatic cell lines express no or only low levels of CYP2B6 because of loss of these two regulators. Dimethyl sulfoxide (DMSO) is frequently used in liver cell cultivation and is thought to affect the expression of various P450 isoforms by inducing or preserving cellular differentiation. We studied the effects of up to 1.5% of DMSO as cell culture medium supplement on P450 expression in hepatocarcinoma cells from line HC-AFW1. DMSO did not induce differentiation of the HC-AFW1 cell line, as demonstrated by unaltered levels of selected mRNA markers important for hepatocyte differentiation, and also by the lack of a DMSO effect on a broader spectrum of P450s. By contrast, CYP2B6 mRNA was strongly induced by DMSO. This process was independent of CAR or PXR activation. Interestingly, elevated transcription of CYP2B6 was accompanied by a simultaneous induction of early growth response 1 (EGR1), a transcription factor known to influence the expression of CYP2B6. Expression of wild-type EGR1 or of a truncated, dominant-negative EGR1 mutant was able to mimic or attenuate the DMSO effect, respectively. These findings demonstrate that EGR1 is involved in the regulation of CYP2B6 by DMSO in HC-AFW1 cells.

  17. Dual-component system dimethyl sulfoxide/LiCl as a solvent and catalyst for homogeneous ring-opening grafted polymerization of ε-caprolactone onto xylan.

    PubMed

    Zhang, Xue-Qin; Chen, Ming-Jie; Liu, Chuan-Fu; Sun, Run-Cang

    2014-01-22

    The preparation of xylan-graft-poly(ε-caprolactone) (xylan-g-PCL) copolymers was investigated by homogeneous ring-opening polymerization (ROP) in a dual-component system containing Lewis base LiCl and strong polar aprotic solvent dimethyl sulfoxide (DMSO). DMSO/LiCl acted as solvent, base, and catalyst for the ROP reaction. The effects of the parameters, including the reaction temperature, molar ratio of ε-caprolactone (ε-CL) to anhydroxylose units (AXU) in xylan, and reaction time, on the degree of substitution (DS) and weight percent of PCL side chain (WPCL) were investigated. The results showed that xylan-g-PCL copolymers with low DS in the range of 0.03-0.39 were obtained under the given conditions. The Fourier transform infrared spectroscopy (FTIR), (1)H nuclear magnetic resonance (NMR), (13)C NMR, (1)H-(1)H correlation spectroscopy (COSY), and (1)H-(13)C correlation two-dimensional (2D) NMR [heteronuclear single-quantum coherence (HSQC)] characterization provided more evidence of the attachment of side chains onto xylan. Only one ε-CL was confirmed to be attached onto xylan with each side chain. Integration of resonances assigned to the substituted C2 and C3 in the HSQC spectrum also indicated 69.23 and 30.77% of PCL side chains attached to AXU at C3 and C2 positions, respectively. Although the attachment of PCL onto xylan led to the decreased thermal stability of xylan, the loss of unrecovered xylan fractions with low molecular weight because of the high solubility of xylan in DMSO/LiCl resulted in the increased thermal stability of the samples. This kind of xylan derivative has potential application in environmentally friendly and biodegradable materials considering the good biodegradability of xylan and PCL. PMID:24387806

  18. Solvation dynamics of tryptophan in water-dimethyl sulfoxide binary mixture: in search of molecular origin of composition dependent multiple anomalies.

    PubMed

    Roy, Susmita; Bagchi, Biman

    2013-07-21

    Experimental and simulation studies have uncovered at least two anomalous concentration regimes in water-dimethyl sulfoxide (DMSO) binary mixture whose precise origin has remained a subject of debate. In order to facilitate time domain experimental investigation of the dynamics of such binary mixtures, we explore strength or extent of influence of these anomalies in dipolar solvation dynamics by carrying out long molecular dynamics simulations over a wide range of DMSO concentration. The solvation time correlation function so calculated indeed displays strong composition dependent anomalies, reflected in pronounced non-exponential kinetics and non-monotonous composition dependence of the average solvation time constant. In particular, we find remarkable slow-down in the solvation dynamics around 10%-20% and 35%-50% mole percentage. We investigate microscopic origin of these two anomalies. The population distribution analyses of different structural morphology elucidate that these two slowing down are reflections of intriguing structural transformations in water-DMSO mixture. The structural transformations themselves can be explained in terms of a change in the relative coordination number of DMSO and water molecules, from 1DMSO:2H2O to 1H2O:1DMSO and 1H2O:2DMSO complex formation. Thus, while the emergence of first slow down (at 15% DMSO mole percentage) is due to the percolation among DMSO molecules supported by the water molecules (whose percolating network remains largely unaffected), the 2nd anomaly (centered on 40%-50%) is due to the formation of the network structure where the unit of 1DMSO:1H2O and 2DMSO:1H2O dominates to give rise to rich dynamical features. Through an analysis of partial solvation dynamics an interesting negative cross-correlation between water and DMSO is observed that makes an important contribution to relaxation at intermediate to longer times.

  19. Long-term cryopreservation of human mesenchymal stem cells using carboxylated poly-l-lysine without the addition of proteins or dimethyl sulfoxide.

    PubMed

    Matsumura, Kazuaki; Hayashi, Fumiaki; Nagashima, Toshio; Hyon, Suong Hyu

    2013-01-01

    Human bone marrow-derived mesenchymal stem cells (hBMSCs) are known for their potential to undergo mesodermal differentiation into many cell types, including osteocytes, adipocytes, and chondrocytes. Therefore, hBMSCs can be used for a variety of regenerative medicine therapies, in fact, hBMC-derived osteocytes have already been used in bone reconstruction. This study discusses the viability and the differentiation properties of hBMSCs that have been cryopreserved in the absence of proteins or dimethyl sulfoxide (DMSO) by using a novel polyampholyte cryoprotective agent (CPA). This CPA is based on carboxylated poly-l-lysine (COOH-PLL) and it was produced by a reaction between ε-poly-l-lysine and succinic anhydride. (1)H-NMR and two-dimensional correlation ((1)H-(13)C HSQC) spectroscopy revealed that COOH-PLL did not have a special structure in solution. The hBMSCs can be cryopreserved for 24 months at -80 °C by using a 7.5% (w/w) cryopreserving solution of COOH-PLL, which introduces carboxyl groups that result in > 90% cell viability after thawing. Furthermore, the cryopreserved hBMSCs fully retained both their proliferative capacity as well as their potential for osteogenic, adipogenic, and chondrogenic differentiation. Confocal laser-scanning microscopy showed that the polyampholyte CPA did not penetrate the cell membrane; rather, it attached to the membrane during cryopreservation. These results indicate that the cryoprotective mechanisms of COOH-PLL might differ from those of currently used small molecule CPAs. These results also suggest that using COOH-PLL as a CPA for hBMSC preservation can eliminate the use of proteins and DMSO, which would be safer if these cells were used for cell transplantation or regenerative medicine. PMID:23829460

  20. Dimethyl sulfoxide in a 10% concentration has no effect on oxidation stress induced by ovalbumin-sensitization in a guinea-pig model of allergic asthma.

    PubMed

    Mikolka, P; Mokra, D; Drgova, A; Petras, M; Mokry, J

    2012-04-01

    In allergic asthma, activated cells produce various substances including reactive oxygen species (ROS). As heterogenic pathophysiology of asthma results to different response to the therapy, testing novel interventions continues. Because of water-insolubility of some potentially beneficial drugs, dimethyl sulfoxide (DMSO) is often used as a solvent. Based on its antioxidant properties, this study evaluated effects of DMSO on mobilization of leukocytes into the lungs, and oxidation processes induced by ovalbumin (OVA)-sensitization in a guinea-pig model of allergic asthma. Guinea-pigs were divided into OVA-sensitized and naive animals. One group of OVA-sensitized animals and one group of naive animals were pretreated with 10% DMSO, the other two groups were given saline. After sacrificing animals, blood samples were taken and total antioxidant status (TAS) in the plasma was determined. Left lungs were saline-lavaged and differential leukocyte count in bronchoalveolar lavage fluid (BAL) was made. Right lung tissue was homogenized, TAS and products of lipid and protein oxidation were determined in the lung homogenate and in isolated mitochondria. OVA-sensitization increased total number of cells and percentages of eosinophils and neutrophils in BAL fluid; increased lipid and protein oxidation in the lung homogenate and mitochondria, and decreased TAS in the lungs and plasma compared with naive animals. However, no differences were observed in DMSO-instilled animals compared to controls. In conclusion, OVA-sensitization increased mobilization of leukocytes into the lungs and elevated production of ROS, accompanied by decrease in TAS. 10% DMSO had no effect on lipid and protein oxidation in a guinea-pig model of allergic asthma. PMID:22653905

  1. Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non-obese diabetic mice by inducing differentiation of regulatory T cells

    SciTech Connect

    Lin, Gu-Jiun; Sytwu, Huey-Kang; Yu, Jyh-Cherng; Chen, Yuan-Wu; Kuo, Yu-Liang; Yu, Chiao-Chi; Chang, Hao-Ming; Chan, De-Chuan; Huang, Shing-Hwa

    2015-01-15

    Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO in the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. - Highlights: • We report a therapeutic potential of DMSO in autoimmune diabetes. • DMSO exhibits an immune modulatory effect. • DMSO treatment increases regulatory T cell differentiation. • The increase in STAT5 signaling pathway explains the effect of DMSO in Tregs.

  2. Femtosecond mid-infrared study of the dynamics of water molecules in water-acetone and water-dimethyl sulfoxide mixtures.

    PubMed

    Lotze, S; Groot, C C M; Vennehaug, C; Bakker, H J

    2015-04-23

    We study the vibrational relaxation dynamics and the reorientation dynamics of HDO molecules in binary water-dimethyl sulfoxide (DMSO) and water-acetone mixtures with polarization-resolved femtosecond mid-infrared spectroscopy. For low solute concentrations we observe a slowing down of the reorientation of part of the water molecules that hydrate the hydrophobic methyl groups of DMSO and acetone. For water-DMSO mixtures the fraction of slowed-down water molecules rises much steeper with solute concentration than for water-acetone mixtures, showing that acetone molecules show significant aggregation already at low concentrations. At high solute concentrations, the vibrational and reorientation dynamics of both water-DMSO and water-acetone mixtures show a clear distinction between the dynamics of water molecules donating hydrogen bonds to other water molecules and the dynamics of water donating a hydrogen bond to the S═O/C═O group of the solute. For water-DMSO mixtures both types of water molecules show a very slow reorientation. The water molecules forming hydrogen bonds to the S═O group reorient with a time constant that decreases from 46 ± 14 ps at XDMSO = 0.33 to 13 ± 2 ps at XDMSO = 0.95. The water molecules forming hydrogen bonds to the C═O group of acetone show a much faster reorientation with a time constant that decreases from 6.1 ± 0.2 ps at Xacet = 0.3 to 2.96 ± 0.05 ps at Xacet = 0.9. The large difference in reorientation time constant of the solute-bound water for DMSO and acetone can be explained from the fact that the hydrogen bond between water and the S═O group of DMSO is much stronger than the hydrogen bond between water and the C═O group of acetone. We attribute the strongly different behavior of water in DMSO-rich and acetone-rich mixtures to their difference in molecular shape.

  3. Probe dependent anomalies in the solvation dynamics of coumarin dyes in dimethyl sulfoxide-glycerol binary solvent: confirming the local environments are different for coumarin dyes.

    PubMed

    Koley, Somnath; Kaur, Harveen; Ghosh, Subhadip

    2014-10-28

    The solvation dynamics of coumarin dyes in dimethyl sulfoxide (DMSO)-glycerol (GLY) binary mixtures were studied across the GLY concentrations. Three coumarin dyes with widely different hydrophobicities were used for probing the entire polarity regions of this solvent mixture. Multiple anomalous concentration regions with significantly slow solvation times were detected from all three coumarin dyes. However, their precise positions were found to be probe molecule dependent. The solvation dynamics of the moderately hydrophobic dye coumarin 480 (C480) maintain a plateau region with a similar solvation time (∼550 ps) with the increase in GLY concentration until X(GLY) (the mole fraction of glycerol) reaches 0.5. This plateau region is followed by a sudden slowdown (to ∼975 ps) on the addition of more GLY to the DMSO-GLY mixture, and then this slow region persists from X(GLY)∼ 0.55 to 0.65 (peak at 0.6). On further addition of GLY (X(GLY) > 0.7), the solvation dynamics again become slower to ∼828 ps (at X(GLY)∼ 0.8) from ∼612 ps (at X(GLY)∼ 0.7). For very high GLY-content samples (X(GLY) > 0.85), the solvation times remain similar on further changes of the GLY concentrations. In contrast to C480, the most hydrophobic dye coumarin 153 (C153) shows a linear increase of solvation time in the DMSO-GLY mixture, from 102 ps (at X(GLY)∼ 0.1) to 946 ps (at X(GLY)∼ 0.9) with increase in GLY concentration, except for the concentration region, X(GLY)∼ 0.45-0.55 (peak at 0.5), where a substantial slowdown of the solvation time is observed. The highly hydrophilic probe coumarin 343 (C343) demonstrates multiple concentration regions (X(GLY)∼ 0.05-0.10, 0.25-0.35 and 0.55-0.65) where the solvation dynamics are significantly retarded. The presence of probe dependent anomalies in the DMSO-GLY mixture is a clear indication of there being different locations of probe molecules within this solvent mixture. We assume that the slowing-down of the solvation time could

  4. Study of the Electrochemical System of Antimony-Tellurium in Dimethyl Sulfoxide for Growth of Nanowire Arrays, and an Innovative Method for Single Nanowire Measurements

    NASA Astrophysics Data System (ADS)

    Kalisman, Philip Taubman

    There is a strong interest in thermoelectric materials for energy production and savings. The properties which are integral to thermoelectric performance are typically linked, typically changing one of these properties for the better will change another for the worse. The intertwined nature of these properties has limited bulk thermoelectrics to low efficiencies, which has curbed their use to only niche applications. There has been theoretical and experimental work which has shown that limiting these materials in one or more dimensions will result in deconvolution of properties. Nanowires of well established thermoelectrics should show impressively high performance. Tellurium is attractive in many fields, including thermoelectrics. Nanowires of tellurium have been grown, but with limited success and with out the ability to dope the tellurium. Working on previous work with other systems, tellurium was studied in dimethyl sulfoxide (DMSO). The electrochemical system of tellurium was found to be quite dierent from its aqueous analog, but through comprehensive cyclic voltammetric study, all events were identified and explained. The binary antimony-tellurium system was also studied, as doping of tellurium is integral for many applications. Cyclic voltammograms of this system were studied, and the insight from these studies was used to grow nanowire arrays. Arrays of tellurium were grown and analysis showed that by using DMSO, antimony doped tellurium nanowire arrays could be grown. Furthermore, analysis showed that the antimony doped tellurium interstitially, resulting in a n-type material. Measurements were also performed on arrays and individual wires. Arrays of 1.15% antimony showed ZT of 0.092, with the low ZT attributed to poor contact methods. Although contacting was an obstacle towards measuring whole arrays, single wire measurements were also performed. Single wire measurements were done by a novel method which allows for easy, reproducible measurements of wire

  5. Crystal structure of di-aqua-bis-(7-di-ethyl-amino-3-formyl-2-oxo-2H-chromen-4-olato-κ(2) O (3),O (4))zinc(II) dimethyl sulfoxide disolvate.

    PubMed

    Davis, Aaron B; Fronczek, Frank R; Wallace, Karl J

    2016-07-01

    The structure of the title coordination complex, [Zn(C14H14NO4)2(H2O)2]·2C2H6OS, shows that the Zn(II) cation adopts an octa-hedral geometry and lies on an inversion center. Two organic ligands occupy the equatorial positions of the coordination sphere, forming a chelate ring motif via the O atom on the formyl group and another O atom of the carbonyl group (a pseudo-β-diketone motif). Two water mol-ecules occupy the remaining coordination sites of the Zn(II) cation in the axial positions. The water mol-ecules are each hydrogen bonded to a single dimethyl sulfoxide mol-ecule that has been entrapped in the crystal lattice. PMID:27555957

  6. Crystal structure of di­aqua­bis­(7-di­ethyl­amino-3-formyl-2-oxo-2H-chromen-4-olato-κ2 O 3,O 4)zinc(II) dimethyl sulfoxide disolvate

    PubMed Central

    Davis, Aaron B.; Fronczek, Frank R.; Wallace, Karl J.

    2016-01-01

    The structure of the title coordination complex, [Zn(C14H14NO4)2(H2O)2]·2C2H6OS, shows that the ZnII cation adopts an octa­hedral geometry and lies on an inversion center. Two organic ligands occupy the equatorial positions of the coordination sphere, forming a chelate ring motif via the O atom on the formyl group and another O atom of the carbonyl group (a pseudo-β-diketone motif). Two water mol­ecules occupy the remaining coordination sites of the ZnII cation in the axial positions. The water mol­ecules are each hydrogen bonded to a single dimethyl sulfoxide mol­ecule that has been entrapped in the crystal lattice. PMID:27555957

  7. Crystal structure of cis,fac-{N,N-bis­[(pyridin-2-yl)meth­yl]methyl­amine-κ3 N,N′,N′′}di­chlorido­(dimethyl sulfoxide-κS)ruthenium(II)

    PubMed Central

    Trotter, Kasey; Arulsamy, Navamoney; Hulley, Elliott

    2015-01-01

    The reaction of di­chlorido­tetra­kis­(dimethyl sulfoxide)­ruthen­ium(II) with N,N-bis[(pyridin-2-yl)meth­yl]methyl­amine aff­ords the title complex, [RuCl2(C13H15N3)(C2H6OS)]. The asymmetric unit contains a well-ordered complex mol­ecule. The N,N-bis­[(pyridin-2-yl)meth­yl]methyl­amine (bpma) ligand binds the cation through its two pyridyl N atoms and one aliphatic N atom in a facial manner. The coordination sphere of the low-spin d 6 RuII is distorted octahedral. The dimethyl sulfoxide (dmso) ligand coordinates to the cation through its S atom and is cis to the aliphatic N atom. The two chloride ligands occupy the remaining sites. The bpma ligand is folded with the dihedral angle between the mean planes passing through its two pyridine rings being 64.55 (8)°. The two N—Ru—N bite angles of the ligand at 81.70 (7) and 82.34 (8)° illustrate the distorted octa­hedral coordination geometry of the RuII cation. Two neighboring molecules are weakly associated through mutual intermolecular hydrogen bonding involving the O atom and one of the methyl groups of the dmso ligand. One of the chloride ligands is also weakly hydrogen bonded to a pyridyl H atom of another molecule. PMID:26396870

  8. Crystal structure of bis­[N-phenyl-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazinecarbothio­amidato-κ2 N 2,S]zinc dimethyl sulfoxide monosolvate

    PubMed Central

    Cruz Santana, Genelane; Gimenez, Iara de Fátima; Näther, Christian; Jess, Inke; de Oliveira, Adriano Bof

    2015-01-01

    The reaction of the N-phenyl-2-(1,2,3,4-tetrahydronaphthalen-1-yl­idene)hy­dra­zine­car­bo­thio­amide ligand with zinc acetate dihydrate in a 2:1 molar ratio yielded a yellow solid, which was crystallized from DMSO to obtain the title compound, [Zn(C17H16N3S)2]·C2H6OS. The ZnII ion is four-coordinated in a distorted tetra­hedral environment by two deprotonated ligands. Each ligand acts as an N,S-donor, forming a five-membered metallacycle. The maximum deviation from the mean plane of the N–N–C–S chelate group is 0.0029 (14) Å for the N-donor atom of one ligand and 0.0044 (14) Å for the non-coordinating N atom of the second. The dihedral angle between the planes of the two chelate groups is 72.80 (07)°. Bond lengths in the ligands are compared with those in the crystal structure of the free ligand. In the crystal, complex mol­ecules are connected by dimethyl sulfoxide solvate mol­ecules via N—H⋯O hydrogen-bonding inter­actions, building a one-dimensional hydrogen-bonded polymer along the a-axis direction. The S atom and one C atom of the dimethyl sulfoxide solvate mol­ecules are disordered over two sets of sites with an occupancy ratio of 0.6:0.4. PMID:25995850

  9. Solute-solvent interactions in 2,4-dihydroxyacetophenone isonicotinoylhydrazone solutions in N, N-dimethylformamide and dimethyl sulfoxide at 298-313 K on ultrasonic and viscometric data

    NASA Astrophysics Data System (ADS)

    Dikkar, A. B.; Pethe, G. B.; Aswar, A. S.

    2016-02-01

    The speed of sound ( u), density (ρ), and viscosity (η) of 2,4-dihydroxyacetophenone isonicotinoylhydrazone (DHAIH) have been measured in N, N-dimethyl formamide and dimethyl sulfoxide at equidistance temperatures 298.15, 303.15, 308.15, and 313.15 K. These data were used to calculate some important ultrasonic and thermodynamic parameters such as apparent molar volume ( V ϕ s st ), apparent molar compressibility ( K ϕ), partial molar volume ( V ϕ 0 ) and partial molar compressibility ( K ϕ 0 ), were estimated by using the values of ( V ϕ 0 ) and ( K ϕ), at infinite dilution. Partial molar expansion at infinite dilution, (ϕ E 0 ) has also been calculated from temperature dependence of partial molar volume V ϕ 0 . The viscosity data have been analyzed using the Jones-Dole equation, and the viscosity, B coefficients are calculated. The activation free energy has been calculated from B coefficients and partial molar volume data. The results have been discussed in the term of solute-solvent interaction occurring in solutions and it was found that DHAIH acts as a structure maker in present systems.

  10. Use of Glycerol as an Optical Clearing Agent for Enhancing Photonic Transference and Detection of Salmonella typhimurium Through Porcine Skin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate glycerol (GLY) and GLY + dimethyl sulfoxide (DMSO) to increase photonic detection of transformed Salmonella typhimurium (S. typh-lux) through porcine skin. Skin was placed on 96-well plates containing S. typh-lux, imaged (5 min) using a CCD camera, and the...

  11. Use of Glycerol as an Optical Clearing Agent for Enhancing Photonic Transference and Detection of Salmonella typhimurium through Porcine Skin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate glycerol (GLY) and GLY + dimethyl sulfoxide (DMSO) to increase photonic detection of transformed Salmonella typhimurium (S. typh-lux) through porcine skin. Skin was placed on 96-well plates containing S. typh-lux, imaged (5 min) using a CCD camera, and the...

  12. Influence of hydroxyapatite nanoparticles on the viscosity of dimethyl sulfoxide-H2O-NaCl and glycerol-H2O-NaCl ternary systems at subzero temperatures.

    PubMed

    Yi, Jingru; Tang, Heyu; Zhao, Gang

    2014-10-01

    The viscosity, at subzero temperatures, of ternary solutions commonly used in cryopreservation is tremendously important for understanding ice formation and molecular diffusion in biopreservation. However, this information is scarce in the literature. In addition, to the best of our knowledge, the effect of nanoparticles on the viscosity of these solutions has not previously been reported. The objectives of this study were thus: (i) to systematically measure the subzero viscosity of two such systems, dimethyl sulfoxide (Me2SO)-H2O-NaCl and glycerol-H2O-NaCl; (ii) to explore the effect of hydroxyapatite (HA) nanoparticles on the viscosity; and (iii) to provide models that precisely predict viscosity at multiple concentrations of cryoprotective agent (CPA) in saline solutions at subzero temperatures. Our experiments were performed in two parts. We first measured the viscosity at multiple CPA concentrations [0.3-0.75 (w/w)] in saline solution with and without nanoparticles at subzero temperatures (0 to -30°C). The data exhibited a good fit to the Williams-Landel-Ferry (WLF) equation. We then measured the viscosity of residual unfrozen ternary solutions with and without nanoparticles during equilibrium freezing. HA nanoparticles made the solution more viscous, suggesting applications for these nanoparticles in preventing cell dehydration, ice nucleation, and ice growth during freezing and thawing in cryopreservation.

  13. Bis{μ-2,2′-[(3-aza­pentane-1,5-di­yl)bis­(nitrilo­methyl­idyne)]diphenolato}dicopper(II) dimethyl sulfoxide disolvate

    PubMed Central

    Quintero-Tellez, Guadalupe; González Álvarez, Carmen María; Bernès, Sylvain; Alcántara-Flores, José Luis; Reyes-Ortega, Yasmi

    2008-01-01

    The title compound, [Cu2(C18H19N3O2)2]·2C2H6OS or [Cu2(SalenN3H)2]·2DMSO, where SalenN3H is the multidentate Schiff base 2,2′-[(3-aza­pentane-1,5-di­yl)bis­(nitrilo­methyl­idyne)]diphenolate dianion and DMSO is dimethyl sulfoxide, is a solvated dinuclear CuII complex. The neutral complex is built from two Cu(SalenN3H) units related by an inversion center. All heteroatoms in the Schiff bases coordinate the CuII ions, which display highly distorted trigonal bipyramidal geometries. The solvent mol­ecules are located in the structural voids of the complex and are disordered over two positions with occupancies of 0.642 (15) and 0.358 (15). The previously characterized acetone disolvate of the same complex presents identical mol­ecular and crystal structures, and crystallizes with cell parameters very close to those of the DMSO disolvate reported here. PMID:21202185

  14. Crystal structure of bis­{μ-4-methyl-N′-[3-(oxido­imino)­butan-2-yl­idene]benzene­sulfono­hydrazidato}bis­[(dimethyl sulfoxide-κO)copper(II)

    PubMed Central

    Siqueira, Diego Pereira; Siqueira, Maria Carolina Bulhosa; Gervini, Vanessa Carratu; Bresolin, Leandro; de Oliveira, Adriano Bof

    2014-01-01

    In the title compound, [Cu2(C11H13N3O3S)2(C2H6OS)2], the CuII cation is N,N′,O-chelated by a deprotonated hy­droxy­imino-tosyl­hydrazone ligand and coordinated by a dimethyl sulfoxide mol­ecule. One O atom from the adjacent hy­droxy­imino-tosyl­hydrazone ligand bridges the CuII cation, forming the centrosymmetric dimeric complex. The cation is in an overall distorted N2O3 square-pyramidal coordination environment. The methyl­benzene ring is twisted with respect to the hydrazine fragment, with a dihedral angle of 89.54 (9)° between the planes. An intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯S inter­actions. Weak π–π stacking is also observed between parallel benzene rings of adjacent mol­ecules, the centroid–centroid distance being 3.9592 (17) Å. PMID:25309178

  15. Influence of hydroxyapatite nanoparticles on the viscosity of dimethyl sulfoxide-H2O-NaCl and glycerol-H2O-NaCl ternary systems at subzero temperatures.

    PubMed

    Yi, Jingru; Tang, Heyu; Zhao, Gang

    2014-10-01

    The viscosity, at subzero temperatures, of ternary solutions commonly used in cryopreservation is tremendously important for understanding ice formation and molecular diffusion in biopreservation. However, this information is scarce in the literature. In addition, to the best of our knowledge, the effect of nanoparticles on the viscosity of these solutions has not previously been reported. The objectives of this study were thus: (i) to systematically measure the subzero viscosity of two such systems, dimethyl sulfoxide (Me2SO)-H2O-NaCl and glycerol-H2O-NaCl; (ii) to explore the effect of hydroxyapatite (HA) nanoparticles on the viscosity; and (iii) to provide models that precisely predict viscosity at multiple concentrations of cryoprotective agent (CPA) in saline solutions at subzero temperatures. Our experiments were performed in two parts. We first measured the viscosity at multiple CPA concentrations [0.3-0.75 (w/w)] in saline solution with and without nanoparticles at subzero temperatures (0 to -30°C). The data exhibited a good fit to the Williams-Landel-Ferry (WLF) equation. We then measured the viscosity of residual unfrozen ternary solutions with and without nanoparticles during equilibrium freezing. HA nanoparticles made the solution more viscous, suggesting applications for these nanoparticles in preventing cell dehydration, ice nucleation, and ice growth during freezing and thawing in cryopreservation. PMID:25127873

  16. Effect of water on hydrolytic cleavage of non-terminal α-glycosidic bonds in cyclodextrins to generate monosaccharides and their derivatives in a dimethyl sulfoxide-water mixture.

    PubMed

    Kimura, Hiroshi; Hirayama, Masaki; Yoshida, Ken; Uosaki, Yasuhiro; Nakahara, Masaru

    2014-02-27

    Hydrolytic cleavage of the non-terminal α-1,4-glycosidic bonds in α-, β-, and γ-cyclodextrins and the anomeric-terminal one in d-maltose was investigated to examine how the cleavage rate for α-, β-, and γ-cyclodextrins is slower than that for d-maltose. Effects of water and temperature were studied by applying in situ (13)C NMR spectroscopy and using a dimethyl sulfoxide (DMSO)-water mixture over a wide range of water mole fraction, xw = 0.004-1, at temperatures of 120-180 °C. The cleavage rate constant for the non-anomeric glycosidic bond was smaller by a factor of 6-10 than that of the anomeric-terminal one. The glycosidic-bond cleavage is significantly accelerated through the keto-enol tautomerization of the anomeric-terminal d-glucose unit into the d-fructose one. The smaller the size of the cyclodextrin, the easier the bond cleavage due to the ring strain. The remarkable enhancement in the cleavage rate with decreasing water content was observed for the cyclodextrins and d-maltose as well as d-cellobiose. This shows the important effect of the solitary water whose hydrogen bonding to other water molecules is prohibited by the presence of the organic dipolar aprotic solvent, DMSO, and which has more naked partial charges and higher reactivity. A high 5-hydroxymethyl-2-furaldehyde (5-HMF) yield of 64% was attained in a non-catalytic conversion by tuning the water content to xw = 0.30, at which the undesired polymerization by-paths can be most effectively suppressed. This study provides a step toward designing a new optimal, earth-benign generation process of 5-HMF starting from biomass.

  17. Crystal structure of catena-poly[[(dimethyl sulfoxide-κO)(pyridine-2,6-di-carboxyl-ato-κ(3) O,N,O')nickel(II)]-μ-pyrazine-κ(2) N:N'].

    PubMed

    Liu, Chen; Thuijs, Annaliese E; Felts, Ashley C; Ballouk, Hamza F; Abboud, Khalil A

    2016-05-01

    The title coordination polymer, [Ni(C7H3NO4)(C4H4N2)(C2H6OS)] n , consists of [010] chains composed of Ni(II) ions linked by bis-monodentate-bridging pyrazine mol-ecules. Each of the two crystallographically distinct Ni(II) ions is located on a mirror plane and is additionally coordinated by a dimethyl sulfoxide (DMSO) ligand through the oxygen atom and by a tridentate 2,6-pyridine-di-carb-oxy-lic acid dianion through one of each of the carboxyl-ate oxygen atoms and the pyridine nitro-gen atom, leading to a distorted octa-hedral coordination environment. The title structure exhibits an inter-esting complementarity between coordinative bonding and π-π stacking where the Ni-Ni distance of 7.0296 (4) Å across bridging pyrazine ligands allows the pyridine moieties on two adjacent chains to inter-digitate at halfway of the Ni-Ni distance, resulting in π-π stacking between pyridine moieties with a centroid-to-plane distance of 3.5148 (2) Å. The double-chain thus formed also exhibits C-H⋯π inter-actions between pyridine C-H groups on one chain and pyrazine mol-ecules on the other chain. As a result, the inter-ior of the double-chain structure is dominated by π-π stacking and C-H⋯ π inter-actions, while the space between the double-chains is occupied by a C-H⋯O hydrogen-bonding network involving DMSO ligands and carboxyl-ate groups located on the exterior of the double-chains. This separation of dissimilar inter-actions in the inter-ior and exterior of the double-chains further stabilizes the crystal structure. PMID:27308038

  18. Flexibility at a glycosidic linkage revealed by molecular dynamics, stochastic modeling, and (13)C NMR spin relaxation: conformational preferences of α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe in water and dimethyl sulfoxide solutions.

    PubMed

    Pendrill, Robert; Engström, Olof; Volpato, Andrea; Zerbetto, Mirco; Polimeno, Antonino; Widmalm, Göran

    2016-01-28

    The monosaccharide L-rhamnose is common in bacterial polysaccharides and the disaccharide α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe represents a structural model for a part of Shigella flexneri O-antigen polysaccharides. Utilization of [1'-(13)C]-site-specific labeling in the anomeric position at the glycosidic linkage between the two sugar residues facilitated the determination of transglycosidic NMR (3)JCH and (3)JCC coupling constants. Based on these spin-spin couplings the major state and the conformational distribution could be determined with respect to the ψ torsion angle, which changed between water and dimethyl sulfoxide (DMSO) as solvents, a finding mirrored by molecular dynamics (MD) simulations with explicit solvent molecules. The (13)C NMR spin relaxation parameters T1, T2, and heteronuclear NOE of the probe were measured for the disaccharide in DMSO-d6 at two magnetic field strengths, with standard deviations ≤1%. The combination of MD simulation and a stochastic description based on the diffusive chain model resulted in excellent agreement between calculated and experimentally observed (13)C relaxation parameters, with an average error of <2%. The coupling between the global reorientation of the molecule and the local motion of the spin probe is deemed essential if reproduction of NMR relaxation parameters should succeed, since decoupling of the two modes of motion results in significantly worse agreement. Calculation of (13)C relaxation parameters based on the correlation functions obtained directly from the MD simulation of the solute molecule in DMSO as solvent showed satisfactory agreement with errors on the order of 10% or less. PMID:26741055

  19. Role of the p70 S6 kinase cascade in neutrophilic differentiation and proliferation of HL-60 cells-a study of transferrin receptor-positive and -negative cells obtained from dimethyl sulfoxide- or retinoic acid-treated HL-60 cells.

    PubMed

    Kanayasu-Toyoda, Toshie; Yamaguchi, Teruhide; Oshizawa, Tadashi; Kogi, Mieko; Uchida, Eriko; Hayakawa, Takao

    2002-09-01

    Previously, we suggested that p70 S6 kinase (p70 S6K) plays an important role in the regulation of neutrophilic differentiation of HL-60 cells; this conclusion was based on our analysis of transferrin receptor (Trf-R) positive (Trf-R(+)) and negative (Trf-R(-)) cells that appeared after treatment with dimethyl sulfoxide (Me(2)SO). In this study, we analyzed the upstream of p70 S6K in relation to the differentiation and proliferation of both cell types. The granulocyte colony-stimulating factor (G-CSF)-induced enhancement of phosphatidylinositol 3-kinase (PI3K) activity in Trf-R(+) cells was markedly higher than that in Trf-R(-) cells. Wortmannin, a specific inhibitor of PI3K, partially inhibited G-CSF-induced p70 S6K activity and G-CSF-dependent proliferation, whereas rapamycin, an inhibitor of p70 S6K, completely inhibited these activities. The wortmannin-dependent enhancement of neutrophilic differentiation was similar to that induced by rapamycin. From these results, we conclude that the PI3K/p70 S6K cascade may play an important role in negative regulation of neutrophilic differentiation in HL-60 cells. For the G-CSF-dependent proliferation, however, p70 S6K appears to be a highly important pathway through not only a PI3K-dependent but also possibly an independent cascade.

  20. Crystal structure of 2-[4-(4-chloro­phen­yl)-1-(4-meth­oxy­phen­yl)-2-oxoazetidin-3-yl]benzo[de]iso­quinoline-1,3-dione dimethyl sulfoxide monosolvate

    PubMed Central

    Çelik, Ísmail; Akkurt, Mehmet; Jarrahpour, Aliasghar; Rad, Javad Ameri; Çelik, Ömer

    2015-01-01

    In the title solvated compound, C28H19N2O4·C2H6OS, the central β-lactam ring is almost planar (r.m.s. deviation = 0.002 Å). It makes dihedral angles of 1.92 (11), 83.23 (12) and 74.90 (10)° with the meth­oxy- and chloro­phenyl rings and the ring plane of the 1H-benzo[de]iso­quinoline-1,3(2H)-dione group [maximum deviation = 0.089 (1)], respectively. An intra­molecular C—H⋯O hydrogen bond closes an S(6) ring and helps to establish the near coplanarity of the β-lactam and meth­oxy­benzene rings. In the crystal, the components are linked by C—H⋯O hydrogen bonds, C—H⋯π inter­actions and aromatic π–π stacking inter­actions [centroid-to-centroid distances = 3.6166 (10) and 3.7159 (10) Å], resulting in a three-dimensional network, The dimethyl sulfoxide solvent mol­ecule is disordered over two sets of sites in a 0.847 (2):0.153 (2) ratio. PMID:25878867

  1. Failure of topical acyclovir in ointment to penetrate human skin.

    PubMed Central

    Freeman, D J; Sheth, N V; Spruance, S L

    1986-01-01

    Topical acyclovir (ACV) in polyethylene glycol (PEG) ointment has been disappointing in the treatment of recurrent herpes simplex virus infections in immunocompetent patients. To investigate the possible role of poor drug delivery from this formulation, we studied the penetration of ACV through excised human skin from three vehicles; PEG ointment, modified aqueous cream, and dimethyl sulfoxide. A second antiviral agent, idoxuridine, was studied in the same formulations, and drug delivery through excised guinea pig skin was also assessed for comparison. The delivery of ACV from PEG ointment was very slow for both human and guinea pig skin (drug flux, 0.055 and 0.047 microgram/cm2 per h, respectively). Formulation of ACV in modified aqueous cream and in dimethyl sulfoxide resulted in an 8- and 60-fold increase, respectively, in the flux of ACV through human skin. Idoxuridine behaved similarly to ACV in the three vehicles. The poor clinical results seen with topical use of ACV ointment may be due in part to retarded drug delivery from this formulation. PMID:3729337

  2. Kinetic study of aroxyl radical scavenging and α-tocopheroxyl regeneration rates of pyrroloquinolinequinol (PQQH2, a reduced form of pyrroloquinolinequinone) in dimethyl sulfoxide solution: finding of synergistic effect on the reaction rate due to the coexistence of α-tocopherol and PQQH2.

    PubMed

    Ouchi, Aya; Ikemoto, Kazuto; Nakano, Masahiko; Nagaoka, Shin-Ichi; Mukai, Kazuo

    2013-11-20

    Measurements of aroxyl radical (ArO•)-scavenging rate constants (ks AOH) of antioxidants (AOHs: pyrroloquinolinequinol (PQQH2), α-tocopherol (α-TocH), ubiquinol-10 (UQ10H2), epicatechin, epigallocatechin, epigallocatechin gallate, and caffeic acid) were performed in dimethyl sulfoxide (DMSO) solution, using stopped-flow spectrophotometry. The ks AOH values were measured not only for each AOH but also for the mixtures of two AOHs ((i) α-TocH and PQQH2 and (ii) α-TocH and UQ10H2). A notable synergistic effect that the ks AOH values increase 1.72, 2.42, and 2.50 times for α-TocH, PQQH2, and UQ10H2, respectively, was observed for the solutions including two kinds of AOHs. Measurements of the regeneration rates of α-tocopheroxyl radical (α-Toc•) to α-TocH by PQQH2 and UQ10H2 were performed in DMSO, using double-mixing stopped-flow spectrophotometry. Second-order rate constants (kr) obtained for PQQH2 and UQ10H2 were 1.08 × 105 and 3.57 × 104 M−1 s−1, respectively, indicating that the kr value of PQQH2 is 3.0 times larger than that of UQ10H2. It has been clarified that PQQH2 and UQ10H2 having two HO groups within a molecule may rapidly regenerate two molecules of α-Toc• to α-TocH. The result indicates that the prooxidant effect of α-Toc• is suppressed by the coexistence of PQQH2 or UQ10H2.

  3. Transformation of Schizosaccharomyces pombe: Lithium Acetate/ Dimethyl Sulfoxide Procedure.

    PubMed

    Murray, Johanne M; Watson, Adam T; Carr, Antony M

    2016-04-01

    Transformation ofSchizosaccharomyces pombewith DNA requires the conditioning of cells to promote DNA uptake followed by cell growth under conditions that select and maintain the plasmid or integration event. The three main methodologies are electroporation, treatment with lithium cations, and transformation of protoplasts. The lithium acetate method described here is widely used because it is simple and reliable. PMID:27037075

  4. 21 CFR 524.660b - Dimethyl sulfoxide gel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... use—(1) Indications for use. For use on horses and dogs as a topical application to reduce acute... grams per day. Total duration of therapy should not exceed 30 days. (ii) Dogs. Administer 3 or 4...

  5. 21 CFR 524.660a - Dimethyl sulfoxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....660a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... per day. Total duration of therapy should not exceed 30 days. (ii) In dogs administered 3 or 4 times... days. (2) Not for use in horses and dogs intended for breeding purposes nor in horses slaughtered...

  6. 21 CFR 524.660b - Dimethyl sulfoxide gel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... use—(1) Indications for use. For use on horses and dogs as a topical application to reduce acute... grams per day. Total duration of therapy should not exceed 30 days. (ii) Dogs. Administer 3 or 4...

  7. 21 CFR 524.660a - Dimethyl sulfoxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....660a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... per day. Total duration of therapy should not exceed 30 days. (ii) In dogs administered 3 or 4 times... days. (2) Not for use in horses and dogs intended for breeding purposes nor in horses slaughtered...

  8. Solubility of 2,3-dimethyl-2,3-dinitrobutane

    SciTech Connect

    Krzymien, M.E. )

    1993-04-01

    The solubility of 2,3-dimethyl-2,3-dinitrobutane (DMNB) in acetone, acetonitrile, benzene, cyclohexanone, N,N-dimethylformamide, dimethyl sulfoxide, 1,4-dioxane, 2-ethoxyethanol, ethyl acetate, hexane, methanol, methyl ethyl ketone, tetrahydrofuran, toluene, and water at 5, 15, 25, and 35 C has been determined. The concentration of DMNB was measured by capillary gas chromatography with electron capture detection. The relative standard deviation of the measurements was between about 1% and 7%.

