Constraints on a possible dineutron state from pionless EFT
NASA Astrophysics Data System (ADS)
Hammer, H.-W.; König, Sebastian
2014-09-01
We investigate the sensitivity of the three-nucleon system to changes in the neutron-neutron scattering length to next-to-leading order in the pionless effective field theory, focusing on the triton-3He binding energy difference and neutron-deuteron elastic scattering. Due to the appearance of a proton-deuteron three-body counterterm at this order, the triton-3He binding energy difference remains consistent with the experimental value even for large positive neutron-neutron scattering lengths while the elastic neutron-deuteron scattering phase shifts are insensitive. We conclude that a bound dineutron cannot be excluded to next-to-leading order in pionless EFT.
Kanada-En'yo, Yoshiko; Hinohara, Nobuo; Suhara, Tadahiro; Schuck, Peter
2009-05-15
Two-neutron correlation in the {sup 1}S channel in quasi-two-dimensional (2D) neutron systems at zero temperature is studied by means of the BCS theory with finite-range effective nuclear forces. The dineutron correlation in low density neutron systems confined in an infinite slab is investigated in a simplified model that neutron motion of one direction is frozen. When the slab is thin enough, two neutrons form a tightly bound dineutron with a small size in the quasi-2D system, and a Bose dineutron gas is found in low density limit. With increase of Fermi momentum, the neutron system changes from the Bose-gas phase to the superfluid Cooper pair phase. The density dependence of the neutron pairing shows the BCS-BEC crossover phenomena at finite low-density region. In the transition region, the size shrinking of neutron pair and enhancement of pairing gap are found. The relation to dineutron correlation at surface of neutron-rich nuclei is also discussed.
Cluster aspects of p-shell and sd-shell nuclei
Kanada-En'yo, Y.; Kobayashi, F.; Suhara, T.; Kimura, M.; Taniguchi, Y.
2011-05-06
We report some topics on cluster structures studied by using a theoretical method of antisymmetrized molecular dynamics(AMD). Cluster features of p-shell and sd-shell nuclei are discussed. In particular, three alpha cluster structures in the excited states of {sup 12}C and {sup 14}C are focused. Dineutron correlations in neutron-rich nuclei are also discussed.
Big bang nucleosynthesis: The strong nuclear force meets the weak anthropic principle
MacDonald, J.; Mullan, D. J.
2009-08-15
Contrary to a common argument that a small increase in the strength of the strong force would lead to destruction of all hydrogen in the big bang due to binding of the diproton and the dineutron with a catastrophic impact on life as we know it, we show that provided the increase in strong force coupling constant is less than about 50% substantial amounts of hydrogen remain. The reason is that an increase in strong force strength leads to tighter binding of the deuteron, permitting nucleosynthesis to occur earlier in the big bang at higher temperature than in the standard big bang. Photodestruction of the less tightly bound diproton and dineutron delays their production to after the bulk of nucleosynthesis is complete. The decay of the diproton can, however, lead to relatively large abundances of deuterium.
Structure of the spatial periphery of the 11Li and 11Be isobars
NASA Astrophysics Data System (ADS)
Galanina, L. I.; Zelenskaya, N. S.
2016-07-01
On the basis of the shell model with an extended basis, the structure of 9Li-9Be to 11Li-11Be nuclei is examined with allowance for the competition of jj coupling and Majorana exchange forces via considering the sequential addition of neutrons, and the respective wave functions are determined. A formalism for calculating the spectroscopic factor for a dineutron and for individual neutrons in nuclei whose wave functions incorporate the mixing of shell configurations is developed. The reactions 9Li( t, p)11Li and 9Be( t, p)11Be treated with allowance for the mechanisms of dineutron stripping and a sequential transfer of two neutrons are considered as an indicator of the proposed structure of lithium and berylliumisotopes. The parameters of the optical potentials, the wave functions for the bound states of transferred particles, and the interaction potentials corresponding to them are determined from a comparison of the theoretical angular distribution of protons from the reaction 9Be( t, p)11Be with its experimental counterpart. It is shown that a dineutron periphery of size about 6.4 fm is present in the 11Li nucleus and that a single-neutron periphery of size about 8 fm is present in the 11Be nucleus.
Cold dilute neutron matter on the lattice. II. Results in the unitary limit
Lee, Dean; Schaefer, Thomas
2006-01-15
This is the second of two articles that investigate cold dilute neutron matter on the lattice using pionless effective field theory. In the unitary limit, where the effective range is zero and scattering length is infinite, simple scaling relations relate thermodynamic functions at different temperatures. When the second virial coefficient is properly tuned, we find that the lattice results obey these scaling relations. We compute the energy per particle, pressure, spin susceptibility, dineutron correlation function, and an upper bound for the superfluid critical temperature.