  9. Dimethyl Fumarate

    MedlinePlus

    ... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS; a condition in which ... day. Take dimethyl fumarate at around the same times every day. Follow the directions on your prescription ...

  10. p-Chlorophenyl methyl sulfoxide

    Integrated Risk Information System (IRIS)

    p - Chlorophenyl methyl sulfoxide ; CASRN 934 - 73 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  11. Skin roughness is negatively correlated to irritation with DMSO, but not with NaOH and SLS.

    PubMed

    Iliev, D; Hinnen, U; Elsner, P

    1997-08-01

    While many endogenous and exogenous factors have been found to influence skin irritant reactivity, the role of skin roughness in irritation has not yet been studied. In this study we measured skin roughness by visiometry and performed irritation tests on the flexural side of the forearm with sodium hydroxide (NaOH), sodium lauryl sulphate (SLS) and dimethyl sulfoxide (DMSO) in two different concentrations in a population of 151 volunteers between 15 and 25 years of age. The results showed a significant negative correlation between most roughness parameters and DMSO irritation. The correlation between roughness parameters and irritation tests with SLS and NaOH was not significant. We conclude that smoother skin is more prone to DMSO irritation than rougher skin and that this may be due to differences in percutaneous penetration of the compound.

  12. Dimethyl phthalate

    Integrated Risk Information System (IRIS)

    Dimethyl phthalate ; CASRN 131 - 11 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  13. Dimethyl sulfate

    Integrated Risk Information System (IRIS)

    Dimethyl sulfate ; CASRN 77 - 78 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  14. Selenium and Methionine Sulfoxide Reduction.

    PubMed

    Gladyshev, Vadim N

    2014-10-01

    Selenium is an essential trace element because it is present in proteins in the form of selenocysteine residue. Functionally characterized selenoproteins are oxidoreductases. Selenoprotein methionine-R-sulfoxide reductase B1 (MsrB1) is a repair enzyme that reduces ROS-oxidized methionine residues in proteins. Here, we explored a possibility that reversible methionine oxidation is also a mechanism that regulates protein function. We found that MsrB1, together with Mical proteins, regulated mammalian actin assembly via stereospecific methionine oxidation and reduction in a reversible, site-specific manner. Two methionine residues in actin were specifically converted to methionine-R-sulfoxide by Mical1 and Mical2 and reduced back to methionine by MsrB1, supporting actin disassembly and assembly, respectively. Macrophages utilized this redox control during cellular activation by stimulating MsrB1 expression and activity. Thus, we identified the regulatory role of MsrB1 as a Mical antagonist in orchestrating actin dynamics and macrophage function. More generally, our study showed that proteins can be regulated by reversible site-specific methionine-R-sulfoxidation and that selenium is involved in this regulation by being a catalytic component of MsrB1. PMID:26461418

  15. Dimethyl ethanolamine-induced asthma.

    PubMed

    Vallieres, M; Cockcroft, D W; Taylor, D M; Dolovich, J; Hargreave, F E

    1977-05-01

    Progressively severe sneezing, rhinorrhea, cough, wheezing, and dyspnea developed in a spray-painter, apparently in relation to exposure to a particular spray paint. A monitoring of exposure at work revealed the development of symptoms and a decrease in peak flow rates. Subsequent challenges in the laboratory performed under conditions resembling occupational exposure resulted in dual asthmatic responses on exposure to the whole paint (98 per cent methyl methacrylate emulsion and 2 per cent dimethyl ethanolamine solution) and to dimethyl ethanolamine solution (2 per cent) alone. Water, methyl methacrylate emulsion, and 1,4 dioxane (0.6 per cent) used as a thinner in the dimethyl ethanolamine did not produce a response in the airways. Allergy skin tests with dimethyl ethanolamine and a mixture of dimethyl ethanolamine and human serum albumin were negative. To our knowledge, this is the first report of asthma and/or rhinitis induced specifically by dimethyl ethanolamine. The mechanism of the specific reactivity is not known. PMID:857720

  16. Supported oligomethionine sulfoxide and Ellman's reagent for cysteine bridges formation.

    PubMed

    Ronga, Luisa; Verdié, Pascal; Sanchez, Pierre; Enjabal, Christine; Maurras, Amélie; Jullian, Magalie; Puget, Karine; Martinez, Jean; Subra, Gilles

    2013-02-01

    A large number of bioactive peptides are cyclized through a disulfide bridge. This structural feature is very important for both bioactivity and stability. The oxidation of cysteine side chains is challenging not only to avoid intermolecular reaction leading to oligomers and oxidation of other residues but also to remove solvents and oxidant such as dimethyl sulfoxide. Supported reagents advantageously simplify the work-up of such disulfide bond formation, but may lead to a significant decrease in yield of the oxidized product. In this study, two resins working through different mechanisms were evaluated: Clear-Ox, a supported version of Ellman's reagent and Oxyfold, consisting in a series of oxidized methionine residues. The choice of the supported reagent is discussed on the light of reaction speed, side-products formation and yield considerations.

  17. Synergistic effects of ethosomes and chemical enhancers on enhancement of naloxone permeation through human skin.

    PubMed

    Xu, D H; Zhang, Q; Feng, X; Xu, X; Liang, W Q

    2007-04-01

    The purpose of this study was to investigate the effects of ethosomes, chemical enhancers and their binary combination on the in vitro permeability enhancement of naloxone through human skin. Franz diffusion cells were used for the percutaneous absorption studies. Propylene glycol (PG), N,N-dimethyl formamide (N,N-DMF), N,N-dimethyl acetamide (N,N-DMA), dimethyl sulfoxide (DMSO), Azone and polyethylene glycol 400 (PEG400), were chosen as the chemical enhancers. Naloxone ethosomes showed 11.68 times increase in steady-state flux compared to phosphate buffered solution (PBS). Ethosomes in combination with chemical enhancers synergistically increased (p < 0.05) in vitro flux of naloxone. Azone 3% + PG7% pretreated in ethosomal form dramatically enhanced the skin permeation of naloxone in vitro compared with ethosomes (steady-state flux: 96.75 +/- 5.70 microg x cm(-2) x h(-1) vs 20.56 +/- 1.67 microg x cm(-2) x h(-1)). Ethosomal carrier and enhancers accumulated in the skin after 24 h were greater than that of PBS. PMID:17484292

  18. Synergistic effects of ethosomes and chemical enhancers on enhancement of naloxone permeation through human skin.

    PubMed

    Xu, D H; Zhang, Q; Feng, X; Xu, X; Liang, W Q

    2007-04-01

    The purpose of this study was to investigate the effects of ethosomes, chemical enhancers and their binary combination on the in vitro permeability enhancement of naloxone through human skin. Franz diffusion cells were used for the percutaneous absorption studies. Propylene glycol (PG), N,N-dimethyl formamide (N,N-DMF), N,N-dimethyl acetamide (N,N-DMA), dimethyl sulfoxide (DMSO), Azone and polyethylene glycol 400 (PEG400), were chosen as the chemical enhancers. Naloxone ethosomes showed 11.68 times increase in steady-state flux compared to phosphate buffered solution (PBS). Ethosomes in combination with chemical enhancers synergistically increased (p < 0.05) in vitro flux of naloxone. Azone 3% + PG7% pretreated in ethosomal form dramatically enhanced the skin permeation of naloxone in vitro compared with ethosomes (steady-state flux: 96.75 +/- 5.70 microg x cm(-2) x h(-1) vs 20.56 +/- 1.67 microg x cm(-2) x h(-1)). Ethosomal carrier and enhancers accumulated in the skin after 24 h were greater than that of PBS.

  19. Inhibition of Ammonia Oxidation in Nitrosomonas europaea by Sulfur Compounds: Thioethers Are Oxidized to Sulfoxides by Ammonia Monooxygenase

    PubMed Central

    Juliette, Lisa Y.; Hyman, Michael R.; Arp, Daniel J.

    1993-01-01

    Organic sulfur compounds are well-known nitrification inhibitors. The inhibitory effects of dimethylsulfide, dimethyldisulfide, and ethanethiol on ammonia oxidation by Nitrosomonas europaea were examined. Both dimethylsulfide and dimethyldisulfide were weak inhibitors of ammonia oxidation and exhibited inhibitory characteristics typical of substrates for ammonia monooxygenase (AMO). Depletion of dimethylsulfide required O2 and was prevented with either acetylene or allylthiourea, two inhibitors of AMO. The inhibition of ammonia oxidation by dimethylsulfide was examined in detail. Cell suspensions incubated in the presence of ammonia oxidized dimethylsulfide to dimethyl sulfoxide. Depletion of six other thioethers was also prevented by treating cell suspensions with either allylthiourea or acetylene. The oxidative products of three thioethers were identified as the corresponding sulfoxides. The amount of sulfoxide formed accounted for a majority of the amount of sulfide depleted. By using gas chromatography coupled with mass spectrometry, allylmethylsulfide was shown to be oxidized to allylmethylsulfoxide by N. europaea with the incorporation of a single atom of 18O derived from 18O2 into the sulfide. This result supported our conclusion that a monooxygenase was involved in the oxidation of allylmethylsulfide. The thioethers are concluded to be a new class of substrates for AMO. This is the first report of the oxidation of the sulfur atom by AMO in whole cells of N. europaea. The ability of N. europaea to oxidize dimethylsulfide is not unique among the ammonia-oxidizing bacteria. Nitrosococcus oceanus, a marine nitrifier, was also demonstrated to oxidize dimethylsulfide to dimethyl sulfoxide. PMID:16349086

  20. Permeation Studies of Captopril Transdermal Films Through Human Cadaver Skin.

    PubMed

    Nair, Rajesh Sreedharan; Nair, Sujith

    2015-01-01

    Mortality rate due to heart diseases increases dramatically with age. Captopril is an angiotensin converting enzyme inhibitor (ACE) used effectively for the management of hypertension. Due to short elimination half-life of captopril the oral dose is very high. Captopril is prone to oxidation and it has been reported that the oxidation rate of captopril in skin tissues is considerably low when compared to intestinal tissues. All these factors make captopril an ideal drug candidate for transdermal delivery. In this research work an effort was made to formulate transdermal films of captopril by utilizing polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) as film formers and polyethylene glycol 400 (PEG400) as a plasticizer. Dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) were used as permeation enhancers. Physicochemical parameters of the films such as appearance, thickness, weight variation and drug content were evaluated. The invitro permeation studies were carried out through excised human cadaver skin using Franz diffusion cells. The in-vitro permeation studies demonstrated that the film (P4) having the polymer ratio (PVP:PVA = 80:20) with DMSO (10%) resulted a promising drug release of 79.58% at 24 hours with a flux of 70.0 µg/cm(2)/hr. No signs of erythema or oedema were observed on the rabbit skin as a result of skin irritation study by Draize test. Based on the stability report it was confirmed that the films were physically and chemically stable, hence the prepared films are very well suited for transdermal application.

  1. Histone H3 Phosphorylation in Human Skin Histoculture as a Tool to Evaluate Patient’s Response to Antiproliferative Drugs

    PubMed Central

    Ugarte, Fernando; Porth, Katherine; Sadekova, Svetlana

    2015-01-01

    Evaluation of patient’s response to chemotherapeutic drugs is often difficult and time consuming. Skin punch biopsies are easily accessible material that can be used for the evaluation of surrogate biomarkers of a patient’s response to a drug. In this study, we hypothesized that assessment of phosphorylated histone H3 in human skin punch biopsies could be used as a pharmacodynamics biomarker of patient’s response to the kinesin spindle protein inhibitor SCH2047069. To test this hypothesis, we used a human skin histoculture technique that allows culturing intact human skin in the presence of the drug. Human melanoma and skin histocultures were treated with SCH2047069, and the effect of the drug was assessed by increasing histone H3 phosphorylation using immunohistochemistry. Our results demonstrate that SCH2047069 has a significant effect on cell proliferation in human melanoma and skin histoculture and justify using human skin punch biopsies for evaluation of the pharmacodynamic changes induced by SCH2047069. ACRONYMS Histone subunit H3 (H3), Kinesin spindle protein (KSP), 5-ethynyl-2′-deoxyuridine (EDU), Dimethyl sulfoxide (DMSO), Formalin-fixed paraffin embedded (FFPE). PMID:26917945

  2. Simultaneous optical coherence and multiphoton microscopy of skin-equivalent tissue models

    NASA Astrophysics Data System (ADS)

    Barton, Jennifer K.; Tang, Shuo; Lim, Ryan; Tromberg, Bruce J.

    2007-07-01

    Three-layer skin-equivalent models (rafts) were created consisting of a collagen/fibroblast layer and an air-exposed keratinocyte layer. Rafts were imaged with a tri-modality microscope including optical coherence (OC), two-photon excited fluorescence (TPEF), and second harmonic generation (SHG) channels. Some rafts were stained with Hoechst 33343 or rhodamine 123, and some were exposed to dimethyl sulfoxide (DMSO). OC microscopy revealed signal in cell cytoplasm and nuclear membranes, and a characteristic texture in the collagen/fibroblast layer. TPEF showed signal in cell cytoplasm and from collagen, and stained specimens revealed cell nuclei or mitochondria. There was little SHG in the keratinocyte layer, but strong signal from collagen bundles. Endogenous signals were severely attenuated in DMSO treated rafts; stained samples revealed shrunken and distorted cell structure. OC, TPEF, and SHG can provide complementary and non-destructive information about raft structure and effect of chemical agents.

  3. Chemistry of dimethyl sulfide in the equatorial Pacific atmosphere

    SciTech Connect

    Bandy, A.R.; Thornton, D.C.; Blomquist, B.W.

    1996-04-01

    A field study of the chemistry of dimethyl sulfide (DMS) was conducted on the island of Kiritimati (Christmas Island) during July and August, 1994. This island is located at 2{degrees}N, 157{degrees}W approximately 2000km south of Hawaii. The authors obtained a very repeatable diurnal variation for both DMS and sulfur dioxide (SO{sub 2}) during two 5-day and one 2-day experiments. Near sunrise DMS was about 200pptv. It decreased to about 120 pptv by late afternoon. During the daytime SO{sub 2} increased from about 20 pptv to about 75 pptv. At night DMS increased and SO{sub 2} decreased almost linearly. About 62% of the DMS was converted to SO{sub 2}. DMS was emitted from the ocean at an average flux of 3.7 x 10{sup 13} molecules in m{sup {minus}2}s{sup {minus}1}. The average dry deposition velocity of SO{sub 2} was 6.8 mm sec{sup {minus}1} Most of the SO{sub 2} appeared to be lost to the ocean although a comparable but not significantly larger flux to aerosol cannot be ruled out. Dimethyl sulfoxide was in the range 10 to 50 pptv with a mean of about 25 pptv. Dimethyl sulfone was in the range 0 to 15 pptv with a mean of about 3 pptv. There was no diurnal trend in other species. A much smaller fraction of the DMS was converted to dimethyl sulfone than dimethyl sulfoxide. 27 refs., 2 fig., 2 tab.

  4. Deoxidation of fenthion sulfoxide, fenthion oxon sulfoxide and fensulfothion in gas chromatograph/mass spectrometer, and the prevention of sulfoxide deoxidation by polyethylene glycol 300.

    PubMed

    Sugitate, Kuniyo; Yamagami, Takashi; Nakamura, Sadao; Toriba, Akira; Hayakawa, Kazuichi

    2012-01-01

    Fenthion, fenthion sulfoxide, fenthion oxon sulfoxide and fensulfothion showed two different mass spectra in GC/MS, depending on their concentrations. The base peaks shifted to lower levels by 1 m/z at lower concentration, and no retention time shifts were observed. The "shifted base peaks" were not obtained by a general EI fragmentation. The product ion scan spectra of the "shifted base peaks" were coincident with those of molecular ions of their corresponding sulfides. These phenomena can be ascribed to the conversion of sulfoxide into sulfide by the dominant deoxidation reaction than EI fragmentation in an ion source. Adding polyethylene glycol 300 (PEG300) into a test solution prevented sulfoxide deoxidation.

  5. Cysteine sulfoxide derivatives in Petiveria alliacea.

    PubMed

    Kubec, R; Musah, R A

    2001-11-01

    Two diastereomers of S-benzyl-L-cysteine sulfoxide have been isolated from fresh roots of Petiveria alliacea. Their structures and absolute configurations have been determined by NMR, MALDI-HRMS, IR and CD spectroscopy and confirmed by comparison with authentic compounds. Both the R(S) and S(S) diastereomers of the sulfoxide are present in all parts of the plant (root, stem, and leaves) with the latter diastereomer being predominant. Their total content greatly varied in different parts of the plant between 0.07 and 2.97 mg g(-1) fr. wt, being by far the highest in the root. S-Benzylcysteine has also been detected in trace amounts (<10 microg g(-1) fr. wt) in all parts of the plant. This represents the first report of the presence of S-benzylcysteine derivatives in nature.

  6. A rhenium tris-carbonyl derivative as a model molecule for incorporation into phospholipid assemblies for skin applications.

    PubMed

    Fernández, Estibalitz; Rodríguez, Gelen; Hostachy, Sarah; Clède, Sylvain; Cócera, Mercedes; Sandt, Christophe; Lambert, François; de la Maza, Alfonso; Policar, Clotilde; López, Olga

    2015-07-01

    A rhenium tris-carbonyl derivative (fac-[Re(CO)3Cl(2-(1-dodecyl-1H-1,2,3,triazol-4-yl)-pyridine)]) was incorporated into phospholipid assemblies, called bicosomes, and the penetration of this molecule into skin was monitored using Fourier-transform infrared microspectroscopy (FTIR). To evaluate the capacity of bicosomes to promote the penetration of this derivative, the skin penetration of the Re(CO)3 derivative dissolved in dimethyl sulfoxide (DMSO), a typical enhancer, was also studied. Dynamic light scattering results (DLS) showed an increase in the size of the bicosomes with the incorporation of the Re(CO)3 derivative, and the FTIR microspectroscopy showed that the Re(CO)3 derivative incorporated in bicosomes penetrated deeper into the skin than when dissolved in DMSO. When this molecule was applied on the skin using the bicosomes, 60% of the Re(CO)3 derivative was retained in the stratum corneum (SC) and 40% reached the epidermis (Epi). Otherwise, the application of this molecule via DMSO resulted in 95% of the Re(CO)3 derivative being in the SC and only 5% reaching the Epi. Using a Re(CO)3 derivative with a dodecyl-chain as a model molecule, it was possible to determine the distribution of molecules with similar physicochemical characteristics in the skin using bicosomes. This fact makes these nanostructures promising vehicles for the application of lipophilic molecules inside the skin.

  7. Catalytic oxidation of dimethyl ether

    DOEpatents

    Zelenay, Piotr; Wu, Gang; Johnston, Christina M.; Li, Qing

    2016-05-10

    A composition for oxidizing dimethyl ether includes an alloy supported on carbon, the alloy being of platinum, ruthenium, and palladium. A process for oxidizing dimethyl ether involves exposing dimethyl ether to a carbon-supported alloy of platinum, ruthenium, and palladium under conditions sufficient to electrochemically oxidize the dimethyl ether.

  8. Two new bicyclic sulfoxides from Welsh onion.

    PubMed

    Nohara, Toshihiro; Fujiwara, Yukio; Ikeda, Tsuyoshi; Murakami, Kotaro; Ono, Masateru; El-Aasr, Mona; Nakano, Daisuke; Kinjo, Junei

    2016-04-01

    Newly identified bicyclic sulfoxides, welsonins A1 (1) and A2 (2), were isolated from acetone extracts of the bulbs of the Welsh onion (Allium fistulosum). In this study, the structures of 1 and 2, which are tetrahydrothiophene-S-oxide derivatives, were characterized by spectroscopic analysis. These compounds appeared to be derived from the coupling of 1-propenyl sulfenic acid and uronic acid. Welsonin A1 (1) showed the potential to suppress tumor-cell proliferation by inhibiting the polarization of alternatively activated M2 macrophages.

  9. Two new bicyclic sulfoxides from Welsh onion.

    PubMed

    Nohara, Toshihiro; Fujiwara, Yukio; Ikeda, Tsuyoshi; Murakami, Kotaro; Ono, Masateru; El-Aasr, Mona; Nakano, Daisuke; Kinjo, Junei

    2016-04-01

    Newly identified bicyclic sulfoxides, welsonins A1 (1) and A2 (2), were isolated from acetone extracts of the bulbs of the Welsh onion (Allium fistulosum). In this study, the structures of 1 and 2, which are tetrahydrothiophene-S-oxide derivatives, were characterized by spectroscopic analysis. These compounds appeared to be derived from the coupling of 1-propenyl sulfenic acid and uronic acid. Welsonin A1 (1) showed the potential to suppress tumor-cell proliferation by inhibiting the polarization of alternatively activated M2 macrophages. PMID:26676612

  10. Cloning the expression of a mammalian gene involved in the reduction of methionine sulfoxide residues in proteins.

    PubMed Central

    Moskovitz, J; Weissbach, H; Brot, N

    1996-01-01

    An enzyme that reduces methionine sulfoxide [Met(O)] residues in proteins [peptide Met(O) reductase (MsrA), EC 1.8.4.6; originally identified in Escherichia coli] was purified from bovine liver, and the cDNA encoding this enzyme was cloned and sequenced. The mammalian homologue of E. coli msrA (also called pmsR) cDNA encodes a protein of 255 amino acids with a calculated molecular mass of 25,846 Da. This protein has 61% identity with the E. coli MsrA throughout a region encompassing a 199-amino acid overlap. The protein has been overexpressed in E. coli and purified to homogeneity. The mammalian recombinant MsrA can use as substrate, proteins containing Met(O) as well as other organic compounds that contain an alkyl sulfoxide group such as N-acetylMet(O), Met(O), and dimethyl sulfoxide. Northern analysis of rat tissue extracts showed that rat msrA mRNA is present in a variety of organs with the highest level found in kidney. This is consistent with the observation that kidney extracts also contained the highest level of enzyme activity. Images Fig. 3 Fig. 5 PMID:8700890

  11. Resveratrol preconditioning increases methionine sulfoxide reductases A expression and enhances resistance of human neuroblastoma cells to neurotoxins.

    PubMed

    Wu, Peng-Fei; Xie, Na; Zhang, Juan-Juan; Guan, Xin-Lei; Zhou, Jun; Long, Li-Hong; Li, Yuan-Long; Xiong, Qiu-Ju; Zeng, Jian-Hua; Wang, Fang; Chen, Jian-Guo

    2013-06-01

    Methionine sulfoxide reductases A (MsrA) has been postulated to act as a catalytic antioxidant system involved in the protection of oxidative stress-induced cell injury. Recently, attention has turned to MsrA in coupling with the pathology of Parkinson's disease, which is closely related to neurotoxins that cause dopaminergic neuron degeneration. Here, we firstly provided evidence that pretreatment with a natural polyphenol resveratrol (RSV) up-regulated the expression of MsrA in human neuroblastoma SH-SY5Y cells. It was also observed that the expression and nuclear translocation of forkhead box group O 3a (FOXO3a), a transcription factor that activates the human MsrA promoter, increased after RSV pretreatment. Nicotinamide , an inhibitor of silent information regulator 1 (SIRT1), prevented RSV-induced elevation of FOXO3a and MsrA expression, indicating that the effect of RSV was mediated by a SIRT1-dependent pathway. RSV preconditioning increased methionine sulfoxide(MetO)-reducing activity in SH-SY5Y cells and enhanced their resistance to neurotoxins, including chloramine-T and 1-methyl-4-phenyl-pyridinium. In addition, the enhancement of cell resistance to neurotoxins caused by RSV preconditioning can be largely prevented by MsrA inhibitor dimethyl sulfoxide. Our findings suggest that treatment with polyphenols such as RSV can be used as a potential regulatory strategy for MsrA expression and function.

  12. Transcriptional regulation of dimethyl sulfoxide respiration in a haloarchaeon, Haloferax volcanii.

    PubMed

    Qi, Qiuzi; Ito, Yoshiyasu; Yoshimatsu, Katsuhiko; Fujiwara, Taketomo

    2016-01-01

    The halophilic euryarchaeon Haloferax volcanii can grow anaerobically by DMSO respiration. DMSO reductase was induced by DMSO respiration not only under anaerobic growth conditions but also in denitrifying cells of H. volcanii. Deletion of the dmsR gene, encoding a putative regulator for the DMSO reductase, resulted in the loss of anaerobic growth by DMSO respiration. Reporter experiments revealed that only the anaerobic condition was essential for transcription of the dmsEABCD genes encoding DMSO reductase and that transcription was enhanced threefold by supplementation of DMSO. In the ∆dmsR mutant, transcription of the dmsEABCD genes induced by the anaerobic condition was not enhanced by DMSO, suggesting that DmsR is a DMSO-responsive regulator. Transcriptions of the dmsR and mgd genes for Mo-bisMGD biosynthesis were regulated in the same manner as the dmsEABCD genes. These results suggest that the genetic regulation of DMSO respiration in H. volcanii is controlled by at least two systems: one is the DMSO-responsive DmsR, and the other is an unknown anaerobic regulator.

  13. 21 CFR 524.981e - Fluocinolone acetonide, dimethyl sulfoxide otic solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... initial evaluation and followup of infected ears. Incomplete response or exacerbation of corticosteroid... sensitivity testing, and the use of the appropriate antimicrobial agent. As with any corticosteroid,...

  14. 21 CFR 524.981e - Fluocinolone acetonide, dimethyl sulfoxide otic solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... initial evaluation and followup of infected ears. Incomplete response or exacerbation of corticosteroid... sensitivity testing, and the use of the appropriate antimicrobial agent. As with any corticosteroid,...

  15. 21 CFR 524.981e - Fluocinolone acetonide, dimethyl sulfoxide otic solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... initial evaluation and followup of infected ears. Incomplete response or exacerbation of corticosteroid... sensitivity testing, and the use of the appropriate antimicrobial agent. As with any corticosteroid,...

  16. 21 CFR 524.981e - Fluocinolone acetonide, dimethyl sulfoxide otic solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... initial evaluation and followup of infected ears. Incomplete response or exacerbation of corticosteroid... sensitivity testing, and the use of the appropriate antimicrobial agent. As with any corticosteroid,...

  17. Effect of dimethyl sulfoxide (DMSO) on renal microvillar enzymes in Cu-deficient rats

    SciTech Connect

    Saari, J.T.; Reeves, P.G.; Noordewier, B. )

    1989-02-09

    Dietary Cu deficiency produces known defects in the kidney. We studied the effects of Cu deficiency on the activity of five renal microvillar enzymes. Further, because Cu deficiency causes oxidative damage in other tissues, we studied the effect of the hydroxyl radical (OH) scavenger DMSO on observed enzyme changes. Male, weanling Sprague-Dawley rats were fed, in a 2x2 design, diets deficient in Cu (CuD) or supplemented with Cu (CuS, 5 ppm) and water with or without DMSO (4.75%) for 35 d. CuD rats had lower body weights (BW), hematocrits (Hct), serum ceruloplasmin, liver and kidney Cu and higher heart weights (HW), HW/BW ratios and blood urea nitrogen (BUN) than CuS rats. Cu deficiency increased activities of angiotensin converting enzyme (ACE) and endopeptidase (EP), decreased activities of gamma glutamyl transferase (GGT) and aminopeptidase (AMP) and had no effect on alkaline phosphatase (AP). DMSO attenuated effects of Cu deficiency on HW, HW/BW and Hct, but not on BUN. DMSO independently increased ACE and AMP activity, independently decreased AP activity, significantly inhibited the effect of Cu deficiency on GGT activity and had no effect on EP activity. We conclude that, while Cu deficiency has significant effects on several renal microvillar enzymes, OH dose not play a major role in those effects.

  18. Effect of dimethyl sulfoxide (DMSO) on cis-Pt induced changes in renal microvillar enzymes

    SciTech Connect

    Noordewier, B.; Reeves, P.G.; Saari, J.T. )

    1989-02-09

    Cis-diamminedichloroplatinum (cis-Pt) is an antitumor agent with known nephrotoxic effects. We studied cis-Pt effects on five renal microvillar enzymes. Further, because the nephrotoxic effects of cis-Pt have been associated with O{sub 2}-derived free radicals, we studied the effect of the hydroxyl radical scavenger DMSO on observed enzyme changes. Male, weanling Sprague-Dawley rats were fed a purified diet and water with or without DMSO (4.75%). After 35 days they were given (iv) either cis-Pt (7.5 mg/kg) or saline in a 2{times}2 design. Rats were killed 4 days post-injection. Compared to saline-treated rats, Pt-treated animals showed increased blood urea nitrogen (BUN), plasma creatinine (Cr), liver and kidney minerals (including Zn) and increased activity of renal microvillar angiotensin converting enzyme (ACE). Cis-Pt decreased the activity of gamma glutamyl transferase (GGT), alkaline phosphatase (AP) and endopeptidase (EP) and had no effect on aminopeptidase (AMP). DMSO attenuated cis-pt-mediated BUN and Cr changes, independently increased ACE activity, showed significant inhibition of cis-Pt effects on GGT and AP and had no effect on EP or AP activities. We conclude that cis-Pt-mediated microvillar enzyme changes may be related, in some cases, to renal Zn levels and, in others, to damage by hydroxyl radical.

  19. Alteration of the electrophoretic mobility of human peripheral blood mononuclear cells following treatment with dimethyl sulfoxide

    SciTech Connect

    Skrabut, E.M.; Catsimpoolas, N.; Kurtz, S.R.; Griffith, A.L.; Valeri, C.R.

    1983-12-01

    Studies have been conducted to determine the effects of DMSO and freezing on the electrophoretic distribution of peripheral blood mononuclear cells. Sodium (/sup 51/Cr)chromate was used to label the cells, and the distributions of cell number and cell-associated radioactivity were determined. Cells treated with DMSO had a narrower distribution of electrophoretic mobilities when compared with those not treated. DMSO-treated cells also demonstrated a more homogeneous distribution of radioactivity relative to the cell distribution than did the nontreated cells. The freezing of DMSO-treated cells did not result in any additional alteration of electrophoretic pattern compared to DMSO treatment alone. Analysis by linear categorization techniques indicated that the DMSO-treated and nontreated cells were completely distinguished by their electrophoretic behavior.

  20. Reactions between a superoxide anion and alkyl bromides in dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Pomeshchenko, A. I.; Efimova, I. V.; Dmitruk, A. F.; Zarechnaya, O. M.; Opeida, I. A.

    2011-10-01

    The activation parameters of the reactions between a superoxide anion (O{2/·-}) and alkyl bromides are measured. An ab initio study of the transition states for various mechanisms of this reaction is performed. The mechanism of radical separation in a polar solvent becomes competitive upon an increase in the number of alkyl groups in an alkyl bromide molecule and depends on their arrangement relative to a reaction center.

  1. Association in ethylammonium nitrate-dimethyl sulfoxide mixtures: First structural and dynamical evidences

    SciTech Connect

    Russina, Olga; Macchiagodena, Marina; Kirchner, Barbara; Mariani, Alessandro; Aoun, Bachir; Russina, Margarita; Caminiti, Ruggero; Triolo, Alessandro

    2015-01-01

    Here we report the first structural and dynamic investigation on ethylammonium nitrate, a representative protic Ionic liquid, and dimethylsulfoxide. By using joined x/ray and neutron diffraction, we exploit the EPSR approach to extract structural information at atomistic level. EAN/DMSO turns out to be homogeneous at microscopic scales and indications for the existence of a structural leit motiv with stoichiometric composition 2DMSO:1EAN are found. Dielectric spectroscopy is used to access the relaxation map of the DMSO:EAN = 60:40 mixture. No crystallisation is detected and three relaxation processes could be characterised. Overall this study provides new indications of strict analogies between water and ethylammonium nitrate. (c) 2014 Elsevier B.V. All rights reserved.

  2. 21 CFR 524.981d - Fluocinolone acetonide, dimethyl sulfoxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM... repeat treatment at 60-day intervals to maintain an odor-free state. The total dosage used should not exceed 2 milliliters per anal sac per treatment. (3) For use only by or on the order of a...

  3. Transcriptional regulation of dimethyl sulfoxide respiration in a haloarchaeon, Haloferax volcanii.

    PubMed

    Qi, Qiuzi; Ito, Yoshiyasu; Yoshimatsu, Katsuhiko; Fujiwara, Taketomo

    2016-01-01

    The halophilic euryarchaeon Haloferax volcanii can grow anaerobically by DMSO respiration. DMSO reductase was induced by DMSO respiration not only under anaerobic growth conditions but also in denitrifying cells of H. volcanii. Deletion of the dmsR gene, encoding a putative regulator for the DMSO reductase, resulted in the loss of anaerobic growth by DMSO respiration. Reporter experiments revealed that only the anaerobic condition was essential for transcription of the dmsEABCD genes encoding DMSO reductase and that transcription was enhanced threefold by supplementation of DMSO. In the ∆dmsR mutant, transcription of the dmsEABCD genes induced by the anaerobic condition was not enhanced by DMSO, suggesting that DmsR is a DMSO-responsive regulator. Transcriptions of the dmsR and mgd genes for Mo-bisMGD biosynthesis were regulated in the same manner as the dmsEABCD genes. These results suggest that the genetic regulation of DMSO respiration in H. volcanii is controlled by at least two systems: one is the DMSO-responsive DmsR, and the other is an unknown anaerobic regulator. PMID:26507955

  4. 21 CFR 524.981d - Fluocinolone acetonide, dimethyl sulfoxide solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... apparently normal anal sacs, for the reversal of inflammatory changes associated with abnormal anal sacs, and to counteract the offensive odor of anal sac secretions. (2) It is administered by instillation of 1 to 2 milliliters into each anal sac following expression of anal sac contents. It may be necessary...

  5. 21 CFR 524.981d - Fluocinolone and dimethyl sulfoxide solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 1 to 2 milliliters into each anal sac following expression of anal sac contents. (2) Indications for use. For the relief of impaction commonly present in apparently normal anal sacs, for the reversal of inflammatory changes associated with abnormal anal sacs, and to counteract the offensive odor of anal...

  6. 21 CFR 524.981d - Fluocinolone acetonide, dimethyl sulfoxide solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... apparently normal anal sacs, for the reversal of inflammatory changes associated with abnormal anal sacs, and to counteract the offensive odor of anal sac secretions. (2) It is administered by instillation of 1 to 2 milliliters into each anal sac following expression of anal sac contents. It may be necessary...

  7. Hexa­kis­(dimethyl sulfoxide-κO)zinc(II) poly­iodide

    PubMed Central

    Garzón-Tovar, Luis; Duarte-Ruiz, Álvaro; Fanwick, Phillip E.

    2013-01-01

    The title compound, [Zn{(CH3)2SO}6]I4, is a one-dimensional supra­molecular polymer along a threefold rotation axis of the space group. It is built up from discrete [Zn{(CH3)2SO}6]2+ units connected through non-classical hydrogen bonds to linear I4 2− polyiodide anions (C—H⋯I = 3.168 Å). The ZnII ion in the cation has an octa­hedral coordination geometry, with all six Zn—O bond lengths being equivalent, at 2.111 (4) Å. The linear polyiodide anion contains a neutral I2 mol­ecule weakly coordinated to two iodide ions. PMID:24454044

  8. Extraction of /sup 14/C-labeled photosynthate from aquatic plants with dimethyl sulfoxide (DMSO)

    SciTech Connect

    Filbin, G.J.; Hough, R.A.

    1984-03-01

    DMSO was tested as a solvent to extract /sup 14/C-labeled photosynthate from three species of aquatic plants in photosynthesis measurements and compared with the dry oxidation method for plant radioassay. Extraction efficiency was in the range of 96-99% of fixed /sup 14/C, and precision was comparable to, or better than, that obtained with dry oxidation. The method is simple and inexpensive, and for fresh tissue the same sample extracts can be used for chlorophyll analyses.

  9. Computational study on the acidic constants of chiral Brønsted acids in dimethyl sulfoxide.

    PubMed

    Yang, Chen; Xue, Xiao-Song; Li, Xin; Cheng, Jin-Pei

    2014-05-16

    The pK(a) values of a series of chiral Brønsted acids, including N-triflylphosphoramides, bis(sulfonyl)imides, bis(sulfuryl)imides, dicarboxylic acids, sulfonic acids, and N-phosphinyl phosphoramides, were predicted by using the SMD/M06-2x/6-311++G(2df,2p)//B3LYP/6-31+G(d) method in DMSO. The results revealed that the calculated pKa values ranged from -9.06 to 12.18 for different types of acids. The influence of acidic strength on reactivity and stereoselectivity was discussed using the calculated acidity data. Given that the choice of catalyst with appropriate acidity is the primary condition, several new catalyst candidates were designed by calculating corresponding pK(a) values of parent acids.

  10. Identification of Methionine Sulfoxide Diastereomers in Immunoglobulin Gamma Antibodies Using Methionine Sulfoxide Reductase enzymes

    SciTech Connect

    Khor, Hui K.; Jacoby, Michael E.; Squier, Thomas C.; Chu, Grace C.; Chelius, Dirk

    2010-06-01

    During prolonged periods of storage methionines in antibodies and other proteins are known to become oxidized to form methionine sulfoxides and sulfones. While these post-translational modifications are commonly identified by peptide mapping, it is currently problematic to identify the relative abundances of the S- and R-diastereomers of methionine sulfoxide (Met(O)) due to their identical polarities and masses. Accordingly, we have developed a separation methodology for the rapid and quantitative determination of the relative abundances of Met(O) diastereomers. Identification of these diastereomers takes advantage of the complementary stereospecificities of methionine sulfoxide reductase (Msr) enzymes MsrA and MsrB, which respectively promote the selective reduction of S- and R-diastereomers of Met(O). In addition, an MsrBA fusion protein that contained both Msr enzyme activities permitted the quantitative reduction of all Met(O). Using these Msr enzymes in combination with peptide mapping we are able to detect and differentiate Met-diastereomers in a monoclonal IgG2 and IgG1 antibody. We also monitored the formation of sulfones and studied the rate of oxidation in the different Met residues in our IgG2 antibody. The reported ability to separate and identify diastereomers of Met(O) permits a more complete characterization of Met oxidation products. All the affected Met residues (M251, M427, M396) in this study are conserved in human IgG sequences and therefore offer predictive potential in characterizing oxidative modification.

  11. Molecular Dynamics Simulation Study of Permeation of Molecules through Skin Lipid Bilayer.

    PubMed

    Gupta, Rakesh; Sridhar, D B; Rai, Beena

    2016-09-01

    Stratum Corneum (SC), the outermost layer of skin, is mainly responsible for skin's barrier function. The complex lipid matrix of SC determines these barrier properties. In this study, the lipid matrix is modeled as an equimolar mixture of ceramide (CER), cholesterol (CHOL), and free fatty acid (FFA). The permeation of water, oxygen, ethanol, acetic acid, urea, butanol, benzene, dimethyl sulfoxide (DMSO), toluene, phenol, styrene, and ethylbenzene across this layer is studied using a constrained MD simulations technique. Several long constrained simulations are performed at a skin temperature of 310 K under NPT conditions. The free energy profiles and diffusion coefficients along the bilayer normal have been calculated for each molecule. Permeability coefficients are also calculated and compared with experimental data. The main resistance for the permeation of hydrophilic and hydrophobic permeants has been found to be in the interior of the lipid bilayer and near the lipid-water interface, respectively. The obtained permeability is found to be a few orders of magnitude higher than experimental values for hydrophilic molecules while for hydrophobic molecules more discrepancy was observed. Overall, the qualitative ranking is consistent with the experiments. PMID:27518707

  12. Niacinamide-containing facial moisturizer improves skin barrier and benefits subjects with rosacea.

    PubMed

    Draelos, Zoe Diana; Ertel, Keith; Berge, Cindy

    2005-08-01

    A growing body of literature suggests that some moisturizers can improve stratum corneum barrier function, as well as ameliorate dry skin. The clinical signs and symptoms of rosacea, which include increased facial skin dryness and sensitivity, suggest a possible role for such moisturizers as an adjuvant in the management of this condition. This randomized, investigator-blind, controlled observational study (N = 50) was designed to assess whether a niacinamide-containing facial moisturizer would improve the stratum corneum barrier and thus provide a clinical benefit to subjects with rosacea. Subjects with rosacea applied the test moisturizer to their face and to one forearm twice daily for 4 weeks. The other forearm remained untreated as a control. Barrier function on the forearms was assessed instrumentally and using a dimethyl sulfoxide (DMSO) chemical probe. Stratum corneum hydration also was measured instrumentally. The dermatologist investigator evaluated each subject's rosacea condition over the course of the study, and subjects self-assessed their facial skin condition at study end. Instruments provided objective measures of stratum corneum barrier function and hydration on the face.

  13. Atopic dermatitis: studies of skin permeability and effectiveness of topical PUVA treatment.

    PubMed

    Ogawa, H; Yoshiike, T

    1992-12-01

    Ultraviolet light is effective treatment for patients with atopic dermatitis that is resistant to conservative therapy, or complicated by adverse effects of extended steroid use. We designed a protocol using topical psoralen chemotherapy with ultraviolet A (PUVA) to treat atopic dermatitis in 114 patients. Clinical results were excellent, with complete clearing in 50% of patients receiving daily treatment. Histologic and immunologic values correlated with the clinical response, including reduced epidermal thickness, and decreased numbers of epidermal Langerhans cells and dermal mast and mononuclear cell infiltrates. The pattern of keratin 14-positive keratinocytes returned toward normal. In addition, the water-holding capacity of the stratum corneum increased to near normal levels. We also studied stratum corneum permeability in lesional and nonlesional skin using the dimethyl sulfoxide whealing test and theophylline absorption studies. Compared with controls, permeability was markedly increased in lesional skin and mildly increased in nonlesional skin in patients with atopic dermatitis. These results suggest that immune abnormalities and barrier dysfunction participate in the pathogenesis of atopic dermatitis.