Neutron correlations in the decay of the first excited state of 11Li
NASA Astrophysics Data System (ADS)
Smith, J. K.; Baumann, T.; Bazin, D.; Brown, J.; DeYoung, P. A.; Frank, N.; Jones, M. D.; Kohley, Z.; Luther, B.; Marks, B.; Spyrou, A.; Stephenson, S. L.; Thoennessen, M.; Volya, A.
2016-11-01
The decay of unbound excited 11Li was measured after being populated by a two-proton removal from a 13B beam at 71 MeV/nucleon. Decay energy spectra and Jacobi plots were obtained from measurements of the momentum vectors of the 9Li fragment and neutrons. A resonance at an excitation energy of ∼1.2 MeV was observed. The kinematics of the decay are equally well fit by a simple dineutron-like model or a phase-space model that includes final state interactions. A sequential decay model can be excluded.
Higher-order dynamical effects in Coulomb dissociation
Esbensen, H.; Bertsch, G.F.; Bertulani, C.A.
1995-08-01
Coulomb dissociation is a technique commonly used to extract the dipole response of nuclei far from stability. This technique is applicable if the dissociation is dominated by dipole transitions and if first-order perturbation theory is valid. In order to assess the significance of higher-order processes we solve numerically the time evolution of the wave function for a two-body breakup in the Coulomb field from a high Z target. We applied this method to the breakup reactions: {sup 11}Be {yields} {sup 10}Be + n and {sup 11}Li {yields} +2n. The latter is treated as a two-body breakup, using a di-neutron model.
Light Nuclei and HyperNuclei from Quantum Chromodynamics in the Limit of SU(3) Flavor Symmetry
Beane, S R; Cohen, S D; Detmold, W; Lin, H W; Luu, T C; Orginos, K; Parreno, A; Savage, M J; Walker-Loud, A
2013-02-01
The binding energies of a range of nuclei and hypernuclei with atomic number A <= 4 and strangeness |s| <= 2, including the deuteron, di-neutron, H-dibaryon, {sup 3}He, {sub {Lambda}}{sup 3}He, {sub {Lambda}}{sup 4}He, and {sub {Lambda}{Lambda}}{sup 4}He, are calculated in the limit of flavor-SU(3) symmetry at the physical strange quark mass with quantum chromodynamics (without electromagnetic interactions). The nuclear states are extracted from Lattice QCD calculations performed with n{sub f}=3 dynamical light quarks using an isotropic clover discretization of the quark-action in three lattice volumes of spatial extent L ~ 3.4 fm, 4.5 fm and 6.7 fm, and with a single lattice spacing b ~ 0.145 fm.
Borowska, L.; Terenetsky, K.; Verbitsky, V.; Fritzsche, S.
2009-04-15
An analytical expression for the dynamic polarization potential is derived for the elastic scattering of light halo nuclei in the Coulomb field of heavy targets. The derivation is based on the adiabatic motion of the projectile below and close to the Coulomb barrier together with a uniform approximation for the Coulomb functions. Detailed computations have been carried out for the elastic scattering of d+{sup 208}Pb and {sup 6}He+{sup 208}Pb at collision energies of 8 and 17.8 MeV and are compared with measurements as far as available. The obtained expression for the dynamic polarization potential is simple and can be applied for any arbitrary system with a dineutron configuration.
Nuclear Sturcture Along the Neutron Dripline: MoNa-LISA and the dinueutron system
Spyou, Artemis
2012-09-05
Nuclei with extreme neutron-to-proton ratios were found to present different structures from what was known for the stable ones. With the current facilities we can now study nuclei that lie even beyond the neutron drip line. At the National Superconducting Cyclotron Laboratory at Michigan State University we use the MoNA/Sweeper setup to perform such studies of neutron unbound nuclei. In a typical experiment, a radioactive beam is employed to produce the nucleus of interest. This unbound nucleus immediately decays into a neutron and a remaining charged fragment, both of which are detected and used to reconstruct the original nucleus and study its properties. In this Colloquium, new exciting findings from recent experiments will be presented. These include the first observation of a dineutron decay from 16Be, the exploration of the “south shore” of the Island of Inversion and the first evidence of the decay of the troubling nucleus 26O.
Structure of the spatial periphery of the isotopes {sup 9,11}Li
Galanina, L. I. Zelenskaya, N. S.
2015-07-15
The cross sections for the (t, p) reactions on the lithium isotopes {sup 9,11}Li were calculated within a theoretical approach based on employing integral equations of the four-body problem in the Alt—Grassberger-Sandhas formalism and the multiparticle shell model. This made it possible to determine the wave functions for the relative motion of various clusters and the nuclear core and to calculate, on their basis, the root-mean-square radii of nuclei of the isotopes {sup 9,11}Li and the spatial structure of their neutron periphery. It is shown that the {sup 9}Li nucleus has virtually no neutron halo. The {sup 11}Li nucleus is a Borromean halo nucleus. The two-neutron periphery of this nucleus manifests itself in both spatial configurations, a dineutron and a cigar one, the respective root-mean-square radii being large (about 6.5 to 6.9 fm)
NASA Astrophysics Data System (ADS)
Lukyanov, V. K.; Zemlyanaya, E. V.; Lukyanov, K. V.