  14. The influence of low concentrations of irritants on skin barrier function as determined by water vapour loss.

    PubMed

    van der Valk, P G; Nater, J P; Bleumink, E

    1985-01-01

    The effect of some irritants on the barrier function of the skin was assessed by means of water vapour loss measurements. 100 microliter of the test substance in distilled water were applied to the skin for a period of 48 h, using large Finn chambers. The exposures were done in a test panel of 42 subjects. Sodium lauryl sulfate (2%), cocobetaine (2%), crotonaldehyde (0.75%) with sodium lauryl sulfate (0.5%) and dimethyl sulfoxide (50%) markedly influenced water vapour loss. Sodium hydroxide (1%) had less effect on water vapour loss, although the increase was significant (p less than 0.05). Phenol (5%) and benzalkonium chloride (0.2%) did not significantly influence the loss of water through the skin. It is concluded that subclinical effects of chemicals on the barrier function may be of importance in the development of irritant contact dermatitis, but that this capacity is probably not the only factor which determines the potential of a substance to contribute to the development of irritant contact dermatitis. A chemical which has little or no effect on the function of the horny layer may have a toxic effect on the viable cells of deeper layers of the skin. This toxic effect may also be an important subclinical factor in the development of irritant contact dermatitis.

  15. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial-mammalian co-metabolism.

    PubMed

    He, Xuan; Slupsky, Carolyn M

    2014-12-01

    There is growing awareness that intestinal microbiota alters the energy harvesting capacity of the host and regulates metabolism. It has been postulated that intestinal microbiota are able to degrade unabsorbed dietary components and transform xenobiotic compounds. The resulting microbial metabolites derived from the gastrointestinal tract can potentially enter the circulation system, which, in turn, affects host metabolism. Yet, the metabolic capacity of intestinal microbiota and its interaction with mammalian metabolism remains largely unexplored. Here, we review a metabolic pathway that integrates the microbial catabolism of methionine with mammalian metabolism of methanethiol (MT), dimethyl sulfide (DMS), and dimethyl sulfoxide (DMSO), which together provide evidence that supports the microbial origin of dimethyl sulfone (DMSO2) in the human metabolome. Understanding the pathway of DMSO2 co-metabolism expends our knowledge of microbial-derived metabolites and motivates future metabolomics-based studies on ascertaining the metabolic consequences of intestinal microbiota on human health, including detoxification processes and sulfur xenobiotic metabolism.

  16. Enantioselective access to benzannulated spiroketals using a chiral sulfoxide auxiliary.

    PubMed

    Aitken, Harry R M; Furkert, Daniel P; Hubert, Jonathan G; Wood, James M; Brimble, Margaret A

    2013-08-21

    This article describes our efforts to develop an asymmetric synthesis of bisbenzannulated spiroketals using a chiral sulfoxide auxiliary. Our primary focus was on the synthesis of the 3H-spiro[benzofuran-2,2'-chroman] ring system, the spirocyclic core of the rubromycin family. Our strategy employed the use of lithium-halogen exchange on a racemic bromospiroketal in order to attach a chiral sulfoxide, thus producing two diastereomers. The diastereomers were separable, enabling isolation of each spiroketal enantiomer. Subsequent cleavage of the sulfoxide group from each diastereomer yielded the respective parent spiroketal in high enantiopurity.

  17. Dimethyl terephthalate (DMT)

    Integrated Risk Information System (IRIS)

    Dimethyl terephthalate ( DMT ) ; CASRN 120 - 61 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for No

  18. Development of chiral sulfoxide ligands for asymmetric catalysis.

    PubMed

    Trost, Barry M; Rao, Meera

    2015-04-20

    Nitrogen-, phosphorus-, and oxygen-based ligands with chiral backbones have been the historic workhorses of asymmetric transition-metal-catalyzed reactions. On the contrary, sulfoxides containing chirality at the sulfur atom have mainly been used as chiral auxiliaries for diastereoselective reactions. Despite several distinct advantages over traditional ligand scaffolds, such as the proximity of the chiral information to the metal center and the ability to switch between S and O coordination, these compounds have only recently emerged as a versatile class of chiral ligands. In this Review, we detail the history of the development of chiral sulfoxide ligands for asymmetric catalysis. We also provide brief descriptions of metal-sulfoxide bonding and strategies for the synthesis of enantiopure sulfoxides. Finally, insights into the future development of this underutilized ligand class are discussed.

  19. Identification of N-Oxide and Sulfoxide Functionalities in Protonated Drug Metabolites by Using Ion-Molecule Reactions Followed by Collisionally Activated Dissociation in a Linear Quadrupole Ion Trap Mass Spectrometer.

    PubMed

    Sheng, Huaming; Tang, Weijuan; Yerabolu, Ravikiran; Max, Joann; Kotha, Raghavendhar R; Riedeman, James S; Nash, John J; Zhang, Minli; Kenttämaa, Hilkka I

    2016-01-15

    The in vivo oxidation of sulfur and nitrogen atoms in many drugs into sulfoxide and N-oxide functionalities is a common biotransformation process. Unfortunately, the unambiguous identification of these metabolites can be challenging. In the present study, ion-molecule reactions of tris(dimethylamino)borane followed by collisionally activated dissociation (CAD) in an ion trap mass spectrometer are demonstrated to allow the identification of N-oxide and sulfoxide functionalities in protonated polyfunctional drug metabolites. Only ions with N-oxide or sulfoxide functionality formed diagnostic adducts that had lost dimethyl amine (DMA). This was demonstrated even for an analyte that contains a substantially more basic functionality than the functional group of interest. CAD of the diagnostic product ions (M) resulted mainly in type A (M - DMA) and B fragment ions (M - HO-B(N(CH3)2)2) for N-oxides, but sulfoxides also formed diagnostic C ions (M - O═BN(CH3)2), thus allowing differentiation of the functionalities. Some protonated analytes yielded abundant TDMAB adducts that had lost two DMA molecules instead of just one. This provides information on the environment of the N-oxide and sulfoxide functionalities. Quantum chemical calculations were performed to explore the mechanisms of the above-mentioned reactions. The method can be implemented on HPLC for real drug analysis. PMID:26651970

  20. The Methionine Sulfoxide Reduction System: Selenium Utilization and Methionine Sulfoxide Reductase Enzymes and Their Functions

    PubMed Central

    2013-01-01

    Abstract Significance: Selenium is utilized in the methionine sulfoxide reduction system that occurs in most organisms. Methionine sulfoxide reductases (Msrs), MsrA and MsrB, are the enzymes responsible for this system. Msrs repair oxidatively damaged proteins, protect against oxidative stress, and regulate protein function, and have also been implicated in the aging process. Selenoprotein forms of Msrs containing selenocysteine (Sec) at the catalytic site are found in bacteria, algae, and animals. Recent Advances: A selenoprotein MsrB1 knockout mouse has been developed. Significant progress in the biochemistry of Msrs has been made, which includes findings of a novel reducing system for Msrs and of an interesting reason for the use of Sec in the Msr system. The effects of mammalian MsrBs, including selenoprotein MsrB1 on fruit fly aging, have been investigated. Furthermore, it is evident that Msrs are involved in methionine metabolism and regulation of the trans-sulfuration pathway. Critical Issues: This article presents recent progress in the Msr field while focusing on the physiological roles of mammalian Msrs, functions of selenoprotein forms of Msrs, and their biochemistry. Future Directions: A deeper understanding of the roles of Msrs in redox signaling, the aging process, and metabolism will be achieved. The identity of selenoproteome of Msrs will be sought along with characterization of the identified selenoprotein forms. Exploring new cellular targets and new functions of Msrs is also warranted. Antioxid. Redox Signal. 19, 958–969. PMID:23198996

  1. Chiral cyclopentadienylruthenium sulfoxide catalysts for asymmetric redox bicycloisomerization.

    PubMed

    Trost, Barry M; Ryan, Michael C; Rao, Meera

    2016-01-01

    A full account of our efforts toward an asymmetric redox bicycloisomerization reaction is presented in this article. Cyclopentadienylruthenium (CpRu) complexes containing tethered chiral sulfoxides were synthesized via an oxidative [3 + 2] cycloaddition reaction between an alkyne and an allylruthenium complex. Sulfoxide complex 1 containing a p-anisole moiety on its sulfoxide proved to be the most efficient and selective catalyst for the asymmetric redox bicycloisomerization of 1,6- and 1,7-enynes. This complex was used to synthesize a broad array of [3.1.0] and [4.1.0] bicycles. Sulfonamide- and phosphoramidate-containing products could be deprotected under reducing conditions. Catalysis performed with enantiomerically enriched propargyl alcohols revealed a matched/mismatched effect that was strongly dependent on the nature of the solvent. PMID:27559366

  2. Chiral cyclopentadienylruthenium sulfoxide catalysts for asymmetric redox bicycloisomerization

    PubMed Central

    Ryan, Michael C; Rao, Meera

    2016-01-01

    Summary A full account of our efforts toward an asymmetric redox bicycloisomerization reaction is presented in this article. Cyclopentadienylruthenium (CpRu) complexes containing tethered chiral sulfoxides were synthesized via an oxidative [3 + 2] cycloaddition reaction between an alkyne and an allylruthenium complex. Sulfoxide complex 1 containing a p-anisole moiety on its sulfoxide proved to be the most efficient and selective catalyst for the asymmetric redox bicycloisomerization of 1,6- and 1,7-enynes. This complex was used to synthesize a broad array of [3.1.0] and [4.1.0] bicycles. Sulfonamide- and phosphoramidate-containing products could be deprotected under reducing conditions. Catalysis performed with enantiomerically enriched propargyl alcohols revealed a matched/mismatched effect that was strongly dependent on the nature of the solvent. PMID:27559366

  3. Excited state dynamics and isomerization in ruthenium sulfoxide complexes.

    PubMed

    King, Albert W; Wang, Lei; Rack, Jeffrey J

    2015-04-21

    Molecular photochromic compounds are those that interconvert between two isomeric forms with light. The two isomeric forms display distinct electronic and molecular structures and must not be in equilibrium with one another. These light-activated molecular switch compounds have found wide application in areas of study ranging from chemical biology to materials science, where conversion from one isomeric form to another by light prompts a response in the environment (e.g., protein or polymeric material). Certain ruthenium and osmium polypyridine sulfoxide complexes are photochromic. The mode of action is a phototriggered isomerization of the sulfoxide from S- to O-bonded. The change in ligation drastically alters both the spectroscopic and electrochemical properties of the metal complex. Our laboratory has pioneered the preparation and study of these complexes. In particular, we have applied femtosecond pump-probe spectroscopy to reveal excited state details of the isomerization mechanism. The data from numerous complexes allowed us to predict that the isomerization was nonadiabatic in nature, defined as occurring from a S-bonded triplet excited state (primarily metal-to-ligand charge transfer in character) to an O-bonded singlet ground state potential energy surface. This prediction was corroborated by high-level density functional theory calculations. An intriguing aspect of this reactivity is the coupling of nuclear motion to the electronic wave function and how this coupling affects motions productive for isomerization. In an effort to learn more about this coupling, we designed a project to examine phototriggered isomerization in bis-sulfoxide complexes. The goal of these studies was to determine whether certain complexes could be designed in which a single photon excitation event would prompt two sulfoxide isomerizations. We employed chelating sulfoxides in this study and found that both the nature of the chelate ring and the R group on the sulfoxide affect

  4. The tropospheric oxidation of dimethyl sulfide: A new source of carbonyl sulfide

    NASA Astrophysics Data System (ADS)

    Barnes, I.; Becker, K. H.; Patroescu, I.

    1994-11-01

    In laboratory investigations of the gas-phase OH initiated oxidation of dimethyl sulfide (DMS: CH3SCH3) at room temperature the formation of SO2, dimethyl sulfoxide (DMSO: CH3SOCH3), and OCS have been observed. A yield of 0.7±0.2% S was measured for OCS. These new results represent a hitherto unknown and quite considerable in situ atmospheric source of OCS. Based on the global DMS source strength as given in the literature and provided that the results from the laboratory study are valid under atmospheric conditions we estimate a contribution in the range 0.10 to 0.28 Tg (OCS) yr-1 from the gas-phase atmospheric photooxidation of DMS to the global OCS budget.

  5. Ozone Ameliorates Doxorubicine-Induced Skin Necrosis - results from an animal model.

    PubMed

    Kesik, Vural; Yuksel, Ramazan; Yigit, Nuri; Saldir, Mehmet; Karabacak, Ercan; Erdem, Galip; Babacan, Oguzhan; Gulgun, Mustafa; Korkmazer, Nadir; Bayrak, Ziya

    2016-09-01

    Doxorubicin (DXR) extravasation result with serious morbidity like skin ulceration and necrosis. The purpose of this study is to determine the protective effects of ozone, olive oil, dimethyl sulfoxide (DMSO), and coenzyme Q10 in the treatment of DXR-induced skin ulcers on rats. After an intradermal injection of DXR on a basis of an animal extravasation model, the materials were topically applied. The ulcer sizes were measured, and a punch biopsy was taken from the extravasation site in which the skin ulcers formed at the end of the experiment. The samples were analyzed for tumor necrosis factor alpha (TNF-α), interleukin 1-beta (IL1β), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) enzymes, and examined histopathologically. The ulcer sizes clearly decreased in the study groups, including DMSO, olive oil, ozone plus coenzyme Q10, and ozone plus olive oil groups in comparison with the control group with the exception of the coenzyme Q10 group. The malondialdehyde levels were lower in the DMSO, olive oil, ozone plus olive oil, and ozone plus coenzyme Q10 groups than they were in the control group, but they were not significantly different. The TNF-α level was lower in the DMSO, ozone plus olive oil, coenzyme Q10, and ozone plus coenzyme Q10 groups in comparison with the control group. There was no significant change in the SOD, GSH-Px, and IL1β levels in the study groups in comparison with the control and the sham groups. The ozone plus olive oil group could be considered to be an alternate therapy for skin ulcers due to DXR extravasation. PMID:26286933

  6. USE OF GLYCEROL AS AN OPTICAL CLEARING AGENT FOR ENHANCING PHOTONIC TRANSFERENCE AND DETECTIONOF SALMONELLA TYPHIMURIUM THROUGH PORCINE SKIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate glycerol (GLY) and GLY+DMSO (dimethyl sulfoxide) to increase photonic detection of transformed Salmonella typhimurium (S.typh-Lux) through porcineskin. A 96-well plate containing S. typh-lux was imaged for 5 min as a control reference usinga CCD camera. Sk...

  7. Potential particulate pollution derived from UV-induced degradation of odorous dimethyl sulfide.

    PubMed

    Qiao, Liping; Chen, Jianmin; Yang, Xin

    2011-01-01

    UV-induced degradation of odorous dimethyl sulfide (DMS) was carried out in a static White cell chamber with UV irradiation. The combination of in situ Fourier transform infrared (FT-IR) spectrometer, gas chromatograph-mass spectrometer (GC-MS), wide-range particle spectrometer (WPS) technique, filter sampling and ion chromatographic (IC) analysis was used to monitor the gaseous and potential particulate products. During 240 min of UV irradiation, the degradation efficiency of DMS attained 20.9%, and partially oxidized sulfur-containing gaseous products, such as sulfur dioxide (SO2), carbonyl sulfide (OCS), dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO2) and dimethyl disulfide (DMDS) were identified by in situ FT-IR and GC-MS analysis, respectively. Accompanying with the oxidation of DMS, suspended particles were directly detected to be formed by WPS techniques. These particles were measured mainly in the size range of accumulation mode, and increased their count median diameter throughout the whole removal process. IC analysis of the filter samples revealed that methanesulfonic acid (MSA), sulfuric acid (H2SO4) and other unidentified chemicals accounted for the major non-refractory compositions of these particles. Based on products analysis and possible intermediates formed, the degradation pathways of DMS were proposed as the combination of the O(1D)- and the OH- initiated oxidation mechanisms. A plausible formation mechanism of the suspended particles was also analyzed. It is concluded that UV-induced degradation of odorous DMS is potentially a source of particulate pollutants in the atmosphere.

  8. Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors.

    PubMed

    Tarrago, Lionel; Péterfi, Zalán; Lee, Byung Cheon; Michel, Thomas; Gladyshev, Vadim N

    2015-05-01

    Methionine can be reversibly oxidized to methionine sulfoxide (MetO) under physiological and pathophysiological conditions, but its use as a redox marker suffers from the lack of tools to detect and quantify MetO within cells. In this work, we created a pair of complementary stereospecific genetically encoded mechanism-based ratiometric fluorescent sensors of MetO by inserting a circularly permuted yellow fluorescent protein between yeast methionine sulfoxide reductases and thioredoxins. The two sensors, respectively named MetSOx and MetROx for their ability to detect S and R forms of MetO, were used for targeted analysis of protein oxidation, regulation and repair as well as for monitoring MetO in bacterial and mammalian cells, analyzing compartment-specific changes in MetO and examining responses to physiological stimuli.

  9. Studies of skin toxicity in vitro: dose-response studies on JB6 cells.

    PubMed

    Jain, P T; Fitzpatrick, M J; Phelps, P C; Berezesky, I K; Trump, B F

    1992-01-01

    There are many reasons for developing in vitro tests of toxicity including cost, speed, studies of mechanisms, and studies utilizing human cells and tissues. The present study focuses on the development of in vitro tests to predict in vivo toxicity by comparing them to data from the literature. A broad spectrum of model toxic compounds was evaluated for toxicity on mouse skin JB6 cells in culture. These included mercuric chloride, sodium lauryl sulfate, formaldehyde, dimethyl sulfoxide, benzoyl peroxide, and ionomycin, all of which have been proven to be positive in the Draize test or in cutaneous toxicity studies. Cell viability was evaluated every 15 min for up to 1 hr, and then after 24 hr of treatment using the Trypan Blue exclusion method; morphological changes were evaluated using phase-contrast and transmission electron microscopy. Dose- and time-dependent cell death and morphological changes were observed at concentrations ranging from 10(-14) to 10(-2) M. Arbitrary rankings were assigned based on 1) IC50 value estimated from the present data, and 2) in vivo toxicity reported in the Registry of Toxic Effects of Chemical Substances. Good correlation between in vitro and in vivo toxicity based on arbitrary rankings was observed. Thus, these findings suggest that the JB6 cell culture model can be used for predicting in vivo toxicity. In the future, it may be possible to utilize this system for the study of intracellular ionized calcium ([Ca2+]i), and the expression of oncogenes as early indicators of toxicity.

  10. Aryne 1,2,3-Trifunctionalization with Aryl Allyl Sulfoxides.

    PubMed

    Li, Yuanyuan; Qiu, Dachuan; Gu, Rongrong; Wang, Junli; Shi, Jiarong; Li, Yang

    2016-08-31

    An aryne 1,2,3-trisubstitution with aryl allyl sulfoxides is accomplished, featuring an incorporation of C-S, C-O, and C-C bonds on the consecutive positions of a benzene ring. The reaction condition is mild with broad substrate scope. Preliminary mechanistic study suggests a cascade formal [2 + 2] reaction of aryne with S═O bond, an allyl S → O migration, and a Claisen rearrangement. PMID:27527334

  11. Effect of ruminal microflora on the biotransformation of netobimin, albendazole, albendazole sulfoxide, and albendazole sulfoxide enantiomers in an artificial rumen.

    PubMed

    Capece, B P; Calsamiglia, S; Castells, G; Arboix, M; Cristòfol, C

    2001-05-01

    The effect of ruminal flora on the disposition of benzimidazole anthelmintic drugs was studied in dual-flow continuous-culture fermenters (artificial rumens). Six 1,320-mL artificial rumens were inoculated with ruminal fluid and fermentation conditions were maintained constant at 39 degrees C, pH 6.4, solid dilution rate of 5%/h, and liquid dilution rate of 10%/h to simulate standard ruminal fermentation conditions. The study was repeated in two consecutive periods. Two hours after the inoculation of rumen fluid, the fermenters were fed 30 g of a 60:40 forage:concentrate ration. Within each period two fermenters per treatment were immediately dosed with 104 mg of netobimin, 52 mg of albendazole, or 39 mg of albendazole sulfoxide. Concentrations of netobimin, albendazole, albendazole sulfoxide and its enantiomers, and albendazole sulfone were analyzed by high performance liquid chromatography at 0.25, 0.5, 1, 2, 4, 6, and 8 h after dosage. Reductive metabolism by the ruminal bacteria was observed, favoring the production of albendazole, the most potent anthelmintic molecule. No differences in the production or consumption of albendazole sulfoxide enantiomers were observed, indicating that the ruminal bacteria metabolism was not enantioselective. Because benzimidazole anthelmintic drugs are generally administered orally, the ruminal flora play an important role in the bioavailability of these drugs. In our study, increased concentrations of albendazole in the three treatments, due to reductive ruminal biotransformation, suggests that ruminal biotransformation may improve the efficacy of orally administered netobimin, albendazole, and albendazole sulfoxide.

  12. C-H Coupling Reactions Directed by Sulfoxides: Teaching an Old Functional Group New Tricks.

    PubMed

    Pulis, Alexander P; Procter, David J

    2016-08-16

    Sulfoxides are classical functional groups for directing the stoichiometric metalation and functionalization of C-H bonds. In recent times, sulfoxides have been given a new lease on life owing to the development of modern synthetic methods that have arisen because of their unique reactivity. They have recently been used in catalytic C-H activation proceeding via coordination of an internal sulfoxide to a metal or through the action of an external sulfoxide ligand. Furthermore, sulfoxides are able to capture nucleophiles and electrophiles to give sulfonium salts, which subsequently enable the formation of C-C bonds at the expense of C-H bonds. This Review summarizes a renaissance period in the application of sulfoxides arising from their versatility in directing C-H functionalization. PMID:27409984

  13. Fragrance material review on 2,2-dimethyl-3-phenylpropanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2,2-dimethyl-3-phenylpropanol when used as a fragrance ingredient is presented. 2,2-Dimethyl-3-phenylpropanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2,2-dimethyl-3-phenylpropanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, and photoallergy data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  14. Skin Dictionary

    MedlinePlus

    ... your skin, hair, and nails Skin dictionary Camp Discovery Good Skin Knowledge lesson plans and activities Video library Find a ... your skin, hair, and nails Skin dictionary Camp Discovery Good Skin Knowledge lesson plans and activities Video library Find a ...

  15. Effects of intratesticular administration of zinc gluconate and dimethyl sulfoxide on clinical, endocrinological, and reproductive parameters in dogs.

    PubMed

    Vannucchi, C I; Angrimani, D S R; Eyherabide, A R; Mazzei, C P; Lucio, C F; Maiorka, P C; Silva, L C G; Nichi, M

    2015-10-15

    Nonsurgical sterilization methods are considered alternative tools for the worldwide challenge represented by canine overpopulation control. Intratesticular injection of zinc gluconate associated with DMSO arises as an option because of the effortless diffusion throughout the testicular parenchyma. This study aimed to verify the effectiveness of a double testicular injection of zinc gluconate associated with DMSO as a chemical contraceptive for male dogs. The study was conducted with 22 dogs treated with two intratesticular injections of the chemical solution (treated group; n = 15) or 0.9% NaCl solution (control group; n = 7) on a monthly interval. All animals were submitted to clinical examination, breeding soundness evaluation including morphologic and sonographic examination of the testes, assessment of libido, volume of the sperm-rich fraction, sperm motility, total sperm count, plasma membrane integrity, sperm morphologic abnormalities, and the total number of morphologically normal and motile sperm in the ejaculate. Blood samples were collected for serum testosterone analysis, and testicular tissue was morphologically and histologically evaluated. No clinical alterations and signs of pain or local sensitivity along the experimental period were noticed. However, the injection of zinc gluconate and DMSO significantly reduced libido and testosterone concentrations (even beyond the reference range for intact male dogs). Impairment of sperm quality-related variables was observed 15 days after the first intratesticular administration of zinc gluconate and DMSO (i.e., decrease in sperm count and sperm motility and an increase in major sperm defects and by this a decrease in the total number of morphologically normal and motile sperm). Testicular ultrasonographic analysis revealed reduction of testicular volume and changes of testicular echotexture in treated animals, compatible with tissue degeneration, fibrosis, and calcification of testicular parenchyma on histologic examination. In conclusion, intratesticular administration of zinc gluconate associated with DMSO reduces reproductive potential which may lead to subfertility or infertility in dogs.

  16. Effects of intratesticular administration of zinc gluconate and dimethyl sulfoxide on clinical, endocrinological, and reproductive parameters in dogs.

    PubMed

    Vannucchi, C I; Angrimani, D S R; Eyherabide, A R; Mazzei, C P; Lucio, C F; Maiorka, P C; Silva, L C G; Nichi, M

    2015-10-15

    Nonsurgical sterilization methods are considered alternative tools for the worldwide challenge represented by canine overpopulation control. Intratesticular injection of zinc gluconate associated with DMSO arises as an option because of the effortless diffusion throughout the testicular parenchyma. This study aimed to verify the effectiveness of a double testicular injection of zinc gluconate associated with DMSO as a chemical contraceptive for male dogs. The study was conducted with 22 dogs treated with two intratesticular injections of the chemical solution (treated group; n = 15) or 0.9% NaCl solution (control group; n = 7) on a monthly interval. All animals were submitted to clinical examination, breeding soundness evaluation including morphologic and sonographic examination of the testes, assessment of libido, volume of the sperm-rich fraction, sperm motility, total sperm count, plasma membrane integrity, sperm morphologic abnormalities, and the total number of morphologically normal and motile sperm in the ejaculate. Blood samples were collected for serum testosterone analysis, and testicular tissue was morphologically and histologically evaluated. No clinical alterations and signs of pain or local sensitivity along the experimental period were noticed. However, the injection of zinc gluconate and DMSO significantly reduced libido and testosterone concentrations (even beyond the reference range for intact male dogs). Impairment of sperm quality-related variables was observed 15 days after the first intratesticular administration of zinc gluconate and DMSO (i.e., decrease in sperm count and sperm motility and an increase in major sperm defects and by this a decrease in the total number of morphologically normal and motile sperm). Testicular ultrasonographic analysis revealed reduction of testicular volume and changes of testicular echotexture in treated animals, compatible with tissue degeneration, fibrosis, and calcification of testicular parenchyma on histologic examination. In conclusion, intratesticular administration of zinc gluconate associated with DMSO reduces reproductive potential which may lead to subfertility or infertility in dogs. PMID:26174036

  17. The use of dimethyl sulfoxide in contact lens disinfectants is a potential preventative strategy against contracting Acanthamoeba keratitis.

    PubMed

    Siddiqui, Ruqaiyyah; Aqeel, Yousuf; Khan, Naveed Ahmed

    2016-10-01

    Acanthamoeba castellanii is the causative agent of blinding keratitis. Though reported in non-contact lens wearers, it is most frequently associated with improper use of contact lens. For contact lens wearers, amoebae attachment to the lens is a critical first step, followed by amoebae binding to the corneal epithelial cells during extended lens wear. Acanthamoeba attachment to surfaces (biological or inert) and migration is an active process and occurs during the trophozoite stage. Thus retaining amoebae in the cyst stage (dormant form) offers an added preventative measure in impeding parasite traversal from the contact lens onto the cornea. Here, we showed that as low as 3% DMSO, abolished A. castellanii excystation. Based on the findings, it is proposed that DMSO should be included in the contact lens disinfectants as an added preventative strategy against contracting Acanthamoeba keratitis.

  18. The secret of dimethyl sulfoxide-water mixtures. A quantum chemical study of 1DMSO-nwater clusters.

    PubMed

    Kirchner, Barbara; Reiher, Markus

    2002-05-29

    DMSO-water mixtures exhibit a marked freezing point depression, reaching close to 60 K at n(DMSO) = 0.33. The phase diagram indicates that stable DMSO-water clusters may be responsible for this phenomenon. Using time-independent quantum chemical methods, we investigate possible candidates for stable supermolecules at mole fractions n(DMSO) = 0.25 and 0.33. The model clusters are built by adding various numbers of water molecules to a single DMSO molecule. Structures and interaction energetics are discussed in the light of experimental and theoretical results from the literature. A comparison with results from molecular dynamics simulations is of particular interest. Our optimized structures are spatially very different from those previously identified through MD simulations. To identify the structural patterns characterizing the clusters, we classify them on the basis of hydrogen-acceptor interactions. These are well separated on an interaction energy scale. For the hydrophobic interactions of the methyl groups with water, attractive interactions of up to 8 kJ/mol are found. In forming clusters corresponding to a range of different mole fractions, up to four water molecules are added to each DMSO molecule. This corresponds to a rough local model of solvation. Examination of the trends in the interactions indicates that the methyl-water interaction becomes more important upon solvation. Finally, we investigate how the clusters interact and attempt to explain which role is played by the various structures and their intercluster interaction modes in the freezing behavior of DMSO-water.

  19. Beef-heart mitochondrial F1-ATPase can use endogenous bound phosphate to synthesize ATP in dimethyl sulfoxide.

    PubMed

    Beharry, S; Bragg, P D

    1991-10-21

    Beef-heart mitochondrial F1-ATPase contained 5 mol of inorganic phosphate bound per mol of F1, following pretreatment with ATP. A portion of the phosphate, bound most likely at a catalytic site, reacted in dimethylsulfoxide with endogenous adenine nucleotide to form ATP.

  20. Changes in the adenine nucleotide content of beef-heart mitochondrial F1 ATPase during ATP synthesis in dimethyl sulfoxide.

    PubMed

    Beharry, S; Bragg, P D

    1992-01-31

    Beef-heart mitochondrial F1 ATPase can be induced to synthesize ATP from ADP and inorganic phosphate in 30% Me2SO. We have analyzed the adenine nucleotide content of the F1 ATPase during the time-course of ATP synthesis, in the absence of added medium nucleotide, and in the absence and presence of 10 mM inorganic phosphate. The enzyme used in these investigations was either pretreated or not pretreated with ATP to produce F1 with a defined nucleotide content and catalytic or noncatalytic nucleotide-binding site occupancy. We show that the mechanism of ATP synthesis in Me2SO involves (i) an initial rapid loss of bound nucleotide(s), this process being strongly influenced by inorganic phosphate; (ii) a rebinding of lost nucleotide; and (iii) synthesis of ATP from bound ADP and inorganic phosphate.

  1. Sagging Skin

    MedlinePlus

    ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ...

  2. Skin Diseases: Skin Health and Skin Diseases

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Skin Health and Skin Diseases Past Issues / Fall 2008 Table of Contents ... acne to wrinkles Did you know that your skin is the largest organ of your body? It ...

  3. Photoisomerization Mechanism of Ruthenium Sulfoxide Complexes: Role of the Metal-Centered Excited State in the Bond Rupture and Bond Construction Processes.

    PubMed

    Li, Huifang; Zhang, Lisheng; Zheng, Lvyin; Li, Xun; Fan, Xiaolin; Zhao, Yi

    2016-09-26

    Phototriggered intramolecular isomerization in a series of ruthenium sulfoxide complexes, [Ru(L)(tpy)(DMSO)](n+) (where tpy=2,2':6',2''-terpyridine; DMSO=dimethyl sulfoxide; L=2,2'-bipyridine (bpy), n=2; N,N,N',N'-tetramethylethylenediamine (tmen) n=2; picolinate (pic), n=1; acetylacetonate (acac), n=1; oxalate (ox), n=0; malonate (mal), n=0), was investigated theoretically. It is observed that the metal-centered ligand field ((3) MC) state plays an important role in the excited state S→O isomerization of the coordinated DMSO ligand. If the population of (3) MCS state is thermally accessible and no (3) MCO can be populated from this state, photoisomerization will be turned off because the (3) MCS excited state is expected to lead to fast radiationless decay back to the original (1) GSS ground state or photodecomposition along the Ru(2+) -S stretching coordinate. On the contrary, if the population of (3) MCS (or (3) MCO ) state is inaccessible, photoinduced S→O isomerization can proceed adiabatically on the potential energy surface of the metal-to-ligand charge transfer excited states ((3) MLCTS →(3) MLCTO ). It is hoped that these results can provide valuable information for the excited state isomerization in photochromic d(6) transition-metal complexes, which is both experimentally and intellectually challenging as a field of study. PMID:27553700

  4. Photoisomerization Mechanism of Ruthenium Sulfoxide Complexes: Role of the Metal-Centered Excited State in the Bond Rupture and Bond Construction Processes.

    PubMed

    Li, Huifang; Zhang, Lisheng; Zheng, Lvyin; Li, Xun; Fan, Xiaolin; Zhao, Yi

    2016-09-26

    Phototriggered intramolecular isomerization in a series of ruthenium sulfoxide complexes, [Ru(L)(tpy)(DMSO)](n+) (where tpy=2,2':6',2''-terpyridine; DMSO=dimethyl sulfoxide; L=2,2'-bipyridine (bpy), n=2; N,N,N',N'-tetramethylethylenediamine (tmen) n=2; picolinate (pic), n=1; acetylacetonate (acac), n=1; oxalate (ox), n=0; malonate (mal), n=0), was investigated theoretically. It is observed that the metal-centered ligand field ((3) MC) state plays an important role in the excited state S→O isomerization of the coordinated DMSO ligand. If the population of (3) MCS state is thermally accessible and no (3) MCO can be populated from this state, photoisomerization will be turned off because the (3) MCS excited state is expected to lead to fast radiationless decay back to the original (1) GSS ground state or photodecomposition along the Ru(2+) -S stretching coordinate. On the contrary, if the population of (3) MCS (or (3) MCO ) state is inaccessible, photoinduced S→O isomerization can proceed adiabatically on the potential energy surface of the metal-to-ligand charge transfer excited states ((3) MLCTS →(3) MLCTO ). It is hoped that these results can provide valuable information for the excited state isomerization in photochromic d(6) transition-metal complexes, which is both experimentally and intellectually challenging as a field of study.

  5. SWELLING OF PEATS IN LIQUID METHYL, TETRAMETHYLENE AND PROPYL SULFOXIDES AND IN LIQUID PROPYL SULFONE

    EPA Science Inventory

    The interactions of methyl, tetramethylene, and propyl sulfoxides and propyl sulfone during sorption onto four de-waxed, acid-form peats have been studied by means of swelling measurements. The results for sulfoxides are displayed as het-eromolecular sorption isotherms, which plo...

  6. Trifluoromethyl sulfoxides from allylic alcohols and electrophilic SCF3 donor by [2,3]-sigmatropic rearrangement.

    PubMed

    Maeno, Mayaka; Shibata, Norio; Cahard, Dominique

    2015-04-17

    An electrophilic trifluoromethylthiolation of allylic alcohols produces the corresponding allylic trifluoromethanesulfenates, which spontaneously rearrange into trifluoromethyl sulfoxides via a [2,3]-sigmatropic rearrangement. The reaction is straightforward and proceeds in good to high yields for the preparation of various allylic trifluoromethyl sulfoxides.

  7. FT-IR SOLUTION SPECTRA OF PROPYL SULFIDE, PROPYL SULFOXIDE, AND PROPYL SULFONE

    EPA Science Inventory

    FT-IR spectra were obtained of 0.5% volumetric solutions of propyl sulfide, propyl sulfoxide, and propyl sulfone in hexane, CCl4, CS2, and CHCl3 to assist in the assignment of FT-IR-PAS spectra of propyl sulfoxide sorbed within the structure of several peats and onto cellulose. T...

  8. Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capillary electrophoresis (CE) method for the determination of methionine sulfoxide reductase A and methionine sulfoxide reductase B activities in mouse liver is described. The method is based on detection of the 4-(dimethylamino)azobenzene-4’-sulfonyl derivative of L-methionine (dabsyl Met), the ...

  9. tert-Butyl Sulfoxide as a Starting Point for the Synthesis of Sulfinyl Containing Compounds.

    PubMed

    Wei, Juhong; Sun, Zhihua

    2015-11-01

    Sulfoxides bearing a tert-butyl group can be activated using N-bromosuccinimide (NBS) under acidic conditions and then subsequently treated with a variety of nitrogen, carbon, or oxygen nucleophiles to afford a wide range of the corresponding sulfinic acid amides, new sulfoxides, and sulfinic acid esters. PMID:26502058

  10. Transdermal film-loaded finasteride microplates to enhance drug skin permeation: Two-step optimization study.

    PubMed

    Ahmed, Tarek A; El-Say, Khalid M

    2016-06-10

    The goal was to develop an optimized transdermal finasteride (FNS) film loaded with drug microplates (MIC), utilizing two-step optimization, to decrease the dosing schedule and inconsistency in gastrointestinal absorption. First; 3-level factorial design was implemented to prepare optimized FNS-MIC of minimum particle size. Second; Box-Behnken design matrix was used to develop optimized transdermal FNS-MIC film. Interaction among MIC components was studied using physicochemical characterization tools. Film components namely; hydroxypropyl methyl cellulose (X1), dimethyl sulfoxide (X2) and propylene glycol (X3) were optimized for their effects on the film thickness (Y1) and elongation percent (Y2), and for FNS steady state flux (Y3), permeability coefficient (Y4), and diffusion coefficient (Y5) following ex-vivo permeation through the rat skin. Morphological study of the optimized MIC and transdermal film was also investigated. Results revealed that stabilizer concentration and anti-solvent percent were significantly affecting MIC formulation. Optimized FNS-MIC of particle size 0.93μm was successfully prepared in which there was no interaction observed among their components. An enhancement in the aqueous solubility of FNS-MIC by more than 23% was achieved. All the studied variables, most of their interaction and quadratic effects were significantly affecting the studied variables (Y1-Y5). Morphological observation illustrated non-spherical, short rods, flakes like small plates that were homogeneously distributed in the optimized transdermal film. Ex-vivo study showed enhanced FNS permeation from film loaded MIC when compared to that contains pure drug. So, MIC is a successful technique to enhance aqueous solubility and skin permeation of poor water soluble drug especially when loaded into transdermal films.

  11. Poly[di-μ2-chlorido-dichlorido(μ3-di­methyl sulfoxide-κ3 O:O:S)(μ2-di­methyl sulfoxide-κ2 O:S)ruthenium(III)sodium

    PubMed Central

    Trávníček, Zdeněk; Matiková-Maľarová, Miroslava

    2010-01-01

    The structure of the title compound, [NaRuCl4(C2H6OS)2]n, comprises centrosymmetric [RuCl2(DMSO)Na(DMSO)Cl2Ru] units (DMSO is dimethyl sulfoxide, C2H6OS), with two Ru atoms, each lying on a crystallographic centre of inversion, connected via Na atoms, DMSO and chloride ligands into a two-dimensional (110) array. Both RuIII atoms are octa­hedrally coordinated by four chloride ligands in the equatorial plane and by two DMSO mol­ecules in apical positions within a RuCl4S2 donor set. The Na atom is surrounded by three chloride anions and three O atoms derived from three DMSO mol­ecules, with the resulting Cl3O3 donor set defining an octa­hedron. The crystal structure is further stabilized by inter­atomic inter­actions of the types C⋯Cl [C—Cl = 3.284 (2) Å], C—H⋯Cl [C⋯Cl = 3.903 (3) Å] and C—H⋯O [C⋯O = 3.376 (3) Å]. PMID:21580464

  12. In Vitro Analysis of Albendazole Sulfoxide Enantiomers Shows that (+)-(R)-Albendazole Sulfoxide Is the Active Enantiomer against Taenia solium

    PubMed Central

    Paredes, Adriana; de Campos Lourenço, Tiago; Marzal, Miguel; Rivera, Andrea; Dorny, Pierre; Mahanty, Siddhartha; Guerra-Giraldez, Cristina; García, Hector H.; Cass, Quezia B.

    2013-01-01

    Albendazole is an anthelmintic drug widely used in the treatment of neurocysticercosis (NCC), an infection of the brain with Taenia solium cysts. However, drug levels of its active metabolite, albendazole sulfoxide (ABZSO), are erratic, likely resulting in decreased efficacy and suboptimal cure rates in NCC. Racemic albendazole sulfoxide is composed of ABZSO (+)-(R)- and (−)-(S) enantiomers that have been shown to differ in pharmacokinetics and activity against other helminths. The antiparasitic activities of racemic ABZSO and its (+)-(R)- and (−)-(S) enantiomers against T. solium cysts were evaluated in vitro. Parasites were collected from naturally infected pigs, cultured, and exposed to the racemic mixture or to each enantiomer (range, 10 to 500 ng/ml) or to praziquantel as a reference drug. The activity of each compound against cysts was assayed by measuring the ability to evaginate and inhibition of alkaline phosphatase (AP) and parasite antigen release. (+)-(R)-ABZSO was significantly more active than (−)-(S)-ABZSO in suppressing the release of AP and antigen into the supernatant in a dose- and time-dependent manner, indicating that most of the activity of ABZSO resides in the (+)-(R) enantiomer. Use of this enantiomer alone may lead to increased efficacy and/or less toxicity compared to albendazole. PMID:23229490

  13. In vitro analysis of albendazole sulfoxide enantiomers shows that (+)-(R)-albendazole sulfoxide is the active enantiomer against Taenia solium.

    PubMed

    Paredes, Adriana; de Campos Lourenço, Tiago; Marzal, Miguel; Rivera, Andrea; Dorny, Pierre; Mahanty, Siddhartha; Guerra-Giraldez, Cristina; García, Hector H; Nash, Theodore E; Cass, Quezia B

    2013-02-01

    Albendazole is an anthelmintic drug widely used in the treatment of neurocysticercosis (NCC), an infection of the brain with Taenia solium cysts. However, drug levels of its active metabolite, albendazole sulfoxide (ABZSO), are erratic, likely resulting in decreased efficacy and suboptimal cure rates in NCC. Racemic albendazole sulfoxide is composed of ABZSO (+)-(R)- and (-)-(S) enantiomers that have been shown to differ in pharmacokinetics and activity against other helminths. The antiparasitic activities of racemic ABZSO and its (+)-(R)- and (-)-(S) enantiomers against T. solium cysts were evaluated in vitro. Parasites were collected from naturally infected pigs, cultured, and exposed to the racemic mixture or to each enantiomer (range, 10 to 500 ng/ml) or to praziquantel as a reference drug. The activity of each compound against cysts was assayed by measuring the ability to evaginate and inhibition of alkaline phosphatase (AP) and parasite antigen release. (+)-(R)-ABZSO was significantly more active than (-)-(S)-ABZSO in suppressing the release of AP and antigen into the supernatant in a dose- and time-dependent manner, indicating that most of the activity of ABZSO resides in the (+)-(R) enantiomer. Use of this enantiomer alone may lead to increased efficacy and/or less toxicity compared to albendazole.

  14. Bacterial dioxygenase- and monooxygenase-catalysed sulfoxidation of benzo[b]thiophenes.

    PubMed

    Boyd, Derek R; Sharma, Narain D; McMurray, Brian; Haughey, Simon A; Allen, Christopher C R; Hamilton, John T G; McRoberts, W Colin; O'Ferrall, Rory A More; Nikodinovic-Runic, Jasmina; Coulombel, Lydie A; O'Connor, Kevin E

    2012-01-28

    Asymmetric heteroatom oxidation of benzo[b]thiophenes to yield the corresponding sulfoxides was catalysed by toluene dioxygenase (TDO), naphthalene dioxygenase (NDO) and styrene monooxygenase (SMO) enzymes present in P. putida mutant and E. coli recombinant whole cells. TDO-catalysed oxidation yielded the relatively unstable benzo[b]thiophene sulfoxide; its dimerization, followed by dehydrogenation, resulted in the isolation of stable tetracyclic sulfoxides as minor products with cis-dihydrodiols being the dominant metabolites. SMO mainly catalysed the formation of enantioenriched benzo[b]thiophene sulfoxide and 2-methyl benzo[b]thiophene sulfoxides which racemized at ambient temperature. The barriers to pyramidal sulfur inversion of 2- and 3-methyl benzo[b]thiophene sulfoxide metabolites, obtained using TDO and NDO as biocatalysts, were found to be ca.: 25-27 kcal mol(-1). The absolute configurations of the benzo[b]thiophene sulfoxides were determined by ECD spectroscopy, X-ray crystallography and stereochemical correlation. A site-directed mutant E. coli strain containing an engineered form of NDO, was found to change the regioselectivity toward preferential oxidation of the thiophene ring rather than the benzene ring. PMID:22134441

  15. Transformation and adsorption of Fenamiphos, f. sulfoxide and f. sulfone in molokai soil and simulated movement with irrigation

    NASA Astrophysics Data System (ADS)

    Lee, Chee-Chow; Green, Richard E.; Apt, Walter J.

    1986-02-01

    The ban of commonly used soil fumigants, DBCP and EDB, for control of nematodes in pineapple fields has prompted investigations into a non-fumigant nematicide, fenamiphos (Nemacur ®). The transformation and adsorption in soil of fenamiphos and its transformation products, f. sulfoxide and f. sulfone were studied in the laboratory. Fenamiphos adsorption on soil exceeded that of f. sulfoxide and f. sulfone. F. sulfoxide, however, was the most persistent. A one-dimensional simulation model was used to assess the impact of transformation and adsorption on the mobility and distribution of fenamiphos and f. sulfoxide in soil. Simulated results showed that fenamiphos stayed in the topsoil and transformed rapidly to f. sulfoxide. Because of the persistence and mobility of f. sulfoxide, this metabolite leached rapidly and significant amounts remained in the soil. This suggests that for times exceeding three weeks, f. sulfoxide may be the dominant compound providing nematode control in drip-irrigated pineapple.

  16. Microbial Formation of Dimethyl Sulfide in Anoxic Sphagnum Peat

    PubMed Central

    Kiene, R. P.; Hines, M. E.

    1995-01-01

    Peat bogs dominated by Sphagnum spp. have relatively high areal rates of dimethyl sulfide (DMS) emission to the atmosphere. DMS was produced in anoxic slurries of Sphagnum peat with a linear time course and with an average rate of 40.4 (range, 22.0 to 68.6) nmol per liter of slurry (middot) day(sup-1) observed in nine batches of slurry. Methanethiol (MeSH) was produced at roughly similar rates over the typical 4- to 8-day incubations. DMS and MeSH production in these acidic (pH 4.2 to 4.6) peats were biological, as they were stopped completely by autoclaving and inhibited strongly by addition of antibiotics and 500 (mu)M chloroform. Endogenous DMS production may be due to the degradation of S-methyl-methionine, dimethyl sulfoxide, or methoxyaromatic compounds (e.g., syringic acid), each of which stimulated DMS formation when added at 5 to 10 (mu)M concentrations. However, on the basis of the high rates of thiol (MeSH and ethanethiol) methylation activity that we observed and the availability of endogenous MeSH, we suggest that methylation of MeSH is the major pathway leading to DMS formation in anaerobic peat. Solid-phase adsorption of MeSH plays a key role in its availability for biomethylation reactions. Additions of acetate (1.5 mM) or compounds which could cause acetate to accumulate (e.g., glucose, alanine, and 2-bromoethanesulfonate) suppressed DMS formation. It is likely that acetogenic bacteria are involved in DMS formation, but our data are insufficient to allow firm conclusions about the metabolic pathways or organisms involved. Our observations are the first which point to the methylation of MeSH as the major mechanism for endogenous DMS production in any environment. The rates of net DMS production observed are sufficient to explain the relatively high fluxes of DMS emitted to the atmosphere from Sphagnum sp.-dominated wetlands. PMID:16535080

  17. Enantiomerization of Allylic Trifluoromethyl Sulfoxides Studied by HPLC Analysis and DFT Calculations.

    PubMed

    Bailly, Laetitia; Petit, Emilie; Maeno, Mayaka; Shibata, Norio; Trapp, Oliver; Cardinael, Pascal; Chataigner, Isabelle; Cahard, Dominique

    2016-02-01

    Enantiomerization of allylic trifluoromethyl sulfoxides occurs spontaneously at room temperature through the corresponding allylic trifluoromethanesulfenates via a [2,3]-sigmatropic rearrangement. Dynamic enantioselective high-performance liquid chromatography (HPLC) analysis revealed the stereodynamics of these sulfoxides ranging from chromatographic resolution to peak coalescence at temperatures between 5 and 53 °C. The rate constant of enantiomerization and activation parameters were determined and compared with Density Functional Theory (DFT) calculations.

  18. The discovery of methionine sulfoxide reductase enzymes: An historical account and future perspectives.

    PubMed

    Achilli, Cesare; Ciana, Annarita; Minetti, Giampaolo

    2015-05-01

    L-Methionine (L-Met) is the only sulphur-containing proteinogenic amino acid together with cysteine. Its importance is highlighted by it being the initiator amino acid for protein synthesis in all known living organisms. L-Met, free or inserted into proteins, is sensitive to oxidation of its sulfide moiety, with formation of L-Met sulfoxide. The sulfoxide could not be inserted into proteins, and the oxidation of L-Met in proteins often leads to the loss of biological activity of the affected molecule. Key discoveries revealed the existence, in rats, of a metabolic pathway for the reduction of free L-Met sulfoxide and, later, in Escherichia coli, of the enzymatic reduction of L-Met sulfoxide inserted in proteins. Upon oxidation, the sulphur atom becomes a new stereogenic center, and two stable diastereoisomers of L-Met sulfoxide exist. A fundamental discovery revealed the existence of two unrelated families of enzymes, MsrA and MsrB, whose members display opposite stereospecificity of reduction for the two sulfoxides. The importance of Msrs is additionally emphasized by the discovery that one of the only 25 selenoproteins expressed in humans is a Msr. The milestones on the road that led to the discovery and characterization of this group of antioxidant enzymes are recounted in this review.

  19. Effect of sulfoxides on the thermal denaturation of hen lysozyme: A calorimetric and Raman study

    NASA Astrophysics Data System (ADS)

    Torreggiani, A.; Di Foggia, M.; Manco, I.; De Maio, A.; Markarian, S. A.; Bonora, S.

    2008-11-01

    A multidisciplinary study of the thermal denaturation of lysozyme in the presence of three sulfoxides with different length in hydrocarbon chain (DMSO, DESO, and DPSO) was carried out by means of DSC, Raman spectroscopy, and SDS-PAGE techniques. In particular, the Td and Δ H values obtained from the calorimetric measurements showed that lysozyme is partially unfolded by sulfoxides but most of the conformation holds native state. The sulfoxide denaturing ability increases in the order DPSO > DESO > DMSO. Moreover, only DMSO and DESO have a real effect in preventing the heat-induced inactivation of the protein and their maximum heat-protective ability is reached when the DMSO and DESO amount is ⩾25% w/w. The sulfoxide ability to act as effective protective agents against the heat-induced inactivation was confirmed by the protein analysis. The enzymatic activity, as well as the SDS-PAGE analysis, suggested that DESO, having a low hydrophobic character and a great ability to stabilise the three-dimensional water structure, is the most heat-protective sulfoxide. An accurate evaluation of the heat-induced conformational changes of the lysozyme structure before and after sulfoxide addition was obtained by the analysis of the Raman spectra. The addition of DMSO or DESO in low concentration resulted to sensitively decrease the heat-induced structural modifications of the protein.

  20. Transdermal delivery of diclofenac sodium through rat skin from various formulations.

    PubMed

    Sarigüllü Ozgüney, Işik; Yeşim Karasulu, Hatice; Kantarci, Gülten; Sözer, Sumru; Güneri, Tamer; Ertan, Gökhan

    2006-10-20

    The aim of this study was to evaluate and compare the in vitro and in vivo transdermal potential of w/o microemulsion (M) and gel (G) bases for diclofenac sodium (DS). The effect of dimethyl sulfoxide (DMSO) as a penetration enhancer was also examined when it was added to the M formulation. To study the in vitro potential of these formulations, permeation studies were performed with Franz diffusion cells using excised dorsal rat skin. To investigate their in vivo performance, a carrageenan-induced rat paw edema model was used. The commercial formulation of DS (C) was used as a reference formulation. The results of the in vitro permeation studies and the paw edema tests were analyzed by repeated-measures analysis of variance. The in vitro permeation studies found that M was superior to G and C and that adding DMSO to M increased the permeation rate. The permeability coefficients (Kp) of DS from M and M+DMSO were higher (Kp = 4.9 x 10(-3) +/- 3.6 x 10(-4) cm/h and 5.3 x 10(-3) +/- 1.2 x 10(-3) cm/h, respectively) than the Kp of DS from C (Kp = 2.7 x 10(-3) +/- 7.3 x 10(-4) cm/h) and G (Kp = 4.5 x 10(-3) +/- 4.5 x 10(-5) cm/h). In the paw edema test, M showed the best permeation and effectiveness, and M+DMSO had nearly the same effect as M. The in vitro and in vivo studies showed that M could be a new, alternative dosage form for effective therapy.

  1. Photosensitized oxidation of aryl benzyl sulfoxides. Evidence for nucleophilic assistance to the C-s bond cleavage of aryl benzyl sulfoxide radical cations.

    PubMed

    Del Giacco, Tiziana; Lanzalunga, Osvaldo; Lapi, Andrea; Mazzonna, Marco; Mencarelli, Paolo

    2015-02-20

    The radical cations of a series of aryl benzyl sulfoxides (4-X-C6H4CH2SOC6H4Y(+•)) have been generated by photochemical oxidation of the parent sulfoxides sensitized by 3-cyano-N-methylquinolinium perchlorate (3-CN-NMQ(+)ClO4(-)). Steady-state photolysis experiments showed the prevailing formation of benzylic products deriving from the C-S fragmentation in the radical cations, together with sulfur-containing products. Formation of sulfoxide radical cations was unequivocally established by laser flash photolysis experiments showing the absorption bands of 3-CN-NMQ(•) (λmax = 390 nm) and of the radical cations (λmax = 500-620 nm). The decay rate constants of radical cations, determined by LFP experiments, decrease by increasing the electron-donating power of the arylsulfinyl Y substituent and to a smaller extent by increasing the electron-withdrawing power of the benzylic X substituent. A solvent nucleophilic assistance to the C-S bond cleavage has been suggested, supported by the comparison of substituent effects on the same process occurring in aryl tert-butyl sulfoxide radical cations. DFT calculations, performed to determine the bond dissociation free energy in the radical cations, the transition state energies associated with the unimolecular C-S bond cleavage, and the charge and spin delocalized on their structures, were also useful to endorse the nucleophilic assistance to the C-S scission.

  2. Skin Cancer

    MedlinePlus

    ... are specialized skin cells that produce pigment called melanin. The melanin pigment produced by melanocytes gives skin its color. ... absorbing and scattering the energy. People with more melanin have darker skin and better protection from UV ...

  3. Skin Conditions

    MedlinePlus

    Your skin is your body's largest organ. It covers and protects your body. Your skin Holds body fluids in, preventing dehydration Keeps harmful ... it Anything that irritates, clogs, or inflames your skin can cause symptoms such as redness, swelling, burning, ...

  4. Probing the stereochemistry of successive sulfoxidation of the insecticide fenamiphos in soils.

    PubMed

    Cai, Xiyun; Xiong, Weina; Xia, Tingting; Chen, Jingwen

    2014-10-01

    Successive sulfoxidation is widely recognized as a general characteristic of the metabolism of chiral or prochiral thioethers, producing sulfoxides, and sulfones. However, information related to the stereochemistry of this process in soils is rare. In this study, the biotic transformation of the insecticide fenamiphos (a model thioether) was followed over two months in three soils, through separate incubations with fenamiphos parent, the sulfoxide intermediate (FSO), the sulfone intermediate (FSO2), and their respective stereoisomers. The results showed that the successive sulfoxidation involved oxidation of fenamiphos to FSO and subsequently to FSO2 as well as diastereomerization/enantiomerization of FSO, all of which were primarily biotic and stereoselective. The concomitant hydrolysis of fenamiphos, FSO, and FSO2 to phenols that occurred at lower rates was biotically favorable, but not stereoselective. The stereochemistry of this successive sulfoxidation transferred principally through two parallel systems, R(+)-fenamiphos → SRPR(+)-/SSPR(-)-FSO → R(+)-FSO2 and S(-)-fenamiphos → SRPS(+)-/SSPS(-)-FSO → S(-)-FSO2, between which unidirectional intersystem crossing occurred at FSO via isomeric conversions and created a system of S(-)-fenamiphos → SRPR(+)-/SSPR(-)-FSO → R(+)-FSO2. This pattern accounts for the enrichment of the intermediates SSPR(-)-/SSPS(-)-FSO and R(+)-FSO2 that are toxicologically close to the highly toxic S(-)-fenamiphos, associated with soil application of fenamiphos. Selective formation/depletion of these intermediate stereoisomers leads to dramatic variations in the ecotoxicological effects of the thioether insecticide.

  5. Skin Biomes.

    PubMed

    Fyhrquist, N; Salava, A; Auvinen, P; Lauerma, A

    2016-05-01

    The cutaneous microbiome has been investigated broadly in recent years and some traditional perspectives are beginning to change. A diverse microbiome exists on human skin and has a potential to influence pathogenic microbes and modulate the course of skin disorders, e.g. atopic dermatitis. In addition to the known dysfunctions in barrier function of the skin and immunologic disturbances, evidence is rising that frequent skin disorders, e.g. atopic dermatitis, might be connected to a dysbiosis of the microbial community and changes in the skin microbiome. As a future perspective, examining the skin microbiome could be seen as a potential new diagnostic and therapeutic target in inflammatory skin disorders.

  6. Thymosin β4-sulfoxide attenuates inflammatory cell infiltration and promotes cardiac wound healing.

    PubMed

    Evans, Mark A; Smart, Nicola; Dubé, Karina N; Bollini, Sveva; Clark, James E; Evans, Hayley G; Taams, Leonie S; Richardson, Rebecca; Lévesque, Mathieu; Martin, Paul; Mills, Kevin; Riegler, Johannes; Price, Anthony N; Lythgoe, Mark F; Riley, Paul R

    2013-01-01

    The downstream consequences of inflammation in the adult mammalian heart are formation of a non-functional scar, pathological remodelling and heart failure. In zebrafish, hydrogen peroxide released from a wound is the initial instructive chemotactic cue for the infiltration of inflammatory cells, however, the identity of a subsequent resolution signal(s), to attenuate chronic inflammation, remains unknown. Here we reveal that thymosin β4-sulfoxide lies downstream of hydrogen peroxide in the wounded fish and triggers depletion of inflammatory macrophages at the injury site. This function is conserved in the mouse and observed after cardiac injury, where it promotes wound healing and reduced scarring. In human T-cell/CD14+ monocyte co-cultures, thymosin β4-sulfoxide inhibits interferon-γ, and increases monocyte dispersal and cell death, likely by stimulating superoxide production. Thus, thymosin β4-sulfoxide is a putative target for therapeutic modulation of the immune response, resolution of fibrosis and cardiac repair. PMID:23820300

  7. Synthesis and spectroscopic behavior of highly luminescent Eu 3+-dibenzoylmethanate (DBM) complexes with sulfoxide ligands

    NASA Astrophysics Data System (ADS)

    Niyama, E.; Brito, H. F.; Cremona, M.; Teotonio, E. E. S.; Reyes, R.; Brito, G. E. S.; Felinto, M. C. F. C.

    2005-09-01

    In this paper the synthesis, characterization and photoluminescent behavior of the [RE(DBM) 3L 2] complexes (RE = Gd and Eu) with a variety of sulfoxide ligands; L = benzyl sulfoxide (DBSO), methyl sulfoxide (DMSO), phenyl sulfoxide (DPSO) and p-tolyl sulfoxide (PTSO) have been investigated in solid state. The emission spectra of the Eu 3+-β-diketonate complexes show characteristics narrow bands arising from the 5D 0 → 7F J ( J = 0-4) transitions, which are split according to the selection rule for C n, C nv or C s site symmetries. The experimental Judd-Ofelt intensity parameters ( Ω2 and Ω4), radiative ( Arad) and non-radiative ( Anrad) decay rates, and R02 for the europium complexes have been determined and compared. The highest value of Ω2 (61.9 × 10 -20 cm 2) was obtained to the complex with PTSO ligand, indicating that Eu 3+ ion is in the highly polarizable chemical environment. The higher values of the experimental quantum yield ( q) and emission quantum efficiency of the emitter 5D 0 level ( η) for the Eu-complexes with DMSO, DBSO and PTSO sulfoxides suggest that these complexes are promising Light Conversion Molecular Devices (LCMDs). The lower value of quantum yield ( q = 1%), for the hydrated complex [Eu(DBM) 3(H 2O)], indicates that the luminescence quenching occurs via multiphonon relaxation by coupling with the OH-oscillators from water molecule coordinated to rare earth ion. The pure red emission of the Eu-complexes has been confirmed by ( x, y) color coordinates.

  8. Synthesis and spectroscopic behavior of highly luminescent Eu(3+)-dibenzoylmethanate (DBM) complexes with sulfoxide ligands.

    PubMed

    Niyama, E; Brito, H F; Cremona, M; Teotonio, E E S; Reyes, R; Brito, G E S; Felinto, M C F C

    2005-09-01

    In this paper the synthesis, characterization and photoluminescent behavior of the [RE(DBM)3L2] complexes (RE=Gd and Eu) with a variety of sulfoxide ligands; L=benzyl sulfoxide (DBSO), methyl sulfoxide (DMSO), phenyl sulfoxide (DPSO) and p-tolyl sulfoxide (PTSO) have been investigated in solid state. The emission spectra of the Eu(3+)-beta-diketonate complexes show characteristics narrow bands arising from the 5D0-->7F(J) (J=0-4) transitions, which are split according to the selection rule for C(n), C(nv) or C(s) site symmetries. The experimental Judd-Ofelt intensity parameters (Omega2 and Omega4), radiative (A(rad)) and non-radiative (A(nrad)) decay rates, and R02 for the europium complexes have been determined and compared. The highest value of Omega2 (61.9x10(-20)cm2) was obtained to the complex with PTSO ligand, indicating that Eu3+ ion is in the highly polarizable chemical environment. The higher values of the experimental quantum yield (q) and emission quantum efficiency of the emitter 5D0 level (eta) for the Eu-complexes with DMSO, DBSO and PTSO sulfoxides suggest that these complexes are promising Light Conversion Molecular Devices (LCMDs). The lower value of quantum yield (q=1%), for the hydrated complex [Eu(DBM)3H2O], indicates that the luminescence quenching occurs via multiphonon relaxation by coupling with the OH-oscillators from water molecule coordinated to rare earth ion. The pure red emission of the Eu-complexes has been confirmed by (x, y) color coordinates.

  9. Thermodynamic Properties of Dimethyl Carbonatea)

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Wu, Jiangtao; Lemmon, Eric W.

    2011-12-01

    A thermodynamic property formulation for dimethyl carbonate has been developed with the use of available experimental thermodynamic property data. The equation of state was developed with multiproperty fitting methods involving pressure-density-temperature (pρT), heat capacity, vapor pressure, and saturated-liquid density data. The equation of state conforms to the Maxwell criterion for two-phase liquid-vapor equilibrium states, and is valid for temperatures from the triple-point temperature (277.06 ± 0.63) K to 600 K, for pressures up to 60 MPa, and for densities up to 12.12 mol dm-3. The extrapolation behavior of the equation of state at low and high temperatures and pressures is reasonable. The uncertainties (k = 2, indicating a 95% confidence level) of the equation of state in density are 0.05% for saturated-liquid states below 350 K, rising to 0.1% in the single phase between 278 K and 400 K at pressures up to 60 MPa. Due to the lack of reliable data outside this region, the estimated uncertainties increase to 0.5% to 1% in the vapor and critical regions. The uncertainties in vapor pressure are 0.6% from 310 K to 400 K, and increase to 1% at higher temperatures and to 2% at lower temperatures due to a lack of experimental data. The uncertainty in isobaric heat capacity and speed of sound in the liquid phase at saturation or atmospheric pressure is 0.5% from 280 K to 335 K. The uncertainties are higher for all properties in the critical region. Detailed comparisons between experimental and calculated data, and an analysis of the equation, have been performed.

  10. An efficient asymmetric synthesis of an estrogen receptor modulator by sulfoxide-directed borane reduction.

    PubMed

    Song, Zhiguo J; King, Anthony O; Waters, Marjorie S; Lang, Fengrui; Zewge, Daniel; Bio, Matthew; Leazer, Johnnie L; Javadi, Gary; Kassim, Amude; Tschaen, David M; Reamer, Robert A; Rosner, Thorsten; Chilenski, Jennifer R; Mathre, David J; Volante, R P; Tillyer, Richard

    2004-04-20

    An efficient asymmetric synthesis of a selective estrogen receptor modulator (SERM) that has a dihydrobenzoxathiin core structure bearing two stereogenic centers is reported. The stereogenic centers were established by an unprecedented chiral sulfoxide-directed stereospecific reduction of an alpha,beta-unsaturated sulfoxide to the saturated sulfide in one step. Studies to elucidate the mechanism for this reduction are reported. Highly efficient Cu(I)-mediated ether formation was used to install the ether side chain, and selective debenzylation conditions were developed to remove the benzyl protecting groups on the phenols.

  11. N.m.r. studies of the conformation of analogues of methyl beta-lactoside in methyl sulfoxide-d6.

    PubMed

    Rivera-Sagredo, A; Jiménez-Barbero, J; Martín-Lomas, M

    1991-12-16

    The 1H- and 13C-n.m.r. spectra of solutions of methyl beta-lactoside (1), all of its monodeoxy derivatives (2, 3, 6-10), the 3-O-methyl derivative (4), and methyl 4-O-beta-D-galactopyranosyl-D-xylopyranoside (5) in methyl sulfoxide-d6 have been analysed. The n.O.e.'s and specific desheildings indicate similar distributions of low-energy conformers, comparable to those in aqueous solution. The major conformer has torsion angles phi H and psi H of 49 degrees and 5 degrees, respectively, with contributions of conformers with phi/psi 24 degrees/-59 degrees, 22 degrees/32 degrees, and 6 degrees/44 degrees. PMID:1816924

  12. Skin Complications

    MedlinePlus

    ... drugs that can help clear up this condition. Day-to-Day Skin Care See our tips for daily skin ... Risk? Diagnosis Lower Your Risk Risk Test Alert Day Prediabetes My Health Advisor Tools to Know Your ...

  13. Skin Aging

    MedlinePlus

    ... too. Sunlight is a major cause of skin aging. You can protect yourself by staying out of ... person has smoked. Many products claim to revitalize aging skin or reduce wrinkles, but the Food and ...

  14. Skin tears.

    PubMed

    Baranoski, S

    2001-08-01

    Skin tears are a serious, painful problem for older patients. Find out how your staff can recognize patients at risk, what they can do to prevent skin tears, and how to manage them effectively if they occur.

  15. Skin Pigment

    MedlinePlus

    ... Professional Version Pigment Disorders Overview of Skin Pigment Albinism Vitiligo Hyperpigmentation Melasma Melanin is the brown pigment ... dark-skinned people produce the most. People with albinism have little or no melanin and thus their ...

  16. Fragrance material review on 1,1-dimethyl-2-phenylethyl butyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1,1-dimethyl-2-phenylethyl butyrate when used as a fragrance ingredient is presented. 1,1-Dimethyl-2-phenylethyl butyrate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1,1-dimethyl-2-phenylethyl butyrate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  17. Fragrance material review on 1,1-dimethyl-2-phenylethyl formate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1,1-dimethyl-2-phenylethyl formate when used as a fragrance ingredient is presented. 1,1-Dimethyl-2-phenylethyl formate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1,1-dimethyl-2-phenylethyl formate were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; mucous membrane (eye) irritation; skin sensitization; and genotoxicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al., 2012 for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  18. Fragrance material review on 1,1-dimethyl-2-phenylethyl propionate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1,1-dimethyl-2-phenylethyl propionate when used as a fragrance ingredient is presented. 1,1-Dimethyl-2-phenylethyl propionate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1,1-dimethyl-2-phenylethyl propionate were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (submitted for publication) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  19. Fragrance material review on 1,1-dimethyl-2-phenylethyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1,1-dimethyl-2-phenylethyl acetate when used as a fragrance ingredient is presented. 1,1-Dimethyl-2-phenylethyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an Aryl Alkyl Alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to 1,1-dimethyl-2-phenylethyl acetate and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; mucous membrane (eye) irritation; skin sensitization; elicitation; and toxicokinetics data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  20. Fragrance material review on 1,3-dimethyl-3-phenylbutyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1,3-dimethyl-3-phenylbutyl acetate when used as a fragrance ingredient is presented. 1,3-Dimethyl-3-phenylbutyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1 to 4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1,3-dimethyl-3-phenylbutyl acetate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, and photoallergy data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  1. Fragrance material review on 2-(3,7-dimethyl-2,6-octadienyl)cyclopentanone.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 2-(3,7-dimethyl-2,6-octadienyl)cyclopentanone when used as a fragrance ingredient is presented. 2-(3,7-Dimethyl-2,6-octadienyl)cyclopentanone is a member of the fragrance structural group Ketones Cyclopentanones and Cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-(3,7-dimethyl-2,6-octadienyl)cyclopentanone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire Ketones Cyclopentanones and Cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Ketones Cyclopentanones and Cyclopentenones in fragrances.

  2. Exploring the Use of a Guanine-Rich Catalytic DNA for Sulfoxide Preparation.

    PubMed

    Dellafiore, María A; Montserrat, Javier M; Iribarren, Adolfo M

    2015-01-01

    A guanine-rich DNA oligonucleotide complexed with hemin was used to catalyze controlled oxygen transfer reactions to different sulfides for sulfoxide preparation in the presence of H2O2. Comparable activities were obtained when using fully modified L-DNA. In addition, oligonucleotide immobilization led to an active catalyst which could be successfully recovered and reused without loss of activity.

  3. Exploring the Use of a Guanine-Rich Catalytic DNA for Sulfoxide Preparation

    PubMed Central

    Dellafiore, María A.; Montserrat, Javier M.; Iribarren, Adolfo M.

    2015-01-01

    A guanine-rich DNA oligonucleotide complexed with hemin was used to catalyze controlled oxygen transfer reactions to different sulfides for sulfoxide preparation in the presence of H2O2. Comparable activities were obtained when using fully modified L-DNA. In addition, oligonucleotide immobilization led to an active catalyst which could be successfully recovered and reused without loss of activity. PMID:26066510

  4. Full functionalization of the 7-azaindole scaffold by selective metalation and sulfoxide/magnesium exchange.

    PubMed

    Barl, Nadja M; Sansiaume-Dagousset, Elodie; Karaghiosoff, Konstantin; Knochel, Paul

    2013-09-16

    Filling positions: 7-Azaindoles are important targets in the pharmaceutical industry. All five carbon positions of the azaindole ring system can be functionalized in a predictable manner starting from the appropriately substituted azaindole 1 by directed metalation and halogen/magnesium and sulfoxide/magnesium exchange. The products are fully substituted azaindoles of type 2.

  5. Compartmentalization and Regulation of Mitochondrial Function by Methionine Sulfoxide Reductases in Yeast

    PubMed Central

    Kaya, Alaattin; Koc, Ahmet; Lee, Byung Cheon; Fomenko, Dmitri E.; Rederstorff, Mathieu; Krol, Alain; Lescure, Alain; Gladyshev, Vadim N.

    2010-01-01

    Elevated levels of reactive oxygen species can damage proteins. Sulfur-containing amino acid residues, cysteine and methionine, are particularly susceptible to such damage. Various enzymes evolved to protect proteins or repair oxidized residues, including methionine sulfoxide reductases MsrA and MsrB, which reduce methionine-S-sulfoxide (Met-SO), and methionine-R-sulfoxide (Met-RO) residues, respectively, back to methionine. Here, we show that MsrA and MsrB are involved in the regulation of mitochondrial function. Saccharomyces cerevisiae mutant cells lacking MsrA, MsrB or both proteins, had normal levels of mitochondria, but lower levels of cytochrome c and fewer respiration-competent mitochondria. The growth of single MsrA or MsrB mutants on respiratory carbon sources was inhibited, and that of the double mutant was severely compromised, indicating impairment of mitochondrial function. Although MsrA and MsrB are thought to have similar roles in oxidative protein repair each targeting a diastereomer of methionine sulfoxide, their deletion resulted in different phenotypes. GFP fusions of MsrA and MsrB showed different localization patterns and primarily localized to cytoplasm and mitochondria, respectively. This finding agreed with compartment-specific enrichment of MsrA and MsrB activities. These results show that oxidative stress contributes to mitochondrial dysfunction through oxidation of methionine residues in proteins located in different cellular compartments. PMID:20799725

  6. Triclabendazole Sulfoxide Causes Stage-Dependent Embryolethality in Zebrafish and Mouse In Vitro

    PubMed Central

    Boix, Nuria; Teixido, Elisabet; Vila-Cejudo, Marta; Ortiz, Pedro; Ibáñez, Elena; Llobet, Juan M.; Barenys, Marta

    2015-01-01

    Background Fascioliasis and paragonimiasis are widespread foodborne trematode diseases, affecting millions of people in more than 75 countries. The treatment of choice for these parasitic diseases is based on triclabendazole, a benzimidazole derivative which has been suggested as a promising drug to treat pregnant women and children. However, at the moment, this drug is not approved for human use in most countries. Its potential adverse effects on embryonic development have been scarcely studied, and it has not been assigned a pregnancy category by the FDA. Thus, to help in the process of risk-benefit decision making upon triclabendazole treatment during pregnancy, a better characterization of its risks during gestation is needed. Methodology The zebrafish embryo test, a preimplantation and a postimplantation rodent whole embryo culture were used to investigate the potential embryotoxicity/teratogenicity of triclabendazole and its first metabolite triclabendazole sulfoxide. Albendazole and albendazole sulfoxide were included as positive controls. Principal Findings Triclabendazole was between 10 and 250 times less potent than albendazole in inducing dysmorphogenic effects in zebrafish or postimplantation rodent embryos, respectively. However, during the preimplantation period, both compounds, triclabendazole and triclabendazole sulfoxide, induced a dose-dependent embryolethal effect after only 24 h of exposure in rodent embryos and zebrafish (lowest observed adverse effect concentrations = 10 μM). Conclusions/Significance In humans, after ingestion of the recommended doses of triclabendazole to treat fascioliasis and paragonimiasis (10 mg/kg), the main compound found in plasma is triclabendazole sulfoxide (maximum concentration 38.6 μM), while triclabendazole concentrations are approximately 30 times lower (1.16 μM). From our results it can be concluded that triclabendazole, at concentrations of the same order of magnitude as the clinically relevant ones, does

  7. Sensitive skin.

    PubMed

    Misery, L; Loser, K; Ständer, S

    2016-02-01

    Sensitive skin is a clinical condition defined by the self-reported facial presence of different sensory perceptions, including tightness, stinging, burning, tingling, pain and pruritus. Sensitive skin may occur in individuals with normal skin, with skin barrier disturbance, or as a part of the symptoms associated with facial dermatoses such as rosacea, atopic dermatitis and psoriasis. Although experimental studies are still pending, the symptoms of sensitive skin suggest the involvement of cutaneous nerve fibres and neuronal, as well as epidermal, thermochannels. Many individuals with sensitive skin report worsening symptoms due to environmental factors. It is thought that this might be attributed to the thermochannel TRPV1, as it typically responds to exogenous, endogenous, physical and chemical stimuli. Barrier disruptions and immune mechanisms may also be involved. This review summarizes current knowledge on the epidemiology, potential mechanisms, clinics and therapy of sensitive skin. PMID:26805416

  8. 40 CFR 721.10127 - Alkenyl dimethyl betaine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkenyl dimethyl betaine (generic... Specific Chemical Substances § 721.10127 Alkenyl dimethyl betaine (generic). (a) Chemical substance and... dimethyl betaine (PMN P-06-693) is subject to reporting under this section for the significant new...

  9. 40 CFR 721.3550 - Dipropylene glycol dimethyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dipropylene glycol dimethyl ether. 721... Substances § 721.3550 Dipropylene glycol dimethyl ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as dipropylene glycol dimethyl ether (PMN...

  10. 40 CFR 721.3550 - Dipropylene glycol dimethyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dipropylene glycol dimethyl ether. 721... Substances § 721.3550 Dipropylene glycol dimethyl ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as dipropylene glycol dimethyl ether (PMN...

  11. 40 CFR 721.333 - Dimethyl alkylamine salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Dimethyl alkylamine salt (generic... Substances § 721.333 Dimethyl alkylamine salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as a Dimethyl alkylamine...

  12. 40 CFR 721.333 - Dimethyl alkylamine salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimethyl alkylamine salt (generic... Substances § 721.333 Dimethyl alkylamine salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as a Dimethyl alkylamine...

  13. 40 CFR 721.333 - Dimethyl alkylamine salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimethyl alkylamine salt (generic... Substances § 721.333 Dimethyl alkylamine salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as a Dimethyl alkylamine...

  14. 40 CFR 721.333 - Dimethyl alkylamine salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Dimethyl alkylamine salt (generic... Substances § 721.333 Dimethyl alkylamine salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as a Dimethyl alkylamine...

  15. 40 CFR 721.333 - Dimethyl alkylamine salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Dimethyl alkylamine salt (generic... Substances § 721.333 Dimethyl alkylamine salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as a Dimethyl alkylamine...

  16. 40 CFR 721.10099 - Dialkyl dimethyl ammonium carbonate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dialkyl dimethyl ammonium carbonate... Specific Chemical Substances § 721.10099 Dialkyl dimethyl ammonium carbonate (generic). (a) Chemical... as dialkyl dimethyl ammonium carbonate (1:1) (PMN P-03-715) is subject to reporting under...

  17. 40 CFR 721.10099 - Dialkyl dimethyl ammonium carbonate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dialkyl dimethyl ammonium carbonate... Specific Chemical Substances § 721.10099 Dialkyl dimethyl ammonium carbonate (generic). (a) Chemical... as dialkyl dimethyl ammonium carbonate (1:1) (PMN P-03-715) is subject to reporting under...

  18. Coloring-decoloring behavior of amphiphilic fluoroalkyl end-capped N-(1,1-dimethyl-3-oxobutyl)acrylamide--acryloylmorpholine cooligomer/fluorescein nanocomposites in protic and aprotic solvents.

    PubMed

    Sawada, Hideo; Izumi, Shunsuke; Sasazawa, Kazuo; Yoshida, Masato

    2012-07-01

    Amphiphilic fluoroalkyl end-capped N-(1,1-dimethyl-3-oxobutyl)acrylamide-acryloylmorpholine cooligomer/fluorescein nanocomposites afforded brilliant yellow-colored solutions in not only protic solvents such as methanol and ethanol but also protic-like solvents such as dichloromethane and 1,2-dichloroethane, respectively. However, the corresponding non-fluorinated cooligomer/fluorescein composites and parent fluorescein gave the colorless solutions under similar conditions. On the other hand, unexpectedly, such brilliant yellow-colored solutions provided by these fluorinated nanocomposites completely disappeared in aprotic solvents such as N,N-dimethylformamide, dimethyl sulfoxide, and tetrahydrofuran. Thus, these fluorinated fluorescein nanocomposites can exhibit a coloring-decoloring behavior through solvatochromic response.

  19. 21 CFR 172.133 - Dimethyl dicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... treatment, filtration, or other technologies prior to the use of dimethyl dicarbonate: (1) In wine, dealcoholized wine, and low alcohol wine in an amount not to exceed 200 parts per million. (2) In...

  20. 21 CFR 172.133 - Dimethyl dicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the reaction mixture potentiometrically with 1 N hydrochloric acid (consumption=a mL) while stirring... following titration method: principles of method Dimethyl dicarbonate (DMDC) is mixed with excess diisobutylamine with which it reacts quantitatively. The excess amine is backtitrated with acid. apparatus...

  1. 21 CFR 172.133 - Dimethyl dicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the reaction mixture potentiometrically with 1 N hydrochloric acid (consumption=a mL) while stirring... following titration method: principles of method Dimethyl dicarbonate (DMDC) is mixed with excess diisobutylamine with which it reacts quantitatively. The excess amine is backtitrated with acid. apparatus...

  2. 21 CFR 172.133 - Dimethyl dicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the reaction mixture potentiometrically with 1 N hydrochloric acid (consumption=a mL) while stirring... following titration method: principles of method Dimethyl dicarbonate (DMDC) is mixed with excess diisobutylamine with which it reacts quantitatively. The excess amine is backtitrated with acid. apparatus...

  3. Skin findings in newborns

    MedlinePlus

    Newborn skin characteristics; Infant skin characteristics; Neonatal care - skin ... the first few weeks of the baby's life. Newborn skin will vary, depending on the length of the pregnancy. Premature infants have thin, transparent skin. The skin of a ...

  4. Sulfoxide-Based Enantioselective Nazarov Cyclization: Divergent Syntheses of (+)-Isopaucifloral F, (+)-Quadrangularin A, and (+)-Pallidol.

    PubMed

    Tang, Mei-Lin; Peng, Peng; Liu, Zheng-Yu; Zhang, Jian; Yu, Jian-Ming; Sun, Xun

    2016-10-01

    The synthesis of enantiomerically pure 3-aryl substituted indanones is developed using an enantioselective sulfoxide-based Knoevenagel condensation/Nazarov cyclization procedure. After the reductive desulfonation of the methyl para-tolyl sulfoxide-containing chiral auxiliary under mild conditions, selected enantiomerically pure indanone is used for the divergent total syntheses of three resveratrol natural products (+)-isopaucifloral F, (+)-quadrangularin A, and (+)-pallidol. PMID:27490335

  5. Sulfoxide-Directed Metal-Free ortho-Propargylation of Aromatics and Heteroaromatics.

    PubMed

    Eberhart, Andrew J; Shrives, Harry J; Álvarez, Estela; Carrër, Amandine; Zhang, Yuntong; Procter, David J

    2015-05-11

    A sulfoxide-directed, metal-free ortho-propargylation of aromatics and heteroaromatics exploits intermolecular delivery of a propargyl nucleophile to sulfur followed by an intramolecular relay to carbon. The operationally simple cross-coupling procedure is general, regiospecific with regard to the propargyl nucleophile, and shows complete selectivity for products of ortho-propargylation over allenylation. The use of secondary propargyl silanes allows metal-free ortho-coupling to form carbon-carbon bonds between aromatic and heteroaromatic rings and secondary propargylic centres. The 'safety-catch' nature of the sulfoxide directing group is illustrated in a selective, iterative double cross-coupling process. The products of propargylation are versatile intermediates and they have been readily converted into substituted benzothiophenes.

  6. Sulfoxide-Directed Metal-Free ortho-Propargylation of Aromatics and Heteroaromatics

    PubMed Central

    Eberhart, Andrew J; Shrives, Harry J; Álvarez, Estela; Carrër, Amandine; Zhang, Yuntong; Procter, David J

    2015-01-01

    A sulfoxide-directed, metal-free ortho-propargylation of aromatics and heteroaromatics exploits intermolecular delivery of a propargyl nucleophile to sulfur followed by an intramolecular relay to carbon. The operationally simple cross-coupling procedure is general, regiospecific with regard to the propargyl nucleophile, and shows complete selectivity for products of ortho-propargylation over allenylation. The use of secondary propargyl silanes allows metal-free ortho-coupling to form carbon–carbon bonds between aromatic and heteroaromatic rings and secondary propargylic centres. The ‘safety-catch’ nature of the sulfoxide directing group is illustrated in a selective, iterative double cross-coupling process. The products of propargylation are versatile intermediates and they have been readily converted into substituted benzothiophenes. PMID:25752800

  7. C3-symmetric Ti(IV) triphenolate amino complexes as sulfoxidation catalysts with aqueous hydrogen peroxide.

    PubMed

    Mba, Myriam; Prins, Leonard J; Licini, Giulia

    2007-01-01

    [reaction: see text] The Ti(IV) complex 2c bearing a C3-symmetric triphenolate amine ligand is an air and moisture tolerant complex that efficiently catalyzes sulfoxidation reactions at room temperature without previous activation (catalyst loading down to 0.01%, TONs up to 8000, TOFs up to 1700 h-1, quantitative yields). Reactions were performed with aqueous hydrogen peroxide as oxidant, which adds value to the methodology from the environmental viewpoint.