The breakup cross-sections in the reaction 6He + 12C are calculated at about 40 MeV/nucleon using the high-energy approximation (HEA) and with the help of microscopic optical potentials (OP) of interaction with the target nucleus 12C of the projectile nucleus fragments 4He and 2n. Considering the di-neutron h = 2n as a single particle the relative motion hα wave function is estimated so that to explain both the separation energy of h in 6He and the rms radius of the latter. The stripping and absorbtion total cross-sections are calculated and their sum is compared with the total reaction cross-section obtained within a double-folding microscopic OP for the 6He + 12C scattering. It is concluded that the breakup cross-sections contribute to about 50% of the total reaction cross-section.
Investigation of the reaction d + d → {sup 2}He + {sup 2}n at the deuteron energy of 15 MeV
Konobeevski, E. S. Zuyev, S. V.; Kasparov, A. A.; Lebedev, V. M.; Mordovskoy, M. V.; Spassky, A. V.
2015-07-15
An experimental setup for studying the reaction d + d → {sup 2}He + {sup 2}n is described, and the first preliminary results of measurements at a deuteron energy of 15 MeV are presented. The experiment was aimed at determining the energies of quasibound singlet states of two-nucleon systems (nn and pp), these energies being important features of nucleon–nucleon (NN) interaction. The measurements in question were performed at a deuteron beamfrom the U-120 cyclotron of the Skobeltsyn Institute ofNuclear Physics (Moscow State University). Two protons and one of the neutrons fromthe breakup of the dineutron system were detected in the experiment. A simulation of the reaction in question and preliminary experimental results reveal the possibility of determining the energy of quasibound singlet states on the basis of the form of the energy spectra of particles originating from their breakup.
Bound and unbound nuclear systems at the drip lines: a one-dimensional model
NASA Astrophysics Data System (ADS)
Moschini, L.; Pérez-Bernal, F.; Vitturi, A.
2016-08-01
We construct a one-dimensional toy model to describe the main features of Borromean nuclei at the continuum threshold. The model consists of a core and two valence neutrons, unbound in the mean potential, that are bound by a residual point contact density-dependent interaction. Different discretization procedures are used (harmonic oscillator and transformed harmonic oscillator bases, or use of large rigid wall box). Resulting energies and wave functions, as well as inelastic transition intensities, are compared within the different discretization techniques, as well as with the exact results in the case of one particle and with the results of the di-neutron cluster model in the two particles case. Despite its simplicity, this model includes the main physical features of the structure of Borromean nuclei in an intuitive and computationally affordable framework, and will be extended to direct reaction calculations.
Lukyanov, V. K. Zemlyanaya, E. V.; Lukyanov, K. V.
2015-01-15
The {sup 11}Li scattering and breakup on protons is considered under the assumption that the {sup 11}Li nucleus consists of two interacting clusters, which are a c = {sup 9}Li core and a h = 2n dineutron halo. The single-particle density of the {sup 11}Li nucleus, amicroscopic optical potential, and the cross section for {sup 11}Li+p scattering for various choices of cluster shape are obtained and analyzed by folding the density distribution for either cluster with the probability density for the relative motion of two clusters. A comparison with experimental data of the scattering cross section at low, 60–75 MeV, and intermediate, 700 MeV, energies is performed. The momentum distribution of c fragments upon {sup 11}Li breakup is calculated and studied with a help of the obtained p + c and p + h microscopic optical potentials.
Muon capture on the deuteron and the neutron-neutron scattering length
NASA Astrophysics Data System (ADS)
Marcucci, L. E.; Machleidt, R.