  8. Mutagenicity of the cysteine S-conjugate sulfoxides of trichloroethylene and tetrachloroethylene in the Ames test.

    PubMed

    Irving, Roy M; Elfarra, Adnan A

    2013-04-01

    The nephrotoxicity and nephrocarcinogenicity of trichloroethylene (TCE) and tetrachloroethylene (PCE) are believed to be mediated primarily through the cysteine S-conjugate β-lyase-dependent bioactivation of the corresponding cysteine S-conjugate metabolites S-(1,2-dichlorovinyl)-l-cysteine (DCVC) and S-(1,2,2-trichlorovinyl)-l-cysteine (TCVC), respectively. DCVC and TCVC have previously been demonstrated to be mutagenic by the Ames Salmonella mutagenicity assay, and reduction in mutagenicity was observed upon treatment with the β-lyase inhibitor aminooxyacetic acid (AOAA). Because DCVC and TCVC can also be bioactivated through sulfoxidation to yield the potent nephrotoxicants S-(1,2-dichlorovinyl)-l-cysteine sulfoxide (DCVCS) and S-(1,2,2-trichlorovinyl)-l-cysteine sulfoxide (TCVCS), respectively, the mutagenic potential of these two sulfoxides was investigated using the Ames Salmonella typhimurium TA100 mutagenicity assay. The results show both DCVCS and TCVCS were mutagenic, and TCVCS exhibited 3-fold higher mutagenicity than DCVCS. However, DCVCS and TCVCS mutagenic activity was approximately 700-fold and 30-fold lower than DCVC and TCVC, respectively. DCVC and DCVCS appeared to induce toxicity in TA100, as evidenced by increased microcolony formation and decreased mutant frequency above threshold concentrations. TCVC and TCVCS were not toxic in TA100. The toxic effects of DCVC limited the sensitivity of TA100 to DCVC mutagenic effects and rendered it difficult to investigate the effects of AOAA on DCVC mutagenic activity. Collectively, these results suggest that DCVCS and TCVCS exerted a definite but weak mutagenicity in the TA100 strain. Therefore, despite their potent nephrotoxicity, DCVCS and TCVCS are not likely to play a major role in DCVC or TCVC mutagenicity in this strain.

  9. Enantioselective synthesis of the novel chiral sulfoxide derivative as a glycogen synthase kinase 3beta inhibitor.

    PubMed

    Saitoh, Morihisa; Kunitomo, Jun; Kimura, Eiji; Yamano, Toru; Itoh, Fumio; Kori, Masakuni

    2010-09-01

    Glycogen synthase kinase 3beta (GSK-3beta) inhibitors are expected to be attractive therapeutic agents for the treatment of Alzheimer's disease (AD). Recently we discovered sulfoxides (S)-1 as a novel GSK-3beta inhibitor having in vivo efficacy. We investigated practical asymmetric preparation methods for the scale-up synthesis of (S)-1. The highly enantioselective synthesis of (S)-1 (94% ee) was achieved by titanium-mediated oxidation with D-(-)-diethyl tartrate on gram scale.

  10. Full functionalization of the imidazole scaffold by selective metalation and sulfoxide/magnesium exchange.

    PubMed

    Sämann, Christoph; Coya, Estibaliz; Knochel, Paul

    2014-01-27

    A simple, flexible, and straightforward method for the functionalization of all the positions of the imidazole heterocycle through regioselective arylations, allylations, acylations, and additions to aldehydes is disclosed. Starting from the readily available key imidazole 1, highly functionalized imidazole derivatives have been synthesized in a regioselective manner from directed metalations and a sulfoxide/magnesium exchange. Moreover, the selective N3-alkylation followed by deprotection of N1 (trans-N-alkylation) allows the regioselective N-alkylation of complex imidazoles.

  11. Oily skin

    MedlinePlus

    ... keep your skin clean using warm water and soap, or a soapless cleanser. Clean your face with astringent pads if frequent face washing causes irritation. Use only water-based or oil-free cosmetics if you have oily skin. Your ...

  12. Determination of the impurities in drug products containing montelukast and in silico/in vitro genotoxicological assessments of sulfoxide impurity.

    PubMed

    Emerce, Esra; Cok, Ismet; Degim, I Tuncer

    2015-10-14

    Impurities affecting safety, efficacy, and quality of pharmaceuticals are of increasing concern for regulatory agencies and pharmaceutical industries, since genotoxic impurities are understood to play important role in carcinogenesis. The study aimed to analyse impurities of montelukast chronically used in asthma theraphy and perform genotoxicological assessment considering regulatory approaches. Impurities (sulfoxide, cis-isomer, Michael adducts-I&II, methylketone, methylstyrene) were quantified using RP-HPLC analysis on commercial products available in Turkish market. For sulfoxide impurity, having no toxicity data and found to be above the qualification limit, in silico mutagenicity prediction analysis, miniaturized bacterial gene mutation test, mitotic index determination and in vitro chromosomal aberration test w/wo metabolic activation system were conducted. In the analysis of different batches of 20 commercial drug products from 11 companies, only sulfoxide impurity exceeded qualification limit in pediatric tablets from 2 companies and in adult tablets from 7 companies. Leadscope and ToxTree programs predicted sulfoxide impurity as nonmutagenic. It was also found to be nonmutagenic in Ames MPF Penta I assay. Sulfoxide impurity was dose-dependent cytotoxic in human peripheral lymphocytes, however, it was found to be nongenotoxic. It was concluded that sulfoxide impurity should be considered as nonmutagenic and can be classified as ordinary impurity according to guidelines. PMID:26205398

  13. Synthesis and Antiproliferative Activities of Benzimidazole-Based Sulfide and Sulfoxide Derivatives

    PubMed Central

    Gaballah, Samir T.; El-Nezhawy, Ahmed O. H.; Amer, Hassan; Ali, Mamdouh Moawad; Mahmoud, Abeer Essam El-Din; Hofinger-Horvath, Andreas

    2016-01-01

    The design, synthesis, and in vitro antiproliferative activity of a novel series of sulfide (4a–i) and sulfoxide (5a–h) derivatives of benzimidazole, in which different aromatic and heteroaromatic acetamides are linked to benzimidazole via sulfide (4a–i) and sulfoxide (5a–h) linker, are reported and the structure-activity relationship is discussed. The new derivatives were prepared by coupling 2-(mercaptomethyl)benzimidazole with 2-bromo-N-(substituted) acetamides in dry acetone in the presence of anhydrous potassium carbonate. With very few exceptions, all of the synthesized compounds showed varying antiprolific activities against HepG2, MCF-7, and A549 cell lines. Compound 5a was very similar in potency to doxorubicin as an anticancer drug, with IC50 values 4.1 ± 0.5, 4.1 ± 0.5, and 5.0 ± 0.6 µg/mL versus 4.2 ± 0.5, 4.9 ± 0.6, and 6.1 ± 0.6 µg/mL against HepG2, MCF-7, and A549 cell lines, respectively. In contrast, none of the compounds showed activity against human prostate PC3 cancer cells. Additionally, the sulfoxide derivatives were more potent than the corresponding sulfides. PMID:27110495

  14. Studies of a novel cysteine sulfoxide lyase from Petiveria alliacea: the first heteromeric alliinase.

    PubMed

    Musah, Rabi A; He, Quan; Kubec, Roman; Jadhav, Abhijit

    2009-11-01

    A novel alliinase (EC 4.4.1.4) was detected and purified from the roots of the Amazonian medicinal plant Petiveria alliacea. The isolated enzyme is a heteropentameric glycoprotein composed of two alpha-subunits (68.1 kD each), one beta-subunit (56.0 kD), one gamma-subunit (24.8 kD), and one delta-subunit (13.9 kD). The two alpha-subunits are connected by a disulfide bridge, and both alpha- and beta-subunits are glycosylated. The enzyme has an isoelectric point of 4.78 and pH and temperature optima of 8.0 and approximately 52 degrees C, respectively. Its activation energy with its natural substrate S-benzyl-l-cysteine sulfoxide is 64.6 kJ mol(-1). Kinetic studies showed that both K(m) and V(max) vary as a function of substrate structure, with the most preferred substrates being the naturally occurring P. alliacea compounds S-benzyl-l-cysteine sulfoxide and S-2-hydroxyethyl-l-cysteine sulfoxide. The alliinase reacts with these substrates to produce S-benzyl phenylmethanethiosulfinate and S-(2-hydroxyethyl) 2-hydroxyethanethiosulfinate, respectively.

  15. Corynebacterium diphtheriae methionine sulfoxide reductase a exploits a unique mycothiol redox relay mechanism.

    PubMed

    Tossounian, Maria-Armineh; Pedre, Brandán; Wahni, Khadija; Erdogan, Huriye; Vertommen, Didier; Van Molle, Inge; Messens, Joris

    2015-05-01

    Methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in proteins and play a pivotal role in cellular redox signaling. We have unraveled the redox relay mechanisms of methionine sulfoxide reductase A of the pathogen Corynebacterium diphtheriae (Cd-MsrA) and shown that this enzyme is coupled to two independent redox relay pathways. Steady-state kinetics combined with mass spectrometry of Cd-MsrA mutants give a view of the essential cysteine residues for catalysis. Cd-MsrA combines a nucleophilic cysteine sulfenylation reaction with an intramolecular disulfide bond cascade linked to the thioredoxin pathway. Within this cascade, the oxidative equivalents are transferred to the surface of the protein while releasing the reduced substrate. Alternatively, MsrA catalyzes methionine sulfoxide reduction linked to the mycothiol/mycoredoxin-1 pathway. After the nucleophilic cysteine sulfenylation reaction, MsrA forms a mixed disulfide with mycothiol, which is transferred via a thiol disulfide relay mechanism to a second cysteine for reduction by mycoredoxin-1. With x-ray crystallography, we visualize two essential intermediates of the thioredoxin relay mechanism and a cacodylate molecule mimicking the substrate interactions in the active site. The interplay of both redox pathways in redox signaling regulation forms the basis for further research into the oxidative stress response of this pathogen.

  16. Overexpression of methionine-R-sulfoxide reductases has no influence on fruit fly aging

    PubMed Central

    Shchedrina, Valentina A.; Vorbrüggen, Gerd; Cheon Lee, Byung; Kim, Hwa-Young; Kabil, Hadise; Harshman, Lawrence G.; Gladyshev, Vadim N.

    2009-01-01

    Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine residues in proteins. This function implicated Msrs in antioxidant defense and the regulation of aging. There are two known Msr types in animals: MsrA specific for the reduction of methionine-S-sulfoxide, and MsrB that catalyzes the reduction of methionine-R-sulfoxide. In a previous study, overexpression of MsrA in the nervous system of Drosophila was found to extend lifespan by 70%. Overexpression of MsrA in yeast also extended lifespan, whereas MsrB overexpression did so only under calorie restriction conditions. The effect of MsrB overexpression on lifespan has not yet been characterized in any animal model systems. Here, the GAL4-UAS binary system was used to drive overexpression of cytosolic Drosophila MsrB and mitochondrial mouse MsrB2 in whole body, fatbody, and the nervous system of flies. In contrast to MsrA, MsrB overexpression had no consistent effect on the lifespan of fruit flies on both corn meal and sugar yeast diets. Physical activity, fecundity, and stress resistance were also similar in MsrB-overexpressing and control flies. Thus, MsrA and MsrB, the two proteins with identical function in antioxidant protein repair, have different effects on aging in fruit flies. PMID:19409408

  17. Experimental and theoretical proton affinities of methionine, methionine sulfoxide and their N- and C-terminal derivatives

    NASA Astrophysics Data System (ADS)

    Lioe, Hadi; O'Hair, Richard A. J.; Gronert, Scott; Austin, Allen; Reid, Gavin E.

    2007-11-01

    The proton affinities of methionine, methionine sulfoxide and their derivatives (methionine methyl ester, methionine sulfoxide methyl ester, methionine methyl amide, methionine sulfoxide methyl amide, N-acetyl methionine, N-acetyl methionine sulfoxide, N-acetyl methionine methyl ester, N-acetyl methionine sulfoxide methyl ester, N-acetyl methionine methyl amide and N-acetyl methionine sulfoxide methyl amide) were experimentally determined using the kinetic method, in which proton bound dimers formed via electrospray ionization (ESI) were subjected to collision induced dissociation (CID) in a triple quadrupole mass spectrometer. In addition, theoretical calculations carried out at the MP2/6-311 + G(2d,p)//B3LYP/6-31 + G(d,p) level of theory to determine the global minima of the neutral and protonated species of all derivatives studied, were used to predict theoretical proton affinities. The density function theory calculations not only support the experimental proton affinities, but also provide structural insights into the types of hydrogen bonding that stabilize the neutral and protonated methionine or methionine sulfoxide derivatives. Comparison of the proton affinities of the various methionine and methionine sulfoxide derivatives reveals that: (i) oxidation of methionine derivatives to methionine sulfoxide derivatives results in an increase in proton affinity due to higher intrinsic proton affinity and an increase in the ring size formed through charge complexation of the sulfoxide group, which allows more efficient hydrogen bonding compared to the sulfide group; (ii) C-terminal modification by methyl esterification or methyl amidation increases the proton affinity in the order of methyl amide > methyl ester > carboxylic acid due to improved charge stabilization; (iii) N-terminal modification by N-acetylation decreases proton affinity of the derivatives due to lower intrinsic proton affinity of the N-acetyl group as well as due to stabilization of the attached

  18. Skin graft

    MedlinePlus

    ... caused a large amount of skin loss Burns Cosmetic reasons or reconstructive surgeries where there has been ... Smoking increases your chance of problems such as slow healing. Ask your doctor or nurse for help ...

  19. Your Skin

    MedlinePlus

    ... Butterflies? Read This Chloe & Nurb Meet The Brain (Movie) Quiz: Do You Need a Flu Shot? Got ... For Kids For Parents MORE ON THIS TOPIC Movie: Skin Acne Myths Blisters, Calluses, and Corns Fungal ...

  20. Skin Infections

    MedlinePlus

    ... nearby What to Do Teach kids not to pop, pick at, or scratch pimples, pus-filled infections, ... Your Skin Abscess Impetigo Ringworm Cellulitis Should I Pop My Pimple? Tips for Taking Care of Your ...

  1. Skin Cancer

    MedlinePlus

    ... States. The two most common types are basal cell cancer and squamous cell cancer. They usually form on the head, face, ... If not treated, some types of skin cancer cells can spread to other tissues and organs. Treatments ...

  2. Skin Cancer

    MedlinePlus

    ... exposure to ultraviolet light, which is found in sunlight and in lights used in tanning salons. What ... the safe-sun guidelines. 1. Avoid the sun. Sunlight damages your skin. The sun is strongest during ...

  3. Skin Cancer

    MedlinePlus

    ... Review. 17 Wu S, Han J, Laden F, Qureshi AA. Long-term ultraviolet flux, other potential risk factors, ... MR, Shive ML, Chren MM, Han J, Qureshi AA, Linos E. Indoor tanning and non-melanoma skin ...

  4. Hyperelastic skin

    MedlinePlus

    ... is most often seen in people who have Ehlers-Danlos syndrome. People with this disorder have very elastic skin. ... any member of your family been diagnosed with Ehlers-Danlos syndrome? What other symptoms are present? Alternative Names India ...

  5. Skin - clammy

    MedlinePlus

    ... of clammy skin include: Anxiety attack Heart attack Heat exhaustion Internal bleeding Low blood oxygen levels Sepsis (body-wide infection) Severe allergic reaction (anaphylaxis) Severe pain Shock (low blood pressure)

  6. Senescent Skin

    PubMed Central

    Kushniruk, William

    1974-01-01

    The cutaneous surface is continually influenced by aging and environmental factors. A longer life span is accompanied by an increase in the frequency of problems associated with aging skin. Although most of these changes and lesions are not life threatening, the premalignant lesions must be recognized and treated. The common aging and actinic skin changes are discussed and appropriate management is described. ImagesFig. 1Fig. 2Fig. 3Fig. 4 PMID:20469067

  7. Neuromodulators for Aging Skin

    MedlinePlus

    ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ...

  8. Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters.

    PubMed

    Guadayol, Marta; Cortina, Montserrat; Guadayol, Josep M; Caixach, Josep

    2016-04-01

    Sales of bottled drinking water have shown a large growth during the last two decades due to the general belief that this kind of water is healthier, its flavour is better and its consumption risk is lower than that of tap water. Due to the previous points, consumers are more demanding with bottled mineral water, especially when dealing with its organoleptic properties, like taste and odour. This work studies the compounds that can generate obnoxious smells, and that consumers have described like swampy, rotten eggs, sulphurous, cooked vegetable or cabbage. Closed loop stripping analysis (CLSA) has been used as a pre-concentration method for the analysis of off-flavour compounds in water followed by identification and quantification by means of GC-MS. Several bottled water with the aforementioned smells showed the presence of volatile dimethyl selenides and dimethyl sulphides, whose concentrations ranged, respectively, from 4 to 20 ng/L and from 1 to 63 ng/L. The low odour threshold concentrations (OTCs) of both organic selenide and sulphide derivatives prove that several objectionable odours in bottled waters arise from them. Microbial loads inherent to water sources, along with some critical conditions in water processing, could contribute to the formation of these compounds. There are few studies about volatile organic compounds in bottled drinking water and, at the best of our knowledge, this is the first study reporting the presence of dimethyl selenides and dimethyl sulphides causing odour problems in bottled waters. PMID:26852288

  9. Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters.

    PubMed

    Guadayol, Marta; Cortina, Montserrat; Guadayol, Josep M; Caixach, Josep

    2016-04-01

    Sales of bottled drinking water have shown a large growth during the last two decades due to the general belief that this kind of water is healthier, its flavour is better and its consumption risk is lower than that of tap water. Due to the previous points, consumers are more demanding with bottled mineral water, especially when dealing with its organoleptic properties, like taste and odour. This work studies the compounds that can generate obnoxious smells, and that consumers have described like swampy, rotten eggs, sulphurous, cooked vegetable or cabbage. Closed loop stripping analysis (CLSA) has been used as a pre-concentration method for the analysis of off-flavour compounds in water followed by identification and quantification by means of GC-MS. Several bottled water with the aforementioned smells showed the presence of volatile dimethyl selenides and dimethyl sulphides, whose concentrations ranged, respectively, from 4 to 20 ng/L and from 1 to 63 ng/L. The low odour threshold concentrations (OTCs) of both organic selenide and sulphide derivatives prove that several objectionable odours in bottled waters arise from them. Microbial loads inherent to water sources, along with some critical conditions in water processing, could contribute to the formation of these compounds. There are few studies about volatile organic compounds in bottled drinking water and, at the best of our knowledge, this is the first study reporting the presence of dimethyl selenides and dimethyl sulphides causing odour problems in bottled waters.

  10. Biogenic production of dimethyl sulfide: Krill grazing

    SciTech Connect

    Daly, K.L.; DiTullio, G.R. )

    1993-01-01

    Dimethyl sulfide (DMS), a dominant sulfur compound in sea water, is a possible precursor for cloud condensation nuclei in the atmosphere and may influence global climate. The primary source of DMS is phytoplankton, but the mechanisms remain uncertain, and concentrations of DMS in the ocean vary spatially and temporally. Laboratory studies suggest zooplankton grazing may be an important process leading to the formation of DMS in the ocean. This paper describes ocean studies which examine the suggestion that grazing by krill may be a significant source for DMS production in the antarctic coastal region. 11 refs., 2 figs.

  11. Functioning methionine sulfoxide reductases A and B are present in human epidermal melanocytes in the cytosol and in the nucleus

    SciTech Connect

    Schallreuter, Karin U.; Chavan, Bhaven; Gillbro, Johanna M.

    2006-03-31

    Oxidation of methionine residues by reactive oxygen (ROS) in protein structures leads to the formation of methionine sulfoxide which can consequently lead to a plethora of impaired functionality. The generation of methionine sulfoxide yields ultimately a diastereomeric mixture of the S and R sulfoxides. So far two distinct enzyme families have been identified. MSRA reduces methionine S-sulfoxide, while MSRB reduces the R-diastereomer. It has been shown that these enzymes are involved in regulation of protein function and in elimination of ROS via reversible methionine formation besides protein repair. Importantly, both enzymes require coupling to the NADPH/thioredoxin reductase/thioredoxin electron donor system. In this report, we show for First time the expression and function of both sulfoxide reductases together with thioredoxin reductase in the cytosol as well as in the nucleus of epidermal melanocytes which are especially sensitive to ROS. Since this cell resides in the basal layer of the epidermis and its numbers and functions are reduced upon ageing and for instance also in depigmentation processes, we believe that this discovery adds an intricate repair mechanism to melanocyte homeostasis and survival.

  12. A Methionine Residue Promotes Hyperoxidation of the Catalytic Cysteine of Mouse Methionine Sulfoxide Reductase A.

    PubMed

    Kim, Geumsoo; Levine, Rodney L

    2016-06-28

    Methionine sulfoxide reductase A (msrA) reduces methionine sulfoxide in proteins back to methionine. Its catalytic cysteine (Cys72-SH) has a low pKa that facilitates oxidation by methionine sulfoxide to cysteine sulfenic acid. If the catalytic cycle proceeds efficiently, the sulfenic acid is reduced back to cysteine at the expense of thioredoxin. However, the sulfenic acid is vulnerable to "irreversible" oxidation to cysteine sulfinic acid that inactivates msrA (hyperoxidation). We observed that human msrA is resistant to hyperoxidation while mouse msrA is readily hyperoxidized by micromolar concentrations of hydrogen peroxide. We investigated the basis of this difference in susceptibility to hyperoxidation and established that it is controlled by the presence or absence of a Met residue in the carboxyl-terminal domain of the enzyme, Met229. This residue is Val in human msrA, and when it was mutated to Met, human msrA became sensitive to hyperoxidation. Conversely, mouse msrA was rendered insensitive to hyperoxidation when Met229 was mutated to Val or one of five other residues. Positioning of the methionine at residue 229 is not critical, as hyperoxidation occurred as long as the methionine was located within the group of 14 carboxyl-terminal residues. The carboxyl domain of msrA is known to be flexible and to have access to the active site, and Met residues are known to form stable, noncovalent bonds with aromatic residues through interaction of the sulfur atom with the aromatic ring. We propose that Met229 forms such a bond with Trp74 at the active site, preventing formation of a protective sulfenylamide with Cys72 sulfenic acid. As a consequence, the sulfenic acid is available for facile, irreversible oxidation to cysteine sulfinic acid. PMID:27259041

  13. Formation of methionine sulfoxide during glycoxidation and lipoxidation of ribonuclease A.

    PubMed

    Brock, Jonathan W C; Ames, Jennifer M; Thorpe, Suzanne R; Baynes, John W

    2007-01-15

    Chemical modification of proteins by reactive oxygen species affects protein structure, function and turnover during aging and chronic disease. Some of this damage is direct, for example by oxidation of amino acids in protein by peroxide or other reactive oxygen species, but autoxidation of ambient carbohydrates and lipids amplifies both the oxidative and chemical damage to protein and leads to formation of advanced glycoxidation and lipoxidation end-products (AGE/ALEs). In previous work, we have observed the oxidation of methionine during glycoxidation and lipoxidation reactions, and in the present work we set out to determine if methionine sulfoxide (MetSO) in protein was a more sensitive indicator of glycoxidative and lipoxidative damage than AGE/ALEs. We also investigated the sites of methionine oxidation in a model protein, ribonuclease A (RNase), in order to determine whether analysis of the site specificity of methionine oxidation in proteins could be used to indicate the source of the oxidative damage, i.e. carbohydrate or lipid. We describe here the development of an LC/MS/MS for quantification of methionine oxidation at specific sites in RNase during glycoxidation or lipoxidation by glucose or arachidonate, respectively. Glycoxidized and lipoxidized RNase were analyzed by tryptic digestion, followed by reversed phase HPLC and mass spectrometric analysis to quantify methionine and methionine sulfoxide containing peptides. We observed that: (1) compared to AGE/ALEs, methionine sulfoxide was a more sensitive biomarker of glycoxidative or lipoxidative damage to proteins; (2) regardless of oxidizable substrate, the relative rate of oxidation of methionine residues in RNase was Met29>Met30>Met13, with Met79 being resistant to oxidation; and (3) arachidonate produced a significantly greater yield of MetSO, compared to glucose. The methods developed here should be useful for assessing a protein's overall exposure to oxidative stress from a variety of sources in

  14. Process for producing dimethyl ether from synthesis gas

    DOEpatents

    Pierantozzi, R.

    1985-06-04

    This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

  15. Process for producing dimethyl ether form synthesis gas

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

  16. Dimethyl fumarate modulates antioxidant and lipid metabolism in oligodendrocytes.

    PubMed

    Huang, He; Taraboletti, Alexandra; Shriver, Leah P

    2015-08-01

    Oxidative stress contributes to pathology associated with inflammatory brain disorders and therapies that upregulate antioxidant pathways may be neuroprotective in diseases such as multiple sclerosis. Dimethyl fumarate, a small molecule therapeutic for multiple sclerosis, activates cellular antioxidant signaling pathways and may promote myelin preservation. However, it is still unclear what mechanisms may underlie this neuroprotection and whether dimethyl fumarate affects oligodendrocyte responses to oxidative stress. Here, we examine metabolic alterations in oligodendrocytes treated with dimethyl fumarate by using a global metabolomic platform that employs both hydrophilic interaction liquid chromatography-mass spectrometry and shotgun lipidomics. Prolonged treatment of oligodendrocytes with dimethyl fumarate induces changes in citric acid cycle intermediates, glutathione, and lipids, indicating that this compound can directly impact oligodendrocyte metabolism. These metabolic alterations are also associated with protection from oxidant challenge. This study provides insight into the mechanisms by which dimethyl fumarate could preserve myelin integrity in patients with multiple sclerosis. PMID:25967672

  17. A general and expeditious one-pot synthesis of sulfoxides in high optical purity from norephedrine-derived sulfamidites.

    PubMed

    García Ruano, José L; Alemparte, Carlos; Aranda, M Teresa; Zarzuelo, María M

    2003-01-01

    A general and simple procedure for preparing any kind of enantiomerically enriched sulfoxide starting from norephedrine-derived N-benzyloxycarbonylsulfamidite 3a is reported. After one-pot reaction of 3a with RMgX, HBF(4), and R'MgX, a variety of sulfoxides 6 are obtained in ee usually higher than 93% and isolated yields ranging between 50 and 78%. The obtained configuration is tunable by simply electing the order of the addition of the reagents. [reaction--see text

  18. A DFT-D study on the electronic and photophysical properties of ruthenium (II) complex with a chelating sulfoxide group

    NASA Astrophysics Data System (ADS)

    Li, Huifang; Zhang, Lisheng; Lin, Hui; Fan, Xiaolin

    2014-06-01

    Electronic and photophysical properties of [Ru(bpy)2(OSO)]+ (bpy = 2,2‧-bipyridine; OSO = methylsulfinylbenzoate) were examined theoretically to better understand the differences between S- and O-linked ruthenium sulfoxide complexes. It is found that the strength of Ru-O1 linkage is significantly larger than that of Ru-S linkage, which makes the charge transfer amount from surrounding ligands to central Ru decreased. The energy gap is closed due to the highest occupied molecular orbital energy increases to a larger extent than the lowest unoccupied molecular orbital energy. Thereby, red shifted absorption and emission maxima in such photochromic ruthenium sulfoxide complexes can be explained.

  19. Methionine sulfoxide reductase A deficiency exacerbates progression of kidney fibrosis induced by unilateral ureteral obstruction.

    PubMed

    Kim, Jee In; Noh, Mi Ra; Kim, Ki Young; Jang, Hee-Seong; Kim, Hwa-Young; Park, Kwon Moo

    2015-12-01

    Methionine sulfoxide reductase A (MsrA), which stereospecifically catalyzes the reduction of methionine-S-sulfoxide, is an important reactive oxygen species (ROS) scavenger. Tissue fibrosis is a maladaptive repair process following injury, associated with oxidative stress. In this study, we investigated the role of MsrA in unilateral ureteral obstruction (UUO)-induced kidney fibrosis and its underlying mechanisms by using MsrA gene-deleted mice (MsrA(-/-)). MsrA deletion increased collagen deposition in the interstitium and the expression of collagen III and α-smooth muscle actin in the UUO kidneys, indicating that MsrA deficiency exacerbated the progression of UUO-induced kidney fibrosis. UUO reduced the kidney expression of MsrA, MsrB1, and MsrB2, thereby decreasing MsrA and MsrB activity. UUO increased hydrogen peroxide and lipid peroxidation levels and the ratio of oxidized glutathione (GSSG) to total glutathione (GSH) in the kidneys. The UUO-induced elevations in the levels of these oxidative stress markers and leukocyte markers were much higher in the MsrA(-/-) than in the MsrA(+/+) kidneys, the latter suggesting that the exacerbated kidney fibrosis in MsrA(-/-) mice was associated with enhanced inflammatory responses. Collectively, our data suggest that MsrA plays a protective role in the progression of UUO-induced kidney fibrosis via suppression of fibrotic responses caused by oxidative stress and inflammation.

  20. Protective roles of methionine-R-sulfoxide reductase against stresses in Schizosaccharomyces pombe.

    PubMed

    Jo, Hannah; Cho, Young-Wook; Ji, Sun-Young; Kang, Ga-Young; Lim, Chang-Jin

    2014-01-01

    The Schizosaccharomyces pombe msrB(+) gene encoding methionine-R-sulfoxide reductase (MsrB) was cloned into the shuttle vector pRS316 to generate the recombinant plasmid pFMetSO. The msrB(+) mRNA level was significantly increased in the S. pombe cells harboring pFMetSO, indicating that the cloned msrB(+) gene is functioning. In the presence of 0.1 mM L-methionine-(R,S)-sulfoxide, the S. pombe cells harboring pFMetSO could grow normally but the growth of the vector control cells was almost arrested. The S. pombe cells harboring pFMetSO exhibited the enhanced growth on the minimal medium plates with stress-inducing agents, such as hydrogen peroxide, superoxide radical-generating menadione (MD), nitric oxide (NO)-generating sodium nitroprusside (SNP), and cadmium (Cd), when compared with the vector control cells. They also gave rise to the enhanced growth at the high incubation temperature of 37 °C than the vector control cells. The S. pombe cells harboring pFMetSO contained lower reactive oxygen species (ROS) and higher total glutathione (GSH) levels than the vector control cells. In brief, the S. pombe MsrB plays a protective role against oxidative, nitrosative, and thermal stresses, and is involved in diminishing intracellular ROS level.

  1. Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity

    PubMed Central

    Châtelain, Emilie; Satour, Pascale; Laugier, Edith; Ly Vu, Benoit; Payet, Nicole; Rey, Pascal; Montrichard, Françoise

    2013-01-01

    Seeds are in a natural oxidative context leading to protein oxidation. Although inevitable for proper progression from maturation to germination, protein oxidation at high levels is detrimental and associated with seed aging. Oxidation of methionine to methionine sulfoxide is a common form of damage observed during aging in all organisms. This damage is reversible through the action of methionine sulfoxide reductases (MSRs), which play key roles in lifespan control in yeast and animal cells. To investigate the relationship between MSR capacity and longevity in plant seeds, we first used two Medicago truncatula genotypes with contrasting seed quality. After characterizing the MSR family in this species, we analyzed gene expression and enzymatic activity in immature and mature seeds exhibiting distinct quality levels. We found a very strong correlation between the initial MSR capacities in different lots of mature seeds of the two genotypes and the time to a drop in viability to 50% after controlled deterioration. We then analyzed seed longevity in Arabidopsis thaliana lines, in which MSR gene expression has been genetically altered, and observed a positive correlation between MSR capacity and longevity in these seeds as well. Based on our data, we propose that the MSR repair system plays a decisive role in the establishment and preservation of longevity in plant seeds. PMID:23401556

  2. Structural Insights into Interaction between Mammalian Methionine Sulfoxide Reductase B1 and Thioredoxin

    PubMed Central

    Dobrovolska, Olena; Rychkov, Georgy; Shumilina, Elena; Nerinovski, Kirill; Schmidt, Alexander; Shabalin, Konstantin; Yakimov, Alexander; Dikiy, Alexander

    2012-01-01

    Maintenance of the cellular redox balance has vital importance for correcting organism functioning. Methionine sulfoxide reductases (Msrs) are among the key members of the cellular antioxidant defence system. To work properly, methionine sulfoxide reductases need to be reduced by their biological partner, thioredoxin (Trx). This process, according to the available kinetic data, represents the slowest step in the Msrs catalytic cycle. In the present paper, we investigated structural aspects of the intermolecular complex formation between mammalian MsrB1 and Trx. NMR spectroscopy and biocomputing were the two mostly used through the research approaches. The formation of NMR detectable MsrB1/Trx complex was monitored and studied in attempt to understand MsrB1 reduction mechanism. Using NMR data, molecular mechanics, protein docking, and molecular dynamics simulations, it was found that intermediate MsrB1/Trx complex is stabilized by interprotein β-layer. The complex formation accompanied by distortion of disulfide bond within MsrB1 facilitates the reduction of oxidized MsrB1 as it is evidenced by the obtained data. PMID:22505815

  3. Apratoxin H and apratoxin A sulfoxide from the Red Sea cyanobacterium Moorea producens.

    PubMed

    Thornburg, Christopher C; Cowley, Elise S; Sikorska, Justyna; Shaala, Lamiaa A; Ishmael, Jane E; Youssef, Diaa T A; McPhail, Kerry L

    2013-09-27

    Cultivation of the marine cyanobacterium Moorea producens, collected from the Nabq Mangroves in the Gulf of Aqaba (Red Sea), led to the isolation of new apratoxin analogues apratoxin H (1) and apratoxin A sulfoxide (2), together with the known apratoxins A-C, lyngbyabellin B, and hectochlorin. The absolute configuration of these new potent cytotoxins was determined by chemical degradation, MS, NMR, and CD spectroscopy. Apratoxin H (1) contains pipecolic acid in place of the proline residue present in apratoxin A, expanding the known suite of naturally occurring analogues that display amino acid substitutions within the final module of the apratoxin biosynthetic pathway. The oxidation site of apratoxin A sulfoxide (2) was deduced from MS fragmentation patterns and IR data, and 2 could not be generated experimentally by oxidation of apratoxin A. The cytotoxicity of 1 and 2 to human NCI-H460 lung cancer cells (IC₅₀ = 3.4 and 89.9 nM, respectively) provides further insight into the structure-activity relationships in the apratoxin series. Phylogenetic analysis of the apratoxin-producing cyanobacterial strains belonging to the genus Moorea, coupled with the recently annotated apratoxin biosynthetic pathway, supports the notion that apratoxin production and structural diversity may be specific to their geographical niche.

  4. The Protein Oxidation Repair Enzyme Methionine Sulfoxide Reductase A Modulates Aβ Aggregation and Toxicity In Vivo

    PubMed Central

    Minniti, Alicia N.; Arrazola, Macarena S.; Bravo-Zehnder, Marcela; Ramos, Francisca; Inestrosa, Nibaldo C.

    2015-01-01

    Abstract Aims: To examine the role of the enzyme methionine sulfoxide reductase A-1 (MSRA-1) in amyloid-β peptide (Aβ)-peptide aggregation and toxicity in vivo, using a Caenorhabditis elegans model of the human amyloidogenic disease inclusion body myositis. Results: MSRA-1 specifically reduces oxidized methionines in proteins. Therefore, a deletion of the msra-1 gene was introduced into transgenic C. elegans worms that express the Aβ-peptide in muscle cells to prevent the reduction of oxidized methionines in proteins. In a constitutive transgenic Aβ strain that lacks MSRA-1, the number of amyloid aggregates decreases while the number of oligomeric Aβ species increases. These results correlate with enhanced synaptic dysfunction and mislocalization of the nicotinic acetylcholine receptor ACR-16 at the neuromuscular junction (NMJ). Innovation: This approach aims at modulating the oxidation of Aβ in vivo indirectly by dismantling the methionine sulfoxide repair system. The evidence presented here shows that the absence of MSRA-1 influences Aβ aggregation and aggravates locomotor behavior and NMJ dysfunction. The results suggest that therapies which boost the activity of the Msr system could have a beneficial effect in managing amyloidogenic pathologies. Conclusion: The absence of MSRA-1 modulates Aβ-peptide aggregation and increments its deleterious effects in vivo. Antioxid. Redox Signal. 22, 48–62. PMID:24988428

  5. Apratoxin H and Apratoxin A Sulfoxide from the Red Sea Cyanobacterium Moorea producens

    PubMed Central

    Thornburg, Christopher C.; Cowley, Elise S.; Sikorska, Justyna; Shaala, Lamiaa A.; Ishmael, Jane E.; Youssef, Diaa T.A.; McPhail, Kerry L.

    2014-01-01

    Cultivation of the marine cyanobacterium Moorea producens, collected from the Nabq Mangroves in the Gulf of Aqaba (Red Sea), led to the isolation of new apratoxin analogues, apratoxin H (1) and apratoxin A sulfoxide (2), together with the known apratoxins A-C, lyngbyabellin B and hectochlorin. The absolute configuration of these new potent cytotoxins was determined by chemical degradation, MS, NMR, and CD spectroscopy. Apratoxin H (1) contains pipecolic acid in place of the proline residue present in apratoxin A, expanding the known suite of naturally occurring analogues that display amino acid substitutions within the final module of the apratoxin biosynthetic pathway. The oxidation site of apratoxin A sulfoxide (2) was deduced from MS fragmentation patterns and IR data, and 2 could not be generated experimentally by oxidation of apratoxin A. The cytotoxicity of 1 and 2 to human NCI-H460 lung cancer cells (IC50 = 3.4 and 89.9 nM, respectively) provides further insight into the structure–activity relationships in the apratoxin series. Phylogenetic analysis of the apratoxin-producing cyanobacterial strains belonging to the genus Moorea, coupled with the recently annotated apratoxin biosynthetic pathway, supports the notion that apratoxin production and structural diversity may be specific to their geographical niche. PMID:24016099

  6. Evidence for the dimerization-mediated catalysis of methionine sulfoxide reductase A from Clostridium oremlandii.

    PubMed

    Lee, Eun Hye; Lee, Kitaik; Kwak, Geun-Hee; Park, Yeon Seung; Lee, Kong-Joo; Hwang, Kwang Yeon; Kim, Hwa-Young

    2015-01-01

    Clostridium oremlandii MsrA (CoMsrA) is a natively selenocysteine-containing methionine-S-sulfoxide reductase and classified into a 1-Cys type MsrA. CoMsrA exists as a monomer in solution. Herein, we report evidence that CoMsrA can undergo homodimerization during catalysis. The monomeric CoMsrA dimerizes in the presence of its substrate methionine sulfoxide via an intermolecular disulfide bond between catalytic Cys16 residues. The dimeric CoMsrA is resolved by the reductant glutaredoxin, suggesting the relevance of dimerization in catalysis. The dimerization reaction occurs in a concentration- and time-dependent manner. In addition, the occurrence of homodimer formation in the native selenoprotein CoMsrA is confirmed. We also determine the crystal structure of the dimeric CoMsrA, having the dimer interface around the two catalytic Cys16 residues. A central cone-shaped hole is present in the surface model of dimeric structure, and the two Cys16 residues constitute the base of the hole. Collectively, our biochemical and structural analyses suggest a novel dimerization-mediated mechanism for CoMsrA catalysis that is additionally involved in CoMsrA regeneration by glutaredoxin.

  7. Evaporation and skin penetration characteristics of mosquito repellent formulations

    SciTech Connect

    Reifenrath, W.G.; Hawkins, G.S.; Kurtz, M.S.

    1989-03-01

    Formulations of the mosquito repellent N,N-diethyl-3-methylbenzamide (deet) in combination with a variety of additives were developed to control repellent evaporation and percutaneous penetration. Deet was also formulated with the repellent dimethyl phthalate to study the interaction of the two compounds on the skin. The evaporation and penetration processes were evaluated on whole and split-thickness pig skin using radiolabeled repellents with an in vitro apparatus. Under essentially still air and air flow conditions, one of the deet formulations resulted in significantly reduced total evaporation and percutaneous penetration of deet as compared to unformulated repellent. When deet and dimethyl phthalate were combined, neither repellent affected the total amount of evaporation and penetration of the other compound. However, initial percutaneous penetration and evaporation rates were slightly less and decayed less rapidly than when both chemicals were tested separately at the same dose. These results indicated a degree of competition of the two compounds for the same avenues of loss.

  8. Development of specialty chemicals from dimethyl ether

    SciTech Connect

    Tartamella, T.L.; Lee, S.

    1996-12-31

    Dimethyl ether (DME) may be efficiently produced from coal-bases syngas in a high pressure, mechanically agitated slurry reactor. DME synthesis occurs in the liquid phase using a dual catalyst. By operating in a dual catalyst mode, DME may be converted from in-situ produced methanol resulting in higher methyl productivities and syngas conversions over methanol conversion alone. The feasibility of utilizing DME as a building block for more valuable specialty chemicals has been examined. A wide variety of petrochemicals may be produced from DME including light olefins, gasoline range hydrocarbons, oxygenates, and glycol precursors. These chemicals represent an important part of petroleum industries inventory of fine chemicals. Carbonylation, hydrocarbonylation, and oxidative dimerization are but a few of the reactions in which DME may undergo conversion. DME provides an additional route for the production of industrially important petrochemicals.