2014-11-01
Background: We consider the muon capture reaction μ-+2H→νμ+n +n , which presents a "clean" two-neutron (n n ) system in the final state. We study here its capture rate in the doublet hyperfine initial state (ΓD). The total capture rate for the muon capture μ-+3He→νμ+3H (Γ0) is also analyzed, although, in this case, the n n system is not so clean anymore. Purpose: We investigate whether ΓD (and Γ0) could be sensitive to the n n S -wave scattering length (an n), and we check on the possibility to extract an n from an accurate measurement of ΓD. Method: The muon capture reactions are studied with nuclear potentials and charge-changing weak currents, derived within chiral effective field theory. The next-to-next-to-next-to-leading-order chiral potential with cutoff parameter Λ =500 MeV is used, but the low-energy constant (LEC) determining an n is varied so as to obtain an n=-18.95 ,-16.0 ,-22.0 , and +18.22 fm. The first value is the present empirical one, while the last one is chosen such as to lead to a di-neutron bound system with a binding energy of 139 keV. The LEC's cD and cE, present in the three-nucleon potential and axial-vector current (cD), are constrained to reproduce the A =3 binding energies and the triton Gamow-Teller matrix element. Results: The capture rate ΓD is found to be 399 (3 ) s-1 for an n=-18.95 and -16.0 fm; and 400 (3 ) s-1 for an n=-22.0 fm. However, in the case of an n=+18.22 fm, the result of 275 (3 ) s-1 [ 135 (3 ) s-1 ] is obtained, when the di-neutron system in the final state is unbound (bound). The total capture rate Γ0 for muon capture on 3He is found to be 1494(15), 1491(16), 1488(18), and 1475(16) s-1 for an n=-18.95 ,-16.0 ,-22.0 , and +18.22 fm, respectively. All the theoretical uncertainties are due to the fitting procedure and radiative corrections. Conclusions: Our results seem to exclude the possibility of constraining a negative an n with an uncertainty of less than ˜±3 fm through an accurate
Two nucleon systems at mπ~450MeV from lattice QCD
Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; ...
2015-12-23
Nucleon-nucleon systems are studied with lattice quantum chromodynamics at a pion mass ofmore » $$m_\\pi\\sim 450~{\\rm MeV}$$ in three spatial volumes using $$n_f=2+1$$ flavors of light quarks. At the quark masses employed in this work, the deuteron binding energy is calculated to be $$B_d = 14.4^{+3.2}_{-2.6} ~{\\rm MeV}$$, while the dineutron is bound by $$B_{nn} = 12.5^{+3.0}_{-5.0}~{\\rm MeV}$$. Over the range of energies that are studied, the S-wave scattering phase shifts calculated in the 1S0 and 3S1-3D1 channels are found to be similar to those in nature, and indicate repulsive short-range components of the interactions, consistent with phenomenological nucleon-nucleon interactions. In both channels, the phase shifts are determined at three energies that lie within the radius of convergence of the effective range expansion, allowing for constraints to be placed on the inverse scattering lengths and effective ranges. Thus, the extracted phase shifts allow for matching to nuclear effective field theories, from which low energy counterterms are extracted and issues of convergence are investigated. As part of the analysis, a detailed investigation of the single hadron sector is performed, enabling a precise determination of the violation of the Gell-Mann–Okubo mass relation.« less
Two nucleon systems at ${m}_{\pi}~450\text{}\text{}\mathrm{MeV}$ from lattice QCD
Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Beane, Silas R.; Chang, Emmanuel; Detmold, William
2015-12-23
Nucleon-nucleon systems are studied with lattice quantum chromodynamics at a pion mass of $m_\\pi\\sim 450~{\\rm MeV}$ in three spatial volumes using $n_f=2+1$ flavors of light quarks. At the quark masses employed in this work, the deuteron binding energy is calculated to be $B_d = 14.4^{+3.2}_{-2.6} ~{\\rm MeV}$, while the dineutron is bound by $B_{nn} = 12.5^{+3.0}_{-5.0}~{\\rm MeV}$. Over the range of energies that are studied, the S-wave scattering phase shifts calculated in the 1S0 and 3S1-3D1 channels are found to be similar to those in nature, and indicate repulsive short-range components of the interactions, consistent with phenomenological nucleon-nucleon interactions. In both channels, the phase shifts are determined at three energies that lie within the radius of convergence of the effective range expansion, allowing for constraints to be placed on the inverse scattering lengths and effective ranges. Thus, the extracted phase shifts allow for matching to nuclear effective field theories, from which low energy counterterms are extracted and issues of convergence are investigated. As part of the analysis, a detailed investigation of the single hadron sector is performed, enabling a precise determination of the violation of the Gell-Mann–Okubo mass relation.
Existence of diproton-like particles in 3+1 lattice QCD with two flavors and strong coupling
Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, A. Francisco
2011-02-01
Starting from quarks, gluons, and their dynamics, we consider the existence of two-baryon bound states of total isospin I=1 in an imaginary-time formulation of a strongly coupled 3+1-dimensional SU(3){sub c} lattice QCD with two flavors and 4x4 spin matrices, defined using the Wilson action. For a small hopping parameter {kappa}>0 and a much smaller gauge coupling 0<{beta}<<{kappa}<<1 (heavy quarks and large glueball mass), using a ladder approximation to a lattice Bethe-Salpeter equation, diproton-like bound states are found in the I=1 isospin sector, with asymptotic masses -6ln{kappa} and binding energies of order {kappa}{sup 2}. By isospin symmetry, for each diproton there is also a dineutron bound state with the same mass and binding energy. The dominant two-baryon interaction is an energy-independent spatial range-one potential with an O({kappa}{sup 2}) strength. There is also an attraction arising from gauge field correlations associated with six overlapping bonds, but it is subdominant. The overall range-one potential results from a quark-antiquark exchange with no meson exchange interpretation (wrong spin indices). The repulsive or attractive nature of the interaction does depend on the isospin and spin of the two-baryon states. A novel representation in term of permanents is obtained for the spin, isospin interaction between the baryons, which is valid for any isospin sector.