  9. How to Check Your Skin for Skin Cancer

    MedlinePlus

    ... Home Cancer Types Skin Cancer Skin Cancer Patient Skin Cancer Treatment Melanoma Treatment Merkel Cell Carcinoma Treatment Skin Cancer Prevention Skin Cancer Screening Health Professional Skin Cancer Treatment Melanoma Treatment Merkel Cell Carcinoma Treatment Skin Cancer ...

  10. Cutaneous skin tag

    MedlinePlus

    Skin tag; Acrochordon; Fibroepithelial polyp ... have diabetes. They are thought to occur from skin rubbing against skin. ... The tag sticks out of the skin and may have a short, narrow stalk connecting it to the surface of the skin. Some skin tags are as long as ...

  11. Copper(I)-Catalyzed Asymmetric Pinacolboryl Addition of N-Boc-imines Using a Chiral Sulfoxide-Phosphine Ligand.

    PubMed

    Wang, Ding; Cao, Peng; Wang, Bing; Jia, Tao; Lou, Yazhou; Wang, Min; Liao, Jian

    2015-05-15

    Highly efficient and enantioselective copper(I)-catalyzed pinacolboryl addition of N-Boc-imines is reported. By using a single chiral sulfoxide-(dialkyl)phosphine (SOP) ligand, both enantiomeric isomers of α-amino boronic esters were obtained through an achiral counteranion switch. PMID:25906191

  12. Enantiopure 1,4-diols and 1,4-aminoalcohols via stereoselective acyclic sulfoxide-sulfenate rearrangement.

    PubMed

    Fernández de la Pradilla, Roberto; Colomer, Ignacio; Ureña, Mercedes; Viso, Alma

    2011-05-01

    Treatment of acyclic α-hydroxy and α-tosylamino sulfinyl dienes with amines affords enantiopure 1,4-diol or 1,4-hydroxysulfonamide derivatives in good yields and diastereoselectivities. This one-pot procedure entails a conjugate addition that triggers a diastereoselective sulfoxide-sulfenate [2,3]-sigmatropic rearrangement.

  13. Methionine sulfoxide reductase A affects β-amyloid solubility and mitochondrial function in a mouse model of Alzheimer's disease.

    PubMed

    Moskovitz, Jackob; Du, Fang; Bowman, Connor F; Yan, Shirley S

    2016-03-15

    Accumulation of oxidized proteins, and especially β-amyloid (Aβ), is thought to be one of the common causes of Alzheimer's disease (AD). The current studies determine the effect of an in vivo methionine sulfoxidation of Aβ through ablation of the methionine sulfoxide reductase A (MsrA) in a mouse model of AD, a mouse that overexpresses amyloid precursor protein (APP) and Aβ in neurons. Lack of MsrA fosters the formation of methionine sulfoxide in proteins, and thus its ablation in the AD-mouse model will increase the formation of methionine sulfoxide in Aβ. Indeed, the novel MsrA-deficient APP mice (APP(+)/MsrAKO) exhibited higher levels of soluble Aβ in brain compared with APP(+) mice. Furthermore, mitochondrial respiration and the activity of cytochrome c oxidase were compromised in the APP(+)/MsrAKO compared with control mice. These results suggest that lower MsrA activity modifies Aβ solubility properties and causes mitochondrial dysfunction, and augmenting its activity may be beneficial in delaying AD progression.

  14. Regulation of Selenoproteins and Methionine Sulfoxide Reductases A and B1 by Age, Calorie Restriction, and Dietary Selenium in Mice

    PubMed Central

    Novoselov, Sergey V.; Kim, Hwa-Young; Hua, Deame; Lee, Byung Cheon; Astle, Clinton M.; Harrison, David E.; Friguet, Bertrand; Moustafa, Mohamed E.; Carlson, Bradley A.; Hatfield, Dolph L.

    2010-01-01

    Abstract Methionine residues are susceptible to oxidation, but this damage may be reversed by methionine sulfoxide reductases MsrA and MsrB. Mammals contain one MsrA and three MsrBs, including a selenoprotein MsrB1. Here, we show that MsrB1 is the major methionine sulfoxide reductase in liver of mice and it is among the proteins that are most easily regulated by dietary selenium. MsrB1, but not MsrA activities, were reduced with age, and the selenium regulation of MsrB1 was preserved in the aging liver, suggesting that MsrB1 could account for the impaired methionine sulfoxide reduction in aging animals. We also examined regulation of Msr and selenoprotein expression by a combination of dietary selenium and calorie restriction and found that, under calorie restriction conditions, selenium regulation was preserved. In addition, mice overexpressing a mutant form of selenocysteine tRNA reduced MsrB1 activity to the level observed in selenium deficiency, whereas MsrA activity was elevated in these animals. Finally, we show that selenium regulation in inbred mouse strains is preserved in an outbred aging model. Taken together, these findings better define dietary regulation of methionine sulfoxide reduction and selenoprotein expression in mice with regard to age, calorie restriction, dietary Se, and a combination of these factors. Antioxid. Redox Signal. 12, 829–838. PMID:19769460

  15. Strong intermolecular exciton couplings in solid-state circular dichroism of aryl benzyl sulfoxides.

    PubMed

    Padula, Daniele; Di Pietro, Sebastiano; Capozzi, Maria Annunziata M; Cardellicchio, Cosimo; Pescitelli, Gennaro

    2014-09-01

    A series of 13 enantiopure aryl benzyl sulfoxides () with different substituents on the two aromatic rings has been previously analyzed by means of electronic circular dichroism (CD) spectroscopy. Most of these compounds are crystalline and their X-ray structure is established. For almost one-half of the series, CD spectra measured in the solid state were quite different from those in acetonitrile solution. We demonstrate that the difference is due to strong exciton couplings between molecules packed closely together in the crystal. The computational approach consists of time-dependent density functional theory (TDDFT) calculations run on "dimers" composed of nearest neighbors found in the lattice. Solid-state CD spectra are well reproduced by the average of all possible pairwise terms. The relation between the crystal space group and conformation, and the appearance of solid-state CD spectra, is also discussed.

  16. A protective role of methionine-R-sulfoxide reductase against cadmium in Schizosaccharomyces pombe.

    PubMed

    Lim, Chang-Jin; Jo, Hannah; Kim, Kyunghoon

    2014-11-01

    The Schizosaccharomyces pombe cells harboring the methionine- R-sulfoxide reductase (MsrB)-overexpressing recombinant plasmid pFMetSO exhibited better growth than vector control cells, when shifted into fresh medium containing cadmium chloride (abbreviated as Cd). Although both groups of cells contained enhanced reactive oxygen species (ROS) and nitric oxide (NO) levels in the presence of Cd, ROS and NO levels were significantly lower in the S. pombe cells harboring pFMetSO than in vector control cells. Conversely, the S. pombe cells harboring pFMetSO possessed higher total glutathione (GSH) levels and a greater reduced/oxidized GSH ratio than vector control cells under the same conditions.

  17. Methionine sulfoxide reductase A protects neuronal cells against brief hypoxia/reoxygenation

    NASA Astrophysics Data System (ADS)

    Yermolaieva, Olena; Xu, Rong; Schinstock, Carrie; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2004-02-01

    Hypoxia/reoxygenation induces cellular injury by promoting oxidative stress. Reversible oxidation of methionine in proteins involving the enzyme peptide methionine sulfoxide reductase type A (MSRA) is postulated to serve a general antioxidant role. Therefore, we examined whether overexpression of MSRA protected cells from hypoxia/reoxygenation injury. Brief hypoxia increased the intracellular reactive oxygen species (ROS) level in PC12 cells and promoted apoptotic cell death. Adenovirus-mediated overexpression of MSRA significantly diminished the hypoxia-induced increase in ROS and facilitated cell survival. Measurements of the membrane potentials of intact mitochondria in PC12 cells and of isolated rat liver mitochondria showed that hypoxia induced depolarization of the mitochondrial membrane. The results demonstrate that MSRA plays a protective role against hypoxia/reoxygenation-induced cell injury and suggest the therapeutic potential of MSRA in ischemic heart and brain disease.

  18. A short synthesis of ±-cherylline dimethyl ether.

    PubMed

    Kale, Bhima Y; Shinde, Ananta D; Sonar, Swapnil S; Shingate, Bapurao B; Kumar, Sanjeev; Ghosh, Samir; Venugopal, Soodamani; Shingare, Murlidhar S

    2009-01-01

    A synthesis of ±-cherylline dimethyl ether is reported. The key steps involved are Michael-type addition, radical azidonation of an aldehyde, Curtius rearrangement, and reduction of an isocyanate intermediate followed by Pictet-Spengler cyclization.

  19. A sulfonium cation intermediate in the mechanism of methionine sulfoxide reductase B: a DFT study.

    PubMed

    Robinet, Jesse J; Dokainish, Hisham M; Paterson, David J; Gauld, James W

    2011-07-28

    The hybrid density functional theory method B3LYP in combination with three systematically larger active site models has been used to investigate the substrate binding and catalytic mechanism by which Neisseria gonorrhoeae methionine sulfoxide reductase B (MsrB) reduces methionine-R-sulfoxide (Met-R-SO) to methionine. The first step in the overall mechanism is nucleophilic attack of an active site thiolate at the sulfur of Met-R-SO to form an enzyme-substrate sulfurane. This occurs with concomitant proton transfer from an active site histidine (His480) residue to the substrates oxygen center. The barrier for this step, calculated using our largest most complete active site model, is 17.2 kJ mol(-1). A subsequent conformational rearrangement and intramolecular -OH transfer to form an enzyme-derived sulfenic acid ((Cys495)S-OH) is not enzymatically feasible. Instead, transfer of a second proton from a second histidyl active site residue (His477) to the sulfurane's oxygen center to give water and a sulfonium cation intermediate is found to be greatly preferred, occurring with a quite low barrier of just 1.2 kJ mol(-1). Formation of the final product complex in which an intraprotein disulfide bond is formed with generation of methionine preferably occurs in one step via nucleophilic attack of the sulfur of a second enzyme thiolate ((Cys440)S(-)) at the S(Cys495) center of the sulfonium intermediate with a barrier of 23.8 kJ mol(-1). An alternate pathway for formation of the products via a sulfenic acid intermediate involves enzymatically feasible, but higher energy barriers. The role and impact of hydrogen bonding and active site residues on the properties and stability of substrate and mechanism intermediates and the affects of mutating His477 are also examined and discussed. PMID:21721538

  20. Dimethyl carbonate production for fuel additives

    SciTech Connect

    Okada, Y.; Kondo, T.; Asaoka, S.

    1996-12-31

    We have taken note of the transesterification reaction as a highly safe process of dimethyl carbonate (DMC) production for fuel additives. The reaction proceeds under the low corrosiveness and in the relatively mild condition. We have aimed to use an inorganic solid catalyst for this process. The inorganic solid catalyst is thermally stable and can be used in the large-scale fixed bed reactors without a catalyst separation unit. Through the transesterification of ethylene carbonate (EG) with methanol, DMC and ethylene glycol (EG) are co-generated as the products. EG is one of the bulk chemicals produced in the large scale plant comparable to one for the fuel additives. The market balance is important in the coproduction process. On the assumption that the amount of the co-production meets the market balance, the coproduction of DMC and EG is commercially viable. If we can control the amount of the EG coproduction in this process, it makes the process more flexible in the commercial production. Accordingly we have proposed a conceptual process scheme to control the amount of the EG coproduction. In this symposium, the inorganic solid catalyst system applying to the transesterification process and the conceptual process scheme how to control the amount of co-product will be discussed.

  1. Dimethyl ether (DME) as an alternative fuel

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.; Greene, Howard L.

    With ever growing concerns on environmental pollution, energy security, and future oil supplies, the global community is seeking non-petroleum based alternative fuels, along with more advanced energy technologies (e.g., fuel cells) to increase the efficiency of energy use. The most promising alternative fuel will be the fuel that has the greatest impact on society. The major impact areas include well-to-wheel greenhouse gas emissions, non-petroleum feed stocks, well-to-wheel efficiencies, fuel versatility, infrastructure, availability, economics, and safety. Compared to some of the other leading alternative fuel candidates (i.e., methane, methanol, ethanol, and Fischer-Tropsch fuels), dimethyl ether appears to have the largest potential impact on society, and should be considered as the fuel of choice for eliminating the dependency on petroleum. DME can be used as a clean high-efficiency compression ignition fuel with reduced NO x, SO x, and particulate matter, it can be efficiently reformed to hydrogen at low temperatures, and does not have large issues with toxicity, production, infrastructure, and transportation as do various other fuels. The literature relevant to DME use is reviewed and summarized to demonstrate the viability of DME as an alternative fuel.

  2. Skin Keratins.

    PubMed

    Wang, Fengrong; Zieman, Abigail; Coulombe, Pierre A

    2016-01-01

    Keratins comprise the type I and type II intermediate filament-forming proteins and occur primarily in epithelial cells. They are encoded by 54 evolutionarily conserved genes (28 type I, 26 type II) and regulated in a pairwise and tissue type-, differentiation-, and context-dependent manner. Keratins serve multiple homeostatic and stress-enhanced mechanical and nonmechanical functions in epithelia, including the maintenance of cellular integrity, regulation of cell growth and migration, and protection from apoptosis. These functions are tightly regulated by posttranslational modifications as well as keratin-associated proteins. Genetically determined alterations in keratin-coding sequences underlie highly penetrant and rare disorders whose pathophysiology reflects cell fragility and/or altered tissue homeostasis. Moreover, keratin mutation or misregulation represents risk factors or genetic modifiers for several acute and chronic diseases. This chapter focuses on keratins that are expressed in skin epithelia, and details a number of basic protocols and assays that have proven useful for analyses being carried out in skin.

  3. Skin Keratins

    PubMed Central

    Wang, Fengrong; Zieman, Abigail; Coulombe, Pierre A.

    2016-01-01

    Keratins comprise the type I and type II intermediate filament-forming proteins and occur primarily in epithelial cells. They are encoded by 54 evolutionarily conserved genes (28 type I, 26 type II) and regulated in a pairwise and tissue type-, differentiation-, and context-dependent manner. Keratins serve multiple homeostatic and stress-enhanced mechanical and nonmechanical functions in epithelia, including the maintenance of cellular integrity, regulation of cell growth and migration, and protection from apoptosis. These functions are tightly regulated by posttranslational modifications as well as keratin-associated proteins. Genetically determined alterations in keratin-coding sequences underlie highly penetrant and rare disorders whose pathophysiology reflects cell fragility and/or altered tissue homeostasis. Moreover, keratin mutation or misregulation represents risk factors or genetic modifiers for several acute and chronic diseases. This chapter focuses on keratins that are expressed in skin epithelia, and details a number of basic protocols and assays that have proven useful for analyses being carried out in skin. PMID:26795476

  4. 5-(3,4-Dimethyl-benzyl-idene)-2,2-dimethyl-1,3-dioxane-4,6-dione.

    PubMed

    Zeng, Wu-Lan

    2011-06-01

    The title compound, C(15)H(16)O(4), was prepared by the reaction of 2,2-dimethyl-1,3-dioxane-4,6-dione and 3,4-dimethyl-benzaldehyde in ethanol. The 1,3-dioxane ring exhibits an envelope conformation. In the crystal, mol-ecules are linked by weak inter-molecular C-H⋯O hydrogen bonds, forming chains parallel to the b axis. PMID:21754745

  5. Dimethyl disulfide (DMDS) and dimethyl sulfide (DMS) emissions from biomass burning in Australia

    NASA Astrophysics Data System (ADS)

    Meinardi, Simone; Simpson, Isobel J.; Blake, Nicola J.; Blake, Donald R.; Rowland, F. Sherwood

    2003-05-01

    We identify dimethyl disulfide (DMDS) as the major reduced sulfur-containing gas emitted from bushfires in Australia's Northern Territory. Like dimethyl sulfide (DMS), DMDS is oxidized in the atmosphere to sulfur dioxide (SO2) and methane sulfonic acid (MSA), which are intermediates in the formation of sulfuric acid (H2SO4). The mixing ratios of DMDS and DMS were the highest we have ever detected, with maximum values of 113 and 35 ppbv, respectively, whereas background values were below the detection limit (10 pptv). Molar emission ratios relative to carbon monoxide (CO) were [1.6 +/- 0.1] × 10-5 and [6.2 +/- 0.3] × 10-6, for DMDS and DMS respectively, while molar emission ratios relative to carbon dioxide (CO2) were [4.7 +/- 0.4] × 10-6 and [1.4 +/- 0.4] × 10-7, respectively. Assuming these observations are representative of biomass burning, we estimate that biomass burning could yield up to 175 Gg/yr of DMDS (119 Gg S/yr) and 13 Gg/yr of DMS.

  6. Dimethyl sulfide in the Amazon rain forest

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Yañez-Serrano, A. M.; Williams, J.; Kunert, N.; Jardine, A.; Taylor, T.; Abrell, L.; Artaxo, P.; Guenther, A.; Hewitt, C. N.; House, E.; Florentino, A. P.; Manzi, A.; Higuchi, N.; Kesselmeier, J.; Behrendt, T.; Veres, P. R.; Derstroff, B.; Fuentes, J. D.; Martin, S. T.; Andreae, M. O.

    2015-01-01

    Surface-to-atmosphere emissions of dimethyl sulfide (DMS) may impact global climate through the formation of gaseous sulfuric acid, which can yield secondary sulfate aerosols and contribute to new particle formation. While oceans are generally considered the dominant sources of DMS, a shortage of ecosystem observations prevents an accurate analysis of terrestrial DMS sources. Using mass spectrometry, we quantified ambient DMS mixing ratios within and above a primary rainforest ecosystem in the central Amazon Basin in real-time (2010-2011) and at high vertical resolution (2013-2014). Elevated but highly variable DMS mixing ratios were observed within the canopy, showing clear evidence of a net ecosystem source to the atmosphere during both day and night in both the dry and wet seasons. Periods of high DMS mixing ratios lasting up to 8 h (up to 160 parts per trillion (ppt)) often occurred within the canopy and near the surface during many evenings and nights. Daytime gradients showed mixing ratios (up to 80 ppt) peaking near the top of the canopy as well as near the ground following a rain event. The spatial and temporal distribution of DMS suggests that ambient levels and their potential climatic impacts are dominated by local soil and plant emissions. A soil source was confirmed by measurements of DMS emission fluxes from Amazon soils as a function of temperature and soil moisture. Furthermore, light- and temperature-dependent DMS emissions were measured from seven tropical tree species. Our study has important implications for understanding terrestrial DMS sources and their role in coupled land-atmosphere climate feedbacks.

  7. Skin (Pressure) Sores

    MedlinePlus

    ... Topic Skin dryness Next Topic Sleep problems Skin (pressure) sores A skin or pressure sore develops when the blood supply to an ... is bedridden or always in a wheelchair puts pressure on the same places much of the time. ...

  8. Layers of the Skin

    MedlinePlus

    ... produce the skin coloring or pigment known as melanin, which gives skin its tan or brown color ... Sun exposure causes melanocytes to increase production of melanin in order to protect the skin from damaging ...

  9. Learning about Skin Cancer

    MedlinePlus

    ... have red or blond hair and blue or light-colored eyes - although anyone can get skin cancer. Skin cancer is related to lifetime exposure to UV radiation, therefore most skin cancers appear after age ...

  10. Scalded skin syndrome

    MedlinePlus

    Ritter disease; Staphylococcal scalded skin syndrome (SSS) ... Scalded skin syndrome (SSS) is caused by infection with certain strains of Staphylococcus bacteria. The bacteria produce a toxin that causes the skin ...

  11. Skin Cancer Treatment

    MedlinePlus

    ... Skin Cancer Skin color and being exposed to sunlight can increase the risk of nonmelanoma skin cancer ... carcinoma include the following: Being exposed to natural sunlight or artificial sunlight (such as from tanning beds) ...

  12. Stages of Skin Cancer

    MedlinePlus

    ... Skin Cancer Skin color and being exposed to sunlight can increase the risk of nonmelanoma skin cancer ... carcinoma include the following: Being exposed to natural sunlight or artificial sunlight (such as from tanning beds) ...

  13. Dry Skin (Xerosis)

    MedlinePlus

    ... skin, which may bleed if severe. Chapped or cracked lips. When dry skin cracks, germs can get ... cause the skin to become dry, raw, and cracked. Swimming : Some pools have high levels of chlorine, ...

  14. Basal cell skin cancer

    MedlinePlus

    ... occur on skin that is regularly exposed to sunlight or other ultraviolet radiation. This type of skin ... skin cancer is to reduce your exposure to sunlight . Always use sunscreen: Apply sunscreen with sun protection ...

  15. Skin Cancer Foundation

    MedlinePlus

    ... Cancer Infographics Children For Your Eyes Clothing Shade Sunscreen Sunburn Seal of Recommendation Are You at Risk? ... Defense The Mini Skin Cancer Prevention Handbook A "Sunscreen Gene"? Skin Cancer Facts & Statistics The Skin Cancer ...

  16. Sulfoxide-TFAA and nucleophile combination as new reagent for aliphatic C-H functionalization at indole 2α-position.

    PubMed

    Tayu, Masanori; Higuchi, Kazuhiro; Inaba, Masato; Kawasaki, Tomomi

    2013-01-21

    Aliphatic C-H functionalization at indole 2α-position mediated by acyloxythionium species 1 generated from sulfoxide and acid anhydride has been developed. The combination of sulfoxide and TFAA with O-, N- and C-nucleophiles enabled introduction of various substituents in a one-pot procedure. Especially on utilizing DMSO, the combination provided a practical and efficient method for the synthesis of a wide range of 2α-substituted indoles.

  17. The formation of dimethyl sulfate in power plant plumes

    SciTech Connect

    Hansen, L.D.; Eatough, D.J. ); Cheney, J.L. ); Eatough, N.L. )

    1987-01-01

    The purpose of this paper is to report the results of a study which was designed to determine if dimethyl sulfate is a primary emission of power plants or is instead formed in the plume after mixing with the ambient atmosphere. The authors previously reported the presence of dimethyl sulfate and monomethyl sulfuric acid in particulate matter collected from the flue lines and plumes of coal-fired power plants. The mole ratios of methylated sulfate in particles to total emitted sulfur were found to be one and two orders of magnitude higher in the plume than in the flue line of a coal- and an oil-fired plant, respectively. In addition, while only monomethyl sulfate was found in the particles collected at 150{sup 0}C in the flue line, the principal species found in the plume aerosol was dimethyl sulfate. Dimethyl sulfate has been found in particulate matter collected from the flue line of another coal-fired power plant where the sample was collected at 110{sup 0}C, however. These previously reported results can either be interpreted to indicate that primary emissions from power plants contain gas phase alkyl sulfate compounds which subsequently condense onto aerosols, or the data can be interpreted to show formation of dimethyl sulfate in the atmosphere. The data presented in this paper show the latter to be the case.

  18. Schisandrin B protects against solar irradiation-induced oxidative stress in rat skin tissue.

    PubMed

    Lam, Philip Y; Yan, Chung Wai; Chiu, Po Yee; Leung, Hoi Yan; Ko, Kam Ming

    2011-04-01

    Schisandrin B (Sch B) and schisandrin C (Sch C), but not schisandrin A and dimethyl diphenyl bicarboxylate, protected rat skin tissue against solar irradiation-induced oxidative injury, as evidenced by a reversal of solar irradiation-induced changes in cellular reduced glutathione and α-tocopherol levels, as well as antioxidant enzyme activities and malondialdehyde production. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production in rat skin microsomes. Taken together, Sch B or Sch C, by virtue of its pro-oxidant action and the subsequent eliciting of a glutathione antioxidant response, may prevent photo-aging of skin.

  19. Thermochemistry of 1,3-dithiacyclohexane 1-oxide (1,3-dithiane sulfoxide): calorimetric and computational study.

    PubMed

    Roux, María Victoria; Temprado, Manuel; Jiménez, Pilar; Dávalos, Juan Z; Notario, Rafael; Martín-Valcárcel, Gloria; Garrido, Leoncio; Guzmán-Mejía, Ramón; Juaristi, Eusebio

    2004-08-01

    The enthalpies of combustion and sublimation of 1,3-dithiacyclohexane 1-oxide (1,3-dithiane sulfoxide, 2) were measured by a rotating-bomb combustion calorimeter and the Knudsen effusion technique, and the gas-phase enthalpy of formation was determined, DeltafH degrees m(g) = -98.0 +/- 1.9 kJ mol(-1). This value is not as large (negative) as could have been expected from comparison with thermochemical data available for the thiane/thiane oxide reference system. High-level ab initio molecular orbital calculations at the MP2(FULL)/6-31G(3df,2p) level were performed, and the optimized molecular and electronic structures of 2 afforded valuable information on (1) the relative conformational energies of 2-axial and 2-equatorial--the latter being 7.1 kJ mol(-1) more stable than 2-axial, (2) the possible involvement of nS --> sigma*(C-S(O)) hyperconjugation in 2-equatorial, (3) the lack of computational evidence for sigma(S-C) --> sigma*(S-O) stereoelectronic interaction in 2-equatorial, and (4) the relevance of a repulsive electrostatic interaction between sulfur atoms in 1,3-dithiane sulfoxide, which apparently counterbalances any nS --> sigma*(C-S(O)) stabilizing hyperconjugative interaction and accounts for the lower than expected enthalpy of formation for sulfoxide 2. PMID:15287796

  20. Studies of a Novel Cysteine Sulfoxide Lyase from Petiveria alliacea: The First Heteromeric Alliinase1[W][OA

    PubMed Central

    Musah, Rabi A.; He, Quan; Kubec, Roman; Jadhav, Abhijit

    2009-01-01

    A novel alliinase (EC 4.4.1.4) was detected and purified from the roots of the Amazonian medicinal plant Petiveria alliacea. The isolated enzyme is a heteropentameric glycoprotein composed of two α-subunits (68.1 kD each), one β-subunit (56.0 kD), one γ-subunit (24.8 kD), and one δ-subunit (13.9 kD). The two α-subunits are connected by a disulfide bridge, and both α- and β-subunits are glycosylated. The enzyme has an isoelectric point of 4.78 and pH and temperature optima of 8.0 and approximately 52°C, respectively. Its activation energy with its natural substrate S-benzyl-l-cysteine sulfoxide is 64.6 kJ mol−1. Kinetic studies showed that both Km and Vmax vary as a function of substrate structure, with the most preferred substrates being the naturally occurring P. alliacea compounds S-benzyl-l-cysteine sulfoxide and S-2-hydroxyethyl-l-cysteine sulfoxide. The alliinase reacts with these substrates to produce S-benzyl phenylmethanethiosulfinate and S-(2-hydroxyethyl) 2-hydroxyethanethiosulfinate, respectively. PMID:19789290

  1. Determination of methiocarb and its degradation products, methiocarb sulfoxide and methiocarb sulfone, in bananas using QuEChERS extraction.

    PubMed

    Plácido, Alexandra; Paíga, Paula; Lopes, David H; Correia, Manuela; Delerue-Matos, Cristina

    2013-01-16

    The present work describes the development of an analytical method for the determination of methiocarb and its degradation products (methiocarb sulfoxide and methiocarb sulfone) in banana samples, using the QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure followed by liquid chromatography coupled to photodiode array detector (LC-PAD). Calibration curves were linear in the range of 0.5-10 mg L⁻¹ for all compounds studied. The average recoveries, measured at 0.1 mg kg⁻¹ wet weight, were 92.0 (RSD = 1.8%, n = 3), 84.0 (RSD = 3.9%, n = 3), and 95.2% (RSD = 1.9%, n = 3) for methiocarb sulfoxide, methiocarb sulfone, and methiocarb, respectively. Banana samples treated with methiocarb were collected from an experimental field. The developed method was applied to the analysis of 24 samples (peel and pulp) and to 5 banana pulp samples. Generally, the highest levels were found for methiocarb sulfoxide and methiocarb. Methiocarb sulfone levels were below the limit of quantification, except in one sample (not detected).

  2. Methionine sulfoxide profiling of milk proteins to assess the influence of lipids on protein oxidation in milk.

    PubMed

    Wüst, Johannes; Pischetsrieder, Monika

    2016-06-15

    Thermal treatment of milk and milk products leads to protein oxidation, mainly the formation of methionine sulfoxide. Reactive oxygen species, responsible for the oxidation, can be generated by Maillard reaction, autoxidation of sugars, or lipid peroxidation. The present study investigated the influence of milk fat on methionine oxidation in milk. For this purpose, quantitative methionine sulfoxide profiling of all ten methionine residues of β-lactoglobulin, α-lactalbumin, and αs1-casein was carried out by ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry with scheduled multiple reaction monitoring (UHPLC-ESI-MS/MS-sMRM). Analysis of defatted and regular raw milk samples after heating for up to 8 min at 120 °C and analysis of ultrahigh-temperature milk samples with 0.1%, 1.5%, and 3.5% fat revealed that methionine oxidation of the five residues of the whey proteins and of residues M 123, M 135, and M 196 of αs1-casein was not affected or even suppressed in the presence of milk fat. Only the oxidation of residues M 54 and M 60 of αs1-casein was promoted by lipids. In evaporated milk samples, formation of methionine sulfoxide was hardly influenced by the fat content of the samples. Thus, it can be concluded that lipid oxidation products are not the major cause of methionine oxidation in milk.

  3. Methionine sulfoxide reductase A regulates cell growth through the p53-p21 pathway

    SciTech Connect

    Choi, Seung Hee; Kim, Hwa-Young

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Down-regulation of MsrA inhibits normal cell proliferation. Black-Right-Pointing-Pointer MsrA deficiency leads to an increase in p21 by enhanced p53 acetylation. Black-Right-Pointing-Pointer Down-regulation of MsrA causes cell cycle arrest at the G{sub 2}/M stage. Black-Right-Pointing-Pointer MsrA is a regulator of cell growth that mediates the p53-p21 pathway. -- Abstract: MsrA is an oxidoreductase that catalyzes the stereospecific reduction of methionine-S-sulfoxide to methionine. Although MsrA is well-characterized as an antioxidant and has been implicated in the aging process and cellular senescence, its roles in cell proliferation are poorly understood. Here, we report a critical role of MsrA in normal cell proliferation and describe the regulation mechanism of cell growth by this protein. Down-regulation of MsrA inhibited cell proliferation, but MsrA overexpression did not promote it. MsrA deficiency led to an increase in p21, a major cyclin-dependent kinase inhibitor, thereby causing cell cycle arrest at the G{sub 2}/M stage. While protein levels of p53 were not altered upon MsrA deficiency, its acetylation level was significantly elevated, which subsequently activated p21 transcription. The data suggest that MsrA is a regulator of cell growth that mediates the p53-p21 pathway.

  4. A catalase-peroxidase for oxidation of β-lactams to their (R)-sulfoxides.

    PubMed

    Sangar, Shefali; Pal, Mohan; Moon, Lomary S; Jolly, Ravinder S

    2012-07-01

    In this communication we report for the first time a biocatalytic method for stereoselective oxidation of β-lactams, represented by penicillin-G, penicillin-V and cephalosporin-G to their (R)-sulfoxides. The method involves use of a bacterium, identified as Bacillus pumilis as biocatalyst. The enzyme responsible for oxidase activity has been purified and characterized as catalase-peroxidase (KatG). KatG of B. pumilis is a heme containing protein showing characteristic heme spectra with soret peak at 406 nm and visible peaks at 503 and 635 nm. The major properties that distinguish B. pumilis KatG from other bacterial KatGs are (i) it is a monomer and contains one heme per monomer, whereas KatGs of other bacteria are dimers or tetramers and have low heme content of about one per dimer or two per tetramer and (ii) its 12-residue, N-terminal sequence obtained by Edman degradation did not show significant similarity with any of known KatGs. PMID:21996477

  5. Arabidopsis Peptide Methionine Sulfoxide Reductase2 Prevents Cellular Oxidative Damage in Long NightsW⃞

    PubMed Central

    Bechtold, Ulrike; Murphy, Denis J.; Mullineaux, Philip M.

    2004-01-01

    Peptide methionine sulfoxide reductase (PMSR) is a ubiquitous enzyme that repairs oxidatively damaged proteins. In Arabidopsis (Arabidopsis thaliana), a null mutation in PMSR2 (pmsr2-1), encoding a cytosolic isoform of the enzyme, exhibited reduced growth in short-day conditions. In wild-type plants, a diurnally regulated peak of total PMSR activity occurred at the end of the 16-h dark period that was absent in pmsr2-1 plants. This PMSR activity peak in the wild-type plant coincided with increased oxidative stress late in the dark period in the mutant. In pmsr2-1, the inability to repair proteins resulted in higher levels of their turnover, which in turn placed an increased burden on cellular metabolism. This caused increased respiration rates, leading to the observed higher levels of oxidative stress. In wild-type plants, the repair of damaged proteins by PMSR2 at the end of the night in a short-day diurnal cycle alleviates this potential burden on metabolism. Although PMSR2 is not absolutely required for viability of plants, the observation of increased damage to proteins in these long nights suggests the timing of expression of PMSR2 is an important adaptation for conservation of their resources. PMID:15031406

  6. Methionine Sulfoxide Reductases Protect against Oxidative Stress in Staphylococcus aureus Encountering Exogenous Oxidants and Human Neutrophils

    PubMed Central

    Pang, Yun Yun; Schwartz, Jamie; Bloomberg, Sarah; Boyd, Jeffrey M; Horswill, Alexander R.; Nauseef, William M.

    2013-01-01

    To establish infection successfully, S. aureus must evade clearance by polymorphonuclear neutrophils (PMN). We studied the expression and regulation of the methionine sulfoxide reductases (Msr) that are involved in the repair of oxidized staphylococcal proteins and investigated their influence over the fate of S. aureus exposed to oxidants or PMN. We evaluated a mutant deficient in msrA1 and msrB for susceptibility to hydrogen peroxide, hypochlorous acid and PMN. The expression of msrA1 in wild-type bacteria ingested by human PMN was assessed by real-time PCR. The regulation of msr was studied by screening a library of two-component regulatory system (TCS) mutants for altered msr responses. Relative to the wild-type, bacteria deficient in Msr were more susceptible to oxidants and to PMN. Upregulation of staphylococcal msrA1 occurred within the phagosomes of normal PMN and PMN deficient in NADPH oxidase activity. Furthermore, PMN granule-rich extract stimulated the upregulation of msrA1. Modulation of msrA1 within PMN was shown to be partly dependent on the VraSR TCS. Msr contributes to staphylococcal responses to oxidative attack and PMN. Our study highlights a novel interaction between the oxidative protein repair pathway and the VraSR TCS that is involved in cell wall homeostasis. PMID:24247266

  7. Stable isotope dimethyl labelling for quantitative proteomics and beyond.

    PubMed

    Hsu, Jue-Liang; Chen, Shu-Hui

    2016-10-28

    Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644970

  8. Raman spectroscopic analysis of isomers of biliverdin dimethyl ester.

    PubMed

    Matysik, J; Hildebrandt, P; Smit, K; Mark, F; Gärtner, W; Braslavsky, S E; Schaffner, K; Schrader, B

    1997-06-01

    The constitutional isomers of biliverdin dimethyl ester, IX alpha and XIII alpha, were studied by resonance Raman spectroscopy. The far-reaching spectral similarities suggest that despite the different substitution patterns, the compositions of the normal modes are closely related. This conclusion does not hold only for the parent state (ZZZ, sss configuration) but also for the configurational isomers which were obtained upon double-bond photoisomerization. Based on a comparison of the resonance Raman spectra, a EZZ configuration is proposed for one of the two photoisomers of biliverdin dimethyl ester IX alpha, while a ZZE, ssa configuration has been assigned previously to the second isomer. PMID:9226559

  9. Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naive THP-1 cell line.

    PubMed

    Yoshida, Y; Sakaguchi, H; Ito, Y; Okuda, M; Suzuki, H

    2003-04-01

    It has been known that dendritic cells (DCs) including Langerhans cells (LCs) play a critical role in the skin sensitization process. Many attempts have been made to develop in vitro sensitization tests that employ DCs derived from peripheral blood mononuclear cells (PBMC-DC) or CD34+ hematopoietic progenitor cells (CD34+ HPC) purified from cord blood or bone marrow. However, the use of the DCs in in vitro methods has been difficult due to the nature of these cells such as low levels in the source and/or donor-to-donor variability. In our studies, we employed the human monocytic leukemia cell line, THP-1, in order to avoid some of these difficulties. At the start, we examined whether treatment of the cells with various cytokines could produce DCs from THP-1. Treatment of THP-1 cells with cytokines such as GM-CSF, IL-4, TNF-alpha, and/or PMA did induce some phenotypic changes in THP-1 cells that were characteristic of DCs. Subsequently, responses to a known sensitizer, dinitrochlorobenzene (DNCB), and a non-sensitizer, dimethyl sulfoxide (DMSO) or sodium lauryl sulfate (SLS), on the expression of co-stimulatory molecules, CD54 and CD86, were examined between the naive cells and the cytokine-treated cells. Interestingly, the naive THP-1 cells responded only to DNCB and the response to the sensitizer was more distinct than cytokine-treated THP-1 cells. Similar phenomena were also observed in the human myeloid leukemia cell line, KG-1. Furthermore, with treatment of DNCB, naive THP-1 cells showed augmented expression of HLA, CD80 and secretion of IL-1 beta. The response of THP-1 cells to a sensitizer was similar to that of LCs/DCs. Upon demonstrating the differentiation of monocyte cells in our system, we then evaluated a series of chemicals, including known sensitizers and non-sensitizers, for their potential to augment CD54 and CD86 expression on naive THP-1 cells. Indeed, known sensitizers such as PPD and 2-MBT significantly augmented CD54 and CD86 expression in a

  10. Allergy testing - skin

    MedlinePlus

    Patch tests - allergy; Scratch tests - allergy; Skin tests - allergy; RAST test ... There are three common methods of allergy skin testing. The skin prick test involves: Placing a small amount of substances that may be causing your symptoms on the skin, most often ...

  11. Metal ion effect on the switch of mechanism from direct oxygen transfer to metal ion-coupled electron transfer in the sulfoxidation of thioanisoles by a non-heme iron(IV)-oxo complex.

    PubMed

    Park, Jiyun; Morimoto, Yuma; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi

    2011-04-13

    The mechanism of sulfoxidation of thioaniosoles by a non-heme iron(IV)-oxo complex is switched from direct oxygen transfer to metal ion-coupled electron transfer by the presence of Sc(3+). The switch in the sulfoxidation mechanism is dependent on the one-electron oxidation potentials of thioanisoles. The rate of sulfoxidation is accelerated as much as 10(2)-fold by the addition of Sc(3+).

  12. 40 CFR 721.10366 - Benzene, 4-bromo-1,2-dimethyl-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, 4-bromo-1,2-dimethyl-. 721... Substances § 721.10366 Benzene, 4-bromo-1,2-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 4-bromo-1,2-dimethyl-(PMN...

  13. 40 CFR 721.10366 - Benzene, 4-bromo-1,2-dimethyl-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, 4-bromo-1,2-dimethyl-. 721... Substances § 721.10366 Benzene, 4-bromo-1,2-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 4-bromo-1,2-dimethyl-(PMN...

  14. 40 CFR 721.10366 - Benzene, 4-bromo-1,2-dimethyl-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, 4-bromo-1,2-dimethyl-. 721... Substances § 721.10366 Benzene, 4-bromo-1,2-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 4-bromo-1,2-dimethyl-(PMN...

  15. 40 CFR 721.10159 - 1-Docosanamine, N,N-dimethyl-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1-Docosanamine, N,N-dimethyl-. 721... Substances § 721.10159 1-Docosanamine, N,N-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-docosanamine, N,N-dimethyl- (PMN...

  16. 40 CFR 721.10159 - 1-Docosanamine, N,N-dimethyl-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1-Docosanamine, N,N-dimethyl-. 721... Substances § 721.10159 1-Docosanamine, N,N-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-docosanamine, N,N-dimethyl- (PMN...

  17. 40 CFR 721.10666 - Quaternary ammonium compounds, bis(fattyalkyl) dimethyl, salts with tannins (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...(fattyalkyl) dimethyl, salts with tannins (generic). 721.10666 Section 721.10666 Protection of Environment..., bis(fattyalkyl) dimethyl, salts with tannins (generic). (a) Chemical substance and significant new... compounds, bis(fattyalkyl) dimethyl, salts with tannins (PMN P-12-437) is subject to reporting under...

  18. 40 CFR 721.10100 - Dialkyl dimethyl ammonium carbonate (2:1) (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dialkyl dimethyl ammonium carbonate (2... Specific Chemical Substances § 721.10100 Dialkyl dimethyl ammonium carbonate (2:1) (generic). (a) Chemical... as dialkyl dimethyl ammonium carbonate (2:1) (PMN P-03-716) is subject to reporting under...

  19. 40 CFR 721.10100 - Dialkyl dimethyl ammonium carbonate (2:1) (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dialkyl dimethyl ammonium carbonate (2... Specific Chemical Substances § 721.10100 Dialkyl dimethyl ammonium carbonate (2:1) (generic). (a) Chemical... as dialkyl dimethyl ammonium carbonate (2:1) (PMN P-03-716) is subject to reporting under...

  20. Dimethyl Fumarate: A Review in Relapsing-Remitting MS.

    PubMed

    Deeks, Emma D

    2016-02-01

    Dimethyl fumarate (Tecfidera(®)) is an oral disease-modifying agent indicated for the twice-daily treatment of relapsing forms of multiple sclerosis (MS) and relapsing-remitting MS (RRMS). It displays immunomodulating and neuroprotective properties, both of which may contribute to its efficacy in these settings. In two phase III trials of 2 years' duration (DEFINE and CONFIRM), twice-daily dimethyl fumarate reduced clinical relapse (both the proportion of patients with MS relapse and the annualized relapse rate), as well as MRI measures of disease activity, versus placebo in adults with RRMS; the drug also reduced disability progression relative to placebo in one of the two studies (DEFINE). Dimethyl fumarate had an acceptable tolerability profile in these trials, with the most common tolerability issues being flushing and gastrointestinal events, which appear to be largely manageable. In the DEFINE and CONFIRM extension (ENDORSE), a minimum of 5 years of treatment with the drug was associated with continued benefit and no new/worsening tolerability signals. Although additional active comparator data are needed, dimethyl fumarate is an effective twice-daily treatment option for use in adults with RRMS, with the convenience of oral administration and an acceptable long-term tolerability profile. PMID:26689201

  1. 4,4\\'-Methylene bis(N,N\\'-dimethyl)aniline

    Integrated Risk Information System (IRIS)

    4,4 ' - Methylene bis ( N , N ' - dimethyl ) aniline ; CASRN 101 - 61 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Haz

  2. Radiolabeled dimethyl branched long chain fatty acid for heart imaging

    DOEpatents

    Knapp, Jr., Furn F.; Goodman, Mark M.; Kirsch, Gilbert

    1988-08-16

    A radiolabeled long chain fatty acid for heart imaging that has dimethyl branching at one of the carbons of the chain which inhibits the extent to which oxidation can occur. The closer to the carboxyl the branching is positioned, the more limited the oxidation, thereby resulting in prolonged retention of the radiolabeled compound in the heart.

  3. 21 CFR 73.37 - Astaxanthin dimethyl-disuccinate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Astaxanthin dimethyl-disuccinate. 73.37 Section 73.37 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL... dates for the sealed and open container (established through generally accepted stability...

  4. Characterization of methionine oxidation and methionine sulfoxide reduction using methionine-rich cysteine-free proteins

    PubMed Central

    2012-01-01

    Background Methionine (Met) residues in proteins can be readily oxidized by reactive oxygen species to Met sulfoxide (MetO). MetO is a promising physiological marker of oxidative stress and its inefficient repair by MetO reductases (Msrs) has been linked to neurodegeneration and aging. Conventional methods of assaying MetO formation and reduction rely on chromatographic or mass spectrometry procedures, but the use of Met-rich proteins (MRPs) may offer a more streamlined alternative. Results We carried out a computational search of completely sequenced genomes for MRPs deficient in cysteine (Cys) residues and identified several proteins containing 20% or more Met residues. We used these MRPs to examine Met oxidation and MetO reduction by in-gel shift assays and immunoblot assays with antibodies generated against various oxidized MRPs. The oxidation of Cys-free MRPs by hydrogen peroxide could be conveniently monitored by SDS-PAGE and was specific for Met, as evidenced by quantitative reduction of these proteins with Msrs in DTT- and thioredoxin-dependent assays. We found that hypochlorite was especially efficient in oxidizing MRPs. Finally, we further developed a procedure wherein antibodies made against oxidized MRPs were isolated on affinity resins containing same or other oxidized or reduced MRPs. This procedure yielded reagents specific for MetO in these proteins, but proved to be ineffective in developing antibodies with broad MetO specificity. Conclusion Our data show that MRPs provide a convenient tool for characterization of Met oxidation, MetO reduction and Msr activities, and could be used for various aspects of redox biology involving reversible Met oxidation. PMID:23088625

  5. Gene Expression and Physiological Role of Pseudomonas aeruginosa Methionine Sulfoxide Reductases during Oxidative Stress

    PubMed Central

    Romsang, Adisak; Atichartpongkul, Sopapan; Trinachartvanit, Wachareeporn; Vattanaviboon, Paiboon

    2013-01-01

    Pseudomonas aeruginosa PAO1 has two differentially expressed methionine sulfoxide reductase genes: msrA (PA5018) and msrB (PA2827). The msrA gene is expressed constitutively at a high level throughout all growth phases, whereas msrB expression is highly induced by oxidative stress, such as sodium hypochlorite (NaOCl) treatment. Inactivation of either msrA or msrB or both genes (msrA msrB mutant) rendered the mutants less resistant than the parental PAO1 strain to oxidants such as NaOCl and H2O2. Unexpectedly, msr mutants have disparate resistance patterns when exposed to paraquat, a superoxide generator. The msrA mutant had a higher paraquat resistance level than the msrB mutant, which had a lower paraquat resistance level than the PAO1 strain. The expression levels of msrA showed an inverse correlation with the paraquat resistance level, and this atypical paraquat resistance pattern was not observed with msrB. Virulence testing using a Drosophila melanogaster model revealed that the msrA, msrB, and, to a greater extent, msrA msrB double mutants had an attenuated virulence phenotype. The data indicate that msrA and msrB are essential genes for oxidative stress protection and bacterial virulence. The pattern of expression and mutant phenotypes of P. aeruginosa msrA and msrB differ from previously characterized msr genes from other bacteria. Thus, as highly conserved genes, the msrA and msrB have diverse expression patterns and physiological roles that depend on the environmental niche where the bacteria thrive. PMID:23687271

  6. Increased methionine sulfoxide content of apoA-I in type 1 diabetes.

    PubMed

    Brock, Jonathan W C; Jenkins, Alicia J; Lyons, Timothy J; Klein, Richard L; Yim, Eunsil; Lopes-Virella, Maria; Carter, Rickey E; Thorpe, Suzanne R; Baynes, John W

    2008-04-01

    Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes. HDL plays an important role in limiting vascular damage by removing cholesterol and cholesteryl ester hydroperoxides from oxidized low density lipoprotein and foam cells. Methionine (Met) residues in apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, reduce peroxides in HDL lipids, forming methionine sulfoxide [Met(O)]. We examined the extent and sites of Met(O) formation in apoA-I of HDL isolated from plasma of healthy control and type 1 diabetic subjects to assess apoA-I exposure to lipid peroxides and the status of oxidative stress in the vascular compartment in diabetes. Three tryptic peptides of apoA-I contain Met residues: Q(84)-M(86)-K(88), W(108)-M(112)-R(116), and L(144)-M(148)-R(149). These peptides and their Met(O) analogs were identified and quantified by mass spectrometry. Relative to controls, Met(O) formation was significantly increased at all three locations (Met(86), Met(112), and Met(148)) in diabetic patients. The increase in Met(O) in the diabetic group did not correlate with other biomarkers of oxidative stress, such as N(epsilon)-malondialdehyde-lysine or N(epsilon)-(carboxymethyl)lysine, in plasma or lipoproteins. The higher Met(O) content in apoA-I from diabetic patients is consistent with increased levels of lipid peroxidation products in plasma in diabetes. Using the methods developed here, future studies can address the relationship between Met(O) in apoA-I and the risk, development, or progression of the vascular complications of diabetes.

  7. Synthesis and antiviral activity of a novel glycosyl sulfoxide against classical swine fever virus.

    PubMed

    Krol, Ewelina; Pastuch-Gawolek, Gabriela; Nidzworski, Dawid; Rychlowski, Michal; Szeja, Wieslaw; Grynkiewicz, Grzegorz; Szewczyk, Boguslaw

    2014-05-01

    A novel compound-2″,3″,4″,6″-tetra-O-acetyl-β-d-galactopyranosyl-(1→4)-2',3',6'-tri-O-acetyl-1-thio-β-d-glucopyranosyl-(5-nitro-2-pyridyl) sulfoxide-designated GP6 was synthesized and assayed for cytotoxicity and in vitro antiviral properties against classical swine fever virus (CSFV) in this study. We showed that the examined compound effectively arrested CSFV growth in swine kidney cells (SK6) at a 50% inhibitory concentration (IC50) of 5 ± 0.12 μg/ml without significant toxicity for mammalian cells. Moreover, GP6 reduced the viral E2 and E(rns) glycoproteins expression in a dose-dependent manner. We have excluded the possibility that the inhibitor acts at the replication step of virus life cycle as assessed by monitoring of RNA level in cells and culture medium of SK6 cells after single round of infection as a function of GP6 treatment. Using recombinant E(rns) and E2 proteins of classical swine fever virus produced in baculovirus expression system we have demonstrated that GP6 did not influence glycoprotein production and maturation in insect cells. In contrast to mammalian glycosylation pathway, insect cells support only the ER-dependent early steps of this process. Therefore, we concluded that the late steps of glycosylation process are probably the main targets of GP6. Due to the observed antiviral effect accompanied by low cytotoxicity, this inhibitor represents potential candidate for the development of antiviral agents for anti-flavivirus therapy. Further experiments are needed for investigating whether this compound can be used as a safe antiviral agent against other viruses from unrelated groups.

  8. Effects of dimethyl fumarate on neuroprotection and immunomodulation

    PubMed Central

    2012-01-01

    Background Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate is a promising novel oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. These effects are presumed to originate from a combination of immunomodulatory and neuroprotective mechanisms. We aimed to clarify whether neuroprotective concentrations of dimethyl fumarate have immunomodulatory effects. Findings We determined time- and concentration-dependent effects of dimethyl fumarate and its metabolite monomethyl fumarate on viability in a model of endogenous neuronal oxidative stress and clarified the mechanism of action by quantitating cellular glutathione content and recycling, nuclear translocation of transcription factors, and the expression of antioxidant genes. We compared this with changes in the cytokine profiles released by stimulated splenocytes measured by ELISPOT technology and analyzed the interactions between neuronal and immune cells and neuronal function and viability in cell death assays and multi-electrode arrays. Our observations show that dimethyl fumarate causes short-lived oxidative stress, which leads to increased levels and nuclear localization of the transcription factor nuclear factor erythroid 2-related factor 2 and a subsequent increase in glutathione synthesis and recycling in neuronal cells. Concentrations that were cytoprotective in neuronal cells had no negative effects on viability of splenocytes but suppressed the production of proinflammatory cytokines in cultures from C57BL/6 and SJL mice and had no effects on neuronal activity in multi-electrode arrays. Conclusions These results suggest that immunomodulatory concentrations of dimethyl fumarate can reduce oxidative stress without altering neuronal network activity. PMID:22769044

  9. Estrogens and aging skin

    PubMed Central

    Thornton, M. Julie

    2013-01-01

    Estrogen deficiency following menopause results in atrophic skin changes and acceleration of skin aging. Estrogens significantly modulate skin physiology, targeting keratinocytes, fibroblasts, melanocytes, hair follicles and sebaceous glands, and improve angiogenesis, wound healing and immune responses. Estrogen insufficiency decreases defense against oxidative stress; skin becomes thinner with less collagen, decreased elasticity, increased wrinkling, increased dryness and reduced vascularity. Its protective function becomes compromised and aging is associated with impaired wound healing, hair loss, pigmentary changes and skin cancer.   Skin aging can be significantly delayed by the administration of estrogen. This paper reviews estrogen effects on human skin and the mechanisms by which estrogens can alleviate the changes due to aging. The relevance of estrogen replacement, selective estrogen receptor modulators (SERMs) and phytoestrogens as therapies for diminishing skin aging is highlighted. Understanding estrogen signaling in skin will provide a basis for interventions in aging pathologies. PMID:24194966

  10. Acid-base titrations in nonaqueous solvents Analysis of dimethyl sulphate.

    PubMed

    Banick, W M; Francis, E C

    1966-07-01

    A nonaqueous titrimetric procedure was developed for the determination of the dimethyl sulphate, methyl hydrogen sulphate and sulphuric acid content of dimethyl sulphate samples. Methyl hydrogen sulphate and sulphuric acid are determined by a differentiating potentiometric titration in pyridine with tributylethylammonium hydroxide. Pyridine converts the dimethyl sulphate into the weakly acidic methylpyridinium methyl sulphate which does not interfere in the titration. Dimethyl sulphate is determined by reacting it with an excess of 2-dimethylaminoethanol and titrating the excess with perchloric acid. Precision and recovery data for commercial samples of dimethyl sulphate are presented.

  11. Sulfoxides, Analogues of L-Methionine and L-Cysteine As Pro-Drugs against Gram-Positive and Gram-Negative Bacteria.

    PubMed

    Anufrieva, N V; Morozova, E A; Kulikova, V V; Bazhulina, N P; Manukhov, I V; Degtev, D I; Gnuchikh, E Yu; Rodionov, A N; Zavilgelsky, G B; Demidkina, T V

    2015-01-01

    The problem of resistance to antibiotics requires the development of new classes of broad-spectrum antimicrobial drugs. The concept of pro-drugs allows researchers to look for new approaches to obtain effective drugs with improved pharmacokinetic and pharmacodynamic properties. Thiosulfinates, formed enzymatically from amino acid sulfoxides upon crushing cells of genus Allium plants, are known as antimicrobial compounds. The instability and high reactivity of thiosulfinates complicate their use as individual antimicrobial compounds. We propose a pharmacologically complementary pair: an amino acid sulfoxide pro-drug and vitamin B6 - dependent methionine γ-lyase, which metabolizes it in the patient's body. The enzyme catalyzes the γ- and β-elimination reactions of sulfoxides, analogues of L-methionine and L-cysteine, which leads to the formation of thiosulfinates. In the present work, we cloned the enzyme gene from Clostridium sporogenes. Ionic and tautomeric forms of the internal aldimine were determined by lognormal deconvolution of the holoenzyme spectrum and the catalytic parameters of the recombinant enzyme in the γ- and β-elimination reactions of amino acids, and some sulfoxides of amino acids were obtained. For the first time, the possibility of usage of the enzyme for effective conversion of sulfoxides was established and the antimicrobial activity of thiosulfinates against Gram-negative and Gram-positive bacteria in situ was shown. PMID:26798500

  12. Sulfoxides, Analogues of L-Methionine and L-Cysteine As Pro-Drugs against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Anufrieva, N. V.; Morozova, E. A.; Kulikova, V. V.; Bazhulina, N. P.; Manukhov, I. V.; Degtev, D. I.; Gnuchikh, E. Yu.; Rodionov, A. N.; Zavilgelsky, G. B.; Demidkina, T. V.

    2015-01-01

    The problem of resistance to antibiotics requires the development of new classes of broad-spectrum antimicrobial drugs. The concept of pro-drugs allows researchers to look for new approaches to obtain effective drugs with improved pharmacokinetic and pharmacodynamic properties. Thiosulfinates, formed enzymatically from amino acid sulfoxides upon crushing cells of genus Allium plants, are known as antimicrobial compounds. The instability and high reactivity of thiosulfinates complicate their use as individual antimicrobial compounds. We propose a pharmacologically complementary pair: an amino acid sulfoxide pro-drug and vitamin B6 – dependent methionine γ-lyase, which metabolizes it in the patient’s body. The enzyme catalyzes the γ- and β-elimination reactions of sulfoxides, analogues of L-methionine and L-cysteine, which leads to the formation of thiosulfinates. In the present work, we cloned the enzyme gene from Clostridium sporogenes. Ionic and tautomeric forms of the internal aldimine were determined by lognormal deconvolution of the holoenzyme spectrum and the catalytic parameters of the recombinant enzyme in the γ- and β-elimination reactions of amino acids, and some sulfoxides of amino acids were obtained. For the first time, the possibility of usage of the enzyme for effective conversion of sulfoxides was established and the antimicrobial activity of thiosulfinates against Gram-negative and Gram-positive bacteria in situ was shown. PMID:26798500

  13. Viral Skin Diseases.

    PubMed

    Ramdass, Priya; Mullick, Sahil; Farber, Harold F

    2015-12-01

    In the vast world of skin diseases, viral skin disorders account for a significant percentage. Most viral skin diseases present with an exanthem (skin rash) and, oftentimes, an accompanying enanthem (lesions involving the mucosal membrane). In this article, the various viral skin diseases are explored, including viral childhood exanthems (measles, rubella, erythema infectiosum, and roseola), herpes viruses (herpes simplex virus, varicella zoster virus, Kaposi sarcoma herpes virus, viral zoonotic infections [orf, monkeypox, ebola, smallpox]), and several other viral skin diseases, such as human papilloma virus, hand, foot, and mouth disease, molluscum contagiosum, and Gianotti-Crosti syndrome.

  14. [Sarcoidosis of the skin].

    PubMed

    Suga, Y; Ogawa, H

    1994-06-01

    Sarcoidosis is characterized by formation of epithelioid-cell tubercules, without caseation, of the affected organ systems. The mediastinum, peripheral lymph nodes and eyes, in addition to the skin, are most frequently affected. Between 10% and 30% of patients with systemic sarcoidosis in Japan have skin lesions. Skin sarcoidosis is morphologically classified into three basic groups, erythema nodosum, scar sarcoidosis and skin sarcoid. Skin sarcoid is characterized by specific cutaneous lesions of sarcoidosis, and may take nodular, plaque, angiolupoid, subcutaneous and some other forms. Clinical manifestations of the cutaneous lesions are usually asymptomatic and polymorphous. Skin biopsy is, however, often highly useful for confirming a diagnosis of sarcoidosis.

  15. Viral Skin Diseases.

    PubMed

    Ramdass, Priya; Mullick, Sahil; Farber, Harold F

    2015-12-01

    In the vast world of skin diseases, viral skin disorders account for a significant percentage. Most viral skin diseases present with an exanthem (skin rash) and, oftentimes, an accompanying enanthem (lesions involving the mucosal membrane). In this article, the various viral skin diseases are explored, including viral childhood exanthems (measles, rubella, erythema infectiosum, and roseola), herpes viruses (herpes simplex virus, varicella zoster virus, Kaposi sarcoma herpes virus, viral zoonotic infections [orf, monkeypox, ebola, smallpox]), and several other viral skin diseases, such as human papilloma virus, hand, foot, and mouth disease, molluscum contagiosum, and Gianotti-Crosti syndrome. PMID:26612372

  16. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents.

    PubMed

    Rose, Peter; Whiteman, Matt; Moore, Philip K; Zhu, Yi Zhun

    2005-06-01

    S-Alk(en)yl cysteine sulfoxides are odourless, non-protein sulfur amino acids typically found in members of the family Alliaceae and are the precursors to the lachrymatory and flavour compounds found in the agronomically important genus Allium. Traditionally, Allium species, particularly the onion (Allium cepa) and garlic (A. sativum), have been used for centuries in European, Asian and American folk medicines for the treatment of numerous human pathologies, however it is only recently that any significant progress has been made in determining their mechanisms of action. Indeed, our understanding of the role of Allium species in human health undoubtedly comes from the combination of several academic disciplines including botany, biochemistry and nutrition. During tissue damage, S-alk(en)yl cysteine sulfoxides are converted to their respective thiosulfinates or propanethial-S-oxide by the action of the enzyme alliinase (EC 4.4.1.4). Depending on the Allium species, and under differing conditions, thiosulfinates can decompose to form additional sulfur constituents including diallyl, methyl allyl, and diethyl mono-, di-, tri-, tetra-, penta-, and hexasulfides, the vinyldithiins and (E)- and (Z)-ajoene. Recent reports have shown onion and garlic extracts, along with several principal sulfur constituents, can induce phase II detoxification enzymes like glutathione-S-transferases (EC 2.5.1.18) and quinone reductase (QR) NAD(P)H: (quinine acceptor) oxidoreductase (EC 1.6.99.2) in mammalian tissues, as well as also influencing cell cycle arrest and apoptosis in numerous in vitro cancer cell models. Moreover, studies are also beginning to highlight a role of Allium-derived sulfur compounds in cardiovascular protection. In this review, we discuss the chemical diversity of S-alk(en)yl cysteine sulfoxide metabolites in the context of their biochemical and pharmacological mechanisms.

  17. Fragrance material review on 1-(2,4-dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-(2,4-dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one when used as a fragrance ingredient is presented. 1-(2,4-Dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-(2,4-dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, sensitization, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients (submitted for publication)) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  18. Scaly Skin (Ichthyosis Vulgaris)

    MedlinePlus

    ... should improve by restoring moisture (hydration) to the skin. Creams and ointments are better moisturizers than lotions, and ... Physician May Prescribe To treat the dry, scaly skin of ichthyosis ... cream or lotion containing the following: Prescription-strength alpha- ...

  19. Skin Pigmentation Disorders

    MedlinePlus

    ... skin gets its color from a pigment called melanin. Special cells in the skin make melanin. When these cells become damaged or unhealthy, it affects melanin production. Some pigmentation disorders affect just patches of ...

  20. PPD skin test

    MedlinePlus

    Chernecky CC, Berger BJ. Mantoux skin test (PPD test, purified protein derivative test, Tb test, tuberculin skin test, TST, tuberculosis test) - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . ...

  1. Components of skin

    MedlinePlus Videos and Cool Tools

    ... skin layers from the outside environment and contains cells that make keratin, a substance that waterproofs and strengthens the skin. The epidermis also has cells that contain melanin, the dark pigment that gives ...

  2. Squamous cell skin cancer

    MedlinePlus

    ... occur on skin that is regularly exposed to sunlight or other ultraviolet radiation. The earliest form of ... skin cancer is to reduce your exposure to sunlight . Always use sunscreen: Apply sunscreen with sun protection ...

  3. Examine Your Skin

    MedlinePlus

    ... In Memory Melanoma Info Melanoma Facts Melanoma Prevention Sunscreen Suggestions Examine Your Skin Newly Diagnosed? Understanding Your ... UPDATED: February 5, 2015 Melanoma Facts Melanoma Prevention Sunscreen Suggestions Examine Your Skin Newly Diagnosed? Understanding Your ...

  4. Skin color - patchy

    MedlinePlus

    ... Injury Exposure to radiation (such as from the sun) Exposure to heavy metals Changes in hormone levels Exposure ... example, lighter-skinned people are more sensitive to sun exposure and damage, which raises the risk of skin ...

  5. Fungal Skin Infections

    MedlinePlus

    ... Fungal Skin Infections Overview of Fungal Skin Infections Candidiasis Overview of Dermatophytoses (Ringworm, Tinea) Athlete's Foot Jock ... are caused by yeasts (such as Candida —see Candidiasis ) or dermatophytes, such as Epidermophyton, Microsporum, and Trichophyton ( ...

  6. Automatic Skin Color Beautification

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Wei; Huang, Da-Yuan; Fuh, Chiou-Shann

    In this paper, we propose an automatic skin beautification framework based on color-temperature-insensitive skin-color detection. To polish selected skin region, we apply bilateral filter to smooth the facial flaw. Last, we use Poisson image cloning to integrate the beautified parts into the original input. Experimental results show that the proposed method can be applied in varied light source environment. In addition, this method can naturally beautify the portrait skin.

  7. Psychoneuroimmunology and the Skin.

    PubMed

    Honeyman, Juan F

    2016-08-23

    The nervous, immune, endocrine and integumentary systems are closely related and interact in a number of normal and pathological conditions. Nervous system mediators may bring about direct changes to the skin or may induce the release of immunological or hormonal mediators that cause pathological changes to the skin. This article reviews the psychological mechanisms involved in the development of skin diseases.

  8. Biology of Skin Color.

    ERIC Educational Resources Information Center

    Corcos, Alain

    1983-01-01

    Information from scientific journals on the biology of skin color is discussed. Major areas addressed include: (1) biology of melanin, melanocytes, and melanosomes; (2) melanosome and human diversity; (3) genetics of skin color; and (4) skin color, geography, and natural selection. (JN)

  9. Skin self-exam

    MedlinePlus

    Skin cancer - self-exam; Melanoma - self-exam; Basal cell cancer - self-exam; Squamous cell - self-exam; Skin mole - self-exam ... Experts do not agree on whether or not skin self-exams should be performed. So there is ...

  10. [Dermatology and skin color].

    PubMed

    Petit, Antoine

    2010-09-01

    Melanin is the pigment that is responsible for skin, hair and eye colours. Genetics and sun exposure are the two key factors that determine skin pigmentation. In dermatology, skin colours is significant, not only for semiology and diagnosis, but also for epidemiology and wounds healing.

  11. Fragrance material review on 2,6-dimethyl-4-heptanol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of 2,6-dimethyl-4-heptanol when used as a fragrance ingredient is presented. 2,6-Dimethyl-4-heptanol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  12. Fragrance material review on 2,6-dimethyl-2-heptanol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of 2,6-dimethyl-2-heptanol when used as a fragrance ingredient is presented. 2,6-Dimethyl-2-heptanol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  13. Regioselective synthesis of chiral dimethyl-bis(ethylenedithio)tetrathiafulvalene sulfones

    PubMed Central

    Pop, Flavia

    2015-01-01

    Summary Enantiopure (R,R) and (S,S)-dimethyl-bis(ethylenedithio)tetrathiafulvalene monosulfones have been synthesized by the aerial oxidation of the chiral dithiolates generated from the propionitrile-protected precursors. Both enantiomers crystallize in the orthorhombic chiral space group P212121. They show a boat-type conformation of the TTF moiety, a rather rigid dithiin sulfone ring and the methyl groups in a bisequatorial conformation. Cyclic voltammetry measurements indicate fully reversible oxidation in radical cation and dication species. PMID:26199666

  14. Detonation characteristics of dimethyl ether and ethanol-air mixtures

    NASA Astrophysics Data System (ADS)

    Diakow, P.; Cross, M.; Ciccarelli, G.

    2015-05-01

    The detonation cell structure in dimethyl ether vapor and ethanol vapor-air mixtures was measured at atmospheric pressure and initial temperatures in the range of 293-373 K. Tests were carried out in a 6.2-m-long, 10-cm inner diameter tube. For more reactive mixtures, a series of orifice plates were used to promote deflagration-to-detonation transition in the first half of the tube. For less reactive mixtures prompt detonation initiation was achieved with an acetylene-oxygen driver. The soot foil technique was used to capture the detonation cell structure. The measured cell size was compared to the calculated one-dimensional detonation reaction zone length. For fuel-rich dimethyl ether mixtures the calculated reaction zone is highlighted by a temperature gradient profile with two maxima, i.e., double heat release. The detonation cell structure was interpreted as having two characteristic sizes over the full range of mixture compositions. For mixtures at the detonation propagation limits the large cellular structure approached a single-head spin, and the smaller cells approached the size of the tube diameter. There is little evidence to support the idea that the two cell sizes observed on the foils are related to the double heat release predicted for the rich mixtures. There was very little influence of initial temperature on the cell size over the temperature range investigated. A double heat release zone was not predicted for ethanol-air detonations. The detonation cell size for stoichiometric ethanol-air was found to be similar to the size of the small cells for dimethyl ether. The measured cell size for ethanol-air did not vary much with composition in the range of 30-40 mm. For mixtures near stoichiometric it was difficult to discern multiple cell sizes. However, near the detonation limits there was strong evidence of a larger cell structure similar to that observed in dimethyl ether air mixtures.

  15. Influence of ligand and environment substitution on photo-triggered linkage isomerization of photochromic ruthenium sulfoxide complexes

    NASA Astrophysics Data System (ADS)

    Springfeld, Kristin; Dieckmann, Volker; Eicke, Sebastian; Imlau, Mirco

    2012-02-01

    The group of ruthenium polypyridine sulfoxides features a pronounced photochromism in the UV/VIS spectral range based on an ultrafast photo-triggered linkage isomerization located at the SO-ligand. This isomerization exhibits a tremendous photosensitivity and a high thermal stability of the two metastable structural isomers. Here, we discuss the characteristic photochromic properties of the compounds in the frame of ligand substitution and the replacement of the dielectric environment. The complex [Ru(bpy)2(ROSO)].PF6 [1] (with OSO: 2-methylsulfinylbenzoate) has been modified with the groups R = H, Bn, BnCl and BnMe [2] and studied in different solvents as well as in polydimethylsiloxane. The analysis is performed by cw-pump-probe technique as a function of temperature and exposure. Our results reveal a selective adjustability of the thermal stability in the compounds, while the photosensitivity and the characteristic absorption spectra remain unchanged. We discuss the impact of sulfoxide compounds with the desired features in view of application in molecular photonic devices.[4pt] [1] V. Dieckmann et al., Opt. Express 17, 15052 (2009)[2] V. Dieckmann et al., Opt. Express 18, 23495 (2010)

  16. Fluorine-18 radiolabeling of a nitrophenyl sulfoxide and its evaluation in an SK-RC-52 model of tumor hypoxia.

    PubMed

    Laurens, Evelyn; Yeoh, Shinn Dee; Rigopoulos, Angela; O'Keefe, Graeme J; Tochon-Danguy, Henri J; Chong, Lee Wenn; White, Jonathan M; Scott, Andrew M; Ackermann, Uwe

    2016-08-01

    The significance of imaging hypoxia with the positron emission tomography ligand [(18) F]FMISO has been demonstrated in a variety of cancers. However, the slow kinetics of [(18) F]FMISO require a 2-h delay between tracer administration and patient scanning. Labeled chloroethyl sulfoxides have shown faster kinetics and higher contrast than [(18) F]FMISO in a rat model of ischemic stroke. However, these nitrogen mustard analogues are unsuitable for routine production and use in humans. Here, we report on the synthesis and in vitro and in vivo evaluation of a novel sulfoxide, which contains an ester moiety for hydrolysis and subsequent trapping in hypoxic cells. Non-decay corrected yields of radioactivity were 1.18 ± 0.24% (n = 27, 2.5 ± 0.5% decay corrected radiochemical yield) based on K[(18) F]F. The radiotracer did not show any defluorination and did not undergo metabolism in an in vitro assay using S9 liver fractions. Imaging studies using an SK-RC-52 tumor model in BALB/c nude mice have revealed that [(18) F]1 is retained in hypoxic tumors and has similar hypoxia selectivity to [(18) F]FMISO. Because of a three times faster clearance rate than [(18) F]FMISO from normoxic tissue, [(18) F]1 has emerged as a promising new radiotracer for hypoxia imaging. PMID:27435268

  17. Synthesis and luminescence properties of two novel lanthanide (III) perchlorate complexes with bis(benzoylmethyl) sulfoxide and benzoic acid.

    PubMed

    Li, Wen-Xian; Chai, Wen-Juan; Sun, Xiao-Jun; Ren, Tie; Shi, Xiao-Yan

    2010-07-01

    Two novel ternary rare earth complexes of Tb(III) and Dy(III) perchlorates with bis(benzoylmethyl) sulfoxide (L) and benzoic acid (L') had been synthesized and characterized by elemental analysis, coordination titration analysis, molar conductivity, IR, TG-DSC, (1)HNMR and UV spectra. The results indicated that the composition of these complexes was REL(5)L'(ClO(4))(2) x nH(2)O (RE = Tb(III), Dy(III); L = C(6)H(5)COCH(2)SOCH(2)COC(6)H(5), L' = C(6)H(5)COO; n = 6,8). The fluorescence spectra illustrated that the ternary rare earth complexes presented stronger fluorescence intensities, longer lifetimes and higher fluorescence quantum efficiencies than the binary rare earth complexes REL(5) x (ClO(4))(3) x 2 H(2)O. After the introduction of the second ligand benzoic acid group, the relative fluorescence emission intensities and fluorescence lifetimes of the ternary complexes REL(5)L'(ClO(4))(2) x nH(2)O (RE = Tb(III), Dy(III)) enhanced more obviously than the binary complexes. This indicated that the presence of both organic ligands bis(benzoylmethyl) sulfoxide and the second ligand benzoic acid could sensitize fluorescence intensities of rare earth ions, and the introduction of benzoic acid group was resulted in the enhancement of the fluorescence properties of the ternary rare earth complexes. The phosphorescence spectra were also discussed.

  18. Molecular characterization and expression profile of methionine sulfoxide reductase gene family in maize (Zea mays) under abiotic stresses.

    PubMed

    Zhu, Jiantang; Ding, Pengcheng; Li, Qingqing; Gao, YanKun; Chen, Fanguo; Xia, Guangmin

    2015-05-15

    Methionine (Met) oxidation to methionine sulfoxide (MetSO) is a common form of damage caused by reactive oxygen species (ROS) accumulation via various environmental stresses. Methionine sulfoxide reductase (MSR) repairs oxidized Met and protects organisms from oxidative damage. Two types of MSR, A and B, have been identified based on substrate stereo specificity; they share no sequence similarity. In the present study, we characterized six genes encoding the putative MSR from two public databases. We compared them with MSRs from 6 species, and evaluated molecular characterization, phylogenetic analysis, tertiary structure and conserved motifs. On the basis of in silico and the qRT-PCR experimental data, we analyzed cDNA sequences and expression patterns of ZmMSR genes in different organs in maize. We found that ZmMSR genes were induced by polyethylene glycol (PEG) and NaCl, both known to generate oxidative stress. The results show that MSRs are conserved in different species, suggesting that MSRs across different species share common mechanisms related to diverse defense responses.

  19. Anyone Can Get Skin Cancer

    Cancer.gov

    No matter if your skin is light, dark, or somewhere in between, everyone is at risk for skin cancer. Learn what skin cancer looks like, how to find it early, and how to lower the chance of skin cancer.

  20. Rheological properties of concentrated solutions of gelatin in an ionic liquid 1-ethyl-3-methylimidazolium dimethyl phosphate.

    PubMed

    Horinaka, Jun-Ichi; Okamoto, Arisa; Takigawa, Toshikazu

    2016-10-01

    Rheological properties of gelatin solutions were examined in concentrated regions. Gelatin species from porcine skin and from bovine bone were dissolved in an ionic liquid 1-ethyl-3-methylimidazolium dimethyl phosphate. The dynamic viscoelasticity data for the solutions exhibited rubbery plateaus, indicating the existence of entanglement coupling between gelatin chains in the solutions. From the analogy with rubber elasticity, assuming that the molecular weight between entanglements (Me) is the average mesh size of the entanglement network, Me for gelatin in the solutions were determined from the heights of the rubbery plateaus. Then the value of Me in the molten state (Me,melt), a material constant reflecting the chemical structure of polymer species, for gelatin was estimated to be 8.7×10(3). Compared to synthetic polyamides whose Me,melt were known, Me,melt for gelatin was significantly larger, which could be explained by the densely repeating amide bonds composing gelatin. PMID:27311506

  1. Pursuing prosthetic electronic skin.

    PubMed

    Chortos, Alex; Liu, Jia; Bao, Zhenan

    2016-09-01

    Skin plays an important role in mediating our interactions with the world. Recreating the properties of skin using electronic devices could have profound implications for prosthetics and medicine. The pursuit of artificial skin has inspired innovations in materials to imitate skin's unique characteristics, including mechanical durability and stretchability, biodegradability, and the ability to measure a diversity of complex sensations over large areas. New materials and fabrication strategies are being developed to make mechanically compliant and multifunctional skin-like electronics, and improve brain/machine interfaces that enable transmission of the skin's signals into the body. This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals. PMID:27376685

  2. [Skin diseases and obesity].

    PubMed

    Guerra-Segovia, Carolina; Ocampo-Candiani, Jorge

    2015-01-01

    Obesity is a public health problem worldwide. It predominates in industrialized countries; however, it is prevalent in all nations. It is defined as a condition of excess adipose tissue and is the result of changes in lifestyle, excessive consumption of energy-dense foods with poor nutritional value, physical inactivity and the reduction of open space where one can practice a sport. Although obesity is associated with multiple diseases, it is important to stress that the metabolic changes caused by it affect skin physiology and play a predisposing factor for the development of skin diseases. Very little has been studied on the impact of obesity on the skin. The purpose of this article is to review the most frequently skin diseases in obesity. Some skin pathologies in obesity are caused by changes in skin physiology, others are related to insulin resistance or constitute an exacerbating factor for dermatitis. This article covers the clinical features of obesity related skin disease and its management.

  3. Pursuing prosthetic electronic skin

    NASA Astrophysics Data System (ADS)

    Chortos, Alex; Liu, Jia; Bao, Zhenan

    2016-09-01

    Skin plays an important role in mediating our interactions with the world. Recreating the properties of skin using electronic devices could have profound implications for prosthetics and medicine. The pursuit of artificial skin has inspired innovations in materials to imitate skin's unique characteristics, including mechanical durability and stretchability, biodegradability, and the ability to measure a diversity of complex sensations over large areas. New materials and fabrication strategies are being developed to make mechanically compliant and multifunctional skin-like electronics, and improve brain/machine interfaces that enable transmission of the skin's signals into the body. This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.

  4. Pressure and temperature dependence of excess enthalpies of methanol + tetraethylene glycol dimethyl ether and methanol + polyethylene glycol dimethyl ether 250

    SciTech Connect

    Lopez, E.R.; Coxam, J.Y.; Fernandez, J.; Grolier, J.P.E.

    1999-12-01

    The excess molar enthalpies at 323.15 K, 373.15 K, and 423.15 K, at 8 MPa, are reported for the binary mixtures methanol + tetraethylene glycol dimethyl ether (TEGDME) and methanol + poly(ethylene glycol) dimethyl ether 250 (PEGDME 250). Excess molar enthalpies were determined with a Setaram C-80 calorimeter equipped with a flow mixing cell. For both systems, the excess enthalpies are positive over the whole composition range, increasing with temperature. The H{sup E}(x) curves are slightly asymmetrical, and their maxima are skewed toward the methanol-rich region. The excess enthalpies slightly change with the pressure, the sign of this change being composition-dependent. In the case of mixtures with TEGDME, the experimental H{sup E} values have been compared with those predicted with the Gmehling et al. version of UNIFAC (Dortmund) and the Nitta-Chao and DISQUAC group contribution models.

  5. Dimethyl fumarate modulation of immune and antioxidant responses: application to HIV therapy

    PubMed Central

    Gill, Alexander J.; Kolson, Dennis L.

    2013-01-01

    The persistence of chronic immune activation and oxidative stress in human immunodeficiency virus (HIV)-infected, antiretroviral drug-treated individuals are major obstacles to fully preventing HIV disease progression. The immune modulator and antioxidant dimethyl fumarate (DMF) is effective in treating immune-mediated diseases and it also has potential applications to limiting HIV disease progression. Among the relevant effects of DMF and its active metabolite monomethyl fumarate (MMF) are induction of a Th1 → Th2 lymphocyte shift, inhibition of pro-inflammatory cytokine signaling, inhibition of NF-κB nuclear translocation, inhibition of dendritic cell maturation, suppression of lymphocyte and endothelial cell adhesion molecule expression, and induction of the Nrf2-dependent antioxidant response element (ARE) and effector genes. Associated with these effects are reduced lymphocyte and monocyte infiltration into psoriatic skin lesions in humans and immune-mediated demyelinating brain lesions in rodents, which confirms potent systemic and central nervous system (CNS) effects. In addition, DMF and MMF limit HIV infection in macrophages in vitro, albeit by unknown mechanisms. Finally, DMF and MMF also suppress neurotoxin production from HIV-infected macrophages, which drives CNS neurodegeneration. Thus, DMF might protect against systemic and CNS complications in HIV infection through its effective suppression of immune activation, oxidative stress, HIV replication, and macrophage-associated neuronal injury. PMID:23971529

  6. Evaluation of Skin Anti-aging Potential of Citrus reticulata Blanco Peel

    PubMed Central

    Apraj, Vinita D.; Pandita, Nancy S.

    2016-01-01

    Two types of extraction were performed and extracts were subjected to qualitative and quantitative phytochemical analysis. Extract obtained by Soxhlation (CR HAE) showed higher total phenolic and flavonoid contents than extract obtained by maceration (CR CAE)CR HAE demonstrated strong DPPH and Superoxide free radical scavenging activity whereas, ABTS scavenging activity of both the extracts were found to be similar. Oxygen Radical Absorbance Capacity (ORAC) of CR HAE was found to be more; indicating its strong antioxidant potentialIn vitro collagenase and elastase enzyme inhibition activities were evaluated for both the extracts and CR HAE showed strong anti-collagenase and antielastase potential indicating its anti-aging abilityGC-MS analysis of CR HAE revealed the presence of various compounds mainly including Polymethoxyflavones. CR HAE exhibited promising antioxidant and anti-enzymatic activity and can be used as a potent antiwrinkle agent in anti-aging skin care formulations. Abbreviation Used: ECM: Extracellular matrix, UV: Ultra violet, ROS: Reactive Oxygen Species, MMP: Matrix metalloproteinase, Chc: Clostridium histolyticum collagenase, DPPH: 2, 2-diphenyl-1-picrylhydrazyl, GC-MS: Gas Chromatography-Mass Spectroscopy, RT: Room Temperature, μg GAE/ mg: Microgram Gallic acid equivalent / milligram, W/V: Weight by Volume, μg QE/ mg: Microgram Quercetin equivalent / milligram, CR HAE: Hot Alcoholic Extract of Citrus reticulata Blanco, CR CAE: Cold Alcoholic Extract of Citrus reticulata Blanco, EC50: Half Maximal Effective Concentration, PMS NADH: Phenazine methosulfate nicotinamide adenine dinucleotide, NBT: Nitroblue tetrazolium, DMSO: Dimethyl sulfoxide, APS: Ammonium Persulphate, AAPH: 2,2 -azobis(2-amidino-propane) dihydrochloride, TROLOX: (±) 6-hydroxy-2,5,7,8-tetramethyl chromane-2-carboxylic acid, ORAC: Oxygen Radical Absorbance Capacity, FALGPA: N-[3-(2-Furyl) acryloyl)]-Leu-Gly-Pro-Ala, SANA: Succinyl-Ala-Ala-Ala-p-nitroanilide, Rf: Retardation

  7. Evaluation of Skin Anti-aging Potential of Citrus reticulata Blanco Peel

    PubMed Central

    Apraj, Vinita D.; Pandita, Nancy S.