Spin-polarized neutron matter: Critical unpairing and BCS-BEC precursor
NASA Astrophysics Data System (ADS)
Stein, Martin; Sedrakian, Armen; Huang, Xu-Guang; Clark, John W.
2016-01-01
We obtain the critical magnetic field required for complete destruction of S -wave pairing in neutron matter, thereby setting limits on the pairing and superfluidity of neutrons in the crust and outer core of magnetars. We find that for fields B ≥1017 G the neutron fluid is nonsuperfluid—if weaker spin 1 superfluidity does not intervene—a result with profound consequences for the thermal, rotational, and oscillatory behavior of magnetars. Because the dineutron is not bound in vacuum, cold dilute neutron matter cannot exhibit a proper BCS-BEC crossover. Nevertheless, owing to the strongly resonant behavior of the n n interaction at low densities, neutron matter shows a precursor of the BEC state, as manifested in Cooper-pair correlation lengths being comparable to the interparticle distance. We make a systematic quantitative study of this type of BCS-BEC crossover in the presence of neutron fluid spin polarization induced by an ultrastrong magnetic field. We evaluate the Cooper-pair wave function, quasiparticle occupation numbers, and quasiparticle spectra for densities and temperatures spanning the BCS-BEC crossover region. The phase diagram of spin-polarized neutron matter is constructed and explored at different polarizations.
Understanding {sup 6}He induced reactions at energies around the Coulomb barrier
Moro, A. M.; Arias, J. M.; Acosta, L.; Martel, I.; Sanchez-Benitez, A. M.; Borge, M. J. G.; Escrig, D.; Tengblad, O.; Gomez-Camacho, J.; Rodriguez-Gallardo, M.
2009-06-03
Recent developments aimed to understand the observed features arising in the scattering of the Borromean nucleus {sup 6}He on heavy targets are discussed and compared with recent data for {sup 6}He+{sup 208}Pb measured at the RIB facility at Louvain-la-Neuve at energies around the Coulomb barrier. The analysis of the elastic scattering data in terms of the optical model, reveals the presence of a long range absorption mechanism, that manifests in the form of a large value of the imaginary diffuseness parameter. The elastic data have been also compared with three--body CDCC calculations, based on a di-neutron model of {sup 6}He, and four--body CDCC calculations, based on a more realistic three-body model of this nucleus. Finally, the angular and energy distribution of {alpha} particles emitted at backward angles are discussed and compared with different theoretical approaches. We find that these {alpha} particles are produced mainly by a two-neutron transfer mechanism to very excited states in the residual nucleus.
Ground-state properties of 5H from the 6He(d ,3He)5H reaction
NASA Astrophysics Data System (ADS)
Wuosmaa, A. H.; Bedoor, S.; Brown, K. W.; Buhro, W. W.; Chajecki, Z.; Charity, R. J.; Lynch, W. G.; Manfredi, J.; Marley, S. T.; McNeel, D. G.; Newton, A. S.; Shetty, D. V.; Showalter, R. H.; Sobotka, L. G.; Tsang, M. B.; Winkelbauer, J. R.; Wiringa, R. B.
2017-01-01
We have studied the ground state of the unbound, very neutron-rich isotope of hydrogen 5H, using the 6He(d ,3He )5H reaction in inverse kinematics at a bombarding energy of E (6He)=55 A MeV. The present results suggest a ground-state resonance energy ER=2.4 ±0.3 MeV above the 3H +2 n threshold, with an intrinsic width of Γ =5.3 ±0.4 MeV in the 5H system. Both the resonance energy and width are higher than those reported in some, but not all previous studies of 5H. The previously unreported 6He(d ,t )g.s.5He reaction is observed in the same measurement, providing a check on the understanding of the response of the apparatus. The data are compared to expectations from direct two-neutron and dineutron decay. The possibility of excited states of 5H populated in this reaction is discussed using different calculations of the 6He→5H +p spectroscopic overlaps from shell-model and ab initio nuclear-structure calculations.
Lovell, A. E.; Nunes, F. M.; Thompson, I. J.
2017-03-10
While diproton emission was first theorized in 1960 and first measured in 2002, it was first observed only in 2012. The measurement of 14Be in coincidence with two neutrons suggests that 16Be does decay through the simultaneous emission of two strongly correlated neutrons. In this study, we construct a full three-body model of 16Be (as 14Be + n + n) in order to investigate its configuration in the continuum and, in particular, the structure of its ground state. Here, in order to describe the three-body system, effective n – 14Be potentials were constructed, constrained by the experimental information on 15Be.more » The hyperspherical R-matrix method was used to solve the three-body scattering problem, and the resonance energy of 16Be was extracted from a phase-shift analysis. As a result, in order to reproduce the experimental resonance energy of 16Be within this three-body model, a three-body interaction was needed. For extracting the width of the ground state of 16Be, we use the full width at half maximum of the derivative of the three-body eigenphase shifts and the width of the three-body elastic scattering cross section. In conclusion, our results confirm a dineutron structure for 16Be, dependent on the internal structure of the subsystem 15Be.« less
Three-body model for the two-neutron emission of 16Be
NASA Astrophysics Data System (ADS)
Lovell, A. E.; Nunes, F. M.; Thompson, I. J.
2017-03-01
Background: While diproton emission was first theorized in 1960 and first measured in 2002, it was first observed only in 2012. The measurement of 14Be in coincidence with two neutrons suggests that 16Be does decay through the simultaneous emission of two strongly correlated neutrons. Purpose: In this work, we construct a full three-body model of 16Be (as 14Be+n +n ) in order to investigate its configuration in the continuum and, in particular, the structure of its ground state. Method: In order to describe the three-body system, effective n -14Be potentials were constructed, constrained by the experimental information on 15Be. The hyperspherical R -matrix method was used to solve the three-body scattering problem, and the resonance energy of 16Be was extracted from a phase-shift analysis. Results: In order to reproduce the experimental resonance energy of 16Be within this three-body model, a three-body interaction was needed. For extracting the width of the ground state of 16Be, we use the full width at half maximum of the derivative of the three-body eigenphase shifts and the width of the three-body elastic scattering cross section. Conclusions: Our results confirm a dineutron structure for 16Be, dependent on the internal structure of the subsystem 15Be.
Simulation of two neutron detection for invariant mass spectroscopy of unstable nuclei
NASA Astrophysics Data System (ADS)
Tsubota, Jyunichi; Samuraicommissioning Collaboration
2014-09-01
Two neutron detection in invariant mass spectroscopy is essential to study neutron rich nuclei near and beyond neutron drip line. Recently, Coulomb breakup measurements of 19B and 22C, and study of the unbound nucleus 26O were performed at RIBF. Goal of the Coulomb breakup measurements is to study di-neutron like correlation, while 26O is interesting as a candidate of two neutron radioactivity. In these measurements, decay products, 24O and two neutrons from 26O, for example, are detected in coincidence by SAMURAI spectrometer. The neutrons are detected by large acceptance plastic scintillator array NEBULA. If a neutron scatters twice or more, this may cause a fake signal (crosstalk), and become a background. The crosstalk background can be eliminated by causality cut using time, position, pulse height information. The cut condition is investigated by a Monte-Carlo simulation based on the Geant4 tool kit to obtain high detection efficiency with small crosstalk background. The simulation is compared with experimental data of quasi-monoenergetic neutrons at 200 MeV and 250 MeV produced in the 7Li(p,n)7Be(g.s. + 0.43 MeV) reaction. A new algorithm of crosstalk cut will also be discussed.
Pauling, L.
1981-09-01
Values of R, the radius of rotation of the rotating cluster, are calculated from the observed values of the energy of the lowest 2/sup +/ states of the even isotopes of Cd, Sn, and Te with the assumption that the cluster is ..cap alpha.., pb, and ..cap alpha.., respectively. R shows a maximum at approx. N = 58, a minimum at approx. N = 62, and a second maximum at approx. N = 70. The increase to the first maximum is interpreted as resulting from the overcrowding of spherons (alphas and tritons) in the mantle (outer layer) of the nuclei, causing the cluster to change from rotating in the mantle to skimming over its surface; the decrease to the minimum results from the addition of three dineutrons to the core, expanding the mantle and permitting the rotating cluster to begin to drop back into it; and the increase to the second maximum results from the overcrowding of the larger mantle surrounding the core containing the semimagic number 14 of neutrons rather than the magic numbers 8 for N = 50. The decrease after the second maximum results from the further increase in the number of core neutrons to 20, corresponding to the magic number 82. Some additional evidence for the change to an intermediate structure between N = 50 and N = 82 is also discussed.
Dependence of nuclear binding on hadronic mass variation
Flambaum, V. V.; Wiringa, R. B.
2007-11-15
We examine how the binding of light (A{<=}8) nuclei depends on possible variations of hadronic masses, including meson, nucleon, and nucleon-resonance masses. Small variations in hadronic masses may have occurred over time; the present results can help evaluate the consequences for big bang nucleosynthesis. Larger variations may be relevant to current attempts to extrapolate properties of nucleon-nucleon interactions from lattice QCD calculations. Results are presented as derivatives of the energy with respect to the different masses so they can be combined with different predictions of the hadronic mass-dependence on the underlying current-quark mass m{sub q}. As an example, we employ a particular set of relations obtained from a study of hadron masses and sigma terms based on Dyson-Schwinger equations and a Poincare-covariant Faddeev equation for confined quarks and diquarks. We find that nuclear binding decreases moderately rapidly as the quark mass increases, with the deuteron becoming unbound when the pion mass is increased by {approx}60% (corresponding to an increase in X{sub q}=m{sub q}/{lambda}{sub QCD} of 2.5). In the other direction, the dineutron becomes bound if the pion mass is decreased by {approx}15% (corresponding to a reduction of X{sub q} by {approx}30%). If we interpret the disagreement between big bang nucleosynthesis calculations and measurements to be the result of variation in X{sub q}, we obtain an estimate {delta}X{sub q}/X{sub q}=K{center_dot}(0.013{+-}0.002) where K{approx}1 (the expected accuracy in K is about a factor of 2). The result is dominated by {sup 7}Li data.
Magnetic structure of light nuclei from lattice QCD
Chang, Emmanuel; Detmold, William; Orginos, Kostas; ...
2015-12-09
Lattice QCD with background magnetic fields is used to calculate the magnetic moments and magnetic polarizabilities of the nucleons and of light nuclei withmore » $$A\\le4$$, along with the cross-section for the $M1$ transition $$np\\rightarrow d\\gamma$$, at the flavor SU(3)-symmetric point where the pion mass is $$m_\\pi\\sim 806$$ MeV. These magnetic properties are extracted from nucleon and nuclear energies in six uniform magnetic fields of varying strengths. The magnetic moments are presented in a recent Letter. For the charged states, the extraction of the polarizability requires careful treatment of Landau levels, which enter non-trivially in the method that is employed. The nucleon polarizabilities are found to be of similar magnitude to their physical values, with $$\\beta_p=5.22(+0.66/-0.45)(0.23) \\times 10^{-4}$$ fm$^3$ and $$\\beta_n=1.253(+0.056/-0.067)(0.055) \\times 10^{-4}$$ fm$^3$, exhibiting a significant isovector component. The dineutron is bound at these heavy quark masses and its magnetic polarizability, $$\\beta_{nn}=1.872(+0.121/-0.113)(0.082) \\times 10^{-4}$$ fm$^3$ differs significantly from twice that of the neutron. A linear combination of deuteron scalar and tensor polarizabilities is determined by the energies of the $$j_z=\\pm 1$$ deuteron states, and is found to be $$\\beta_{d,\\pm 1}=4.4(+1.6/-1.5)(0.2) \\times 10^{-4}$$ fm$^3$. The magnetic polarizabilities of the three-nucleon and four-nucleon systems are found to be positive and similar in size to those of the proton, $$\\beta_{^{3}\\rm He}=5.4(+2.2/-2.1)(0.2) \\times 10^{-4}$$ fm$^3$, $$\\beta_{^{3}\\rm H}=2.6(1.7)(0.1) \\times 10^{-4}$$ fm$^3$, $$\\beta_{^{4}\\rm He}=3.4(+2.0/-1.9)(0.2) \\times 10^{-4}$$ fm$^3$. Mixing between the $$j_z=0$$ deuteron state and the spin-singlet $np$ state induced by the background magnetic field is used to extract the short-distance two-nucleon counterterm, $${\\bar L}_1$$, of the pionless effective theory for $NN$ systems (equivalent to the
Magnetic structure of light nuclei from lattice QCD
Chang, Emmanuel; Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.; Beane, Silas R.
2015-12-09
Lattice QCD with background magnetic fields is used to calculate the magnetic moments and magnetic polarizabilities of the nucleons and of light nuclei with $A\\le4$, along with the cross-section for the $M1$ transition $np\\rightarrow d\\gamma$, at the flavor SU(3)-symmetric point where the pion mass is $m_\\pi\\sim 806$ MeV. These magnetic properties are extracted from nucleon and nuclear energies in six uniform magnetic fields of varying strengths. The magnetic moments are presented in a recent Letter. For the charged states, the extraction of the polarizability requires careful treatment of Landau levels, which enter non-trivially in the method that is employed. The nucleon polarizabilities are found to be of similar magnitude to their physical values, with $\\beta_p=5.22(+0.66/-0.45)(0.23) \\times 10^{-4}$ fm$^3$ and $\\beta_n=1.253(+0.056/-0.067)(0.055) \\times 10^{-4}$ fm$^3$, exhibiting a significant isovector component. The dineutron is bound at these heavy quark masses and its magnetic polarizability, $\\beta_{nn}=1.872(+0.121/-0.113)(0.082) \\times 10^{-4}$ fm$^3$ differs significantly from twice that of the neutron. A linear combination of deuteron scalar and tensor polarizabilities is determined by the energies of the $j_z=\\pm 1$ deuteron states, and is found to be $\\beta_{d,\\pm 1}=4.4(+1.6/-1.5)(0.2) \\times 10^{-4}$ fm$^3$. The magnetic polarizabilities of the three-nucleon and four-nucleon systems are found to be positive and similar in size to those of the proton, $\\beta_{^{3}\\rm He}=5.4(+2.2/-2.1)(0.2) \\times 10^{-4}$ fm$^3$, $\\beta_{^{3}\\rm H}=2.6(1.7)(0.1) \\times 10^{-4}$ fm$^3$, $\\beta_{^{4}\\rm He}=3.4(+2.0/-1.9)(0.2) \\times 10^{-4}$ fm$^3$. Mixing between the $j_z=0$ deuteron state and the spin-singlet $np$ state induced by the background magnetic field is used to extract the short-distance two-nucleon counterterm, ${\\bar L}_1$, of the pionless effective theory for $NN$ systems (equivalent to the meson-exchange current
NASA Astrophysics Data System (ADS)
Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru
2008-04-01
]C([symbol], n)[symbol]O by the transfer reaction [symbol]C([symbol]Li, t)[symbol]O / F. Hammache et al. -- SPIRAL2 at GANIL: a world of leading ISOL facility for the physics of exotic nuclei / S. Gales -- Magnetic properties of light neutron-rich nuclei and shell evolution / T. Suzuki, T. Otsuka -- Multiple scattering effects in elastic and quasi free proton scattering from halo nuclei / R. Crespo et al. -- The dipole response of neutron halos and skins / T. Aumann -- Giant and pygmy resonances within axially-symmetric-deformed QRPA with the Gogny force / S. Péru, H. Goutte -- Soft K[symbol] = O+ modes unique to deformed neutron-rich unstable nuclei / K. Yoshida et al. -- Synthesis, decay properties, and identification of superheavy nuclei produced in [symbol]Ca-induced reactions / Yu. Ts. Oganessian et al. -- Highlights of the Brazilian RIB facility and its first results and hindrance of fusion cross section induced by [symbol]He / P. R. S. Gomes et al. -- Search for long fission times of super-heavy elements with Z = 114 / M. Morjean et al. -- Microscopic dynamics of shape coexistence phenomena around [symbol]Se and [symbol]Kr / N. Hinohara et al. -- [symbol]-cluster states and 4[symbol]-particle condensation in [symbol]O / Y. Funaki et al. -- Evolution of the N = 28 shell closure far from stability / O. Sorlin et al. -- Continuum QRPA approach and the surface di-neutron modes in nuclei near the neutron drip-line / M. Matsuo et al. -- Deformed relativistic Hartree-Bogoliubov model for exotic nuclei / S. G. Zhou et al. -- Two- and three-body correlations in three-body resonances and continuum states / K. Katō, K. Ikeda -- Pion- and Rho-Meson effects in relativistic Hartree-Fock and RPA / N. V. Giai et al. -- Study of the structure of neutron rich nuclei by using [symbol]-delayed neutron and gamma emission method / Y. Ye et al. -- Production of secondary radioactive [symbol] Na beam for the study of [symbol]Na([symbol], p)[symbol]Mg stellar reaction / D. N. Binh et al
Condensed Matter Nuclear Science
NASA Astrophysics Data System (ADS)
Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro
wave function near surface of palladium lattice / X. Z. Li ... [et al.]. Theoretical comparison between semi-classical and quantum tunneling effect / F. Frisone. New cooperative mechanisms of low-energy nuclear reactions using super low-energy external field / F. A. Gareev and I. E. Zhidkova. Polyneutron theory of transmutation / J. C. Fisher. The thermal conduction from the centers of the nuclear reactions in solids / K.-I. Tsuchiya. Four-body RST general nuclear wavefunctions and matrix elements / I. Chaudhary and P. L. Hagelstein. Study on formation of tetrahedral or octahedral symmetric condensation by hopping of alkali or alkaline-earth metal ion / H. Miura. Calculations of nuclear reactions probability in a crystal lattice of lanthanum deuteride / V. A. Kirkinskii and Yu. A. Novikov. Possible coupled electron and electron neutrino in nucleus and its physical catalysis effect on D-D cold fusion into helium in Pd / M. Fukuhara. Tunnel resonance of electron wave and force of fluctuation / M. Ban. Types of nuclear fusion in solids / N. Yabuuchi. Neutrino-dineutron reactions (low-energy nuclear reactions induced by D[symbol] gas permeation through Pd complexes - Y. Iwamura effect) / V. Muromtsev, V. Platonov and I. Savvatimova. An explanation of earthquakes by the blacklight process and hydrogen fusion / H. Yamamoto. Theoretical modeling of electron flow action on probability of nuclear fusion of deuterons / A. I. Goncharov and V. A. Kirkinskii.