    2016-01-01

    Two types of extraction were performed and extracts were subjected to qualitative and quantitative phytochemical analysis. Extract obtained by Soxhlation (CR HAE) showed higher total phenolic and flavonoid contents than extract obtained by maceration (CR CAE)CR HAE demonstrated strong DPPH and Superoxide free radical scavenging activity whereas, ABTS scavenging activity of both the extracts were found to be similar. Oxygen Radical Absorbance Capacity (ORAC) of CR HAE was found to be more; indicating its strong antioxidant potentialIn vitro collagenase and elastase enzyme inhibition activities were evaluated for both the extracts and CR HAE showed strong anti-collagenase and antielastase potential indicating its anti-aging abilityGC-MS analysis of CR HAE revealed the presence of various compounds mainly including Polymethoxyflavones. CR HAE exhibited promising antioxidant and anti-enzymatic activity and can be used as a potent antiwrinkle agent in anti-aging skin care formulations. Abbreviation Used: ECM: Extracellular matrix, UV: Ultra violet, ROS: Reactive Oxygen Species, MMP: Matrix metalloproteinase, Chc: Clostridium histolyticum collagenase, DPPH: 2, 2-diphenyl-1-picrylhydrazyl, GC-MS: Gas Chromatography-Mass Spectroscopy, RT: Room Temperature, μg GAE/ mg: Microgram Gallic acid equivalent / milligram, W/V: Weight by Volume, μg QE/ mg: Microgram Quercetin equivalent / milligram, CR HAE: Hot Alcoholic Extract of Citrus reticulata Blanco, CR CAE: Cold Alcoholic Extract of Citrus reticulata Blanco, EC50: Half Maximal Effective Concentration, PMS NADH: Phenazine methosulfate nicotinamide adenine dinucleotide, NBT: Nitroblue tetrazolium, DMSO: Dimethyl sulfoxide, APS: Ammonium Persulphate, AAPH: 2,2 -azobis(2-amidino-propane) dihydrochloride, TROLOX: (±) 6-hydroxy-2,5,7,8-tetramethyl chromane-2-carboxylic acid, ORAC: Oxygen Radical Absorbance Capacity, FALGPA: N-[3-(2-Furyl) acryloyl)]-Leu-Gly-Pro-Ala, SANA: Succinyl-Ala-Ala-Ala-p-nitroanilide, Rf: Retardation Factor, MSD

  8. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    DOE PAGESBeta

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Lavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.; Coates, John D.

    2015-05-12

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and amore » putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often stressed in the environment by reactive chlorine species (RCS) of

  9. Corynebacterium glutamicum Methionine Sulfoxide Reductase A Uses both Mycoredoxin and Thioredoxin for Regeneration and Oxidative Stress Resistance

    PubMed Central

    Si, Meiru; Zhang, Lei; Chaudhry, Muhammad Tausif; Ding, Wei; Xu, Yixiang; Chen, Can; Akbar, Ali; Liu, Shuang-Jiang

    2015-01-01

    Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under

  10. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    SciTech Connect

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Lavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.; Coates, John D.

    2015-05-12

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and a putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often

  11. A simple LC-MS/MS method to determine plasma and cerebrospinal fluid levels of albendazole metabolites (albendazole sulfoxide and albendazole sulfone) in patients with neurocysticercosis.

    PubMed

    González-Hernández, Iliana; Ruiz-Olmedo, María Isabel; Cárdenas, Graciela; Jung-Cook, Helgi

    2012-02-01

    The development and validation of an LC-MS/MS method for the simultaneous determination of albendazole metabolites (albendazole sulfoxide and albendazole sulfone) in human plasma are described. Samples of 200 μL were extracted with ether-dichloromethane-chloroform (60:30:10, v/v/v). The chromatographic separation was performed using a C(18) column with methanol-formic acid 20 mmol/L (70:30) as the mobile phase. The method was linear in a range of 20-5000 ng/mL for albendazole sulfoxide and 10-1500 ng/mL for albendazole sulfone. For both analytes the method was precise (RSD < 12%) and accurate (RE <7%) with high recovery (>90%). The method was successfully applied to determine the plasma and cerebrospinal fluid levels of albendazole sulfoxide and albendazole sulfone in patients with subarachnoidal neurocysticercosis who received albendazole at 30 mg/kg per day for 7 days. This LC-MS/MS method yielded a quick, simple and reliable protocol for determining albendazole sulfoxide and albendazole sulfone concentrations in plasma and cerebrospinal fluid samples and is applicable to therapeutic monitoring.

  12. Mutant form C115H of Clostridium sporogenes methionine γ-lyase efficiently cleaves S-Alk(en)yl-l-cysteine sulfoxides to antibacterial thiosulfinates.

    PubMed

    Kulikova, Vitalia V; Anufrieva, Natalya V; Revtovich, Svetlana V; Chernov, Alexander S; Telegin, Georgii B; Morozova, Elena A; Demidkina, Tatyana V

    2016-10-01

    Pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) catalyzes the β-elimination reaction of S-alk(en)yl-l-cysteine sulfoxides to thiosulfinates, which possess antimicrobial activity. Partial inactivation of the enzyme in the course of the reaction occurs due to oxidation of active site cysteine 115 conserved in bacterial MGLs. In this work, the C115H mutant form of Clostridium sporogenes MGL was prepared and the steady-state kinetic parameters of the enzyme were determined. The substitution results in an increase in the catalytic efficiency of the mutant form towards S-substituted l-cysteine sulfoxides compared to the wild type enzyme. We used a sulfoxide/enzyme system to generate antibacterial activity in situ. Two-component systems composed of the mutant enzyme and three S-substituted l-cysteine sulfoxides were demonstrated to be effective against Gram-positive and Gram-negative bacteria and three clinical isolates from mice. © 2016 IUBMB Life, 68(10):830-835, 2016. PMID:27647488

  13. Mutant form C115H of Clostridium sporogenes methionine γ-lyase efficiently cleaves S-Alk(en)yl-l-cysteine sulfoxides to antibacterial thiosulfinates.

    PubMed

    Kulikova, Vitalia V; Anufrieva, Natalya V; Revtovich, Svetlana V; Chernov, Alexander S; Telegin, Georgii B; Morozova, Elena A; Demidkina, Tatyana V

    2016-10-01

    Pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) catalyzes the β-elimination reaction of S-alk(en)yl-l-cysteine sulfoxides to thiosulfinates, which possess antimicrobial activity. Partial inactivation of the enzyme in the course of the reaction occurs due to oxidation of active site cysteine 115 conserved in bacterial MGLs. In this work, the C115H mutant form of Clostridium sporogenes MGL was prepared and the steady-state kinetic parameters of the enzyme were determined. The substitution results in an increase in the catalytic efficiency of the mutant form towards S-substituted l-cysteine sulfoxides compared to the wild type enzyme. We used a sulfoxide/enzyme system to generate antibacterial activity in situ. Two-component systems composed of the mutant enzyme and three S-substituted l-cysteine sulfoxides were demonstrated to be effective against Gram-positive and Gram-negative bacteria and three clinical isolates from mice. © 2016 IUBMB Life, 68(10):830-835, 2016.

  14. Skin mirrors human aging.

    PubMed

    Nikolakis, Georgios; Makrantonaki, Evgenia; Zouboulis, Christos C

    2013-12-01

    Abstract Aged skin exhibits disturbed lipid barrier, angiogenesis, production of sweat, immune functions, and calcitriol synthesis as well as the tendency towards development of certain benign or malignant diseases. These complex biological processes comprise endogenous and exogenous factors. Ethnicity also markedly influences the phenotype of skin aging. The theories of cellular senescence, telomere shortening and decreased proliferative capacity, mitochondrial DNA single mutations, the inflammation theory, and the free radical theory try to explain the biological background of the global aging process, which is mirrored in the skin. The development of advanced glycation end-products and the declining hormonal levels are major factors influencing intrinsic aging. Chronic photodamage of the skin is the prime factor leading to extrinsic skin aging. The deterioration of important skin functions, due to intrinsic and extrinsic aging, leads to clinical manifestations, which mirror several internal age-associated diseases such as diabetes, arterial hypertension and malignancies.

  15. Anaerobic versus aerobic degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments

    SciTech Connect

    Lomans, B.P.; Op den Camp, H.J.M.; Pol, A.; Vogels, G.D.

    1999-02-01

    Degradation of dimethyl sulfide and methanethiol in slurries prepared from sediments of minerotrophic peatland ditches were studied under various conditions. Maximal aerobic dimethyl sulfide-degrading capacities, measured in bottles shaken under an air atmosphere, were 10-fold higher than the maximal anaerobic degrading capacities determined from bottles shaken under N{sub 2} or H{sub 2} atmosphere. Incubations under experimental conditions which mimic the in situ conditions, however, revealed that aerobic degradation of dimethyl sulfide and methanethiol in freshwater sediments is low due to oxygen limitation. Inhibition studies with bromoethanesulfonic acid and sodium tungstate demonstrated that the degradation of dimethyl sulfide and methanethiol in these incubations originated mainly from methanogenic activity. Prolonged incubation under a H{sub 2} atmosphere resulted in lower dimethyl sulfide degradation rates. Kinetic analysis of the data resulted in apparent K{sub m} values (6 to 8 {micro}M) for aerobic dimethyl sulfide degradation which are comparable to those reported for Thiobacillus spp., Hyphomicrobium spp., and other methylotrophs. Apparent K{sub m} values determined for anaerobic degradation of dimethyl sulfide were of the same order of magnitude. The low apparent K{sub m} values obtained explain the low dimethyl sulfide and methanethiol concentrations in freshwater sediments that they reported previously. The observations point to methanogenesis as the major mechanism of dimethyl sulfide and methanethiol consumption in freshwater sediments.

  16. Skin care and incontinence

    MedlinePlus

    Incontinence - skin care; Incontinence - pressure sore; Incontinence - pressure ulcer ... redness, peeling, irritation, and yeast infections likely. Bedsores ( pressure sores ) may also develop if the person: Has ...

  17. Bacterial Skin Infections.

    PubMed

    Ibrahim, Fadi; Khan, Tariq; Pujalte, George G A

    2015-12-01

    Skin and soft tissue infections account for 0.5% of outpatient visits to primary care. Skin and soft tissue infections can usually be managed in an outpatient setting. However, there are certain circumstances as discussed in this article that require more urgent care or inpatient management. Primary care providers should be able to diagnose, manage, and provide appropriate follow-up care for these frequently seen skin infections. This article provides family physicians with a comprehensive review of the assessment and management of common bacterial skin infections. PMID:26612370

  18. Bacterial Skin Infections.

    PubMed

    Ibrahim, Fadi; Khan, Tariq; Pujalte, George G A

    2015-12-01

    Skin and soft tissue infections account for 0.5% of outpatient visits to primary care. Skin and soft tissue infections can usually be managed in an outpatient setting. However, there are certain circumstances as discussed in this article that require more urgent care or inpatient management. Primary care providers should be able to diagnose, manage, and provide appropriate follow-up care for these frequently seen skin infections. This article provides family physicians with a comprehensive review of the assessment and management of common bacterial skin infections.

  19. The Microwave Spectrum of Partially Deuterated Species of Dimethyl Ether

    NASA Astrophysics Data System (ADS)

    Lauvergnat, D.; Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.; Coudert, L. H.

    2011-06-01

    Dimethyl ether is a molecule of astrophysical interest spectroscopically well characterized. It is one of the simplest molecules with two methyl groups undergoing large amplitude internal rotations. Due to deuterium enrichment in the interstellar medium, one can reasonably expect that partially deuterated species of dimethyl ether might be detected. However, there are no spectroscopic results about the microwave spectrum of such species. A theoretical calculation of the rotation-torsion energy levels of the partially deuterated species of dimethyl ether has been undertaken aided by ab initio calculations. The approach accounts for the complicated torsion-rotation interactions displayed by this molecule and for the fact that deuteration leads to changes of the bidimensional internal rotation effective potential energy surface. Due to zero-point energy contributions from the 19 small amplitude vibrational modes, this surface no longer displays G36 symmetry. Rotation-torsion energy levels are computed treating the two angles of internal rotation as active coordinates and evaluating Hamiltonian matrix elements with the help of Gaussian quadrature. It is hoped that the present results will allow us to understand the microwave spectrum of the mono deuterated species CH_2DOCH_3 which has been recorded in Lille with the new sub millimeter wave spectrometer (150--950 GHz) based on harmonic generation of solid-state sources. [2] Snyder, Buhl, and Schwartz, Astrophys. J. Letters 191 (1974) L79. [3] Endres, Drouin, Pearson, Müller, Lewen, Schlemmer, and Giesen, A&A 504 (2009) 635. [4] Solomon and Woolf, Astrophys. J. Letters 180 (1973) L89. [5] Lauvergnat and Nauts, J. Chem. Phys. 116 (2002) 8560; and Light and Bačić, J. Chem. Phys. 87 (1987) 4008.

  20. High cell density cultivation of Pseudomonas putida strain HKT554 and its application for optically active sulfoxide production.

    PubMed

    Ramadhan, Said Hamad; Matsui, Toru; Nakano, Kazuma; Minami, Hirofumi

    2013-03-01

    Culture conditions with Pseudomonas putida strain HKT554, expressing naphthalene dioxygenase, known as the biocatalyst showing wide substrate specificity, were optimized for high cell density cultivation (HCDC). Culture in a medium TK-B modified from that for HCDC of Escherichia coli with glucose fed-batch and dissolved oxygen stat resulted in a high cell density growth of 114 g dry cell/l at 40 h of cultivation. This system was further applied for S-(+)-methyl phenyl sulfoxide (MPSO) production from methyl phenyl sulfide. Addition of nonpolar organic solvent, such as n-hexadecane, greatly enhanced the MPSO production due to the prevention of substrate evaporation, resulting in a MPSO production up to 39 mM in 30 h with a conversion rate of 95.7 mol%.

  1. Developing an Acidic Residue Reactive and Sulfoxide-Containing MS-Cleavable Homobifunctional Cross-Linker for Probing Protein–Protein Interactions

    PubMed Central

    2016-01-01

    Cross-linking mass spectrometry (XL-MS) has become a powerful strategy for defining protein–protein interactions and elucidating architectures of large protein complexes. However, one of the inherent challenges in MS analysis of cross-linked peptides is their unambiguous identification. To facilitate this process, we have previously developed a series of amine-reactive sulfoxide-containing MS-cleavable cross-linkers. These MS-cleavable reagents have allowed us to establish a common robust XL-MS workflow that enables fast and accurate identification of cross-linked peptides using multistage tandem mass spectrometry (MSn). Although amine-reactive reagents targeting lysine residues have been successful, it remains difficult to characterize protein interaction interfaces with little or no lysine residues. To expand the coverage of protein interaction regions, we present here the development of a new acidic residue-targeting sulfoxide-containing MS-cleavable homobifunctional cross-linker, dihydrazide sulfoxide (DHSO). We demonstrate that DHSO cross-linked peptides display the same predictable and characteristic fragmentation pattern during collision induced dissociation as amine-reactive sulfoxide-containing MS-cleavable cross-linked peptides, thus permitting their simplified analysis and unambiguous identification by MSn. Additionally, we show that DHSO can provide complementary data to amine-reactive reagents. Collectively, this work not only enlarges the range of the application of XL-MS approaches but also further demonstrates the robustness and applicability of sulfoxide-based MS-cleavability in conjunction with various cross-linking chemistries. PMID:27417384

  2. An aging study of wire chambers with dimethyl ether

    SciTech Connect

    Jibaly, M.; Chrusch, P. Jr.; Hilgenberg, G.; Majewski, S.; Wojcik, R.; Sauli, F.; Gaudaen, J.

    1989-02-01

    The authors report results on the aging of different types of resistive and non-resistive wires in wire chambers filled with dimethyl ether (DME) of varying degrees of purity. Among the Freon impurities detected in our DME batches, only Freon-11 was found to contribute to the aging process. Of the resistive wires, Nicotin and Stablohm produced fast aging, whereas stainless steel withstood extended irradiation in purified DME (up to 1 C/cm) without any apparent damage. Gold-plated tungsten and molybdenum wires produced results comparable to those of the stainless steel.

  3. Dimethyl ether production from methanol and/or syngas

    SciTech Connect

    Dagle, Robert A; Wang, Yong; Baker, Eddie G; Hu, Jianli

    2015-02-17

    Disclosed are methods for producing dimethyl ether (DME) from methanol and for producing DME directly from syngas, such as syngas from biomass. Also disclosed are apparatus for DME production. The disclosed processes generally function at higher temperatures with lower contact times and at lower pressures than conventional processes so as to produce higher DME yields than do conventional processes. Certain embodiments of the processes are carried out in reactors providing greater surface to volume ratios than the presently used DME reactors. Certain embodiments of the processes are carried out in systems comprising multiple microchannel reactors.

  4. Dimethyl (E)-2-(N-phenyl-acetamido)-but-2-enedioate.

    PubMed

    Guo, Shui Liang; Fu, Chen; Wen, Ting Bin

    2010-01-01

    The title compound, C(14)H(15)NO(5), was obtained from the reaction of acetanilide with dimethyl acetyl-enedicarboxyl-ate in the presence of potassium carbonate. The C=C double bond adopts an E configuration and the geometry around the amide N atom is almost planar rather than pyramidal (mean deviation of 0.0032 Å from the C(3)N plane). The packing of the mol-ecules in the crystal structure is stabilized by inter-molecular C-H⋯O hydrogen bonds. PMID:21522789

  5. Dimethyl fumarate for relapsing-remitting multiple sclerosis.

    PubMed

    2014-09-01

    For many years the only drugs licensed for the treatment of multiple sclerosis (MS) were administered by injection (interferon beta, glatiramer and ▼natalizumab). Recently, three oral drugs have become available. We have previously reviewed the use of ▼fingolimod for highly active relapsing-remitting MS1 and ▼teriflunomide for the management of relapsing-remitting MS in adults.2 Here, we review the evidence for ▼dimethyl fumarate (Tecfidera-Biogen Idec Ltd) for the treatment of adults with relapsing-remitting MS. PMID:25213591

  6. Role of structural and functional elements of mouse methionine-S-sulfoxide reductase in its subcellular distribution.

    PubMed

    Kim, Hwa-Young; Gladyshev, Vadim N

    2005-06-01

    Oxidized forms of methionine residues in proteins can be repaired by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). In mammals, three MsrBs are present, which are targeted to various subcellular compartments. In contrast, only a single mammalian MsrA gene is known whose products have been detected in both cytosol and mitochondria. Factors that determine the location of the protein in these compartments are not known. Here, we found that MsrA was present in cytosol, nucleus, and mitochondria in mouse cells and tissues and that the major enzyme forms detected in various compartments were generated from a single-translation product rather than by alternative translation initiation. Both cytosolic and mitochondrial forms were processed with respect to the N-terminal signal peptide, and the distribution of the protein occurred post-translationally. Deletion of amino acids 69-108, 69-83, 84-108, or 217-233, which contained elements important for MsrA structure and function, led to exclusive mitochondrial location of MsrA, whereas a region that affected substrate binding but was not part of the overall fold had no influence on the subcellular distribution. The data suggested that proper structure-function organization of MsrA played a role in subcellular distribution of this protein in mouse cells. These findings were recapitulated by expressing various forms of mouse MsrA in Saccharomyces cerevisiae, suggesting conservation of the mechanisms responsible for distribution of the mammalian enzyme among different cellular compartments. PMID:15924425

  7. Novel Mechanism for Scavenging of Hypochlorite Involving a Periplasmic Methionine-Rich Peptide and Methionine Sulfoxide Reductase

    PubMed Central

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Iavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.

    2015-01-01

    ABSTRACT Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and a putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. PMID:25968643

  8. Development and validation of a highly sensitive LC-MS/MS method for simultaneous quantitation of ethionamide and ethionamide sulfoxide in human plasma: application to a human pharmacokinetic study.

    PubMed

    Deshpande, Abhijeet Y; Gurav, Sandip; Punde, Ravindra; Zambre, Vishal; Kulkarni, Rahul; Pandey, Sarvesh; Mungantiwar, Ashish; Mullangi, Ramesh

    2011-09-01

    A highly sensitive and specific LC-MS/MS method has been developed for simultaneous quantification of ethionamide and ethionamide sulfoxide in human plasma (300 µL) using prothionamide as an internal standard (IS). Solid-phase extraction was used to extract ethionamide, ethionamide sulfoxide and IS from human plasma. The chromatographic separation of ethionamide, ethionamide sulfoxide and IS was achieved with a mobile phase consisting of 0.1% acetic acid : acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a Peerless Basic C(18) column. The total run time was 3.5 min and the elution of ethionamide, ethionamide sulfoxide and IS occurred at 2.50, 2.18 and 2.68 min, respectively. A linear response function was established for the range of concentrations 25.7-6120 ng/mL (r > 0.998) for ethionamide and 50.5-3030 ng/mL (r > 0.998) for ethionamide sulfoxide. The intra- and inter-day precision values for ethionamide and ethionamide sulfoxide met the acceptance as per FDA guidelines. Ethionamide and ethionamide sulfoxide were stable in battery of stability studies, viz. bench-top, autosampler and freeze-thaw cycles. The developed assay was applied to a pharmacokinetic study in humans.

  9. About Skin: Your Body's Largest Organ

    MedlinePlus

    ... your skin, hair, and nails Skin dictionary Camp Discovery Good Skin Knowledge lesson plans and activities Video library Find a ... your skin, hair, and nails Skin dictionary Camp Discovery Good Skin Knowledge lesson plans and activities Video library Find a ...

  10. Skin Diseases: Skin and Sun—Not a good mix

    MedlinePlus

    ... Current Issue Past Issues Skin Diseases Skin and Sun —Not a good mix Past Issues / Fall 2008 ... turn Javascript on. Good skin care begins with sun safety. Whether it is something as simple as ...

  11. Skin Problems in Construction

    MedlinePlus

    ... 3 Keep skin clean Wash with soap and clean water if your skin comes in contact with hazardous ... caustics like wet cement. DO NOT use the water in the bucket used to clean your tools. DO NOT use hand sanitizers. Wash ...

  12. Biothermomechanics of skin tissues

    NASA Astrophysics Data System (ADS)

    Xu, F.; Lu, T. J.; Seffen, K. A.

    Biothermomechanics of skin is highly interdisciplinary involving bioheat transfer, burn damage, biomechanics and neurophysiology. During heating, thermally induced mechanical stress arises due to the thermal denaturation of collagen, resulting in macroscale shrinkage. Thus, the strain, stress, temperature and thermal pain/damage are highly correlated; in other words, the problem is fully coupled. The aim of this study is to develop a computational approach to examine the heat transfer process and the heat-induced mechanical response, so that the differences among the clinically applied heating modalities can be quantified. Exact solutions for temperature, thermal damage and thermal stress for a single-layer skin model were first derived for different boundary conditions. For multilayer models, numerical simulations using the finite difference method (FDM) and finite element method (FEM) were used to analyze the temperature, burn damage and thermal stress distributions in the skin tissue. The results showed that the thermomechanical behavior of skin tissue is very complex: blood perfusion has little effect on thermal damage but large influence on skin temperature distribution, which, in turn, influences significantly the resulting thermal stress field; the stratum corneum layer, although very thin, has a large effect on the thermomechanical behavior of skin, suggesting that it should be properly accounted for in the modeling of skin thermal stresses; the stress caused by non-uniform temperature distribution in the skin may also contribute to the thermal pain sensation.

  13. Skin cancer prevention.

    PubMed

    Kornek, Thomas; Augustin, Matthias

    2013-04-01

    Prevention signifies the avoidance of diseases. It also includes the early detection of diseases and taking measures to avoid worsening of an existing disease. Prevention is divided into primary, secondary and tertiary prevention. The prevention of skin cancer is particularly important due to the rising incidence of skin cancer in recent years. In Germany, 195.000 new cases of skin cancer, including non melanoma skin cancer and melanoma are occurring. Therefore, skin cancer is among the most common cancer diseases. Primary prevention comprises the reduction of skin cancer risk behavior, including education about the danger of UV exposure and the right way of dealing with natural and artificial UV radiation. The implementation of a systematic skin cancer screening in Germany contributes to secondary prevention. First data from the initial project in Schleswig-Holstein, Germany's most northern state, indicate for the first time that the incidence and mortality of melanoma can be reduced by secondary prevention. For tertiary prevention, the national associations recommend a risk-adapted, evidence-based follow-up for all types of skin cancer. From the perspectives of the payers and from the patients, prevention is assessed positively. Prevention can contribute to a reduction of disease burden.

  14. Multiscale excited state lifetimes of protonated dimethyl aminopyridines.

    PubMed

    Soorkia, Satchin; Broquier, Michel; Grégoire, Gilles

    2016-09-14

    The excited state dynamics of protonated ortho (2-) and para (4-) dimethyl aminopyridine molecules (DMAPH(+)) has been studied through pump-probe photofragmentation spectroscopy and excited state coupled-cluster CC2 calculations. Multiscale temporal dynamics has been recorded over 9 orders of magnitude from subpicosecond to millisecond. The initially locally excited ππ* state rapidly decays within about 100 fs into a charge transfer state following 90° twist motion of the dimethyl amino group. While this twisted intramolecular charge transfer (TICT) state does not trigger any fragmentation, it selectively leads to specific two-color photofragments through absorption of the probe photon at 355 nm. Besides, the optically dark TICT state provides an efficient deactivation path with high intersystem probability to non-dissociative long-lived triplet states. Such a multiscale pump-probe photodissociation scheme paves the way to systematic studies of charge transfer reactions in the excited state of cold ionic systems stored in a cryogenic cooled ion trap and probed continuously up to the millisecond time scale. PMID:27524459

  15. Multiscale excited state lifetimes of protonated dimethyl aminopyridines.

    PubMed

    Soorkia, Satchin; Broquier, Michel; Grégoire, Gilles

    2016-09-14

    The excited state dynamics of protonated ortho (2-) and para (4-) dimethyl aminopyridine molecules (DMAPH(+)) has been studied through pump-probe photofragmentation spectroscopy and excited state coupled-cluster CC2 calculations. Multiscale temporal dynamics has been recorded over 9 orders of magnitude from subpicosecond to millisecond. The initially locally excited ππ* state rapidly decays within about 100 fs into a charge transfer state following 90° twist motion of the dimethyl amino group. While this twisted intramolecular charge transfer (TICT) state does not trigger any fragmentation, it selectively leads to specific two-color photofragments through absorption of the probe photon at 355 nm. Besides, the optically dark TICT state provides an efficient deactivation path with high intersystem probability to non-dissociative long-lived triplet states. Such a multiscale pump-probe photodissociation scheme paves the way to systematic studies of charge transfer reactions in the excited state of cold ionic systems stored in a cryogenic cooled ion trap and probed continuously up to the millisecond time scale.

  16. DEVELOPMENTAL NEUOTOXICITY EVALUATION OF MIXTURES OF MONO- AND DIMETHYL TIN IN DRINKING WATER OF RATS.

    EPA Science Inventory

    Developmental Neurotoxicity Evaluation of Mixtures of Mono- and Dimethyl Tin in Drinking Water of Rats

    V.C. Moser, K.L. McDaniel, P.M. Phillips

    Neurotoxicology Division, NHEERL, ORD, US EPA, RTP, NC, USA

    Organotins, especially monomethyl (MMT) and dimethyl (D...

  17. 40 CFR 721.538 - Phenol, 4-(1,1-dimethyl- ethyl)-, homopolymer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phenol, 4-(1,1-dimethyl- ethyl... Specific Chemical Substances § 721.538 Phenol, 4-(1,1-dimethyl- ethyl)-, homopolymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as phenol,...

  18. 40 CFR 721.538 - Phenol, 4-(1,1-dimethyl- ethyl)-, homopolymer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phenol, 4-(1,1-dimethyl- ethyl... Specific Chemical Substances § 721.538 Phenol, 4-(1,1-dimethyl- ethyl)-, homopolymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as phenol,...

  19. 40 CFR 721.10542 - Dodecanedioic acid, 1,12-dimethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester. 721.10542 Section 721.10542 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.10542 Dodecanedioic acid, 1,12-dimethyl ester. (a) Chemical substance... acid, 1,12-dimethyl ester (PMN P-03-624; CAS No. 1731-79-9) is subject to reporting under this...

  20. 40 CFR 721.10542 - Dodecanedioic acid, 1,12-dimethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ester. 721.10542 Section 721.10542 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.10542 Dodecanedioic acid, 1,12-dimethyl ester. (a) Chemical substance... acid, 1,12-dimethyl ester (PMN P-03-624; CAS No. 1731-79-9) is subject to reporting under this...

  1. 40 CFR 721.538 - Phenol, 4-(1,1-dimethyl- ethyl)-, homopolymer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phenol, 4-(1,1-dimethyl- ethyl... Specific Chemical Substances § 721.538 Phenol, 4-(1,1-dimethyl- ethyl)-, homopolymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as phenol,...

  2. 40 CFR 721.10374 - Silane, (3-chloropropoxy)dimethyl(1-methylethyl)-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Silane, (3-chloropropoxy)dimethyl(1... Specific Chemical Substances § 721.10374 Silane, (3-chloropropoxy)dimethyl(1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silane,...

  3. 40 CFR 721.10374 - Silane, (3-chloropropoxy)dimethyl(1-methylethyl)-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Silane, (3-chloropropoxy)dimethyl(1... Specific Chemical Substances § 721.10374 Silane, (3-chloropropoxy)dimethyl(1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silane,...

  4. Densities and Viscosities of Binary Mixtures of Methanol with Dimethyl Methylphosphonate and Dimethyl Phosphite from (293.15 to 333.15) K

    NASA Astrophysics Data System (ADS)

    Wang, Li-Sheng; Tian, Na-Na

    2011-06-01

    Densities and viscosities of methanol + dimethyl methylphosphonate and methanol + dimethyl phosphite binary mixtures were measured over a temperature range of (293.15 to 333.15) K at atmospheric pressure. The experimental data were compared with literature values. From these data, excess molar volumes ( V E) were calculated. The density data were fitted to a second-order polynomial, and the viscosity data were fitted to the Andrade equation.

  5. A novel development of dithizone as a dual-analyte colorimetric chemosensor: detection and determination of cyanide and cobalt (II) ions in dimethyl sulfoxide/water media with biological applications.

    PubMed

    Tavallali, Hossein; Deilamy-Rad, Gohar; Parhami, Abolfath; Mousavi, Seyede Zahra

    2013-08-01

    The behavior of dithizone (DTZ), an easily available dye has been studied for the first time in chromogenic sensing of CN(-) as an anionic species and for Co(2+) as a cationic species in DMSO/H2O media. So employing DTZ an efficient colorimetric chemosensor was afforded with a chromogenic selectivity for Co(2+) over other cations with detection limit of 0.04 μmol L(-1). The complex of Co(2+) with DTZ also displayed ability to detect up to 0.43 μmol L(-1) CN(-) (K(+) salts) among other competing anions through a fast response time of less than 30s which is much lower than most recently reported chromogenic probes. The linear dynamic ranges for the determination of Co(2+) and CN(-) were 0.3-4.4 and 3.3-58.6 μmol L(-1) respectively. This method could have potential application in a variety of cases requiring rapid and accurate analysis of Co(2+) and CN(-) for human serum and water samples. PMID:23811160

  6. Interactions of dimethyl sulfoxide and granulocyte-macrophage colony-stimulating factor on the cell cycle kinetics and phosphoproteins of G1-enriched HL-60 cells: evidence of early effects on lamin B phosphorylation.

    PubMed

    Brennan, J K; Lee, K S; Frazel, M A; Keng, P C; Young, D A

    1991-03-01

    We have found that GM-CSF and DMSO have antagonistic effects on the proliferation but not maturation of asynchronously growing HL-60 cells such that growth in the presence of both more closely resembles normal hematopoiesis (Brennan et al., J. Cell Physiol. 132:246, 1987). Studies were undertaken to determine whether or not the agents affected the same mitogenic pathway and locus in the cell cycle. HL-60 populations containing at least 90% G1 cells were obtained by centrifugal elutriation, exposed to 100 u/ml recombinant human GM-CSF and/or 0-1.25% DMSO, and phosphoprotein changes quantified on autoradiograms of [32P]-orthophosphate-labeled cell proteins separated by giant 2-D gel electrophoresis. Results were correlated with 1) intracellular pH, determined by measurement of BCECF fluorescence; 2) [32P]-orthophosphate uptake; 3) cell cycle progression, determined by flow quantitation of DNA content in mithramycin or propidium iodide-stained cells; and 4) growth, determined by cell volume and concentration. GM-CSF stimulated and DMSO inhibited the GM-CSF-stimulated phosphorylation of 1 protein (approximately 65 kDa, p.i. 5.6) within 2 min of exposure. These effects were sustained through G1, not associated with changes in intracellular pH, and preceded similar antagonistic effects on phosphate uptake (15-30 minutes), cell volume change (16-24 hr), and cell concentration increase (28-32 hr). GM-CSF accelerated and DMSO inhibited G1 to S transit with the most marked antagonism observed in the second cycle following synchronization (28 to 40 hrs). Cell maturation (morphology, NBT reduction) was dominated by DMSO and not antagonized by GM-CSF. We have identified p65 as the nuclear intermediate filament protein, lamin B, on the basis of its locus on gels and its binding of a monoclonal antibody to intermediate filaments and antiserum to human lamin B on immunoblots. These studies suggest that at least part of the GM-CSF-DMSO antagonism is exerted through the same mitogenic pathway, that a major locus of cytokinetic effect is on G1 to S transit, and that nuclear envelope protein phosphorylation is an important early event.

  7. rac-Dichlorido(1-{(diphenyl­phosphan­yl)[2-(diphenyl­phosphan­yl)phen­yl]meth­yl}ferrocene-κ2 P,P′)palladium(II) dimethyl sulfoxide disolvate

    PubMed Central

    Schuecker, Raffael; Weissensteiner, Walter; Mereiter, Kurt

    2011-01-01

    The racemic title compound, [FePdCl2(C5H5)(C36H29P2)]·2(CH3)2SO, features a Pd-chelating 1,3-diphosphine, which is substituted at a P-bearing asymmetric C atom by a ferrocenyl group. The PdII atom is in a distorted quadratic coordination by two P and two Cl atoms with bond lengths of 2.2414 (3) and 2.2438 (3) Å for Pd—P, and 2.3452 (3) and 2.3565 (3) Å for Pd—Cl. The conformation of the Pd complex is controlled by an intra­molecular slipped π–π stacking inter­action between a phenyl and a cyclo­penta­dienyl ring with corresponding C⋯C distances starting at 3.300 (2) Å and the distance between ring centroids being 3.674 (2) Å. The crystal structure is stabilized by C—H⋯Cl and C—H⋯O hydrogen bonds. The (CH3)2SO solvent mol­ecules are arranged in layers parallel to (101) and are linked in pairs by C—H⋯O inter­actions. One (CH3)2SO mol­ecule is orientationally disordered [occupancy ratio 0.8766 (17):0.1234 (17)] with sulfur in two positions at both sides of its C2O triangle. PMID:22064964

  8. Factors restricting maximal preservation of neuronal glycogen after perfusion fixation with dimethyl sulfoxide and iodoacetic acid in Bouin's solution. Histochemical observations in the brain of the Netherlands dwarf rabbit.

    PubMed

    Cammermeyer, J; Fenton, I M

    1982-01-01

    Thirty seconds after an initial intracardial epinephrine injection, deeply anesthetized animals are perfused consecutively with saline, Bouin's and 100% ethanol solutions, each containing 1% or 5% DMSO (Me2SO) and 0.01 M iodoacetic acid. In the Netherlands dwarf rabbit and the guinea pig, a maximal preservation of dimedone PAS-stainable, saliva-digestible glycogen is achieved, without signs of polarization of glycogen, in many neuronal and neuroglial cells occupying either brain stem nuclei or occasionally narrow perivascular zones. Tentatively, these results are ascribed to a combined effect of (a) the alleged capacity of DMSO to accelerate fixation and to suppress activation of adenylate cyclase and (b) the rapid action of Bouin's solution so that the glycogen particles become instantaneously enclosed in situ in a skeleton of coagulated proteinaceous elements. The paradoxical over-all reduction in preservation of neuronal and astrocytic glycogen may be associated either with a demonstrable loss of the fixative into the peripheral vasculature, because of contrary actions of DMSO and epinephrine, or with a transvascular passage of epinephrine resulting in neuronal glycogenolysis where the blood-brain barrier is absent or affected by DMSO. Other defects are the occurrence of myriad pericapillary foci of inadequate tissue preservation, rare petechial hemorrhages, post mortem fat emboli, and ubiquitous Buscaino plaques. Despite these adverse results preventing utilization of this technique in systematic histochemical investigations on neuronal glycogen, remarkable qualitative characteristics such as the neurons' capacity to store glycogen throughout their perikarya have been revealed. PMID:6187714

  9. Determination of gas-phase dimethyl sulfate and monomethyl hydrogen sulfate

    SciTech Connect

    Hansen, L.D.; White, V.F.; Eatough, D.J.

    1986-01-01

    Analytical techniques were developed for the collection and determination of gas-phase dimethyl sulfate and monomethyl sulfuric acid in the flue lines and plumes of power plants and in the ambient atmosphere. The techniques involve the collection of the gas phase species in denuders which are selective for monomethyl sulfuric acid or which collect both dimethyl sulfate and monomethyl sulfuric acid, and determination of the deposition pattern of the collected alkyl sulfates in the denuder. In addition, both dimethyl sulfate and monomethyl sulfuric acid are collected in filter pack, sorbent-bed combinations which allow for the separate determination of both dimethyl sulfate and monomethyl sulfuric acid or for their joint collection and determination. Monomethyl sulfuric acid is determined by ion chromatography. Dimethyl sulfate is determined either by ion chromatography or by gas chromatography, depending on the collection device used.

  10. Archaea on human skin.

    PubMed

    Probst, Alexander J; Auerbach, Anna K; Moissl-Eichinger, Christine

    2013-01-01

    The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin microbiome. Most of the gene signatures analyzed belonged to the Thaumarchaeota, a group of Archaea we also found in hospitals and clean room facilities. The metabolic potential for ammonia oxidation of the skin-associated Archaea was supported by the successful detection of thaumarchaeal amoA genes in human skin samples. However, the activity and possible interaction with human epithelial cells of these associated Archaea remains an open question. Nevertheless, in this study we provide evidence that Archaea are part of the human skin microbiome and discuss their potential for ammonia turnover on human skin.

  11. Skin and antioxidants.

    PubMed

    Poljsak, Borut; Dahmane, Raja; Godic, Aleksandar

    2013-04-01

    It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants.

  12. The aging skin.

    PubMed

    Bergfeld, W F

    1997-01-01

    In the past, sun exposure has been an integral part of the American life style. Along with increased leisure time, outdoor recreational sports, and sun bathing has come greater exposure to the sun. The cumulative effects of unprotected sun exposure coupled with the changes in the ozone layer have resulted in a large photodamaged population and an epidemic of the most dangerous skin cancer, malignant melanoma. Photodamage begins early, with a child's first unprotected sun exposure. Clinical studies show that 50% of an individual's ultraviolet light exposure occurs before the age of 18 years. This damage from acute and chronic ultraviolet light exposure has produced the explosion of skin cancers. Over the next 4 years, it is expected that skin cancer will become the most common type of cancer, and malignant melanoma will become the leading cause of death from skin cancer. This growing hazard to the public has profound medical and psychological ramifications. This paper will focus on prevention, identification, evaluation and treatment of photodamage to skin, as well as skin cancer. Special emphasis will be given to the National Skin Cancer Prevention Education Program.

  13. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine.

    PubMed

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-15

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm(-1) and 4000-10 cm(-1), respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results.

  14. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine.

    PubMed

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-15

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm(-1) and 4000-10 cm(-1), respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results. PMID:24813280

  15. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine

    NASA Astrophysics Data System (ADS)

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-01

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 4000-10 cm-1, respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results.

  16. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    SciTech Connect

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  17. Environment and the skin

    PubMed Central

    Suskind, Raymond R.

    1977-01-01

    The skin is an important interface between man and his environment; it is an important portal of entry for hazardous agents and a vulnerable target tissue as well. It is a uniquely accessible model system for detecting hazards and for studying mechanisms of a wide variety of biologic funcitons. Environmental causes of skin reactions comprise a vast array of physical, chemical and biological agents. To appreciate the role of the skin as an interface with man's environment, it is necessary to understand the multiple adaptive mechanisms, and the defenses of the skin against the environmental stresses. The skin is endowed with a versatile group of defenses against penetration, fluid loss from the body, thermal stress, solar radiation, physical trauma and microbial agents. Patterns of adverse response range in quality and intensity from uncomplicated itching to metastatic neoplasia. Environmental problems comprise a large segment of disabling skin disease. Although critical epidemiologic data is limited, cutaneous illnesses comprise a significant segment of occupational disease. This represents a significant loss in productivity and a major cause of disability. The most serious research needs include the development of surveillance systems for identifying skin hazards and determining frequency of environmental skin disease; the development of new models for studying cutaneous penetration; the elucidation of the mechanisms of nonallergic inflammatory reactions (primary irritation) and of the accommodation phenomenon; the development of more sensitive models for predicting adverse responses to marginal irritants; the utilization of modern skills of immunobiology and immunochemistry to elucidate mechanisms of allergic responses; the launching of epidemiologic studies to determine the long term effects of PCBs and associated compounds such as dioxins; and the expansion of research in the mechanisms of skin cancer in relation to susceptibility, genetic and metabolic

  18. Thermal Skin fabrication technology

    NASA Technical Reports Server (NTRS)

    Milam, T. B.

    1972-01-01

    Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.

  19. Ultrasound skin tightening.

    PubMed

    Minkis, Kira; Alam, Murad

    2014-01-01

    Ultrasound skin tightening is a noninvasive, nonablative method that allows for energy deposition into the deep dermal and subcutaneous tissue while avoiding epidermal heating. Ultrasound coagulation is confined to arrays of 1-mm(3) zones that include the superficial musculoaponeurotic system and connective tissue. This technology gained approval from the Food and Drug Administration as the first energy-based skin "lifting" device, specifically for lifting lax tissue on the neck, submentum, and eyebrows. Ultrasound has the unique advantage of direct visualization of treated structures during treatment. Ultrasound is a safe and efficacious treatment for mild skin tightening and lifting.

  20. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting...