Sample records for dinuclear system model

  1. Spins of complex fragments in binary reactions within a dinuclear system model

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.

    2017-10-01

    The average angular momenta and widths of the spin distributions of reaction products are calculated within the dinuclear system model. The thermal excitation of rotational bearing modes is considered in the dinuclear system. The calculated fragment spins (γ multiplicities) and their variances in the reactions 20Ne (166 MeV) + 63Cu, 40Ar (280 MeV) + 58Ni, 20Ne (175 MeV) + natAg, 40Ar (237 MeV) + 89Y, 40Ar (288 and 340 MeV) + Ag,109107, and 16O (100 MeV) + 58Ni are compared with the available experimental data. The influence of the entrance channel charge (mass) asymmetry and bombarding energy on the characteristics of spin distribution is studied.

  2. Mechanistic investigation of the formation of H2 from HCOOH with a dinuclear Ru model complex for formate hydrogen lyase.

    PubMed

    Tokunaga, Taisuke; Yatabe, Takeshi; Matsumoto, Takahiro; Ando, Tatsuya; Yoon, Ki-Seok; Ogo, Seiji

    2017-01-01

    We report the mechanistic investigation of catalytic H 2 evolution from formic acid in water using a formate-bridged dinuclear Ru complex as a formate hydrogen lyase model. The mechanistic study is based on isotope-labeling experiments involving hydrogen isotope exchange reaction.

  3. Production of heavy neutron-rich nuclei in transfer reactions within the dinuclear system model

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Feng, Zhao-Qing; Zhang, Feng-Shou

    2015-08-01

    The dynamics of nucleon transfer processes in heavy-ion collisions is investigated within the dinuclear system model. The production cross sections of nuclei in the reactions 136Xe+208Pb and 238U+248Cm are calculated, and the calculations are in good agreement with the experimental data. The transfer cross sections for the 58Ni+208Pb reaction are calculated and compared with the experimental data. We predict the production cross sections of neutron-rich nuclei 165-168 Eu, 169-173 Tb, 173-178 Ho, and 181-185Yb based on the reaction 176Yb+238U. It can be seen that the production cross sections of the neutron-rich nuclei 165Eu, 169Tb, 173Ho, and 181Yb are 2.84 μb, 6.90 μb, 46.24 μb, and 53.61 μb, respectively, which could be synthesized in experiment.

  4. Multiple-decker phthalocyaninato dinuclear lanthanoid(III) single-molecule magnets with dual-magnetic relaxation processes.

    PubMed

    Katoh, Keiichi; Horii, Yoji; Yasuda, Nobuhiro; Wernsdorfer, Wolfgang; Toriumi, Koshiro; Breedlove, Brian K; Yamashita, Masahiro

    2012-11-28

    The SMM behaviour of dinuclear Ln(III)-Pc multiple-decker complexes (Ln = Tb(3+) and Dy(3+)) with energy barriers and slow-relaxation behaviour were explained by using X-ray crystallography and static and dynamic susceptibility measurements. In particular, interactions among the 4f electrons of several dinuclear Ln(III)-Pc type SMMs have never been discussed on the basis of the crystal structure. For dinuclear Tb(III)-Pc complexes, a dual magnetic relaxation process was observed. The relaxation processes are due to the anisotropic centres. Our results clearly show that the two Tb(3+) ion sites are equivalent and are consistent with the crystal structure. On the other hand, the mononuclear Tb(III)-Pc complex exhibited only a single magnetic relaxation process. This is clear evidence that the magnetic relaxation mechanism depends heavily on the dipole-dipole (f-f) interactions between the Tb(3+) ions in the dinuclear systems. Furthermore, the SMM behaviour of dinuclear Dy(III)-Pc type SMMs with smaller energy barriers compared with that of Tb(III)-Pc and slow-relaxation behaviour was explained. Dinuclear Dy(III)-Pc SMMs exhibited single-component magnetic relaxation behaviour. The results indicate that the magnetic relaxation properties of dinuclear Ln(III)-Pc multiple-decker complexes are affected by the local molecular symmetry and are extremely sensitive to tiny distortions in the coordination geometry. In other words, the spatial arrangement of the Ln(3+) ions (f-f interactions) in the crystal is important. Our work shows that the SMM properties can be fine-tuned by introducing weak intermolecular magnetic interactions in a controlled SMM spatial arrangement.

  5. Description of alternating-parity bands within the dinuclear-system model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shneidman, T. M.; Adamian, G. G., E-mail: adamian@theor.jinr.ru; Antonenko, N. V.

    2016-11-15

    A cluster approach is used to describe ground-state-based alternating-parity bands in even–even nuclei and to study the band-termination mechanism. A method is proposed for testing the cluster nature of alternating-parity bands.

  6. Combined DFT and BS study on the exchange coupling of dinuclear sandwich-type POM: comparison of different functionals and reliability of structure modeling.

    PubMed

    Yin, Bing; Xue, GangLin; Li, JianLi; Bai, Lu; Huang, YuanHe; Wen, ZhenYi; Jiang, ZhenYi

    2012-05-01

    The exchange coupling of a group of three dinuclear sandwich-type polyoxomolybdates [MM'(AsMo7O27)2](12-) with MM' = CrCr, FeFe, FeCr are theoretically predicted from combined DFT and broken-symmetry (BS) approach. Eight different XC functionals are utilized to calculate the exchange-coupling constant J from both the full crystalline structures and model structures of smaller size. The comparison between theoretical values and accurate experimental results supports the applicability of DFT-BS method in this new type of sandwich-type dinuclear polyoxomolybdates. However, a careful choice of functionals is necessary to achieve the desired accuracy. The encouraging results obtained from calculations on model structures highlight the great potential of application of structure modeling in theoretical study of POM. Structural modeling may not only reduce the computational cost of large POM species but also be able to take into account the external field effect arising from solvent molecules in solution or counterions in crystal.

  7. Synchronicity of mononuclear and dinuclear events in homogeneous catalysis. Hydroformylation of cyclopentene using Rh4(CO)12 and HRe(CO)5 as precursors.

    PubMed

    Li, Chuanzhao; Chen, Li; Garland, Marc

    2007-10-31

    The combined application of two or more metals in homogeneous catalysis can lead to synergistic effects; however, the phenomenological basis for these observations often goes undetermined. The hetero-bimetallic catalytic binuclear elimination reaction, a system involving both mononuclear and dinuclear intermediates, has been repeatedly suggested as a possible mechanism. In the present contribution, the simultaneous application of Rh4(CO)12 and HRe(CO)5 as precursors in the hydroformylation reaction leads to a very strong synergistic rate effect. In situ spectroscopic measurements confirm the presence of both mononuclear and dinuclear intermediates such as RCORh(CO)4 and RhRe(CO)9 in the active system. Moreover, kinetic analysis confirms interconversion of these intermediates as well as their statistical correlation with organic product formation. Specifically, the rate of hydrogen activation by RhRe(CO)9 is exactly equal to the rate of aldehyde formation from binuclear elimination between HRe(CO)5 and RCORh(CO)4 at all reaction conditions studied. Thus the catalytic events involving mononuclear species and those involving dinuclear species are synchronized. In the present experiments, the new topology is orders of magnitude more efficient than the corresponding unicyclic rhodium system.

  8. Dinuclear Nickel(II) Complexes as Models for the Active Site of Urease.

    PubMed

    Volkmer, Dirk; Hommerich, Birgit; Griesar, Klaus; Haase, Wolfgang; Krebs, Bernt

    1996-06-19

    Dinuclear nickel(II) complexes of the ligands 2,6-bis[bis((2-benzimidazolylmethyl)amino)methyl]-p-cresol (bbapOH), N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane (tbpOH), N-methyl-N,N',N'-tris(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane (m-tbpOH) and 1-[N,N-bis(2-benzimidazolylmethyl)amino]-3-[2-(3,5-dimethyl-1H-pyrazol-1-yl)ethoxy]-2-hydroxypropane (bpepOH) were prepared in order to model the active site of urease. The novel asymmetric structures of the dinuclear complexes were characterized by X-ray structure analysis. The complex [Ni(2)(bbapO)(ClO(4))(H(2)O)(MeOH)](ClO(4))(2).Et(2)O, 1, crystallizes in the monoclinic space group P2(1)/c, with a = 10.258(2) Å, b = 19.876(3) Å, c = 25.592(4) Å, and beta = 97.12(2) degrees. The nickel ions in 1 are bridged by the phenoxy donor of the ligand and a perchlorate anion. The complexes [Ni(2)(tbpO)(MeCOO)(H(2)O)](ClO(4))(2).H(2)O.Et(2)O, 2, [Ni(2)(m-tbpO)(PhCOO)(EtOH)(2)](ClO(4))(2).EtOH, 3, and [Ni(2)(bpepO)(MeCOO)(H(2)O)(2)](ClO(4))(2).H(2)O.Et(2)O.2EtOH, 4, also crystallize in the monoclinic crystal system with the following unit cell parameters: 2, C2/c, a = 35.360(13) Å, b = 10.958(3) Å, c = 24.821(10) Å, beta = 103.55(3) degrees; 3, Cc, a = 14.663(5) Å, b = 32.630(13) Å, c = 9.839(3) Å, beta = 92.49(2) degrees; 4, C2/c, a = 27.689(13) Å, b = 12.187(5) Å, c = 31.513(14) Å, beta = 115.01(3) degrees. The dinuclear centers of all these complexes are bridged by the alkoxy donor of the ligand and a carboxylate function. Compounds 2 and 3 have one of the nickel ions in a five-coordinated, trigonal bipyramidal coordination environment and thus show a high structural similarity to the dinuclear active site of urease from Klebsiella aerogenes. Furthermore, their magnetic and spectroscopic properties were determined and related to those of the urease enzymes. Activity toward hydrolysis of test substrates (4-nitrophenyl)urea, 4-nitroacetanilide, 4-nitrophenyl phosphate or bis(4-nitrophenyl) phosphate by the dinuclear complexes were examined by UV spectroscopic measurements.

  9. General molecular mechanics method for transition metal carboxylates and its application to the multiple coordination modes in mono- and dinuclear Mn(II) complexes.

    PubMed

    Deeth, Robert J

    2008-08-04

    A general molecular mechanics method is presented for modeling the symmetric bidentate, asymmetric bidentate, and bridging modes of metal-carboxylates with a single parameter set by using a double-minimum M-O-C angle-bending potential. The method is implemented within the Molecular Operating Environment (MOE) with parameters based on the Merck molecular force field although, with suitable modifications, other MM packages and force fields could easily be used. Parameters for high-spin d (5) manganese(II) bound to carboxylate and water plus amine, pyridyl, imidazolyl, and pyrazolyl donors are developed based on 26 mononuclear and 29 dinuclear crystallographically characterized complexes. The average rmsd for Mn-L distances is 0.08 A, which is comparable to the experimental uncertainty required to cover multiple binding modes, and the average rmsd in heavy atom positions is around 0.5 A. In all cases, whatever binding mode is reported is also computed to be a stable local minimum. In addition, the structure-based parametrization implicitly captures the energetics and gives the same relative energies of symmetric and asymmetric coordination modes as density functional theory calculations in model and "real" complexes. Molecular dynamics simulations show that carboxylate rotation is favored over "flipping" while a stochastic search algorithm is described for randomly searching conformational space. The model reproduces Mn-Mn distances in dinuclear systems especially accurately, and this feature is employed to illustrate how MM calculations on models for the dimanganese active site of methionine aminopeptidase can help determine some of the details which may be missing from the experimental structure.

  10. Effective inertial coefficient for the dinuclear regime of the exotic decay of nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duarte, S.B.; Goncalves, M.G.

    Geometric and incompressibility constraint relations are used explicitly in reducing the number of collective variables of the dinuclear phase of the fissioning system to calculate the barrier penetrability factor. Consistently, we define an effective inertial coefficient for the relative motion of the fissioning system. With this inertial coefficient, half-lives of the exotic and alpha decays are successfully reproduced for all available experimental data, using only one well-controlled nuclear parameter, the nuclear radius constant. {copyright} {ital 1996 The American Physical Society.}

  11. Light charged particle multiplicities in fusion and quasifission reactions

    NASA Astrophysics Data System (ADS)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Lacroix, D.; Wieleczko, J. P.

    2018-01-01

    The light charged particle evaporation from the compound nucleus and from the complex fragments in the reactions 32S+100Mo, 121Sb+27Al, 40Ar+164Dy, and 40Ar+ nat Ag is studied within the dinuclear system model. The possibility to distinguish the reaction products from different reaction mechanisms is discussed.

  12. DFT description of the magnetic properties and electron localization in dinuclear di-mu-oxo-bridged manganese complexes.

    PubMed

    Barone, Vincenzo; Bencini, Alessandro; Gatteschi, Dante; Totti, Federico

    2002-11-04

    Density functional theory (DFT) was applied to describe the magnetic and electron-transfer properties of dinuclear systems containing the [MnO2Mn]n+ core, with n=0,1,2,3,4. The calculation of the potential energy surfaces (PESs) of the mixed-valence species (n=1,3) allowed the classification of these systems according to the extent of valence localization as Class II compounds, in the Robin-Day classification scheme. The fundamental frequencies corresponding to the asymmetric breathing vibration were also computed.

  13. Shell effects in a multinucleon transfer process

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Wen, Pei-Wei; Lin, Cheng-Jian; Bao, Xiao-Jun; Su, Jun; Li, Cheng; Guo, Chen-Chen

    2018-04-01

    The shell effects in multinucleon transfer process are investigated in the systems 136Xe + 198Pt and 136Xe + 208Pb within the dinuclear system (DNS) model. The temperature dependence of shell corrections on potential energy surface is taken into account in the DNS model and remarkable improvement for description of experimental data is noticed. The reactions 136Xe + 186W and 150Nd + 186W are also studied. It is found that due to shell effects the projectile 150Nd is more promising for producing transtarget nuclei rather than 136Xe with neutron shell closure.

  14. Dinuclear Tricyclic Transition State Model for Carbonyl Addition of Organotitanium Reagents: DFT Study on the Activity and Enantioselectivity of BINOLate Titanium Catalysts.

    PubMed

    Harada, Toshiro

    2018-06-08

    In the presence of a catalytic amount of chiral BINOL derivatives (or BINOLs), a mixture of various organometallic compounds with Ti(O i Pr) 4 undergoes enantioselective addition to aldehydes and ketones. Although the catalyst and reacting nucleophile of the reaction have been elucidated to be ( BINOLate)Ti 2 (O i Pr) 6 and RTi(O i Pr) 3 , respectively, little is known about the properties of short-lived intermediates and transition structures. In this work, the mechanism of this reaction is investigated with the aid of DFT (M06) calculations. The study provides support for the following mechanistic understandings: (i) The direct racemic reaction proceeds through a pathway involving initial aggregation of RTi(O i Pr) 3 with Ti(O i Pr) 4 followed by carbonyl addition of the resulting dinuclear aggregate. (ii) The enantioselective reaction takes place through a pathway involving initial ligand exchange of RTi(O i Pr) 3 with ( BINOLate)Ti 2 (O i Pr) 6 followed by the addition of the resulting chiral dinuclear titanium species via a chiral BINOLate-chelated, tricyclic transition structure. (iii) The enantioselective pathway is favorable not because BINOLate ligands accelerate the carbonyl addition but because the ligands stabilize the chiral dinuclear species against deaggregation through a chelating bridge. (iv) The chiral transition structure serves as a model accounting for the re-face addition generally observed in the reaction of aldehydes with ( R)- BINOLs.

  15. Pyrazole bridged dinuclear Cu(II) and Zn(II) complexes as phosphatase models: Synthesis and activity

    NASA Astrophysics Data System (ADS)

    Naik, Krishna; Nevrekar, Anupama; Kokare, Dhoolesh Gangaram; Kotian, Avinash; Kamat, Vinayak; Revankar, Vidyanand K.

    2016-12-01

    Present work describes synthesis of dibridged dinuclear [Cu2L2(μ2-NN pyr)(NO3)2(H2O)2] and [Zn2L(μ-OH)(μ-NNpyr)(H2O)2] complexes derived from a pyrazole based ligand bis(2-hydroxy-3-methoxybenzylidene)-1H-pyrazole-3,5-dicarbohydrazide. The ligand shows dimeric chelate behaviour towards copper against monomeric for zinc counterpart. Spectroscopic evidences affirm octahedral environment around the metal ions in solution state and non-electrolytic nature of the complexes. Both the complexes are active catalysts towards phosphomonoester hydrolysis with first order kcat values in the range of 2 × 10-3s-1. Zinc complex exhibited promising catalytic efficiency for the hydrolysis. The dinuclear complexes hydrolyse via Lewis acid activation, whereby the phosphate esters are preferentially bound in a bidentate bridging fashion and subsequent nucleophilic attack to release phosphate group.

  16. Well-Defined Models for the Elusive Dinuclear Intermediates of the Pauson-Khand Reaction.

    PubMed

    Hartline, Douglas R; Zeller, Matthias; Uyeda, Christopher

    2016-05-10

    The mechanism of the Pauson-Khand reaction has attracted significant interest due to the unusual dinuclear nature of the Co2 (CO)x active site. Experimental and computational data have indicated that the intermediates following the initial Co2 (CO)6 (alkyne) complex are thermodynamically unstable and do not build up in appreciable concentrations during the course of the reaction. As a consequence, the key steps that control the scope of viable substrates and various aspects of selectivity have remained largely uncharacterized. Herein, a direct experimental investigation of the dinuclear metallacycle-forming step of the Pauson-Khand reaction is reported. These studies capitalize on well-defined d(9) -d(9) dinickel complexes supported by a naphthyridine-diimine (NDI) pincer ligand as functional surrogates of Co2 (CO)8 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Photoinduced intercomponent excited-state decays in a molecular dyad made of a dinuclear rhenium(I) chromophore and a fullerene electron acceptor unit.

    PubMed

    Nastasi, Francesco; Puntoriero, Fausto; Natali, Mirco; Mba, Miriam; Maggini, Michele; Mussini, Patrizia; Panigati, Monica; Campagna, Sebastiano

    2015-05-01

    A novel molecular dyad, 1, made of a dinuclear {[Re2(μ-X)2(CO)6(μ-pyridazine)]} component covalently-linked to a fullerene unit by a carbocyclic molecular bridge has been prepared and its redox, spectroscopic, and photophysical properties - including pump-probe transient absorption spectroscopy in the visible and near-infrared region - have been investigated, along with those of its model species. Photoinduced, intercomponent electron transfer occurs in 1 from the thermally-equilibrated, triplet metal/ligand-to-ligand charge-transfer ((3)MLLCT) state of the dinuclear rhenium(I) subunit to the fullerene acceptor, with a time constant of about 100 ps. The so-formed triplet charge-separated state recombines in a few nanoseconds by a spin-selective process yielding, rather than the ground state, the locally-excited, triplet fullerene state, which finally decays to the ground state by intersystem crossing in about 290 ns.

  18. Improvement in Titanium Complexes Bearing Schiff Base Ligands in the Ring-Opening Polymerization of L-Lactide: A Dinuclear System with Hydrazine-Bridging Schiff Base Ligands.

    PubMed

    Tseng, Hsi-Ching; Chen, Hsing-Yin; Huang, Yen-Tzu; Lu, Wei-Yi; Chang, Yu-Lun; Chiang, Michael Y; Lai, Yi-Chun; Chen, Hsuan-Ying

    2016-02-15

    A series of titanium (Ti) complexes bearing hydrazine-bridging Schiff base ligands were synthesized and investigated as catalysts for the ring-opening polymerization (ROP) of L-lactide (LA). Complexes with electron withdrawing or steric bulky groups reduced the catalytic activity. In addition, the steric bulky substituent on the imine groups reduced the space around the Ti atom and then reduced LA coordination with Ti atom, thereby reducing catalytic activity. All the dinuclear Ti complexes exhibited higher catalytic activity (approximately 10-60-fold) than mononuclear L(Cl-H)-TiOPr2 did. The strategy of bridging dinuclear Ti complexes with isopropoxide groups in the ROP of LA was successful, and adjusting the crowded heptacoordinated transition state by the bridging isopropoxide groups may be the key to our successful strategy.

  19. Synthesis of neutron-rich superheavy nuclei with radioactive beams within the dinuclear system model

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-Han; Zhu, Long; Li, Fan; Yu, Xiao-Bin; Su, Jun; Guo, Chen-Chen

    2018-06-01

    The production of neutron-rich superheavy nuclei with Z =105 -118 in neutron evaporation channels is investigated within the dinuclear system model. The different stable and radioactive beam-induced hot fusion reactions are studied systematically. The prospect for synthesizing neutron-rich superheavy nuclei using radioactive beams is evaluated quantitatively based on the beam intensities proposed by Argonne Tandem Linac Accelerator System [B. B. Back and C. L. Jiang, Argonne National Laboratory Report No. ANL-06/55, 2006 (unpublished)]. All possible combinations (with projectiles of Z =16 -22 and half-lives longer than 1 ms; with targets of half-lives longer than 30 days), which can be performed in available experimental equipment, for producing several unknown neutron-rich superheavy nuclei in neutron evaporation channels are investigated and the most promising reactions are predicted. It is found that the stable beams still show great advantages for producing most of superheavy nuclei. The calculated results are also compared with production cross sections in the p x n and α x n evaporation channels [Hong et al., Phys. Lett. B 764, 42 (2017), 10.1016/j.physletb.2016.11.002]. We find that the radioactive beam-induced reactions are comparable to the stable beam-induced reactions in charged particle evaporation channels. To obtain more experimental achievements, the beam intensities of modern radioactive beam facilities need to be further improved in the future.

  20. A self-improved water-oxidation catalyst: is one site really enough?

    PubMed

    López, Isidoro; Ertem, Mehmed Z; Maji, Somnath; Benet-Buchholz, Jordi; Keidel, Anke; Kuhlmann, Uwe; Hildebrandt, Peter; Cramer, Christopher J; Batista, Victor S; Llobet, Antoni

    2014-01-03

    The homogeneous catalysis of water oxidation by transition-metal complexes has experienced spectacular development over the last five years. Practical energy-conversion schemes, however, require robust catalysts with large turnover frequencies. Herein we introduce a new oxidatively rugged and powerful dinuclear water-oxidation catalyst that is generated by self-assembly from a mononuclear catalyst during the catalytic process. Our kinetic and DFT computational analysis shows that two interconnected catalytic cycles coexist while the mononuclear system is slowly and irreversibly converted into the more stable dinuclear system: an extremely robust water-oxidation catalyst that does not decompose over extended periods of time. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enzyme-like catalysis via ternary complex mechanism: alkoxy-bridged dinuclear cobalt complex mediates chemoselective O-esterification over N-amidation.

    PubMed

    Hayashi, Yukiko; Santoro, Stefano; Azuma, Yuki; Himo, Fahmi; Ohshima, Takashi; Mashima, Kazushi

    2013-04-24

    Hydroxy group-selective acylation in the presence of more nucleophilic amines was achieved using acetates of first-row late transition metals, such as Mn, Fe, Co, Cu, and Zn. Among them, cobalt(II) acetate was the best catalyst in terms of reactivity and selectivity. The combination of an octanuclear cobalt carboxylate cluster [Co4(OCOR)6O]2 (2a: R = CF3, 2b: R = CH3, 2c: R = (t)Bu) with nitrogen-containing ligands, such as 2,2'-bipyridine, provided an efficient catalytic system for transesterification, in which an alkoxide-bridged dinuclear complex, Co2(OCO(t)Bu)2(bpy)2(μ2-OCH2-C6H4-4-CH3)2 (10), was successfully isolated as a key intermediate. Kinetic studies and density functional theory calculations revealed Michaelis-Menten behavior of the complex 10 through an ordered ternary complex mechanism similar to dinuclear metallo-enzymes, suggesting the formation of alkoxides followed by coordination of the ester.

  2. Thiolate-bridged dinuclear ruthenium and iron complexes as robust and efficient catalysts toward oxidation of molecular dihydrogen in protic solvents.

    PubMed

    Yuki, Masahiro; Sakata, Ken; Hirao, Yoshifumi; Nonoyama, Nobuaki; Nakajima, Kazunari; Nishibayashi, Yoshiaki

    2015-04-01

    Thiolate-bridged dinuclear ruthenium and iron complexes are found to work as efficient catalysts toward oxidation of molecular dihydrogen in protic solvents such as water and methanol under ambient reaction conditions. Heterolytic cleavage of the coordinated molecular dihydrogen at the dinuclear complexes and the sequential oxidation of the produced hydride complexes are involved as key steps to promote the present catalytic reaction. The catalytic activity of the dinuclear complexes toward the chemical oxidation of molecular dihydrogen achieves up to 10000 TON (turnover number), and electrooxidation of molecular dihydrogen proceeds quite rapidly. The result of the density functional theory (DFT) calculation on the reaction pathway indicates that a synergistic effect between the two ruthenium atoms plays an important role to realize the catalytic oxidation of molecular dihydrogen efficiently. The present dinuclear ruthenium complex is found to work as an efficient organometallic anode catalyst for the fuel cell. It is noteworthy that the present dinuclear complex worked not only as an effective catalyst toward chemical and electrochemical oxidation of molecular dihydrogen but also as a good anode catalyst for the fuel cell. We consider that the result described in this paper provides useful and valuable information to develop highly efficient and low-cost transition metal complexes as anode catalysts in the fuel cell.

  3. Copper(II) and zinc(II) dinuclear enzymes model compounds: The nature of the metal ion in the biological function

    NASA Astrophysics Data System (ADS)

    Ferraresso, L. G.; de Arruda, E. G. R.; de Moraes, T. P. L.; Fazzi, R. B.; Da Costa Ferreira, A. M.; Abbehausen, C.

    2017-12-01

    First series transition metals are used abundantly by nature to perform catalytic transformations of several substrates. Furthermore, the cooperative activity of two proximal metal ions is common and represents a highly efficient catalytic system in living organisms. In this work three dinuclear μ-phenolate bridged metal complexes were prepared with copper(II) and zinc(II), resulting in a ZnZn, CuCu and CuZn with the ligand 2-ethylaminodimethylamino phenol (saldman) as model compounds of superoxide dismutase (CuCu and CuZn) and metallo-β-lactamases (ZnZn). Metals are coordinated in a μ-phenolate bridged symmetric system. Cu(II) presents a more distorted structure, while zinc is very symmetric. For this reason, [CuCu(saldman)] shows higher water solubility and also higher lability of the bridge. The antioxidant and hydrolytic beta-lactamase-like activity of the complexes were evaluated. The lability of the bridge seems to be important for the antioxidant activity and is suggested to because of [CuCu(saldman)] presents a lower antioxidant capacity than [CuZn(saldman)], which showed to present a more stable bridge in solution. The hydrolytic activity of the bimetallic complexes was assayed using nitrocefin as substrate and showed [ZnZn(saldman)] as a better catalyst than the Cu(II) analog. The series demonstrates the importance of the nature of the metal center for the biological function and how the reactivity of the model complex can be modulated by coordination chemistry.

  4. Gas-phase and solution-phase polymerization of epoxides by Cr(salen) complexes: evidence for a dinuclear cationic mechanism.

    PubMed

    Schön, Eva; Zhang, Xiangyang; Zhou, Zhiping; Chisholm, Malcolm H; Chen, Peter

    2004-11-15

    The gas-phase reactions of a series of mass-selected mononuclear and dinuclear Cr(salen) complexes with propylene oxide suggest that the enhanced reactivity of the dinuclear complexes in gas-phase and in solution may derive from a dicationic mechanism in which the alkoxide chain is mu(2)-coordinated to two Lewis acidic metal centers. The double coordination is proposed to suppress backbiting, and hence chain-transfer in the gas-phase homopolymerization of epoxides.

  5. The effects of collision orientation and energy dependence in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Li, Cheng; Wen, Peiwei; Zhang, Feng-Shou

    2018-05-01

    Multinucleon transfer (MNT) reaction 136Xe+208Pb near Coulomb barrier energies are investigated within the dinuclear system (DNS) model. It is found that the collision orientation has an important influence on the mass distributions attributed to the depth of pocket in the driving potential. The calculation results of the isotopic production show that the energy dependence in neutron-deficient side is more sensitive than that in neutron-rich side. The production of the N = 126 isotones are calculated by GRAZING model, DNS+GEMINI model, and ImQMD+GEMINI model, respectively. It demonstrates that MNT reaction is a promising way to produce neutron-rich isotopes in the region of the neutron shell closure N = 126.

  6. Use of magnetic circular dichroism to study dinuclear metallohydrolases and the corresponding biomimetics.

    PubMed

    Larrabee, James A; Schenk, Gerhard; Mitić, Nataša; Riley, Mark J

    2015-09-01

    Magnetic circular dichroism (MCD) is a convenient technique for providing structural and mechanistic insight into enzymatic systems in solution. The focus of this review is on aspects of geometric and electronic structure that can be determined by MCD, and how this method can further our understanding of enzymatic mechanisms. Dinuclear Co(II) systems that catalyse hydrolytic reactions were selected to illustrate the approach. These systems all contain active sites with similar structures consisting of two Co(II) ions bridged by one or two carboxylates and a water or hydroxide. In most of these active sites one Co(II) is five-coordinate and one is six-coordinate, with differing binding affinities. It is shown how MCD can be used to determine which binding site--five or six-coordinate--has the greater affinity. Importantly, zero-field-splitting data and magnetic exchange coupling constants may be determined from the temperature and field dependence of MCD data. The relevance of these data to the function of the enzymatic systems is discussed.

  7. Biomimetic Modeling of Copper Complexes: A Study of Enantioselective Catalytic Oxidation on D-(+)-Catechin and L-( − )-Epicatechin with Copper Complexes

    PubMed Central

    Mutti, Francesco G.; Pievo, Roberta; Sgobba, Maila; Gullotti, Michele; Santagostini, Laura

    2008-01-01

    The biomimetic catalytic oxidations of the dinuclear and trinuclear copper(II) complexes versus two catechols, namely, D-(+)-catechin and L-( − )-epicatechin to give the corresponding quinones are reported. The unstable quinones were trapped by the nucleophilic reagent, 3-methyl-2-benzothiazolinone hydrazone (MBTH), and have been calculated the molar absorptivities of the different quinones. The catalytic efficiency is moderate, as inferred by kinetic constants, but the complexes exhibit significant enantio-differentiating ability towards the catechols, albeit for the dinuclear complexes, this enantio-differentiating ability is lower. In all cases, the preferred enantiomeric substrate is D-(+)-catechin to respect the other catechol, because of the spatial disposition of this substrate. PMID:18825268

  8. A comparative study of magnetization dynamics in dinuclear dysprosium complexes featuring bridging chloride or trifluoromethanesulfonate ligands.

    PubMed

    Burns, Corey P; Wilkins, Branford O; Dickie, Courtney M; Latendresse, Trevor P; Vernier, Larry; Vignesh, Kuduva R; Bhuvanesh, Nattamai S; Nippe, Michael

    2017-07-25

    We utilized a rigid ligand platform PyCp 2 2- (PyCp 2 2- = [2,6-(CH 2 C 5 H 3 ) 2 C 5 H 3 N] 2- ) to isolate dinuclear Dy 3+ complexes [(PyCp 2 )Dy-(μ-O 2 SOCF 3 )] 2 (1) and [(PyCp 2 )Dy-(μ-Cl)] 2 (3) as well as the mononuclear complex (PyCp 2 )Dy(OSO 2 CF 3 )(thf) (2). Compounds 1 and 2 are the first examples of organometallic Dy 3+ complexes featuring triflate binding. The isolation of compounds 1 and 3 allows us to comparatively evaluate the effects of the bridging anions on the magnetization dynamics of the dinuclear systems. Our investigations show that although the exchange coupling interactions differ for 1 and 3, the dynamic magnetic properties are dominated by relaxation via the first excited state Kramers doublet of the individual Dy sites. Compounds 1 and 3 exhibit barriers to magnetization reversal (U eff = 49 cm -1 ) that can be favorably compared to those of the previously reported examples of [Cp 2 Dy(μ-Cl)] 2 (U eff = 26 cm -1 ) and [Cp 2 Dy(thf)(μ-Cl)] 2 (U eff = 34 cm -1 ).

  9. Synthesis, crystal structure and DFT studies of a novel dinuclear copper(I) complex with triphenylphosphine and 2-mercaptonicotinic acid

    NASA Astrophysics Data System (ADS)

    Ahmad, Tayyaba; Mahmood, Rashid; Georgieva, Ivelina; Zahariev, Tsvetan; Tahir, Muhammad Nawaz; Shaheen, Muhammad Ashraf; Gilani, Mazhar Amjad; Ahmad, Saeed

    2018-02-01

    A novel dinuclear copper(I) complex, {[Cu2(Mnt)2(PPh3)2Cl2].2H2O.CH3CN}2 (1) (Mnt = Mercaptonicotinic acid, PPh3 = triphenylphosphine) was prepared and its structure was determined by X-ray crystallography. The complex 1 consists of two dinuclear molecules and in each molecule, the two copper atoms are bridged by S atoms of N-protonated mercaptonicotinic acid forming a four-membered ring. The planar Cu2S2 core is characterized by significant cuprophilic interactions (Cusbnd Cu distance = 2.7671(8), 2.8471(8) Å). Each copper atom in 1 is coordinated by two sulfur atoms of Mnt, one phosphorus atom of PPh3 and a chloride ion adopting a tetrahedral geometry. The calculated Gibbs energies for reaction in CH3CN supported the experimental structure and predicted more favorable formation of dinuclear Cu(I) complex as compared to the mononuclear Cu(I) complex. The dinuclear complex is stabilized by 65.98 kJ mol-1 by coupling of two mononuclear Cu(I) complexes. The IR spectra of 1 and Mnt ligand were reliably interpreted and the Mnt vibrations, which are sensitive to the ligand coordination to Cu(I) ion in 1 were selected with the help of DFT/ωB97XD calculations.

  10. A highly efficient dinuclear Cu(II) chemosensor for colorimetric and fluorescent detection of cyanide in water

    PubMed Central

    Rhaman, Md. Mhahabubur; Alamgir, Azmain; Wong, Bryan M.; Powell, Douglas R.

    2017-01-01

    A novel dinuclear copper chemosensor selectively binds cyanide over a wide range of inorganic anions, enabling it to detect cyanide in water up to 0.02 ppm which is 10 times lower than the EPA standard for drinking water. PMID:28217299

  11. Effect of magnetic exchange, double exchange, vibronic coupling, and asymmetry on magnetic properties in d2-d3 mixed-valence dimers

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohua; Hu, Haiquan; Chen, Zhida

    The effect of magnetic exchange, double exchange, vibronic coupling, and asymmetry on magnetic properties of d2-d3 systems is discussed. The temperature-dependent magnetic moment was calculated with the semiclassical adiabatic approach. The results show that the vibronic coupling from the out-of-phase breathing vibration on the metal sites (Piepho, Krausz, and Schatz [PKS] model) and the vibronic coupling from the stretching vibration between the metal sites (P model) favor the localization and delocalization of the "extra" electron in mixed-valence dimers, respectively. The magnetic properties are determined by the interplay among magnetic exchange, double exchange, and vibronic coupling. The results obtained by analyzing d2-d3 systems can be generalized to other full delocalized dinuclear mixed valence systems with a unique transferable electron.

  12. Quantitative analysis of dinuclear manganese(II) EPR spectra

    NASA Astrophysics Data System (ADS)

    Golombek, Adina P.; Hendrich, Michael P.

    2003-11-01

    A quantitative method for the analysis of EPR spectra from dinuclear Mn(II) complexes is presented. The complex [(Me 3TACN) 2Mn(II) 2(μ-OAc) 3]BPh 4 ( 1) (Me 3TACN= N, N', N''-trimethyl-1,4,7-triazacyclononane; OAc=acetate 1-; BPh 4=tetraphenylborate 1-) was studied with EPR spectroscopy at X- and Q-band frequencies, for both perpendicular and parallel polarizations of the microwave field, and with variable temperature (2-50 K). Complex 1 is an antiferromagnetically coupled dimer which shows signals from all excited spin manifolds, S=1 to 5. The spectra were simulated with diagonalization of the full spin Hamiltonian which includes the Zeeman and zero-field splittings of the individual manganese sites within the dimer, the exchange and dipolar coupling between the two manganese sites of the dimer, and the nuclear hyperfine coupling for each manganese ion. All possible transitions for all spin manifolds were simulated, with the intensities determined from the calculated probability of each transition. In addition, the non-uniform broadening of all resonances was quantitatively predicted using a lineshape model based on D- and r-strain. As the temperature is increased from 2 K, an 11-line hyperfine pattern characteristic of dinuclear Mn(II) is first observed from the S=3 manifold. D- and r-strain are the dominate broadening effects that determine where the hyperfine pattern will be resolved. A single unique parameter set was found to simulate all spectra arising for all temperatures, microwave frequencies, and microwave modes. The simulations are quantitative, allowing for the first time the determination of species concentrations directly from EPR spectra. Thus, this work describes the first method for the quantitative characterization of EPR spectra of dinuclear manganese centers in model complexes and proteins. The exchange coupling parameter J for complex 1 was determined ( J=-1.5±0.3 cm-1; H ex=-2J S1· S2) and found to be in agreement with a previous determination from magnetization. The phenomenon of exchange striction was found to be insignificant for 1.

  13. Conformation and recognition of DNA modified by a new antitumor dinuclear PtII complex resistant to decomposition by sulfur nucleophiles

    PubMed Central

    Zerzankova, Lenka; Suchankova, Tereza; Vrana, Oldrich; Farrell, Nicholas P.; Brabec, Viktor; Kasparkova, Jana

    2011-01-01

    Reported herein is a detailed biochemical and molecular biophysics study of the molecular mechanism of action of antitumor dinuclear PtII complex [{PtCl(DACH)}2-μ-Y]4+ [DACH = 1,2-diaminocyclohexane, Y =H2N(CH2)6NH2(CH2)2NH2(CH2)6NH2] (complex 1). This new, long-chain bifunctional dinuclear PtII complex is resistant to metabolic decomposition by sulfur-containing nucleophiles. The results show that DNA adducts of 1 can largely escape repair and yet inhibit very effectively transcription so that they should persist longer than those of conventional cisplatin. Hence, they could trigger a number of downstream cellular effects different from those triggered in cancer cells by DNA adducts of cisplatin. This might lead to the therapeutic effects that could radically improve chemotherapy by platinum complexes. In addition, the findings of the present work make new insights into mechanisms associated with antitumor effects of dinuclear/trinuclear PtII complexes possible. PMID:19682435

  14. Dinuclear PhotoCORMs: Dioxygen-Assisted Carbon Monoxide Uncaging from Long-Wavelength-Absorbing Metal-Metal-Bonded Carbonyl Complexes.

    PubMed

    Li, Zhi; Pierri, Agustin E; Huang, Po-Ju; Wu, Guang; Iretskii, Alexei V; Ford, Peter C

    2017-06-05

    We describe a new strategy for triggering the photochemical release of caged carbon monoxide (CO) in aerobic media using long-wavelength visible and near-infrared (NIR) light. The dinuclear rhenium-manganese carbonyl complexes (CO) 5 ReMn(CO) 3 (L), where L = phenanthroline (1), bipyridine (2), biquinoline (3), or phenanthrolinecarboxaldehyde (4), each show a strong metal-metal-bond-to-ligand (σ MM → π L *) charge-transfer absorption band at longer wavelengths. Photolysis with deep-red (1 and 2) or NIR (3 and 4) light leads to homolytic cleavage of the Re-Mn bonds to give mononuclear metal radicals. In the absence of trapping agents, these radicals primarily recombine to reform dinuclear complexes. In oxygenated media, however, the radicals react with dioxygen to form species much more labile toward CO release via secondary thermal and/or photochemical reactions. Conjugation of 4, with an amine-terminated poly(ethylene glycol) oligomer, gives a water-soluble derivative with similar photochemistry. In this context, we discuss the potential applications of these dinuclear complexes as visible/NIR-light-photoactivated CO-releasing moieties (photoCORMs).

  15. Estimates of production and structure of nuclei with Z = 119

    NASA Astrophysics Data System (ADS)

    Adamian, G. G.; Antonenko, N. V.; Lenske, H.

    2018-02-01

    The comparative analysis of the hot fusion reactions 50Ti +247-249Bk and 51V +246-248Cm for synthesis of element 119 is made with the dinuclear system model and the prediction of nuclear properties of the microscopic-macroscopic approach, where the closed proton shell at Z ≥ 120 is expected. The quasiparticle structures of nuclei in the α-decay chain of 295119 and a possible spread of alpha energies are studied. The calculated values of Qα are compared with available experimental data. The termination of the α-decay chain of 295119 is revealed.

  16. Biosynthesis of the Urease Metallocenter*

    PubMed Central

    Farrugia, Mark A.; Macomber, Lee; Hausinger, Robert P.

    2013-01-01

    Metalloenzymes often require elaborate metallocenter assembly systems to create functional active sites. The medically important dinuclear nickel enzyme urease provides an excellent model for studying metallocenter assembly. Nickel is inserted into the urease active site in a GTP-dependent process with the assistance of UreD/UreH, UreE, UreF, and UreG. These accessory proteins orchestrate apoprotein activation by delivering the appropriate metal, facilitating protein conformational changes, and possibly providing a requisite post-translational modification. The activation mechanism and roles of each accessory protein in urease maturation are the subject of ongoing studies, with the latest findings presented in this minireview. PMID:23539618

  17. Supramolecular Assembly of Uridine Monophosphate (UMP) and Thymidine Monophosphate (TMP) with a Dinuclear Copper(II) Receptor.

    PubMed

    Rhaman, Md Mhahabubur; Powell, Douglas R; Hossain, Md Alamgir

    2017-11-30

    Understanding the intermolecular interactions between nucleotides and artificial receptors is crucial to understanding the role of nucleic acids in living systems. However, direct structural evidence showing precise interactions and bonding features of a nucleoside monophosphate (NMP) with a macrocycle-based synthetic molecule has not been provided so far. Herein, we present two novel crystal structures of uridine monophosphate (UMP) and thymidine monophosphate (TMP) complexes with a macrocycle-based dinuclear receptor. Structural characterization of these complexes reveals that the receptor recognizes UMP through coordinate-covalent interactions with phosphates and π-π stackings with nucleobases and TMP through coordinate-covalent interactions with phosphate groups. Furthermore, the receptor has been shown to effectively bind nucleoside monophosphates in the order of GMP > AMP > UMP > TMP > CMP in water at physiological pH, as investigated by an indicator displacement assay.

  18. Photochemically Induced Transformations of Transition Complexes.

    DTIC Science & Technology

    1993-05-17

    simple Iron dinuclear species, the DPPM and DPPE phosphine bridged compounds undergo photolysis in CHCI3 to yield products containing formyl substitued...possible reaction pathway for the synthesis of these two monomers as byproducts In the ruthenium phosphine dimer preparation Is suggested. Full structural...DPPM dimer is also described. In contrast to the behavior of the simple iron dinuclear species, the DPPM and DPPE phosphine bridged compounds undergo

  19. Magnetic exchange couplings from noncollinear perturbation theory: dinuclear CuII complexes.

    PubMed

    Phillips, Jordan J; Peralta, Juan E

    2014-08-07

    To benchmark the performance of a new method based on noncollinear coupled-perturbed density functional theory [J. Chem. Phys. 138, 174115 (2013)], we calculate the magnetic exchange couplings in a series of triply bridged ferromagnetic dinuclear Cu(II) complexes that have been recently synthesized [Phys. Chem. Chem. Phys. 15, 1966 (2013)]. We find that for any basis-set the couplings from our noncollinear coupled-perturbed methodology are practically identical to those of spin-projected energy-differences when a hybrid density functional approximation is employed. This demonstrates that our methodology properly recovers a Heisenberg description for these systems, and is robust in its predictive power of magnetic couplings. Furthermore, this indicates that the failure of density functional theory to capture the subtle variation of the exchange couplings in these complexes is not simply an artifact of broken-symmetry methods, but rather a fundamental weakness of current approximate density functionals for the description of magnetic couplings.

  20. Supramolecular Assembly of Uridine Monophosphate (UMP) and Thymidine Monophosphate (TMP) with a Dinuclear Copper(II) Receptor

    PubMed Central

    2017-01-01

    Understanding the intermolecular interactions between nucleotides and artificial receptors is crucial to understanding the role of nucleic acids in living systems. However, direct structural evidence showing precise interactions and bonding features of a nucleoside monophosphate (NMP) with a macrocycle-based synthetic molecule has not been provided so far. Herein, we present two novel crystal structures of uridine monophosphate (UMP) and thymidine monophosphate (TMP) complexes with a macrocycle-based dinuclear receptor. Structural characterization of these complexes reveals that the receptor recognizes UMP through coordinate–covalent interactions with phosphates and π–π stackings with nucleobases and TMP through coordinate–covalent interactions with phosphate groups. Furthermore, the receptor has been shown to effectively bind nucleoside monophosphates in the order of GMP > AMP > UMP > TMP > CMP in water at physiological pH, as investigated by an indicator displacement assay. PMID:29214233

  1. Synthesis, characterization, crystal structure, DNA- and HSA-binding studies of a dinuclear Schiff base Zn(II) complex derived from 2-hydroxynaphtaldehyde and 2-picolylamine

    NASA Astrophysics Data System (ADS)

    Kazemi, Zahra; Rudbari, Hadi Amiri; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Sharam; Mohammadpoor-Baltork, Iraj

    2015-09-01

    A tridentate Schiff base ligand NNO donor (HL: 1-((E)-((pyridin-2-yl)methylimino)methyl)naphthalen-2-ol was synthesized from condensation of 2-hydroxynaphtaldehyde and 2-picolylamine. Zinc complex, Zn2L2(NO3)2, was prepared from reaction of Zn(NO3)2 and HL at ambient temperature. The ligand and complex were characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis (CHN). Furthermore, the structure of dinuclear Zn(II) complex was determined by single crystal X-ray analysis. The complex, Zn2L2(NO3)2, is centrosymmetric dimer in which deprotonated phenolates bridge the two Zn(II) atoms and link the two halves of the dimer. In the structure, Zinc(II) ions have a highly distorted six-coordinate structure bonded to two oxygen atoms from a bidentate nitrate group, the pyridine nitrogen, an amine nitrogen and phenolate oxygens. The interaction of dinuclear Zn(II) complex with fish sperm DNA (FS-DNA) and HSA was investigated under physiological conditions using fluorescence quenching, UV-Vis spectroscopy, molecular dynamics simulation and molecular docking methods. The estimated binding constants for the DNA-complex and HSA-complex were (3.60 ± 0.18) × 104 M-1 and (1.35 ± 0.24) × 104 M-1, respectively. The distance between dinuclear Zn(II) complex and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Molecular docking studies revealed the binding of dinuclear Zn(II) complex to the major groove of FS-DNA and IIA site of protein by formation of hydrogen bond, π-cation and hydrophobic interactions.

  2. Linking Chemical Electron–Proton Transfer to Proton Pumping in Cytochrome c Oxidase: Broken-Symmetry DFT Exploration of Intermediates along the Catalytic Reaction Pathway of the Iron–Copper Dinuclear Complex

    PubMed Central

    2015-01-01

    After a summary of the problem of coupling electron and proton transfer to proton pumping in cytochrome c oxidase, we present the results of our earlier and recent density functional theory calculations for the dinuclear Fe-a3–CuB reaction center in this enzyme. A specific catalytic reaction wheel diagram is constructed from the calculations, based on the structures and relative energies of the intermediate states of the reaction cycle. A larger family of tautomers/protonation states is generated compared to our earlier work, and a new lowest-energy pathway is proposed. The entire reaction cycle is calculated for the new smaller model (about 185–190 atoms), and two selected arcs of the wheel are chosen for calculations using a larger model (about 205 atoms). We compare the structural and redox energetics and protonation calculations with available experimental data. The reaction cycle map that we have built is positioned for further improvement and testing against experiment. PMID:24960612

  3. Ferromagnetic dinuclear mixed-valence Mn(II)/Mn(III) complexes: building blocks for the higher nuclearity complexes. structure, magnetic properties, and density functional theory calculations.

    PubMed

    Hänninen, Mikko M; Välivaara, Juha; Mota, Antonio J; Colacio, Enrique; Lloret, Francesc; Sillanpää, Reijo

    2013-02-18

    A series of six mixed-valence Mn(II)/Mn(III) dinuclear complexes were synthesized and characterized by X-ray diffraction. The reactivity of the complexes was surveyed, and structures of three additional trinuclear mixed-valence Mn(III)/Mn(II)/Mn(III) species were resolved. The magnetic properties of the complexes were studied in detail both experimentally and theoretically. All dinuclear complexes show ferromagnetic intramolecular interactions, which were justified on the basis of the electronic structures of the Mn(II) and Mn(III) ions. The large Mn(II)-O-Mn(III) bond angle and small distortion of the Mn(II) cation from the ideal square pyramidal geometry were shown to enhance the ferromagnetic interactions since these geometrical conditions seem to favor the orthogonal arrangement of the magnetic orbitals.

  4. Large-amplitude nuclear motion formulated in terms of dissipation of quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Kuzyakin, R. A.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.

    2017-01-01

    The potential-barrier penetrability and quasi-stationary thermal-decay rate of a metastable state are formulated in terms of microscopic quantum diffusion. Apart from linear coupling in momentum between the collective and internal subsystems, the formalism embraces the more general case of linear couplings in both the momentum and the coordinates. The developed formalism is then used for describing the process of projectile-nucleus capture by a target nucleus at incident energies near and below the Coulomb barrier. The capture partial probability, which determines the cross section for formation of a dinuclear system, is derived in analytical form. The total and partial capture cross sections, mean and root-mean-square angular momenta of the formed dinuclear system, astrophysical -factors, logarithmic derivatives, and barrier distributions are derived for various reactions. Also investigated are the effects of nuclear static deformation and neutron transfer between the interacting nuclei on the capture cross section and its isotopic dependence, and the entrance-channel effects on the capture process. The results of calculations for reactions involving both spherical and deformed nuclei are in good agreement with available experimental data.

  5. A synthetic NO reduction cycle on a bis(pyrazolato)-bridged dinuclear ruthenium complex including photo-induced transformation.

    PubMed

    Arikawa, Yasuhiro; Hiura, Junko; Tsuchii, Chika; Kodama, Mika; Matsumoto, Naoki; Umakoshi, Keisuke

    2018-05-17

    A synthetic NO reduction cycle (2NO + 2H+ + 2e- → N2O + H2O) on a dinuclear platform {(TpRu)2(μ-pz)2} (Tp = HB(pyrazol-1-yl)3) was achieved, where an unusual N-N coupling complex was included. Moreover, an interesting photo-induced conversion of the N-N coupling complex to an oxido-bridged complex was revealed.

  6. Mono- and dinuclear bioxazoline-palladium complexes for the stereocontrolled synthesis of CO/styrene polyketones.

    PubMed

    Scarel, Alessandro; Durand, Jérôme; Franchi, Davide; Zangrando, Ennio; Mestroni, Giovanni; Carfagna, Carla; Mosca, Luca; Seraglia, Roberta; Consiglio, Giambattista; Milani, Barbara

    2005-10-07

    The coordination chemistry of the chiral bioxazoline ligand (4S,4'S)-2,2'-bis(4-isopropyl-4,5-dihydrooxazole) to Pd(II) provides evidence that the ligand bonding can occur either through chelation of one Pd(II) ion leading to a mononuclear species with the expected cis geometry, or by double bridging of two Pd(II) ions giving a dinuclear complex with trans geometry. The species in solution are identified by 1H NMR spectroscopy. Both the mononuclear and the dinuclear complexes promote the CO/styrene copolymerization, yielding the corresponding polyketone with a fully or a predominantly isotactic microstructure, depending on the reaction medium. The nature of the anion present in the palladium precatalysts affects the polyketone stereochemistry. MALDI-TOF analysis of the copolymers synthesized reveals the presence of p-hydroxyphenolic end-groups, thus confirming and explaining the role of 1,4-hydroquinone as a molecular weight regulator.

  7. The ^132Sn + ^96Zr reaction: a study of fusion enhancement/hindrance

    NASA Astrophysics Data System (ADS)

    Loveland, Walter; Vinodkumar, A. M.; Neeway, James; Sprunger, Peter; Prisbrey, Landon; Peterson, Donald; Liang, J. F.; Shapira, Dan; Gross, C. J.; Varner, R. L.; Kolata, J. J.; Roberts, A.; Caraley, A. L.

    2008-10-01

    Capture-fission cross sections were measured for the collision of the massive nucleus ^132Sn with ^96Zr at center of mass energies ranging from 192.8 to 249.6 MeV in an attempt to study fusion enhancement and hindrance in this reaction involving very neutron-rich nuclei. Coincident fission fragments were detected using silicon detectors. Using angle and energy conditions, deep inelastic scattering events were separated from fission events. Coupled channels calculations can describe the data if the surface diffuseness parameter, a, is allowed to be 1.10 fm, instead of the customary 0.6 fm. The measured capture-fission cross sections agree moderately well with model calculations using the dinuclear system (DNS) model. If we use this model to predict fusion barrier heights for these reactions, we find the predicted fusion hindrance, as represented by the extra push energy, is greater for the more neutron-rich system, lessening the advantage of the lower interaction barriers with neutron rich projectiles.

  8. 132Sn+96Zr reaction: A study of fusion enhancement/hindrance

    NASA Astrophysics Data System (ADS)

    Vinodkumar, A. M.; Loveland, W.; Neeway, J. J.; Prisbrey, L.; Sprunger, P. H.; Peterson, D.; Liang, J. F.; Shapira, D.; Gross, C. J.; Varner, R. L.; Kolata, J. J.; Roberts, A.; Caraley, A. L.

    2008-11-01

    Capture-fission cross sections were measured for the collision of the massive nucleus Sn132 with Zr96 at center-of-mass energies ranging from 192.8 to 249.6 MeV in an attempt to study fusion enhancement and hindrance in this reaction involving very neutron-rich nuclei. Coincident fission fragments were detected using silicon detectors. Using angle and energy conditions, deep inelastic scattering events were separated from fission events. Coupled-channels calculations can describe the data if the surface diffuseness parameter, a, is allowed to be 1.10 fm instead of the customary 0.6 fm. The measured capture-fission cross sections agree moderately well with model calculations using the dinuclear system model. If we use this model to predict fusion barrier heights for these reactions, we find the predicted fusion hindrance, as represented by the extra push energy, is greater for the more neutron-rich system, lessening the advantage of the lower interaction barriers with neutron-rich projectiles.

  9. Synthesis, structural characterization, and electrochemical properties of dinuclear Ni/Mn model complexes for the active site of [NiFe]-hydrogenases.

    PubMed

    Song, Li-Cheng; Li, Jia-Peng; Xie, Zhao-Jun; Song, Hai-Bin

    2013-10-07

    Four new dinuclear Ni/Mn model complexes RN(PPh2)2Ni(μ-SEt)2(μ-Cl)Mn(CO)3 (7, R = p-MeC6H4CH2; 8, R = EtO2CCH2) and RN(PPh2)2Ni(μ-SEt)2(μ-Br)Mn(CO)3 (9, R = p-MeC6H4CH2; 10, R = EtO2CCH2) have been prepared via the four separated step-reactions involving six new precursors RN(PPh2)2 (1, R = p-MeC6H4CH2; 2, R = EtO2CCH2), RN(PPh2)2NiCl2 (3, R = p-MeC6H4CH2; 4, R = EtO2CCH2), and RN(PPh2)2Ni(SEt)2 (5, R = p-MeC6H4CH2; 6, R = EtO2CCH2). The Et3N-assisted aminolysis of Ph2PCl with p-MeC6H4CH2NH2 or EtO2CCH2NH2·HCl in CH2Cl2 gave the azadiphosphine ligands 1 and 2 in 38% and 53% yields, whereas the coordination reaction of 1 or 2 with NiCl2·6H2O in CH2Cl2/MeOH afforded the mononuclear Ni dichloride complexes 3 and 4 in 59% and 78% yields, respectively. While thiolysis of 3 or 4 with EtSH under the assistance of Et3N in CH2Cl2 produced the mononuclear Ni dithiolate complexes 5 and 6 in 64% and 68% yields, further treatment of 5 and 6 with Mn(CO)5Cl or Mn(CO)5Br resulted in formation of the dinuclear Ni/Mn model complexes 7-10 in 31-73% yields. All the new compounds 1-10 have been structurally characterized, while model complexes 7 and 9 have been found to be catalysts for HOAc proton reduction to hydrogen under CV conditions.

  10. Dynamics of complete and incomplete fusion in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Bao, Xiao Jun; Guo, Shu Qing; Zhang, Hong Fei; Li, Jun Qing

    2018-02-01

    In order to study the influence of the strong Coulomb and nuclear interactions on the dynamics of complete and incomplete fusion, we construct a new four-variable master equation (ME) so that the deformations as well as the nucleon transfer are viewed as consistently governed by MEs in the potential energy surface of the system. The calculated yields of quasifission fragments and evaporation residue cross section (ERCS) are in agreement with experimental data of hot fusion reactions. Comparing cross sections by theoretical results and experimental data, we find the improved dinuclear sysytem model also describes the transfer cross sections reasonably. The production cross sections of new neutron-rich isotopes are estimated by the multinucleon transfer reactions.

  11. Oxygen atom transfer reactions of iridium and osmium complexes: theoretical study of characteristic features and significantly large differences between these two complexes.

    PubMed

    Ishikawa, Atsushi; Nakao, Yoshihide; Sato, Hirofumi; Sakaki, Shigeyoshi

    2009-09-07

    Oxygen atom transfer reaction between ML(3)=O and ML(3) (L = 2,4,6-trimethylphenyl (Mes) for M = Ir and L = 2,6-diisopropylphenylimide (NAr) for M = Os) was theoretically investigated by DFT method. The optimized geometry of (Mes)(3)Ir-O-Ir(Mes)(3) agrees well with the experimental one, although those of (CH(3))(3)Ir-O-Ir(CH(3))(3) and Ph(3)Ir-O-IrPh(3) are much different from the experimental one of the Mes complex. These results indicate that the bulky ligand plays important roles to determine geometry of the mu-oxo dinuclear Ir complex. Theoretical study of the real systems presents clear pictures of these oxygen atom transfer reactions, as follows: In the Ir reaction system, (i) the mu-oxo bridged dinuclear complex is more stable than the infinite separation system in potential energy surface, indicating this is incomplete oxygen atom transfer reaction which does not occur at very low temperature, (ii) unsymmetrical transition state is newly found, in which one Ir-O distance is longer than the other one, (iii) unsymmetrical local minimum is also newly found between the transition state and the infinite separation system, and (iv) activation barrier (E(a)) is very small. In the Os reaction system, (v) the transition state is symmetrical, while no intermediate is observed unlike the Ir reaction system, and (vi) E(a) is very large. These results are consistent with the experimental results that the reaction rapidly occurs in the Ir system but very slowly in the Os system, and that the mu-oxo bridged dinuclear intermediate is detected in the Ir system but not in the Os system. To elucidate the reasons of these differences between Ir and Os systems, the E(a) value is decomposed into the nuclear and electronic factors. The former is the energy necessary to distort ML(3) and ML(3)=O moieties from their equilibrium geometries to those in the transition state. The latter depends on donor-acceptor interaction between ML(3)=O and ML(3). The nuclear factor is much larger in the Os system than in the Ir system and it contributes to about 70% of the difference in E(a). The energy gap between the donor orbital of ML(3) and the acceptor orbital of ML(3)=O is much larger in the Os system than in the Ir system, which also contributes to the lower E(a) value of the Ir system than that of the Os system.

  12. Ligand reprogramming in dinuclear helicate complexes: a consequence of allosteric or electrostatic effects?

    PubMed

    Jeffery, John C; Rice, Craig R; Harding, Lindsay P; Baylies, Christian J; Riis-Johannessen, Thomas

    2007-01-01

    The ditopic ligand 6,6'-bis(4-methylthiazol-2-yl)-3,3'-([18]crown-6)-2,2'-bipyridine (L(1)) contains both a potentially tetradentate pyridyl-thiazole (py-tz) N-donor chain and an additional "external" crown ether binding site which spans the central 2,2'-bipyridine unit. In polar solvents (MeCN, MeNO(2)) this ligand forms complexes with Zn(II), Cd(II), Hg(II) and Cu(I) ions via coordination of the N donors to the metal ion. Reaction with both Hg(II) and Cu(I) ions results in the self-assembly of dinuclear double-stranded helicate complexes. The ligands are partitioned by rotation about the central py--py bond, such that each can coordinate to both metals as a bis-bidentate donor ligand. With Zn(II) ions a single-stranded mononuclear species is formed in which one ligand coordinates the metal ion in a planar tetradentate fashion. Reaction with Cd(II) ions gives rise to an equilibrium between both the dinuclear double-stranded helicate and the mononuclear species. These complexes can further coordinate s-block metal cations via the remote crown ether O-donor domains; a consequence of which are some remarkable changes in the binding modes of the N-donor domains. Reaction of the Hg(II)- or Cd(II)-containing helicate with either Ba(2+) or Sr(2+) ions effectively reprogrammes the ligand to form only the single-stranded heterobinuclear complexes [MM'(L(1))](4+) (M=Hg(II), Cd(II); M'=Ba(2+), Sr(2+)), where the transition and s-block cations reside in the N- and O-donor sites, respectively. In contrast, the same ions have only a minor structural impact on the Zn(II) species, which already exists as a single-stranded mononuclear complex. Similar reactions with the Cd(II) system result in a shift in equilibrium towards the single-stranded species, the extent of which depends on the size and charge of the s-block cation in question. Reaction of the dicopper(I) double-stranded helicate with Ba(2+) shows that the dinuclear structure still remains intact but the pitch length is significantly increased.

  13. Dinuclear rare-earth metal alkyl complexes supported by indolyl ligands in μ-η(2) :η(1) :η(1) hapticities and their high catalytic activity for isoprene 1,4-cis-polymerization.

    PubMed

    Zhang, Guangchao; Wei, Yun; Guo, Liping; Zhu, Xiancui; Wang, Shaowu; Zhou, Shuangliu; Mu, Xiaolong

    2015-02-02

    Two series of new dinuclear rare-earth metal alkyl complexes supported by indolyl ligands in novel μ-η(2) :η(1) :η(1) hapticities are synthesized and characterized. Treatment of [RE(CH2 SiMe3 )3 (thf)2 ] with 1 equivalent of 3-(tBuN=CH)C8 H5 NH (L1 ) in THF gives the dinuclear rare-earth metal alkyl complexes trans-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH(CH2 SiMe3 )}Ind)RE(thf)(CH2 SiMe3 )]2 (Ind=indolyl, RE=Y, Dy, or Yb) in good yields. In the process, the indole unit of L1 is deprotonated by the metal alkyl species and the imino C=N group is transferred to the amido group by alkyl CH2 SiMe3 insertion, affording a new dianionic ligand that bridges two metal alkyl units in μ-η(2) :η(1) :η(1) bonding modes, forming the dinuclear rare-earth metal alkyl complexes. When L1 is reduced to 3-(tBuNHCH2 )C8 H5 NH (L2 ), the reaction of [Yb(CH2 SiMe3 )3 (thf)2 ] with 1 equivalent of L2 in THF, interestingly, generated the trans-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH2 }Ind)Yb(thf)(CH2 SiMe3 )]2 (major) and cis-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH2 }Ind)Yb(thf)(CH2 SiMe3 )]2 (minor) complexes. The catalytic activities of these dinuclear rare-earth metal alkyl complexes for isoprene polymerization were investigated; the yttrium and dysprosium complexes exhibited high catalytic activities and high regio- and stereoselectivities for isoprene 1,4-cis-polymerization. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Gold(I) Complexes of Ferrocenyl Polyphosphines: Aurophilic Gold Chloride Formation and Phosphine-Concerted Shuttling of a Dinuclear [ClAu···AuCl] Fragment.

    PubMed

    Rampazzi, Vincent; Roger, Julien; Amardeil, Régine; Penouilh, Marie-José; Richard, Philippe; Fleurat-Lessard, Paul; Hierso, Jean-Cyrille

    2016-11-07

    A smart steric control of the metallocene backbone in bis- and poly(phosphino)ferrocene ligands favors intramolecular aurophilic interactions between [AuCl] fragments in polynuclear gold(I) complexes. We synthesized and characterized by multinuclear NMR and X-ray diffraction analysis mono-, di-, and polynuclear gold complexes of constrained ferrocenyl diphosphines, which bear either bulky tert-butyl groups or more flexible siloxane substituents at the cyclopentadienyl rings. The complexes meso-1,1'-bis(diphenylphosphino)-3,3'-di-tert-butylferrocene (4-m), rac-1,1'-bis[bis(5-methyl-2-furyl)phosphino]-3,3'-di-tert-butylferrocene (5-r), and rac-1,1'-bis(diphenylphosphino)-3,3'-bis[(tri-iso-propylsilyl)oxy]ferrocene (6-r) were used to form dinuclear gold complexes. Coordination of tert-butylated ferrocenyl phosphines generated aurophilic interactions in the corresponding dinuclear gold complexes, contrary to gold(I) complexes reported with 1,1'-bis(diphenylphosphino)ferrocene. The structurally related tetraphosphine 1,1',2,2'-tetrakis(diphenylphosphino)-4,4'-di-tert-butylferrocene (11) also gave access to mononuclear, dinuclear, and the original trinuclear gold chloride aurophilic complexes in which 14e - to 16e - gold centers coexist. In such complexes, nonbonded ("through-space") 31 P- 31 P' nuclear spin couplings were evidenced by high-resolution NMR. In these interactions nuclear spin information is transferred between the lone-pair electron of an uncoordinated phosphorus P and a phosphorus P' that is involved in a σ covalent bond Au-P'. The dinuclear aurophilic complex displayed a concerted shuttling of its [ClAu···AuCl] fragment between the four phosphorus donors of the tetraphosphine ligand. Thus, an aurophilic Au···Au bond, which is assumed to be a weak energy interaction, can be conserved within a dynamic shuttling process at high temperature involving an intramolecular coordination-decoordination process of digold(I) at phosphorus atoms.

  15. Exchange interactions in a dinuclear manganese (II) complex with cyanopyridine-N-oxide bridging ligands

    NASA Astrophysics Data System (ADS)

    Markosyan, A. S.; Gaidukova, I. Yu.; Ruchkin, A. V.; Anokhin, A. O.; Irkhin, V. Yu.; Ryazanov, M. V.; Kuz'mina, N. P.; Nikiforov, V. N.

    2014-01-01

    The magnetic properties of dinuclear manganese(II) complex [Mn(hfa)2cpo]2 (where hfa is hexafluoroacetylacetonate anion and cpo is 4-cyanopyridine-N-oxide) are presented. The non-monotonous dependence of magnetic susceptibility is explained in terms of the hierarchy of exchange parameters by using exact diagonalization. The thermodynamic behavior of pure cpo and [Mn(hfa)2(cpo)]2 is simulated numerically by an extrapolation to spin S=5/2. The Mn-Mn exchange integral is evaluated.

  16. Synthesis and SMM behaviour of trinuclear versus dinuclear 3d-5f uranyl(v)-cobalt(ii) cation-cation complexes.

    PubMed

    Chatelain, Lucile; Tuna, Floriana; Pécaut, Jacques; Mazzanti, Marinella

    2017-05-02

    Trinuclear versus dinuclear heterodimetallic U V O 2 + Co 2+ complexes were selectively assembled via a cation-cation interaction by tuning the ligand. The trimeric complex 2, with a linear [Co-O[double bond, length as m-dash]U[double bond, length as m-dash]O-Co] core, exhibits magnetic exchange and slow relaxation with a reversal barrier of 30.5 ± 0.9 K providing the first example of a U-Co exchange-coupled SMM.

  17. Catalytic four-electron reduction of O2 via rate-determining proton-coupled electron transfer to a dinuclear cobalt-μ-1,2-peroxo complex.

    PubMed

    Fukuzumi, Shunichi; Mandal, Sukanta; Mase, Kentaro; Ohkubo, Kei; Park, Hyejin; Benet-Buchholz, Jordi; Nam, Wonwoo; Llobet, Antoni

    2012-06-20

    Four-electron reduction of O(2) by octamethylferrocene (Me(8)Fc) occurs efficiently with a dinuclear cobalt-μ-1,2-peroxo complex, 1, in the presence of trifluoroacetic acid in acetonitrile. Kinetic investigations of the overall catalytic reaction and each step in the catalytic cycle showed that proton-coupled electron transfer from Me(8)Fc to 1 is the rate-determining step in the catalytic cycle.

  18. Dinuclear Zinc-Prophenol-Catalyzed Enantioselective α-Hydroxyacetate Aldol Reaction with Activated Ester Equivalents

    PubMed Central

    Trost, Barry M.; Michaelis, David J.; Truica, Mihai I.

    2013-01-01

    An enantioselective α-hydroxyacetate aldol reaction that employs N-acetyl pyrroles as activated ester equivalents and generates syn 1,2-diols in good yield and diastereoselectivity is reported. This dinuclear zinc Prophenol-catalyzed transformation proceeds with high enantioselectivity with a wide variety of substrates including aryl, alyl, and alkenyl aldehydes. The resulting α,β-dihydroxy activated esters are versatile intermediates for the synthesis of a variety of carboxylic acid derivatives including amides, esters, and unsymmetrical ketones. PMID:23947595

  19. Reactivity of uranium(iii) with H2E (E = S, Se, Te): synthesis of a series of mononuclear and dinuclear uranium(iv) hydrochalcogenido complexes.

    PubMed

    Franke, Sebastian M; Rosenzweig, Michael W; Heinemann, Frank W; Meyer, Karsten

    2015-01-01

    We report the syntheses, electronic properties, and molecular structures of a series of mono- and dinuclear uranium(iv) hydrochalcogenido complexes supported by the sterically demanding but very flexible, single N-anchored tris(aryloxide) ligand ( Ad ArO) 3 N) 3- . The mononuclear complexes [(( Ad ArO) 3 N)U(DME)(EH)] (E = S, Se, Te) can be obtained from the reaction of the uranium(iii) starting material [(( Ad ArO) 3 N)U III (DME)] in DME via reduction of H 2 E and the elimination of 0.5 equivalents of H 2 . The dinuclear complexes [{(( Ad ArO) 3 N)U} 2 (μ-EH) 2 ] can be obtained by dissolving their mononuclear counterparts in non-coordinating solvents such as benzene. In order to facilitate the work with the highly toxic gases, we created concentrated THF solutions that can be handled using simple glovebox techniques and can be stored at -35 °C for several weeks.

  20. Glyco-functionalized dinuclear rhenium(i) complexes for cell imaging.

    PubMed

    Palmioli, Alessandro; Aliprandi, Alessandro; Septiadi, Dedy; Mauro, Matteo; Bernardi, Anna; De Cola, Luisa; Panigati, Monica

    2017-02-21

    The design, synthesis and photophysical characterization of four new luminescent glycosylated luminophores based on dinuclear rhenium complexes, namely Glyco-Re, are described. The derivatives have the general formula [Re 2 (μ-Cl) 2 (CO) 6 (μ-pydz-R)] (R-pydz = functionalized 1,2-pyridazine), where a sugar residue (R) is covalently bound to the pyridazine ligand in the β position. Different synthetic pathways have been investigated including the so-called neo-glycorandomization procedure, affording stereoselectively glyco-conjugates containing glucose and maltose in a β anomeric configuration. A multivalent dinuclear rhenium glycodendron bearing three glucose units is also synthesized. All the Glyco-Re conjugates are comprehensively characterized and their photophysical properties and cellular internalization experiments on human cervical adenocarcinoma (HeLa) cells are reported. The results show that such Glyco-Re complexes display interesting bio-imaging properties, i.e. high cell permeability, organelle selectivity, low cytotoxicity and fast internalization. These findings make the presented Glyco-Re derivatives efficient phosphorescent probes suitable for cell imaging application.

  1. Unusual (mu-aqua)bis(mu-carboxylate) bridge in homometallic M(II) (M=Mn, Co and Ni) two-dimensional compounds based on the 1,2,3,4-butanetetracarboxylic acid: synthesis, structure, and magnetic properties.

    PubMed

    Cañadillas-Delgado, Laura; Fabelo, Oscar; Pásan, Jorge; Delgado, Fernando S; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2007-09-03

    The first coordination compounds of 1,2,3,4-butanetetracarboxylate anion (butca4-) of the formula [M2(butca)(H2O)5]n.2nH2O [M=Mn(II) (1), Co(II) (2), and Ni(II) (3)] were prepared and their X-ray crystal structures and magnetic properties investigated. The three complexes have a very similar two-dimensional structure which consists of (4,4) networks, 1 and 2 being isostructural. The tetracarboxylate ligand acts as a 4-fold connector leading to two-dimensional (4,4) networks of metal atoms, this topology being possible because of its planar conformation. The nodes of these networks are formed by dinuclear motifs which exhibit the unusual (mu-aqua)bis(mu-carboxylate) bridging unit which is analogous to that observed in some molecules of biological interest. The variable-temperature magnetic susceptibility measurements of 1-3 show that 1 and 2 are antiferromagnetically coupled systems whereas 3 exhibits a ferromagnetic behavior. The analysis of the magnetic data of 1-3 through a simple dinuclear model allowed the determination of the values of the magnetic coupling (J) -3.6 (1), -1.2 (2), and +1.47 cm(-1) (3) with the Hamiltonian being defined as H=-JSA.SB. The countercomplementarity between the two bridges (aqua and syn-syn carboxylate) accounts for the trend exhibited by the values of the magnetic coupling in this family.

  2. Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, M.; Wang, Wei; Nie, Zimin

    2013-11-01

    The Vanadium (V) cation structures in mixed acid based electrolyte solution were analysed by density functional theory (DFT) based computational modelling and 51V and 35Cl Nuclear Magnetic Resonance (NMR) spectroscopy. The Vanadium (V) cation exists as di-nuclear [V2O3Cl2.6H2O]2+ compound at higher vanadium concentrations (≥1.75M). In particular, at high temperatures (>295K) this di-nuclear compound undergoes ligand exchange process with nearby solvent chlorine molecule and forms chlorine bonded [V2O3Cl2.6H2O]2+ compound. This chlorine bonded [V2O3Cl2.6H2O]2+ compound might be resistant to the de-protonation reaction which is the initial step in the precipitation reaction in Vanadium based electrolyte solutions. The combined theoretical and experimental approachmore » reveals that formation of chlorine bonded [V2O3Cl2.6H2O]2+ compound might be central to the observed higher thermal stability of mixed acid based Vanadium (V) electrolyte solutions.« less

  3. PARACEST Properties of a Dinuclear Neodymium(III) Complex Bound to DNA or Carbonate

    PubMed Central

    Nwe, Kido; Andolina, Christopher M.; Huang, Ching-Hui; Morrow, Janet R.

    2009-01-01

    A dinuclear Nd(III) macrocyclic complex of 1 (1,4-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-p-xylene) and mononuclear complexes of 1,4,7-tris-1,4,7,10-tetraazacyclododecane 2, and 1,4,7-tris[(N-N-diethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane, 3, are prepared. Complexes of 1 and 2 give rise to a PARACEST (paramagnetic chemical exchange saturation transfer) peak from exchangeable amide protons that resonate approximately 12 ppm downfield from the bulk water proton resonance. The dinuclear Nd(III) complex is promising as a PARACEST contrast agent for MRI applications because it has an optimal pH of 7.5 and the rate constant for amide proton exchange (2700 s−1) is nearly as large as it can be within slow exchange conditions with bulk water. Dinuclear Ln2(1) complexes (Ln(III) = Nd(III), Eu(III)) bind tightly to anionic ligands including carbonate, diethylphosphate and DNA. The CEST amide peak of Nd2(1) is enhanced by certain DNA sequences that contain hairpin loops, but decreases in the presence of diethyl phosphate or carbonate. Direct excitation luminescence studies of Eu2(1) show that double-stranded and hairpin loop DNA sequences displace one water ligand on each Eu(III) center. DNA displaces carbonate ion despite the low dissociation constant for the Eu2(1) carbonate complex (Kd = 15 µM). Enhancement of the CEST effect of a lanthanide complex by binding to DNA is a promising step toward the preparation of PARACEST agents containing DNA scaffolds. PMID:19555071

  4. PARACEST properties of a dinuclear neodymium(III) complex bound to DNA or carbonate.

    PubMed

    Nwe, Kido; Andolina, Christopher M; Huang, Ching-Hui; Morrow, Janet R

    2009-07-01

    A dinuclear Nd(III) macrocyclic complex of 1 (1,4-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-p-xylene) and mononuclear complexes of 1,4,7-tris-1,4,7,10-tetraazacyclododecane, 2, and 1,4,7-tris[(N-N-diethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane, 3, are prepared. Complexes of 1 and 2 give rise to a PARACEST (paramagnetic chemical exchange saturation transfer) peak from exchangeable amide protons that resonate approximately 12 ppm downfield from the bulk water proton resonance. The dinuclear Nd(III) complex is promising as a PARACEST contrast agent for MRI applications, because it has an optimal pH of 7.5 and the rate constant for amide proton exchange (2700 s(-1)) is nearly as large as it can be within slow exchange conditions with bulk water. Dinuclear Ln(2)(1) complexes (Ln(III) = Nd(III), Eu(III)) bind tightly to anionic ligands including carbonate, diethyl phosphate, and DNA. The CEST amide peak of Nd(2)(1) is enhanced by certain DNA sequences that contain hairpin loops, but decreases in the presence of diethyl phosphate or carbonate. Direct excitation luminescence studies of Eu(2)(1) show that double-stranded and hairpin-loop DNA sequences displace one water ligand on each Eu(III) center. DNA displaces carbonate ion despite the low dissociation constant for the Eu(2)(1) carbonate complex (K(d) = 15 microM). Enhancement of the CEST effect of a lanthanide complex by binding to DNA is a promising step toward the preparation of PARACEST agents containing DNA scaffolds.

  5. Engineered Mononuclear Variants in Bacillus cereus Metallo-β-lactamase BcII Are Inactive†

    PubMed Central

    Abriata, Luciano A.; González, Lisandro J.; Llarrull, Leticia I.; Tomatis, Pablo E.; Myers, William K.; Costello, Alison L.; Tierney, David L.; Vila, Alejandro J.

    2008-01-01

    Metallo-β-lactamases (MβLs) are zinc enzymes able to hydrolyze almost all β-lactam antibiotics, rendering them inactive, at the same time endowing bacteria high levels of resistance. The design of inhibitors active against all classes of MβLs has been hampered by their structural diversity and by the heterogeneity in metal content in enzymes from different sources. BcII is the metallo-β-lactamase from Bacillus cereus, which is found in both the mononuclear and dinuclear forms. Despite extensive studies, there is still controversy about the nature of the active BcII species. Here we have designed two mutant enzymes in which each one of the metal binding sites was selectively removed. Both mutants were almost inactive, despite preserving most of the structural features of each metal site. These results reveal that neither site isolated in the MβL scaffold is sufficient to render a fully active enzyme. This suggests that only the dinuclear species is active or that the mononuclear variants can be active only if aided by other residues that would be metal ligands in the dinuclear species. PMID:18652482

  6. Production cross sections of neutron-rich No-263261 isotopes

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Li, Cheng; Zhang, Gen; Zhu, Long; Liu, Zhong; Zhang, Feng-Shou

    2017-05-01

    The fusion excitation functions of No-263249 are studied by using various reaction systems based on the dinuclear system model. The neutron-rich radioactive beam 22O is used to produce neutron-rich nobelium isotopes, and the new neutron-rich isotopes No-263261 are synthesized by 242Pu(22O,3 n )261No , 244Pu(22O,4 n )262No , and 244Pu(22O,3 n )263No reactions, respectively. The corresponding maximum evaporation residue cross sections are 0.628, 4.649, and 1.638 μ b , respectively. The effects of the three processes (capture, fusion, and survival) in the complete fusion reaction are also analyzed. From investigation, a neutron-rich radioactive beam as the projectile and neutron-rich actinide as the target could be a new selection of the projectile-target combination to produce a neutron-rich heavy nuclide.

  7. Calculation of Formation and Decay of Heavy Compound Nuclei

    NASA Astrophysics Data System (ADS)

    Cherepanov, E. A.

    2001-04-01

    The report describes a method for calculating fusion and decay probabilities in reactions leading to the production of transfermium elements. The competition between quasi-fission and fussion is described on the basis of the Dinuclear System Concept (DNSC). The both competition between fusion and quasi-fission and statistical decay of heavy highly fissionable excited compound nuclei is described in an approach based on the Monte-Carlo method.

  8. Highly selective and sensitive macrocycle-based dinuclear foldamer for fluorometric and colorimetric sensing of citrate in water.

    PubMed

    Rhaman, Md Mhahabubur; Hasan, Mohammad H; Alamgir, Azmain; Xu, Lihua; Powell, Douglas R; Wong, Bryan M; Tandon, Ritesh; Hossain, Md Alamgir

    2018-01-10

    The selective detection of citrate anions is essential for various biological functions in living systems. A quantitative assessment of citrate is required for the diagnosis of various diseases in the human body; however, it is extremely challenging to develop efficient fluorescence and color-detecting molecular probes for sensing citrate in water. Herein, we report a macrocycle-based dinuclear foldamer (1) assembled with eosin Y (EY) that has been studied for anion binding by fluorescence and colorimetric techniques in water at neutral pH. Results from the fluorescence titrations reveal that the 1·EY ensemble strongly binds citrate anions, showing remarkable selectivity over a wide range of inorganic and carboxylate anions. The addition of citrate anions to the 1·EY adduct led to a large fluorescence enhancement, displaying a detectable color change under both visible and UV light in water up to 2 μmol. The biocompatibility of 1·EY as an intracellular carrier in a biological system was evaluated on primary human foreskin fibroblast (HF) cells, showing an excellent cell viability. The strong binding properties of the ensemble allow it to be used as a highly sensitive, detective probe for biologically relevant citrate anions in various applications.

  9. Chemotherapeutic response to cisplatin-like drugs in human breast cancer cells probed by vibrational microspectroscopy.

    PubMed

    Batista de Carvalho, A L M; Pilling, M; Gardner, P; Doherty, J; Cinque, G; Wehbe, K; Kelley, C; Batista de Carvalho, L A E; Marques, M P M

    2016-06-23

    Studies of drug-cell interactions in cancer model systems are essential in the preclinical stage of rational drug design, which relies on a thorough understanding of the mechanisms underlying cytotoxic activity and biological effects, at a molecular level. This study aimed at applying complementary vibrational spectroscopy methods to evaluate the cellular impact of two Pt(ii) and Pd(ii) dinuclear chelates with spermine (Pt2Spm and Pd2Spm), using cisplatin (cis-Pt(NH3)2Cl2) as a reference compound. Their effects on cellular metabolism were monitored in a human triple-negative metastatic breast cancer cell line (MDA-MB-231) by Raman and synchrotron-radiation infrared microspectroscopies, for different drug concentrations (2-8 μM) at 48 h exposure. Multivariate data analysis was applied (unsupervised PCA), unveiling drug- and concentration-dependent effects: apart from discrimination between control and drug-treated cells, a clear separation was obtained for the different agents studied - mononuclear vs. polynuclear, and Pt(ii) vs. Pd(ii). Spectral biomarkers of drug action were identified, as well as the cellular response to the chemotherapeutic insult. The main effect of the tested compounds was found to be on DNA, lipids and proteins, the Pd(ii) agent having a more significant impact on proteins while its Pt(ii) homologue affected the cellular lipid content at lower concentrations, which suggests the occurrence of distinct and unconventional pathways of cytotoxicity for these dinuclear polyamine complexes. Raman and FTIR microspectroscopies were confirmed as powerful non-invasive techniques to obtain unique spectral signatures of the biochemical impact and physiological reaction of cells to anticancer agents.

  10. Reactivity of dinuclear copper(II) complexes towards melanoma cells: Correlation with its stability, tyrosinase mimicking and nuclease activity.

    PubMed

    Nunes, Cléia Justino; Borges, Beatriz Essenfelder; Nakao, Lia Sumie; Peyroux, Eugénie; Hardré, Renaud; Faure, Bruno; Réglier, Marius; Giorgi, Michel; Prieto, Marcela Bach; Oliveira, Carla Columbano; Da Costa Ferreira, Ana M

    2015-08-01

    In this work, the influence of two new dinuclear copper(II) complexes in the viability of melanoma cells (B16F10 and TM1MNG3) was investigated, with the aim of verifying possible correlations between their cytotoxicity and their structure. One of the complexes had a polydentate dinucleating amine-imine ligand (complex 2), and the other a tridentate imine and a diamine-bridging ligand (complex 4). The analogous mononuclear copper(II) species (complexes 1 and 3, respectively) were also prepared for comparative studies. Crystal structure determination of complex 2 indicated a square-based pyramidal geometry around each copper, coordinated to three N atoms from the ligand and the remaining sites being occupied by either solvent molecules or counter-ions. Complex 4 has a tetragonal geometry. Interactions of these complexes with human albumin protein (HSA) allowed an estimation of their relative stabilities. Complementary studies of their reactivity towards DNA indicated that all of them are able of causing significant oxidative damage, with single and double strand cleavages, in the presence of hydrogen peroxide. However, nuclease activity of the dinuclear species was very similar and much higher than that of the corresponding mononuclear compounds. Although complex 2, with a more flexible structure, exhibits a much higher tyrosinase activity than complex 4, having a more rigid environment around the metal ion, both complexes showed comparable cytotoxicity towards melanoma cells. Corresponding mononuclear complexes showed to be remarkably less reactive as tyrosinase mimics as well as cytotoxic agents. Moreover, the dinuclear complexes showed higher cytotoxicity towards more melanogenic cells. The obtained results indicated that the structure of these species is decisive for its activity towards the malignant tumor cells tested. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Theoretical study on production cross sections of exotic actinide nuclei in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long

    2017-12-01

    Within the dinuclear system (DNS) model, the multinucleon transfer reactions 129,136Xe + 248Cm, 112Sn + 238U, and 144Xe + 248Cm are investigated. The production cross sections of primary fragments are calculated with the DNS model. By using a statistical model, we investigate the influence of charged particle evaporation channels on production cross sections of exotic nuclei. It is found that for excited neutron-deficient nuclei the charged particle evaporation competes with neutron emission and plays an important role in the cooling process. The production cross sections of several exotic actinide nuclei are predicted in the reactions 112Sn + 238U and 136,144Xe + 248Cm. Considering the beam intensities, the collisions of 136,144Xe projectiles with a 248Cm target for producing neutron-rich nuclei with Z=92-96 are investigated. Supported by National Natural Science Foundation of China (11605296) and Natural Science Foundation of Guangdong Province, China (2016A030310208)

  12. Condensed, solution and gas phase behaviour of mono- and dinuclear 2,6-diacetylpyridine (dap) hydrazone copper complexes probed by X-ray, mass spectrometry and theoretical calculations.

    PubMed

    Neto, Brenno A D; Viana, Barbara F L; Rodrigues, Thyago S; Lalli, Priscila M; Eberlin, Marcos N; da Silva, Wender A; de Oliveira, Heibbe C B; Gatto, Claudia C

    2013-08-28

    We describe the synthesis of novel mononuclear and dinuclear copper complexes and an investigation of their behaviour in solution using mass spectrometry (ESI-MS and ESI-MS/MS) and in the solid state using X-ray crystallography. The complexes were synthesized from two widely used diacetylpryridine (dap) ligands, i.e. 2,6-diacetylpyridinebis(benzoic acid hydrazone) and 2,6-diacetylpyridinebis(2-aminobenzoic acid hydrazone). Theoretical calculations (DFT) were used to predict the complex geometries of these new structures, their equilibrium in solution and energies associated with the transformations.

  13. Rational Design of a Lanthanide-Based Complex Featuring Different Single-Molecule Magnets.

    PubMed

    Pointillart, F; Guizouarn, T; Lefeuvre, B; Golhen, S; Cador, O; Ouahab, L

    2015-11-16

    The rational synthesis of the 2-{1-methylpyridine-N-oxide-4,5-[4,5-bis(propylthio)tetrathiafulvalenyl]-1H-benzimidazol-2-yl}pyridine ligand (L) is described. It led to the tetranuclear complex [Dy4(tta)12(L)2] (Dy-Dy2-Dy) after coordination reaction with the precursor Dy(tta)3⋅2 H2O (tta(-) = 2-thenoyltrifluoroacetonate). The X-ray structure of Dy-Dy2-Dy can be described as two terminal mononuclear units bridged by a central antiferromagnetically coupled dinuclear complex. The terminal N2O6 and central O8 environments are described as distorted square antiprisms. The ac magnetism measurements revealed a strong out-of-phase signal of the magnetic susceptibility with two distinct sets of data. The high- and low-frequency components were attributed to the two terminal mononuclear single-molecule magnets (SMMs) and the central dinuclear SMM, respectively. A magnetic hysteresis loop was detected at very low temperature. From both structural and magnetic points of view, the tetranuclear SMM Dy-Dy2-Dy is a self-assembly of two known mononuclear SMMs bridged by a known dinuclear SMM. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy.

    PubMed

    Hayes, Dugan; Kohler, Lars; Hadt, Ryan G; Zhang, Xiaoyi; Liu, Cunming; Mulfort, Karen L; Chen, Lin X

    2018-01-28

    The kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(i) bis(phenanthroline)/ruthenium(ii) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(i)-Ru(ii) analogs of the homodinuclear Cu(i)-Cu(i) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These results suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations.

  15. Aqueous V(V)-peroxo-amino acid chemistry. Synthesis, structural and spectroscopic characterization of unusual ternary dinuclear tetraperoxo vanadium(V)-glycine complexes.

    PubMed

    Gabriel, C; Kaliva, M; Venetis, J; Baran, P; Rodriguez-Escudero, I; Voyiatzis, G; Zervou, M; Salifoglou, A

    2009-01-19

    Vanadium participation in cellular events entails in-depth comprehension of its soluble and bioavailable forms bearing physiological ligands in aqueous distributions of binary and ternary systems. Poised to understand the ternary V(V)-H(2)O(2)-amino acid interactions relevant to that metal ion's biological role, we have launched synthetic efforts involving the physiological ligands glycine and H(2)O(2). In a pH-specific fashion, V(2)O(5), glycine, and H(2)O(2) reacted and afforded the unusual complexes (H(3)O)(2)[V(2)(O)(2)(mu(2):eta(2):eta(1)-O(2))(2)(eta(2)-O(2))(2)(C(2)H(5)NO(2))] x 5/4 H(2)O (1) and K(2)[V(2)(O)(2)(mu(2):eta(2):eta(1)-O(2))(2)(eta(2)-O(2))(2)(C(2)H(5)NO(2))] x H(2)O (2). 1 crystallizes in the triclinic space group P1, with a = 7.805(4) A, b = 8.134(5) A, c = 12.010(7) A, alpha = 72.298(9) degrees, beta = 72.991(9) degrees, gamma = 64.111(9) degrees, V = 641.9(6) A(3), and Z = 2. 2 crystallizes in the triclinic space group P1, with a = 7.6766(9) A, b = 7.9534(9) A, c = 11.7494(13) A, alpha = 71.768(2) degrees, beta = 73.233(2) degrees, gamma = 65.660(2) degrees, V = 610.15(12) A(3), and Z = 2. Both complexes 1 and 2 were characterized by UV/visible, LC-MS, FT-IR, Raman, NMR spectroscopy, cyclic voltammetry, and X-ray crystallography. The structures of 1 and 2 reveal the presence of unusual ternary dinuclear vanadium-tetraperoxo-glycine complexes containing [(V(V)=O)(O(2))(2)](-) units interacting through long V-O bonds and an effective glycinate bridge. The latter ligand is present in the dianionic assembly as a bidentate moiety spanning both V(V) centers in a zwitterionic form. The collective physicochemical properties of the two ternary species 1 and 2 project the chemical role of the low molecular mass biosubstrate glycine in binding V(V)-diperoxo units, thereby stabilizing a dinuclear V(V)-tetraperoxo dianion. Structural comparisons of the anions in 1 and 2 with other known dinuclear V(V)-tetraperoxo binary anionic species provide insight into the chemical reactivity of V(V)-diperoxo species in key cellular events such as insulin mimesis and antitumorigenicity, potentially modulated by the presence of glycinate and hydrogen peroxide.

  16. Heterobimetallic dinuclear lanthanide alkoxide complexes as acid-base difunctional catalysts for transesterification.

    PubMed

    Zeng, Ruijie; Sheng, Hongting; Zhang, Yongcang; Feng, Yan; Chen, Zhi; Wang, Junfeng; Chen, Man; Zhu, Manzhou; Guo, Qingxiang

    2014-10-03

    A practical lanthanide(III)-catalyzed transesterification of carboxylic esters, weakly reactive carbonates, and much less-reactive ethyl silicate with primary and secondary alcohols was developed. Heterobimetallic dinuclear lanthanide alkoxide complexes [Ln2Na8{(OCH2CH2NMe2)}12(OH)2] (Ln = Nd (I), Sm (II), and Yb (III)) were used as highly active catalysts for this reaction. The mild reaction conditions enabled the transesterification of various substrates to proceed in good to high yield. Efficient activation of transesterification may be endowed by the above complexes as cooperative acid-base difunctional catalysts, which is proposed to be responsible for the higher reactivity in comparison with simple acid/base catalysts.

  17. Examination of evidence for collinear cluster tri-partition

    NASA Astrophysics Data System (ADS)

    Pyatkov, Yu. V.; Kamanin, D. V.; Alexandrov, A. A.; Alexandrova, I. A.; Goryainova, Z. I.; Malaza, V.; Mkaza, N.; Kuznetsova, E. A.; Strekalovsky, A. O.; Strekalovsky, O. V.; Zhuchko, V. E.

    2017-12-01

    Background: In a series of experiments at different time-of-flight spectrometers of heavy ions we have observed manifestations of a new at least ternary decay channel of low excited heavy nuclei. Due to specific features of the effect, it was called collinear cluster tri-partition (CCT). The obtained experimental results have initiated a number of theoretical articles dedicated to different aspects of the CCT. Special attention was paid to kinematics constraints and stability of collinearity. Purpose: To compare theoretical predictions with our experimental data, only partially published so far. To develop the model of one of the most populated CCT modes that gives rise to the so-called "Ni-bump." Method: The fission events under analysis form regular two-dimensional linear structures in the mass correlation distributions of the fission fragments. The structures were revealed both at a highly statistically reliable level but on the background substrate, and at the low statistics in almost noiseless distribution. The structures are bounded by the known magic fragments and were reproduced at different spectrometers. All this provides high reliability of our experimental findings. The model of the CCT proposed here is based on theoretical results, published recently, and the detailed analysis of all available experimental data. Results: Under our model, the CCT mode giving rise to the Ni bump occurs as a two-stage breakup of the initial three body chain like the nuclear configuration with an elongated central cluster. After the first scission at the touching point with one of the side clusters, the predominantly heavier one, the deformation energy of the central cluster allows the emission of up to four neutrons flying apart isotropically. The heavy side cluster and a dinuclear system, consisting of the light side cluster and the central one, relaxed to a less elongated shape, are accelerated in the mutual Coulomb field. The "tip" of the dinuclear system at the moment of its rupture faces the heavy fragment or the opposite direction due to a single turn of the system around its center of gravity. Conclusions: Additional experimental information regarding the energies of the CCT partners and the proposed model of the process respond to criticisms concerning the kinematic constraints and the stability of collinearity in the CCT. The octupole deformed system formed after the first scission is oriented along the fission axis, and its rupture occurs predominantly after the full acceleration. Noncollinear true ternary fission and far asymmetric binary fission, observed earlier, appear to be the special cases of the decay of the prescission configuration leading to the CCT. Detection of the Ni-7268 fission fragments with a kinetic energy E <25 MeV at the mass-separator Lohengrin is proposed for an independent experimental verification of the CCT.

  18. Synthesis and structure of the first discrete dinuclear cationic aluminum complexes.

    PubMed

    Wang, Xingbao; Dorcet, Vincent; Luo, Yi; Carpentier, Jean-Francois; Kirillov, Evgueni

    2016-08-02

    The reactions of the charge neutral dinuclear aluminum tetraalkyl complexes of di-Schiff base ligands, i.e. [AlMe2{ON}-R-{ON}AlMe2] (1a, R = 1,3-propylene; 1b, R = 1,3-cyclohexylene) with B(C6F5)3 and [H(Et2O)2](+)[H2N{B(C6F5)3}2](-) were investigated. When B(C6F5)3 was used as the cationizing agent (1 or 2 equiv. vs. Al), only monocationic dinuclear complexes [2a,b]+[MeB(C6F5)3]- were obtained. In contrast, with [H(Et2O)2](+)[H2N{B(C6F5)3}2](-), both mixed-dicationic [3a,b·(OEt2)2]2+[MeB(C6F5)3]-[H2N{B(C6F5)3}2]- and homo-dicationic [3a,b·(OEt2)2]2+[H2N{B(C6F5)3}2]-2 ion-pairs were prepared. All cationic complexes were characterized by (1)H, (13)C, (19)F and (11)B NMR spectroscopy, and an X-ray diffraction study was performed for [3b·(OEt2)2]2+[H2N{B(C6F5)3}2]-2.

  19. Dinuclear NHC-palladium complexes containing phosphine spacers: synthesis, X-ray structures and their catalytic activities towards the Hiyama coupling reaction.

    PubMed

    Yang, Jin; Li, Pinhua; Zhang, Yicheng; Wang, Lei

    2014-05-21

    Six dinuclear N-heterocyclic carbene (NHC) palladium complexes, [PdCl2(IMes)]2(μ-dppe) (1), [PdCl2(IPr)]2(μ-dppe) (2), [PdCl2(IMes)]2(μ-dppb) (3), [PdCl2(IPr)]2(μ-dppb) (4), [PdCl2(IMes)]2(μ-dpph) (5), and [PdCl2(IPr)]2(μ-dpph) (6) [IMes = N,N'-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene; IPr = N,N'-bis-(2,6-di(iso-propyl)phenyl)imidazol-2-ylidene; dppe = 1,2-bis(diphenylphosphino)ethane, dppb = 1,4-bis(diphenylphosphino)butane; and dpph = 1,6-bis(diphenylphosphino)hexane], have been synthesized through bridge-cleavage reactions of chloro-bridged dimeric compounds, [Pd(μ-Cl)(Cl)(NHC)]2, with the corresponding diphosphine ligands. The obtained compounds were fully characterized by (1)H NMR, (13)C NMR and (31)P NMR spectroscopy, FT-IR, elemental analysis and single-crystal X-ray crystallography. Moreover, further explorations of the catalytic potential of the dinuclear carbene palladium complexes as catalysts for the Pd-catalyzed transformations have been performed under microwave irradiation conditions, and the complexes exhibited moderate to good catalytic activity in the Hiyama coupling reaction of trimethoxyphenylsilane with aryl chlorides.

  20. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Multinucleon transfer dynamics in heavy-ion collisions near Coulomb-barrier energies

    NASA Astrophysics Data System (ADS)

    Niu, Fei; Chen, Peng-Hui; Guo, Ya-Fei; Ma, Chun-Wang; Feng, Zhao-Qing

    2017-12-01

    Multinucleon transfer reactions near barrier energies have been investigated with a multistep model based on the dinuclear system (DNS) concept, in which the capture of two colliding nuclei, the transfer dynamics, and the deexcitation process of primary fragments are described by an analytical formula, diffusion theory, and a statistical model, respectively. The nucleon transfer takes place after forming the DNS and is coupled to the dissipation of relative motion energy and angular momentum by solving a set of microscopically derived master equations within the potential energy surface. Specific reactions of Ca,4840+124Sn , 40Ca(40Ar,58Ni)+232Th , 40Ca(58Ni)+238U , and Ca,4840(58Ni)+248Cm near barrier energies are investigated. It is found that fragments are produced by multinucleon transfer reactions with maximal yields along the β -stability line. The isospin relaxation is particularly significant in the process of fragment formation. The incident energy dependence of heavy target-like fragments in the reaction of 58Ni+248Cm is analyzed thoroughly.

  2. Effect of isospin diffusion on the production of neutron-rich nuclei in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Niu, Fei; Chen, Peng-Hui; Guo, Ya-Fei; Ma, Chun-Wang; Feng, Zhao-Qing

    2018-03-01

    The isospin dissipation dynamics in multinucleon transfer reactions has been investigated within the dinuclear system model. Production cross sections of neutron-rich isotopes around projectile-like and target-like fragments are estimated in collisions of Ni,6458+208Pb and 78.86,91Kr +198Pt near Coulomb barrier energies. The isospin diffusion in the nucleon transfer process is coupled to the dissipation of relative motion energy and angular momentum of colliding system. The available data of projectile-like fragments via multinucleon transfer reactions are nicely reproduced. It is found that the light projectile-like fragments are produced in the neutron-rich region because of the isospin equilibrium in two colliding nuclei. However, the heavy target-like fragments tend to be formed on the neutron-poor side above the β -stability line. The neutron-rich projectiles move the maximal yields of heavy nuclei to the neutron-rich domain and are available for producing the heavy exotic isotopes, in particular around the neutron shell closure of N =126 .

  3. Mechanism of multinucleon transfer reaction based on the GRAZING model and DNS model

    NASA Astrophysics Data System (ADS)

    Wen, Pei-wei; Li, Cheng; Zhu, Long; Lin, Cheng-jian; Zhang, Feng-shou

    2017-11-01

    Multinucleon transfer (MNT) reactions have been studied by either the GRAZING model or dinuclear system (DNS) model before. MNT reactions in the grazing regime have been described quite well by the GRAZING model. The DNS model is able to deal with MNT reactions, which happen in the closer overlapped regime after contact of two colliding nuclei. Since MNT reactions can happen in both areas and cannot be distinguished in view of experimental work, it is beneficial to compare these two models to clarify mechanism of MNT reactions. In this study, the mechanism of the MNT reaction has been studied by comparing the GRAZING model and DNS model for the first time. Reaction systems 136Xe+208Pb at {E}{{c}.{{m}}.}=450 MeV and 64Ni+238U at {E}{{c}.{{m}}.}=307 MeV are taken as examples in this paper. It is found that the gradients of transfer cross sections with respect to the impact parameter of the GRAZING model and DNS model are mainly concentrated on two different areas, which represents two kinds of transfer mechanisms. The theoretical framework of these two models are exclusive according to whether capture happens, which guarantees that the theoretical results calculated by these two models have no overlap and can be added up. Results indicate that the description of experimental MNT reaction cross sections can be significantly improved if calculations of the GRAZING model and DNS model are both considered.

  4. Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy

    DOE PAGES

    Hayes, Dugan; Kohler, Lars; Hadt, Ryan G.; ...

    2017-11-28

    Here, the kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(I) bis(phenanthroline)/ruthenium(II) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(I)–Ru(II) analogs of the homodinuclear Cu(I)–Cu(I) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These resultsmore » suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations.« less

  5. Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Dugan; Kohler, Lars; Hadt, Ryan G.

    Here, the kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(I) bis(phenanthroline)/ruthenium(II) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(I)–Ru(II) analogs of the homodinuclear Cu(I)–Cu(I) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These resultsmore » suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations.« less

  6. Calculation of exchange coupling constants in triply-bridged dinuclear Cu(II) compounds based on spin-flip constricted variational density functional theory.

    PubMed

    Seidu, Issaka; Zhekova, Hristina R; Seth, Michael; Ziegler, Tom

    2012-03-08

    The performance of the second-order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) for the calculation of the exchange coupling constant (J) is assessed by application to a series of triply bridged Cu(II) dinuclear complexes. A comparison of the J values based on SF-CV(2)-DFT with those obtained by the broken symmetry (BS) DFT method and experiment is provided. It is demonstrated that our methodology constitutes a viable alternative to the BS-DFT method. The strong dependence of the calculated exchange coupling constants on the applied functionals is demonstrated. Both SF-CV(2)-DFT and BS-DFT affords the best agreement with experiment for hybrid functionals.

  7. Luminescence properties of the dinuclear copper complex in the active site of hemocyanins.

    PubMed

    Beltramini, M; di Muro, P; Rocco, G P; Salvato, B

    1994-09-01

    The deoxygenated form of hemocyanin, containing a dinuclear Cu(I) active site, emits luminescence in the red with maximum around 1.54 microns-1 (650 nm). The luminescence of deoxyhemocyanin (deoxy-Hc) from arthropod species is detectable at room temperature, the quantum yield being 2.4-2.7 x 10(-3); in contrast, the emission from molluscan proteins can be detected only at liquid nitrogen temperature. The luminescence emission is an inherent property of the bis[Cu(I)-(histidine)3] complex of the deoxygenated form of the protein to which both Cu(I) ions contribute equally to the overall emission. Luminescence is not observed with the oxygenated and the oxidized forms of hemocyanin, in which the metal is in the Cu(II) state, and in the metal-depleted or apo-Hc form. Based on steady-state and time-resolved measurements and references to Cu(I) model compounds, the luminescence emission is attributed to a triplet excited state of a Cu(I)-to-N (histidine) charge transfer transition 3d-pi*. Acrylamide quenching experiments indicate that the metal active site is very shielded from the solvent. This property of deoxy-Hc enables us to directly follow reactions that modify either the copper oxidation number or the metal-to-protein stoichiometry.

  8. Roles of Bridging Ligand Topology and Conformation in Controlling Exchange Interactions between Paramagnetic Molybdenum Fragments in Dinuclear and Trinuclear Complexes.

    PubMed

    Ung VÂ, V&acaron;n Ân; Cargill Thompson, Alexander M. W.; Bardwell, David A.; Gatteschi, Dante; Jeffery, John C.; McCleverty, Jon A.; Totti, Federico; Ward, Michael D.

    1997-07-30

    The magnetic properties of two series of dinuclear complexes, and one trinuclear complex, have been examined as a function of the bridging pathway between the metal centers. The first series of dinuclear complexes is [{Mo(V)(O)(Tp)Cl}(2)(&mgr;-OO)], where "OO" is [1,4-O(C(6)H(4))(n)O](2)(-) (n = 1, 1; n = 2, 3), [4,4'-O(C(6)H(3)-2-Me)(2)O](2)(-) (4), or [1,3-OC(6)H(4)O](2)(-) (2) [Tp = tris(3,5-dimethylpyrazolyl)hydroborate]. The second series of dinuclear complexes is [{Mo(I)(NO)(Tp)Cl}(2)(&mgr;-NN)], where "NN" is 4,4'-bipyridyl (5), 3,3'-dimethyl-4,4'-bipyridine (6), 3,8-phenanthroline (7), or 2,7-diazapyrene (8). The trinuclear complex is [{Mo(V)(O)(Tp)Cl}(3)(1,3,5-C(6)H(3)O(3))] (9), whose crystal structure was determined [9.5CH(2)Cl(2): C(56)H(81)B(3)Cl(13)Mo(3)N(18)O(6); monoclinic, P2(1)/n; a = 13.443, b = 41.46(2), c = 14.314(6) Å; beta = 93.21(3) degrees; V = 7995(5) Å(3); Z = 4; R(1) = 0.106]. In these complexes, the sign and magnitude of the exchange coupling constant J is clearly related to both the topology and the conformation of the bridging ligand [where J is derived from H = -JS(1)().S(2)() for 1-8 and H = -J(S(1)().S(2)() + S(2)().S(3)() + S(1)().S(3)()) for 9]. The values are as follows: 1, -80 cm(-)(1); 2, +9.8 cm(-)(1); 3, -13.2 cm(-)(1); 4, -2.8 cm(-)(1); 5, -33 cm(-)(1); 6, -3.5 cm(-)(1); 7, -35.6 cm(-)(1); 8, -35.0 cm(-)(1); 9, +14.4 cm(-)(1). In particular the following holds: (1) J is negative (antiferromagnetic exchange) across the para-substituted bridges ligands of 1 and 3-8 but positive (ferromagnetic exchange) across the meta-substituted bridging ligands of 2 and 9. (2) J decreases in magnitude dramatically as the bridging ligand conformation changes from planar to twisted (compare 3 and 4, or 6 and 8). These observations are consistent with a spin-polarization mechanism for the exchange interaction, propagated across the pi-system of the bridging ligand by via overlap of bridging ligand p(pi) orbitals with the d(pi) magnetic orbitals of the metals. The EPR spectrum of 9 is characteristic of a quartet species and shows weak Deltam(s) = 2 and Deltam(s) = 3 transitions at one-half and one-third, respectively, of the field strength of the principal Deltam(s) = 1 component.

  9. Supramolecular architecture of metal-organic frameworks involving dinuclear copper paddle-wheel complexes.

    PubMed

    Gomathi, Sundaramoorthy; Muthiah, Packianathan Thomas

    2013-12-15

    The two centrosymmetric dinuclear copper paddle-wheel complexes tetrakis(μ-4-hydroxybenzoato-κ(2)O:O')bis[aquacopper(II)] dimethylformamide disolvate dihydrate, [Cu2(C7H5O3)4(H2O)2]·2C3H7NO·2H2O, (I), and tetrakis(μ-4-methoxybenzoato-κ(2)O:O')bis[(dimethylformamide-κO)copper(II)], [Cu2(C8H7O3)4(C3H7NO)2], (II), crystallize with half of the dinuclear paddle-wheel cage unit in the asymmetric unit and, in addition, complex (I) has one dimethylformamide (DMF) and one water solvent molecule in the asymmetric unit. In both (I) and (II), two Cu(II) ions are bridged by four syn,syn-η(1):η(1):μ carboxylate groups, showing a paddle-wheel cage-type structure with a square-pyramidal coordination geometry. The equatorial positions of (I) and (II) are occupied by the carboxylate groups of 4-hydroxy- and 4-methoxybenzoate ligands, and the axial positions are occupied by aqua and DMF ligands, respectively. The three-dimensional supramolecular metal-organic framework of (I) consists of three different R2(2)(20) and an R4(4)(36) ring motif formed via O-H···O and OW-HW···O hydrogen bonds. Complex (II) simply packs as molecular species.

  10. Tri-μ-oxido-bis­[(5,10,15,20-tetra­phenyl­porphyrinato-κ4 N)niobium(V)

    PubMed Central

    Soury, Raoudha; Belkhiria, Mohamed Salah; Daran, Jean-Claude; Nasri, Habib

    2011-01-01

    In the title dinuclear NbV compound, [Nb2(C44H28N4)2O3], each Nb atom is seven-coordinated with three bridging O atoms and four N atoms from a chelating tetra­phenyl­porphyrinate anion. The Nb—O bond lengths range from 1.757 (6) to 2.331 (6) Å, and the average (niobium–pyrrole N atom) distance is 2.239 Å. In the dinuclear mol­ecule, the Nb⋯Nb separation is 2.8200 (8) Å, and the dihedral angle between the two porphyrinate mean planes is 5.4 (1)°. Weak inter­molecular C—H⋯π inter­actions are present in the crystal structure. PMID:21836860

  11. Autonomous movement of silica and glass micro-objects based on a catalytic molecular propulsion system.

    PubMed

    Stock, Christoph; Heureux, Nicolas; Browne, Wesley R; Feringa, Ben L

    2008-01-01

    A general approach for the easy functionalization of bare silica and glass surfaces with a synthetic manganese catalyst is reported. Decomposition of H(2)O(2) by this dinuclear metallic center into H(2)O and O(2) induced autonomous movement of silica microparticles and glass micro-sized fibers. Although several mechanisms have been proposed to rationalise movement of particles driven by H(2)O(2) decomposition to O(2) and water (recoil from O(2) bubbles, ([36,45]) interfacial tension gradient([37-42]), it is apparent in the present system that ballistic movement is due to the growth of O(2) bubbles.

  12. Synthesis, structure and magnetic property of a two-dimensional coordination polymer decorated with sine wave-like 1D double chain

    NASA Astrophysics Data System (ADS)

    Yao, Xiao-Qiang; Li, Dan-Yang; Xiao, Guo-Bin; Ma, Heng-Chang; Lei, Zi-Qiang; Liu, Jia-Cheng

    2018-04-01

    A new compound, {[Co(BPFI)(NDC)]H2O·0.5DMF}n (1) has been synthesized under hydrothermal condition by the self-assembly of V-shaped N-containing rigid ligand BPFI with Co(II) ions in the presence of H2NDC acid, where BPFI = 2,8-di(1H-imidazole-1-yl)dibenzo[b,d]furan, H2NDC = naphthalene-1,4-dicarboxylic acid. Compound 1 was characterized by elemental analysis, single crystal X-ray diffraction, FT-IR spectroscopy and UV-visible spectra. Structural analysis reveals that compound 1 is a unique dinuclear Co-based 2D (4,4) layer structure decorated with parallel double chains. In addition, magnetic study reveals the existence of antiferromagnetic coupling interactions between the Co(II) ions within the dinuclear unit of 1.

  13. Crystal structure of a mixed-ligand dinuclear Ba-Zn complex with 2-meth-oxy-ethanol having tri-phenyl-acetate and chloride bridges.

    PubMed

    Utko, Józef; Sobocińska, Maria; Dobrzyńska, Danuta; Lis, Tadeusz

    2015-07-01

    The dinuclear barium-zinc complex, μ-chlorido-1:2κ(2) Cl:Cl-chlorido-2κCl-bis-(2-meth-oxy-ethanol-1κO)bis-(2-meth-oxy-ethanol-1κ(2) O,O')bis-(μ-tri-phenyl-acetato-1:2κ(2) O:O')bariumzinc, [BaZn(C20H15O2)2Cl2(C3H8O2)4], has been synthesized by the reaction of barium tri-phenyl-acetate, anhydrous zinc chloride and 2-meth-oxy-ethanol in the presence of toluene. The barium and zinc metal cations in the dinuclear complex are linked via one chloride anion and carboxyl-ate O atoms of the tri-phenyl-acetate ligands, giving a Ba⋯Zn separation of 3.9335 (11) Å. The irregular nine-coordinate BaO8Cl coordination centres comprise eight O-atom donors, six of them from 2-meth-oxy-ethanol ligands (four from two bidentate O,O'-chelate inter-actions and two from monodentate inter-actions), two from bridging tri-phenyl-acetate ligands and one from a bridging Cl donor. The distorted tetra-hedral coordination sphere of zinc comprises two O-atom donors from the tri-phenyl-acetate ligands and two Cl donors (one bridging and one terminal). In the crystal, O-H⋯Cl, O-H⋯O and C-H⋯Cl inter-molecular inter-actions form a layered structure, lying parallel to (001).

  14. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex.

    PubMed

    Esteves, Lucas F; Rey, Nicolás A; Dos Santos, Hélio F; Costa, Luiz Antônio S

    2016-03-21

    The catalytic mechanism that involves the cleavage of the phosphate diester model BDNPP (bis(2,4-dinitrophenyl) phosphate) catalyzed through a dinuclear copper complex is investigated in the current study. The metal complex was originally designed to catalyze catechol oxidation, and it showed an interesting catalytic promiscuity case in biomimetic systems. The current study investigates two different reaction mechanisms through quantum mechanics calculations in the gas phase, and it also includes the solvent effect through PCM (polarizable continuum model) single-point calculations using water as solvent. Two mechanisms are presented in order to fully describe the phosphate diester hydrolysis. Mechanism 1 is of the S(N)2 type, which involves the direct attack of the μ-OH bridge between the two copper(II) ions toward the phosphorus center, whereas mechanism 2 is the process in which hydrolysis takes place through proton transfer between the oxygen atom in the bridging hydroxo ligand and the other oxygen atom in the phosphate model. Actually, the present theoretical study shows two possible reaction paths in mechanism 1. Its first reaction path (p1) involves a proton transfer that occurs immediately after the hydrolytic cleavage, so that the proton transfer is the rate-determining step, which is followed by the entry of two water molecules. Its second reaction path (p2) consists of the entry of two water molecules right after the hydrolytic cleavage, but with no proton transfer; thus, hydrolytic cleavage is the rate-limiting step. The most likely catalytic path occurs in mechanism 1, following the second reaction path (p2), since it involves the lowest free energy activation barrier (ΔG(⧧) = 23.7 kcal mol(-1), in aqueous solution). A kinetic analysis showed that the experimental k(obs) value of 1.7 × 10(-5) s(-1) agrees with the calculated value k1 = 2.6 × 10(-5) s(-1); the concerted mechanism is kinetically favorable. The KIE (kinetic isotope effect) analysis applied to the second reaction path (p2) in mechanism 1 was also taken into account to assess the changes that take place in TS1-i (transition state of mechanism 1) and to perfectly characterize the mechanism described herein.

  15. Membrane-organized Chemical Photoredox Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britt, R. David

    2016-09-01

    The key photoredox process in photosynthesis is the accumulation of oxidizing equivalents on a tetranuclear manganese cluster that then liberates electrons and protons from water and forms oxygen gas. Our primary goal in this project is to characterize inorganic systems that can perform this same water-splitting chemistry. One such species is the dinuclear ruthenium complex known as the blue dimer. Starting at the Ru(III,III) oxidation state, the blue dimer is oxidized up to a putative Ru(V,V) level prior to O-O bond formation. We employ electron paramagnetic resonance spectroscopy to characterize each step in this reaction cycle to gain insight intomore » the molecular mechanism of water oxidation.« less

  16. Chloride supporting electrolytes for all-vanadium redox flow batteries.

    PubMed

    Kim, Soowhan; Vijayakumar, M; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Chen, Feng; Hu, Jianzhi; Li, Liyu; Yang, Zhenguo

    2011-10-28

    This paper examines vanadium chloride solutions as electrolytes for an all-vanadium redox flow battery. The chloride solutions were capable of dissolving more than 2.3 M vanadium at varied valence states and remained stable at 0-50 °C. The improved stability appeared due to the formation of a vanadium dinuclear [V(2)O(3)·4H(2)O](4+) or a dinuclear-chloro complex [V(2)O(3)Cl·3H(2)O](3+) in the solutions over a wide temperature range. The all-vanadium redox flow batteries with the chloride electrolytes demonstrated excellent reversibility and fairly high efficiencies. Only negligible, if any, gas evolution was observed. The improved energy capacity and good performance, along with the ease in heat management, would lead to substantial reduction in capital cost and life-cycle cost, making the vanadium chloride redox flow battery a promising candidate for stationary applications. This journal is © the Owner Societies 2011

  17. Unsymmetric Mono- and Dinuclear Platinum(IV) Complexes Featuring an Ethylene Glycol Moiety: Synthesis, Characterization, and Biological Activity

    PubMed Central

    Pichler, Verena; Heffeter, Petra; Valiahdi, Seied M.; Kowol, Christian R.; Egger, Alexander; Berger, Walter; Jakupec, Michael A.; Galanski, Markus; Keppler, Bernhard K.

    2014-01-01

    Eight novel mononuclear and two dinuclear platinum(IV) complexes were synthesized and characterized by elemental analysis, one- and two-dimensional NMR spectroscopy, mass spectrometry, and reversed-phase HPLC (log kw) and in one case by X-ray diffraction. Cytotoxicity of the compounds was studied in three human cancer cell lines (CH1, SW480, and A549) by means of the MTT assay, featuring IC50 values to the low micromolar range. Furthermore a selected set of compounds was investigated in additional cancer cell lines (P31 and P31/cis, A2780 and A2780/cis, SW1573, 2R120, and 2R160) with regard to their resistance patterns, offering a distinctly different scheme compared to cisplatin. To gain further insights into the mode of action, drug uptake, DNA synthesis inhibition, cell cycle effects, and induction of apoptosis were determined for two characteristic substances. PMID:23194425

  18. Luminescence, electrochemistry and host-guest properties of dinuclear platinum(ii) terpyridyl complexes of sulfur-containing bridging ligands.

    PubMed

    Tang, Rowena Pui-Ling; Wong, Keith Man-Chung; Zhu, Nianyong; Yam, Vivian Wing-Wah

    2009-05-28

    A series of dinuclear platinum(ii) terpyridyl and terpyridyl-crown complexes with 2,2-dicyano-1,1-ethylenedithiolate (i-mnt), 1,3-benzenedithiolate (SC(6)H(4)S-1,3) and N,N-diethyldithiocarbamate (dtc) bridging ligands have been synthesized and characterized. Their photophysical and electrochemical properties, together with that of the related mononuclear platinum(ii) terpyridyl-crown complex and its crown-free analogue, have been studied. The ion-binding properties of the terpyridyl-crown complexes have been determined by electronic absorption spectroscopy and ESI-mass spectrometry. The X-ray crystal structures of [Pt(trpyC[triple bond, length as m-dash]C-benzo-15-crown-5)Cl]PF(6), [{Pt(trpy)}(2)(micro-SC(6)H(4)S-1,3)](PF(6))(2) and [{Pt(trpy)}(2){micro-(i-mnt)}](PF(6))(2) have also been determined.

  19. pH-Specific structural speciation of the ternary V(V)-peroxido-betaine system: a chemical reactivity-structure correlation.

    PubMed

    Gabriel, C; Kioseoglou, E; Venetis, J; Psycharis, V; Raptopoulou, C P; Terzis, A; Voyiatzis, G; Bertmer, M; Mateescu, C; Salifoglou, A

    2012-06-04

    Vanadium involvement in cellular processes requires deep understanding of the nature and properties of its soluble and bioavailable forms arising in aqueous speciations of binary and ternary systems. In an effort to understand the ternary vanadium-H(2)O(2)-ligand interactions relevant to that metal ion's biological role, synthetic efforts were launched involving the physiological ligands betaine (Me(3)N(+)CH(2)CO(2)(-)) and H(2)O(2). In a pH-specific fashion, V(2)O(5), betaine, and H(2)O(2) reacted and afforded three new, unusual, and unique compounds, consistent with the molecular formulation K(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·H(2)O (1), (NH(4))(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·0.75H(2)O (2), and {Na(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}(2)]}(n)·4nH(2)O (3). All complexes 1-3 were characterized by elemental analysis; UV/visible, FT-IR, Raman, and NMR spectroscopy in solution and the solid state; cyclic voltammetry; TGA-DTG; and X-ray crystallography. The structures of 1 and 2 reveal the presence of unusual ternary dinuclear vanadium-tetraperoxido-betaine complexes containing [(V(V)═O)(O(2))(2)] units interacting through long V-O bonds. The two V(V) ions are bridged through the oxygen terminal of one of the peroxide groups bound to the vanadium centers. The betaine ligand binds only one of the two V(V) ions. In the case of the third complex 3, the two vanadium centers are not immediate neighbors, with Na(+) ions (a) acting as efficient oxygen anchors and through Na-O bonds holding the two vanadium ions in place and (b) providing for oxygen-containing ligand binding leading to a polymeric lattice. In 1 and 3, interesting 2D (honeycomb) and 1D (zigzag chains) topologies of potassium nine-coordinate polyhedra (1) and sodium octahedra (3), respectively, form. The collective physicochemical properties of the three ternary species 1-3 project the chemical role of the low molecular mass biosubstrate betaine in binding V(V)-diperoxido units, thereby stabilizing a dinuclear V(V)-tetraperoxido dianion. Structural comparisons of the anions in 1-3 with other known dinuclear V(V)-tetraperoxido binary anionic species provide insight into the chemical reactivity of V(V)-diperoxido systems and their potential link to cellular events such as insulin mimesis and anitumorigenicity modulated by the presence of betaine.

  20. Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy† †Electronic supplementary information (ESI) available: Synthesis schemes, experimental methods, NMR spectra, X-ray crystallographic information, emission spectra, cyclic voltammetry, electronic structure calculations, data analysis and numerical methods, and other additional figures. CCDC 1561879. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04055e

    PubMed Central

    Kohler, Lars; Hadt, Ryan G.; Zhang, Xiaoyi; Liu, Cunming

    2017-01-01

    The kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(i) bis(phenanthroline)/ruthenium(ii) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(i)–Ru(ii) analogs of the homodinuclear Cu(i)–Cu(i) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These results suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations. PMID:29629153

  1. When two are better than one: bright phosphorescence from non-stereogenic dinuclear iridium(III) complexes.

    PubMed

    Daniels, Ruth E; Culham, Stacey; Hunter, Michael; Durrant, Marcus C; Probert, Michael R; Clegg, William; Williams, J A Gareth; Kozhevnikov, Valery N

    2016-04-28

    A new family of eight dinuclear iridium(iii) complexes has been prepared, featuring 4,6-diarylpyrimidines L(y) as bis-N^C-coordinating bridging ligands. The metal ions are also coordinated by a terminal N^C^N-cyclometallating ligand L(X) based on 1,3-di(2-pyridyl)benzene, and by a monodentate chloride or cyanide. The general formula of the compounds is {IrL(X)Z}2L(y) (Z = Cl or CN). The family comprises examples with three different L(X) ligands and five different diarylpyrimidines L(y), of which four are diphenylpyrimidines and one is a dithienylpyrimidine. The requisite proligands have been synthesised via standard cross-coupling methodology. The synthesis of the complexes involves a two-step procedure, in which L(X)H is reacted with IrCl3·3H2O to form dinuclear complexes of the form [IrL(X)Cl(μ-Cl)]2, followed by treatment with the diarylpyrimidine L(y)H2. Crucially, each complex is formed as a single compound only: the strong trans influence of the metallated rings dictates the relative disposition of the ligands, whilst the use of symmetrically substituted tridentate ligands eliminates the possibility of Λ and Δ enantiomers that are obtained when bis-bidentate units are linked through bridging ligands. The crystal structure of one member of the family has been obtained using a synchrotron X-ray source. All of the complexes are very brightly luminescent, with emission maxima in solution varying over the range 517-572 nm, according to the identity of the ligands. The highest-energy emitter is the cyanide derivative whilst the lowest is the complex with the dithienylpyrimidine. The trends in both the absorption and emission energies as a function of ligand substituent have been rationalised accurately with the aid of TD-DFT calculations. The lowest-excited singlet and triplet levels correlate with the trend in the HOMO-LUMO gap. All the complexes have quantum yields that are close to unity and phosphorescence lifetimes - of the order of 500 ns - that are unusually short for complexes of such brightness. These impressive properties stem from an unusually high rate of radiative decay, possibly due to spin-orbit coupling pathways being facilitated by the second metal ion, and to low non-radiative decay rates that may be related to the rigidity of the dinuclear scaffold.

  2. Complexes of ditopic carbo- and thio-carbohydrazone ligands--mononuclear, 1D chain, dinuclear and tetranuclear examples.

    PubMed

    Tandon, Santokh S; Dul, Marie-Claire; Lee, John L; Dawe, Louise N; Anwar, Muhammad U; Thompson, Laurence K

    2011-04-14

    Ligands based on carbo- and thio-carbohydrazone cores, modified with pyridine, carboxylate and oxime ends, have been examined. They display a tautomeric versatility based on the flexible nature of the hydrazone linkages, leading to varied coordination motifs. Examples of mononuclear (Co(II), Ni(II)), dinuclear (Co(III)), 1D chain (Cu(II)) and square [2 × 2] grid (Ni(II)) complexes are obtained. Ferromagnetic (Cu(II)) and antiferromagnetic (Ni(II)) exchange is observed, with spin coupling in the Ni(II)(4) square grids propagated through the μ-O and μ-S bridges. Weak antiferromagnetic exchange (J = -6.0 cm(-1)) is observed for the μ-O bridged grid, despite the large Ni-O-Ni angles (137-141°), while for the μ-S bridged grids much stronger exchange is observed (J = -148 cm(-1), -198 cm(-1)). This is much larger than expected based on the Ni-S-Ni bridge angles (151-169°), and is associated with the soft (less polarizing than oxygen) nature of the sulfur bridge, which would allow for much more efficient transmission of spin exchange than observed in the μ-O bridged case. Structures and variable temperature magnetic data are included, and spin exchange is analyzed using normal Heisenberg exchange models. No examples involving oxime (NO) bridging are reported, which reflects the positioning of the N,O and N,S donor combinations in each ligand, and the preferred coordination through these donor atoms. © The Royal Society of Chemistry 2011

  3. Thiolate-bridged dinuclear iron(tris-carbonyl)–nickel complexes relevant to the active site of [NiFe] hydrogenase

    PubMed Central

    Ohki, Yasuhiro; Yasumura, Kazunari; Kuge, Katsuaki; Tanino, Soichiro; Ando, Masaru; Li, Zilong; Tatsumi, Kazuyuki

    2008-01-01

    The reaction of NiBr2(EtOH)4 with a 1:2–3 mixture of FeBr2(CO)4 and Na(SPh) generated a linear trinuclear Fe–Ni–Fe cluster (CO)3Fe(μ-SPh)3Ni(μ-SPh)3Fe(CO)3, 1, whereas the analogous reaction system FeBr2(CO)4/Na(StBu)/NiBr2(EtOH)4 (1:2–3:1) gave rise to a linear tetranuclear Fe–Ni–Ni–Fe cluster [(CO)3Fe(μ-StBu)3Ni(μ-Br)]2, 2. By using this tetranuclear cluster 2 as the precursor, we have developed a new synthetic route to a series of thiolate-bridged dinuclear Fe(CO)3–Ni complexes, the structures of which mimic [NiFe] hydrogenase active sites. The reactions of 2 with SC(NMe2)2 (tmtu), Na{S(CH2)2SMe} and ortho-NaS(C6H4)SR (R = Me, tBu) led to isolation of (CO)3Fe(μ-StBu)3NiBr(tmtu), 3, (CO)3Fe(StBu)(μ-StBu)2Ni{S(CH2)2SMe}, 4, and (CO)3Fe(StBu)(μ-StBu)2Ni{S(C6H4)SR}, 5a (R = Me) and 5b (R = tBu), respectively. On the other hand, treatment of 2 with 2-methylthio-phenolate (ortho-O(C6H4)SMe) in methanol resulted in (CO)3Fe(μ-StBu)3Ni(MeOH){O(C6H4)SMe}, 6a. The methanol molecule bound to Ni is labile and is readily released under reduced pressure to afford (CO)3Fe(StBu)(μ-StBu)2Ni{O(C6H4)SMe}, 6b, and the coordination geometry of nickel changes from octahedral to square planar. Likewise, the reaction of 2 with NaOAc in methanol followed by crystallization from THF gave (CO)3Fe(μ-StBu)3Ni(THF)(OAc), 7. The dinuclear complexes, 3-7, are thermally unstable, and a key to their successful isolation is to carry out the reactions and manipulations at −40°C. PMID:18511566

  4. Photochemical insertion of alkynes into Cp sub 2 Fe sub 2 (CO) sub 2 (. mu. -CO) sub 2 : A mechanistic study by laser flash photolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bursten, B.E.; McKee, S.D.; Platz, M.S.

    1989-04-26

    Cp{sub 2}Fe{sub 2}(CO){sub 2}({mu}-CO){sub 2} (1: Cp = {eta}{sup 5}-C{sub 5}H{sub 5}) has a rich and diverse photochemistry, as evidenced by the plethora of synthetic and mechanistic studies of it in the literature. Early photochemical studies of 1 have demonstrated homolysis to the radical Cp(CO){sub 2}Fe{sup {sm bullet}} (2). Recent work on metal dimers indicates that a dinuclear species is formed concomitantly. Tyler, Schmidt, and Gray (TSG) first proposed that irradiation of 1 leads to the dinuclear species 3, which they suggested was the intermediate responsible for phosphine substitution. Research by other individuals has indicated that the substitutionally active speciesmore » is the CO-loss photoproduct CpFe({mu}-CO){sub 3}FeCp (4). The authors interest in the photochemistry of 1 stemmed from their theoretical studies on piano-stool dimers. One reaction of particular concern is the photochemical insertion of alkynes into 1 to yield dimetallacyclopentenone 5. On the basis of MO calculations, the authors proposed a possible LUMO-controlled mechanism for this reaction that involved alkyne addition to the TSG transition state 3, followed by CO loss. In this contribution, they report initial experimental studies which demonstrate that 4 is the photochemical intermediate responsible for this reaction. They consider this reaction to be a paradigm for photochemical substitution and insertion reaction in such systems.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shardin, Rosidah; Pui, Law Kung; Yamin, Bohari M.

    A simple mononuclear octahedral copper(II) complex was attempted from the reaction of three moles of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole and one mole of copper(II) perchlorate hexahydrate in methanol. However, the product of the reaction was confirmed to be a dinuclear copper(II) complex with μ-(3-(pyridin-2-yl)-pyrazolato) and 3-(pyridin-2-yl)-1H-pyrazole ligands attached to each of the Cu(II) centre atom. The copper(II) ion assisted the cleavage of the C{sub benzoyl}N bond afforded a 3-(pyridin-2-yl)-1H-pyrazole molecule. Deprotonation of the 3-(pyridin-2-yl)-1H-pyrazole gave a 3-(pyridin-2-yl)-pyrazolato, which subsequently reacted with the Cu(II) ion to give the (3-(pyridin-2-yl)-pyrazolato)(3-(pyridin-2-yl)-1H-pyrazole)Cu(II) product moiety. The structure of the dinuclear complex was confirmed by x-ray crystallography. The complexmore » crystallized in a monoclinic crystal system with P2(1)/n space group and cell dimensions of a = 12.2029(8) Å, b = 11.4010(7) Å, c = 14.4052(9) Å and β = 102.414(2)°. The compound was further characterized by mass spectrometry, CHN elemental analysis, infrared and UV-visible spectroscopy and the results concurred with the x-ray structure. The presence of d-d transition at 671 nm (ε = 116 dm{sup 3} mol{sup −1} cm{sup −1}) supports the presence of Cu(II) centres.« less

  6. Crystal structures of a novel NNN pincer ligand and its dinuclear titanium(IV) alkoxide pincer complex.

    PubMed

    Pedziwiatr, Jakub; Ghiviriga, Ion; Abboud, Khalil A; Veige, Adam S

    2017-02-01

    This report describes a synthetic protocols and the crystal structures involving a novel pincer-type H 3 [NNN] ligand, namely di-μ-bromido-μ-{2-(2,2-di-methylpropanimido-yl)- N -[2-(2,2-di-methyl-propanimido-yl)-4-methyl-phen-yl]-4-methylaniline}-bis-[(diethyl ether)lithium], [Li 2 Br 2 (C 24 H 33 N 3 )(C 4 H 10 O) 2 ] ( 1 ) and a dinuclear metal complex, namely di-μ-bromido-2:3κ 4 Br : Br -bis-{2-(2,2-di-methylpropanimido-yl)- N -[2-(2,2-di-methyl-propanimido-yl)-4-methyl-phen-yl]-4-methylaniline}-1κ 3 N , N ', N '';4κ 3 N , N ', N ''-tetra-μ-iso-propano-lato-1:2κ 4 O : O ;3:4κ 4 O : O -diiso-propano-lato-1κ O ,4κ O -2,3-dilithium-1,4-dititanium, [Li 2 Ti 2 Br 2 (C 24 H 32 N 3 ) 2 (C 3 H 7 O) 6 ] or {[NHNNH]Ti(O i Pr) 3 (LiBr) 2 } 2 ( 2 ). Complex 1 , which sits on a twofold rotation axis, is a rare example of a pincer-type ligand which bears ketimine side arms. A unique feature of complex 1 is that the ketimine N atoms have an LiBr(Et 2 O) fragment bonded to them, with the Li atom adopting a distorted tetra-hedral geometry. This particular fragment creates an LiBr bridge between the two ketimine sidearms, which leads to a cage-type appearance of the ligand. Complex 2 consists of the previously described ligand and a Ti IV metal atom in an octa-hedral environment, and is located on an inversion center. Complex 2 crystallizes as a dinuclear species with the metal atoms being bridged by an LiBr entity [the Br atoms are disordered and refined in two positions with their site occupation factors refining to 0.674 (12)/0.372 (12)], and the Li cation being bonded to the isopropoxide O atoms (Li having a tetra-hedral coordination as in 1 ). The organic ligand of compound 2 exhibits disorder in its periphery groups; isopropyl and tert -butyl groups (occupation factors fixed at 0.6/0.4). The novel [NNN]H 3 pincer-type ligand was characterized by multinuclear and multidimensional NMR, HRMS and X-ray crystallography. The dinuclear metal complex 2 was characterized by X-ray crystallography. Although each structure exhibits donor N-H groups, no hydrogen bonding is found in either one, perhaps due to the bulky groups around them. One of the ethyl groups of the ether ligand of 1 is disordered and refined in two parts with site-occupation factors of 0.812 (8) and 0.188 (8). One and a half toluene solvent mol-ecules are also present in the asymmetric unit of 2 . The toluene mol-ecules were significantly disordered and could not be modeled properly, thus SQUEEZE [Spek (2015 ▸). Acta Cryst. C 71 , 9-18] was used to remove their contributions to the overall intensity data.

  7. Synthesis, characterization, and photophysical properties of a series of supramolecular mixed-valence compounds.

    PubMed

    Pfennig, B W; Fritchman, V A; Hayman, K A

    2001-01-15

    The synthesis and characterization of 10 cyano-bridged trinuclear mixed-valence compounds of the form [(NH3)5M-NC-FeII(CN)4-CN-M'(NH3)5]n+ (M = RuIII, OsIII, CrIII, or PtIV; n = 2, 3, or 4) is reported. The electronic spectra of these supramolecular compounds exhibit a single intervalent (IT) absorption band for each nondegenerate Fe-->M/M' transition. The redox potential of the Fe(II) center is shifted more positive with the addition of each coordinated metal complex, while the redox potentials of the pendant metals vary only slightly from their dinuclear counterparts. As a result, the Fe-->M IT bands are blue-shifted from those in the corresponding dinuclear mixed-valence compounds. The energies of these IT bands show a linear correlation with the ground-state thermodynamic driving force, as predicted by classical electron transfer theory. Estimates of the degree of electronic coupling (Hab) between the metal centers using a theoretical analysis of the IT band shapes indicate that most of these values are similar to those for the corresponding dinuclear species. Notable exceptions occur for the Fe-->M IT transitions in Os-Fe-M (M = Cr or Pt). The enhanced electronic coupling in these two species can be explained as a result of excited state mixing between electron transfer and/or ligand-based charge transfer states and an intensity-borrowing mechanism. Additionally, the possibility of electronic coupling between the remote metal centers in the Ru-Fe-Ru species is discussed in order to explain the observation of two closely spaced redox waves for the degenerate Ru(III) acceptors.

  8. Two Zn coordination polymers with meso-helical chains based on mononuclear or dinuclear cluster units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Ling, E-mail: qinling@hfut.edu.cn; Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093

    2016-07-15

    Two zinc coordination polymers {[Zn_2(TPPBDA)(oba)_2]·DMF·1.5H_2O}{sub n} (1), {[Zn(TPPBDA)_1_/_2(tpdc)]·DMF}{sub n} (2) have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. These complexes were characterized by elemental analyses and X-ray single-crystal diffraction analyses. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. These mononuclear or dinuclear cluster units are linked by mix-ligands, resulting in various degrees of interpenetration. In addition, the photoluminescent properties for TPPBDA ligand under different state and coordination polymersmore » have been investigated in detail. - Graphical abstract: Two zinc coordination polymers have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. In addition, the photoluminescent properties for TPPBDA ligand under different status and coordination polymers have been investigated in detail. Display Omitted - Highlights: • Two Zn coordination polymers based on mononuclear or dinuclear cluster units have been synthesized. • Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. • Compound 2 is a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. • The photoluminescent properties for TPPBDA with different state and two coordination polymers have been investigated.« less

  9. The controlled formation and cleavage of an intramolecular d8-d8 Pt-Pt interaction in a dinuclear cycloplatinated molecular "pivot-hinge".

    PubMed

    Koo, Chi-Kin; Wong, Ka-Leung; Lau, Kai-Cheung; Wong, Wai-Yeung; Lam, Michael Hon-Wah

    2009-08-03

    The bis(diphenylphosphino)methane (dppm)-bridged dinuclear cycloplatinated complex {[Pt(L)](2)(mu-dppm)}(2+) (Pt(2)dppm; HL: 2-phenyl-6-(1H-pyrazol-3-yl)-pyridine) demonstrates interesting reversible "pivot-hinge"-like intramolecular motions in response to the protonation/deprotonation of L. In its protonated "closed" configuration, the two platinum(II) centers are held in position by intramolecular d(8)-d(8) Pt-Pt interaction. In its deprotonated "open" configuration, such Pt-Pt interaction is cleaved. To further understand the mechanism behind this hingelike motion, an analogous dinuclear cycloplatinated complex, {[Pt(L)](2)(mu-dchpm)}(2+) (Pt(2)dchpm) with bis(dicyclohexylphosphino)methane (dchpm) as the bridging ligand, was synthesized. From its protonation/deprotonation responses, it was revealed that aromatic pi-pi interactions between the phenyl moieties of the mu-dppm and the deprotonated pyrazolyl rings of L was essential to the reversible cleavage of the intramolecular Pt-Pt interaction in Pt(2)dppm. In the case of Pt(2)dchpm, spectroscopic and spectrofluorometric titrations as well as X-ray crystallography indicated that the distance between the two platinum(II) centers shrank upon deprotonation, thus causing a redshift in its room-temperature triplet metal-metal-to-ligand charge-transfer emission from 614 to 625 nm. Ab initio calculations revealed the presence of intramolecular hydrogen bonding between the deprotonated and negatively charged 1-pyrazolyl-N moiety and the methylene CH and phenyl C-H of the mu-dppm. The "open" configuration of the deprotonated Pt(2)dppm was estimated to be 19 kcal mol(-1) more stable than its alternative "closed" configuration. On the other hand, the open configuration of the deprotonated Pt(2)dchpm was 6 kcal mol(-1) less stable than its alternative closed configuration.

  10. Electrocatalytic Water Oxidation by a Homogeneous Copper Catalyst Disfavors Single-Site Mechanisms.

    PubMed

    Koepke, Sara J; Light, Kenneth M; VanNatta, Peter E; Wiley, Keaton M; Kieber-Emmons, Matthew T

    2017-06-28

    Deployment of solar fuels derived from water requires robust oxygen-evolving catalysts made from earth abundant materials. Copper has recently received much attention in this regard. Mechanistic parallels between Cu and single-site Ru/Ir/Mn water oxidation catalysts, including intermediacy of terminal Cu oxo/oxyl species, are prevalent in the literature; however, intermediacy of late transition metal oxo species would be remarkable given the high d-electron count would fill antibonding orbitals, making these species high in energy. This may suggest alternate pathways are at work in copper-based water oxidation. This report characterizes a dinuclear copper water oxidation catalyst, {[(L)Cu(II)] 2 -(μ-OH) 2 }(OTf) 2 (L = Me 2 TMPA = bis((6-methyl-2-pyridyl)methyl)(2-pyridylmethyl)amine) in which water oxidation proceeds with high Faradaic efficiency (>90%) and moderate rates (33 s -1 at ∼1 V overpotential, pH 12.5). A large kinetic isotope effect (k H /k D = 20) suggests proton coupled electron transfer in the initial oxidation as the rate-determining step. This species partially dissociates in aqueous solution at pH 12.5 to generate a mononuclear {[(L)Cu(II)(OH)]} + adduct (K eq = 0.0041). Calculations that reproduce the experimental findings reveal that oxidation of either the mononuclear or dinuclear species results in a common dinuclear intermediate, {[LCu(III)] 2 -(μ-O) 2 } 2+ , which avoids formation of terminal Cu(IV)═O/Cu(III)-O • intermediates. Calculations further reveal that both intermolecular water nucleophilic attack and redox isomerization of {[LCu(III)] 2 -(μ-O) 2 } 2+ are energetically accessible pathways for O-O bond formation. The consequences of these findings are discussed in relation to differences in water oxidation pathways between Cu catalysts and catalysts based on Ru, Ir, and Mn.

  11. Oxalato-bridged dinuclear complexes of Cr(III) and Fe(III): synthesis, structure, and magnetism of [(C2H5)4N]4[MM'(ox)(NCS)8] with MM' = CrCr, FeFe, and CrFe.

    PubMed

    Triki, S; Bérézovsky, F; Sala Pala, J; Coronado, E; Gómez-García, C J; Clemente, J M; Riou, A; Molinié, P

    2000-08-21

    A new series of homo- and heterometallic oxalato-bridged dinuclear compounds of formulas [Et4N]4[MM'(ox)(NCS)8] ([Et4N]+ = [(C2H5)4N]+; ox = C2O4(2-)) with MM' = Cr(III)-Cr(III) (1), Fe(III)-Fe(III) (2), and Cr(III)-Fe(III) (3) is reported. They have been structurally characterized by infrared spectra and single-crystal X-ray diffraction. The three compounds are isostructural and crystallize in the orthorhombic space group Cmca with Z = 8, a = 16.561(8) A, b = 13.481(7) A, and c = 28.168(8) A for 1, a = 16.515(2) A, b = 13.531(1) A, and c = 28.289(4) A for 2, a = 16.664(7) A, b = 13.575(6) A, and c = 28.386(8) A for 3. The structure of 3 is made up of a discrete dinuclear anion [CrFe(ox)(NCS)8]4- and four disordered [Et4N]+ cations, each of them located on special positions. The anion, in a crystallographically imposed C2h symmetry, contains metal cations in distorted octahedral sites. The Cr(ox)Fe group, which is planar within 0.02 A, presents an intramolecular metal-metal distance of 5.43 A. Magnetic susceptibility measurements indicate antiferromagnetic pairwise interactions for 1 and 2 with J = -3.23 and -3.84 cm-1, respectively, and ferromagnetic Cr-Fe coupling with J = 1.10 cm-1 for 3 (J being the parameter of the exchange Hamiltonian H = -2JS1S2). The ESR spectra at different temperatures confirm the magnetic susceptibility data.

  12. A 3D network of helicates fully assembled by pi-stacking interactions.

    PubMed

    Vázquez, Miguel; Taglietti, Angelo; Gatteschi, Dante; Sorace, Lorenzo; Sangregorio, Claudio; González, Ana M; Maneiro, Marcelino; Pedrido, Rosa M; Bermejo, Manuel R

    2003-08-07

    The neutral dinuclear dihelicate [Cu2(L)2] x 2CH3CN (1) forms a unique 3D network in the solid state due to pi-stacking interactions, which are responsible for intermolecular antiferromagnetic coupling between Cu(II) ions.

  13. New La(III) complex immobilized on 3-aminopropyl-functionalized silica as an efficient and reusable catalyst for hydrolysis of phosphate ester bonds.

    PubMed

    Muxel, Alfredo A; Neves, Ademir; Camargo, Maryene A; Bortoluzzi, Adailton J; Szpoganicz, Bruno; Castellano, Eduardo E; Castilho, Nathalia; Bortolotto, Tiago; Terenzi, Hernán

    2014-03-17

    Described herein is the synthesis, structure, and monoesterase and diesterase activities of a new mononuclear [La(III)(L(1))(NO3)2] (1) complex (H2L(1) = 2-bis[{(2-pyridylmethyl)-aminomethyl}-6-[N-(2-pyridylmethyl) aminomethyl)])-4-methyl-6-formylphenol) in the hydrolysis of 2,4-bis(dinitrophenyl)phosphate (2,4-BDNPP). When covalently linked to 3-aminopropyl-functionalized silica, 1 undergoes disproportionation to form a dinuclear species (APS-1), whose catalytic efficiency is increased when compared to the homogeneous reaction due to second coordination sphere effects which increase the substrate to complex association constant. The anchored catalyst APS-1 can be recovered and reused for subsequent hydrolysis reactions (five times) with only a slight loss in activity. In the presence of DNA, we suggest that 1 is also converted into the dinuclear active species as observed with APS-1, and both were shown to be efficient in DNA cleavage.

  14. Dinuclear Cu(II) complexes of isomeric bis-(3-acetylacetonate)benzene ligands: synthesis, structure, and magnetic properties.

    PubMed

    Rancan, Marzio; Dolmella, Alessandro; Seraglia, Roberta; Orlandi, Simonetta; Quici, Silvio; Sorace, Lorenzo; Gatteschi, Dante; Armelao, Lidia

    2012-05-07

    Highly versatile coordinating ligands are designed and synthesized with two β-diketonate groups linked at the carbon 3 through a phenyl ring. The rigid aromatic spacer is introduced in the molecules to orient the two acetylacetone units along different angles and coordination vectors. The resulting para, meta, and ortho bis-(3-acetylacetonate)benzene ligands show efficient chelating properties toward Cu(II) ions. In the presence of 2,2'-bipyridine, they promptly react and yield three dimers, 1, 2, and 3, with the bis-acetylacetonate unit in bridging position between two metal centers. X-ray single crystal diffraction shows that the compounds form supramolecular chains in the solid state because of intermolecular interactions. Each of the dinuclear complexes shows a magnetic behavior which is determined by the combination of structural parameters and spin polarization effects. Notably, the para derivative (1) displays a moderate antiferromagnetic coupling (J = -3.3 cm(-1)) along a remarkably long Cu···Cu distance (12.30 Å).

  15. Crystal structure of di-μ-chlorido-bis-(chlorido-{N1,N1-diethyl-N4-[(pyridin-2-yl-κN)methyl-idene]benzene-1,4-di-amine-κN4}mercury(II)).

    PubMed

    Faizi, Md Serajul Haque; Dege, Necmi; Goleva, Kateryna

    2017-06-01

    The title dinuclear mercury(II) complex, [Hg 2 Cl 4 (C 16 H 19 N 3 ) 2 ], synthesized from the pyridine-derived Schiff base ( E )- N 1 , N 1 -diethyl- N 4 -[(pyridin-2-yl)methyl-idene]benzene-1,4-di-amine (DPMBD), has inversion symmetry. The five-coordinated Hg II atoms have distorted square-pyramidal stereochemistry comprising two N-atom donors from bidentate chelate BPMBD ligands and three Cl-atom donors, two bridging and one monodentate. The dihedral angle between the benzene and the pyridine rings in the BPMBD ligand is 7.55 (4)°. In the crystal, the dinuclear mol-ecules are linked by weak C-H⋯Cl hydrogen bonds, forming zigzag ribbons lying parallel to [001]. Also present in the structure are π-π inter-actions between benzene and pyridine rings [minimum ring-centroid separation = 3.698 (8) Å].

  16. Syntheses of mono- and dinuclear diiodoboryl complexes of platinum.

    PubMed

    Braunschweig, Holger; Radacki, Krzysztof; Uttinger, Katharina

    2007-10-15

    Treatment of [Pt(PCy(3))(2)] (Cy = cyclohexyl) with BI(3) afforded trans-[(Cy(3)P)(2)Pt(I)(BI(2))] by the oxidative addition of a B-I bond. The title compound represents the first diiodoboryl complex and was fully characterized by NMR spectroscopy and X-ray diffraction analysis. The latter revealed a very short Pt-B distance, thus indicating a pronounced pi contribution to this bond. By the addition of another 1 equiv of BI(3) to trans-[(Cy(3)P)(2)Pt(I)(BI(2))], a new Pt species [(Cy(3)P)(I(2)B)Pt(mu-I)](2) was formed with concomitant buildup of the phosphine borane adduct [Cy(3)P-BI(3)]. The former is obviously obtained by abstraction of PCy(3) from trans-[(Cy(3)P)(2)Pt(I)(BI(2))] and the subsequent dimerization of two remaining fragments. Interestingly, the dimerization is reversible, and the dinuclear compound can be converted to trans-[(Cy(3)P)(2)Pt(I)(BI(2))] upon the addition of PCy(3).

  17. Symmetric and asymmetric ternary fission of hot nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siwek-Wilczynska, K.; Wilczynski, J.; Leegte, H.K.W.

    1993-07-01

    Emission of [alpha] particles accompanying fusion-fission processes in the [sup 40]Ar +[sup 232]Th reaction at [ital E]([sup 40]Ar) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight measurements allowed us to reconstruct the complete kinematics of each ternary event. The coincident energy spectra of [alpha] particles were analyzed by using predictions of the energy spectra of the statistical code CASCADE . The analysis clearly demonstrates emission from the composite system prior to fission, emission from fully accelerated fragments after fission,more » and also emission during scission. The analysis is presented for both symmetric and asymmetric fission. The results have been analyzed using a time-dependent statistical decay code and confronted with dynamical calculations based on a classical one-body dissipation model. The observed near-scission emission is consistent with evaporation from a dinuclear system just before scission and evaporation from separated fragments just after scission. The analysis suggests that the time scale of fission of the hot composite systems is long (about 7[times]10[sup [minus]20] s) and the motion during the descent to scission almost completely damped.« less

  18. Mixed-valent metals bridged by a radical ligand: fact or fiction based on structure-oxidation state correlations.

    PubMed

    Sarkar, Biprajit; Patra, Srikanta; Fiedler, Jan; Sunoj, Raghavan B; Janardanan, Deepa; Lahiri, Goutam Kumar; Kaim, Wolfgang

    2008-03-19

    Electron-rich Ru(acac)2 (acac- = 2,4-pentanedionato) binds to the pi electron-deficient bis-chelate ligands L, L = 2,2'-azobispyridine (abpy) or azobis(5-chloropyrimidine) (abcp), with considerable transfer of negative charge. The compounds studied, (abpy)Ru(acac)2 (1), meso-(mu-abpy)[Ru(acac)2]2 (2), rac-(mu-abpy)[Ru(acac)2]2 (3), and (mu-abcp)[Ru(acac)2]2 (4), were calculated by DFT to assess the degree of this metal-to-ligand electron shift. The calculated and experimental structures of 2 and 3 both yield about 1.35 A for the length of the central N-N bond which suggests a monoanion character of the bridging ligand. The NBO analysis confirms this interpretation, and TD-DFT calculations reproduce the observed intense long-wavelength absorptions. While mononuclear 1 is calculated with a lower net ruthenium-to-abpy charge shift as illustrated by the computed 1.30 A for d(N-N), compound 4 with the stronger pi accepting abcp bridge is calculated with a slightly lengthened N-N distance relative to that of 2. The formulation of the dinuclear systems with monoanionic bridging ligands implies an obviously valence-averaged Ru(III)Ru(II) mixed-valent state for the neutral molecules. Mixed valency in conjunction with an anion radical bridging ligand had been discussed before in the discussion of MLCT excited states of symmetrically dinuclear coordination compounds. Whereas 1 still exhibits a conventional electrochemical and spectroelectrochemical behavior with metal centered oxidation and two ligand-based one-electron reduction waves, the two one-electron oxidation and two one-electron reduction processes for each of the dinuclear compounds Ru2.5(L*-)Ru2.5 reveal more unusual features via EPR and UV-vis-NIR spectroelectrochemistry. In spite of intense near-infrared absorptions, the EPR results show that the first reduction leads to Ru(II)(L*-)Ru(II) species, with an increased metal contribution for system 4*-. The second reduction to Ru(II)(L2-)Ru(II) causes the disappearance of the NIR band. One-electron oxidation of the Ru2.5(L*-)Ru2.5 species produces a metal-centered spin for which the alternatives RuIII(L0)Ru(II) or Ru(III)(L*-)Ru(III) can be formulated. The absence of NIR bands as common for mixed-valent species with intervalence charge transfer (IVCT) absorption favors the second alternative. The second one-electron oxidation is likely to produce a dication with Ru(III)(L0)Ru(III) formulation. The usefulness and limitations of the increasingly popular structure/oxidation state correlations for complexes with noninnocent ligands is being discussed.

  19. Study of angular momentum variation due to entrance channel effect in heavy ion fusion reactions

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay

    2014-05-01

    A systematic investigation of the properties of hot nuclei may be studied by detecting the evaporated particles. These emissions reflect the behavior of the nucleus at various stages of the deexcitation cascade. When the nucleus is formed by the collision of a heavy nucleus with a light particle, the statistical model has done a good job of predicting the distribution of evaporated particles when reasonable choices were made for the level densities and yrast lines. Comparison to more specific measurements could, of course, provide a more severe test of the model and enable one to identify the deviations from the statistical model as the signature of other effects not included in the model. Some papers have claimed that experimental evaporation spectra from heavy-ion fusion reactions at higher excitation energies and angular momenta are no longer consistent with the predictions of the standard statistical model. In order to confirm this prediction we have employed two systems, a mass-symmetric (31P+45Sc) and a mass-asymmetric channel (12C+64Zn), leading to the same compound nucleus 76Kr* at the excitation energy of 75 MeV. Neutron energy spectra of the asymmetric system (12C+64Zn) at different angles are well described by the statistical model predictions using the normal value of the level density parameter a = A/8 MeV-1. However, in the case of the symmetric system (31P+45Sc), the statistical model interpretation of the data requires the change in the value of a = A/10 MeV-1. The delayed evolution of the compound system in case of the symmetric 31P+45Sc system may lead to the formation of a temperature equilibrated dinuclear complex, which may be responsible for the neutron emission at higher temperature, while the protons and alpha particles are evaporated after neutron emission when the system is sufficiently cooled down and the higher g-values do not contribute in the formation of the compound nucleus for the symmetric entrance channel in case of charged particle emission.

  20. Structural Evidence of a Major Conformational Change Triggered by Substrate Binding in DapE Enzymes: Impact on the Catalytic Mechanism.

    PubMed

    Nocek, Boguslaw; Reidl, Cory; Starus, Anna; Heath, Tahirah; Bienvenue, David; Osipiuk, Jerzy; Jedrzejczak, Robert; Joachimiak, Andrzej; Becker, Daniel P; Holz, Richard C

    2018-02-06

    The X-ray crystal structure of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae (HiDapE) bound by the products of hydrolysis, succinic acid and l,l-DAP, was determined at 1.95 Å. Surprisingly, the structure bound to the products revealed that HiDapE undergoes a significant conformational change in which the catalytic domain rotates ∼50° and shifts ∼10.1 Å (as measured at the position of the Zn atoms) relative to the dimerization domain. This heretofore unobserved closed conformation revealed significant movements within the catalytic domain compared to that of wild-type HiDapE, which results in effectively closing off access to the dinuclear Zn(II) active site with the succinate carboxylate moiety bridging the dinculear Zn(II) cluster in a μ-1,3 fashion forming a bis(μ-carboxylato)dizinc(II) core with a Zn-Zn distance of 3.8 Å. Surprisingly, His194.B, which is located on the dimerization domain of the opposing chain ∼10.1 Å from the dinuclear Zn(II) active site, forms a hydrogen bond (2.9 Å) with the oxygen atom of succinic acid bound to Zn2, forming an oxyanion hole. As the closed structure forms upon substrate binding, the movement of His194.B by more than ∼10 Å is critical, based on site-directed mutagenesis data, for activation of the scissile carbonyl carbon of the substrate for nucleophilic attack by a hydroxide nucleophile. Employing the HiDapE product-bound structure as the starting point, a reverse engineering approach called product-based transition-state modeling provided structural models for each major catalytic step. These data provide insight into the catalytic reaction mechanism and also the future design of new, potent inhibitors of DapE enzymes.

  1. X-ray crystal structure and theoretical study of a new dinuclear Cu(II) complex with two different geometry centers bridged with an oxo group

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Azimi, Saeid; Molaei, Atefeh; Hatami, Masoud; Notash, Behrouz

    2017-10-01

    A new Schiff base ligand HL, 1,3-bis(2-((Z)-(2-aminoethylimino)methyl)phenoxy)ethylene di amine, has been synthesized from the reaction of a new aldehyde and ethylenediamine. After preparation the Schiff base, a new dinuclear Cu(II) complex with two different geometry for each metal ion was synthesized. Single crystal X-ray structure analysis of the complex Cu(II) showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. The crystal structure studying shows, a perchlorate ion has been coordinated to the two Cu(II) metal centers as bridged and another perchlorate coordinated to the one of Cu(II) ion as terminal. However, two interesting structures square pyramidal and distorted octahedral Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, we had a theoretical study to have a comparison of experimental and theoretical results we determined the HOMO and LUMO orbitals.

  2. Different zinc(II) complex species and binding modes at Aβ N-terminus drive distinct long range cross-talks in the Aβ monomers.

    PubMed

    Pietropaolo, Adriana; Satriano, Cristina; Strano, Gaetano; La Mendola, Diego; Rizzarelli, Enrico

    2015-12-01

    The present study addresses the reconstruction of the free-energy landscapes of amyloid-beta1-42 (Aβ42) coordinated respectively with one and two zinc ions, to scrutinize whether different Aβ-zinc complex species, i.e., mononuclear and dinuclear metal complexes, induce different Aβ conformation features. We found a subtle switch of intramolecular interactions, depending both on the zinc coordination environment and on the peptide to zinc stoichiometric ratio. On the one side, hairpin-like structures are predominant in mononuclear complexes, where a salt-bridge that involves Lys28-Glu22 and Lys16-Asp23 is stabilized. On the other side, elongated conformations are instead stabilized in the dinuclear zinc complexes. Experimental studies of atomic force microscopy as well as of zinc-Aβ complex species distribution diagrams provide evidence that the theoretical calculations can be rationalized in terms of the correlation between the increased amount of amorphous aggregates and the Aβ/Zn(2+) ratio. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A novel organic-inorganic hybrid based on a dinuclear copper (II)-oxalate complex, a α-metatungstate cluster [H 2W 12O 40] 6- with catalytic activity in H 2O 2 decomposition

    NASA Astrophysics Data System (ADS)

    Sun, Ping; Liu, Shuxia; Feng, Dan; Ma, Fengji; Zhang, Wei; Ren, Yuanhang; Cao, Jianfang

    2010-04-01

    A novel organic-inorganic hybrid compound H 2[Cu 2(bpy) 2(H 2O) 2(μ-ox)] 2[H 2W 12O 40]·9H 2O ( 1) (2,2 '-bipyrine and ox = oxalate) has been successfully synthesized under open-air mild reaction condition and characterized by elemental analysis, IR spectrum, thermal stability analysis, single-crystal X-ray diffraction and magnetic susceptibility measurement. The main structural feature of compound 1 is the presence of α-metatungstate cluster [H 2W 12O 40] 6- as inorganic building blocks, on which the bridged-oxalate dinuclear copper metalorganic units are supported. Magnetic susceptibility studies reveal that the compound 1 shows paramagnetic property with a magnetic moment about the Cu 2+ ion, indicating antiferromagnetic coupling between the neighboring Cu 2+ ions in the structure. The compound 1 also displays a good catalytic activity with the conversion 42.4% for H 2O 2 decomposition.

  4. Coordination chemistry with phosphine and phosphine oxide-substituted hydroxyferrocenes.

    PubMed

    Atkinson, Robert C J; Gibson, Vernon C; Long, Nicholas J; White, Andrew J P

    2010-08-28

    New unsymmetrical hydroxyferrocenes were synthesised from dibromoferrocene. The oxygen heteroatom was introduced via lithiation and quenching with bis-trimethylsilylperoxide followed by hydrolysis to unmask the hydroxyl functionality. The coordination chemistry of 1'-(diphenylphosphino)-1-hydroxyferrocene 2 was explored with palladium and rhodium precursors. A dinuclear palladium methyl complex with bridging ferrocenyloxo groups was obtained from the reaction between 2 and (cyclooctadiene)methylchloropalladium(II). With tetracarbonyldichlorodirhodium(I), two complexes were isolated. The major product was a bis ligand cis phosphine ligated complex with one ligand bound in a chelating mode and one with a pendant hydroxyl group. A minor product was crystallographically characterised as a dinuclear ferrocenyloxo-bridged rhodium carbonyl complex. The coordination chemistry of 2 and the corresponding phosphine oxide 3 was examined with group 4 metals and the resulting complexes examined as ethylene polymerisation catalysts. The ligands were found to bind in either a chelating fashion or with pendant phosphine donors. In all cases, low to moderately active ethylene polymerisation catalysts were found. The catalysts were very unstable and catalyst residues were observed in the isolated polymer indicating a short catalyst lifetime.

  5. Novel Rhenium(III, IV, and V) Tetradentate N2O2 Schiff Base Mononuclear and Dinuclear Complexes

    PubMed Central

    Rotsch, David A.; Reinig, Kimberly M.; Weis, Eric M.; Taylor, Anna B.; Barnes, Charles L.

    2013-01-01

    Reaction of (Bu4N)[ReOCl4] with the tetradentate Schiff base ligand α, α’-[(1,1-dimethylethylene)dinitrilo]di-o-cresol (sal2ibnH2) yields cis-[ReVOCl(sal2ibn)], which quickly forms trans-[μ-O(ReVO(sal2ibn))2] in solution. The dinuclear complex can also be isolated by the addition of base (Et3N) to the reaction mixture. Conversely, the mononuclear complex can be trapped as cis-[ReVO(NCS)(sal2ibn)] by addition of (Bu4N)SCN to the reaction mixture. Reduction of cis-[ReVO(NCS)sal2ibn] with triphenylphosphine gives the unique trans-[ReIII(NCS)(PPh3)(sal2ibn)] and rare μ-oxo Re(IV) dimer trans-[μ-O(ReIV(NCS)(sal2ibn))2]. All of the complexes were characterized by 1H and 13C NMR, FT-IR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), cyclic voltammetry and single crystal X-ray diffraction. PMID:23824208

  6. 1,5-Diamido-9,10-anthraquinone, a Centrosymmetric Redox-Active Bridge with Two Coupled β-Ketiminato Chelate Functions: Symmetric and Asymmetric Diruthenium Complexes.

    PubMed

    Ansari, Mohd Asif; Mandal, Abhishek; Paretzki, Alexa; Beyer, Katharina; Fiedler, Jan; Kaim, Wolfgang; Lahiri, Goutam Kumar

    2016-06-06

    The dinuclear complexes {(μ-H2L)[Ru(bpy)2]2}(ClO4)2 ([3](ClO4)2), {(μ-H2L)[Ru(pap)2]2}(ClO4)2 ([4](ClO4)2), and the asymmetric [(bpy)2Ru(μ-H2L)Ru(pap)2](ClO4)2 ([5](ClO4)2) were synthesized via the mononuclear species [Ru(H3L)(bpy)2]ClO4 ([1]ClO4) and [Ru(H3L)(pap)2]ClO4 ([2]ClO4), where H4L is the centrosymmetric 1,5-diamino-9,10-anthraquinone, bpy is 2,2'-bipyridine, and pap is 2-phenylazopyridine. Electrochemistry of the structurally characterized [1]ClO4, [2]ClO4, [3](ClO4)2, [4](ClO4)2, and [5](ClO4)2 reveals multistep oxidation and reduction processes, which were analyzed by electron paramagnetic resonance (EPR) of paramagnetic intermediates and by UV-vis-NIR spectro-electrochemistry. With support by time-dependent density functional theory (DFT) calculations the redox processes could be assigned. Significant results include the dimetal/bridging ligand mixed spin distribution in 3(3+) versus largely bridge-centered spin in 4(3+)-a result of the presence of Ru(II)-stabilizig pap coligands. In addition to the metal/ligand alternative for electron transfer and spin location, the dinuclear systems allow for the observation of ligand/ligand and metal/metal site differentiation within the multistep redox series. DFT-supported EPR and NIR absorption spectroscopy of the latter case revealed class II mixed-valence behavior of the oxidized asymmetric system 5(3+) with about equal contributions from a radical bridge formulation. In comparison to the analogues with the deprotonated 1,4-diaminoanthraquinone isomer the centrosymmetric H2L(2-) bridge shows anodically shifted redox potentials and weaker electronic coupling between the chelate sites.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiao-Ling; Liu, Guang-Zhen, E-mail: gzliuly@126.com; Xin, Ling-Yun

    Two topologically new Mn(II) coordination polymers, namely ([Mn{sub 2}(H{sub 4}ipca)(4,4′-bpy){sub 1.5}(CH{sub 3}CH{sub 2}OH){sub 0.5}(H{sub 2}O){sub 1.5}]·0.5CH{sub 3}CH{sub 2}OH·2.5H{sub 2}O){sub n} (1) and (Mn{sub 4}(H{sub 4}ipca){sub 2}(bze)(H{sub 2}O){sub 4}){sub n} (2) were prepared by the solvothermal reactions of Mn(II) acetate with 5-(2’,3’-dicarboxylphenoxy)isophthalic acid (H{sub 4}ipca) in the presence of different N-donor coligands (4,4′-bpy=4,4′-bipyridyl and bze=1, 4-bis(1-imidazoly)benzene). The single crystal X-ray diffractions reveal that two complexes display 3D metal-organic frameworks with binuclear and tetranuclear Mn(II) units, respectively. Complex 1 features a (3,4,6)-connected porous framework based on dinuclear Mn(II) unit with the (4.5{sup 2}){sub 2}(4{sup 2}.6{sup 8}.8{sup 3}.9{sup 2})(5{sup 2}.8.9{sup 2}.10) new topology,more » and complex 2 possesses a (3,8)-connected network based on tetranuclear Mn(II) unit with the (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 14}.7{sup 7}.8{sup 2}.9) new topology. Magnetic analyses indicate that both two compounds show weak antiferromagnetic interactions within binuclear and tetranuclear Mn(II) units. - Graphical abstract: Two topologically new Mn(II) metal-organic frameworks with dinuclear and tetranuclear Mn(II) units respectively were assembled by using 5-(2′,3′-Dicarboxylphenoxy)isophthalic acid and N-donor ancillary coligands. Magnetic analysis revealed the existence of dominant antiferromagnetic interactions within the polynuclear Mn(II) units. - Highlights: • Mixed ligand strategy produces two topologically new MOFs with dinuclear and tetranuclear Mn(II) respectively. • Magnetic fitting gives weak antiferromagnetic interactions within the polynuclear Mn(II) units.« less

  8. Steric Effects on the Binding of Phosphate and Polyphosphate Anions by Zinc(II) and Copper(II) Dinuclear Complexes of m-Xylyl-bis-cyclen.

    PubMed

    Esteves, Catarina V; Esteban-Gómez, David; Platas-Iglesias, Carlos; Tripier, Raphaël; Delgado, Rita

    2018-05-11

    The triethylbenzene-bis-cyclen (cyclen = 1,4,7,10-tetraazacyclododecane) compound (tbmce) was designed with an imposed structural rigidity at the m-xylyl spacer to be compared to a less restrained and known parent compound (bmce). The framework of both compounds differs only in the substituents of the m-xylyl spacer. The study was centered in the differences observed in the acid-base reactions of both compounds, their copper(II) and zinc(II) complexation behaviors, as well as in the uptake of phosphate and polyphosphate anions (HPPi 3- , ATP 4- , ADP 3- , AMP 2- , PhPO 4 2- , and HPO 4 2- ). On the one hand, the acid-base reactions showed lower values for the third and fourth protonation constants of tbmce than for bmce, suggesting that the ethyl groups of the spacer in tbmce force the two cyclen units to more conformational restricted positions. On the other hand, the stability constant values for copper(II) and zinc(II) complexes revealed that bmce is a better chelator than tbmce pointing out to additional conformational restraints imposed by the triethylbenzene spacer. The binding studies of phosphates by the dinuclear copper(II) and zinc(II) complexes showed much smaller effective association constants for the dicopper complexes. Single-crystal X-ray and computational (density functional theory) studies suggest that anion binding promotes the formation of tetranuclear entities in which anions are bridging the metal centers. Our studies also revealed the dinuclear zinc(II) complex of bmce as a promising receptor for phosphate anions, with the largest effective association constant of 5.94 log units being observed for the formation of [Zn 2 bmce(HPPi)] + . Accordingly, a colorimetric study via an indicator displacement assay to detect phosphates in aqueous solution found that the [Zn 2 bmce] 4+ complex acts as the best receptor for pyrophosphate displaying a detection limit of 2.5 nM by changes visible to naked eye.

  9. Half a grid is better than no grid: competition between 2,2':6',2''-terpyridine and 3,6-di(pyrid-2-yl)pyridazine for copper(II).

    PubMed

    Constable, Edwin C; Decurtins, Silvio; Housecroft, Catherine E; Keene, Tony D; Palivan, Cornelia G; Price, Jason R; Zampese, Jennifer A

    2010-03-07

    The reaction between Cu(NO(3))(2).3H(2)O, 2,2':6',2''-terpyridine (tpy) and 3,6-di(pyrid-2-yl)pyridazine (1) in a 2 : 2 : 1 molar equivalent ratio in aqueous MeCN in the presence of excess NH(4)PF(6) leads to competition between the assembly of the dinuclear half-grid [Cu(2)(1)(tpy)(2)][PF(6)](4).2H(2)O and the mononuclear complex [Cu(1)(2)(OH(2))][PF(6)](2). The yield of [Cu(2)(1)(tpy)(2)][PF(6)](4).2H(2)O has been optimized using microwave conditions. [Cu(1)(2)(OH(2))][PF(6)](2) can be selectively produced by treating Cu(NO(3))(2).3H(2)O with 1 (1 : 2 molar equivalents) in aqueous MeCN in the presence of NH(4)PF(6). The single crystal structures of [Cu(2)(1)(tpy)(2)][PF(6)](4).4MeNO(2) and [Cu(1)(2)(OH(2))][PF(6)](2) are presented. In the [Cu(2)(1)(tpy)(2)](4+) cation, ligand 1 bridges the two copper(II) centres, each of which is further coordinated by a tpy ligand. The copper(II) coordination geometry is closely associated with the arrangement of the two tpy ligands which engage in efficient face-to-face pi-stacking. Magnetic data for crystalline [Cu(2)(1)(tpy)(2)][PF(6)](4).4MeNO(2) are consistent with a weak antiferromagnetic interaction between the two copper(II) centres. EPR spectroscopic data for a powder sample of [Cu(2)(1)(tpy)(2)][PF(6)](4).2H(2)O are consistent with the dinuclear structure, but in frozen DMF and DMSO solutions, the data indicate that the dinuclear structure of [Cu(2)(1)(tpy)(2)](4+) is not preserved.

  10. The first example of erbium triple-stranded helicates displaying SMM behaviour.

    PubMed

    Gorczyński, Adam; Kubicki, Maciej; Pinkowicz, Dawid; Pełka, Robert; Patroniak, Violetta; Podgajny, Robert

    2015-10-14

    A series of isostructural C3-symmetrical triple stranded dinuclear lanthanide [Ln2L3](NO3)3 molecules have been synthesized using subcomponent self-assembly of Ln(NO3)3 with 2-(methylhydrazino)benzimidazole and 4-tert-butyl-2,6-diformylphenol, where Ln = Tb (1), Dy (2), Ho (3), Er (4), Tm (5), and Yb (6). The temperature dependent and field dependent magnetic properties of 1-6 were modeled using the van Vleck approximation including the crystal field term HCF, the super-exchange term HSE and the Zeeman term HZE. Ferromagnetic interactions were found in 1, 2, 4 and 6, while antiferromagnetic interactions were found in 3 and 5. The erbium analogue reveals field induced SMM behaviour.

  11. Mononuclear Copper Complex Catalyzed Four-Electron Reduction of Oxygen

    PubMed Central

    Fukuzumi, Shunichi; Kotani, Hiroaki; Lucas, Heather R.; Doi, Kaoru; Suenobu, Tomoyoshi; Peterson, Ryan L.; Karlin, Kenneth D.

    2010-01-01

    A mononuclear CuII complex acts as an efficient catalyst for four-electron reduction of O2 to H2O by a ferrocene derivative via formation of the dinuclear CuII peroxo complex that is further reduced in the presence of protons by a ferrocene derivative to regenerate the CuII complex. PMID:20443560

  12. Slow magnetic relaxation in carbonato-bridged dinuclear lanthanide(III) complexes with 2,3-quinoxalinediolate ligands.

    PubMed

    Vallejo, Julia; Cano, Joan; Castro, Isabel; Julve, Miguel; Lloret, Francesc; Fabelo, Oscar; Cañadillas-Delgado, Laura; Pardo, Emilio

    2012-08-11

    The coordination chemistry of the 2,3-quinoxalinediolate ligand with different lanthanide(III) ions in basic media in air affords a new family of carbonato-bridged M(2)(III) compounds (M = Pr, Gd and Dy), the Dy(2)(III) analogue exhibiting slow magnetic relaxation behaviour typical of single-molecule magnets.

  13. Enhancing catalytic activity by narrowing local energy gaps--X-ray studies of a manganese water oxidation catalyst.

    PubMed

    Xiao, Jie; Khan, Munirah; Singh, Archana; Suljoti, Edlira; Spiccia, Leone; Aziz, Emad F

    2015-03-01

    Changes in the local electronic structure of the Mn 3d orbitals of a Mn catalyst derived from a dinuclear Mn(III) complex during the water oxidation cycle were investigated ex situ by X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) analyses. Detailed information about the Mn 3d orbitals, especially the local HOMO-LUMO gap on Mn sites revealed by RIXS analyses, indicated that the enhancement in catalytic activity (water oxidation) originated from the narrowing of the local HOMO-LUMO gap when electrical voltage and visible light illumination were applied simultaneously to the Mn catalytic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Modulating the single-molecule magnet behaviour in phenoxo-O bridged Dy2 systems via subtle structural variations

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Min; Zhao, Xiao-Yu; Qiao, Hui; Bai, Li; Han, Hong-Fei; Fang, Ming; Wu, Zhi-Lei; Zou, Ji-Yong

    2017-09-01

    In search of simple approaches to rationally modulate the single-molecule magnet behaviour in polynuclear lanthanide compound, a new system containing two structurally closely related dinuclear dysprosium complexes, namely [Dy2(hfac)4L2] (1) and [Dy2(hfac)4L‧2] (2) (hfac = hexafluoroacetylacetonate, HL = 2-[4-methylaniline-imino]methyl]-8-hydroxyquinoline and HL' = 2-[(3,4-dimethylaniline)-imino]methyl]-8-hydroxyquinoline), are successfully synthesized and the structure-dependent magnetic properties are investigated. The two Dy2 compounds display only slight variations in the coordination geometries of the center Dy(III) ion but display remarkably different single-molecule magnet behaviors with the anisotropic barriers (ΔE/kB) of 9.91 K for 1 and 20.57 K for 2. The different magnetic relaxation behaviors of the two Dy2 complexes mainly originate from the different chemical environments of the central DyIII ions.

  15. Synthesis and structural characterization of dinuclear Cd2+, Hg2+ and Fe2+ complexes with neutral bi and tetradentate flexible pyrazole-based ligands

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Lalegani, Arash; Behvandi, Fatemeh; Safaeiyan, Forough; Sarkarzadeh, Afsoon; Bruno, Giuseppe; Amiri Rudbari, Hadi

    2015-02-01

    Four new complexes of [Hg2Cl4(bpp)]n (1), [Hg2Cl4(tdmpp)] (2), [Cd2I4(tdmpp)] (3) and [Fe2Cl4(tdmpp)] (4) were prepared by using the neutral N-donor ligands 1,3-bis(3,5-dimethyl-1-pyrazolyl)propane (bpp) and 1,1,3,3-tetrakis(3,5-dimethyl-1-pyrazolyl)propane (tdmpp) with different flexibility and appropriate metal salts of Cd(II), Hg(II) and Fe(II) ions. These compounds were characterized by the infrared spectroscopy, elemental analysis and X-ray crystallography. Flexible ligands and non-covalent Csbnd H⋯Cl hydrogen bonds play a major role in the crystal packing of compounds 1, 2 and 4. In the two-dimensional non-covalent structure of 1, there are two distinctly different coordination modes for the mercury atoms. One mercury atom has pseudo-trigonal bipyramidal geometry and the other adopts a distorted tetrahedral environment. In the dinuclear structures of 2 and 4 the neutral molecules are linked together by the Csbnd H⋯Cl hydrogen bonds, forming an infinite one-dimensional zigzag chain structure. Compounds 2-4 are isostructural with each other.

  16. Synthesis and antibacterial studies of rhodium and iridium complexes comprising of dipyridyl hydrazones

    NASA Astrophysics Data System (ADS)

    Aradhyula, Basava Punna Rao; Joshi, Nidhi; Poluri, Krishna Mohan; Kollipara, Mohan Rao

    2018-07-01

    Reactions of Cp*Rh and Cp*Ir dimers with the dipyridyl hydrazones such as picolinic (L1), nicotinic (L2) and isonicotinic (L3) have been reported here with the formulations [Cp*MClL3](PF6) {where M = Rh (5) and Ir (6)}, [(Cp*MCl)2L1](PF6) {where M = Rh (7) and Ir (8)}, [(Cp*MCl)2L2Cl](PF6) {where M = Rh(9) and Ir(10)}, and [(Cp*MCl)2L3Cl](PF6) {where M = Rh (11) and Ir (12)} which resulted in a series of mono- and di-nuclear cationic complexes. The complexes have been characterized by various spectroscopic techniques. The solid-state structures of three complexes (5, 6 and 8) have been determined by single-crystal X-ray diffraction studies. These cationic complexes have been evaluated for the preliminary antibacterial activity towards four bacterial strains viz., Staphylococcus aureus; Bacillus thuringiensis; Escherichia coli and Pseudomonas aeruginosa by agar well diffusion method. Complexes have exhibited zone of inhibition over Bacillus thuringiensis; Escherichia coli and Pseudomonas aeruginosa strains while Staphylococcus aureus strain is resistant to the complexes 9-12. Surprisingly, these complexes are di-nuclear and trichloride complexes.

  17. Hydrogen peroxide and dioxygen activation by dinuclear copper complexes in aqueous solution: hydroxyl radical production initiated by internal electron transfer.

    PubMed

    Zhu, Qing; Lian, Yuxiang; Thyagarajan, Sunita; Rokita, Steven E; Karlin, Kenneth D; Blough, Neil V

    2008-05-21

    Dinuclear Cu(II) complexes, CuII2Nn (n = 4 or 5), were recently found to specifically cleave DNA in the presence of a reducing thiol and O2 or in the presence of H2O2 alone. However, CuII2N3 and a closely related mononuclear Cu(II) complex exhibited no selective reaction under either condition. Spectroscopic studies indicate an intermediate is generated from CuII2Nn (n = 4 or 5) and mononuclear Cu(II) solutions in the presence of H2O2 or from CuI2Nn (n = 4 or 5) in the presence of O2. This intermediate decays to generate OH radicals and ligand degradation products at room temperature. The lack of reactivity of the intermediate with a series of added electron donors suggests the intermediate discharges through a rate-limiting intramolecular electron transfer from the ligand to the metal peroxo center to produce an OH radical and a ligand-based radical. These results imply that DNA cleavage does not result from direct reaction with a metal-peroxo intermediate but instead arises from reaction with either OH radicals or ligand-based radicals.

  18. Di-nuclear Cu(I) Complex with Combined Bright TADF and Phosphorescence. Zero-Field Splitting and Spin-Lattice Relaxation Effects of the Triplet State.

    PubMed

    Schinabeck, Alexander; Leitl, Markus J; Yersin, Hartmut

    2018-05-11

    The three-fold bridged di-nuclear Cu(I) complex Cu 2 (µ-I) 2 (1N-n-butyl-5-diphenyl-phosphino-1,2,4-triazole) 3 , Cu 2 I 2 (P^N) 3 , shows bright thermally activated delayed fluorescence (TADF) as well as phosphorescence at ambient temperature with a total quantum yield of 85 % at an emission decay time of 7 μs. The singlet(S 1 )-triplet(T 1 ) energy gap is as small as only 430 cm -1 (54 meV). Spin-orbit-coupling induces a short-lived phosphorescence with a decay time of 52 μs (T = 77 K) and a distinct zero-field splitting (ZFS) of T 1 into substates by ≈ 2.5 cm -1 (0.3 meV). Below T ≈ 10 K, effects of spin-lattice relaxation (SLR) are observed and agree with the size of ZFS. According to the combined phosphorescence and TADF, the overall emission decay time is reduced by ≈ 13 % as compared to the TADF-only process. The compound may potentially be applied in solution-processed OLEDs exploiting both the singlet and triplet harvesting mechanisms.

  19. A kinetico-mechanistic study on the C-H bond activation of primary benzylamines; cooperative and solid-state cyclopalladation on dimeric complexes.

    PubMed

    Font, Helena; Font-Bardia, Mercè; Gómez, Kerman; González, Gabriel; Granell, Jaume; Macho, Israel; Martínez, Manuel

    2014-09-28

    The cyclometallation reactions of dinuclear μ-acetato complexes of the type [Pd(AcO)(μ-AcO)L]2 (L = 4-RC6H4CH2NH2, R = H, Cl, F, CF3), a process found to occur readily even in the solid state, have been studied from a kinetico-mechanistic perspective. Data indicate that the dinuclear acetato bridged derivatives are excellent starting materials to activate carbon-hydrogen bonds in a facile way. In all cases the established concerted ambiphilic proton abstraction by a coordinated acetato ligand has been proved. The metallation has also been found to occur in a cooperative manner, with the metallation of the first palladium unit of the dimeric complex being rate determining; no intermediate mono-metallated compounds are observed in any of the processes. The kinetically favoured bis-cyclopalladated compound obtained after complete C-H bond activation does not correspond to the final isolated XRD-characterized complexes. This species, bearing the classical open-book dimeric form, has a much more complex structure than the final isolated compound, with different types of acetato ligands.

  20. Processes in massive nuclei reactions and the way to complete fusion of reactants. What perspectives for the synthesis of heavier superheavy elements?

    NASA Astrophysics Data System (ADS)

    Mandaglio, G.; Nasirov, A. K.; Curciarello, F.; De Leo, V.; Romaniuk, M.; Fazio, G.; Giardina, G.

    2012-12-01

    By using the dinuclear system (DNS) model we determine the capture of reactants at the first stage of reaction, the competition between the DNS decay by the quasifission (QF) and the complete fusion (CF) process up to formation of the compound nucleus (CN) having compact shape. Further evolution of the CN is considered as its fission into two fragments or formation of evaporation residues (ER) by its cooling after emission of neutrons or/and charged light particles. Disappearance of the CN fission barrier due to its fast rotation leads to the fast fission (FF) by formation of fissionlike fragments. The results of calculations for the mass symmetric 136Xe+136Xe reaction, almost mass symmetric 108Mo+144Ba reaction, and mass asymmetric like 24Mg+238U and 34S+248Cm reactions are discussed. The fusion probability PCN calculated for many massive nuclei reactions leading to formation of superheavy nuclei have been analyzed. The reactions which can lead in perspective to the synthesis of superheavy elements in the Z = 120 - 126 range and, eventually, also to heaviest nuclei, are discussed.

  1. Mechanistic investigations of imine hydrogenation catalyzed by dinuclear iridium complexes.

    PubMed

    Martín, Marta; Sola, Eduardo; Tejero, Santiago; López, José A; Oro, Luis A

    2006-05-15

    Treatment of [Ir2(mu-H)(mu-Pz)2H3(NCMe)(PiPr3)2] (1) with one equivalent of HBF4 or [PhNH=CHPh]BF4 affords efficient catalysts for the homogeneous hydrogenation of N-benzylideneaniline. The reaction of 1 with HBF4 leads to the trihydride-dihydrogen complex [Ir2(mu-H)(mu-Pz)2H2(eta2-H2)(NCMe)(PiPr3)2]BF4 (2), which has been characterized by NMR spectroscopy and DFT calculations on a model complex. Complex 2 reacts with imines such as tBuN=CHPh or PhN=CHPh to afford amine complexes [Ir2(mu-H)(mu-Pz)2H2(NCMe){L}(PiPr3)2]BF4 (L = NH(tBu)CH2Ph, 3; NH(Ph)CH2Ph, 4) through a sequence of proton- and hydride-transfer steps. Dihydrogen partially displaces the amine ligand of 4 to form 2; this complements a possible catalytic cycle for the N-benzylideneaniline hydrogenation in which the amine-by-dihydrogen substitution is the turnover-determining step. The rates of ligand substitution in 4 and its analogues with labile ligands other than amine are dependent upon the nature of the leaving ligand and independent on the incoming ligand concentration, in agreement with dissociative substitutions. Water complex [Ir2(mu-H)(mu-Pz)2H2(NCMe)(OH2)(PiPr3)2]BF4 (7) hydrolyzes N-benzylideneaniline, which eventually affords the poor hydrogenation catalyst [Ir2(mu-H)(mu-Pz)2H2(NCMe)(NH2Ph)(PiPr3)2]BF4 (11). The rate law for the catalytic hydrogenation in 1,2-dichloroethane with complex [Ir2(mu-H)(mu-Pz)2H2(OSO2CF3)(NCMe)(PiPr3)2] (8) as catalyst precursor is rate = k[8]{p(H2)}; this is in agreement with the catalytic cycle deduced from the stochiometric experiments. The hydrogenation reaction takes place at a single iridium center of the dinuclear catalyst, although ligand modifications at the neighboring iridium center provoke changes in the hydrogenation rate. Even though this catalyst system is also capable of effectively hydrogenating alkenes, N-benzylideneaniline can be selectively hydrogenated in the presence of simple alkenes.

  2. On the nature of Ni···Ni interaction in a model dimeric Ni complex.

    PubMed

    Kamiński, Radosław; Herbaczyńska, Beata; Srebro, Monika; Pietrzykowski, Antoni; Michalak, Artur; Jerzykiewicz, Lucjan B; Woźniak, Krzysztof

    2011-06-07

    A new dinuclear complex (NiC(5)H(4)SiMe(2)CHCH(2))(2) (2) was prepared by reacting nickelocene derivative [(C(5)H(4)SiMe(2)CH=CH(2))(2)Ni] (1) with methyllithium (MeLi). Good quality crystals were subjected to a high-resolution X-ray measurement. Subsequent multipole refinement yielded accurate description of electron density distribution. Detailed inspection of experimental electron density in Ni···Ni contact revealed that the nickel atoms are bonded and significant deformation of the metal valence shell is related to different populations of the d-orbitals. The existence of the Ni···Ni bond path explains the lack of unpaired electrons in the complex due to a possible exchange channel.

  3. Revisiting the Electronic Structure of FeS Monomers Using ab Initio Ligand Field Theory and the Angular Overlap Model.

    PubMed

    Chilkuri, Vijay Gopal; DeBeer, Serena; Neese, Frank

    2017-09-05

    Iron-sulfur (FeS) proteins are universally found in nature with actives sites ranging in complexity from simple monomers to multinuclear sites from two up to eight iron atoms. These sites include mononuclear (rubredoxins), dinuclear (ferredoxins and Rieske proteins), trinuclear (e.g., hydrogenases), and tetranuclear (various ferredoxins and high-potential iron-sulfur proteins). The electronic structure of the higher-nuclearity clusters is inherently extremely complex. Hence, it is reasonable to take a bottom-up approach in which clusters of increasing nuclearity are analyzed in terms of the properties of their lower nuclearity constituents. In the present study, the first step is taken by an in-depth analysis of mononuclear FeS systems. Two different FeS molecules with phenylthiolate and methylthiolate as ligands are studied in their oxidized and reduced forms using modern wave function-based ab initio methods. The ab initio electronic spectra and wave function are presented and analyzed in detail. The very intricate electronic structure-geometry relationship in these systems is analyzed using ab initio ligand field theory (AILFT) in conjunction with the angular overlap model (AOM) parametrization scheme. The simple AOM model is used to explain the effect of geometric variations on the electronic structure. Through a comparison of the ab initio computed UV-vis absorption spectra and the available experimental spectra, the low-energy part of the many-particle spectrum is carefully analyzed. We show ab initio calculated magnetic circular dichroism spectra and present a comparison with the experimental spectrum. Finally, AILFT parameters and the ab initio spectra are compared with those obtained experimentally to understand the effect of the increased covalency of the thiolate ligands on the electronic structure of FeS monomers.

  4. Design of magnetic coordination complexes for quantum computing.

    PubMed

    Aromí, Guillem; Aguilà, David; Gamez, Patrick; Luis, Fernando; Roubeau, Olivier

    2012-01-21

    A very exciting prospect in coordination chemistry is to manipulate spins within magnetic complexes for the realization of quantum logic operations. An introduction to the requirements for a paramagnetic molecule to act as a 2-qubit quantum gate is provided in this tutorial review. We propose synthetic methods aimed at accessing such type of functional molecules, based on ligand design and inorganic synthesis. Two strategies are presented: (i) the first consists in targeting molecules containing a pair of well-defined and weakly coupled paramagnetic metal aggregates, each acting as a carrier of one potential qubit, (ii) the second is the design of dinuclear complexes of anisotropic metal ions, exhibiting dissimilar environments and feeble magnetic coupling. The first systems obtained from this synthetic program are presented here and their properties are discussed.

  5. Enantioselective ProPhenol-catalyzed addition of 1,3-diynes to aldehydes to generate synthetically versatile building blocks and diyne natural products.

    PubMed

    Trost, Barry M; Chan, Vincent S; Yamamoto, Daisuke

    2010-04-14

    A highly enantioselective method for the catalytic addition of terminal 1,3-diynes to aldehydes was developed using our dinuclear zinc ProPhenol (1) system. Furthermore, triphenylphosphine oxide was found to interact synergistically with the catalyst to substantially enhance the chiral recognition. The generality of this catalytic transformation was demonstrated with aryl, alpha,beta-unsaturated and saturated aldehydes, of which the latter were previously limited in alkynyl zinc additions. The chiral diynol products are also versatile building blocks that can be readily elaborated; this was illustrated through highly selective trans-hydrosilylations, which enabled the synthesis of a beta-hydroxyketone and enyne. Additionally, the development of this method allowed for the rapid total syntheses of several biologically important diynol-containing natural products.

  6. Electronic structure calculations on multiply charged anions containing M bond S bonds (M = Cr, Mo, W) and their heterobimetallic cluster complexes

    NASA Astrophysics Data System (ADS)

    Gili, Pedro; Tsipis, Athanassios C.

    Molecular and electronic structures of multiply charged mononuclear [CrS4]2-/3-, [MoOxS4-x]2-/3- (x = 0-4) and [WS4]2-/3- anionic species, and their heterobimetallic dinuclear and trinuclear clusters formulated as [MoOS3(CuCl)]2-, [WOS3(CuCl)]2-, [MoS4{Cu(CN)}]2-, [(CN)Cu(?-CrS4)Cu(CN)]2-, [(CN)Cu(?-MoS4)Cu(CN)]2-, [ClCu(?-MoS4)CuCl]2-, [Cl2Fe(?-MoS4)CuCl2]2-, and [(CN)Cu(?-WS4)Cu(CN)]2- have been investigated using electronic structure calculation (HF, MP4SDQ and DFT) methods. For the discrete mononuclear anions HF/lanl2dz(M)?6-31+G*(S,O) method provided the best description of their molecular structures, while for the heterobimetallic dinuclear and trinuclear clusters the B3LYP/lanl2dz(M)?6-31+G* method gave equilibrium geometries closely resembling the experimental ones. Electronic and spectroscopic (IR, UV-Vis) properties of the thiometalates are discussed in relation to their structures, while the bonding mechanism was analyzed in the framework of the natural bond orbital (NBO) approach. The nature of the highest occupied molecular orbitals (HOMOs) of all thiometalates indicated their ability to act as ligands coordinated with metal centers and forming clusters of higher nuclearity. The lowest-lying vertical one-electron detachment processes from the ground state of the [CrS4]2/3-, [MoOxS4-x]2/3- (x = 0-4) and [WS4]2/3- anions have been calculated using the outer valence Green's function (OVGF) method. Interestingly, in the heterobimetallic dinuclear and trinuclear clusters intemetallic M?M? interactions exist corresponding to d10 ? d0 dative bonding. Finally, the complete energetic and geometric profile of the successive acid-catalyzed formation reactions:and the reverse hydrolysis reactions have been delineated and details of the mechanism have been furnished.

  7. Biological processing of dinuclear ruthenium complexes in eukaryotic cells.

    PubMed

    Li, Xin; Heimann, Kirsten; Dinh, Xuyen Thi; Keene, F Richard; Collins, J Grant

    2016-10-20

    The biological processing - mechanism of cellular uptake, effects on the cytoplasmic and mitochondrial membranes, intracellular sites of localisation and induction of reactive oxygen species - of two dinuclear polypyridylruthenium(ii) complexes has been examined in three eukaryotic cells lines. Flow cytometry was used to determine the uptake of [{Ru(phen)2}2{μ-bb12}](4+) (Rubb12) and [Ru(phen)2(μ-bb7)Ru(tpy)Cl](3+) {Rubb7-Cl, where phen = 1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine and bbn = bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane} in baby hamster kidney (BHK), human embryonic kidney (HEK-293) and liver carcinoma (HepG2) cell lines. The results demonstrated that the major uptake mechanism for Rubb12 and Rubb7-Cl was active transport, although with a significant contribution from carrier-assisted diffusion for Rubb12 and passive diffusion for Rubb7-Cl. Flow cytometry coupled with Annexin V/TO-PRO-3 double-staining was used to compare cell death by membrane damage or apoptosis. Rubb12 induced significant direct membrane damage, particularly with HepG2 cells, while Rubb7-Cl caused considerably less membrane damage but induced greater levels of apoptosis. Confocal microscopy, coupled with JC-1 assays, demonstrated that Rubb12 depolarises the mitochondrial membrane, whereas Rubb7-Cl had a much smaller affect. Cellular localisation experiments indicated that Rubb12 did not accumulate in the mitochondria, whereas significant mitochondrial accumulation was observed for Rubb7-Cl. The effect of Rubb12 and Rubb7-Cl on intracellular superoxide dismutase activity showed that the ruthenium complexes could induce cell death via a reactive oxygen species-mediated pathway. The results of this study demonstrate that Rubb12 predominantly kills eukaryotic cells by damaging the cytoplasmic membrane. As this dinuclear ruthenium complex has been previously shown to exhibit greater toxicity towards bacteria than eukaryotic cells, the results of the present study suggest that metal-based cationic oligomers can achieve selective toxicity against bacteria, despite exhibiting a non-specific membrane damage mechanism of action.

  8. 3D coordination polymers with nitrilotriacetic and 4,4'-bipyridyl mixed ligands: structural variation based on dinuclear or tetranuclear subunits assisted by Na-O and/or O-H...O interactions.

    PubMed

    Lü, Xing-Qiang; Jiang, Ji-Jun; Chen, Chun-Long; Kang, Bei-Sheng; Su, Cheng-Yong

    2005-06-27

    The reactions of Cu(II) with the mixed nitrilotriacetic acid (H3NTA) and 4,4'-bipyridyl (4,4'-bpy) ligands in different metal-to-ligand ratios in the presence of NaOH and NaClO4 afforded two complexes, Na3[Cu2(NTA)2(4,4'-bpy)]ClO4 x 5H2O (1) and [Cu2(NTA) (4,4'-bpy)2]ClO4 x 4H2O (2). The two complexes have been characterized by elemental analysis, IR, XRD, and single-crystal X-ray diffraction. 1 contains a basic doubly negatively charged [Cu2(NTA)2(4,4'-bpy)]2- dinuclear unit which was further assembled via multiple Na-O and O-H...O interactions into a three-dimensional (3D) pillared-layer structure. 2 features a two-dimensional (2D) undulated brick-wall architecture containing a basic doubly positively charged [Cu4(NTA)2(4,4'-bpy)2]2+ tetranuclear unit. The 2D network possesses large cavities hosting guest molecules and was further assembled via O-H...O hydrogen bonds into a 3D structure with several channels running in different directions.

  9. Comparative study of mono- and dinuclear complexes of late 3d-metal chlorides with N,N-dimethylformamide in the gas phase.

    PubMed

    Duchácková, Lucie; Roithová, Jana; Milko, Petr; Zabka, Jan; Tsierkezos, Nikos; Schröder, Detlef

    2011-02-07

    Mono- and binuclear complexes of N,N-dimethylformamide (DMF) with chlorides of the divalent, late 3d metals M = Co, Ni, Cu, and Zn are investigated by means of electrospray ionization (ESI). Specifically, ESI leads to monocations of the type [(DMF)(n)MCl](+) and [(DMF)(n)M(2)Cl(3)](+), of which the species with n = 2 and 3 were selected for in-depth studies. The latter include collision-induced dissociation experiments, gas-phase infrared spectroscopy, and calculations using density functional theory. The mononuclear complexes [(DMF)(n)MCl](+) almost exclusively lose neutral DMF upon collisional activation with the notable exception of the copper complex, for which also a reduction from Cu(II) to Cu(I) concomitant with the release of atomic chlorine is observed. For the dinuclear clusters, there exists a competition between loss of a DMF ligand and cluster degradation via loss of neutral MCl(2) with decreasing cluster stability from cobalt to zinc. For the specific case of [(DMF)(n)ZnCl](+) and [(DMF)(n)Zn(2)Cl(3)](+), ion-mobility mass spectrometry indicates the existence of two isomeric cluster ions in the case of [(DMF)(2)Zn(2)Cl(3)](+) which corroborates parallel theoretical predictions.

  10. Spectroscopic investigation of new water soluble Mn(II)(2) and Mg(II)(2) complexes for the substrate binding models of xylose/glucose isomerases.

    PubMed

    Patra, Ayan; Bera, Manindranath

    2014-01-30

    In methanol, the reaction of stoichiometric amounts of Mn(OAc)(2)·4H(2)O and the ligand H(3)hpnbpda [H(3)hpnbpda=N,N'-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N'-diacetic acid] in the presence of NaOH, afforded a new water soluble dinuclear manganese(II) complex, [Mn2(hpnbpda)(μ-OAc)] (1). Similarly, the reaction of Mg(OAc)(2)·4H(2)O and the ligand H3hpnbpda in the presence of NaOH, in methanol, yielded a new water soluble dinuclear magnesium(II) complex, [Mg2(hpnbpda)(μ-OAc)(H2O)2] (2). DFT calculations have been performed for the structural optimization of complexes 1 and 2. The DFT optimized structure of complex 1 shows that two manganese(II) centers are in a distorted square pyramidal geometry, whereas the DFT optimized structure of complex 2 reveals that two magnesium(II) centers adopt a six-coordinate distorted octahedral geometry. To understand the mode of substrate binding and the mechanistic details of the active site metals in xylose/glucose isomerases (XGI), we have investigated the binding interactions of biologically important monosaccharides d-glucose and d-xylose with complexes 1 and 2, in aqueous alkaline solution by a combined approach of FTIR, UV-vis, fluorescence, and (13)C NMR spectroscopic techniques. Fluorescence spectra show the binding-induced gradual decrease in emission of complexes 1 and 2 accompanied by a significant blue shift upon increasing the concentration of sugar substrates. The binding modes of d-glucose and d-xylose with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in (13)C NMR spectra for C1 and C2 carbon atoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Systematic investigations of deep sub-barrier fusion reactions using an adiabatic approach

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takatoshi

    2015-12-01

    Background: At extremely low incident energies, unexpected decreases in fusion cross sections, compared to the standard coupled-channels (CC) calculations, have been observed in a wide range of fusion reactions. These significant reductions of the fusion cross sections are often referred to as the fusion hindrance. However, the physical origin of the fusion hindrance is still unclear. Purpose: To describe the fusion hindrance based on an adiabatic approach, I propose a novel extension of the standard CC model by introducing a damping factor that describes a smooth transition from sudden to adiabatic processes, that is, the transition from the separated two-body to the united dinuclear system. I demonstrate the performance of this model by systematically investigating various deep sub-barrier fusion reactions. Method: I extend the standard CC model by introducing a damping factor into the coupling matrix elements in the standard CC model. This avoids double counting of the CC effects, when two colliding nuclei overlap one another. I adopt the Yukawa-plus-exponential (YPE) model as a basic heavy ion-ion potential, which is advantageous for a unified description of the one- and two-body potentials. For the purpose of these systematic investigations, I approximate the one-body potential with a third-order polynomial function based on the YPE model. Results: Calculated fusion cross sections for the medium-heavy mass systems of 64Ni+64Ni , 58Ni+58Ni , and 58Ni+54Fe , the medium-light mass systems of 40Ca+40Ca , 48Ca+48Ca , and 24Mg+30Si , and the mass-asymmetric systems of 48Ca+96Zr and 16O+208Pb are consistent with the experimental data. The astrophysical S factor and logarithmic derivative representations of these are also in good agreement with the experimental data. The values obtained for the individual radius and diffuseness parameters in the damping factor, which reproduce the fusion cross sections well, are nearly equal to the average value for all the systems. Conclusions: Since the results calculated with the damping factor are in excellent agreement with the experimental data in all systems, I conclude that a coordinate-dependent coupling strength is responsible for the fusion hindrance. In all systems, the potential energies at the touching point VTouch strongly correlate with the incident threshold energies for which the fusion hindrance starts to emerge, except for the medium-light mass systems.

  12. The Redox-Active Chromium Phthalocyanine System: Isolation of Five Oxidation States from Pc4- CrI to Pc2- CrIII.

    PubMed

    Zhou, Wen; Thompson, John R; Leznoff, Clifford C; Leznoff, Daniel B

    2017-02-16

    The preparation and structural characterization of a series of chromium phthalocyanine complexes with multiple metal and ring oxidation states were achieved using PcCr II (1) (Pc=phthalocyanine) or PcCr II (THF) 2 (1⋅THF 2 ) as starting materials. The reaction of soluble 1⋅THF 2 with Br 2 or I 2 gave the PcCr III halide complexes PcCrX(THF) (X=I/I 3 , Br; 3, 4, respectively). Treatment of 1 with 0.5 equivalent of PhIO or air generated the dinuclear [PcCr(THF)] 2 (μ-O) (5), whereas the addition of one equivalent of AgSbF 6 to 1 resulted in oxidation to THF-solvated octahedral [PcCr III (THF) 2 ]SbF 6 (6). The reduction of 1 with three sequential equivalents of KEt 3 BH resulted in the isolation of [K(DME) 4 ][Pc 3- Cr II ] (7), [K(DME) 4 ] 2 [Pc 4- Cr II ] (8) and [K 6 (DME) 4 ][Pc 4- Cr I ] 2 (9), respectively. The reduced products are deep purple in colour, with visible absorption maxima between 500-580 nm. The ring-reduced complexes 7 and 8 are monomeric, whereas 9 is a 1D chain of dinuclear [PcCr] 2 units with intercalated K + cations and supported by Cr-Cr interactions of 2.988(2) Å. Addition of four equivalents of KC 8 resulted in the demetallated product PcK 2 (DME) 4 (10), which has a 1D chain structure. The isolation and structural characterization of new PcCr complexes spanning five oxidation states, including rare examples of crystalline reduced Pc-ring species emphasizes the broad redox activity and stability of phthalocyanine-based complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Highly selective fluorescence detection of Cu2+ in water by chiral dimeric Zn2+ complexes through direct displacement.

    PubMed

    Khatua, Snehadrinarayan; Choi, Shin Hei; Lee, Junseong; Huh, Jung Oh; Do, Youngkyu; Churchill, David G

    2009-03-02

    Fluorescent dinuclear chiral zinc complexes were synthesized in a "one-pot" method in which the lysine-based Schiff base ligand was generated in situ. This complex acts as a highly sensitive and selective fluorescent ON-OFF probe for Cu(2+) in water at physiological pH. Other metal ions such as Hg(2+), Cd(2+), and Pb(2+) gave little fluorescence change.

  14. Structural Investigation of Dinuclear Clusters Incorporated in Polyoxotungstates

    NASA Astrophysics Data System (ADS)

    Nagy, C.; Rusu, D.; Somesan, C.; Filip, S.; Rusu, M.; David, L.

    2011-10-01

    The new K10[M2Bi2W20O70]ṡH2O (M = Mn(II), Co(II), Ni(II), Cu(II)) sandwich-type complex have been investigated by spectroscopic (FT-IR, UV-VIS, ESR) methods. The main goal was to obtain information about the metal ions coordination to the trilacunary regions of Keggin polioxoanion ligands, the local symmetry around the metal ions and the presence of possible metal-metal couplings.

  15. Photo-oxidation of tyrosine in a bio-engineered bacterioferritin 'reaction centre'-a protein model for artificial photosynthesis.

    PubMed

    Hingorani, Kastoori; Pace, Ron; Whitney, Spencer; Murray, James W; Smith, Paul; Cheah, Mun Hon; Wydrzynski, Tom; Hillier, Warwick

    2014-10-01

    The photosynthetic reaction centre (RC) is central to the conversion of solar energy into chemical energy and is a model for bio-mimetic engineering approaches to this end. We describe bio-engineering of a Photosystem II (PSII) RC inspired peptide model, building on our earlier studies. A non-photosynthetic haem containing bacterioferritin (BFR) from Escherichia coli that expresses as a homodimer was used as a protein scaffold, incorporating redox-active cofactors mimicking those of PSII. Desirable properties include: a di-nuclear metal binding site which provides ligands for bivalent metals, a hydrophobic pocket at the dimer interface which can bind a photosensitive porphyrin and presence of tyrosine residues proximal to the bound cofactors, which can be utilised as efficient electron-tunnelling intermediates. Light-induced electron transfer from proximal tyrosine residues to the photo-oxidised ZnCe6(•+), in the modified BFR reconstituted with both ZnCe6 and Mn(II), is presented. Three site-specific tyrosine variants (Y25F, Y58F and Y45F) were made to localise the redox-active tyrosine in the engineered system. The results indicate that: presence of bound Mn(II) is necessary to observe tyrosine oxidation in all BFR variants; Y45 the most important tyrosine as an immediate electron donor to the oxidised ZnCe6(•+) and that Y25 and Y58 are both redox-active in this system, but appear to function interchangebaly. High-resolution (2.1Å) crystal structures of the tyrosine variants show that there are no mutation-induced effects on the overall 3-D structure of the protein. Small effects are observed in the Y45F variant. Here, the BFR-RC represents a protein model for artificial photosynthesis. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  16. Mono- and dinuclear oxidovanadium(v) complexes of an amine-bis(phenolate) ligand with bromo-peroxidase activities: synthesis, characterization, catalytic, kinetic and computational studies.

    PubMed

    Debnath, Mainak; Dolai, Malay; Pal, Kaberi; Bhunya, Sourav; Paul, Ankan; Lee, Hon Man; Ali, Mahammad

    2018-02-20

    The mono- and dinuclear oxidovanadium(v) complexes [V V O(L 1 )(Cl)] (1) and [L 1 V V O(μ 2 -O)VO(L 1 )] (2) of ONNO donor amine-bis(phenolate) ligand (H 2 L 1 ) were readily synthesized by the reaction between H 2 L 1 and VCl 3 .(THF) 3 or VO(acac) 2 in MeOH or MeCN, respectively, and then characterized through mass spectroscopy, 1 H-NMR and FTIR techniques. Both the complexes possess distorted octahedral geometry around each V centre. Upon the addition of 1 equivalent or more acid to a MeCN solution of complex 1, it immediately turned into the protonated form, which might be in equilibrium as: [L 1 ClV V [double bond, length as m-dash]OH] + ↔ [L 1 ClV V -OH] + (in the case of [L 1 ClV V [double bond, length as m-dash]OH] + oxo-O is just protonated, whereas in [L 1 ClV V -OH] + it is a hydroxo species), with the shift in λ max from 610 nm to 765 nm. Similar was the case for complex 2. The complexes 1 and 2 could efficiently catalyze the oxidative bromination of salicylaldehyde in the presence of H 2 O 2 to produce 5-bromo salicylaldehyde as the major product with TONs of 405 and 450, respectively, in the mixed solvent system (H 2 O : MeOH : THF = 4 : 3 : 2, v/v). The kinetic analysis of the bromide oxidation reaction indicated a first-order mechanism in the protonated peroxidovanadium complex and a bromide ion and limiting first-order mechanism on [H + ]. The evaluated k Br and k H values were 5.78 ± 0.20 and 11.01 ± 0.50 M -1 s -1 for complex 1 and 6.21 ± 0.13 and 20.14 ± 0.72 M -1 s -1 for complex 2, respectively. The kinetic and thermodynamic acidities of the protonated oxido species of complexes 1 and 2 were pK a = 2.55 (2.35) and 2.16 (2.19), respectively, which were far more acidic than those reported by Pecoraro et al. for peroxido-protonation instead of oxido protonation. On the basis of the chemistry observed for these model compounds, a mechanism of halide oxidation and a detailed catalytic cycle are proposed for the vanadium haloperoxidase enzyme and these were substantiated by detailed DFT calculations.

  17. Preparation, structure, and luminescence of dinuclear lanthanide complexes of a novel imine-amine phenolate macrocycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, K.D.; Kahwa, I.A.; Williams, D.J.

    1994-03-30

    Metal-free condensation of 2,6-diformyl-p-cresol with 3,6-dioxa-1,8-octanediamine followed by reduction with sodium tetrahydroborate and addition of lanthanide(III) nitrate salts, in that order, yield (slowly) crystalline dinuclear complexes of a novel imine-amine phenolate macrocycle 2. The decacoordination geometry of the identical Pr[sup 3+] ions in a C[sub 2v] 4A,6B-extended dodecahedron made up of two bidentate NO[sub 3]-ions, two phenolate and two either oxygens, and one imine and one amine nitrogens. Dinuclear lanthanide complexes of 2 appear to be more stable than those of the totally reduced chelate 2 in alcoholic media. The Tb[sub 2]2(NO[sub 3])[sub 4][center dot]1.2CH[sub 3]-OH and (La[sub 0.97]Tb[sub 0.03])[submore » 2]2(NO[sub 3])[sub 4][center dot]1.2CH[sub 3]OH compounds exhibit strong Tb[sup 3+] ([sup 5]D[sub 4] [yields] [sup 7]F[sub J]) emission sensitized by the single state of 2 at both 77 and 295 K. No Tb[sup 3+]-Tb[sup 3+] self-quenching or N-H trapping effects are observed at 77 K (decay rate is 598 s[sup [minus]1]); the coordination cavities of 2 are therefore potentially good hosts for Tb[sup 3+] in luminescent diagnostic agents. At room temperature the complex decay kinetics of Tb[sup 3+] in Tb[sub 2]2(NO[sub 3])[sub 4][center dot]1.2CH[sub 3]OH are similar to those of Tb[sub 2]1(NO[sub 3])[sub 4][center dot]H[sub 2]O. But for the dilute complex, (La[sub 0.97]-Tb[sub 0.03])[sub 2]2(NO[sub 3])[sub 4][center dot]1.35CH[sub 3]OH, unusual thermal equilibration of the ligand triplet and Tb[sup 3+] [sup 5]D[sub 4] states occurs at room temperature; the ligand-to-Tb[sup 3+] energy-transfer rate is [approx]4.36 x 10[sup 4] s[sup [minus]1], while Tb[sup 3+]-to-ligand back-energy-transfer is [approx]7.1 x 10[sup 4] s[sup [minus]1].« less

  18. Structure of a dinuclear cadmium complex with 2,2′-bi­pyridine, monodentate nitrate and 3-carb­oxy-6-methyl­pyridine-2-carboxyl­ate ligands: intra­molecular carbon­yl(lone pair)⋯π(ring) and nitrate(π)⋯π(ring) inter­actions

    PubMed Central

    Granifo, Juan; Suarez, Sebastián; Baggio, Ricardo

    2015-01-01

    The centrosymmetric dinuclear complex bis­(μ-3-carb­oxy-6-methyl­pyridine-2-carboxyl­ato)-κ3 N,O 2:O 2;κ3 O 2:N,O 2-bis­[(2,2′-bi­pyridine-κ2 N,N′)(nitrato-κO)cadmium] methanol monosolvate, [Cd2(C8H6NO4)2(NO3)2(C10H8N2)2]·CH3OH, was isolated as colourless crystals from the reaction of Cd(NO3)2·4H2O, 6-methyl­pyridine-2,3-di­carb­oxy­lic acid (mepydcH2) and 2,2′-bi­pyridine in methanol. The asymmetric unit consists of a CdII cation bound to a μ-κ3 N,O 2:O 2-mepydcH− anion, an N,N′-bidentate 2,2′-bi­pyridine group and an O-mono­dentate nitrate anion, and is completed with a methanol solvent mol­ecule at half-occupancy. The Cd complex unit is linked to its centrosymmetric image through a bridging mepydcH− carboxyl­ate O atom to complete the dinuclear complex mol­ecule. Despite a significant variation in the coordination angles, indicating a considerable departure from octa­hedral coordination geometry about the CdII atom, the Cd—O and Cd—N distances in this complex are surprisingly similar. The crystal structure consists of O—H⋯O hydrogen-bonded chains parallel to a, further bound by C—H⋯O contacts along b to form planar two-dimensional arrays parallel to (001). The juxtaposed planes form inter­stitial columnar voids that are filled by the methanol solvent mol­ecules. These in turn inter­act with the complex mol­ecules to further stabilize the structure. A search in the literature showed that complexes with the mepydcH− ligand are rare and complexes reported previously with this ligand do not adopt the μ-κ3 coordination mode found in the title compound. PMID:26396748

  19. New dinuclear palladium(II) complexes: Studies of the nucleophilic substitution reactions, DNA/BSA interactions and cytotoxic activity.

    PubMed

    Ćoćić, Dušan; Jovanović, Snežana; Nišavić, Marija; Baskić, Dejan; Todorović, Danijela; Popović, Suzana; Bugarčić, Živadin D; Petrović, Biljana

    2017-10-01

    Six new dinuclear Pd(II) complexes, [{Pd(2,2'-bipy)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd1), [{Pd(dach)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd2), [{Pd(en)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd3), [{Pd(2,2'-bipy)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd4), [{Pd(dach)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd5) and [{Pd(en)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd6) (where 2,2'-bipy=2,2'-bipyridyl, pz=pyrazine, dach=trans-(±)-1,2-diaminocyclohexane, en=ethylenediamine, 4,4'-bipy=4,4'-bipyridyl) have been synthesized and characterized by elemental microanalysis, IR, 1 H NMR and MALDI-TOF mass spectrometry. The pK a values of corresponding diaqua complexes were determined by spectrophotometric pH titration. Substitution reactions with thiourea (Tu), l-methionine (l-Met), l-cysteine (l-Cys), l-histidine (l-His) and guanosine-5'-monophosphate (5'-GMP) were studied under the pseudo-first order conditions at pH7.2. Reactions of Pd1 with Tu, l-Met and l-Cys were followed by decomposition of complexes, while structures of dinuclear complexes were preserved during the substitution with nitrogen donors. Interactions with calf-thymus DNA (CT-DNA) were followed by absorption spectroscopy and fluorescence quenching measurements. All complexes can bind to CT-DNA exhibiting high intrinsic binding constants (K b =10 4 -10 5 M -1 ). Competitive studies with ethidium bromide (EB) have shown that complexes can displace DNA-bound EB. High values of binding constants towards bovine serum albumin protein (BSA) indicate good binding affinity. Finally, all complexes showed moderate to high cytotoxic activity against HeLa (human cervical epithelial carcinoma cell lines) and MDA-MB-231 (human breast epithelial carcinoma cell lines) tumor cell lines inducing apoptotic type cell death, whereas normal fibroblasts were significantly less sensitive. The impact on cell cycle of these cells was distinctive, where Pd4, Pd5 and Pd6 showed the most prominent effect arresting MDA-MB-231 (human lung fibroblast cell lines) cell in G1/S phase of cell cycle. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Self-assembly of Zn(salphen) complexes: steric regulation, stability studies and crystallographic analysis revealing an unexpected dimeric 3,3'-t-Bu-substituted Zn(salphen) complex.

    PubMed

    Martínez Belmonte, Marta; Wezenberg, Sander J; Haak, Robert M; Anselmo, Daniele; Escudero-Adán, Eduardo C; Benet-Buchholz, Jordi; Kleij, Arjan W

    2010-05-21

    The self-assembly features of a series of (non)symmetrical Zn(salphen) complexes have been studied in detail by X-ray crystallography, NMR and UV-vis techniques. The combined data demonstrate that the stability of these dimeric assemblies and the relative position of each monomeric unit within the dinuclear structure depend on the location and combination of the aromatic ring substituents.

  1. Spontaneous self-assembly of a giant spherical metal-oxide Keplerate: addition of one building block induces "immediate" formation of the complementary one from a constitutional dynamic library.

    PubMed

    Schäffer, Christian; Todea, Ana Maria; Gouzerh, Pierre; Müller, Achim

    2012-01-11

    The addition of dinuclear {Mo(2)} units to a dynamic library containing molybdates results in the spontaneous self-assembly of a giant spherical metal-oxide species of the type {(Mo)Mo(5)}(12){Mo(2)}(30) while the required pentagonal {(Mo)Mo(5)} building blocks are "immediately" formed. This journal is © The Royal Society of Chemistry 2012

  2. Perfluorinated Ligands in Organometallic Chemistry

    DTIC Science & Technology

    1989-12-12

    C49t00ooVER ,or C M’ AD"OV’~mDecember 12) 199IFinal 1/1/86 to 8/31/89C smuS. FUNOING NUMgIERS cJ Perfluorinated Ligands in Organometallic Chemistry 612...compounds, stabilized by tridentate perfluorinated ligands. Dinuclear rhodium complexes of OFCOT undergo a selective C-F bond activation reaction...hexafluorocyclooctatrieneyne ligand. Stereospecific cleavage of a fluorinated C-C bond,#-bond in perfluorocyclopropene by platinum and iridium complexes has been achieved

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H{sub 2}ndc) or 4,4′-(hydroxymethylene)dibenzoic acid (H{sub 2}hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd{sub 2}(2,6-ndc){sub 2}(bpp)(DMF)]·2DMF (1) and [Cd{sub 3}(hmdb){sub 3}(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations inmore » 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process. - Graphical abstract: Compound 1 exhibits a 3D self-penetrating 6-connected framework based on dinuclear cluster, and 2 displays an infinite 3D ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster. The flexible 1,3-bis(4-pyridyl)propane ligand displays different conformations in 1 and 2, which successfully controlled by size-matching mixed ligands during the self-assembly process.« less

  4. Syntheses, crystal structures, and properties of new metal--5-bromonicotinate coordination polymers

    NASA Astrophysics Data System (ADS)

    Li, Wenjie; Li, Guoting; Lv, Lulu; Zhao, Hong; Wu, Benlai

    2015-05-01

    Four metal-5-bromonicotinate (Brnic) coordination polymers [Fe(Brnic)2(H2O)2]n (1), [Ni(Brnic)2]n (2), [Ni(Brnic)(bpy)(H2O)2]n·n(Brnic)·4.5nH2O (3), and [Co2(Brnic)3(bpy)2(OH)]n·nH2O (4) have been synthesized and structurally characterized (bpy=4,4‧-bipyridine). Complex 1 has corrugated (4,4) sheets formed by μ-Brnic ligands and planar nodes Fe(II). As for 2-4, they all built up from Brnic-bridged dinuclear subunits, but have very different structure features. Complex 2 is a twin-like polymer with (4,4) layers formed by twin paddle-wheel [Ni2(Brnic)4] subunits. Through the bridge coordination of bpy ligands with dinuclear rings [Ni2(Brnic)2] and trigons [Co2(Brnic)3(OH)], 63-topological cationic layers with nanosized grids of 3 and chiral ladder-type double chains of 4 formed, respectively. Notably, halogen-related interactions play an important role in the formation of 3D metallosupermolecules 1-4. The thermostabilities of all compounds have been discussed in detail. Moreover, the magnetic investigations of 2 and 4 indicate that there exist antiferromagnetic interactions in the paddle-wheel [Ni2(Brnic)4] and trigon [Co2(Brnic)3(OH)] cores, respectively.

  5. Synthesis and Crystal and Electronic Structures of the Dinuclear Platinum Compounds [PEtPh(3)](2)[Pt(2)(&mgr;-PPh(2))(2)(C(6)F(5))(4)] and [Pt(2)(&mgr;-PPh(2))(2)(C(6)F(5))(4)]: A Computational Study by Density Functional Theory.

    PubMed

    Alonso, Ester; Casas, José M.; Cotton, F. Albert; Feng, Xuejung; Forniés, Juan; Fortuño, Consuelo; Tomas, Milagros

    1999-11-01

    The electrolytic behavior of the dinuclear complexes [NBu(4)](2)[MM'(&mgr;-PPh(2))(2)(C(6)F(5))(4)] (M = M' = Pt (1), Pd (1a); M = Pt, M' = Pd (1b)) has been studied, showing electrochemically irreversible oxidation and related reduction processes. The chemical oxidation of the binuclear compound for M = M' = Pt, results in the formation of the binuclear Pt(III) compound [Pt(2)(&mgr;-PPh(2))(2)(C(6)F(5))(4)]. The crystal structure analysis of both complexes has been carried out, showing very similar structures with similar Pt-C and Pt-P distances and analogous skeletons. However the Pt-Pt distances are very different, 3.621(1) Å for the Pt(II) compound and 2.7245(7) Å for the Pt(III) derivative (as are the parameters geometrically related to this Pt-Pt distance), suggesting that, in the Pt(III) compound, there is a strong Pt-Pt bond. Results of DFT calculations on [Pt(2)(&mgr;-PH(2))(2)(C(6)F(5))(4)](n)()(-) (n = 2, 0) agree very well with the crystallographic data and indicate that, in the Pt(III) compound, there is approximately a single sigma bond between the metal atoms.

  6. Recognition of DNA bulges by dinuclear iron(II) metallosupramolecular helicates.

    PubMed

    Malina, Jaroslav; Hannon, Michael J; Brabec, Viktor

    2014-02-01

    Bulged DNA structures are of general biological significance because of their important roles in a number of biochemical processes. Compounds capable of targeting bulged DNA sequences can be used as probes for studying their role in nucleic acid function, or could even have significant therapeutic potential. The interaction of [Fe(2)L(3)](4+) metallosupramolecular helicates (L = C(25)H(20)N(4)) with DNA duplexes containing bulges has been studied by measurement of the DNA melting temperature and gel electrophoresis. This study was aimed at exploring binding affinities of the helicates for DNA bulges of various sizes and nucleotide sequences. The studies reported herein reveal that both enantiomers of [Fe(2)L(3)](4+) bind to DNA bulges containing at least two unpaired nucleotides. In addition, these helicates show considerably enhanced affinity for duplexes containing unpaired pyrimidines in the bulge and/or pyrimidines flanking the bulge on both sides. We suggest that the bulge creates the structural motif, such as the triangular prismatic pocket formed by the unpaired bulge bases, to accommodate the [Fe(2)L(3)](4+) helicate molecule, and is probably responsible for the affinity for duplexes with a varying number of bulge bases. Our results reveal that DNA bulges represent another example of unusual DNA structures recognized by dinuclear iron(II) ([Fe(2)L(3)](4+)) supramolecular helicates. © 2013 FEBS.

  7. Zirconocene-iridium hydrido complexes: arene carbon-hydrogen bond activation and formation of a planar square Zr2Ir2 complex.

    PubMed

    Oishi, Masataka; Suzuki, Hiroharu

    2009-03-16

    New early-late heterobimetallic hydrides (L(2)ZrCl)(Cp*Ir)(mu-H)(3) (1; L = Cp derivative, Cp* = eta(5)-C(5)Me(5)) were synthesized from zirconocene derivatives (L(2)ZrCl(2)) and LiCp*IrH(3) via a salt elimination reaction and structurally characterized by NMR and X-ray analyses. Upon treatment of 1 with an alkyllithium reagent, hydride abstraction complex 4 underwent thermolytic ligand elimination at the Zr-Ir system to yield a novel planar square complex (L(2)Zr)(2)(Cp*Ir)(2)(mu(3)-H)(4) (2). When a labeling study of the reaction was conducted, it was found that the conversion of 1 to 2 involves rapid aromatic and benzylic C-H activation by a coordinatively unsaturated dinuclear complex (L(2)Zr)(Cp*Ir)(H)(2) (3).

  8. A new sample environment for cryogenic nuclear resonance scattering experiments on single crystals and microsamples at P01, PETRA III

    NASA Astrophysics Data System (ADS)

    Rackwitz, Sergej; Faus, Isabelle; Schmitz, Markus; Kelm, Harald; Krüger, Hans-Jörg; Andersson, K. Kristoffer; Hersleth, Hans-Petter; Achterhold, Klaus; Schlage, Kai; Wille, Hans-Christian; Schünemann, Volker; Wolny, Juliusz A.

    2014-04-01

    In order to carry out orientation dependent nuclear resonance scattering (NRS) experiments on small single crystals of e.g. iron proteins and/or chemical complexes but also on surfaces and other micrometer-sized samples a 2-circle goniometer including sample positioning optics has been installed at beamline P01, PETRA III, DESY, Hamburg. This sample environment is now available for all users of this beamline. Sample cooling is performed with a cryogenic gas stream which allows NRS measurements in the temperature range from 80 up to 400 K. In a first test this new sample environment has been used in order to investigate the orientation dependence of the nuclear inelastic scattering (NIS) signature of (i) a dinuclear iron(II) spin crossover (SCO) system and (ii) a hydrogen peroxide treated metmyoglobin single crystal.

  9. Radical pathway in catecholase activity with zinc-based model complexes of compartmental ligands.

    PubMed

    Guha, Averi; Chattopadhyay, Tanmay; Paul, Nanda Dulal; Mukherjee, Madhuparna; Goswami, Somen; Mondal, Tapan Kumar; Zangrando, Ennio; Das, Debasis

    2012-08-20

    Four dinuclear and three mononuclear Zn(II) complexes of phenol-based compartmental ligands (HL(1)-HL(7)) have been synthesized with the aim to investigate the viability of a radical pathway in catecholase activity. The complexes have been characterized by routine physicochemical studies as well as X-ray single-crystal structure analysis: [Zn(2)(H(2)L(1))(OH)(H(2)O)(NO(3))](NO(3))(3) (1), [Zn(2)L(2)Cl(3)] (2), [Zn(2)L(3)Cl(3)] (3), [Zn(2)(L(4))(2)(CH(3)COO)(2)] (4), [Zn(HL(5))Cl(2)] (5), [Zn(HL(6))Cl(2)] (6), and [Zn(HL(7))Cl(2)] (7) [L(1)-L(3) and L(5)-L(7) = 2,6-bis(R-iminomethyl)-4-methylphenolato, where R= N-ethylpiperazine for L(1), R = 2-(N-ethyl)pyridine for L(2), R = N-ethylpyrrolidine for L(3), R = N-methylbenzene for L(5), R = 2-(N-methyl)thiophene for L(6), R = 2-(N-ethyl)thiophene for L(7), and L(4) = 2-formyl-4-methyl-6-N-methylbenzene-iminomethyl-phenolato]. Catecholase-like activity of the complexes has been investigated in methanol medium by UV-vis spectrophotometric study using 3,5-di-tert-butylcatechol as model substrate. All complexes are highly active in catalyzing the aerobic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ). Conversion of 3,5-DTBC to 3,5-DTBQ catalyzed by mononuclear complexes (5-7) is observed to proceed via formation of two enzyme-substrate adducts, ES1 and ES2, detected spectroscopically, a finding reported for the first time in any Zn(II) complex catalyzed oxidation of catechol. On the other hand, no such enzyme-substrate adduct has been identified, and 3,5-DTBC to 3,5-DTBQ conversion is observed to be catalyzed by the dinuclear complexes (1-4) very smoothly. EPR experiment suggests generation of radicals in the presence of 3,5-DTBC, and that finding has been strengthened by cyclic voltammetric study. Thus, it may be proposed that the radical pathway is probably responsible for conversion of 3,5-DTBC to 3,5-DTBQ promoted by complexes of redox-innocent Zn(II) ion. The ligand-centered radical generation has further been verified by density functional theory calculation.

  10. Di and trinuclear rare-earth metal complexes supported by 3-amido appended indolyl ligands: synthesis, characterization and catalytic activity towards isoprene 1,4-cis polymerization.

    PubMed

    Zhang, Guangchao; Deng, Baojia; Wang, Shaowu; Wei, Yun; Zhou, Shuangliu; Zhu, Xiancui; Huang, Zeming; Mu, Xiaolong

    2016-10-21

    Different di and trinuclear rare-earth metal complexes supported by 3-amido appended indolyl ligands were synthesized and their catalytic activities towards isoprene polymerization were investigated. Treatment of [RE(CH 2 SiMe 3 ) 3 (thf) 2 ] with 1 equiv. of 3-(CyN[double bond, length as m-dash]CH)C 8 H 5 NH in toluene or in THF afforded dinuclear rare-earth metal alkyl complexes having indolyl ligands in different hapticities with central metals {[η 2 :η 1 -μ-η 1 -3-(CyNCH(CH 2 SiMe 3 ))Ind]RE-(thf)(CH 2 SiMe 3 )} 2 (Cy = cyclohexyl, Ind = Indolyl, RE = Yb (1), Er (2), Y (3)) or {[η 1 -μ-η 1 -3-(CyNCH(CH 2 SiMe 3 ))Ind]RE-(thf) 2 (CH 2 SiMe 3 )} 2 (RE = Yb (4), Er (5), Y (6), Gd (7)), respectively. These two series of dinuclear complexes could be transferred to each other easily by only changing the solvents in the process. Reaction of [Er(CH 2 SiMe 3 ) 3 (thf) 2 ] with 1 equiv. of 3-t-butylaminomethylindole 3-( t BuNHCH 2 )C 8 H 5 NH in THF afforded the unexpected trinuclear erbium alkyl complex [η 2 :η 1 -μ-η 1 -3-( t BuNCH 2 )Ind] 4 Er 3 (thf) 5 (CH 2 SiMe 3 ) (8), which can also be prepared by reaction of 3 equiv. of [Er(CH 2 SiMe 3 ) 3 (thf) 2 ] with 4 equiv. of 3-( t BuNHCH 2 )C 8 H 5 NH in THF. Accordingly, complexes [η 2 :η 1 -μ-η 1 -3-( t BuNCH 2 )Ind] 4 RE 3 (thf) 5 (CH 2 SiMe 3 ) (RE = Y (9), Dy (10)) were prepared by reactions of 3 equiv. of [RE(CH 2 SiMe 3 ) 3 (thf) 2 ] with 4 equiv. of 3-( t BuNHCH 2 )C 8 H 5 NH in THF. Reactions of [RE(CH 2 SiMe 3 ) 3 (thf) 2 ] with 1 equiv. of 3-t-butylaminomethylindole 3-( t BuNHCH 2 )C 8 H 5 NH in THF, followed by treatment with 1 equiv. of [(2,6- i Pr 2 C 6 H 3 )N[double bond, length as m-dash]CHNH(C 6 H 3 i Pr 2 -2,6)] afforded, after workup, the dinuclear rare-earth metal complexes [η 1 -μ-η 1 :η 1 -3-( t BuNCH 2 )Ind][η 1 -μ-η 1 :η 3 -3-( t BuNCH 2 )Ind]RE 2 (thf)[(η 3 -2,6- i Pr 2 C 6 H 3 )NCHN(C 6 H 3 i Pr 2 -2,6)] 2 (RE = Er (11), Y (12)) having the indolyl ligands bonded with the rare-earth metal in different ligations. All new complexes 1-12 were fully characterized by spectroscopic methods and elemental analyses, and their structures were determined by X-ray crystallographic analyses. It was found that, except for complexes 1, 4, 11 and 12, all complexes were highly efficient catalysts for selective isoprene polymerization (up to 99% 1,4-cis selectivity) with the cooperation of co-catalysts, and the trinuclear complexes displayed advantages over dinuclear complexes in terms of molecular weight of polymers.

  11. Strong Ferromagnetic Exchange Coupling Mediated by a Bridging Tetrazine Radical in a Dinuclear Nickel Complex.

    PubMed

    Woods, Toby J; Stout, Heather D; Dolinar, Brian S; Vignesh, Kuduva R; Ballesteros-Rivas, Maria F; Achim, Catalina; Dunbar, Kim R

    2017-10-16

    The radical bridged compound [(Ni(TPMA)) 2 -μ-bmtz •- ](BF 4 ) 3 ·3CH 3 CN (bmtz = 3,6-bis(2'-pyrimidyl)-1,2,4,5-tetrazine, TPMA = tris(2-pyridylmethyl)amine) exhibits strong ferromagnetic exchange between the S = 1 Ni II centers and the bridging S = 1/2 bmtz radical with J = 96 ± 5 cm -1 (-2J Ni-rad S Ni S rad ). DFT calculations support the existence of strong ferromagnetic exchange.

  12. C-H activation in Ir(III) and N-demethylation in Pt(II) complexes with mesoionic carbene ligands: examples of monometallic, homobimetallic and heterobimetallic complexes.

    PubMed

    Maity, Ramananda; Tichter, Tim; van der Meer, Margarethe; Sarkar, Biprajit

    2015-11-14

    Mononuclear Pt(II) and the first dinuclear Pt(II) complexes along with a cyclometalated heterobimetallic Ir(III)/Pd(II) complex bearing mesoionic carbene donor ligands are presented starting from the same bis-triazolium salt. The mononuclear Pt(II) complex possesses a free triazole moiety which is generated from the corresponding triazolium salt through an N-demethylation reaction, whereas the mononuclear Ir(III) complex features an unreacted triazolium unit.

  13. A dithiolate-bridged (CN)2(CO)Fe-Ni complex reproducing the IR bands of [NiFe] hydrogenase.

    PubMed

    Tanino, Soichiro; Li, Zilong; Ohki, Yasuhiro; Tatsumi, Kazuyuki

    2009-03-16

    A dithiolate-bridged dinuclear Fe-Ni complex, which has the desired fac-(CN)(2)(CO) ligand set at iron, has been synthesized. Its CN/CO bands in the IR spectrum reproduce those of the Ni-A, Ni-B, and Ni-SU states, which indicate that these octahedral Fe(II) centers have similar electronic properties. This result verifies the assignment of a (CN)(2)(CO)Fe(II) moiety in the active site of [NiFe] hydrogenase.

  14. Multinucleon transfer in central collisions of 238U+238U

    NASA Astrophysics Data System (ADS)

    Ayik, S.; Yilmaz, B.; Yilmaz, O.; Umar, A. S.; Turan, G.

    2017-08-01

    Quantal diffusion mechanism of nucleon exchange is studied in the central collisions of 238U+238U in the framework of the stochastic mean-field (SMF) approach. For bombarding energies considered in this work, the dinuclear structure is maintained during the collision. Hence, it is possible to describe nucleon exchange as a diffusion process for mass and charge asymmetry. Quantal neutron and proton diffusion coefficients, including memory effects, are extracted from the SMF approach and the primary fragment distributions are calculated.

  15. Synthesis and characterization of water-soluble, heteronuclear ruthenium(III)/ferrocene complexes and their interactions with biomolecules.

    PubMed

    Anderson, Craig M; Jain, Swapan S; Silber, Lisa; Chen, Kody; Guha, Sumedha; Zhang, Wancong; McLaughlin, Emily C; Hu, Yongfeng; Tanski, Joseph M

    2015-04-01

    The reaction of Na[RuCl4(SO(CH3)2)2], 1, with one equivalent of FcCONHCH2C6H4N (Fc=FeC10H9), L1, FcCOOCH2CH2C3H3N2, L2, FcCOOC6H4N, L3, afforded the dinuclear species, Na[FcCONHCH2C6H4N[RuCl4(SO(CH3)2)

  16. Recent advances in computational actinoid chemistry.

    PubMed

    Wang, Dongqi; van Gunsteren, Wilfred F; Chai, Zhifang

    2012-09-07

    We briefly review advances in computational actinoid (An) chemistry during the past ten years in regard to two issues: the geometrical and electronic structures, and reactions. The former addresses the An-O, An-C, and M-An (M is a metal atom including An) bonds in the actinoid molecular systems, including actinoid oxo and oxide species, actinoid-carbenoid, dinuclear and diatomic systems, and the latter the hydration and ligand exchange, the disproportionation, the oxidation, the reduction of uranyl, hydroamination, and the photolysis of uranium azide. Concerning their relevance to the electronic structures and reactions of actinoids and their importance in the development of an advanced nuclear fuel cycle, we also mentioned the work on actinoid carbides and nitrides, which have been proposed to be candidates of the next generation of nuclear fuel, and the oxidation of PuO(x), which is important to understand the speciation of actinoids in the environment, followed by a brief discussion on the urgent need for a heavier involvement of computational actinoid chemistry in developing advanced reprocessing protocols of spent nuclear fuel. The paper is concluded with an outlook.

  17. Density functional study for the bridged dinuclear center based on a high-resolution X-ray crystal structure of ba3 cytochrome c oxidase from Thermus thermophilus.

    PubMed

    Du, Wen-Ge Han; Noodleman, Louis

    2013-12-16

    Strong electron density for a peroxide type dioxygen species bridging the Fea3 and CuB dinuclear center (DNC) was observed in the high-resolution (1.8 Å) X-ray crystal structures (PDB entries 3S8G and 3S8F) of ba3 cytochrome c oxidase (CcO) from Thermus thermophilus. The crystals represent the as-isolated X-ray photoreduced CcO structures. The bridging peroxide was proposed to arise from the recombination of two radiation-produced HO(•) radicals formed either very near to or even in the space between the two metals of the DNC. It is unclear whether this peroxide species is in the O2(2-), O2(•)(-), HO2(-), or the H2O2 form and what is the detailed electronic structure and binding geometry including the DNC. In order to answer what form of this dioxygen species was observed in the DNC of the 1.8 Å X-ray CcO crystal structure (3S8G), we have applied broken-symmetry density functional theory (BS-DFT) geometric and energetic calculations (using OLYP potential) on large DNC cluster models with different Fea3-CuB oxidation and spin states and with O2(2-), O2(•)(-), HO2(-), or H2O2 in the bridging position. By comparing the DFT optimized geometries with the X-ray crystal structure (3S8G), we propose that the bridging peroxide is HO2(-). The X-ray crystal structure is likely to represent the superposition of the Fea3(2+)-(HO2(-))-CuB(+) DNC's in different states (Fe(2+) in low spin (LS), intermediate spin (IS), or high spin (HS)) with the majority species having the proton of the HO2(-) residing on the oxygen atom (O1) which is closer to the Fea3(2+) site in the Fea3(2+)-(HO-O)(-)-CuB(+) conformation. Our calculations show that the side chain of Tyr237 is likely trapped in the deprotonated Tyr237(-) anion form in the 3S8G X-ray crystal structure.

  18. Synthesis and reactivity of NHC-supported Ni2(μ(2)-η(2),η(2)-S2)-bridging disulfide and Ni2(μ-S)2-bridging sulfide complexes.

    PubMed

    Olechnowicz, Frank; Hillhouse, Gregory L; Jordan, Richard F

    2015-03-16

    The (IPr)Ni scaffold stabilizes low-coordinate, mononuclear and dinuclear complexes with a diverse range of sulfur ligands, including μ(2)-η(2),η(2)-S2, η(2)-S2, μ-S, and μ-SH motifs. The reaction of {(IPr)Ni}2(μ-Cl)2 (1, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) with S8 yields the bridging disulfide species {(IPr)ClNi}2(μ(2)-η(2),η(2)-S2) (2). Complex 2 reacts with 2 equiv of AdNC (Ad = adamantyl) to yield a 1:1 mixture of the terminal disulfide compound (IPr)(AdNC)Ni(η(2)-S2) (3a) and trans-(IPr)(AdNC)NiCl2 (4a). 2 also reacts with KC8 to produce the Ni-Ni-bonded bridging sulfide complex {(IPr)Ni}2(μ-S)2 (6). Complex 6 reacts with H2 to yield the bridging hydrosulfide compound {(IPr)Ni}2(μ-SH)2 (7), which retains a Ni-Ni bond. 7 is converted back to 6 by hydrogen atom abstraction by 2,4,6-(t)Bu3-phenoxy radical. The 2,6-diisopropylphenyl groups of the IPr ligand provide lateral steric protection of the (IPr)Ni unit but allow for the formation of Ni-Ni-bonded dinuclear species and electronically preferred rather than sterically preferred structures.

  19. Donor/acceptor coupling in mixed-valent dinuclear iron polypyridyl complexes: experimental and theoretical considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, C.M.; Derr, D.L.; Ferrere, S.

    1996-06-05

    Coupling between donor and acceptor orbitals for optically-induced intervalence electron transfer processes has been considered for a series of rigid mixed-valent dinuclear tris(2,2`-bipyridine)iron complexes. Each of the four complexes considered ontains three saturated bridges which link the two tris(2,2`-bipyridine)iron moieties. The bridging linkages are -CH{sub 2}CH{sub 2}-, -CH{sub 2}CH{sub 2}CH{sub 2}-, -CH{sub 2}OCH{sub 2}-. Despite differences in the composition of the bridges X-ray diffraction and/or molecular dynamics calculations show that the metal-metal separation and relative bipyridine orientations among all four complexes are nearly identical. Consequently, the only factor which differs significantly among these complexes and which might affect the donor-acceptormore » coupling in the mixed-valent forms is their connectivity. Theses complexes thus provide a unique opportunity to focus on potential superexchange coupling in the absence of ambiguities introduced by other structural and energetic considerations. Theories developed by Mulliken and Hush have been applied to intervalence charge-transfer transitions in order to obtain values of the coupling matrix elements, H{sub 12}. Configuration interaction calculations were also carried out for each of the [Fe{sub 2}(L){sub 3}]{sub 5+} complexes to provide theoretical values of H{sub 12} and the effective donor/acceptor separation distances (r{sub DA}). Experimental and theoretical results for H{sub 12} are in excellent agreement. 31 refs., 3 figs., 4 tabs.« less

  20. Redox Chemistry of Gold(I) Phosphine Thiolates: Sulfur-Based Oxidation

    PubMed Central

    Jiang, Tong; Wei, Gang; Turmel, Cristopher; Bruce, Alice E.

    1994-01-01

    The redox chemistry of mononuclear and dinuclear gold(I) phosphine arylthiolate complexes was recently investigated by using electrochemical, chemical, and photochemical techniques. We now report the redox chemistry of dinuclear gold(I) phosphine complexes containing aliphatic dithiolate ligands. These molecules differ from previously studied gold(I) phosphine thiolate complexes in that they are cyclic and contain aliphatic thiolates. Cyclic voltammetry experiments of Au2 (LL)(pdt) [pdt = propanedithiol; LL = 1,2-bis(diphenylphosphino)-ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,4-bis(diphenylphosphino)butane (dppb), 1,5-bis(diphenylphosphino)pentane (dpppn)] in 0.1 M TBAH/CH3CN or CH2Cl2 solutions at 50 to 500 mV/sec using glassy carbon or platinum electrodes, show two irreversible anodic processes at ca. +0.6 and +1.1 V (vs. SCE). Bulk electrolyses at +0.9 V and +1.4 V result in n values of 0.95 and 3.7, respectively. Chemical oxidation of Au2(dppp)(pdt) using one equivalent of Br2 (2 oxidizing equivalents) yields 1,2-dithiolane and Au2(dppp)Br2. The reactivity seen upon mild oxidation ≤ +1.0 V is consistent with formal oxidation of a thiolate ligand, followed by a fast chemical reaction that results in cleavage of a second gold-sulfur bond. Oxidation at higher potentials (≥ +1.3 V) is consistent with oxidation of gold(I) to gold(III). Structural and electrochemical differences between gold(I) aromatic and aliphatic thiolate oxidation processes are discussed. PMID:18476260

  1. Near-unity thermally activated delayed fluorescence efficiency in three- and four-coordinate Au(i) complexes with diphosphine ligands.

    PubMed

    Osawa, Masahisa; Aino, Masa-Aki; Nagakura, Takaki; Hoshino, Mikio; Tanaka, Yuya; Akita, Munetaka

    2018-05-14

    The synthesis and photoluminescence properties of three-coordinate Au(i) complexes with rigid diphosphine ligands LMe {1,2-bis[bis(2-methylphenyl)phosphino]benzene}, LEt {1,2-bis[bis(2-ethylphenyl)phosphino]benzene}, and LiPr {1,2-bis[bis(2-isopropylphenyl)phosphino]benzene} are investigated. The LMe and LEt ligands afford two types of complexes: dinuclear complexes [μ-LMe(AuCl)2] (1d) and [μ-LEt(AuCl)2] (2d) with an Au(i)-Au(i) bond and mononuclear three-coordinate Au(i) complexes LMeAuCl (1) and LEtAuCl (2). On the other hand, the bulkiest ligand, LiPr, affords three-coordinate Au(i) complexes, LiPrAuCl (3) and LiPrAuI (4), but no dinuclear complexes. X-ray analysis suggests that both 3 and 4 possess a highly distorted trigonal planar geometry. Moreover, luminescence data reveal that at room temperature, 3 and 4 exhibit yellow-green thermally activated delayed fluorescence in the crystalline state with maximum emission wavelengths at 558 and 549 nm, respectively. The emission yields are close to unity. Quantum chemical calculations suggest that the emission of 4 originates from the (σ + X) → π* excited state that possesses strong intraligand charge-transfer character. The luminescent properties of four-coordinate Au(i) complex (5) possessing a tetrahedral geometry are discussed on the basis of the emission spectra and decay times measured in a temperature range of 309-77 K.

  2. Three new europium(III) methanetriacetate metal-organic frameworks: the influence of synthesis on the product topology.

    PubMed

    Cañadillas-Delgado, Laura; Fabelo, Oscar; Pasán, Jorge; Déniz, Mariadel; Martínez-Benito, Carla; Díaz-Gallifa, Pau; Martín, Tomás; Ruiz-Pérez, Catalina

    2014-02-01

    Three new metal-organic framework structures containing Eu(III) and the little explored methanetriacetate (C7H7O6(3-), mta(3-)) ligand have been synthesized. Gel synthesis yields a two-dimensional framework with the formula [Eu(mta)(H2O)3]n·2nH2O, (I), while two polymorphs of the three-dimensional framework material [Eu(mta)(H2O)]n·nH2O, (II) and (III), are obtained through hydrothermal synthesis at either 423 or 443 K. Compounds (I) and (II) are isomorphous with previously reported Gd(III) compounds, but compound (III) constitutes a new phase. Compound (I) can be described in terms of dinuclear [Eu2(H2O)4](6+) units bonded through mta(3-) ligands to form a two-dimensional framework with topology corresponding to a (6,3)-connected binodal (4(3))(4(6)6(6)8(3))-kgd net, where the dinuclear [Eu2(H2O)4](6+) units are considered as a single node. Compounds (II) and (III) have distinct three-dimensional topologies, namely a (4(12)6(3))(4(9)6(6))-nia net for (II) and a (4(10)6(5))(4(11)6(4))-K2O2; 36641 net for (III). The crystal density of (III) is greater than that of (II), consistent with the increase of temperature, and thereby autogeneous pressure, in the hydrothermal synthesis.

  3. Metal Binding Studies and EPR Spectroscopy of the Manganese Transport Regulator MntR†

    PubMed Central

    Golynskiy, Misha V.; Gunderson, William A.; Hendrich, Michael P.; Cohen, Seth M.

    2007-01-01

    Manganese transport regulator (MntR) is a member of the diphtheria toxin repressor (DtxR) family of transcription factors that is responsible for manganese homeostasis in Bacillus subtilis. Prior biophysical studies have focused on the metal-mediated DNA binding of MntR [Lieser, S. A., Davis, T. C., Helmann, J. D., and Cohen, S. M. (2003) Biochemistry 42, 12634-12642], as well as metal stabilization of the MntR structure [Golynskiy, M. V., Davis, T. C., Helmann, J. D., and Cohen, S. M. (2005) Biochemistry 44, 3380-3389], but only limited data on the metal-binding affinities for MntR are available. Herein, the metal-binding affinities of MntR were determined by using electron paramagnetic resonance (EPR) spectroscopy, as well as competition experiments with the fluorimetric dyes Fura-2 and Mag-fura-2. MntR was not capable of competing with Fura-2 for the binding of transition metal ions. Therefore, the metal-binding affinities and stoichiometries of Mag-fura-2 for Mn2+, Co2+, Ni2+, Zn2+, and Cd2+ were determined and utilized in MntR/Mag-fura-2 competition experiments. The measured Kd values for MntR metal binding are comparable to those reported for DtxR metal binding [Kd from 10-7 to 10-4 M; D’Aquino, J. A., et al. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 18408-18413], AntR [a homologue from Bacillus anthracis; Sen, K. I. et al. (2006) Biochemistry 45, 4295-4303], and generally follow the Irving-Williams series. Direct detection of the dinuclear Mn2+ site in MntR with EPR spectroscopy is presented, and the exchange interaction was determined, J = -0.2 cm-1. This value is lower in magnitude than most known dinuclear Mn2+ sites in proteins and synthetic complexes and is consistent with a dinuclear Mn2+ site with a longer Mn···Mn distance (4.4 Å) observed in some of the available crystal structures. MntR is found to have a surprisingly low binding affinity (∼160 μM) for its cognate metal ion Mn2+. Moreover, the results of DNA binding studies in the presence of limiting metal ion concentrations were found to be consistent with the measured metal-binding constants. The metal-binding affinities of MntR reported here help to elucidate the regulatory mechanism of this metal-dependent transcription factor. PMID:17176058

  4. Impact of constitutional isomers of (BMes(2))phenylpyridine on structure, stability, phosphorescence, and Lewis acidity of mononuclear and dinuclear Pt(II) complexes.

    PubMed

    Rao, Ying-Li; Wang, Suning

    2009-08-17

    The impact of two constitutional isomers, 2-(4-BMes(2)-Ph)-pyridine (p-B-ppy, 1) and 5-BMes(2)-2-ph-pyridine (p-ppy-B, 2), as N,C-chelate ligands on the structures, stabilities, electronic and photophysical properties, and Lewis acidities of Pt(II) complexes has been investigated. Six Pt(II) complexes, Pt(p-B-ppy)Ph(DMSO) (1a), Pt(p-B-ppy)Ph(py) (1b), [Pt(p-B-ppy)Ph](2)(4,4'-bipy) (1c), Pt(p-ppy-B)Ph(DMSO) (2a), Pt(p-ppy-B)Ph(py) (2b), and [Pt(p-ppy-B)Ph](2)(4,4'-bipy) (2c), have been synthesized and fully characterized. The structures of 1a, 1c, 2a, and 2c were established by single-crystal X-ray diffraction analysis. All complexes adopt a cis geometry with the phenyl ligand being cis to the phenyl ring of the ppy chelate. The dinuclear complexes 2a and 2c were found to exist in two isomeric forms in solution, syn and anti, with respect to the relative orientation of the two BMes(2) groups in the molecule. While all complexes are stable in solution under ambient air, compound 2a was found to react with H(2)O slowly in solution and form complex 2a-OH, where one of the mesityl groups on the boron center was replaced by an OH group. This instability of 2a is attributed to an internal dimethylsulfoxide-directed hydrolysis process via hydrogen bonds. The electron-accepting ability of the free ligands and the complexes were examined by cyclic voltammetry, establishing that, for p-ppy-B, Pt(II) chelation enhances the electron-accepting ability while, for p-B-ppy, Pt(II) chelation has little impact. All Pt(II) complexes display oxygen-sensitive phosphorescence in solution at ambient temperature, dominated by B-ppy or ppy-B centered pi --> pi* transitions. The Lewis acidity of the complexes was examined by fluoride titration experiments using UV-vis, phosphorescence, and NMR spectroscopic methods, establishing that the p-ppy-B complexes have similar and strong binding constants while the p-B-ppy complexes have a much lower affinity toward F(-), compared to the free ligands. In the dinuclear complexes, weak electronic communication between the two Pt(II) units is evident in 1c but absent in 2c, attributable to the different steric interactions in the two molecules.

  5. Second-Sphere Effects in Dinuclear FeIIIZnII Hydrolase Biomimetics: Tuning Binding and Reactivity Properties.

    PubMed

    Camargo, Tiago Pacheco; Neves, Ademir; Peralta, Rosely A; Chaves, Cláudia; Maia, Elene C P; Lizarazo-Jaimes, Edgar H; Gomes, Dawidson A; Bortolotto, Tiago; Norberto, Douglas R; Terenzi, Hernán; Tierney, David L; Schenk, Gerhard

    2018-01-02

    Herein, we report the synthesis and characterization of two dinuclear Fe III Zn II complexes [Fe III Zn II LP1] (1) and [Fe III Zn II LP2] (2), in which LP1 and LP2 are conjugated systems containing one and two pyrene groups, respectively, connected via the diamine -HN(CH 2 ) 4 NH- spacer to the well-known N 5 O 2 -donor H 2 L ligand (H 2 L = 2-bis{[(2-pyridylmethyl)aminomethyl]-6-[(2-hydroxybenzyl)(2-pyridylmethyl)]aminomethyl}-4-methylphenol). The complex [Fe III Zn II L1] (3), in which H 2 L was modified to H 2 L1, with a carbonyl group attached to the terminal phenol group, was included in this study for comparison purposes. 1 Both complexes 1 and 2 were satisfactorily characterized in the solid state and in solution. Extended X-ray absorption fine structure data for 1 and 3 in an acetonitrile solution show that the multiply bridged structure seen in the solid state of 3 is retained in solution. Potentiometric and UV-vis titration of 1 and 2 show that electrostatic interaction between the protonated amino groups and coordinated water molecules significantly decreases the pK a of the iron(III)-bound water compared to those of 3. On the other hand, catalytic activity studies using 1 and 2 in the hydrolysis of the activated substrate bis(2,4-dinitrophenyl)phosphate (BDNPP) resulted in a significant increase in the association of the substrate (K ass ≅ 1/K M ) compared to that of 3 because of electrostatic and hydrophobic interactions between BDNPP and the side-chain diaminopyrene of the ligands H 2 LP1 and H 2 LP2. In addition, the introduction of the pyrene motifs in 1 and 2 enhanced their activity toward DNA and as effective antitumor drugs, although the biochemical mechanism of the latter effect is currently under investigation. These complexes represent interesting examples of how to promote an increase in the activity of traditional artificial metal nucleases by introducing second-coordination-sphere effects.

  6. A combined high-field EPR and quantum chemical study on a weakly ferromagnetically coupled dinuclear Mn(III) complex. A complete analysis of the EPR spectrum beyond the strong coupling limit.

    PubMed

    Retegan, Marius; Collomb, Marie-Noëlle; Neese, Frank; Duboc, Carole

    2013-01-07

    The electronic and magnetic properties of polynuclear complexes, in particular the magnetic anisotropy (zero field splitting, ZFS), the leading term of the spin Hamiltonian (SH), are commonly analyzed in a global manner and no attempt is usually made to understand the various contributions to the anisotropy at the atomic scale. This is especially true in weakly magnetically coupled systems. The present study addresses this problem and investigates the local SH parameters using a methodology based on experimental measurements and theoretical calculations. This work focuses on the challenging mono μ-oxo bis μ-acetato dinuclear Mn(III) complex: [Mn(2)(III)(μ-O)(μ-OAc)(2)L(2)](PF(6))(2) (with L = trispyrrolidine-1,4,7-triazacyclononane) (1), which is particularly difficult for EPR spectroscopy because of its large magnetic anisotropy and the weak ferromagnetic interaction between the two Mn(III) ions. High field (up to 12 T) and high frequency (190-345 GHz) EPR experiments have been recorded for 1 between 5 and 50 K. These data have been analyzed by employing a complex Hamiltonian, which encompasses terms describing the local and inter-site interactions. Density functional theory and multireference correlated ab initio calculations have been used to estimate the ZFS of the Mn(III) ions (D(Mn) = +4.29 cm(-1), E(Mn)/D(Mn) = 0.19) and the Euler angles reflecting the relative orientation of the ZFS tensor for each Mn(III) (α = -52°, β = 28°, γ = 3°). This analysis allowed the accurate determination of the local parameters: D(Mn) = +4.50 cm(-1), E(Mn)/D(Mn) = 0.07, α = -35°, β = 23°, γ = 2°. The spin ladder approach has also been applied, but only the parameters of the ground spin state of 1 have been accurately determined (D(4) = +1.540 cm(-1), E(4)/D(4) = 0.107). This is not sufficient to allow for the determination of the local parameters. The validity and practical performance of both approaches have been discussed.

  7. Theoretical study of the magnetic behavior of hexanuclear Cu(II) and Ni(II) polysiloxanolato complexes.

    PubMed

    Ruiz, Eliseo; Cano, Joan; Alvarez, Santiago; Caneschi, Andrea; Gatteschi, Dante

    2003-06-04

    A theoretical density functional study of the exchange coupling in hexanuclear polysiloxanolato-bridged complexes of Cu(II) and Ni(II) is presented. By calculating the energies of three different spin configurations, we can obtain estimates of the first-, second-, and third-neighbor exchange coupling constants. The study has been carried out for the complete structures of the Cu pristine cluster and of the chloroenclathrated Ni complex as well as for the hypotethical pristine Ni compound and for magnetically dinuclear analogues M(2)Zn(4) (M = Cu, Ni).

  8. Synthesis, crystal structure, and spectroscopic characterization of trans-bis[(mu-1,3-bis(4-pyridyl)propane)(mu-(3-thiopheneacetate-O))(3-thiopheneacetate-O)]dicopper(II), [[Cu2(O2CCH2C4H3S)4mu-(BPP)2

    PubMed

    Marinho, Maria Vanda; Yoshida, Maria Irene; Guedes, Kassilio J; Krambrock, Klaus; Bortoluzzi, Adailton J; Hörner, Manfredo; Machado, Flávia C; Teles, Wagner M

    2004-02-23

    From the reaction between a dinuclear paddle-wheel carboxylate, namely [Cu2mu-(O2CCH2C4H3S)4] (1), and the flexible ligand 1,3-bis(4-pyridyl)propane (BPP) a neutral 2-D coordination polymer [[Cu2(O2CCH2C4H3S)4mu-(BPP)2

  9. Tetra­kis(μ-4-chloro­benzoato-κ2 O:O′)bis­[(ethanol-κO)copper(II)](Cu—Cu)

    PubMed Central

    Mollica Nardo, Viviana; Nicoló, Francesco; Saccà, Alessandro; Bruno, Giuseppe; Ielo, Ileana

    2013-01-01

    In the centrosymmetric dinuclear title CuII complex, [Cu2(C7H4ClO2)(C2H5OH)2], the Cu—Cu distance is 2.5905 (4) Å. The two metal atoms are bridged by four 4-chloro­benzoate ligands and each has an ethanol mol­ecule in the axial position of the overall octahedral coordination environment. The crystal packing features O—H⋯O hydrogen bonds. PMID:23634014

  10. Elaboration of a Highly Porous RuII,II Analogue of HKUST-1.

    PubMed

    Zhang, Wenhua; Freitag, Kerstin; Wannapaiboon, Suttipong; Schneider, Christian; Epp, Konstantin; Kieslich, Gregor; Fischer, Roland A

    2016-12-19

    When the dinuclear Ru II,II precursor [Ru 2 (OOCCH 3 ) 4 ] is employed under redox-inert conditions, a Ru II,II analogue of HKUST-1 was successfully prepared and characterized as a phase-pure microcrystalline powder. X-ray absorption near-edge spectroscopy confirms the oxidation state of the Ru centers of the paddle-wheel nodes in the framework. The porosity of 1371 m 2 /mmol of Ru II,II -HKUST-1 exceeds that of the parent compound HKUST1 (1049 m 2 / mmol).

  11. Exploring the potential of fulvalene dimetals as platforms for molecular solar thermal energy storage: computations, syntheses, structures, kinetics, and catalysis.

    PubMed

    Börjesson, Karl; Ćoso, Dušan; Gray, Victor; Grossman, Jeffrey C; Guan, Jingqi; Harris, Charles B; Hertkorn, Norbert; Hou, Zongrui; Kanai, Yosuke; Lee, Donghwa; Lomont, Justin P; Majumdar, Arun; Meier, Steven K; Moth-Poulsen, Kasper; Myrabo, Randy L; Nguyen, Son C; Segalman, Rachel A; Srinivasan, Varadharajan; Tolman, Willam B; Vinokurov, Nikolai; Vollhardt, K Peter C; Weidman, Timothy W

    2014-11-17

    A study of the scope and limitations of varying the ligand framework around the dinuclear core of FvRu2 in its function as a molecular solar thermal energy storage framework is presented. It includes DFT calculations probing the effect of substituents, other metals, and CO exchange for other ligands on ΔHstorage . Experimentally, the system is shown to be robust in as much as it tolerates a number of variations, except for the identity of the metal and certain substitution patterns. Failures include 1,1',3,3'-tetra-tert-butyl (4), 1,2,2',3'-tetraphenyl (9), diiron (28), diosmium (24), mixed iron-ruthenium (27), dimolybdenum (29), and ditungsten (30) derivatives. An extensive screen of potential catalysts for the thermal reversal identified AgNO3 -SiO2 as a good candidate, although catalyst decomposition remains a challenge. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Thermodynamic analysis of reaction equilibria in ionic and molecular liquid systems by high-temperature Raman spectroscopy.

    PubMed

    Kalampounias, Angelos G; Boghosian, Soghomon

    2009-09-01

    A formalism for correlating relative Raman band intensities with the stoichiometric coefficients, the equilibrium constant, and the thermodynamics of reaction equilibria in solution is derived. The proposed method is used for studying: (1) the thermal dissociation of molten KHSO(4) in the temperature range 240-450 degrees C; (2) the dinuclear complex formation in molten TaCl(5)-AlCl(3) mixtures at temperatures between 125 and 235 degrees C. The experimental and calculational procedures for exploiting the temperature-dependent Raman band intensities in the molten phase as well as (if applicable) in the vapors thereof are described and used for determining the enthalpy of the equilibria: (1) 2HSO(4)(-)(l) <--> S(2)O(7)(2-)(l) + H(2)O(g), DeltaH(0)=64.9 +/- 2.9 kJ mol(-1); and (2) 1/2Ta(2)Cl(10)(l) + 1/2Al(2)Cl(6)(l) <--> TaAlCl(8)(l), DeltaH(0)=-12.1 +/- 1.5 kJ mol(-1).

  13. catena-Poly[[[tetra­kis(μ-2-butenoato)dicopper(II)]-μ-2-butenoato-[diaqua­(2-butenoato)holmium(III)]-di-μ-2-butenoato-[diaqua­(2-butenoato)holmium(III)]-μ-2-butenoato] trihydrate

    PubMed Central

    Perec, Mireille; Garland, Maria Teresa; Baggio, Ricardo

    2008-01-01

    The title compound {[Cu2Ho2(C4H5O2)10(H2O)4]·3H2O}n, is a one-dimensional 3d/4f organic–inorganic hybrid complex, the HoIII member of the isotypic lanthanoid series with Ln = GdIII, ErIII and YIII. The structure shows an alternation of Cu2 and Ho2 dinuclear units bridged by the ligands and hydrogen bonds only. The chains are composed of Cu2 classical dinuclear η1:η1:μ2 fourfold bridges [Cu⋯Cu = 2.6417 (9) Å] and of Ho2 units bridged by two η2:η1:μ2 carboxyl­ate units. This results in distorted square-based pyramidal CuO5 units and irregular HoO9 units. The alternating Cu2 and Ho2 units are bridged into linear arrays along the a axis by a set of one η2:η1:μ2 carboxyl­ate O atom and two hydrogen bonds with Cu⋯Ho separations of 4.4883 (10) and 4.5086 (10) Å. The distance between adjacent chains, as calculated by the closest and furthest distances between two chains, covers the range 10–14 Å. The H atoms of the water mol­ecules could not be located, but the O⋯O separations for these species suggest the presence of O—H⋯O hydrogen bonds. PMID:21580901

  14. Reduction of Toxoplasma gondii Development Due to Inhibition of Parasite Antioxidant Enzymes by a Dinuclear Iron(III) Compound

    PubMed Central

    Portes, J. A.; Souza, T. G.; dos Santos, T. A. T.; da Silva, L. L. R.; Ribeiro, T. P.; Pereira, M. D.; Horn, A.; Fernandes, C.; DaMatta, R. A.; de Souza, W.

    2015-01-01

    Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan that can infect a wide range of vertebrate cells. Here, we describe the cytotoxic effects of the dinuclear iron compound [Fe(HPCINOL)(SO4)]2-μ-oxo, in which HPCINOL is the ligand 1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol, on T. gondii infecting LLC-MK2 host cells. This compound was not toxic to LLC-MK2 cells at concentrations of up to 200 μM but was very active against the parasite, with a 50% inhibitory concentration (IC50) of 3.6 μM after 48 h of treatment. Cyst formation was observed after treatment, as indicated by the appearance of a cyst wall, Dolichos biflorus lectin staining, and scanning and transmission electron microscopy characteristics. Ultrastructural changes were also seen in T. gondii, including membrane blebs and clefts in the cytoplasm, with inclusions similar to amylopectin granules, which are typically found in bradyzoites. An analysis of the cell death pathways in the parasite revealed that the compound caused a combination of apoptosis and autophagy. Fluorescence assays demonstrated that the redox environment in the LLC-MK2 cells becomes oxidant in the presence of the iron compound. Furthermore, a reduction in superoxide dismutase and catalase activities in the treated parasites and the presence of reactive oxygen species within the parasitophorous vacuoles were observed, indicating an impaired protozoan response against these radicals. These findings suggest that this compound disturbs the redox equilibrium of T. gondii, inducing cystogenesis and parasite death. PMID:26392498

  15. A two-dimensional silver(I) coordination polymer constructed from 4-aminophenylarsonate and triphenylphosphane: poly[[(μ₃-4-aminophenylarsonato-κ³N:O:O)(triphenylphosphane-κP)silver(I)] monohydrate].

    PubMed

    Xiao, Zu-Ping; Wen, Meng; Wang, Chun-Ya; Huang, Xi-He

    2015-04-01

    The title compound, {[Ag(C6H7AsNO3)(C18H15P)]·H2O}n, has been synthesized from the reaction of 4-aminophenylarsonic acid with silver nitrate, in aqueous ammonia, with the addition of triphenylphosphane (PPh3). The Ag(I) centre is four-coordinated by one amino N atom, one PPh3 P atom and two arsonate O atoms, forming a severely distorted [AgNPO2] tetrahedron. Two Ag(I)-centred tetrahedra are held together to produce a dinuclear [Ag2O2N2P2] unit by sharing an O-O edge. 4-Aminophenylarsonate (Hapa(-)) adopts a μ3-κ(3)N:O:O-tridentate coordination mode connecting two dinuclear units, resulting in a neutral [Ag(Hapa)(PPh3)]n layer lying parallel to the (101̄) plane. The PPh3 ligands are suspended on both sides of the [Ag(Hapa)(PPh3)]n layer, displaying up and down orientations. There is an R2(2)(8) hydrogen-bonded dimer involving two arsonate groups from two Hapa(-) ligands related by a centre of inversion. Additionally, there are hydrogen-bonding interactions involving the solvent water molecules and the arsonate and amine groups of the Hapa(-) ligands, and weak π-π stacking interactions within the [Ag(Hapa)(PPh3)]n layer. These two-dimensional layers are further assembled by weak van der Waals interactions to form the final architecture.

  16. Microscopic study of heavy-ion reactions with n-rich nuclei: dynamic excitation energy and capture

    NASA Astrophysics Data System (ADS)

    Oberacker, Volker; Umar, A. S.

    2010-11-01

    Heavy-ion reactions at RIB facilities allow us to form new exotic neutron-rich nuclei. These experiments present numerous challenges for a microscopic theoretical description. We study reactions between neutron-rich ^132Sn nuclei and ^96Zr within a dynamic microscopic theory, and we compare the properties to those of the stable system ^124Sn+^96Zr. The calculations are carried out on a 3-D lattice using the density-constrained Time-Dependent Hartree-Fock (DC-TDHF) method [1- 3]. In particular, we calculate the dynamic excitation energy E^*(t) and the quadrupole moment of the dinuclear system Q20(t) during the initial stages of the collision. Regarding the heavy-ion interaction potential V(R), we find that the fusion barrier height and width increase dramatically with increasing beam energy. The fusion barriers of the neutron-rich system ^132Sn+^96Zr are systematically 1-2 MeV higher than those of the stable system. Large differences (9 MeV) are found in the interaction barriers of the two systems. Capture cross sections are analyzed in terms of dynamic effects and a comparison with recently measured capture-fission data is given. [1] Umar and Oberacker, PRC 76, 014614 (2007). [2] Umar, Oberacker, Maruhn, and Reinhard, PRC 80, 041601(R) (2009). [3] Umar, Maruhn, Itagaki, and Oberacker, PRL 104, 212503 (2010).

  17. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron-iron hydrogenase: a density functional theory study of proton dissociation constants and electrode reduction potentials.

    PubMed

    Surawatanawong, Panida; Tye, Jesse W; Darensbourg, Marcetta Y; Hall, Michael B

    2010-03-28

    Simple dinuclear iron dithiolates such as (mu-SCH2CH2CH2S)[Fe(CO)3]2, (1) and (mu-SCH2CH2S)[Fe(CO)3]2 (2) are functional models for diiron-hydrogenases, [FeFe]-H2ases, that catalyze the reduction of protons to H2. The mechanism of H2 production with 2 as the catalyst and with both toluenesulfonic (HOTs) and acetic (HOAc) acids as the H+ source in CH3CN solvent has been examined by density functional theory (DFT). Proton dissociation constants (pKa) and electrode reduction potentials (E(o)) are directly computed and compared to the measured pKa of HOTs and HOAc acids and the experimental reduction potentials. Computations show that when the strong acid, HOTs, is used as a proton source the one-electron reduced species 2- can be protonated to form a bridging hydride complex as the most stable structure. Then, this species can be reduced and protonated to form dihydrogen and regenerate 2. This cycle produces H2 via an ECEC process at an applied potential of -1.8 V vs. Fc/Fc+. A second faster process opens for this system when the species produced at the ECEC step above is further reduced and H2 release returns the system to 2- rather than 2, an E[CECE] process. On the other hand, when the weak acid, HOAc, is the proton source a more negative applied reduction potential (-2.2 V vs. Fc/Fc+) is necessary. At this potential two one-electron reductions yield the dianion 2(2-) before the first protonation, which in this case occurs on the thiolate. Subsequent reduction and protonation form dihydrogen and regenerate 2- through an E[ECEC] process.

  18. Competing supramolecular interactions give a new twist to terpyridyl chemistry: anion- and solvent-induced formation of spiral arrays in silver(I) complexes of a simple terpyridine.

    PubMed

    Hannon, Michael J; Painting, Claire L; Plummer, Edward A; Childs, Laura J; Alcock, Nathaniel W

    2002-05-17

    Multiple competing molecular interactions (metal-ligand, pi-stacking and hydrogen-bonding) in the silver(I) complexes of 4'-thiomethyl-2,2':6',2"-terpyridine give rise to a range of different molecular architectures, in which the metal-ligand coordination requirements are satisfied in quite different ways. Polynuclear supramolecular spirals, aggregated mononuclear and aggregated dinuclear units are all structurally characterised. The metallo-supramolecular architecture obtained displays a remarkable dependence both on the choice of non-coordinated anion and the type of solvent used (coordinating or non-coordinating). The anion dependence is particularly surprising, since the anions are not integrated into the centre of the supramolecular structure. The solution behaviour is also solvent and anion dependent, with aggregation of planar mononuclear cations observed in acetonitrile, but oligonuclear spiral species implicated in nitromethane. The extraordinarily variable geometries of these systems suggest that they provide a novel example of the "frustration" principle, in which opposing tendencies cannot simultaneously be satisfied and identify an alternative approach to the design of metallo-supramolecular systems whose structure is responsive to external agents.

  19. Structural characterization of a hydroperoxo nickel complex and its autoxidation: mechanism of interconversion between peroxo, superoxo, and hydroperoxo species.

    PubMed

    Rettenmeier, Christoph A; Wadepohl, Hubert; Gade, Lutz H

    2015-04-13

    Pincer-stabilized nickel(I) complexes readily react with molecular oxygen to form dinuclear 1,2-μ-peroxo-bridged nickel(II) complexes, which are the major components of a dynamic equilibrium with the corresponding mononuclear superoxo species. The peroxo complexes further react with hydrogen peroxide to give the corresponding nickel(II) hydroperoxides. One of these hitherto elusive species was characterized by X-ray diffraction for the first time [O-O bond length: 1.492(2) Å]. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. To bend or not to bend: electronic structural analysis of linear versus bent M-H-M interactions in dinickel bis(dialkylphosphino)methane complexes.

    PubMed

    Wilson, Zakiya S; Stanley, George G; Vicic, David A

    2010-06-21

    The M-H-M bonding in the dinuclear complexes Ni(2)(mu-H)(mu-P(2))(2)X(2) (P(2) = R(2)PCH(2)PR(2), R = iPr, Cy; X = Cl, Br) has been investigated. These dinickel A-frames were studied via density functional theory (DFT) calculations to analyze the factors that influence linear and bent M-H-M bonding. The DFT calculations indicate that the bent geometry is favored electronically, with ligand steric effects driving the formation of the linear M-H-M structures.

  1. An unprecedented up-field shift in the 13C NMR spectrum of the carboxyl carbons of the lantern-type dinuclear complex TBA[Ru2(O2CCH3)4Cl2] (TBA+ = tetra(n-butyl)ammonium cation).

    PubMed

    Hiraoka, Yuya; Ikeue, Takahisa; Sakiyama, Hiroshi; Guégan, Frédéric; Luneau, Dominique; Gillon, Béatrice; Hiromitsu, Ichiro; Yoshioka, Daisuke; Mikuriya, Masahiro; Kataoka, Yusuke; Handa, Makoto

    2015-08-14

    A large up-field shift (-763 ppm) has been observed for the carboxyl carbons of the dichlorido complex TBA[Ru(2)(O(2)CCH(3))(4)Cl(2)] (TBA(+) = tetra(n-butyl)ammonium cation) in the (13)C NMR spectrum (CD(2)Cl(2) at 25 °C). The DFT calculations showed spin delocalization from the paramagnetic Ru(2)(5+) core to the ligands, in agreement with the large up-field shift.

  2. Bis[μ-N-(pyridin-2-yl)methane­sulfon­amido-κ2 N:N′]silver(I)

    PubMed Central

    Hu, Hui-Ling; Yeh, Chun-Wei

    2013-01-01

    In the title compound, [Ag2(C6H7N2O2S)2], the AgI atom is coordinated by two N atoms from two N-(pyridin-2-yl)methane­sulfonamidate anions in a slightly bent linear geometry [N—Ag—N = 166.03 (7)°]. The AgI atoms are bridged by the N-(pyridin-2-yl)methane­sulfonamidate anions, forming a centrosymmetric dinuclear mol­ecule, in which the Ag⋯Ag distance is 2.7072 (4) Å. PMID:24860285

  3. Dinuclear lanthanide complexes based on amino alcoholate ligands: Structure, magnetic and fluorescent properties

    NASA Astrophysics Data System (ADS)

    Sun, Gui-Fang; Zhang, Cong-Ming; Guo, Jian-Ni; Yang, Meng; Li, Li-Cun

    2017-05-01

    Two binuclear lanthanide complexes [Ln2(hfac)6(HL)2] (LnIII = Dy(1), Tb(2); hfac = hexafluoroacetylacetonate, HL = (R)-2-amino-2-phenylethanol) have been successfully obtained by using amino alcoholate ligand. In two complexes, the Ln(III) ions are bridged by two alkoxido groups from HL ligands, resulting in binuclear complexes. The variable-temperature magnetic susceptibility studies indicate that there exists ferromagnetic interaction between two Ln(III) ions. Frequency dependent out-of-phase signals are observed for complex 1, suggesting SMM type behavior. Complexes 1 and 2 display intensely characteristic luminescent properties.

  4. Syntheses, crystal structures and supramolecular topologies of copper(II)-main group metal complexes derived from N,N‧-o-phenylenebis(3-ethoxysalicylaldimine)

    NASA Astrophysics Data System (ADS)

    Mondal, Suraj; Hazra, Susanta; Sarkar, Sohini; Sasmal, Sujit; Mohanta, Sasankasekhar

    2011-10-01

    The work in the present investigation reports the syntheses, crystal structures and supramolecular topologies of 11 copper(II)-main group metal ion complexes [Cu IILNa I(NO 3)(H 2O)]·2CH 3CN ( 1), [Cu IILNa I(N 3)(CH 3OH)]·CH 3OH ( 2), [Cu IILNa I(ClO 4)(CH 3CN)]·0.5CH 3CN ( 3), [Cu IILNa I(BF 4)(CH 3OH)]·H 2O ( 4), [{Cu IILNa I(H 2O)} 2(Cu IIL)](BPh 4) 2 ( 5), [Cu IILK I(ClO 4)(CH 3COCH 3)] ( 6), [Cu IILCa II(ClO 4) 2(H 2O)] ( 7), [{Cu IILCa II(NO 3)(μ-NO 3)(H 2O)}(Cu IIL)]·H 2O·CH 3COCH 3 ( 8), [(Cu IIL) 2Ba II(NO 3) 2]·CH 3OH ( 9), [Cu IILPb II(NO 3) 2]·CH 3OH ( 10) and [Cu IILBi III(NO 3) 3]·CH 3COCH 3 ( 11), where H 2L = N, N'- o-phenylenebis(3-ethoxysalicylaldimine). Among these, eight ( 1-4, 6, 7, 10 and 11) are dinuclear compounds, one ( 9) is trinuclear double-decker sandwich compound, one ( 8) is a [2 × 1 + 1 × 1] trimetallic cocrystal of a dinuclear and a mononuclear units and the remaining ( 5) is a [2 × 2 + 1 × 1] pentametallic cocrystal of two dinuclear and one mononuclear units. All the 11 compounds 1-11 contain one or more deprotonated ligand, L 2-, the salen type N 2O 2 compartment of each of which is occupied by a Cu II ion to result in the formation of a [Cu IIL] moiety. On the other hand, the larger and open O(phenoxo) 2O(ethoxy) 2 compartment of the ligand in one or more [Cu IIL] moieties interact (s) with the metal ions Na I ( 1-5)/K I ( 6)/Ca II ( 7 and 8)/Ba II ( 9)/Pb II ( 10)/Bi III ( 11) to produce the title compounds. It has been observed that the neighbouring di/trinuclear units in 1/ 3/ 4/ 6/ 9/ 10/ 11 are self-assembled to one-/two-dimensional topologies as a result of one or more C sbnd H⋯O/O sbnd H⋯O hydrogen bonding interaction (s). Following self-assemblies are observed: one-dimensional in 4, one-dimensional helical in 1, one-dimensional double-chain (ladder) in 3, 6 and 10, two-dimensional in 9 and 11.

  5. Decay of excited nuclei produced in (78,82)Kr+(40)Ca reactions at 5.5 MeV/nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez Del Campo, Jorge; Ademard, G.; Wieleczko, J. P.

    2011-01-01

    Decay modes of excited nuclei are investigated in {sup 78,82}Kr+{sup 40}Ca reactions at 5.5 MeV/nucleon. Charged products were measured by means of the 4{pi} INDRA array. Kinetic-energy spectra and angular distributions of fragments with atomic number 3 {le} Z {le} 28 indicate a high degree of relaxation and are compatible with a fissionlike phenomenon. Persistence of structure effects is evidenced from elemental cross sections ({sigma}{sub Z}) as well as a strong odd-even staggering (o-e-s) of the light-fragment yields. The magnitude of the staggering does not significantly depend on the neutron content of the emitting system. Fragment-particle coincidences suggest that themore » light partners in very asymmetric fission are emitted either cold or at excitation energies below the particle emission thresholds. The evaporation residue cross section of the {sup 78}Kr+{sup 40}Ca reaction is slightly higher than the one measured in the {sup 82}Kr+{sup 40}Ca reaction. The fissionlike component is larger by {approx}25% for the reaction having the lowest neutron-to-proton ratio. These experimental features are confronted to the predictions of theoretical models. The Hauser-Feshbach approach including the emission of fragments up to Z = 14 in their ground states as well as excited states does not account for the main features of {sigma}{sub Z}. For both reactions, the transition-state formalism reasonably reproduces the Z distribution of the fragments with charge 12 {le} Z {le} 28. However, this model strongly overestimates the light-fragment cross sections and does not explain the o-e-s of the yields for 6 {le} Z {le} 10. The shape of the whole Z distribution and the o-e-s of the light-fragment yields are satisfactorily reproduced within the dinuclear system framework which treats the competition among evaporation, fusion-fission, and quasifission processes. The model suggests that heavy fragments come mainly from quasifission while light fragments are predominantly populated by fusion. An underestimation of the cross sections for 16 {le} Z {le} 22 could signal a mechanism in addition to the capture process.« less

  6. Interaction of a dinuclear fluorescent Cd(II) complex of calix[4]arene conjugate with phosphates and its applicability in cell imaging.

    PubMed

    Sreenivasu Mummidivarapu, V V; Hinge, Vijaya Kumar; Rao, Chebrolu Pulla

    2015-01-21

    A triazole-linked hydroxyethylimino conjugate of calix[4]arene () and its cadmium complex have been synthesized and characterized, and their structures have been established. In the complex, both the Cd(2+) centers are bound by an N2O4 core, and one of it is a distorted octahedral, whereas the other is a trigonal anti-prism. The fluorescence intensity of the di-nuclear Cd(ii) complex is quenched only in the presence of phosphates and not with other anions studied owing to their binding affinities and the nature of the interaction of the phosphates with Cd(2+). These are evident even from their absorption spectra. Different phosphates exhibit changes in both their fluorescence as well as absorption spectra to varying extents, suggesting their differential interactions. Among the six phosphates, H2PO4(-) has higher fluorescence quenching even at low equivalents of this ion, whereas P2O7(4-) shows only 50% quenching even at 10 equivalents. The fluorescence quenching is considerable even at 20 ppb (0.2 μM) of H2PO4(-), whereas all other phosphates require a concentration of 50-580 ppb to exhibit the same effect on fluorescence spectra. Thus, the interaction of H2PO4(-) is more effective by ∼30 fold as compared to that of P2O7(4-). Fluorescence quenching by phosphate is due to the release of from its original cadmium complex via the formation of a ternary species followed by the capture of Cd(2+) by the phosphate, as delineated based on the combination of spectral techniques, such as absorption, emission, (1)H NMR and ESI MS. The relative interactive abilities of the six phosphates differ from each other. The removal of Cd(2+) is demonstrated to be reversible by the repeated addition of the phosphate followed by Cd(2+). The characteristics of the ternary species formed in each of these six phosphates have been computationally modeled using molecular mechanics. The computational study revealed that the coordination between cadmium and -CH2-CH2-OH breaks and new coordination is established through the phosphate oxygens, and as a result the Cd(2+) center acquires a distorted octahedral geometry. The utility of the complex was demonstrated in HeLa cells.

  7. Syntheses, crystal structures, and properties of new metal-5-bromonicotinate coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenjie; Li, Guoting; Lv, Lulu

    2015-05-15

    Four metal–5-bromonicotinate (Brnic) coordination polymers [Fe(Brnic){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Ni(Brnic){sub 2}]{sub n} (2), [Ni(Brnic)(bpy)(H{sub 2}O){sub 2}]{sub n}·n(Brnic)·4.5nH{sub 2}O (3), and [Co{sub 2}(Brnic){sub 3}(bpy){sub 2}(OH)]{sub n}·nH{sub 2}O (4) have been synthesized and structurally characterized (bpy=4,4′-bipyridine). Complex 1 has corrugated (4,4) sheets formed by μ-Brnic ligands and planar nodes Fe(II). As for 2–4, they all built up from Brnic-bridged dinuclear subunits, but have very different structure features. Complex 2 is a twin-like polymer with (4,4) layers formed by twin paddle-wheel [Ni{sub 2}(Brnic){sub 4}] subunits. Through the bridge coordination of bpy ligands with dinuclear rings [Ni{sub 2}(Brnic){sub 2}] and trigons [Co{submore » 2}(Brnic){sub 3}(OH)], 6{sup 3}-topological cationic layers with nanosized grids of 3 and chiral ladder-type double chains of 4 formed, respectively. Notably, halogen-related interactions play an important role in the formation of 3D metallosupermolecules 1–4. The thermostabilities of all compounds have been discussed in detail. Moreover, the magnetic investigations of 2 and 4 indicate that there exist antiferromagnetic interactions in the paddle-wheel [Ni{sub 2}(Brnic){sub 4}] and trigon [Co{sub 2}(Brnic){sub 3}(OH)] cores, respectively. - Highlights: • Four novel metal–5-bromonicotinate coordination polymers have been synthesized. • Notably, halogen-related interactions play an important role in the formation of 3D metallosupermolecules. • Antiferromagnetic interactions in nickel(II) paddle-wheel and cobalt(II) trigon cores were observed.« less

  8. Designing a Dy2 Single-Molecule Magnet with Two Well-Differentiated Relaxation Processes by Using a Nonsymmetric Bis-bidentate Bipyrimidine- N-Oxide Ligand: A Comparison with Mononuclear Counterparts.

    PubMed

    Díaz-Ortega, Ismael F; Herrera, Juan Manuel; Aravena, Daniel; Ruiz, Eliseo; Gupta, Tulika; Rajaraman, Gopalan; Nojiri, H; Colacio, Enrique

    2018-06-04

    Herein we report a dinuclear [(μ-mbpymNO){(tmh) 3 Dy} 2 ] (1) single-molecule magnet (SMM) showing two nonequivalent Dy III centers, which was rationally prepared from the reaction of Dy(tmh) 3 moieties (tmh = 2,2,6,6-tetramethyl-3,5-heptanedionate) and the asymmetric bis-bidentate bridging ligand 4-methylbipyrimidine (mbpymNO). Depending on whether the Dy III ions coordinate to the N^O or N^N bidentate donor sets, the Dy III sites present a NO 7 ( D 2 d geometry) or N 2 O 6 ( D 4 d ) coordination sphere. As a consequence, two different thermally activated magnetic relaxation processes are observed with anisotropy barriers of 47.8 and 54.7 K. Ab initio calculations confirm the existence of two different relaxation phenomena and allow one to assign the 47.8 and 54.7 K energy barriers to the Dy(N 2 O 6 ) and Dy(NO 7 ) sites, respectively. Two mononuclear complexes, [Dy(tta) 3 (mbpymNO)] (2) and [Dy(tmh) 3 (phenNO)] (3), have also been prepared for comparative purposes. In both cases, the Dy III center shows a NO 7 coordination sphere and SMM behavior is observed with U eff values of 71.5 K (2) and 120.7 K (3). In all three cases, ab initio calculations indicate that relaxation of the magnetization takes place mainly via the first excited-state Kramers doublet through Orbach, Raman, and thermally assisted quantum-tunnelling mechanisms. Pulse magnetization measurements reveal that the dinuclear and mononuclear complexes exhibit hysteresis loops with double- and single-step structures, respectively, thus supporting their SMM behavior.

  9. Crystal Structures of Copper-depleted and Copper-bound Fungal Pro-tyrosinase

    PubMed Central

    Fujieda, Nobutaka; Yabuta, Shintaro; Ikeda, Takuya; Oyama, Takuji; Muraki, Norifumi; Kurisu, Genji; Itoh, Shinobu

    2013-01-01

    Tyrosinase, a dinuclear copper monooxygenase/oxidase, plays a crucial role in the melanin pigment biosynthesis. The structure and functions of tyrosinase have so far been studied extensively, but the post-translational maturation process from the pro-form to the active form has been less explored. In this study, we provide the crystal structures of Aspergillus oryzae full-length pro-tyrosinase in the holo- and the apo-forms at 1.39 and 2.05 Å resolution, respectively, revealing that Phe513 on the C-terminal domain is accommodated in the substrate-binding site as a substrate analog to protect the dicopper active site from substrate access (proteolytic cleavage of the C-terminal domain or deformation of the C-terminal domain by acid treatment transforms the pro-tyrosinase to the active enzyme (Fujieda, N., Murata, M., Yabuta, S., Ikeda, T., Shimokawa, C., Nakamura, Y., Hata, Y., and Itoh, S. (2012) ChemBioChem. 13, 193–201 and Fujieda, N., Murata, M., Yabuta, S., Ikeda, T., Shimokawa, C., Nakamura, Y., Hata, Yl, and Itoh, S. (2013) J. Biol. Inorg. Chem. 18, 19–26). Detailed crystallographic analysis and structure-based mutational studies have shown that the copper incorporation into the active site is governed by three cysteines as follows: Cys92, which is covalently bound to His94 via an unusual thioether linkage in the holo-form, and Cys522 and Cys525 of the CXXC motif located on the C-terminal domain. Molecular mechanisms of the maturation processes of fungal tyrosinase involving the accommodation of the dinuclear copper unit, the post-translational His-Cys thioether cross-linkage formation, and the proteolytic C-terminal cleavage to produce the active tyrosinase have been discussed on the basis of the detailed structural information. PMID:23749993

  10. Ditechnetium heptoxide revisited: Solid-state, gas-phase, and theoretical studies

    DOE PAGES

    Childs, Bradley C.; Braband, Henrik; Lawler, Keith; ...

    2016-10-04

    Here, ditechnetium heptoxide was synthesized from the oxidation of TcO 2 with O 2 at 450 °C and characterized by single crystal X-ray diffraction (SCXRD), electron impact mass spectrometry (EI-MS) and theoretical methods. Refinement of the structure at 100 K indicates that Tc 2O 7 crystallizes as a molecular solid in the orthorhombic space group Pbca (a = 7.312(3) Å, b = 5.562(2) Å, c = 13.707(5) Å, V = 557.5(3) Å 3). The Tc 2O 7 molecule can be described as corner-sharing TcO4 tetrahedra (Tc---Tc = 3.698(1) Å and Tc-O Bri-Tc = 180.0°). The EI-MS spectrum of Tc 2Omore » 7 consists of both mononuclear and dinuclear species. The main dinuclear species in the gas-phase are Tc 2O 7 (100%) and Tc 2O 5 (56%), while the main mononuclear species are TcO 3 (33.9%) and TcO 2 (42.8%). The difference in the relative intensities of the M 2O 5 (M = Tc, Re) fragments (1.7% for Re) indicate that these Group 7 elements exhibit different gas phase chemistry. The solid-state structure of Tc 2O 7 was investigated by density functional theory (DFT) methods. The optimized structure of the Tc 2O 7 molecule is in good agreement with the experimental one. Simulations indicate that the more favorable geometry for the Tc 2O 7 molecule in the gas-phase is bent (Tc-O Bri-Tc = 156.5°), while linear (Tc-O Bri-Tc = 180.0°) is favored in the solid state.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Karatchevtseva, Inna; Bhadbhade, Mohan

    With the coordination of dimethylformamide (DMF), two new uranium(VI) complexes with either 4-hydroxybenzoic acid (H{sub 2}phb) or terephthalic acid (H{sub 2}tph) have been synthesized under solvothermal conditions and structurally characterized. [(UO{sub 2}){sub 2}(Hphb){sub 2}(phb)(DMF)(H{sub 2}O){sub 3}]·4H{sub 2}O (1) has a dinuclear structure constructed with both pentagonal and hexagonal bipyramidal uranium polyhedra linked through a µ{sub 2}-bridging ligand via both chelating carboxylate arm and alcohol oxygen bonding, first observation of such a coordination mode of 4-hydroxybenzoate for 5 f ions. [(UO{sub 2})(tph)(DMF)] (2) has a three-dimensional (3D) framework built with pentagonal bipyramidal uranium polyhedra linked with µ{sub 4}-terephthalate ligands. The 3Dmore » channeled structure is facilitated by the unique carboxylate bonding with nearly linear C–O–U angles and the coordination of DMF molecules. The presence of phb ligands in different coordination modes, uranyl ions in diverse environments and DMF in complex 1, and tph ligand, DMF and uranyl ion in complex 2 has been confirmed by Raman spectroscopy. In addition, their thermal stability and photoluminescence properties have been investigated. - Graphical abstract: With the coordination of dimethylformamide, two new uranyl complexes with either 4-hydroxybenzoate or terephthalate have been synthesized under solvothermal conditions and structurally characterized. - Highlights: • Solvent facilitates the synthesis of two new uranium(VI) complexes. • A dinuclear complex with both penta- and hexagonal bipyramidal uranium polyhedral. • A unique µ{sub 2}-bridging mode of 4-hydroxybenzoate via alcohol oxygen for 5 f ions. • A 3D framework with uranium polyhedra and µ{sub 4}-terephthalate ligands. • Vibration modes and photoluminescence properties are reported.« less

  12. Systematic Introduction of Aromatic Rings to Diphosphine Ligands for Emission Color Tuning of Dinuclear Copper(I) Iodide Complexes.

    PubMed

    Okano, Yuka; Ohara, Hiroki; Kobayashi, Atsushi; Yoshida, Masaki; Kato, Masako

    2016-06-06

    We have newly synthesized two solution-stable luminescent dinuclear copper(I) complexes, [Cu2(μ-I)2(dpppy)2] (Cu-py) and [Cu2(μ-I)2(dpppyz)2] (Cu-pyz), where dpppy = 2,3-bis(diphenylphosphino)pyridine and dpppyz = 2,3-bis(diphenylphosphino)pyrazine, using chelating diphosphine ligands composed of N-heteroaromatic rings. X-ray analysis clearly indicates that the molecular structures of Cu-py and Cu-pyz are almost identical with that of the parent complex, [Cu2(μ-I)2(dppb)2] [Cu-bz; dppb = 2,3-bis(diphenylphosphino)benzene]. Complexes Cu-py and Cu-pyz exhibit luminescence [emission quantum yield (Φem) = 0.48 and 0.02, respectively] in the solid state at 298 K. A wide emission color tuning, from 497 to 638 nm (energy = 0.55 eV, with an emission color ranging from green to reddish-orange), was achieved in the solid state by the introduction of pyridinic N atoms into the bridging phenyl group between the two diphenylphosphine groups. Density functional theory calculations suggest that the emission could originate from the effective combination of the metal-to-ligand charge-transfer excited state with the halide-to-ligand charge-transfer excited state. Thus, the emission color change is due to stabilization of the π* levels of the central aryl group in the diphosphine ligand. Furthermore, these copper(I) complexes exhibit thermally activated delayed fluorescence at 298 K because of the small singlet-triplet energy difference (ΔE = 523 and 564 cm(-1) for Cu-py and Cu-pyz, respectively). The stability of these complexes in chloroform, due to the rigid bonds between the diphosphine ligands and the Cu(I) ions, enables the preparation of emissive poly(methyl methacrylate) films by the solution-doping technique.

  13. Dinuclear polypyridylruthenium(II) complexes: flow cytometry studies of their accumulation in bacteria and the effect on the bacterial membrane.

    PubMed

    Li, Fangfei; Feterl, Marshall; Warner, Jeffrey M; Keene, F Richard; Collins, J Grant

    2013-12-01

    To determine the energy dependency of and the contribution of the membrane potential to the cellular accumulation of the dinuclear complexes [{Ru(phen)2}2{μ-bbn}](4+) (Rubbn) and the mononuclear complexes [Ru(Me4phen)3](2+) and [Ru(phen)2(bb7)](2+) in Staphylococcus aureus and Escherichia coli, and to examine their effect on the bacterial membrane. The accumulation of the ruthenium complexes in bacteria was determined using flow cytometry at a range of temperatures. The cellular accumulation of the ruthenium complexes was also determined in cells that had been incubated with the metal complexes in the presence or absence of metabolic stimulators or inhibitors and/or commercial dyes to determine the membrane potential or membrane permeability. The accumulation of ruthenium complexes in the two bacterial strains was shown to increase with increasing incubation temperature, with the relative increase in accumulation greater with E. coli, particularly for Rubb12 and Rubb16. No decrease in accumulation was observed for Rubb12 in ATP-inhibited cells. While carbonyl cyanide m-chlorophenyl hydrazone (CCCP) did depolarize the cell membrane, no reduction in the accumulation of Rubb12 was observed; however, all ruthenium complexes, when incubated with S. aureus at concentrations twice their MIC, depolarized the membrane to a similar extent to CCCP. Except for the mononuclear complex [Ru(Me4phen)3](2+), incubation of any of the other ruthenium complexes allowed a greater quantity of the membrane-impermeable dye TO-PRO-3 to be taken up by S. aureus. The results indicate that the potential new antimicrobial Rubbn complexes enter the cell in an energy-independent manner, depolarize the cell membrane and significantly permeabilize the cellular membrane.

  14. Synthesis, structural characterization and conversion of dinuclear iron-sulfur clusters containing the disulfide ligand: [Cp*Fe(μ-η2:η2-bdt)(cis-μ-η1:η1-S2)FeCp*], [Cp*Fe(μ-S(C6H4S2))(cis-μ-η1:η1-S2)FeCp*], and [{Cp*Fe(bdt)}2(trans-μ-η1:η1-S2)].

    PubMed

    Ji, Xiaoxiao; Tong, Peng; Yang, Dawei; Wang, Baomin; Zhao, Jinfeng; Li, Yang; Qu, Jingping

    2017-03-21

    The treatment of [Cp*Fe(μ-η 2 :η 4 -bdt)FeCp*] (1, Cp* = η 5 -C 5 Me 5 , bdt = benzene-1,2-dithiolate) with 1/4 equiv. of elemental sulfur (S 8 ) gave a dinuclear iron-sulfur cluster [Cp*Fe(μ-η 2 :η 2 -bdt)(cis-μ-η 1 :η 1 -S 2 )FeCp*] (2), which contains a cis-1,2-disulfide ligand. When complex 2 further interacted with 1/8 equiv. of S 8 , another sulfur atom inserted into an Fe-S bond to give a rare product [Cp*Fe(μ-S(C 6 H 4 S 2 ))(cis-μ-η 1 :η 1 -S 2 )FeCp*] (3). Unexpectedly, a trans-1,2 disulfide-bridged diiron complex [{Cp*Fe(bdt)} 2 (trans-μ-η 1 :η 1 -S 2 )] (4) was isolated from the reaction of complex 1 with 1/2 equiv. of S 8 , which represents a structural isomer of [2Fe-2S] ferredoxin-type clusters. In addition, cis-1,2-disulfide-bridged complex 3 can slowly convert into trans-1,2-disulfide-bridged complex 4 and the complex [Cp*Fe(μ-η 2 :η 2 -S 2 )(cis-μ-η 1 :η 1 -S 2 )FeCp*] (5) by self-assembly reaction at ambient temperature, which is evidenced by time-dependent 1 H NMR spectroscopy.

  15. New charge transfer salts based on bis(ethylenedithio)tetrathiafulvalene (ET) and ferro- or antiferromagnetic oxalato-bridged dinuclear anions: syntheses, structures and magnetism of ET5[MM'(C2O4)(NCS)8] with MM' = Cr(III)Fe(III), Cr(III)Cr(III).

    PubMed

    Triki, S; Bérézovsky, F; Sala Pala, J; Gómez-García, C J; Coronado, E; Costuas, K; Halet, J F

    2001-09-24

    Electrochemical combination of the magnetic dinuclear anion [MM'(C2O4)(NCS)8](4-) (MM' = Cr(III)Cr(III), Cr(III)Fe(III)) with the ET organic pi-donor (ET = BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene) gives rise to two new isostructural molecular hybrid salts ET5[MM'(C2O4)(NCS)8], with MM' = CrCr (1), CrFe (2). The molecular structure of compound 1 has been determined by single crystal X-ray diffraction. The particular arrangement of the organic units consists of an unprecedented two-dimensional organic sublattice nearly similar to that observed in kappa-phase structures. For both compounds, the magnetic susceptibility measurements indicate (i) the ET radicals do not contribute to the magnetic moment probably due to the presence of strong antiferromagnetic interaction between them, and (ii) in the anion, the magnetic coupling is antiferromagnetic for 1 (J = -3.65 cm(-1)) and ferromagnetic for 2 (J = 1.14 cm(-1), J being the parameter of the exchange Hamiltonian H = -2JS1S2). The field dependence of the magnetization of compound 2 at 2.0 K gives further evidence of the S = 4 ground-state arising from the interaction between S = 3/2 Cr(III) and S = 5/2 Fe(III). EPR measurements confirm the nature of the magnetic interactions and the absence of any contribution from the organic part, as observed from the static magnetic measurement. Conductivity measurements and electronic band structure calculations show that both salts are semiconductors with low activation energies.

  16. AsMo7O27-bridged dinuclear sandwich-type heteropolymolybdates of Cr(III) and Fe(III): magnetism of [MM'(AsMo7O27)2]12- with MM' = FeFe, CrFe, and CrCr.

    PubMed

    Xu, Haisheng; Li, Lili; Liu, Bin; Xue, Ganglin; Hu, Huaiming; Fu, Feng; Wang, Jiwu

    2009-11-02

    Two new dinuclear sandwich-type heteropolymolybdates based on the mulitidendate inorganic fragment [AsMo(7)O(27)] and Cr(III) and Fe(III) ions, namely, the homometallic sandwich polyoxometalate (POM) (NH(4))(12)[Fe(2)(AsMo(7)O(27))(2)] x 12 H(2)O (1) and the first example of the "symmetrical" heterometallic Cr(III)-Fe(III) sandwich POM, (NH(4))(12)[FeCr(AsMo(7)O(27))(2)] x 13 H(2)O (2), were simultaneously synthesized in high yield. Their magnetic properties are thoroughly investigated together with the homometallic sandwich POM (NH(4))(12)[Cr(2)(AsMo(7)O(27))(2)] x 11 H(2)O (3). The chi(M)T values for compounds 1-3 at 300 K correspond well to the calculated spin-only values for Fe(III) (S = 5/2) and Cr(III) (S = 3/2) with g(Fe) = g(Cr) = 2. Upon cooling, the chi(M)T values decline monotonously and reach 0.14, 1.00, and 0.11 cm(3) K mol(-1) at 2.0 K for 1, 2, and 3, respectively, indicating a significant antiferromagnetic exchange between the magnetic centers with J = -2.09, -4.09, and -6.26 cm(-1), respectively, for 1, 2, and 3. The magnetic results clearly establish that compound 2 is formed by bimetallic Cr(III)-Fe(III) units and not by a mixture of the two antiferromagnetically coupled homometallic species. Their thermal properties are also characterized.

  17. Interpenetrated Uranyl-Organic Frameworks with bor and pts Topology: Structure, Spectroscopy, and Computation.

    PubMed

    Liu, Chao; Chen, Fang-Yuan; Tian, Hong-Rui; Ai, Jing; Yang, Weiting; Pan, Qing-Jiang; Sun, Zhong-Ming

    2017-11-20

    Two novel three-dimensional interpenetrated uranyl-organic frameworks, (NH 4 ) 4 [(UO 2 ) 4 (L 1 ) 3 ]·6H 2 O (1) and [(UO 2 ) 2 (H 2 O) 2 L 2 ]·2H 2 O (2), where L 1 = tetrakis(3-carboxyphenyl)silicon and L 2 = tetrakis(4-carboxyphenyl)silicon, were synthesized by a combination of two isomeric tetrahedral silicon-centered ligands with 3-connected triangular [(UO 2 )(COO) 3 ] - and 4-connected dinuclear [(UO 2 ) 2 (COO) 4 ] units, respectively. Structural analyses indicate that 1 possesses a 2-fold interpenetrating anion bor network, while 2 exhibits a 3-fold interpenetrated 4,4-connected neutral network with pts topology. Both compounds were characterized by thermogravimetric analysis and IR, UV-vis, and photoluminescence spectroscopy. A relativistic density functional theory (DFT) investigation on 10 model compounds of 1 and 2 shows good agreement of the structural parameters, stretching vibrational frequencies, and absorption with experimental results; the time-dependent DFT calculations unravel that low-energy absorption bands originate from ligand-to-uranium charge transfer.

  18. 6,6″-Dimethyl-2,2':6',2″-terpyridine revisited: new fluorescent silver(I) helicates with in vitro antiproliferative activity via selective nucleoli targeting.

    PubMed

    Fik, Marta A; Gorczyński, Adam; Kubicki, Maciej; Hnatejko, Zbigniew; Fedoruk-Wyszomirska, Agnieszka; Wyszko, Eliza; Giel-Pietraszuk, Małgorzata; Patroniak, Violetta

    2014-10-30

    6,6″-Dimethyl-2,2':6',2″-terpyridine ligand (L) reacts in equimolar ratio with Ag(I) ions what results in formation of dinuclear double helicates, which differ in terms of framework and complexity in accordance to counterions and solvent applied. Obtained complexes were thoroughly studied in terms of their biological activity, with the positive antiproliferative outcome on three human cancer cell lines: human breast cancer (T47D), human cervical carcinoma (HeLa) and human lung cancer (A-549). Performed DNA binding experiments showed that given Ag(I) species specifically interact with DNA double helix via intercalation and were visualized by confocal microscopy to specifically bind to the nuclei. All newly synthesized helical systems exhibit promising antimicrobial activity against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacterial strains. Spectrophotometric properties were described as fulfilment of structural studies of newly presented complexes confirming their helical structure in solution. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Influence of nuclear basic data on the calculation of production cross sections of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Bao, X. J.; Gao, Y.; Li, J. Q.; Zhang, H. F.

    2015-07-01

    The center of the predicted island of stability of superheavy nuclei (SHN) has not yet been observed experimentally. Many theories are being developed to understand the synthesizing mechanism of superheavy nuclei. However, all of them have to use some basic nuclear data. Three data tables, FRDM1995 [P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995), 10.1006/adnd.1995.1002], KTUY2005 [H. Koura et al., Prog. Theor. Phys. 113, 305 (2005), 10.1143/PTP.113.305], and WS2010 [Ning Wang et al., Phys. Rev. C 82, 044304 (2010), 10.1103/PhysRevC.82.044304], are used to investigate the SHN production. Based on the dinuclear system concept, the evaporation residue cross sections of SHN for Z =112-118 are calculated for the 48Ca -induced hot fusion reactions. It turns out that unlike the predictions made with the KTUY2005 and WS2010 data, the magic numbers Z =114 and N =184 predicted with the FRDM1995 data do not contradict the experimental data obtained so far.

  20. DNA interactions of non-chelating tinidazole-based coordination compounds and their structural, redox and cytotoxic properties.

    PubMed

    Castro-Ramírez, Rodrigo; Ortiz-Pastrana, Naytzé; Caballero, Ana B; Zimmerman, Matthew T; Stadelman, Bradley S; Gaertner, Andrea A E; Brumaghim, Julia L; Korrodi-Gregório, Luís; Pérez-Tomás, Ricardo; Gamez, Patrick; Barba-Behrens, Norah

    2018-05-23

    Novel tinidazole (tnz) coordination compounds of different geometries were synthesised, whose respective solid-state packing appears to be driven by inter- and intramolecular lone pairπ interactions. The copper(ii) compounds exhibit interesting redox properties originating from both the tnz and the metal ions. These complexes interact with DNA through two distinct ways, namely via electrostatic interactions or/and groove binding, and they can mediate the generation of ROS that damage the biomolecule. Cytotoxic studies revealed an interesting activity of the dinuclear compound [Cu(tnz)2(μ-Cl)Cl]2 7, which is further more efficient towards cancer cells, compared with normal cells.

  1. Bis(μ2-iso-propyl-imido-κ(2) N:N)bis-[(η(5)-cyclo-penta-dien-yl)(ethenolato-κO)titanium(IV)].

    PubMed

    Haehnel, Martin; Spannenberg, Anke; Rosenthal, Uwe

    2014-01-01

    The title dinuclear half-sandwich complex, [CpTi(OCH=CH2)(μ2-N-iPr)]2 (Cp = cyclo-penta-dien-yl; iPr = isopropyl), was ob-tained from the reaction of Cp2TiCl2, n-butyl-lithium and iso-propyl-amine in tetra-hydro-furan. Each Ti(IV) atom is coordinated by one Cp ligand, one vin-yloxy unit and two bridging imido groups in a strongly distorted tetra-hedral geometry. There are two half mol-ecules in the asymmetric unit, such that whole mol-ecules being generated by inversion symmetry.

  2. Structural diversity of silver (I) azine complexes - Effect of substituents and counter anions

    NASA Astrophysics Data System (ADS)

    Patra, Goutam Kumar; Mukherjee, Anindita; Mitra, Partha; Adarsh, N. N.

    2011-08-01

    Three new Ag(I) complexes, 1, 2, and 3 of two azine ligands diacetyl dihydrazone ( L1) and benzil dihydrazone ( L2) have been synthesized and characterized by single crystal X-ray diffraction studies (for 2 and 3), X-ray powder diffraction studies( 1 and 2), elemental analyses, IR and UV-VIS spectroscopy and TGA analysis. They represent one-dimensional polymeric assemblies and discrete dinuclear Ag(I) complex depending on functionality of the ligands and the counter anions. Tetrahedral as well as square pyramidal coordination motifs of the silver (I) ions have been observed in the supramolecular designing of such hybrid organic-inorganic materials.

  3. Parametrization of DFTB3/3OB for Magnesium and Zinc for Chemical and Biological Applications

    PubMed Central

    2015-01-01

    We report the parametrization of the approximate density functional theory, DFTB3, for magnesium and zinc for chemical and biological applications. The parametrization strategy follows that established in previous work that parametrized several key main group elements (O, N, C, H, P, and S). This 3OB set of parameters can thus be used to study many chemical and biochemical systems. The parameters are benchmarked using both gas-phase and condensed-phase systems. The gas-phase results are compared to DFT (mostly B3LYP), ab initio (MP2 and G3B3), and PM6, as well as to a previous DFTB parametrization (MIO). The results indicate that DFTB3/3OB is particularly successful at predicting structures, including rather complex dinuclear metalloenzyme active sites, while being semiquantitative (with a typical mean absolute deviation (MAD) of ∼3–5 kcal/mol) for energetics. Single-point calculations with high-level quantum mechanics (QM) methods generally lead to very satisfying (a typical MAD of ∼1 kcal/mol) energetic properties. DFTB3/MM simulations for solution and two enzyme systems also lead to encouraging structural and energetic properties in comparison to available experimental data. The remaining limitations of DFTB3, such as the treatment of interaction between metal ions and highly charged/polarizable ligands, are also discussed. PMID:25178644

  4. A series of three-dimensional lanthanide coordination polymers with rutile and unprecedented rutile-related topologies.

    PubMed

    Qin, Chao; Wang, Xin-Long; Wang, En-Bo; Su, Zhong-Min

    2005-10-03

    The complexes of formulas Ln(pydc)(Hpydc) (Ln = Sm (1), Eu (2), Gd (3); H2pydc = pyridine-2,5-dicarboxylic acid) and Ln(pydc)(bc)(H2O) (Ln = Sm (4), Gd (5); Hbc = benzenecarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR, TG analysis, and single-crystal X-ray diffraction. Compounds 1-3 are isomorphous and crystallize in the orthorhombic system, space group Pbcn. Their final three-dimensional racemic frameworks can be considered as being constructed by helix-linked scalelike sheets. Compounds 4 and 5 are isostructural and crystallize in the monoclinic system, space group P2(1)/c. pydc ligands bridge dinuclear lanthanide centers to form the three-dimensional frameworks featuring hexagonal channels along the a-axis that are occupied by one-end-coordinated bc ligands. From the topological point of view, the five three-dimensional nets are binodal with six- and three-connected nodes, the former of which exhibit a rutile-related (4.6(2))(2)(4(2).6(9).8(4)) topology that is unprecedented within coordination frames, and the latter two species display a distorted rutile (4.6(2))(2)(4(2).6(10).8(3)) topology. Furthermore, the luminescent properties of 2 were studied.

  5. Reactions of Metal-Metal Multiple Bonds. 14. Synthesis and Characterization of Triangulo-W3 and Mo2W-oxo Capped Alkoxide Clusters. Comproportionation of M-M Triple Bonds, sigma(2)pi(4) and d(o) Metal-oxo Groups: M Triple Bond M + M Triple Bond O Yields M3(micron 3-O).

    DTIC Science & Technology

    1984-05-02

    the syntheses of dinuclear and trinuclear complexes employing metal -alkylidyne or -alkylidene fragments.8 Reaction 1 also has a parallel with the...1 0 which was previously examined. The mixed metal complex is undoubtedly disordered with respect to the disposition of molybdenum and tungsten atoms...than for the analogous Mo3 complex suggests greater metal - metal overlap and possibly stronger bonding interactions in the W3 complex which would not

  6. [μ-10,21-Dimethyl-3,6,14,17-tetra-za-tricyclo-[17.3.1.1]tetra-cosa-1(23),2,6,8,10,12 (24),13,17,19,21-deca-ene-23,24-diolato-κN,N,O,O:κN,N,O,O]bis-(perchlorato-κO)dimanganese(II).

    PubMed

    Liu, Jing; Pan, Zhi-Quan; Zhou, Hong; Li, Yi-Zhi

    2008-11-08

    In the centrosymmetric and dinuclear title complex, [Mn(2)(C(22)H(22)N(4)O(2))(ClO(4))(2)], the two Mn atoms are bridged by two phenolate O atoms of the N(4)O(2) macrocycle with an Mn⋯Mn distance of 2.9228 (11) Å. The distorted square-pyramidal N(2)O(3) coordination geometry is completed by an O atom derived from a perchlorate anion.

  7. Nuclear inelastic scattering at the diiron center of ribonucleotide reductase from Escherichia coli

    NASA Astrophysics Data System (ADS)

    Marx, J.; Srinivas, V.; Faus, I.; Auerbach, H.; Scherthan, L.; Jenni, K.; Chumakov, A. I.; Rüffer, R.; Högbom, M.; Haumann, M.; Schünemann, V.

    2017-11-01

    The enzyme ribonucleotide reductase R2 catalyzes an important step in the synthesis of the building blocks of DNA, and harbors a dinuclear iron center required for activity. Not only the iron valence states but also the protonation of the iron ligands govern the enzymatic activity of the enzyme. We have performed Nuclear Inelastic Scattering (NIS) experiments on the 57Fe reconstituted ribonucleotide reductase R2 subunit from Escherichia coli ( Ec R2a). Accompanying Mössbauer spectroscopic investigations show that the partial density of vibrational states (pDOS) of the 57Fe reconstituted Ec R2a sample contained contributions from both 57Fe- Ec R2a protein as well as unspecifically bound 57Fe. Subtraction of a featureless pDOS as obtained from protein-coated iron oxide particles allowed modeling of the contribution of non-specifically bound iron and thus the pDOS of 57Fe- Ec R2a could be obtained. Quantum-mechanics/molecular-mechanics (QM/MM) calculations of the whole 57Fe- Ec R2a protein with variations of the cofactor protonation were performed in order to assign characteristic bands to their corresponding molecular vibrational modes.

  8. Dinuclear copper(II) octaazamacrocyclic complex in a PVC coated GCE and graphite as a voltammetric sensor for determination of gallic acid and antioxidant capacity of wine samples.

    PubMed

    Petković, B B; Stanković, D; Milčić, M; Sovilj, S P; Manojlović, D

    2015-01-01

    A novel efficient differential pulse voltammetric (DPV) method for determination gallic acid (GA) was developed by using an electrochemical sensor based on [Cu2tpmc](ClO4)4 immobilized in PVC matrix and coated on graphite (CGE) or classy carbon rod (CGCE). The proposed method is based on the gallic acid oxidation process at formed [Cu2tpmcGA](3+) complex at the electrode surface. The complexation was explored by molecular modeling and DFT calculations. Voltammograms for both sensors, recorded in a HNO3 as a supporting electrolyte at pH 2 and measured in 2.5×10(-7) to 1.0×10(-4) M of GA, resulted with two linear calibration curves (for higher and lower GA concentration range). The detection limit at CGE was 1.48×10(-7) M, while at CGCE was 4.6×10(-6) M. CGE was successfully applied for the determination of the antioxidant capacity based on GA equivalents for white, rosé and red wine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A radical pathway in catecholase activity with nickel(II) complexes of phenol based "end-off" compartmental ligands.

    PubMed

    Ghosh, Totan; Adhikary, Jaydeep; Chakraborty, Prateeti; Sukul, Pradip K; Jana, Mahendra Sekhar; Mondal, Tapan Kumar; Zangrando, Ennio; Das, Debasis

    2014-01-14

    Seven dinuclear and one dinuclear based dicyanamide bridged polymeric Ni(II) complexes of phenol based compartmental ligands (HL(1)-HL(4)) have been synthesized with the aim to investigate their catecholase-like activity and to evaluate the most probable mechanistic pathway involved in this process. The complexes have been characterized by routine physicochemical studies as well as by X-ray single crystal structure analyses namely [Ni2(L(2))(SCN)3(H2O)(CH3OH)] (), [Ni2(L(4))(SCN)3(CH3OH)2] (), [Ni2(L(2))(SCN)2(AcO)(H2O)] (), [Ni2(L(4))(SCN)(AcO)2] (), [Ni2(L(2))(N3)3(H2O)2] (), [Ni2(L(4))(N3)3(H2O)2] (), [Ni2(L(1))(AcO)2(N(CN)2)]n () and [Ni2(L(3))(AcO)2(N(CN)2)] (), [SCN = isothiocyanate, AcO = acetate, N3 = azide, and N(CN)2 = dicyanamide anion; L(1-4) = 2,6-bis(R2-iminomethyl)-4-R1-phenolato, where R1 = methyl and tert-butyl, R2 = N,N-dimethyl ethylene for L(1-2) and R1 = methyl and tert-butyl, R2 = 2-(N-ethyl) pyridine for L(3-4)]. A UV-vis spectrophotometric study using 3,5-di-tert butylcatechol (3,5-DTBC) reveals that all the complexes are highly active in catalyzing the aerobic oxidation of (3,5-DTBC) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ) in methanol medium with the formation of hydrogen peroxide. An EPR study confirms the generation of radicals during the catalysis. Cyclic voltammetric studies of the complexes in the presence and absence of 3,5-DTBC have been performed. Reduction of Ni(II) to Ni(I) and that of the imine bond of the ligand system have been detected at ∼-1.0 V and ∼-1.5 V, respectively. Coulometric separation of the species at -1.5 V followed by the EPR study at 77 K confirms the species as an organic radical and thus most probably reduced imine species. Spectroelectrochemical analysis at -1.5 V clearly indicates the oxidation of 3,5-DTBC and thus suggests that the radical pathway is supposed to be responsible for the catecholase-like activity exhibited by the nickel complexes. The ligand centred radical generation has further been verified by density functional theory calculation.

  10. Assembly of 4-, 6- and 8-connected Cd(II) pseudo-polymorphic coordination polymers: Synthesis, solvent-dependent structural variation and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhao-Hao; Xue, Li-Ping, E-mail: lpxue@163.com; Miao, Shao-Bin

    2016-08-15

    The reaction of Cd(NO{sub 3}){sub 2}·4H{sub 2}O, 2,5-thiophenedicarboxylic acid (H{sub 2}tdc) and 1,2-bis(imidazol-1′-yl)methane (bimm) by modulating solvent systems yielded three highly connected pseudo-polymorphic coordination polymers based on different dinuclear [Cd{sub 2}(CO{sub 2}){sub 2}] subunits bridged by carboxylate groups. Single crystal structural analyses reveal structural variation from 4-connected 2D sql layer, 6-connected 2-fold interpenetrated 3D pcu to 8-connected 3D bcu-type network in compounds 1–3. The structural dissimilarity in the structures dependent on the coordination environments of Cd(II) ions and linking modes of mixed ligand influenced by different solvent systems during the synthesis process. Moreover, thermogravimetric and photoluminescence behaviors of 1–3 weremore » also investigated for the first time, and all the complexes emit blue luminescence in the solid state. - Graphical abstract: Key Topic. Different solvent systems modulated three Cd(II) pseudo-polymorphic coordination polymers based on thiophene-2,5-dicarboxylate and 1,2-bis(imidazol-1′-yl)methane mixed ligands. Display Omitted - Highlights: • Three solvent-dependent Cd(II) pseudo-polymorphic coordination polymers have been synthesized. • Structural variation from 4-connected 2D layer, 6-connected 2-fold interpenetrated 3D net to 8-connected 3D net. • All complexes emit blue luminescence.« less

  11. Simultaneous interaction with base and phosphate moieties modulates the phosphodiester cleavage of dinucleoside 3',5'-monophosphates by dinuclear Zn2+ complexes of di(azacrown) ligands.

    PubMed

    Wang, Qi; Lönnberg, Harri

    2006-08-23

    Five dinucleating ligands (1-5) and one trinucleating ligand (6) incorporating 1,5,9-triazacyclododecan-3-yloxy groups attached to an aromatic scaffold have been synthesized. The ability of the Zn(2+) complexes of these ligands to promote the transesterification of dinucleoside 3',5'-monophosphates to a 2',3'-cyclic phosphate derived from the 3'-linked nucleoside by release of the 5'-linked nucleoside has been studied over a narrow pH range, from pH 5.8 to 7.2, at 90 degrees C. The dinuclear complexes show marked base moiety selectivity. Among the four dinucleotide 3',5'-phosphates studied, viz. adenylyl-3',5'-adenosine (ApA), adenylyl-3',5'-uridine (ApU), uridylyl-3',5'-adenosine (UpA), and uridylyl-3',5'-uridine (UpU), the dimers containing one uracil base (ApU and UpA) are cleaved up to 2 orders of magnitude more readily than those containing either two uracil bases (UpU) or two adenine bases (ApA). The trinuclear complex (6), however, cleaves UpU as readily as ApU and UpA, while the cleavage of ApA remains slow. UV spectrophotometric and (1)H NMR spectroscopic studies with one of the dinucleating ligands (3) verify binding to the bases of UpU and ApU at less than millimolar concentrations, while no interaction with the base moieties of ApA is observed. With ApU and UpA, one of the Zn(2+)-azacrown moieties in all likelihood anchors the cleaving agent to the uracil base of the substrate, while the other azacrown moiety serves as a catalyst for the phosphodiester transesterification. With UpU, two azacrown moieties are engaged in the base moiety binding. The catalytic activity is, hence, lost, but it can be restored by addition of a third azacrown group on the cleaving agent.

  12. Bis(μ-2-{[2-(1,3-benzothia­zol-2-yl)hydrazinyl­idene]meth­yl}-6-meth­oxy­phenolato)bis­[dinitratodysprosium(III)] methanol disolvate

    PubMed Central

    Xu, Xuebin; Ding, Shuai; Shen, Si; Tang, Jinkui; Liu, Zhiliang

    2011-01-01

    In the centrosymmetric dinuclear title compound, [Dy2(C15H12N3O2S)2(NO3)4]·2CH3OH, the two DyIII atoms are coordinated by two deprotonated 2-{[2-(1,3-benzothia­zol-2-yl)hydrazinyl­idene]meth­yl}-6-meth­oxy­phenol ligands and four nitrate ions, all of which are chelating. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds and weak O—H⋯O inter­actions, forming a two-dimensional network parallel to (010). PMID:21754674

  13. Star-shaped PHB-PLA block copolymers: immortal polymerization with dinuclear indium catalysts.

    PubMed

    Yu, I; Ebrahimi, T; Hatzikiriakos, S G; Mehrkhodavandi, P

    2015-08-28

    The first example of a one-component precursor to star-shaped polyesters, and its utilization in the synthesis of previously unknown star-shaped poly(hydroxybutyrate)-poly(lactic acid) block copolymers, is reported. A series of such mono- and bis-benzyl alkoxy-bridged complexes were synthesized, fully characterized, and their solvent dependent solution structures and reactivity were examined. These complexes were highly active catalysts for the controlled polymerization of β-butyrolactone to form poly(hydroxybutyrate) at room temperature. Solution studies indicate that a mononuclear propagating species formed in THF and that the dimer-monomer equilibrium affects the rates of BBL polymerization. In the presence of linear and branched alcohols, these complexes catalyze well-controlled immortal polymerization and copolymerization of β-butyrolactone and lactide.

  14. Synthetic Active Site Model of the [NiFeSe] Hydrogenase

    PubMed Central

    Wombwell, Claire; Reisner, Erwin

    2015-01-01

    A dinuclear synthetic model of the [NiFeSe] hydrogenase active site and a structural, spectroscopic and electrochemical analysis of this complex is reported. [NiFe(‘S2Se2’)(CO)3] (H2‘S2Se2’=1,2-bis(2-thiabutyl-3,3-dimethyl-4-selenol)benzene) has been synthesized by reacting the nickel selenolate complex [Ni(‘S2Se2’)] with [Fe(CO)3bda] (bda=benzylideneacetone). X-ray crystal structure analysis confirms that [NiFe(‘S2Se2’)(CO)3] mimics the key structural features of the enzyme active site, including a doubly bridged heterobimetallic nickel and iron center with a selenolate terminally coordinated to the nickel center. Comparison of [NiFe(‘S2Se2’)(CO)3] with the previously reported thiolate analogue [NiFe(‘S4’)(CO)3] (H2‘S4’=H2xbsms=1,2-bis(4-mercapto-3,3-dimethyl-2-thiabutyl)benzene) showed that the selenolate groups in [NiFe(‘S2Se2’)(CO)3] give lower carbonyl stretching frequencies in the IR spectrum. Electrochemical studies of [NiFe(‘S2Se2’)(CO)3] and [NiFe(‘S4’)(CO)3] demonstrated that both complexes do not operate as homogenous H2 evolution catalysts, but are precursors to a solid deposit on an electrode surface for H2 evolution catalysis in organic and aqueous solution. PMID:25847470

  15. Interactions of 1,12-diamino-4,9-dioxadodecane (OSpm) and Cu(II) ions with pyrimidine and purine nucleotides: adenosine-5'-monophosphate (AMP) and cytidine-5'-monophosphate (CMP).

    PubMed

    Lomozik, L; Gasowska, A; Krzysko, G

    2006-11-01

    The interactions of Cu(II) ions with adenosine-5'-monophosphate (AMP), cytidine-5'-monophosphate (CMP) and 1,12-diamino-4,9-dioxadodecane (OSpm) were studied. A potentiometric method was applied to determine the composition and stability constants of complexes formed, while the mode of interactions was analysed by spectral methods (ultraviolet and visible spectroscopy (UV-Vis), electron paramagnetic resonance (EPR), (13)C NMR, (31)P NMR). In metal-free systems, molecular complexes nucleotide-polyamine (NMP)H(x)(OSpm) were formed. The endocyclic nitrogen atoms of the purine ring N(1), N(7), the nitrogen atom of the pyrimidine ring N(3), the oxygen atoms of the phosphate group of the nucleotide and the protonated nitrogen atoms of the polyamine were the reaction centres. The mode of interaction of the metal ion with OSpm and the nucleotides (AMP or CMP) in the coordination compounds was established. In the system Cu(II)/OSpm the dinuclear complex Cu(2)(OSpm) forms, while in the ternary systems Cu(II)/nucleotide/OSpm the species type MH(x)LL' and MLL' appear. In the MH(x)LL' type species, the main centres of copper (II) ion binding in the nucleotide are the phosphate groups. The protonated amino groups of OSpm are involved in non-covalent interaction with the nitrogen atoms N(1), N(7) or N(3) of the purine or pyrimidine ring, whereas at higher pH, deprotonated nitrogen atoms of polyamine are engaged in metallation in MLL' species.

  16. Crystal structure of Manduca sexta prophenoloxidase provides insights into the mechanism of type 3 copper enzymes

    PubMed Central

    Li, Yongchao; Wang, Yang; Jiang, Haobo; Deng, Junpeng

    2009-01-01

    Arthropod phenoloxidase (PO) generates quinones and other toxic compounds to sequester and kill pathogens during innate immune responses. It is also involved in wound healing and other physiological processes. Insect PO is activated from its inactive precursor, prophenoloxidase (PPO), by specific proteolysis via a serine protease cascade. Here, we report the crystal structure of PPO from a lepidopteran insect at a resolution of 1.97 Å, which is the initial structure for a PPO from the type 3 copper protein family. Manduca sexta PPO is a heterodimer consisting of 2 homologous polypeptide chains, PPO1 and PPO2. The active site of each subunit contains a canonical type 3 di-nuclear copper center, with each copper ion coordinated with 3 structurally conserved histidines. The acidic residue Glu-395 located at the active site of PPO2 may serve as a general base for deprotonation of monophenolic substrates, which is key to the ortho-hydroxylase activity of PO. The structure provides unique insights into the mechanism by which type 3 copper proteins differ in their enzymatic activities, albeit sharing a common active center. A drastic change in electrostatic surface induced on cleavage at Arg-51 allows us to propose a model for localized PPO activation in insects. PMID:19805072

  17. Experimental Investigation on the Mechanism of Chelation-Assisted, Copper(II) Acetate-Accelerated Azide-Alkyne Cycloaddition

    PubMed Central

    Kuang, Gui-Chao; Guha, Pampa M.; Brotherton, Wendy S.; Simmons, J. Tyler; Stankee, Lisa A.; Nguyen, Brian T.; Clark, Ronald J.; Zhu, Lei

    2011-01-01

    A mechanistic model is formulated to account for the high reactivity of chelating azides (organic azides capable of chelation-assisted metal coordination at the alkylated azido nitrogen position) and copper(II) acetate (Cu(OAc)2) in copper(II)-mediated azide-alkyne cycloaddition (AAC) reactions. Fluorescence and 1H NMR assays are developed for monitoring the reaction progress in two different solvents – methanol and acetonitrile. Solvent kinetic isotopic effect and pre-mixing experiments give credence to the proposed different induction reactions for converting copper(II) to catalytic copper(I) species in methanol (methanol oxidation) and acetonitrile (alkyne oxidative homocoupling), respectively. The kinetic orders of individual components in a chelation-assisted, copper(II)-accelerated AAC reaction are determined in both methanol and acetonitrile. Key conclusions resulting from the kinetic studies include (1) the interaction between copper ion (either in +1 or +2 oxidation state) and a chelating azide occurs in a fast, pre-equilibrium step prior to the formation of the in-cycle copper(I)-acetylide, (2) alkyne deprotonation is involved in several kinetically significant steps, and (3) consistent with prior experimental and computational results by other groups, two copper centers are involved in the catalysis. The X-ray crystal structures of chelating azides with Cu(OAc)2 suggest a mechanistic synergy between alkyne oxidative homocoupling and copper(II)-accelerated AAC reactions, in which both a bimetallic catalytic pathway and a base are involved. The different roles of the two copper centers (a Lewis acid to enhance the electrophilicity of the azido group and a two-electron reducing agent in oxidative metallacycle formation, respectively) in the proposed catalytic cycle suggest that a mixed valency (+2 and +1) dinuclear copper species be a highly efficient catalyst. This proposition is supported by the higher activity of the partially reduced Cu(OAc)2 in mediating a 2-picolylazide-involved AAC reaction than the fully reduced Cu(OAc)2. Finally, the discontinuous kinetic behavior that has been observed by us and others in copper(I/II)-mediated AAC reactions is explained by the likely catalyst disintegration during the course of a relatively slow reaction. Complementing the prior mechanistic conclusions drawn by other investigators which primarily focus on the copper(I)/alkyne interactions, we emphasize the kinetic significance of copper(I/II)/azide interaction. This work not only provides a mechanism accounting for the fast Cu(OAc)2-mediated AAC reactions involving chelating azides, which has apparent practical implications, but suggests the significance of mixed-valency dinuclear copper species in catalytic reactions where two copper centers carry different functions. PMID:21809811

  18. Vibronic Coupling Investigation to Compute Phosphorescence Spectra of Pt(II) Complexes.

    PubMed

    Vazart, Fanny; Latouche, Camille; Bloino, Julien; Barone, Vincenzo

    2015-06-01

    The present paper reports a comprehensive quantum mechanical investigation on the luminescence properties of several mono- and dinuclear platinum(II) complexes. The electronic structures and geometric parameters are briefly analyzed together with the absorption bands of all complexes. In all cases agreement with experiment is remarkable. Next, emission (phosphorescence) spectra from the first triplet states have been investigated by comparing different computational approaches and taking into account also vibronic effects. Once again, agreement with experiment is good, especially using unrestricted electronic computations coupled to vibronic contributions. Together with the intrinsic interest of the results, the robustness and generality of the approach open the opportunity for computationally oriented chemists to provide accurate results for the screening of large targets which could be of interest in molecular materials design.

  19. Persistent four-coordinate iron-centered radical stabilized by π-donation† †Electronic supplementary information (ESI) available: Experimental, crystallographic, computational details, and crystal data for 2, 4, 5 and 8. CCDC 1057111–1057113 and 1425703. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc02601f Click here for additional data file. Click here for additional data file.

    PubMed Central

    Ishida, Shintaro; Hirakawa, Fumiya; Shiota, Yoshihito; Yoshizawa, Kazunari; Kanegawa, Shinji; Sato, Osamu; Nagashima, Hideo

    2016-01-01

    Dinuclear iron carbonyl complex 2, which contains an elongated unsupported Fe–Fe bond, was synthesized by the reaction between Fe2(CO)9 and phosphinyl radical 1. Thermal Fe–Fe bond homolysis led to the generation of a four-coordinate carbonyl-based iron-centered radical, 3, which is stabilized by π-donation. Complex 3 exhibited high reactivity toward organic radicals to form diamagnetic five-coordinate Fe(ii) complexes. PMID:28758000

  20. Characterizing the astrophysical S factor for 12C+12C fusion with wave-packet dynamics

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, Alexis; Wiescher, Michael

    2018-05-01

    A quantitative study of the astrophysically important subbarrier fusion of 12C+12C is presented. Low-energy collisions are described in the body-fixed reference frame using wave-packet dynamics within a nuclear molecular picture. A collective Hamiltonian drives the time propagation of the wave packet through the collective potential-energy landscape. The fusion imaginary potential for specific dinuclear configurations is crucial for understanding the appearance of resonances in the fusion cross section. The theoretical subbarrier fusion cross sections explain some observed resonant structures in the astrophysical S factor. These cross sections monotonically decline towards stellar energies. The structures in the data that are not explained are possibly due to cluster effects in the nuclear molecule, which need to be included in the present approach.

  1. On the behaviour of biradicaloid [P(μ-NTer)]2 towards Lewis acids and bases.

    PubMed

    Hinz, Alexander; Schulz, Axel; Villinger, Alexander

    2016-05-07

    The well-known diphosphadiazane-1,3-diyl [P(μ-NTer)]2 (Ter = 2,6-bis(2,4,6-trimethyl-phenyl)-phenyl) was treated with Lewis bases such as N-heterocyclic carbenes and Lewis acids e.g. gold(i) chloride complexes. In the reaction with the Lewis base, fragmentation of the P2N2 framework was observed, yielding a salt of the type [(NHC)2P](+)[(TerN)2P](-) in a clean reaction. The reaction of [P(μ-NTer)]2 with gold(i) chloride afforded 1 : 1 and 1 : 2 complexes. The dinuclear complex [(ClAu)2P(μ-NTer)2P] displays a bridging P atom between both gold centers, as has been observed for P based zwitterions.

  2. A New Domain of Reactivity for High-Valent Dinuclear [M(μ-O)2 M'] Complexes in Oxidation Reactions.

    PubMed

    Engelmann, Xenia; Yao, Shenglai; Farquhar, Erik R; Szilvási, Tibor; Kuhlmann, Uwe; Hildebrandt, Peter; Driess, Matthias; Ray, Kallol

    2017-01-02

    The strikingly different reactivity of a series of homo- and heterodinuclear [(M III )(μ-O) 2 (M III )'] 2+ (M=Ni; M'=Fe, Co, Ni and M=M'=Co) complexes with β-diketiminate ligands in electrophilic and nucleophilic oxidation reactions is reported, and can be correlated to the spectroscopic features of the [(M III )(μ-O) 2 (M III )'] 2+ core. In particular, the unprecedented nucleophilic reactivity of the symmetric [Ni III (μ-O) 2 Ni III ] 2+ complex and the decay of the asymmetric [Ni III (μ-O) 2 Co III ] 2+ core through aromatic hydroxylation reactions represent a new domain for high-valent bis(μ-oxido)dimetal reactivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bis(μ2-iso­propyl­imido-κ2 N:N)bis­[(η5-cyclo­penta­dien­yl)(ethenolato-κO)titanium(IV)

    PubMed Central

    Haehnel, Martin; Spannenberg, Anke; Rosenthal, Uwe

    2014-01-01

    The title dinuclear half-sandwich complex, [CpTi(OCH=CH2)(μ2-N-iPr)]2 (Cp = cyclo­penta­dien­yl; iPr = isopropyl), was ob­tained from the reaction of Cp2TiCl2, n-butyl­lithium and iso­propyl­amine in tetra­hydro­furan. Each TiIV atom is coordinated by one Cp ligand, one vin­yloxy unit and two bridging imido groups in a strongly distorted tetra­hedral geometry. There are two half mol­ecules in the asymmetric unit, such that whole mol­ecules being generated by inversion symmetry. PMID:24526944

  4. Mono- and dinuclear tetraphosphabutadiene ferrate anions.

    PubMed

    Chakraborty, Uttam; Leitl, Julia; Mühldorf, Bernd; Bodensteiner, Michael; Pelties, Stefan; Wolf, Robert

    2018-03-12

    Reduction of [Cp Ar Fe(μ-Br)] 2 (1, Cp Ar = C 5 (C 6 H 4 -4-Et) 5 ) by potassium napthalenide, followed by the addition of white phosphorus, affords [K(18-c-6){Cp Ar Fe(η 4 -P 4 )}] (2, 18-c-6 = [18]crown-6), which features a planar cyclo-P 4 2- ligand. The related diiron complex [Na 2 (THF) 5 (Cp Ar Fe) 2 (μ,η 4:4 -P 4 )] (3) was obtained by reducing 1 with sodium amalgam in the presence of P 4 . Protonation of 3 affords [Na(THF) 3 ][(Cp Ar Fe) 2 (μ,η 4:4 -P 4 )(H)] (4), while the reaction of 3 with trimethylchlorosilane gives the nortricyclane compound P 7 (SiMe 3 ) 3 as the main product.

  5. Lessons from isolable nickel(I) precursor complexes for small molecule activation.

    PubMed

    Yao, Shenglai; Driess, Matthias

    2012-02-21

    Small-molecule activation by transition metals is essential to numerous organic transformations, both biological and industrial. Creating useful metal-mediated activation systems often depends on stabilizing the metal with uncommon low oxidation states and low coordination numbers. This provides a redox-active metal center with vacant coordination sites well suited for interacting with small molecules. Monovalent nickel species, with their d(9) electronic configuration, are moderately strong one-electron reducing agents that are synthetically attractive if they can be isolated. They represent suitable reagents for closing the knowledge gap in nickel-mediated activation of small molecules. Recently, the first strikingly stable dinuclear β-diketiminate nickel(I) precursor complexes were synthesized, proving to be suitable promoters for small-molecule binding and activation. They have led to many unprecedented nickel complexes bearing activated small molecules in different reduction stages. In this Account, we describe selected achievements in the activation of nitrous oxide (N(2)O), O(2), the heavier chalcogens (S, Se, and Te), and white phosphorus (P(4)) through this β-diketiminatonickel(I) precursor species. We emphasize the reductive activation of O(2), owing to its promise in oxidation processes. The one-electron-reduced O(2) activation product, that is, the corresponding β-diketiminato-supported Ni-O(2) complex, is a genuine superoxonickel(II) complex, representing an important intermediate in the early stages of O(2) activation. It selectively acts as an oxygen-atom transfer agent, hydrogen-atom scavenger, or both towards exogenous organic substrates to yield oxidation products. The one-electron reduction of the superoxonickel(II) moiety was examined by using elemental potassium, β-diketiminatozinc(II) chloride, and β-diketiminatoiron(I) complexes, affording the first heterobimetallic complexes featuring a [NiO(2)M] subunit (M is K, Zn, or Fe). Through density functional theory (DFT) calculations, the geometric and electronic structures of these complexes were established and their distinctive reactivity, including the unprecedented monooxygenase-like activity of a bis(μ-oxo)nickel-iron complex, was studied. The studies have further led to other heterobimetallic complexes containing a [NiO(2)M] core, which are useful for understanding the influence of the heterometal on structure-reactivity relationships. The activation of N(2)O led directly to the hydrogen-atom abstraction product bis(μ-hydroxo)nickel(II) species and prevented isolation of any intermediate. In contrast, the activation of elemental S, Se, and Te with the same nickel(I) reagent furnished activation products with superchalcogenido E(2)(-) (E is S, Se, or Te) and dichalcogenido E(2)(2-) ligand in different activation stages. The isolable supersulfidonickel(II) subunit may serve as a versatile building block for the synthesis of heterobimetallic disulfidonickel(II) complexes with a [NiS(2)M] core. In the case of white phosphorus, the P(4) molecule has been coordinated to the nickel(I) center of dinuclear β-diketiminatonickel(I) precursor complexes; however, the whole P(4) subunit is a weaker electron acceptor than the dichalcogen ligands E(2), thus remaining unreduced. This P(4) binding mode is rare and could open new doors for subsequent functionalization of P(4). Our advances in understanding how these small molecules are bound to a nickel(I) center and are activated for further transformation offer promise for designing new catalysts. These nickel-containing complexes offer exceptional potential for nickel-mediated transformations of organic molecules and as model compounds for mimicking active sites of nickel-containing metalloenzymes.

  6. Cycloheptatrienyl trianion: an elusive bridge in the search of exchange coupled dinuclear organolanthanide single-molecule magnets† †Electronic supplementary information (ESI) available: Full synthetic details, crystallography, magnetic properties measurements, and ab initio details. CCDC 1454168–1454171. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc01224h Click here for additional data file. Click here for additional data file.

    PubMed Central

    Harriman, Katie L. M.; Le Roy, Jennifer J.; Holmberg, Rebecca J.; Korobkov, Ilia

    2017-01-01

    The preparation of η-cyclopentadienyl (η5-C5R5), η-arene (η6-C6R6), and η-cyclooctatetraenyl (η8-C8R8) bridging motifs are common in organometallic chemistry; however, the synthetic preparation of η-cycloheptatrienyl (η7-C7R7) bridging motifs has remained a synthetic challenge in 4f chemistry. To this end, we have developed a synthetic route towards a series of rare dinuclear organolanthanide inverse sandwich complexes containing the elusive η7-C7H7 bridge. Herein, we present the structures and magnetic properties of the lanthanide inverse sandwich complexes [KLn2(C7H7)(N(SiMe3)2)4] (Ln = GdIII (1), DyIII (2), ErIII (3)) and [K(THF)2Er2(C7H7)(N(SiMe3)2)4] (4). These compounds are the first single-molecule magnets (SMMs) to feature this type of bridging motif. Furthermore, η7-C7H7 was found to efficiently promote ferromagnetic exchange interactions between metal ions. Variable temperature dc magnetic susceptibility measurements and subsequent simulations give significant exchange constants of J = +1.384, +1.798, and +3.149 cm–1 and dipolar constants of J = –0.603, –0.601, and –0.475 cm–1 for compounds 2–4, respectively. Frequency dependent ac susceptibility measurements under an applied static field resulted in the observation of dual relaxation processes, and brought forth a greater understanding of the intermolecularly driven process at high frequency. In particular, this type of analysis of compound 3 under 800 Oe elicited an energy barrier of U eff = 58 K. Ab initio calculations were performed in order to understand the nature of magnetic coupling and the origin of slow relaxation of magnetisation. Through these studies, the effect of the amido ancillary ligands on the magnetic axiality of the lanthanide ions was found to be competitive with the crystal field of the η7-C7H7 π-electron cloud. Our findings suggest that the tunability of the dipolar and exchange components of the magnetic interactions lie within the dihedral angle imposed by the amido ligands, thus offering potential for the development of new exchange coupled lanthanide systems. PMID:28451170

  7. Ferromagnetic interaction in an asymmetric end-to-end azido double-bridged copper(II) dinuclear complex: a combined structure, magnetic, polarized neutron diffraction and theoretical study.

    PubMed

    Aronica, Christophe; Jeanneau, Erwann; El Moll, Hani; Luneau, Dominique; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Carvajal, Maria Angels; Robert, Vincent

    2007-01-01

    A new end-to-end azido double-bridged copper(II) complex [Cu(2)L(2)(N(3))2] (1) was synthesized and characterized (L=1,1,1-trifluoro-7-(dimethylamino)-4-methyl-5-aza-3-hepten-2-onato). Despite the rather long Cu-Cu distance (5.105(1) A), the magnetic interaction is ferromagnetic with J= +16 cm(-1) (H=-JS(1)S(2)), a value that has been confirmed by DFT and high-level correlated ab initio calculations. The spin distribution was studied by using the results from polarized neutron diffraction. This is the first such study on an end-to-end system. The experimental spin density was found to be localized mainly on the copper(II) ions, with a small degree of delocalization on the ligand (L) and terminal azido nitrogens. There was zero delocalization on the central nitrogen, in agreement with DFT calculations. Such a picture corresponds to an important contribution of the d(x2-y2) orbital and a small population of the d(z2) orbital, in agreement with our calculations. Based on a correlated wavefunction analysis, the ferromagnetic behavior results from a dominant double spin polarization contribution and vanishingly small ionic forms.

  8. Single-crystal-to-single-crystal transformation and solvochromic luminescence of a dinuclear gold(I)-(aza-[18]crown-6)dithiocarbamate compound.

    PubMed

    Tzeng, Biing-Chiau; Chao, An

    2015-01-26

    The treatment of [AuCl(SMe2 )] with an equimolar amount of NaO5 NCS2 (O5 NCS2 =(aza-[18]crown-6)dithiocarbamate) in CH3 CN gave [Au2 (O5 NCS2 )2 ]⋅2 CH3 CN (2⋅2 CH3 CN), and its crystal structure displays a dinuclear gold(I)-azacrown ether ring and an intermolecular gold(I)⋅⋅⋅gold(I) contact of 2.8355(3) Å in crystal lattices. It is noted that two other single crystals of 2⋅tert-butylbenzene⋅H2 O and 2⋅0.5 m-xylene can be successfully obtained from a single-crystal-to-single-crystal (SCSC) transformation process by immersing single crystals of 2⋅2 CH3 CN in the respective solvents, and both also show intermolecular gold(I)⋅⋅⋅gold(I) contacts of 2.9420(5) and 2.890(2)-2.902(2) Å, respectively. Significantly, the emissions of all three 2⋅solvates are well correlated with their respective intermolecular gold(I)⋅⋅⋅gold(I) contacts, where such contacts increase with 2⋅2 CH3 CN (2.8355(3) Å)<2⋅0.5 m-xylene (2.890(2)-2.902(2) Å)<2⋅tert-butylbenzene⋅H2 O (2.9420(5) Å), and their emission energies increase with 2⋅2 CH3 CN (602 nm)<2⋅0.5 m-xylene (583 nm)<2⋅tert-butylbenzene⋅H2 O (546 nm) as well. In this regard, we further examine the solvochromic luminescence for some other aromatics, and finally their emissions are within 546-602 nm. Obviously, the above results are mostly ascribed to the occurrence of intermolecular gold(I)⋅⋅⋅gold(I) contacts in 2⋅solvates, which are induced by the presence of various solvates in the solid state, as a key role to be responsible for their solvochromic luminescence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Total enantioselectivity in the DNA binding of the dinuclear ruthenium(II) complex [[Ru(Me2bpy)2]2(mu-bpm)]4+ [bpm = 2,2'-bipyrimidine; Me2bpy = 4,4'-dimethyl-2,2'-bipyridine].

    PubMed

    Smith, Jayden A; Collins, J Grant; Patterson, Bradley T; Keene, F Richard

    2004-05-07

    The binding of the three stereoisomers (DeltaDelta-, LambdaLambda- and DeltaLambda-) of the dinuclear ruthenium(II) complex [[Ru(Me2bpy)2]2(mu-bpm)]4+ [Me2bpy = 4,4'-dimethyl-2,2'-bipyridine; bpm = 2,2'-bipyrimidine] to a tridecanucleotide containing a single adenine bulge has been studied by 1H NMR spectroscopy. The addition of the DeltaDelta-isomer to d(CCGAGAATTCCGG)2 induced significant chemical shift changes for the base and sugar resonances of the residues at the bulge site (G3A4G5/C11C10), whereas small shifts were observed upon addition of the enantiomeric LambdaLambda-form. NOESY spectra of the tridecanucleotide bound with the DeltaDelta-isomer revealed intermolecular NOE's between the metal complex and the nucleotide residues at the bulge site, while only weak NOE's were observed to terminal residues to the LambdaLambda-form. Competitive binding studies were performed where both enantiomers were simultaneously added to the tridecanucleotide, and for all ratios of the two stereoisomers the DeltaDelta-isomer remained selectively bound at the bulge site with the LambdaLambda-enantiomer localised at the terminal regions of the tridecanucleotide. The meso-diastereoisomer (DeltaLambda) was found to bind to the tridecanucleotide with characteristics intermediate between the DeltaDelta- and LambdaLambda-enantiomers of the rac form. Two distinct sets of metal complex resonances were observed, with one set having essentially the same shift as the free metal complex, whilst the other set of resonances exhibited significant shifts. The NOE data indicated that the meso-diastereoisomer does not bind as selectively as the DeltaDelta-isomer, with NOE's observed to a greater number of nucleotide residues compared to the DeltaDelta-form. This study provides a rare example of total enantioselectivity in the binding of an inert transition metal complex to DNA, produced by the shape recognition of both ruthenium(II) centres.

  10. Dysprosium complexes with mono-/di-carboxylate ligands—From simple dimers to 2D and 3D frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Bhadbhade, Mohan; Scales, Nicholas

    2014-11-15

    Four dysprosium (Dy) single carboxylates, a formate, a propionate, a butyrate and an oxalate have been synthesized and structurally characterized. The structure of Dy(HCO{sub 2}){sub 3} (1) contains nine-fold coordinated Dy polyhedra in perfect tricapped trigonal prisms. They are linked through trigonal O atoms forming 1D pillars which are further linked together through tricapped O atoms into a 3D pillared metal organic framework. The network structure is stable up to 360 °C. The structure of [Dy{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 6}]·2.5H{sub 2}O (2) contains nine-fold coordinated Dy polyhedra linking together through μ{sub 2}-bridging oxalate anions into a 2D hexagonalmore » layered structure. Both [Dy{sub 2}(Pr){sub 6}(H{sub 2}O){sub 4}]·(HPr){sub 0.5} (3) [Pr=(C{sub 2}H{sub 5}CO{sub 2}){sup −1}] and [Dy{sub 2}(Bu){sub 6}(H{sub 2}O){sub 4}] (4) [Bu=(C{sub 3}H{sub 7}CO{sub 2}){sup −1}] have similar di-nuclear structures. The Raman vibration modes of the complexes have been investigated. - Graphical abstract: Four dysprosium (Dy) complexes with formate, propionate, butyrate and oxalate ligands have been synthesized and characterized. The Dy formato complex has a 3D pillared metal organic framework and the structure is stable up to 360 °C whilst the complexes with longer alkyl chained mono-carboxylates possess similar di-nuclear structures. The Dy oxalato complex has a 2D hexagonal (honeycomb-type) structure. Their Raman vibration modes have been investigated. - Highlights: • New Dysprosium complexes with formate, propionate, butyrate and oxalate ligands. • Crystal structures range from dimers to two and three dimensional frameworks. • Vibrational modes have been investigated and correlated to the structures. • The complexes are thermal robust and stable to over 300 °C.« less

  11. Methylene-bis[(aminomethyl)phosphinic acids]: synthesis, acid-base and coordination properties.

    PubMed

    David, Tomáš; Procházková, Soňa; Havlíčková, Jana; Kotek, Jan; Kubíček, Vojtěch; Hermann, Petr; Lukeš, Ivan

    2013-02-21

    Three symmetrical methylene-bis[(aminomethyl)phosphinic acids] bearing different substituents on the central carbon atom, (NH(2)CH(2))PO(2)H-C(R(1))(R(2))-PO(2)H(CH(2)NH(2)) where R(1) = OH, R(2) = Me (H(2)L(1)), R(1) = OH, R(2) = Ph (H(2)L(2)) and R(1),R(2) = H (H(2)L(3)), were synthesized. Acid-base and complexing properties of the ligands were studied in solution as well as in the solid state. The ligands show unusually high basicity of the nitrogen atoms (log K(1) = 9.5-10, log K(2) = 8.5-9) if compared with simple (aminomethyl)phosphinic acids and, consequently, high stability constants of the complexes with studied divalent metal ions. The study showed the important role of the hydroxo group attached to the central carbon atom of the geminal bis(phosphinate) moiety. Deprotonation of the hydroxo group yields the alcoholate anion which tends to play the role of a bridging ligand and induces formation of polynuclear complexes. Solid-state structures of complexes [H(2)N=C(NH(2))(2)][Cu(2)(H(-1)L(2))(2)]CO(3)·10H(2)O and Li(2)[Co(4)(H(-1)L(1))(3)(OH)]·17.5H(2)O were determined by X-ray diffraction. The complexes show unexpected geometries forming dinuclear and cubane-like structures, respectively. The dinuclear copper(II) complex contains a bridging μ(2)-alcoholate group with the (-)O-P(=O)-CH(2)-NH(2) fragments of each ligand molecule chelated to the different central ion. In the cubane cobalt(II) complex, one μ(3)-hydroxide and three μ(3)-alcoholate anions are located in the cube vertices and both phosphinate groups of one ligand molecule are chelating the same cobalt(II) ion while each of its amino groups are bound to different neighbouring metal ions. All such three metal ions are bridged by the alcoholate group of a given ligand.

  12. Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture.

    PubMed

    Klein, M; Pankiewicz, R; Zalas, M; Stampor, W

    2016-07-21

    The charge recombination and exciton dissociation are generally recognized as the basic electronic processes limiting the efficiency of photovoltaic devices. In this work, we propose a detailed mechanism of photocurrent generation in dye-sensitized solar cells (DSSCs) examined by magnetic field effect (MFE) technique. Here we demonstrate that the magnitude of the MFE on photocurrent in DSSCs can be controlled by the radius and spin coherence time of electron-hole (e-h) pairs which are experimentally modified by the photoanode morphology (TiO2 nanoparticles or nanotubes) and the electronic orbital structure of various dye molecules (ruthenium N719, dinuclear ruthenium B1 and fully organic squaraine SQ2 dyes). The observed MFE is attributed to magnetic-field-induced spin-mixing of (e-h) pairs according to the Δg mechanism.

  13. tRNA-modifying MiaE protein from Salmonella typhimurium is a nonheme diiron monooxygenase

    PubMed Central

    Mathevon, Carole; Pierrel, Fabien; Oddou, Jean-Louis; Garcia-Serres, Ricardo; Blondin, Geneviève; Latour, Jean-Marc; Ménage, Stéphane; Gambarelli, Serge; Fontecave, Marc; Atta, Mohamed

    2007-01-01

    MiaE catalyzes the posttranscriptional allylic hydroxylation of 2-methylthio-N-6-isopentenyl adenosine in tRNAs. The Salmonella typhimurium enzyme was heterologously expressed in Escherichia coli. The purified enzyme is a monomer with two iron atoms and displays activity in in vitro assays. The type and properties of the iron center were investigated by using a combination of UV-visible absorption, EPR, HYSCORE, and Mössbauer spectroscopies which demonstrated that the MiaE enzyme contains a nonheme dinuclear iron cluster, similar to that found in the hydroxylase component of methane monooxygenase. This is the first example of an enzyme from this important class of diiron monooxygenases to be involved in the hydroxylation of a biological macromolecule and the second example of a redox metalloenzyme participating in tRNA modification. PMID:17679698

  14. Electronic energy transfer in bimetallic Ru-Os complexes containing the 3,5-bis(pyridin-2-yl)-1,2,4-triazolate bridging ligand

    NASA Astrophysics Data System (ADS)

    De Cola, Luisa; Barigelletti, Francesco; Balzani, Vincenzo; Hage, Ronald; Haasnoot, Jaap G.; Reedijk, Jan; Vos, Johannes G.

    1991-04-01

    The luminescence and photochemical properties of the two isomeric heterobimetallic [(bpy) 2Ru(bpt)Os(bpy) 2] 3+ and [(bpy) 2Os(bpt)Ru(bpy) 2] 3+ complexes have been investigated (bpy=2,2'-pyridine; bpt -=3,5-bis(pyridin-2-yl)-1,2,4-triazolate ion). The properties of the two isomeric compounds are compared with those of the corresponding dinuclear homometallic inert and exhibit luminescence only from the Os-based component. Excitation in the Ru-based component is followed by ≈ 100% efficient energy transfer to the Os-based component. The energy-transfer mechanism is briefly discussed. The one-electron oxidation products (which contain Os in the 3+ oxidation state) are not luminescent because of the presence of a low-energy intervalence transfer level.

  15. CrIII as an alternative to RuII in metallo-supramolecular chemistry.

    PubMed

    Zare, Davood; Doistau, Benjamin; Nozary, Homayoun; Besnard, Céline; Guénée, Laure; Suffren, Yan; Pelé, Anne-Laure; Hauser, Andreas; Piguet, Claude

    2017-07-18

    Compared to divalent ruthenium coordination complexes, which are widely exploited as parts of multi-component photonic devices, optically active trivalent chromium complexes are under-represented in multi-metallic supramolecular architectures performing energy conversion mainly because of the tricky preparation of stable heteroleptic Cr III building blocks. We herein propose some improvements with the synthesis of a novel family of kinetically inert heteroleptic bis-terdentate mononuclear complexes, which can be incorporated into dinuclear rod-like dyads as a proof-of-concept. The mechanism and magnitude of intermetallic CrCr communication have been unraveled by a combination of magnetic, photophysical and thermodynamic investigations. Alternated aromatic/alkyne connectors provided by Sonogashira coupling reactions emerge as the most efficient wires for long-distance communication between two chromium centres bridged by Janus-type back-to-back bis-terdentate receptors.

  16. Synthesis, DNA-binding affinity and cytotoxicity of the dinuclear platinum(II) complexes with berenil and amines ligands.

    PubMed

    Bielawski, Krzysztof; Bielawska, Anna; Popławska, Bozena; Bołkun-Skórnicka, Urszula

    2008-01-01

    A series of platinium(II) complexes of formula [Pt2L4(berenil)2]Cl4.4HCl.2H2O where L is piperidine (1), 4-picoline (2), 3-picoline (3) or isopropylamine (4) was prepared and their cytotoxicity have been tested against the growth of human breast cancer cells. Evaluation of the cytotoxicity of these compounds employing a MTT assay and inhibition of [3H]thymidine incorporation into DNA in both MDA-MB-231 and MCF-7 breast cancer cells demonstrated that these compounds were more active than cisplatin. Data from the ethidium displacement assay indicated that these compounds show moderate specificity for AT base pairs of DNA. Compounds 1-4 were also potent topoisomerase II inhibitors, with 50% inhibitory concentrations (IC50) ranging from 5 to 50 microM.

  17. [Mo2(CN)11]:5- A detailed description of ligand-field spectra and magnetic properties by first-principles calculations.

    PubMed

    Hendrickx, Marc F A; Clima, S; Chibotaru, L F; Ceulemans, A

    2005-10-06

    An ab initio multiconfigurational approach has been used to calculate the ligand-field spectrum and magnetic properties of the title cyano-bridged dinuclear molybdenum complex. The rather large magnetic coupling parameter J for a single cyano bridge, as derived experimentally for this complex by susceptibility measurements, is confirmed to a high degree of accuracy by our CASPT2 calculations. Its electronic structure is rationalized in terms of spin-spin coupling between the two constituent hexacyano-monomolybdate complexes. An in-depth analysis on the basis of Anderson's kinetic exchange theory provides a qualitative picture of the calculated CASSCF antiferromagnetic ground-state eigenvector in the Mo dimer. Dynamic electron correlations as incorporated into our first-principles calculations by means of the CASPT2 method are essential to obtain quantitative agreement between theory and experiment.

  18. Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture

    NASA Astrophysics Data System (ADS)

    Klein, M.; Pankiewicz, R.; Zalas, M.; Stampor, W.

    2016-07-01

    The charge recombination and exciton dissociation are generally recognized as the basic electronic processes limiting the efficiency of photovoltaic devices. In this work, we propose a detailed mechanism of photocurrent generation in dye-sensitized solar cells (DSSCs) examined by magnetic field effect (MFE) technique. Here we demonstrate that the magnitude of the MFE on photocurrent in DSSCs can be controlled by the radius and spin coherence time of electron-hole (e-h) pairs which are experimentally modified by the photoanode morphology (TiO2 nanoparticles or nanotubes) and the electronic orbital structure of various dye molecules (ruthenium N719, dinuclear ruthenium B1 and fully organic squaraine SQ2 dyes). The observed MFE is attributed to magnetic-field-induced spin-mixing of (e-h) pairs according to the Δg mechanism.

  19. Diastereoselective formation of metallamacrocyclic (arene)Ru(II) and CpRh(III) complexes.

    PubMed

    Lehaire, Marie-Line; Scopelliti, Rosario; Herdeis, Lorenz; Polborn, Kurt; Mayer, Peter; Severin, Kay

    2004-03-08

    The reaction of [(arene)RuCl(2)](2) (arene = cymene, 1,3,5-C(6)H(3)Me(3)) and [CpRhCl(2)](2) half-sandwich complexes with tridentate heterocyclic ligands in the presence of base has been investigated. In all cases, the chloro-ligands were substituted to give metallacyclic products with ring sizes between 4 and 18 atoms. The cyclization occurs in a highly diastereoselective fashion with chiral recognition between the different metal fragments. The complexes were comprehensively characterized by elemental analysis, NMR spectroscopy, and single crystal X-ray crystallography. For 2-hydroxy-nicotinic acid and 2-amino-nicotinic acid, dinuclear structures were obtained (15-17) whereas for 2,3-dihydroxyquinoline, 2,3-dihydroxyquinoxaline, and 6-methyl-2,3-phenazinediol, trimeric assemblies were found (19-22), and for 4-imidazolecarboxylic acid, a tetrameric assembly (18) was found.

  20. Syntheses, structures, and properties of imidazolate-bridged Cu(II)-Cu(II) and Cu(II)-Zn(II) dinuclear complexes of a single macrocyclic ligand with two hydroxyethyl pendants.

    PubMed

    Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia

    2003-09-22

    The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.

  1. Evaluating cis-2,6-Dimethylpiperidide (cis-DMP) as a Base Component in Lithium-Mediated Zincation Chemistry

    PubMed Central

    Armstrong, David R; Garden, Jennifer A; Kennedy, Alan R; Leenhouts, Sarah M; Mulvey, Robert E; O'Keefe, Philip; O'Hara, Charles T; Steven, Alan

    2013-01-01

    Most recent advances in metallation chemistry have centred on the bulky secondary amide 2,2,6,6-tetramethylpiperidide (TMP) within mixed metal, often ate, compositions. However, the precursor amine TMP(H) is rather expensive so a cheaper substitute would be welcome. Thus this study was aimed towards developing cheaper non-TMP based mixed-metal bases and, as cis-2,6-dimethylpiperidide (cis-DMP) was chosen as the alternative amide, developing cis-DMP zincate chemistry which has received meagre attention compared to that of its methyl-rich counterpart TMP. A new lithium diethylzincate, [(TMEDA)LiZn(cis-DMP)Et2] (TMEDA=N,N,N′,N′-tetramethylethylenediamine) has been synthesised by co-complexation of Li(cis-DMP), Et2Zn and TMEDA, and characterised by NMR (including DOSY) spectroscopy and X-ray crystallography, which revealed a dinuclear contact ion pair arrangement. By using N,N-diisopropylbenzamide as a test aromatic substrate, the deprotonative reactivity of [(TMEDA)LiZn(cis-DMP)Et2] has been probed and contrasted with that of the known but previously uninvestigated di-tert-butylzincate, [(TMEDA)LiZn(cis-DMP)tBu2]. The former was found to be the superior base (for example, producing the ortho-deuteriated product in respective yields of 78 % and 48 % following D2O quenching of zincated benzamide intermediates). An 88 % yield of 2-iodo-N,N-diisopropylbenzamide was obtained on reaction of two equivalents of the diethylzincate with the benzamide followed by iodination. Comparisons are also drawn using 1,1,1,3,3,3-hexamethyldisilazide (HMDS), diisopropylamide and TMP as the amide component in the lithium amide, Et2Zn and TMEDA system. Under certain conditions, the cis-DMP base system was found to give improved results in comparison to HMDS and diisopropylamide (DA), and comparable results to a TMP system. Two novel complexes isolated from reactions of the di-tert-butylzincate and crystallographically characterised, namely the pre-metallation complex [{(iPr)2N(Ph)C=O}LiZn(cis-DMP)tBu2] and the post-metallation complex [(TMEDA)Li(cis-DMP){2-[1-C(=O)N(iPr)2]C6H4}Zn(tBu)], shed valuable light on the structures and mechanisms involved in these alkali-metal-mediated zincation reactions. Aspects of these reactions are also modelled by DFT calculations. PMID:23955639

  2. Investigations of the Binding of [Pt2(DTBPA)Cl2](II) and [Pt2(TPXA)Cl2](II) to DNA via Various Cross-Linking Modes

    PubMed Central

    Yue, Hongwei; Yang, Bo; Wang, Yan; Chen, Guangju

    2013-01-01

    We have constructed models for a series of platinum-DNA adducts that represent the binding of two agents, [Pt2(DTBPA)Cl2](II) and [Pt2(TPXA)Cl2](II), to DNA via inter- and intra-strand cross-linking, and carried out molecular dynamics simulations and DNA conformational dynamics calculations. The effects of trans- and cis-configurations of the centers of these di-nuclear platinum agents, and of different bridging linkers, have been investigated on the conformational distortions of platinum-DNA adducts formed via inter- and intra-strand cross-links. The results demonstrate that the DNA conformational distortions for the various platinum-DNA adducts with differing cross-linking modes are greatly influenced by the difference between the platinum-platinum distance for the platinum agent and the platinum-bound N7–N7 distance for the DNA molecule, and by the flexibility of the bridging linkers in the platinum agent. However, the effects of trans/cis-configurations of the platinum-centers on the DNA conformational distortions in the platinum-DNA adducts depend on the inter- and intra-strand cross-linking modes. In addition, we discuss the relevance of DNA base motions, including opening, shift and roll, to the changes in the parameters of the DNA major and minor grooves caused by binding of the platinum agent. PMID:24077126

  3. Rapid X-ray Photoreduction of Dimetal-Oxygen Cofactors in Ribonucleotide Reductase

    PubMed Central

    Sigfridsson, Kajsa G. V.; Chernev, Petko; Leidel, Nils; Popović-Bijelić, Ana; Gräslund, Astrid; Haumann, Michael

    2013-01-01

    Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques. PMID:23400774

  4. Rapid X-ray photoreduction of dimetal-oxygen cofactors in ribonucleotide reductase.

    PubMed

    Sigfridsson, Kajsa G V; Chernev, Petko; Leidel, Nils; Popovic-Bijelic, Ana; Gräslund, Astrid; Haumann, Michael

    2013-04-05

    Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques.

  5. An iron( ii ) hydride complex of a ligand with two adjacent β-diketiminate binding sites and its reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehring, Henrike; Metzinger, Ramona; Braun, Beatrice

    2016-01-13

    After lithiation of PYR-H2 (PYR = [(NC(Me)C(H)C(Me)NC6H3(iPr)2)2(C5H3N)]2-) – the precursor of an expanded β-diketiminato ligand system with two binding pockets – with KN(TMS)2 the reaction of the resulting potassium salt with FeBr2 led to a dinuclear iron(II) bromide complex [(PYR)Fe(μ-Br)2Fe] (1). Through treatment with KHBEt3 the bromide ligands could be replaced by hydrides to yield [PYR)Fe2(μ-H)2] (2), a distorted analogue of known β-diketiminato iron hydride complexes, as evidenced by NMR, Mößbauer and X-ray absorption spectroscopy, as well as by its reactivity: for instance, 2 reacts with the proton source lutidinium triflate via protonation of the hydride ligands to form anmore » iron(II) product [(PYR)Fe2(OTf)2] (4), while CO2 inserts into the Fe–H bonds generating the formate complex [(PYR)Fe2(μ-HCOO)2] (5); in the presence of traces of water partial hydrolysis occurs so that [(PYR)Fe2(μ-OH)(μ-HCOO)] (6) is isolated. Altogether, the iron(II) chemistry supported by the PYR2- ligand is distinctly different from the one of nickel(II), where both, the arrangement of the two binding pockets and the additional pyridyl donor led to diverging features as compared with the corresponding system based on the parent β-diketiminato ligand.« less

  6. Water oxidation catalysed by manganese compounds: from complexes to 'biomimetic rocks'.

    PubMed

    Wiechen, Mathias; Berends, Hans-Martin; Kurz, Philipp

    2012-01-07

    One of the most fundamental processes of the natural photosynthetic reaction sequence is the light-driven oxidation of water to molecular oxygen. In vivo, this reaction takes place in the large protein ensemble Photosystem II, where a μ-oxido-Mn(4)Ca- cluster, the oxygen-evolving-complex (OEC), has been identified as the catalytic site for the four-electron/four-proton redox reaction of water oxidation. This Perspective presents recent progress for three strategies which have been followed to prepare functional synthetic analogues of the OEC: (1) the synthesis of dinuclear manganese complexes designed to act as water-oxidation catalysts in homogeneous solution, (2) heterogeneous catalysts in the form of clay hybrids of such Mn(2)-complexes and (3) the preparation of manganese oxide particles of different compositions and morphologies. We discuss the key observations from the studies of such synthetic manganese systems in order to shed light upon the catalytic mechanism of natural water oxidation. Additionally, it is shown how research in this field has recently been motivated more and more by the prospect of finding efficient, robust and affordable catalysts for light-driven water oxidation, a key reaction of artificial photosynthesis. As manganese is an abundant and non-toxic element, manganese compounds are very promising candidates for the extraction of reduction equivalents from water. These electrons could consecutively be fed into the synthesis of "solar fuels" such as hydrogen or methanol.

  7. Kinetics of α-MnOOH Nanoparticle Formation through Enzymatically Catalyzed Biomineralization inside Apoferritin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, Yue; Jung, Haesung; Kim, Doyoon

    While biomineralization in apoferritin has effectively synthesized highly monodispersed nanoparticles of various metal oxides and hydroxides, the detailed kinetics and mechanisms of Mn(III) (hydr)oxide formation inside apoferritin cavities have not been reported. To address this knowledge gap, we first identified the phase of solid Mn(III) formed inside apoferritin cavities as α-MnOOH. To analyze the oxidation and nucleation mechanism of α-MnOOH inside apoferritin by quantifying oxidized Mn, we used a colorimetric method with leucoberbelin blue (LBB) solution. In this method, LBB disassembled apoferritin by inducing an acidic pH environment, and reduced α-MnOOH nanoparticles. The LBB-enabled kinetic analyses of α-MnOOH nanoparticle formationmore » suggested that the orders of reaction with respect to Mn2+ and OH– are 2 and 4, respectively, and α-MnOOH formation follows two-step pathways: First, soluble Mn2+ undergoes apoferritin-catalyzed oxidation at the ferroxidase dinuclear center, forming a Mn(III)-protein complex, P-[Mn2O2(OH)2]. Second, the oxidized Mn(III) dissociates from the protein binding sites and is subsequently nucleated to form α-MnOOH nanoparticles in the apoferritin cavities. This study reveals key kinetics and mechanistic information on the Mn-apoferritin systems, and the results facilitate applications of apoferritin as a means of nanomaterial synthesis.« less

  8. Two double and triple interpenetrated Cd(II) and Zn(II) coordination polymers based on mixed O- and N-donor ligands: Syntheses, crystal structures and luminescent properties

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Li, Xiaohui; Zhang, Yan

    2016-01-01

    Two interpenetrated 3D coordination polymers, namely [Cd2(tdc)2(bpp) (DMA)]n (1) and [Zn2(tdc)2(bib)2]n·2n(DMA) (2) (H2tdc = 2,5-thiophenedicarboxylic acid, bpp = 1,3-di(4-pyridyl)propane, bib = 1, 4-bis(imidazolyl)butane, DMA = N,N-dimethylacetamide), have been solvothermally synthesized by the self-assembly of flexible N-donor and dicarboxylate ligands. Single crystal X-ray diffraction analyses revealed that compound 1 features a 2-fold interpenetrated 3D framework based on dinuclear [Cd2(COO)3] subunits and can be simplified into a 6-connected pcu topology, and compound 2 features a 3-fold interpenetrated 3D framework with 4-connected dia topology. Moreover, the thermal stabilities and luminescent properties of these two compounds were also investigated.

  9. Kinetic studies of the impact of thiocyanate moiety on the catalytic properties of Cu(II) and Fe(III) complexes of a new Mannich base

    NASA Astrophysics Data System (ADS)

    Ayeni, Ayowole O.; Watkins, Gareth M.

    2018-04-01

    Four new metal complexes of a novel Mannich base 5-methyl-2-((4-(pyridin-2-yl)piperazin-1-yl)methyl)phenol (HL) have been prepared. The compounds were characterized by an array of analytical and spectroscopic methods including Nuclear Magnetic Resonance, Infra-red and UV-Visible spectroscopy. Compounds 1-4 behaved as effective catalysts towards the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to its corresponding quinone in the presence of molecular oxygen in DMF solution while compound 4 proved to be the best catalyst with a turnover rate of 17.93 ± 1.10 h-1 as other complexes showed lower rates of oxidation. Also with the exception of dinuclear iron complex (4); thiocyanate containing Cu(II) complex exhibited lower catecholase activity compared to the Cu(II) complex without it.

  10. Ferrocenyl-substituted dinuclear Cu(II) complex: Synthesis, spectroscopy, electrochemistry, DFT calculations and catecholase activity

    NASA Astrophysics Data System (ADS)

    Emirik, Mustafa; Karaoğlu, Kaan; Serbest, Kerim; Menteşe, Emre; Yilmaz, Ismail

    2016-02-01

    A new ferrocenyl-substituted heterocyclic hydrazide ligand and its Cu(II) complex were prepared. The DFT calculations were performed to determine the electronic and molecular structures of the title compounds. The electronic spectra were calculated by using time-dependent DFT method, and the transitions were correlated with the molecular orbitals of the compounds. The bands assignments of IR spectra were achieved in the light of the theoretical vibrational spectral data and total energy distribution values calculated at DFT/B3LYP/6-311++G(d,p) level. The redox behaviors of the ferrocene derivatives were investigated by cyclic voltammetry. The compounds show reversible redox couple assignable to Fc+/Fc couple. The copper(II) complex behaves as an effective catalyst towards oxidation of 3,5-di-tert-butylcatechol to its corresponding quinone derivative in DMF saturated with O2. The reaction follows Michaelis-Menten enzymatic reaction kinetics with turnover numbers 2.32 × 103.

  11. Are trinuclear superhalogens promising candidates for building blocks of novel magnetic materials? A theoretical prospect from combined broken-symmetry density functional theory and ab initio study.

    PubMed

    Yu, Yang; Li, Chen; Yin, Bing; Li, Jian-Li; Huang, Yuan-He; Wen, Zhen-Yi; Jiang, Zhen-Yi

    2013-08-07

    The structures, relative stabilities, vertical electron detachment energies, and magnetic properties of a series of trinuclear clusters are explored via combined broken-symmetry density functional theory and ab initio study. Several exchange-correlation functionals are utilized to investigate the effects of different halogen elements and central atoms on the properties of the clusters. These clusters are shown to possess stronger superhalogen properties than previously reported dinuclear superhalogens. The calculated exchange coupling constants indicate the antiferromagnetic coupling between the transition metal ions. Spin density analysis demonstrates the importance of spin delocalization in determining the strengths of various couplings. Spin frustration is shown to occur in some of the trinuclear superhalogens. The coexistence of strong superhalogen properties and spin frustration implies the possibility of trinuclear superhalogens working as the building block of new materials of novel magnetic properties.

  12. Crystal structure of the cis and trans polymorphs of bis-[μ-2-(1,3-benzo-thia-zol-2-yl)phenolato]-κ3N,O:O;κ3O:N,O-bis-[fac-tri-carbonyl-rhenium(I)].

    PubMed

    Priyatharsini, Maruthupandiyan; Shankar, Bhaskaran; Sathiyendiran, Malaichamy; Srinivasan, Navaneethakrishnan; Krishnakumar, Rajaputi Venkatraman

    2017-02-01

    The title dinuclear complex, [Re 2 (C 13 H 8 NOS) 2 (CO) 6 ], crystallizes in two polymorphs where the 2-(1,3-benzo-thia-zol-2-yl)phenolate ligands and two carbonyl groups are trans - ( I ) or cis -arranged ( II ) with respect to the [Re 2 O 2 (CO) 4 ] core. Polymorphs I and II exhibit a crystallographically imposed centre of symmetry and a twofold rotation axis, respectively. The structures may be described as being formed by two octa-hedrally distorted metal-coordinating units fused through μ-oxido bridges, leading to edge-sharing dimers. The crystal packing is governed by C-H⋯O hydrogen-bonding inter-actions, forming chains parallel to the c axis in I and a three-dimensional network in II .

  13. The Co(II), Ni(II) and Cu(II) complexes with herbicide 2,4-dichlorophenoxyacetic acid - Synthesis and structural studies

    NASA Astrophysics Data System (ADS)

    Drzewiecka-Antonik, Aleksandra; Ferenc, Wiesława; Wolska, Anna; Klepka, Marcin T.; Cristóvão, Beata; Sarzyński, Jan; Rejmak, Paweł; Osypiuk, Dariusz

    2017-01-01

    The Co(II), Ni(II) and Cu(II) complexes with herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) were synthesized and structurally characterized. The geometry of metal-ligand interaction was refined using XAFS and DFT studies. The Co(2,4-D)2·6H2O and Ni(2,4-D)2·4H2O complexes have octahedral geometry with two carboxylate groups of 2,4-D anions and four water molecules in the coordination sphere. The square planar geometry around metal cations formed by the carboxylate groups from two monodentate ligands and two water molecules, is observed for Cu(2,4-D)2·4H2O complex. In the recrystallized Ni(II) complex dinuclear 'Chinese lantern' structures with bridging carboxylate groups of 2,4-D were observed.

  14. Self-Assembly of New Arene-Ruthenium Rectangles Containing Triptycene Building Block and Their Application in Fluorescent Detection of Nitro Aromatics

    PubMed Central

    Dubey, Abhishek; Mishra, Anurag; Min, Jin Wook; Lee, Min Hyung; Kim, Hyunuk; Stang, Peter J.; Chi, Ki-Whan

    2014-01-01

    A suite of two new tetraruthenium metallarectangles 5 and 6 have been obtained from [2 + 2] self-assemblies between dipyridylethynyltriptycene 2 and one of the two dinuclear arene ruthenium clips, [Ru2 (μ-η4-OO∩OO) (η6-p-cymene)2][OTf]2 ; (OO∩OO = oxalate 3; 6,11-dihydroxy-5,12-naphthacenedionato (dotq) 4; OTf = triflate). These molecular rectangles are fully characterized by 1H NMR spectroscopy, electrospray mass spectrometry. A single crystal of 6 was suitable for X-ray diffraction structural characterization. These new metallarectangles showed fluorescence behavior in solution, have been examined for emission quenching effects with various aromatic compounds, and show high quenching selectivity and sensitivity towards nitroaromatics, particularly picric acid and trinitrotoluene. Excited-state charge transfer from the rectangles to nitro aromatic substrates can be used to develop selective fluorescent sensors for nitro aromatics. PMID:26321767

  15. Photoisomerization of ruthenium(ii) aquo complexes: mechanistic insights and application development.

    PubMed

    Hirahara, Masanari; Yagi, Masayuki

    2017-03-21

    Ruthenium(ii) complexes with polypyridyl ligands have been extensively studied as promising functional molecules due to their unique photochemical and photophysical properties as well as redox properties. In this context, we report the photoisomerization of distal-[Ru(tpy)(pynp)OH 2 ] 2+ (d-1) (tpy = 2,2';6',2''-terpyridine, pynp = 2-(2-pyridyl)-1,8-naphthyridine) to proximal-[Ru(tpy)(pynp)OH 2 ] 2+ (p-1), which has not been previously characterized for polypyridyl ruthenium(ii) aquo complexes. Herein, we review recent progress made by our group on the mechanistic insights and application developments related to the photoisomerization of polypyridyl ruthenium(ii) aquo complexes. We report a new strategic synthesis of dinuclear ruthenium(ii) complexes that can act as an active water oxidation catalyst, as well as the development of unique visible-light-responsive giant vesicles, both of which were achieved based on photoisomerization.

  16. Monoclinic modification of bis­(μ2-pyridine-2,6-dicarboxyl­ato)-κ4 O 2,N,O 6:O 6;κ4 O 2:O 2,N,O 6-bis­[aqua­dibutyl­tin(IV)

    PubMed Central

    Ng, Seik Weng

    2011-01-01

    The SnIV atom in the centrosymmetric dinuclear title compound, [Sn2(C4H9)4(C7H3NO4)2(H2O)2], exists in a trans-C2SnNO4 penta­gonal–bipyramidal geometry. There are two half-mol­ecules in the asymmetric unit that are completed by inversion symmetry. The crystal studied was a non-merohedral twin with a ratio of 47.3 (1)% for the minor twin component. Bond dimensions are similar to those found in the tetra­gonal polymorph [Huber et al. (1989 ▶). Acta Cryst. C45, 51–54]. O—H⋯O hydrogen-bonding interactions stabilize the crystal packing. PMID:21522924

  17. Equilibrium aluminium hydroxo-oxalate phases during initial clay formation; H +-Al 3+-oxalic acid-Na + system

    NASA Astrophysics Data System (ADS)

    Bilinski, Halka; Horvath, Laszlo; Ingri, Nils; Sjöberg, Staffan

    1986-09-01

    The conditions necessary for initial clay formation have been studied in different model systems comprising different organic acids besides Si and Al. In the present paper the solid phases and the precipitation boundary characterizing the subsystem H +-Al 3+-oxalic acid (H 2L) are discussed. pH and tyndallometric measurements were performed in an ionic medium of 0.6 M Na(Cl) at 25 °C. The two phases Al 3(OH) 7(C 2O 4) · 3H 2O (phase I) and NaAl(OH) 2(C 2O 4) · 3H 2O (phase II) determine the precipitation boundary. The following formation constants for the two phases were deduced: lgβ1 = lg([ Al3+] -3[ H2C2O4] -1[ H+] 9 = -21.87 ± 0.08 and lgβ11 = lg([ Al3+] -1[ H2C2O4] -1[ H+] 4 = -5.61 ± 0.06. Phase I exists in the range [ Al] tot≥ 10 -4.4moldm-3,[ H2C2O4] tot ≥ 10 -4.9moldm-3 and at pH < 6.8, thus being a possible precipitate in oxalic-rich natural waters. The more soluble sodium phase is unlikely to exist in natural waters. The two phases are metastable relative to crystalline gibbsite and may be considered as the first precipitation step in the transition from aqueous Al oxalates down to stable Al hydroxide. Model calculations illustrating these competing hydrolysis-complexation reactions are discussed in terms of predominance and speciation diagrams. The solid phases have been characterized by X-ray analysis of powders, TGA and IR spectra, and tentative structures are proposed. Phase I seems to be an octahedral layer structure, in which 3/5 of the octahedral sites between two close packed oxygen sheets are occupied by Al 3+ and the oxalate ion acts as a bridge ligand between two aluminium atoms. Phase II forms a more open sheet structure and has ion exchange properties. Powder data for a phase crystallized from the studied solution after a year are also presented. This phase, Na 4Al 2(OH) 2(C 2O 4) 4 · 10H 2O, supports the results from the equilibrium analysis of recent solution data by SJöBERG and ÖHMAN (1985), who have found the dinuclear complex Al 2(OH) 2(C 2O 4) 44- to exist in a solution in which the ligand is in excess.

  18. Ligand-bridged dinuclear cyclometalated Ir(III) complexes: from metallamacrocycles to discrete dimers.

    PubMed

    Chandrasekhar, Vadapalli; Hajra, Tanima; Bera, Jitendra K; Rahaman, S M Wahidur; Satumtira, Nisa; Elbjeirami, Oussama; Omary, Mohammad A

    2012-02-06

    Metallamacrocycles 1, 2, and 3 of the general formula [{Ir(ppy)(2)}(2)(μ-BL)(2)](OTf)(2) (ppyH = 2-phenyl pyridine; BL = 1,2-bis(4-pyridyl)ethane (bpa) (1), 1,3-bis(4-pyridyl)propane (bpp) (2), and trans-1,2-bis(4-pyridyl)ethylene (bpe) (3)) have been synthesized by the reaction of [{(ppy)(2)Ir}(2)(μ-Cl)(2)], first with AgOTf to effect dechlorination and later with various bridging ligands. Open-frame dimers [{Ir(ppy)(2)}(2)(μ-BL)](OTf)(2) were obtained in a similar manner by utilizing N,N'-bis(2-pyridyl)methylene-hydrazine (abp) and N,N'-(bis(2-pyridyl)formylidene)ethane-1,2-diamine (bpfd) (for compounds 4 and 5, respectively) as bridging ligands. Molecular structures of 1, 3, 4, and 5 were established by X-ray crystallography. Cyclic voltammetry experiments reveal weakly interacting "Ir(ppy)(2)" units bridged by ethylene-linked bpe ligand in 3; on the contrary the metal centers are electronically isolated in 1 and 2 where the bridging ligands are based on ethane and propane linkers. The dimer 4 exhibits two accessible reversible reduction couples separated by 570 mV indicating the stability of the one-electron reduced species located on the diimine-based bridge abp. The "Ir(ppy)(2)" units in compound 5 are noninteracting as the electronic conduit is truncated by the ethane spacer in the bpfd bridge. The dinuclear compounds 1-5 show ligand centered (LC) transitions involving ppy ligands and mixed metal to ligand/ligand to ligand charge transfer (MLCT/LLCT) transitions involving both the cyclometalating ppy and bridging ligands (BL) in the UV-vis spectra. For the conjugated bridge bpe in compound 3 and abp in compound 4, the lowest-energy charge-transfer absorptions are red-shifted with enhanced intensity. In accordance with their similar electronic structures, compounds 1 and 2 exhibit identical emissions. The presence of vibronic structures in these compounds indicates a predominantly (3)LC excited states. On the contrary, broad and unstructured phosphorescence bands in compounds 3-5 strongly suggest emissive states of mixed (3)MLCT/(3)LLCT character. Density functional theory (DFT) calculations have been carried out to gain insight on the frontier orbitals, and to rationalize the electrochemical and photophysical properties of the compounds based on their electronic structures.

  19. Cadmium-1,4-cyclohexanedicarboxylato coordination polymers bearing different di-alkyl-2,2'-bipyridines: syntheses, crystal structures and photoluminescence studies.

    PubMed

    Rosales-Vázquez, Luis D; Sánchez-Mendieta, Víctor; Dorazco-González, Alejandro; Martínez-Otero, Diego; García-Orozco, Iván; Morales-Luckie, Raúl A; Jaramillo-Garcia, Jonathan; Téllez-López, Antonio

    2017-09-26

    Four coordination polymers have been synthesized using self-assembly solution reactions under ambient conditions, reacting Cd(ii) ions with 1,4-cyclohexanedicarboxylic acid in the presence of different 2,2'-bipyridine co-ligands: {[Cd(H 2 O)(e,a-cis-1,4-chdc)(2,2'-bpy)]·H 2 O} n (1); [Cd 2 (H 2 O) 2 (e,a-cis-1,4-chdc) 2 (4,4'-dmb) 2 ] n (2); {[Cd(e,a-cis-1,4-chdc)(5,5'-dmb)]·H 2 O·CH 3 OH} n (3) and {[Cd(e,e-trans-1,4-chdc)(4,4'-dtbb)]·CH 3 OH} n (4), where 1,4-chdc = 1,4-cyclohexanedicarboxylato, 2,2'-bpy = 2,2'-bipyridine, 4,4'-dmb = 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmb = 5,5'-dimethyl-2,2'-bipyridine and 4,4'-dtbb = 4,4'-di-tert-butyl-2,2'-bipyridine. Crystallographic studies show that compound 1 has a 1D structure propagating along the crystallographic b-axis; the Cd ion in 1 is six-coordinated with a distorted-octahedral coordination sphere. Compound 2 has two crystallographic different Cd ions and both are six-coordinated with a distorted-octahedral coordination sphere. Compound 3 exhibits a seven-coordinated Cd ion having a distinctive distorted-monocapped trigonal prismatic geometry. In compound 4, the Cd ion is also seven-coordinated in a distorted monocapped octahedral geometry. Compounds 2, 3 and 4 possess rhombic-shaped dinuclear units (Cd 2 O 2 ) as nodes to generate larger cycles made up of four dinuclear units, a Cd 4 motif, bridged by four 1,4-chdc ligands, accomplishing, thus, 2D structures. Remarkably, in compound 4 the 1,4-chdc ligand conformation changes to the equatorial, equatorial trans, unlike the other compounds where the bridging ligand conformation is the more typical equatorial, axial cis. The solid state luminescence properties of 1-4 were investigated; polymers 3 and 4 exhibited a strong blue emission (λ em = 410-414 nm) compared to 1 and 2; structure-related photoluminescence is attributed to the degree of hydration of the compounds. Furthermore, Cd-polymer 3 suspended in acetone allows the fluorescence selective sensing of acetonitrile over common organic solvents such as alcohols and DMF, based on turn-on fluorescence intensity with a limit of 53 μmol L -1 .

  20. Dinuclear metallacycles with single M-O(H)-M bridges [M = Fe(II), Co(II), Ni(II), Cu(II)]: effects of large bridging angles on structure and antiferromagnetic superexchange interactions.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Foley, Elizabeth A; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2014-02-17

    The reactions of M(ClO4)2·xH2O and the ditopic ligands m-bis[bis(1-pyrazolyl)methyl]benzene (Lm) or m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (Lm*) in the presence of triethylamine lead to the formation of monohydroxide-bridged, dinuclear metallacycles of the formula [M2(μ-OH)(μ-Lm)2](ClO4)3 (M = Fe(II), Co(II), Cu(II)) or [M2(μ-OH)(μ-Lm*)2](ClO4)3 (M = Co(II), Ni(II), Cu(II)). With the exception of the complexes where the ligand is Lm and the metal is copper(II), all of these complexes have distorted trigonal bipyramidal geometry around the metal centers and unusual linear (Lm*) or nearly linear (Lm) M-O-M angles. For the two solvates of [Cu2(μ-OH)(μ-Lm)2](ClO4)3, the Cu-O-Cu angles are significantly bent and the geometry about the metal is distorted square pyramidal. All of the copper(II) complexes have structural distortions expected for the pseudo-Jahn-Teller effect. The two cobalt(II) complexes show moderate antiferromagnetic coupling, -J = 48-56 cm(-1), whereas the copper(II) complexes show very strong antiferromagnetic coupling, -J = 555-808 cm(-1). The largest coupling is observed for [Cu2(μ-OH)(μ-Lm*)2](ClO4)3, the complex with a Cu-O-Cu angle of 180°, such that the exchange interaction is transmitted through the dz(2) and the oxygen s and px orbitals. The interaction decreases, but it is still significant, as the Cu-O-Cu angle decreases and the character of the metal orbital becomes increasingly d(x(2)-y(2)). These intermediate geometries and magnetic interactions lead to spin Hamiltonian parameters for the copper(II) complexes in the EPR spectra that have large E/D ratios and one g matrix component very close to 2. Density functional theory calculations were performed using the hybrid B3LYP functional in association with the TZVPP basis set, resulting in reasonable agreement with the experiments.

  1. Anti-Invasive and Anti-Proliferative Synergism between Docetaxel and a Polynuclear Pd-Spermine Agent

    PubMed Central

    Batista de Carvalho, Ana L. M.; Medeiros, Paula S. C.; Costa, Francisco M.; Ribeiro, Vanessa P.; Sousa, Joana B.; Marques, Maria P. M.

    2016-01-01

    The present work is aimed at evaluating the antitumour properties of a Pd(II) dinuclear complex with the biogenic polyamine spermine, by investigating: i) the anti-angiogenic and anti-migration properties of a Pd(II) dinuclear complex with spermine (Pd2Spm); ii) the anti-proliferative activity of Pd2Spm against a triple negative human breast carcinoma (MDA-MB-231); and finally iii) the putative interaction mediated by combination of Pd2Spm with Docetaxel. Anti-invasive (anti-angiogenic and anti-migratory) as well as anti-proliferative capacities were assessed, for different combination schemes and drug exposure times, using the CAM assay and VEGFR2 activity measurement, the MatrigelTM method and the SRB proliferation test. The results thus obtained evidence the ability of Pd2Spm to restrict angiogenesis and cell migration: Pd2Spm induced a marked inhibition of migration (43.8±12.2%), and a higher inhibition of angiogenesis (81.8±4.4% for total length values, at 4 μM) as compared to DTX at the clinical dosage 4x10-2 μM (26.4±14.4%; n = 4 to 11). Combination of Pd2Spm/DTX was more effective as anti-invasive and anti-proliferative than DTX or Pd2Spm in sole administration, which is compatible with the occurrence of synergism: for the anti-angiogenic effect, IC50(Pd2Spm/DTX) = 0.5/0.5x10-2 μM vs IC50(DTX) = 1.7x10-2 μM and IC50(Pd2Spm) = 1.6 μM. In conclusion, the reported effects of Pd2Spm on angiogenesis, migration and proliferation showed that this compound is a promising therapeutic agent against this type of breast cancer. Moreover, combined administration of Pd2Spm and DTX was found to trigger a substantial synergetic effect regarding angiogenesis inhibition as well as anti-migratory and anti-proliferative activities reinforcing the putative use of Pd(II) complexes in chemotherapeutic regimens. This is a significant outcome, aiming at the application of these combined strategies towards metastatic breast cancer (or other type of resistant cancers), justifying further studies that include pre-clinical trials. PMID:27880824

  2. Synthesis, crystallographic and spectral studies of homochiral cobalt(II) and nickel(II) complexes of a new terpyridylaminoacid ligand

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Gao, Chang-Qing; Gao, Zhi-Yang; Wu, Ben-Lai; Niu, Yun-Yin

    2018-04-01

    Based on a chiral terpyridylaminoacid ligand, a series of homochiral Co(II) and Ni(II) complexes, namely, [Co(H2L)(HL)]·Cl·(PF6)2·2H2O (1), [Ni(H2L)(HL)]·Cl·(PF6)2 (2), [Co2(L)2(CH3OH)(H2O)]·(PF6)2·CH3OH (3), [Ni2(L)2(CH3OH)2]·(PF6)2·2CH3OH (4), [Co2(L)2(N3)2]·3H2O (5), and [Ni2(L)2(SCN)2]·4H2O (6) have been successfully synthesized and characterized by elemental analysis, TGA, spectroscopic methods (IR, CD and electronic absorption spectra) and single-crystal X-ray diffraction structural analysis (HL = (S)-2-((4-([2,2':6‧,2″-terpyridin]-4‧-yl)benzyl)amino)-4-methylpentanoic acid). In the acidic reaction conditions, one protonated (H2L)+ and one zwitterionic HL only used their terpyridyl groups to chelate one metal ion Co(II) or Ni(II), forming chiral mononuclear cationic complexes 1 or 2. But in the basic and hydro(solvo)thermal reaction conditions, deprotonated ligands (L)‒ acting as bridges used their terpyridyl and amino acid groups to link with two Co(II) or Ni(II) ions, fabricating chiral dinuclear metallocyclic complexes 3-6. Those chiral mononuclear and dinuclear complexes whose chirality originates in the homochiral ligand HL further self-assemble into higher-dimensional homochiral supramolecular frameworks through intermolecular hydrogen-bonding and π···π interactions. Notably, the coordination mode, hydrogen-bonding site, and existence form of HL ligand can be controlled by the protonation of its amino group, and the architectural diversity of those supramolecular frameworks is adjusted by pH and counter anions. Very interestingly, the 3D porous supramolecular frameworks built up from the huge chiral mononuclear cationic complexes 1 and 2 have novel helical layers only formed through every right-handed helical chain intertwining with two adjacent same helical chains, and the 2D supramolecular helicate 5 consists of two types of left-handed helical chains.

  3. Synthetic Active Site Model of the [NiFeSe] Hydrogenase.

    PubMed

    Wombwell, Claire; Reisner, Erwin

    2015-05-26

    A dinuclear synthetic model of the [NiFeSe] hydrogenase active site and a structural, spectroscopic and electrochemical analysis of this complex is reported. [NiFe('S2Se2')(CO)3] (H2'S2Se2' = 1,2-bis(2-thiabutyl-3,3-dimethyl-4-selenol)benzene) has been synthesized by reacting the nickel selenolate complex [Ni('S2Se2')] with [Fe(CO)3bda] (bda = benzylideneacetone). X-ray crystal structure analysis confirms that [NiFe('S2Se2')(CO)3] mimics the key structural features of the enzyme active site, including a doubly bridged heterobimetallic nickel and iron center with a selenolate terminally coordinated to the nickel center. Comparison of [NiFe('S2Se2')(CO)3] with the previously reported thiolate analogue [NiFe('S4')(CO)3] (H2'S4' = H2xbsms = 1,2-bis(4-mercapto-3,3-dimethyl-2-thiabutyl)benzene) showed that the selenolate groups in [NiFe('S2Se2')(CO)3] give lower carbonyl stretching frequencies in the IR spectrum. Electrochemical studies of [NiFe('S2Se2')(CO)3] and [NiFe('S4')(CO)3] demonstrated that both complexes do not operate as homogenous H2 evolution catalysts, but are precursors to a solid deposit on an electrode surface for H2 evolution catalysis in organic and aqueous solution. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  4. Effect of chaotropes on the kinetics of iron release from ferritin by flavin nucleotides.

    PubMed

    Johnson, Lindsay E; Wilkinson, Tyler; Arosio, Paolo; Melman, Artem; Bou-Abdallah, Fadi

    2017-12-01

    Ferritins are ubiquitous multi-subunit iron storage and detoxification proteins that play a critical role in iron homeostasis. Ferrous ions that enter the protein's shell through hydrophilic channels are rapidly oxidized at dinuclear centers on the H-subunit before transfer to the protein's cavity for storage. The mechanisms of iron loading have been extensively studied, but little is known about iron mobilization. Fe(III) reduction can occur via rapid reduction by suitable reducing agents followed by chelation of Fe(II) ions or via direct and slow Fe(III) chelation. Here, the iron release kinetics from ferritin by FMNH 2 in the presence of various chaotropic agents are studied and their in-vivo physiological significance discussed. The iron release kinetics from horse and human ferritins by FMNH 2 were monitored at 522nm where the Fe(II)-bipyridine complex absorbs. The experiments were performed in the presence of different concentrations of three chaotropic agents, urea, guanidine HCl, and triton. Under our experimental conditions, iron reductive mobilization by the non-enzymatic FMN/NAD(P)H system is limited by the concentration of FMNH 2 and is independent on the type or amount of chaotropes present. Diffusion of FMNH 2 through the ferritin pores is an unlikely mechanism for ferritin iron reduction. An iron mobilization mechanism involving rapid electron transfer through the protein shell is discussed. Caution must be exercised when interpreting the kinetics of iron mobilization from ferritin using the FMN/NAD(P)H system. The kinetics are highly dependent on the amount of dissolved oxygen and the concentration of reagents used. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide sensitive iron-sulphur cluster

    PubMed Central

    Smith, Laura J.; Stapleton, Melanie R.; Fullstone, Gavin J. M.; Crack, Jason C.; Thomson, Andrew J.; Le Brun, Nick E.; Hunt, Debbie M.; Harvey, Evelyn; Adinolfi, Salvatore; Buxton, Roger S.; Green, Jeffrey

    2010-01-01

    Mycobacterium tuberculosis is a major pathogen that has the ability to establish, and emerge from, a persistent state. Wbl family proteins are associated with developmental processes in actinomycetes, and M. tuberculosis has seven such proteins. Here it is shown that the M. tuberculosis H37Rv whiB1 gene is essential. The WhiB1 protein possesses a [4Fe-4S]2+ cluster that is stable in air but reacts rapidly with eight equivalents of nitric oxide to yield two dinuclear dinitrosyl-iron thiol complexes. The [4Fe-4S] form of WhiB1 did not bind whiB1 promoter DNA, but the reduced and oxidized apo-WhiB1, and nitric oxide-treated holo-WhiB1 did bind to DNA. Mycobacterium smegmatis RNA polymerase induced transcription of whiB1 in vitro; however in the presence of apo-WhiB1 transcription was severely inhibited, irrespective of the presence or absence of the CRP protein Rv3676, which is known to activate whiB1 expression. Footprinting suggested that autorepression of whiB1 is achieved by apo-WhiB1 binding at a region that overlaps the core promoter elements. A model incorporating regulation of whiB1 expression in response to nitric oxide and cAMP is discussed with implications for sensing two important signals in establishing M. tuberculosis infections. PMID:20929442

  6. Possible Peroxo State of the Dicopper Site of Particulate Methane Monooxygenase from Combined Quantum Mechanics and Molecular Mechanics Calculations.

    PubMed

    Itoyama, Shuhei; Doitomi, Kazuki; Kamachi, Takashi; Shiota, Yoshihito; Yoshizawa, Kazunari

    2016-03-21

    Enzymatic methane hydroxylation is proposed to efficiently occur at the dinuclear copper site of particulate methane monooxygenase (pMMO), which is an integral membrane metalloenzyme in methanotrophic bacteria. The resting state and a possible peroxo state of the dicopper active site of pMMO are discussed by using combined quantum mechanics and molecular mechanics calculations on the basis of reported X-ray crystal structures of the resting state of pMMO by Rosenzweig and co-workers. The dicopper site has a unique structure, in which one copper is coordinated by two histidine imidazoles and another is chelated by a histidine imidazole and primary amine of an N-terminal histidine. The resting state of the dicopper site is assignable to the mixed-valent Cu(I)Cu(II) state from a computed Cu-Cu distance of 2.62 Å from calculations at the B3LYP-D/TZVP level of theory. A μ-η(2):η(2)-peroxo-Cu(II)2 structure similar to those of hemocyanin and tyrosinase is reasonably obtained by using the resting state structure and dioxygen. Computed Cu-Cu and O-O distances are 3.63 and 1.46 Å, respectively, in the open-shell singlet state. Structural features of the dicopper peroxo species of pMMO are compared with those of hemocyanin and tyrosinase and synthetic dicopper model compounds. Optical features of the μ-η(2):η(2)-peroxo-Cu(II)2 state are calculated and analyzed with TD-DFT calculations.

  7. Glycine and metformin as new counter ions for mono and dinuclear vanadium(V)-dipicolinic acid complexes based on the insulin-enhancing anions: Synthesis, spectroscopic characterization and crystal structure

    NASA Astrophysics Data System (ADS)

    Ghasemi, Fatemeh; Rezvani, Ali Reza; Ghasemi, Khaled; Graiff, Claudia

    2018-02-01

    Complexes [VO(dipic) (H2O)2]·2H2O (1), [H2Met][V2O4(dipic)2] (2) and [HGly][VO2(dipic)] (3), where H2dipic = 2,6-pyridinedicarboxylic acid, Met = Metformin (N,N-dimethylbiguanide) and Gly = glycine, were synthesized. The three complexes were characterized by elemental analysis, FTIR, 1H and 13C NMR, and UV-Vis spectroscopy. Solid-state structures of (2) and (3) were determined by single-crystal X-ray diffraction analysis. The coordination geometry around the vanadium atoms in 2 is octahedral, while the coordination geometry in 3 is between trigonal bipyramidal and squared pyramidal. In the binuclear complex 2 and mononuclear complex 3, metformin and glycine are diprotonated and monoprotonated respectively, and act as a counter ion. The redox behavior of the complexes was also investigated by cyclic voltammetry.

  8. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    NASA Astrophysics Data System (ADS)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei

    2015-12-01

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H2ndc) or 4,4‧-(hydroxymethylene)dibenzoic acid (H2hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd2(2,6-ndc)2(bpp)(DMF)]·2DMF (1) and [Cd3(hmdb)3(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional 'Lucky Clover' shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process.

  9. Syntheses and structural characterization of iron(II) and copper(II) coordination compounds with the neutral flexible bidentate N-donor ligands

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Lalegani, Arash; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2014-08-01

    Two new coordination compounds [Fe(bib)2(N3)2]n(1) and [Cu2(bpp)2(N3)4] (2) with azide and flexible ligands 1,4-bis(imidazolyl)butane (bib) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp) were prepared and structurally characterized. In the 2D network structure of 1, the iron(II) ion lies on an inversion center and exhibits an FeN6 octahedral arrangement while in the dinuclear structure of 2, the copper(II) ion adopts an FeN5 distorted square pyramid geometry. In the complex 1, each μ2-bib acts as bridging ligand connecting two adjacent iron(II) ions while in the complex 2, the bpp ligand is coordinated to copper(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analysis of polymer 1 was also studied.

  10. Metal-Metal Interactions in Heterobimetallic Complexes with Dinucleating Redox-Active Ligands.

    PubMed

    Broere, Daniël L J; Modder, Dieuwertje K; Blokker, Eva; Siegler, Maxime A; van der Vlugt, Jarl Ivar

    2016-02-12

    The tuning of metal-metal interactions in multinuclear assemblies is a challenge. Selective P coordination of a redox-active PNO ligand to Au(I) followed by homoleptic metalation of the NO pocket with Ni(II) affords a unique trinuclear Au-Ni-Au complex. This species features two antiferromagnetically coupled ligand-centered radicals and a double intramolecular d(8)-d(10) interaction, as supported by spectroscopic, single-crystal X-ray diffraction, and computational data. A corresponding cationic dinuclear Au-Ni analogue with a stronger d(8)-d(10) interaction is also reported. Although both heterobimetallic structures display rich electrochemistry, only the trinuclear Au-Ni-Au complex facilitates electrocatalytic C-X bond activation of alkyl halides in its doubly reduced state. Hence, the presence of a redox-active ligand framework, an available coordination site at gold, and the nature of the nickel-gold interaction appear to be essential for this reactivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Imido-pyridine Ti(IV) compounds: synthesis of unusual imido-amido heterobimetallic derivatives.

    PubMed

    Pedrosa, Sergio; Vidal, Fernando; Lee, Lucia Myongwon; Vargas-Baca, Ignacio; Gómez-Sal, Pilar; Mosquera, Marta E G

    2015-06-28

    The reaction of lithiated picolines and [TiCl3(η(5)-C5Me5)] leads to several bridging or terminal imido compounds, each of which can be selectively formed by controlling the stoichiometry and temperature. Specifically, the dinuclear imido-bridged [TiCl(η(5)-C5Me5)(μ-NR)]2 (1a, NR = 2-imido-3-picoline; 1b, NR = 2-imido-5-picoline) species and the unusual Ti-Li imido-amido heterobimetallic complex [{Li(THF)}{Ti(η(5)-C5Me5)(NR)(NHR)2}] (2a, NR = 2-imido-3-picoline; 2b, NR = 2-imido-5-picoline) were isolated. Compounds 2 are in effect the first structurally characterized examples of titanium(IV) coordinated to terminal imido-pyridines. DFT-D calculations for 2a denote a multiple bond character between titanium and the imido ligand and a strong polarization of the electron density by the alkali cation in spite of the lack of intermetallic bonding.

  12. Dioxygen activation by non-adiabatic oxidative addition to a single metal center [O 2 activation by non-adiabatic oxidative addition to a single metal center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akturk, Eser S.; Yap, Glenn P. A.; Theopold, Klaus H.

    2015-10-16

    A chromium(I) dinitrogen complex reacts rapidly with O 2 to form the mononuclear dioxo complex [Tp tBu,MeCr V(O) 2] (Tp tBu,Me=hydrotris(3- tert-butyl-5-methylpyrazolyl)borate), whereas the analogous reaction with sulfur stops at the persulfido complex [Tp tBu,MeCr III(S 2)]. The transformation of the putative peroxo intermediate [Tp tBu,MeCr III(O 2)] (S= 3/ 2) into [Tp tBu,MeCr V(O) 2] (S= 1/ 2) is spin-forbidden. The minimum-energy crossing point for the two potential energy surfaces has been identified. Finally, although the dinuclear complex [(Tp tBu,MeCr) 2(μ-O) 2] exists, mechanistic experiments suggest that O 2 activation occurs on a single metal center, by an oxidativemore » addition on the quartet surface followed by crossover to the doublet surface.« less

  13. Bonding coordination requirements induce antiferromagnetic coupling between m-phenylene bridged o-iminosemiquinonato diradicals.

    PubMed

    Dei, Andrea; Gatteschi, Dante; Sangregorio, Claudio; Sorace, Lorenzo; Vaz, Maria G F

    2003-03-10

    Triply bridged bis-iminodioxolene dinuclear metal complexes of general formula M(2)(diox-diox)(3), with M = Co, Fe, have been synthesized using the bis-bidentate ligand N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)-1,3-phenylenediamine. These complexes were characterized by means of X-ray, HF-EPR, and magnetic measurements. X-ray structures clearly show that both complexes can be described as containing three bis-iminosemiquinonato ligands acting in a bis-bidentate manner toward tripositive metal ions. The magnetic data show that both of these complexes have singlet ground states. The observed experimental behavior indicates the existence of intraligand antiferromagnetic interactions between the three pairs of m-phenylene units linked iminosemiquinonato radicals (J = 21 cm(-)(1) for the cobalt complex and J = 11 cm(-)(1) for the iron one). It is here suggested that the conditions for the ferromagnetic coupling that is expected to characterize the free diradical ligand are no longer satisfied because of the severe torsional distortion induced by the metal coordination.

  14. Magneto-structural correlations in dirhenium(iv) complexes possessing magnetic pathways with even or odd numbers of atoms.

    PubMed

    Pedersen, Anders H; Julve, Miguel; Martínez-Lillo, José; Cano, Joan; Brechin, Euan K

    2017-09-12

    The employment of pyrazine (pyz), pyrimidine (pym) and s-triazine (triz) ligands in Re IV chemistry leads to the isolation of a family of complexes of general formula (NBu 4 ) 2 [(ReX 5 ) 2 (μ-L)] (L = pyz, X = Cl (1) or Br (2); L = pym, X = Br (3); L = triz, X = Br (4)). 1-4 are dinuclear compounds where two pentahalorhenium(iv) fragments are connected by bidentate pyz, pym and triz ligands. Variable-temperature magnetic measurements, in combination with detailed theoretical studies, uncover the underlying magneto-structural correlation whereby the nature of the exchange between the metal ions is dictated by the number of intervening atoms. That is, the spin-polarization mechanism present dictates that odd and even numbers of atoms favour ferromagnetic (F) and antiferromagnetic (AF) exchange interactions, respectively. Hence, while the pyz ligand in 1 and 2 mediates AF coupling, the pym and triz ligands in 3 and 4 promote F interactions.

  15. A density functional theory study of the magnetic exchange coupling in dinuclear manganese(II) inverse crown structures.

    PubMed

    Vélez, Ederley; Alberola, Antonio; Polo, Víctor

    2009-12-17

    The magnetic exchange coupling constants between two Mn(II) centers for a set of five inverse crown structures have been investigated by means of a methodology based on broken-symmetry unrestricted density functional theory. These novel and highly unstable compounds present superexchange interactions between two Mn centers, each one with S = 5/2 through anionic "guests" such as oxygen, benzene, or hydrides or through the cationic ring formed by amide ligands and alkali metals (Na, Li). Magnetic exchange couplings calculated at B3LYP/6-31G(d,p) level yield strong antiferromagnetic couplings for compounds linked via an oxygen atom or hydride and very small antiferromagnetic couplings for those linked via a benzene molecule, deprotonated in either 1,4- or 1,3- positions. Analysis of the magnetic orbitals and spin polarization maps provide an understanding of the exchange mechanism between the Mn centers. The dependence of J with respect to 10 different density functional theory potentials employed and the basis set has been analyzed.

  16. Dual gold catalysis: σ,π-propyne acetylide and hydroxyl-bridged digold complexes as easy-to-prepare and easy-to-handle precatalysts.

    PubMed

    Hashmi, A Stephen K; Lauterbach, Tobias; Nösel, Pascal; Vilhelmsen, Mie Højer; Rudolph, Matthias; Rominger, Frank

    2013-01-14

    A series of dinuclear gold σ,π-propyne acetylide complexes were prepared and tested for their catalytic ability in dual gold catalysis that was based on the reaction of an electrophilic π-complex of gold with a gold acetylide. The air-stable and storable catalysts can be isolated as silver-free catalysts in their activated form. These dual catalysts allow a fast initiation phase for the dual catalytic cycles without the need for additional additives for acetylide formation. Because propyne serves as a throw-away ligand, no traces of the precatalyst are generated. Based on the fast initiation process, side products are minimized and reaction rates are higher for these catalysts. A series of test reactions were used to demonstrate the general applicability of these catalysts. Lower catalyst loadings, faster reaction rates, and better selectivity, combined with the practicability of these catalysts, make them ideal catalysts for dual gold catalysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Major impact of N-methylation on cytotoxicity and hydrolysis of salan Ti(IV) complexes: sterics and electronics are intertwined.

    PubMed

    Meker, Sigalit; Manna, Cesar M; Peri, Dani; Tshuva, Edit Y

    2011-10-14

    A series of Ti(IV) complexes containing diamino bis(phenolato) "salan" type ligands with NH coordination were prepared, and their hydrolysis and cytotoxicity were analyzed and compared to the N-methylated analogues. Substituting methyl groups on the coordinative nitrogen donor of highly active and stable Ti(IV) salan complexes with H atoms has two main consequences: the hydrolysis rate increases and the cytotoxic activity diminishes. In addition, the small modification of a single replacement of Me with H leads to a different major hydrolysis product, where a dinuclear Ti(IV) complex with two bridging oxo ligands is obtained, as characterized by X-ray crystallography, rather than a trinuclear cluster. A partial hydrolysis product containing a single oxo bridge was also crystallographically analyzed. Investigation of a series of complexes with NH donors of different steric and electronic effects revealed that cytotoxicity may be restored by fine tuning these parameters even for complexes of low stability.

  18. Efficient Light-Driven Water Oxidation Catalysis by Dinuclear Ruthenium Complexes.

    PubMed

    Berardi, Serena; Francàs, Laia; Neudeck, Sven; Maji, Somnath; Benet-Buchholz, Jordi; Meyer, Franc; Llobet, Antoni

    2015-11-01

    Mastering the light-induced four-electron oxidation of water to molecular oxygen is a key step towards the achievement of overall water splitting to produce alternative solar fuels. In this work, we report two rugged molecular pyrazolate-based diruthenium complexes that efficiently catalyze visible-light-driven water oxidation. These complexes were fully characterized both in the solid state (by X-ray diffraction analysis) and in solution (spectroscopically and electrochemically). Benchmark performances for homogeneous oxygen production have been obtained for both catalysts in the presence of a photosensitizer and a sacrificial electron acceptor at pH 7, and a turnover frequency of up to 11.1 s(-1) and a turnover number of 5300 were obtained after three successive catalytic runs. Under the same experimental conditions with the same setup, the pyrazolate-based diruthenium complexes outperform other well-known water oxidation catalysts owing to both electrochemical and mechanistic aspects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Strong exchange and magnetic blocking in N₂³⁻-radical-bridged lanthanide complexes.

    PubMed

    Rinehart, Jeffrey D; Fang, Ming; Evans, William J; Long, Jeffrey R

    2011-05-22

    Single-molecule magnets approach the ultimate size limit for spin-based devices. These complexes can retain spin information over long periods of time at low temperature, suggesting possible applications in high-density information storage, quantum computing and spintronics. Notably, the success of most such applications hinges upon raising the inherent molecular spin-inversion barrier. Although recent advances have shown the viability of lanthanide-containing complexes in generating large barriers, weak or non-existent magnetic exchange coupling allows fast relaxation pathways that mitigate the full potential of these species. Here, we show that the diffuse spin of an N(2)(3-) radical bridge can lead to exceptionally strong magnetic exchange in dinuclear Ln(III) (Ln = Gd, Dy) complexes. The Gd(III) congener exhibits the strongest magnetic coupling yet observed for that ion, while incorporation of the high-anisotropy Dy(III) ion gives rise to a molecule with a record magnetic blocking temperature of 8.3 K at a sweep rate of 0.08 T s(-1).

  20. First Cationic Uranyl-Organic Framework with Anion-Exchange Capabilities.

    PubMed

    Bai, Zhuanling; Wang, Yanlong; Li, Yuxiang; Liu, Wei; Chen, Lanhua; Sheng, Daopeng; Diwu, Juan; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2016-07-05

    By controlling the extent of hydrolysis during the self-assembly process of a zwitterionic-based ligand with uranyl cations, we observed a structural evolution from the neutral uranyl-organic framework [(UO2)2(TTTPC)(OH)O(COOH)]·1.5DMF·7H2O (SCU-6) to the first cationic uranyl-organic framework with the formula of [(UO2)(HTTTPC)(OH)]Br·1.5DMF·4H2O (SCU-7). The crystal structures of SCU-6 and SCU-7 are layers built with tetranuclear and dinuclear uranyl clusters, respectively. Exchangeable halide anions are present in the interlaminar spaces balancing the positive charge of layers in SCU-7. Therefore, SCU-7 is able to effectively remove perrhenate anions from aqueous solution. Meanwhile, the H2PO4(-)-exchanged SCU-7 material exhibits a moderate proton conductivity of 8.70 × 10(-5) S cm(-1) at 50 °C and 90% relative humidity, representing nearly 80 times enhancement compared to the original material.

  1. Hydrothermal synthesis, photoluminescence and photocatalytic properties of two silver(I) complexes

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Yuan; Zhou, Lin-Xia; Zheng, Yue-Qing; Zhu, Hong-Lin; Li, Wen-Ying

    2017-09-01

    Two new dinuclear silver(I) coordination complexes [Ag(Hntph)(tpyz)2/2]n1 and [Ag2(dtrz)2(Hntph)2] 2 (H2ntph=2-nitroterephthalic acid, tpyz=2,3,5-trimethylpyrazine, dtrz=3,5-dimethyl-4H-1,2,4-triazol-4-amine) have been obtained by hydrothermal reactions of Ag(I) salts with H2ntph and various N-donor ligands. Complex 1 exhibits a 2D layer structure constructed by the binuclear Ag2(Hntph)2 units and tpyz ligands. Complex 2 also shows a different binuclear unit Ag2(dtrz)2, which was assembled via hydrogen bonds interactions to a 3D supramolecular architecture. The photocatalytic experiments showed that complex 2 is an excellent visible light candidate for degradation of RhB, and the degradation ratio of RhB reached 91.4% after 7 h under the light of 90 W white LED lamp. Moreover, the photoluminescent properties and the optical band gaps of 1-2 have also been investigated.

  2. Reactivity of the Donor-Stabilized Silylenes [iPrNC(Ph)NiPr]2 Si and [iPrNC(NiPr2 )NiPr]2 Si: Activation of CO2 and CS2.

    PubMed

    Mück, Felix M; Baus, Johannes A; Nutz, Marco; Burschka, Christian; Poater, Jordi; Bickelhaupt, F Matthias; Tacke, Reinhold

    2015-11-09

    Activation of CO2 by the bis(amidinato)silylene 1 and the analogous bis(guanidinato)silylene 2 leads to the structurally analogous six-coordinate silicon(IV) complexes 4 (previous work) and 8, respectively, the first silicon compounds with a chelating carbonato ligand. Likewise, CS2 activation by silylene 1 affords the analogous six-coordinate silicon(IV) complex 10, the first silicon compound with a chelating trithiocarbonato ligand. CS2 activation by silylene 2, however, yields the five-coordinate silicon(IV) complex 13 with a carbon-bound CS2 (2-) ligand, which also represents an unprecedented coordination mode in silicon coordination chemistry. Treatment of the dinuclear silicon(IV) complexes 5 and 6 with CO2 also affords the six-coordinate carbonatosilicon(IV) complexes 4 and 8, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Three series of heterometallic NiII-LnIII Schiff base complexes: synthesis, crystal structures and magnetic characterization.

    PubMed

    Jiang, Lin; Liu, Yue; Liu, Xin; Tian, Jinlei; Yan, Shiping

    2017-09-26

    Three series of Ni II -Ln III complexes were synthesized with the general formulae [(μ 3 -CO 3 ) 2 {Ni(HL)(CH 3 -CH 2 OH)Ln(CH 3 COO)} 2 ]·2CH 3 CH 2 OH (1-6) (Ln = Tb (1), Dy (2), Ho (3), Er (4), Tm (5), Yb (6); H 3 L = N,N'-bis(3-methoxysalicylidene)-1,3-diamino-2-prop-anol), [Ni(HL)Ln(dbm) 3 ]·CH 3 OH 2 ·2CH 2 Cl 2 (7-10) (Ln = Tb (7), Eu (8), Gd (9), Ho (10); Hdbm = 1,3-diphenyl-1,3-propanedione) and [Ni(HL)(H 2 O)(tfa)Ln(hfac) 2 ] (11-15) (Ln = Tb (11), Dy (12), Eu (13), Gd (14), Ho (15); Hhfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione, tfa - = trifluoroacetate) using compartmental Schiff base ligands in conjunction with auxiliary ligands. For the NiLn series, the tetranuclear structure could be considered as two Ni II -Ln III dinuclear subunits bridged by two carbonates derived from atmospheric carbon dioxide. The Ln III ions of complexes 1-6 were octa-coordinated with distorted triangular dodecahedral geometry, while the Ln III ions of the dinuclear complexes 7-15 were nona-coordinated with distorted muffin geometry. The magnetic properties of the three series complexes were studied using dc and ac magnetic measurements. For the Ni II -Gd III complexes, the dc magnetic susceptibility measurements suggested the existence of the anticipated ferromagnetic interaction between Ni II and Gd III ions. The fitting of the χ M T vs. T data processed by PHI software provided the parameters g = 2.08 (J = +0.87 cm -1 ) for 9 and g = 2.02 (J = +1.83 cm -1 ) for 14. The interaction exchange was magneto-structurally correlated to the Ni-O-Gd angle (α) and Ni(μ-O)Gd dihedral angle (β). With an applied dc field, complexes 1 (Tb), 2 (Dy), 7 (Tb) and 12 (Dy) exhibited single magnetic relaxation with SMM parameters of U eff /k = 13.60 K, 11.52 K, 7.69 K and 5.14 K, respectively. Analysis of the Cole-Cole plots for complexes 2 and 7 suggested that a single relaxation process was mainly involved in the relaxation process, with α values in the range of 0.37-0.17 and 0.14-0.11, respectively.

  4. Cobalt Ion Promoted Redox Cascade: A Route to Spiro Oxazine-Oxazepine Derivatives and a Dinuclear Cobalt(III) Complex of an N-(1,4-Naphthoquinone)-o-aminophenol Derivative.

    PubMed

    Mondal, Sandip; Bera, Sachinath; Maity, Suvendu; Ghosh, Prasanta

    2017-11-06

    The study discloses that the redox activity of N-(1,4-naphthoquinone)-o-aminophenol derivatives (L R H 2 ) containing a (phenol)-NH-(1,4-naphthoquinone) fragment is notably different from that of a (phenol)-NH-(phenol) precursor. The former is a platform for a redox cascade. L R H 2 is redox noninnocent and exists in Cat-N-(1,4-naphthoquinone)(2-) (L R 2- ) and SQ-N-(1,4-naphthoquinone) (L R •- ) states in the complexes. Reactions of L R H 2 with cobalt(II) salts in MeOH in air promote a cascade affording spiro oxazine-oxazepine derivatives ( OX L R ) in good yields, when R = H, Me, t Bu. Spiro oxazine-oxazepine derivatives are bioactive, and such a molecule has so far not been isolated by a schematic route. In this context this cascade is significant. Dimerization of L R H 2 → OX L R in MeOH is a (6H + + 6e) oxidation reaction and is composed of formations of four covalent bonds and 6-exo-trig and 7-endo-trig cyclization based on C-O coupling reactions, where MeOH is the source of a proton and the ester function. It was established that the active cascade precursor is [(L Me •- )Co III Cl 2 ] (A). Notably, formation of a spiro derivative was not detected in CH 3 CN and the reaction ends up furnishing A. The route of the reaction is tunable by R, when R = NO 2 , it is a (2e + 4H + ) oxidation reaction affording a dinuclear L R 2- complex of cobalt(III) of the type [(L NO2 2- ) 2 Co III 2 (OMe) 2 (H 2 O) 2 ] (1) in good yields. No cascade occurs with zinc(II) ion even in MeOH and produces a L Me •- complex of type [(L Me •- )Zn II Cl 2 ] (2). The intermediate A and 2 exhibit strong EPR signals at g = 2.008 and 1.999, confrming the existence of L Me •- coordinated to low-spin cobalt(III) and zinc(II) ions. The intermediates of L R H 2 → OX L R conversion were analyzed by ESI mass spectrometry. The molecular geometries of OX L R and 1 were confirmed by X-ray crystallography, and the spectral features were elucidated by TD DFT calculations.

  5. Effect of Ligand Substitution around the Dy(III) on the SMM Properties of Dual-Luminescent Zn-Dy and Zn-Dy-Zn Complexes with Large Anisotropy Energy Barriers: A Combined Theoretical and Experimental Magnetostructural Study.

    PubMed

    Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique

    2016-05-02

    The new dinuclear Zn(II)-Dy(III) and trinuclear Zn(II)-Dy(III)-Zn(II) complexes of formula [(LZnBrDy(ovan) (NO3)(H2O)](H2O)·0.5(MeOH) (1) and [(L(1)ZnBr)2Dy(MeOH)2](ClO4) (3) (L and L(1) are the dideprotonated forms of the N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato and 2-{(E)-[(3-{[(2E,3E)-3-(hydroxyimino)butan-2-ylidene ]amino}-2,2-dimethylpropyl)imino]methyl}-6-methoxyphenol Schiff base compartmental ligands, respectively) have been prepared and magnetostructurally characterized. The X-ray structure of 1 indicates that the Dy(III) ion exhibits a DyO9 coordination sphere, which is made from four O atoms coming from the compartmental ligand (two methoxy terminal groups and two phenoxido bridging groups connecting Zn(II) and Dy(III) ions), other four atoms belonging to the chelating nitrato and ovanillin ligands, and the last one coming to the coordinated water molecule. The structure of 3 shows the central Dy(III) ion surrounded by two L(1)Zn units, so that the Dy(III) and Zn(II) ions are linked by phenoxido/oximato bridging groups. The Dy ion is eight-coordinated by the six O atoms afforded by two L(1) ligands and two O atoms coming from two methanol molecules. Alternating current (AC) dynamic magnetic measurements of 1, 3, and the previously reported dinuclear [LZnClDy(thd)2] (2) complex (where thd = 2,2,6,6-tetramethyl-3,5-heptanedionato ligand) indicate single molecule magnet (SMM) behavior for all these complexes with large thermal energy barriers for the reversal of the magnetization and butterfly-shaped hysteresis loops at 2 K. Ab initio calculations on 1-3 show a pure Ising ground state for all of them, which induces almost completely suppressed quantum tunnelling magnetization (QTM), and thermally assisted quantum tunnelling magnetization (TA-QTM) relaxations via the first excited Kramers doublet, leading to large energy barriers, thus supporting the observation of SMM behavior. The comparison between the experimental and theoretical magnetostructural data for 1-3 has allowed us to draw some conclusions about the influence of ligand substitution around the Dy(III) on the SMM properties. Finally, these SMMs exhibit metal- and ligand-centered dual emissions in the visible region, and, therefore, they can be considered as magnetoluminescent bifunctional molecular materials.

  6. Linear Free Energy Relationships in Dinuclear Compounds. 2. Inductive Redox Tuning via Remote Substituents in Quadruply Bonded Dimolybdenum Compounds.

    PubMed

    Lin, Chun; Protasiewicz, John D.; Smith, Eugene T.; Ren, Tong

    1996-10-23

    Syntheses and characterizations are reported for dimolybdenum(II) compounds supported by the diarylformamidinate (ArNC(H)NAr(-)) ligand, where Ar is XC(6)H(4)(-), with X as p-OMe (1), H (2), m-OMe (3), p-Cl (4), m-Cl (5), m-CF(3) (6), p-COMe (7), p-CF(3) (8), or Ar is 3,4-Cl(2)C(6)H(3)(-) (9) or 3,5-Cl(2)C(6)H(3)(-) (10). The (quasi)reversible oxidation potentials measured for the Mo(2)(5+)/Mo(2)(4+) couple were found to correlate with the Hammett constant (sigma(X)) of the aryl substituents according to the following equation: DeltaE(1/2) = E(1/2)(X) - E(1/2)(H) = 87(8sigma(X)) mV. Molecular structure determinations of compounds 1, 2, 5, and 10 revealed an invariant core geometry around the Mo(2) center, with statistically identical Mo-Mo quadruple bond lengths of 2.0964(5), 2.0949[8], 2.0958(6), and 2.0965(5) Å, respectively. Magnetic anisotropies for compounds 1-10 estimated on the basis of (1)H NMR data were similar and unrelated to sigma(X). Similarity in UV-vis spectra was also found within the series, which, in conjunction with the features of both molecular structures and (1)H NMR spectra, was interpreted as the existence of a constant upper valence structure across the series. Results of Fenske-Hall calculations performed for several model compounds paralleled the experimental observations.

  7. Anticancer potency and multidrug-resistant studies of self-assembled arene-ruthenium metallarectangles.

    PubMed

    Dubey, Abhishek; Min, Jin Wook; Koo, Hyun Jung; Kim, Hyunuk; Cook, Timothy R; Kang, Se Chan; Stang, Peter J; Chi, Ki-Whan

    2013-08-26

    A suite of three tetraruthenium metallacycles have been obtained from [2+2] self-assemblies between N,N'-Di-(4-pyridyl)-1,4,5,8-naphthalenetetracarbo-xydiimide (4) and one of the three dinuclear arene ruthenium clips, (η(6)-p-iPrC6H4Me)2Ru2(OO∩OO)][OTf]2 (OO∩OO = oxalate 1, 2,5-dioxydo-1,4-benzoquinonato (dobq) 2, 5,8-dihydroxy-1,4-naphthaquinonato (donq) 3; OTf = triflate). All complexes were isolated in good yield (>85 %) as triflate salts and were fully characterized by using (1)H NMR and UV/Vis spectroscopies, and high-resolution electrospray mass spectrometry. A single crystal of the metallarectangle 5 was suitable for X-ray diffraction structural characterization. The biological activities of the metallacycles were determined by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays, establishing their in vitro anticancer properties. Our results show that for the AGC (gastric cancer) cell lines, the cytotoxicity of (donq)-containing SCC 7 exceeds that of cisplatin, which was used as a control. For HCT15 (colon cancer) cell lines, the cytotoxicity is comparable to both cisplatin and doxorubicin. An in vivo hollow fiber model was used to show growth-inhibitory activity against HCT15 and image-based cytometry experiments indicated that 7 induced apoptosis as the mode of cell death. Complex 7 also showed significant antitumor activity for multidrug-resistant HCT15/CLO2 cell lines, for which doxorubicin was ineffective. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Lanthanide Complexes with Multidentate Oxime Ligands as Single-Molecule Magnets and Atmospheric Carbon Dioxide Fixation Systems.

    PubMed

    Hołyńska, Małgorzata; Clérac, Rodolphe; Rouzières, Mathieu

    2015-09-14

    The synthesis, structure, and magnetic properties of five lanthanide complexes with multidentate oxime ligands are described. Complexes 1 and 2 (1: [La2 (pop)2 (acac)4 (CH3 OH)], 2: [Dy2 (pop)(acac)5 ]) are synthesized from the 2-hydroxyimino-N-[1-(2-pyridyl)ethylidene]propanohydrazone (Hpop) ligand, while 3, 4, and 5 (3: [Dy2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.85 CH3 CN⋅1.58 H2 O; 4: [Tb2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.52 CH3 CN⋅1.71 H2 O; 5: [La6 (CO3 )2 (naphthsao)5 (naphthsaoH)0.5 (acac)8 (CO3 )0.5 (CH3 OH)2.76 H5.5 (H2 O)1.24 ]⋅2.39 CH3 CN⋅0.12 H2 O) contain 1-(1-hydroxynaphthalen-2-yl)-ethanone oxime (naphthsaoH2 ). In 1-4, dinuclear [Ln2 ] complexes crystallize, whereas hexanuclear La(III) complex 5 is formed after fixation of atmospheric carbon dioxide. Dy(III) -based complexes 2 and 3 display single-molecule-magnet properties with energy barriers of 27 and 98 K, respectively. The presence of a broad and unsymmetrical relaxation mode observed in the ac susceptibility data for 3 suggest two different dynamics of the magnetization which might be a consequence of independent relaxation processes of the two different Dy(3+) ions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Advancements in the mechanistic understanding of the copper-catalyzed azide–alkyne cycloaddition

    PubMed Central

    2013-01-01

    Summary The copper-catalyzed azide–alkyne cycloaddition (CuAAC) is one of the most broadly applicable and easy-to-handle reactions in the arsenal of organic chemistry. However, the mechanistic understanding of this reaction has lagged behind the plethora of its applications for a long time. As reagent mixtures of copper salts and additives are commonly used in CuAAC reactions, the structure of the catalytically active species itself has remained subject to speculation, which can be attributed to the multifaceted aggregation chemistry of copper(I) alkyne and acetylide complexes. Following an introductory section on common catalyst systems in CuAAC reactions, this review will highlight experimental and computational studies from early proposals to very recent and more sophisticated investigations, which deliver more detailed insights into the CuAAC’s catalytic cycle and the species involved. As diverging mechanistic views are presented in articles, books and online resources, we intend to present the research efforts in this field during the past decade and finally give an up-to-date picture of the currently accepted dinuclear mechanism of CuAAC. Additionally, we hope to inspire research efforts on the development of molecularly defined copper(I) catalysts with defined structural characteristics, whose main advantage in contrast to the regularly used precatalyst reagent mixtures is twofold: on the one hand, the characteristics of molecularly defined, well soluble catalysts can be tuned according to the particular requirements of the experiment; on the other hand, the understanding of the CuAAC reaction mechanism can be further advanced by kinetic studies and the isolation and characterization of key intermediates. PMID:24367437

  10. The DFT Calculations of Structures and EPR Parameters for the Dinuclear Paddle-Wheel Copper(II) Complex {Cu2(μ2-O2CCH3)4}(OCNH2CH3) as Powder or Single Crystal

    NASA Astrophysics Data System (ADS)

    Ding, Chang-Chun; Wu, Shao-Yi; Xu, Yong-Qiang; Zhang, Li-Juan; Zhang, Zhi-Hong; Zhu, Qin-Sheng; Wu, Ming-He; Teng, Bao-Hua

    2017-10-01

    Density functional theory (DFT) calculations of the structures and the Cu2+ g factors (gx, gy and gz ) and hyperfine coupling tensor A (Ax , Ay and Az ) were performed for the paddle-wheel (PW)-type binuclear copper(II) complex {Cu2(μ2-O2CCH3)4}(OCNH2CH3) powder and single crystal. Calculations were carried out with the ORCA software using the functionals BHandHlyp, B3P86 and B3LYP with five different basis sets: 6-311g, 6-311g(d,p), VTZ, def-2 and def2-TZVP. Results were tested by the MPAD analysis to find the most suitable functional and basis sets. The electronic structure and covalency between copper and oxygen were investigated by the electron localisation function and the localised orbital locator as well as the Mayer bond order for the [CuO5] group. The optical spectra were theoretically calculated by the time-dependent DFT module and plotted by the Multiwfn program for the [CuO5] group and reasonably associated with the local structure in the vicinity of the central ion copper. In addition, the interactions between the OCNH2CH3, NH3 and H2O molecules and the uncoordinated PW copper(II) complex were studied, and the corresponding adsorption energies, the frequency shifts with respect to the free molecules and the changes of the Cu-Cu distances were calculated and compared with the relevant systems.

  11. Characteristics Of Bridging Oxo And Sulfido Groups In Multinuclear Iron Proteins

    NASA Astrophysics Data System (ADS)

    Loehr, Thomas M.

    1989-07-01

    The presence of oxo-bridged dinuclear iron clusters has been established in the respiratory protein, hemerythrin (Hr), and in the DNA-biosynthesis regulatory enzyme, ribonucleotide reductase (Rr). For the iron proteins uteroferrin and purple acid phosphatase (PAP) evidence for μ-oxo-bridged centers is less clear. Resonance Raman (RR) spectra obtained by excitation into an 0(2-) --> Fe(III) CT band may show strong symmetric and weak antisymmetric Fe-0-Fe vibrational modes. We have investigated the spectra of a variety of μ-oxo-bridged Fe(III) complexes to establish the dependence of Raman scattering intensities upon structural parameters. Intensities were found to relate to the nature of the ligand trans to the oxo group: nitrogen ligands with unsaturation (e.g., pyrazole and imidazole) lead to strong scattering, whereas saturated ligands provide only poor scattering. The Fe-0 bonds in Hr and Rr are strong scatterers; the former is known from x-ray crystallography to have a histidyl ligand trans to the μ-oxo group. On this basis, a similar ligand structure is likely in the reductase. In contrast, PAP shows no oxo-bridge with UV and near-UV excitation. We propose that a different structural framework is necessary to account for this result. Hydrogen bonding of protein side chains to oxo and sulfido ligands is proposed to explain changes in frequencies for samples dissolved in water vs. D20. Differences in hydrogen-bond strengths between 0...(D) and S...(D) systems are transferred to the observed Fe-0 and Fe-S bond vibrations.

  12. Structural Evidence of a Major Conformational Change Triggered by Substrate Binding in DapE Enzymes: Impact on the Catalytic Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nocek, Boguslaw; Reidl, Cory; Starus, Anna

    In this paper, the X-ray crystal structure of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae (HiDapE) bound by the products of hydrolysis, succinic acid and l,l-DAP, was determined at 1.95 Å. Surprisingly, the structure bound to the products revealed that HiDapE undergoes a significant conformational change in which the catalytic domain rotates ~50° and shifts ~10.1 Å (as measured at the position of the Zn atoms) relative to the dimerization domain. This heretofore unobserved closed conformation revealed significant movements within the catalytic domain compared to that of wild-type HiDapE, which results in effectively closing off access to the dinuclearmore » Zn(II) active site with the succinate carboxylate moiety bridging the dinculear Zn(II) cluster in a μ-1,3 fashion forming a bis(μ-carboxylato)dizinc(II) core with a Zn–Zn distance of 3.8 Å. Surprisingly, His194.B, which is located on the dimerization domain of the opposing chain ~10.1 Å from the dinuclear Zn(II) active site, forms a hydrogen bond (2.9 Å) with the oxygen atom of succinic acid bound to Zn2, forming an oxyanion hole. As the closed structure forms upon substrate binding, the movement of His194.B by more than ~10 Å is critical, based on site-directed mutagenesis data, for activation of the scissile carbonyl carbon of the substrate for nucleophilic attack by a hydroxide nucleophile. Employing the HiDapE product-bound structure as the starting point, a reverse engineering approach called product-based transition-state modeling provided structural models for each major catalytic step. Finally, these data provide insight into the catalytic reaction mechanism and also the future design of new, potent inhibitors of DapE enzymes.« less

  13. Structural Evidence of a Major Conformational Change Triggered by Substrate Binding in DapE Enzymes: Impact on the Catalytic Mechanism

    DOE PAGES

    Nocek, Boguslaw; Reidl, Cory; Starus, Anna; ...

    2017-12-22

    In this paper, the X-ray crystal structure of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae (HiDapE) bound by the products of hydrolysis, succinic acid and l,l-DAP, was determined at 1.95 Å. Surprisingly, the structure bound to the products revealed that HiDapE undergoes a significant conformational change in which the catalytic domain rotates ~50° and shifts ~10.1 Å (as measured at the position of the Zn atoms) relative to the dimerization domain. This heretofore unobserved closed conformation revealed significant movements within the catalytic domain compared to that of wild-type HiDapE, which results in effectively closing off access to the dinuclearmore » Zn(II) active site with the succinate carboxylate moiety bridging the dinculear Zn(II) cluster in a μ-1,3 fashion forming a bis(μ-carboxylato)dizinc(II) core with a Zn–Zn distance of 3.8 Å. Surprisingly, His194.B, which is located on the dimerization domain of the opposing chain ~10.1 Å from the dinuclear Zn(II) active site, forms a hydrogen bond (2.9 Å) with the oxygen atom of succinic acid bound to Zn2, forming an oxyanion hole. As the closed structure forms upon substrate binding, the movement of His194.B by more than ~10 Å is critical, based on site-directed mutagenesis data, for activation of the scissile carbonyl carbon of the substrate for nucleophilic attack by a hydroxide nucleophile. Employing the HiDapE product-bound structure as the starting point, a reverse engineering approach called product-based transition-state modeling provided structural models for each major catalytic step. Finally, these data provide insight into the catalytic reaction mechanism and also the future design of new, potent inhibitors of DapE enzymes.« less

  14. Crystal structure, magnetism, and luminescent properties of two isostructural pcu MOFs based on a triangular ligand

    NASA Astrophysics Data System (ADS)

    Yan, Pen-Ji; Yao, Xiao-Qiang; Xie, Hua; Xiao, Guo-Bin; Liu, Jia-Cheng; Xu, Xin-Jian

    2018-05-01

    Two isomorphous metal-organic frameworks, {[M(TIPA) (btec)½]H2O}n, [M = Co (1) or Zn (2)] were synthesized hydrothermally based on a semi-rigid N-center triangular ligand TIPA, where TIPA = tris(4-(1H-imidazol-1-yl)-phenyl)amine, H4btec = 1,2,4,5-benzenetetracarboxylic acid. Single crystal structural analyses show that complexes 1 and 2 are isostructural and both feature a twofold interpenetrated pcu topology. In 1 and 2, the btec4- ligand adopting μ2-η2:η1 and μ1-η1:η0 coordination modes connect adjacent dinuclear Co/Zn units to form a 1D straight polymeric chain. Then these chains arranged in parallel/parallel fashion were further extended to a 3D network by exo-tridentate ligand TIPA with μ2-κ2N:N‧ coordination mode. The magnetic property of 1 and the luminescent property of 2 were investigated. Furthermore, the structure and spectroscopic property of 2 were further investigated by DFT and TD-DFT calculations.

  15. Evidence of desulfurization in the oxidative cyclization of thiosemicarbazones. Conversion to 1,3,4-oxadiazole derivatives.

    PubMed

    Gómez-Saiz, Patricia; García-Tojal, Javier; Maestro, Miguel A; Arnaiz, Francisco J; Rojo, Teófilo

    2002-03-25

    The addition of pyridine-2-carbaldehyde 4N-methylthiosemicarbazone (C8H10N4S) to an aqueous solution of copper(II) nitrate yields [[Cu(C8H9N4S)(NO3)]2] (1). This complex consists of centrosymmetric dinuclear entities containing square-pyramidal copper(II) ions bridged through the sulfur thioamide atoms. The oxidation of 1 with KBrO3 or KIO3 gives rise to a compound with formula [[Cu(C8H8N4O)(H2O)2(SO4)]2]*2H2O (2) (C8H8N4O = 2-methylamino-5-pyridin-2-yl-1,3,4-oxadiazole). The structure of 2 is made up of centrosymmetric dimers where the copper(II) ions exhibit a distorted octahedral coordination and are connected by the oxadiazole moiety. The metal ions in 2 can be removed by addition of K4[Fe(CN)6], and then the oxadiazole ligand can be isolated and recrystallized as (C8H8N4O)*3H2O (3).

  16. Synthesis, crystal structure, theoretical calculations and antimicrobial properties of [Pt(tetramethylthiourea)4] [Pt(CN)4]·4H2O

    NASA Astrophysics Data System (ADS)

    Sadaf, Haseeba; Isab, Anvarhusein A.; Ahmad, Saeed; Espinosa, Arturo; Mas-Montoya, Míriam; Khan, Islam Ullah; Ejaz; Rehman, Seerat-ur; Ali, Muhammad Akhtar Javed; Saleem, Muhammad; Ruiz, José; Janiak, Christoph

    2015-04-01

    A new platinum(II) complex, [Pt(Tmtu)4][Pt(CN)4]·4H2O (1) was synthesized by reaction of K2[PtCl4], KCN and tetramethylthiourea (Tmtu). Its structure was determined by X-ray crystallography. The [Pt(CN)4]2- anion shows regular square planar geometry at platinum, while in the [Pt(Tmtu)4]2+ cation the geometry at platinum is somewhat distorted. Hydrogen bonding between water molecules and the cyanide nitrogen of [Pt(CN)4]2- ions stabilizes the structure and leads to a supramolecular 2D network. DFT calculations support the experimentally found dinuclear (homocoordinated) ion-pair structure 1 as the most stable in comparison to noncovalent dimer [Pt(CN)2(Tmtu)2]222 that could, in turn, be involved in the formation sequence of 1. Antimicrobial activities of the complex were evaluated by minimum inhibitory concentration and the results showed that the complex exhibited moderate activities against gram-negative bacteria (Escherichiacoli, Pseudomonas aeruginosa) and molds (Aspergillus niger,Penicilliumcitrinum).

  17. A Phos-tag-based magnetic-bead method for rapid and selective separation of phosphorylated biomolecules.

    PubMed

    Tsunehiro, Masaya; Meki, Yuma; Matsuoka, Kanako; Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Koike, Tohru

    2013-04-15

    A simple and efficient method based on magnetic-bead technology has been developed for the separation of phosphorylated and nonphosphorylated low-molecular-weight biomolecules, such as nucleotides, phosphorylated amino acids, or phosphopeptides. The phosphate-binding site on the bead is an alkoxide-bridged dinuclear zinc(II) complex with 1,3-bis(pyridin-2-ylmethylamino)propan-2-olate (Phos-tag), which is linked to a hydrophilic cross-linked agarose coating on a magnetic core particle. All steps for the phosphate-affinity separation are conducted in buffers of neutral pH with 50 μL of the magnetic beads in a 1.5-mL microtube. The entire separation protocol for phosphomonoester-type compounds, from addition to elution, requires less than 12 min per sample if the buffers and the zinc(II)-bound Phos-tag magnetic beads have been prepared in advance. The phosphate-affinity magnetic beads are reusable at least 15 times without a decrease in their phosphate-binding ability and they are stable for three months in propan-2-ol. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shaoan; Onishi, Naoya; Tsurusaki, Akihiro

    Here, we report newly developed iridium catalysts with electron-donating imidazoline moieties as ligands for the hydrogenation of CO 2 to formate in aqueous solution. Interestingly, these new complexes promote CO 2 hydrogenation much more effectively than their imidazole analogues and exhibit a turnover frequency (TOF) of 1290 h –1 for the bisimidazoline complex compared to that of 20 h –1 for the bisimidazole complex at 1 MPa and 50 °C. Additionally, the hydrogenation proceeds smoothly even under atmospheric pressure at room temperature. The TOF of 43 h –1 for the bisimidazoline complex is comparable to that of a dinuclear complexmore » (70 h –1, highest TOF reported) [Nat. Chem. 2012, 4, 383], which incorporates proton-responsive ligands with pendent-OH groups in the second coordination sphere. The catalytic activity of the complex with an N-methylated imidazoline moiety is much the same as that of the corresponding pyridylimidazoline analogue. Our result and the UV/Vis titrations of the imidazoline complexes indicate that the high activity is not attributable to the deprotonation of NH on the imidazoline under the reaction conditions.« less

  19. Dysprosium complexes with mono-/di-carboxylate ligands-From simple dimers to 2D and 3D frameworks

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Bhadbhade, Mohan; Scales, Nicholas; Karatchevtseva, Inna; Price, Jason R.; Lu, Kim; Lumpkin, Gregory R.

    2014-11-01

    Four dysprosium (Dy) single carboxylates, a formate, a propionate, a butyrate and an oxalate have been synthesized and structurally characterized. The structure of Dy(HCO2)3 (1) contains nine-fold coordinated Dy polyhedra in perfect tricapped trigonal prisms. They are linked through trigonal O atoms forming 1D pillars which are further linked together through tricapped O atoms into a 3D pillared metal organic framework. The network structure is stable up to 360 °C. The structure of [Dy2(C2O4)3(H2O)6]·2.5H2O (2) contains nine-fold coordinated Dy polyhedra linking together through μ2-bridging oxalate anions into a 2D hexagonal layered structure. Both [Dy2(Pr)6(H2O)4]·(HPr)0.5 (3) [Pr=(C2H5CO2)-1] and [Dy2(Bu)6(H2O)4] (4) [Bu=(C3H7CO2)-1] have similar di-nuclear structures. The Raman vibration modes of the complexes have been investigated.

  20. Crystal structure of bis-[μ-(4-meth-oxy-phen-yl)methane-thiol-ato-κ(2) S:S]bis-[chlorido-(η(6)-1-isopropyl-4-methyl-benzene)-ruthenium(II)] chloro-form disolvate.

    PubMed

    Stíbal, David; Süss-Fink, Georg; Therrien, Bruno

    2015-10-01

    The mol-ecular structure of the title complex, [Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3 or (p-MeC6H4Pr (i) )2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3, shows inversion symmetry. The two symmetry-related Ru(II) atoms are bridged by two 4-meth-oxy-α-toluene-thiol-ato [(4-meth-oxy-phen-yl)methane-thiol-ato] units. One chlorido ligand and the p-cymene ligand complete the typical piano-stool coordination environment of the Ru(II) atom. In the crystal, the CH moiety of the chloro-form mol-ecule inter-acts with the chlorido ligand of the dinuclear complex, while one Cl atom of the solvent inter-acts more weakly with the methyl group of the bridging 4-meth-oxy-α-toluene-thiol-ato unit. This assembly leads to the formation of supra-molecular chains extending parallel to [021].

  1. Coordination-Driven Self-Assembly of M3L2 Trigonal Cages from Pre-organized Metalloligands Incorporating Octahedral Metal Centers and Fluorescent Detection of Nitroaromatics

    PubMed Central

    Wang, Ming; Vajpayee, Vaishali; Shanmugaraju, Sankarasekaran; Zheng, Yao-Rong; Zhao, Zhigang; Kim, Hyunuk

    2011-01-01

    The design and preparation of novel M3L2 trigonal cages via coordination-driven self-assembly of pre-organized metalloligands containing octahedral aluminum(III), gallium(III), or ruthenium(II) centers is described. By employing tritopic or dinuclear linear metalloligands and appropriate complementary subunits, M3L2 trigonal-bipyramidal and trigonal prismatic cages are self-assembled under mild conditions. These 3-D cages were characterized with multinuclear NMR spectroscopy (1H and 31P) and high-resolution electronic spray mass spectrometry (HR-ESI-MS). The structure of one such trigonal prismatic cage, self-assembled from an arene ruthenium metalloligand, was confirmed via single-crystal X-ray crystallography. The fluorescent nature of these prisms, due to the presence of their electron-rich ethynyl functionalities, prompted photophysical studies which revealed that electron-deficient nitroaromatics are effective quenchers of the cages' emission. Excited state charge transfer from the prisms to the nitroaromatic substrates can be used as the basis for developing selective and discriminatory turn-off fluorescent sensors for nitroaromatics. PMID:21214171

  2. Synthesis, characterisation and computational studies on a novel one-dimensional arrangement of Schiff-base Mn3 single-molecule magnet.

    PubMed

    Lin, Po-Heng; Gorelsky, Serge; Savard, Didier; Burchell, Tara J; Wernsdorfer, Wolfgang; Clérac, Rodolphe; Murugesu, Muralee

    2010-09-07

    The syntheses, structures and magnetic properties are reported for three new manganese complexes containing the Schiff-base ((2-hydroxy-3-methoxyphenyl)methylene)isonicotinohydrazine (H(2)hmi) ligand. Complex [Mn(II)(H(2)hmi)(2)(MeOH)(2)Cl(2)] (1) was obtained from the reaction of H(2)hmi with MnCl(2) in a MeOH-MeCN mixture. Addition of triethylamine to the previous reaction mixture followed by diethyl ether diffusion yielded a dinuclear manganese [Mn(III)(2)(hmi)(2)(OMe)(2)](infinity).2MeCN.2OEt(2) (2) compound. Upon increasing the MnCl(2)/H(2)hmi ratio, the mixed valence complex [Mn(III)(2)Mn(II)(hmi)(2)(OMe)(2)Cl(2)](infinity).MeOH (3) was obtained. Dc and ac magnetic measurements were carried out on all three samples. The ac susceptibility and field dependence of the magnetisation measurements confirmed that complex 3 exhibits a single-molecule magnet behaviour with an effective energy barrier of 8.1 K and an Arrhenius pre-exponential factor of 3 x 10(-9) s.

  3. Pyrazine as a building block for molecular architectures with PtII.

    PubMed

    Willermann, Michael; Mulcahy, Clodagh; Sigel, Roland K O; Cerdà, Marta Morell; Freisinger, Eva; Sanz Miguel, Pablo J; Roitzsch, Michael; Lippert, Bernhard

    2006-03-06

    A series of pyrazine (pz) complexes containing cis-(NH(3))(2)Pt(II), (tmeda)Pt(II) (tmeda = N,N,N',N'-tetramethylethylenediamine), and trans-(NH(3))(2)Pt(II) entities have been prepared and characterized by X-ray crystallography and/or 1H NMR spectroscopy. In these compounds, the pz ligands act as monodentate (1-3) or bidentate bridging ligands (4-7). Three variants of the latter case are described: a dinuclear complex [Pt(II)]2 (4b), a cyclic tetranuclear [Pt(II)](4) complex (5), and a trinuclear mixed-metal complex [Pt2Ag] (7). Mono- and bidentate binding modes are readily differentiated by 1H NMR spectroscopy, and the assignment of pz protons in the case of monodentate coordination is aided by the observation of (195)Pt satellites. Formation of the open molecular box cis-[{(NH3)2Pt(pz)}4](NO3)8.3.67H2O (5) from cis-(NH3)2Pt(II) and pz follows expectations of the "molecular library approach" for the generation of a cyclic tetramer.

  4. Iron(II) supramolecular helicates condense plasmid DNA and inhibit vital DNA-related enzymatic activities.

    PubMed

    Malina, Jaroslav; Hannon, Michael J; Brabec, Viktor

    2015-07-27

    The dinuclear iron(II) supramolecular helicates [Fe2 L3 ]Cl4 (L=C25 H20 N4 ) bind to DNA through noncovalent (i.e., hydrogen-bonding, electrostatic) interactions and exhibit antimicrobial and anticancer effects. In this study, we show that the helicates condense plasmid DNA with a much higher potency than conventional DNA-condensing agents. Notably, molecules of DNA in the presence of the M enantiomer of [Fe2 L3 ]Cl4 do not form intermolecular aggregates typically formed by other condensing agents, such as spermidine or spermine. The helicates inhibit the activity of several DNA-processing enzymes, such as RNA polymerase, DNA topoisomerase I, deoxyribonuclease I, and site-specific restriction endonucleases. However, the results also indicate that the DNA condensation induced by the helicates does not play a crucial role in these inhibition reactions. The mechanisms for the inhibitory effects of [Fe2 L3 ]Cl4 helicates on DNA-related enzymatic activities have been proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Formation of carbonato and hydroxo complexes in the reaction of platinum anticancer drugs with carbonate.

    PubMed

    Di Pasqua, Anthony J; Centerwall, Corey R; Kerwood, Deborah J; Dabrowiak, James C

    2009-02-02

    The second-generation Pt(II) anticancer drug carboplatin is here shown to react with carbonate, which is present in blood, interstitial fluid, cytosol, and culture medium, to produce platinum-carbonato and -hydroxo complexes. Using [(1)H-(15)N] HSQC NMR and (15)N-labeled carboplatin, we observe that cis-[Pt(CBDCA-O)(OH)(NH(3))(2)](-), cis-[Pt(OH)(2)(NH(3))(2)], cis-[Pt(CO(3))(OH)(NH(3))(2)](-), and what may be cis-[Pt(CO(3))(NH(3))(2)] are produced when 1 is allowed to react in 23.8 mM carbonate buffer. When (15)N-labeled carboplatin is allowed to react in 0.5 M carbonate buffer, these platinum species, as well as other hydroxo and carbonato species, some of which may be dinuclear complexes, are produced. Furthermore, we show that the carbonato species cis-[Pt(CO(3))(OH)(NH(3))(2)](-) is also produced when cisplatin is allowed to react in carbonate buffer. The study outlines the conditions under which carboplatin and cisplatin form carbonato and aqua/hydroxo species in carbonate media.

  6. Computation and Experiment: A Powerful Combination to Understand and Predict Reactivities.

    PubMed

    Sperger, Theresa; Sanhueza, Italo A; Schoenebeck, Franziska

    2016-06-21

    Computational chemistry has become an established tool for the study of the origins of chemical phenomena and examination of molecular properties. Because of major advances in theory, hardware and software, calculations of molecular processes can nowadays be done with reasonable accuracy on a time-scale that is competitive or even faster than experiments. This overview will highlight broad applications of computational chemistry in the study of organic and organometallic reactivities, including catalytic (NHC-, Cu-, Pd-, Ni-catalyzed) and noncatalytic examples of relevance to organic synthesis. The selected examples showcase the ability of computational chemistry to rationalize and also predict reactivities of broad significance. A particular emphasis is placed on the synergistic interplay of computations and experiments. It is discussed how this approach allows one to (i) gain greater insight than the isolated techniques, (ii) inspire novel chemistry avenues, and (iii) assist in reaction development. Examples of successful rationalizations of reactivities are discussed, including the elucidation of mechanistic features (radical versus polar) and origins of stereoselectivity in NHC-catalyzed reactions as well as the rationalization of ligand effects on ligation states and selectivity in Pd- and Ni-catalyzed transformations. Beyond explaining, the synergistic interplay of computation and experiments is then discussed, showcasing the identification of the likely catalytically active species as a function of ligand, additive, and solvent in Pd-catalyzed cross-coupling reactions. These may vary between mono- or bisphosphine-bound or even anionic Pd complexes in polar media in the presence of coordinating additives. These fundamental studies also inspired avenues in catalysis via dinuclear Pd(I) cycles. Detailed mechanistic studies supporting the direct reactivity of Pd(I)-Pd(I) with aryl halides as well as applications of air-stable dinuclear Pd(I) catalysts are discussed. Additional combined experimental and computational studies are described for alternative metals, these include the discussion of the factors that control C-H versus C-C activation in the aerobic Cu-catalyzed oxidation of ketones, and ligand and additive effects on the nature and favored oxidation state of the active catalyst in Ni-catalyzed trifluoromethylthiolations of aryl chlorides. Examples of successful computational reactivity predictions along with experimental verifications are then presented. This includes the design of a fluorinated ligand [(CF3)2P(CH2)2P(CF3)2] for the challenging reductive elimination of ArCF3 from Pd(II) as well as the guidance of substrate scope (functional group tolerance and suitable leaving group) in the Ni-catalyzed trifluoromethylthiolation of C(sp(2))-O bonds. In summary, this account aims to convey the benefits of integrating computational studies in experimental research to increase understanding of observed phenomena and guide future experiments.

  7. Magnetic circular dichroism and computational study of mononuclear and dinuclear iron(iv) complexes† †Electronic supplementary information (ESI) available: VT MCD spectra, VT and VTVH MCD intensity analysis of complex 1, energies, S x, S z values and Boltzmann populations of S = 1 magnetic sublevels as a function of the applied magnetic field, derivation of the excited states arising from the 1b2 → 2b1 transition, determination of the C-term sign of band 1 and the E(2e → 2a1) transitions for complex 1, VTVH MCD spectra, VTVH simulations and the computed MCD spectrum of complex 2. See DOI: 10.1039/c4sc03268c Click here for additional data file.

    PubMed Central

    Xue, Genqiang; Krivokapic, Itana; Petrenko, Taras

    2015-01-01

    High-valent iron(iv)-oxo species are key intermediates in the catalytic cycles of a range of O2-activating iron enzymes. This work presents a detailed study of the electronic structures of mononuclear ([FeIV(O)(L)(NCMe)]2+, 1, L = tris(3,5-dimethyl-4-methoxylpyridyl-2-methyl)amine) and dinuclear ([(L)FeIV(O)(μ-O)FeIV(OH)(L)]3+, 2) iron(iv) complexes using absorption (ABS), magnetic circular dichroism (MCD) spectroscopy and wave-function-based quantum chemical calculations. For complex 1, the experimental MCD spectra at 2–10 K are dominated by a broad positive band between 12 000 and 18 000 cm–1. As the temperature increases up to ∼20 K, this feature is gradually replaced by a derivative-shaped signal. The computed MCD spectra are in excellent agreement with experiment, which reproduce not only the excitation energies and the MCD signs of key transitions but also their temperature-dependent intensity variations. To further corroborate the assignments suggested by the calculations, the individual MCD sign for each transition is independently determined from the corresponding electron donating and accepting orbitals. Thus, unambiguous assignments can be made for the observed transitions in 1. The ABS/MCD data of complex 2 exhibit ten features that are assigned as ligand-field transitions or oxo- or hydroxo-to-metal charge transfer bands, based on MCD/ABS intensity ratios, calculated excitation energies, polarizations, and MCD signs. In comparison with complex 1, the electronic structure of the FeIV 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 O site is not significantly perturbed by the binding to another iron(iv) center. This may explain the experimental finding that complexes 1 and 2 have similar reactivities toward C–H bond activation and O-atom transfer. PMID:26417426

  8. Supramolecular architectures in Co(II) and Cu(II) complexes with thiophene-2-carboxylate and 2-amino-4,6-dimethoxypyrimidine ligands.

    PubMed

    Karthikeyan, Ammasai; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-05-01

    The coordination chemistry of mixed-ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal-organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic-inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene-2-carboxylate (2-TPC) and 2-amino-4,6-dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X-ray diffraction studies, namely (2-amino-4,6-dimethoxypyrimidine-κN)aquachlorido(thiophene-2-carboxylato-κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena-poly[copper(II)-tetrakis(μ-thiophene-2-carboxylato-κ(2)O:O')-copper(II)-(μ-2-amino-4,6-dimethoxypyrimidine-κ(2)N(1):N(3))], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the Co(II) ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2-TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2-TPC ligand form an interligand N-H...O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R2(2)(8) motif] via a pair of N-H...N hydrogen bonds. These interactions, together with O-H...O and O-H...Cl hydrogen bonds and π-π stacking interactions, generate a three-dimensional supramolecular architecture. The one-dimensional coordination polymer (II) contains the classical paddle-wheel [Cu2(CH3COO)4(H2O)2] unit, where each carboxylate group of four 2-TPC ligands bridges two square-pyramidally coordinated Cu(II) ions and the apically coordinated OMP ligands bridge the dinuclear copper units. Each dinuclear copper unit has a crystallographic inversion centre, whereas the bridging OMP ligand has crystallographic twofold symmetry. The one-dimensional polymeric chains self-assemble via N-H...O, π-π and C-H...π interactions, generating a three-dimensional supramolecular architecture.

  9. ProPhenol-Catalyzed Asymmetric Additions by Spontaneously Assembled Dinuclear Main Group Metal Complexes

    PubMed Central

    2016-01-01

    Conspectus The development of catalytic enantioselective transformations has been the focus of many research groups over the past half century and is of paramount importance to the pharmaceutical and agrochemical industries. Since the award of the Nobel Prize in 2001, the field of enantioselective transition metal catalysis has soared to new heights, with the development of more efficient catalysts and new catalytic transformations at increasing frequency. Furthermore, catalytic reactions that allow higher levels of redox- and step-economy are being developed. Thus, alternatives to asymmetric alkene dihydroxylation and the enantioselective reduction of α,β-unsaturated ketones can invoke more strategic C–C bond forming reactions, such as asymmetric aldol reactions of an aldehyde with α-hydroxyketone donors or enantioselective alkynylation of an aldehyde, respectively. To facilitate catalytic enantioselective addition reactions, including the aforementioned aldol and alkynylation reactions, our lab has developed the ProPhenol ligand. In this Account, we describe the development and application of the ProPhenol ligand for asymmetric additions of both carbon- and heteroatom-based nucleophiles to various electrophiles. The ProPhenol ligand spontaneously forms chiral dinuclear metal complexes when treated with an alkyl metal reagent, such as Et2Zn or Bu2Mg. The resulting complex contains both a Lewis acidic site to activate an electrophile and a Brønsted basic site to deprotonate a pronucleophile. Initially, our research focused on the use of Zn-ProPhenol complexes to facilitate the direct aldol reaction. Fine tuning of the reaction through ligand modification and the use of additives enabled the direct aldol reaction to proceed in high yields and stereoselectivities with a broad range of donor substrates, including acetophenones, methyl ynones, methyl vinyl ketone, acetone, α-hydroxy carbonyl compounds, and glycine Schiff bases. Additionally, an analogous magnesium ProPhenol complex was used to facilitate enantioselective diazoacetate aldol reactions with aryl, α,β-unsaturated, and aliphatic aldehydes. The utility of bimetallic ProPhenol catalysts was extended to asymmetric additions with a wide range of substrate combinations. Effective pronucleophiles include oxazolones, 2-furanone, nitroalkanes, pyrroles, 3-hydroxyoxindoles, alkynes, meso-1,3-diols, and dialkyl phosphine oxides. These substrates were found to be effective with a number of electrophiles, including aldehydes, imines, nitroalkenes, acyl silanes, vinyl benzoates, and α,β-unsaturated carbonyls. A truly diverse range of enantioenriched compounds have been prepared using the ProPhenol ligand, and the commercial availability of both ligand enantiomers makes it ideally suited for the synthesis of complex molecules. To date, enantioselective ProPhenol-catalyzed reactions have been used in the synthesis of more than 20 natural products. PMID:25650587

  10. Versatile reactivities of rare-earth metal dialkyl complexes supported by a neutral pyrrolyl-functionalized β-diketiminato ligand.

    PubMed

    Zhu, Xiancui; Li, Yang; Guo, Dianjun; Wang, Shaowu; Wei, Yun; Zhou, Shuangliu

    2018-03-12

    Herein, rare-earth metal dialkyl complexes supported by a neutral pyrrolyl-functionalized β-diketiminato ligand with the formula LRE(CH 2 SiMe 3 ) 2 (thf) (RE = Y (1a), Dy (1b), Er (1c), Yb (1d); L = MeC(NDipp)CHC(Me)NCH 2 CH 2 NC 4 H 2 -2,5-Me 2 , Dipp = 2,6- i Pr 2 C 6 H 3 ) were synthesized via the reactions of the β-diketimine HL with the rare-earth metal trialkyl complexes RE(CH 2 SiMe 3 ) 3 (thf) 2 in high yields. The reactivities of 1 with pyridine derivatives, unsaturated substrates, and elemental sulfur were investigated, and some interesting chemical transformations were observed. Ligand exchange and activation of sp 2 and sp 3 C-H bonds occurred during the reactions with pyridine derivatives to afford different types of mononuclear rare-earth metal pyridyl complexes, namely, LEr(CH 2 SiMe 3 ) 2 (η 1 -NC 5 H 4 ) (2c), LRE(η 3 -CH 2 -2-NC 5 H 2 -4,6-Me 2 ) 2 (RE = Y (3a), Er (3c)), and LRE(CH 2 SiMe 3 )(η 2 -(C,N)-2-(2-C 6 H 4 NC 5 H 4 )) (RE = Er (4c), Yb = (4d)). Similarly, activation of the sp C-H bond occurred during the reaction of phenylacetylene with 1c to produce the dinuclear erbium alkynyl complex [LEr(CH 2 SiMe 3 )(μ-C[triple bond, length as m-dash]CPh)] 2 (5c). The mixed amidinate-β-diketiminato ytterbium complex LYb[(Dipp)NC(CH 2 SiMe 3 )N(Dipp)](CH 2 SiMe 3 ) (6d) was obtained by the insertion of bis(2,6-diisopropylphenyl)carbodiimide into a Yb-alkyl bond, as well as via the direct alkane elimination of a CH 2 SiMe 3 moiety with bis(2,6-diisopropylphenyl)formamidine to afford the erbium complex LEr(DippNCHNDipp)(CH 2 SiMe 3 ) (7c). A rare sp 2 C-H bond oxidation of the β-diketiminato backbone with elemental sulfur insertion was detected to provide the unprecedented dinuclear rare-earth metal thiolate complexes (LRE) 2 (μ-SCH 2 SiMe 3 ) 2 (μ-SCC(Me)(NDipp)C(Me)NCH 2 CH 2 NC 4 H 2 Me 2 -2,5) (RE = Y (8a), Er (8c)) in the reactions of S 8 with 1a and 1c, respectively. The molecular structures of the complexes 1-8 were determined by single-crystal X-ray diffraction analyses.

  11. Dinuclear complexes containing linear M-F-M [M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)] bridges: trends in structures, antiferromagnetic superexchange interactions, and spectroscopic properties.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2012-11-05

    The reaction of M(BF(4))(2)·xH(2)O, where M is Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), with the new ditopic ligand m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (L(m)*) leads to the formation of monofluoride-bridged dinuclear metallacycles of the formula [M(2)(μ-F)(μ-L(m)*)(2)](BF(4))(3). The analogous manganese(II) species, [Mn(2)(μ-F)(μ-L(m)*)(2)](ClO(4))(3), was isolated starting with Mn(ClO(4))(2)·6H(2)O using NaBF(4) as the source of the bridging fluoride. In all of these complexes, the geometry around the metal centers is trigonal bipyramidal, and the fluoride bridges are linear. The (1)H, (13)C, and (19)F NMR spectra of the zinc(II) and cadmium(II) compounds and the (113)Cd NMR of the cadmium(II) compound indicate that the metallacycles retain their structure in acetonitrile and acetone solution. The compounds with M = Mn(II), Fe(II), Co(II), Ni(II), and Cu(II) are antiferromagnetically coupled, although the magnitude of the coupling increases dramatically with the metal as one moves to the right across the periodic table: Mn(II) (-6.7 cm(-1)) < Fe(II) (-16.3 cm(-1)) < Co(II) (-24.1 cm(-1)) < Ni(II) (-39.0 cm(-1)) ≪ Cu(II) (-322 cm(-1)). High-field EPR spectra of the copper(II) complexes were interpreted using the coupled-spin Hamiltonian with g(x) = 2.150, g(y) = 2.329, g(z) = 2.010, D = 0.173 cm(-1), and E = 0.089 cm(-1). Interpretation of the EPR spectra of the iron(II) and manganese(II) complexes required the spin Hamiltonian using the noncoupled spin operators of two metal ions. The values g(x) = 2.26, g(y) = 2.29, g(z) = 1.99, J = -16.0 cm(-1), D(1) = -9.89 cm(-1), and D(12) = -0.065 cm(-1) were obtained for the iron(II) complex and g(x) = g(y) = g(z) = 2.00, D(1) = -0.3254 cm(-1), E(1) = -0.0153, J = -6.7 cm(-1), and D(12) = 0.0302 cm(-1) were found for the manganese(II) complex. Density functional theory (DFT) calculations of the exchange integrals and the zero-field splitting on manganese(II) and iron(II) ions were performed using the hybrid B3LYP functional in association with the TZVPP basis set, resulting in reasonable agreement with experiment.

  12. Bifunctional Zn(II)Ln(III) dinuclear complexes combining field induced SMM behavior and luminescence: enhanced NIR lanthanide emission by 9-anthracene carboxylate bridging ligands.

    PubMed

    Palacios, María A; Titos-Padilla, Silvia; Ruiz, José; Herrera, Juan Manuel; Pope, Simon J A; Brechin, Euan K; Colacio, Enrique

    2014-02-03

    There were new dinuclear Zn(II)-Ln(III) complexes of general formulas [Zn(μ-L)(μ-OAc)Ln(NO3)2] (Ln(III) = Tb (1), Dy (2), Er (3), and Yb (4)), [Zn(μ-L)(μ-NO3)Er(NO3)2] (5), [Zn(H2O)(μ-L)Nd(NO3)3]·2CH3OH (6), [Zn(μ-L)(μ-9-An)Ln(NO3)2]·2CH3CN (Ln(III) = Tb (7), Dy (8), Er (9), Yb(10)), [Zn(μ-L)(μ-9-An)Yb(9-An)(NO3)3]·3CH3CN (11), [Zn(μ-L)(μ-9-An)Nd(9-An)(NO3)3]·2CH3CN·3H2O (12), and [Zn(μ-L)(μ-9-An)Nd(CH3OH)2(NO3)]ClO4·2CH3OH (13) prepared from the reaction of the compartmental ligand N,N',N″-trimethyl-N,N″-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2L), with ZnX2·nH2O (X = NO3(-) or OAc(-)) salts, Ln(NO3)3·nH2O, and, in some instances, 9-anthracenecarboxylate anion (9-An). In all these complexes, the Zn(II) ions invariably occupy the internal N3O2 site whereas the Ln(III) ions show preference for the O4 external site, giving rise to a Zn(μ-diphenoxo)Ln bridging fragment. Depending on the Zn(II) salt and solvent used in the reaction, a third bridge can connect the Zn(II) and Ln(III) metal ions, giving rise to triple-bridged diphenoxoacetate in complexes 1-4, diphenoxonitrate in complex 5, and diphenoxo(9-anthracenecarboxylate) in complexes 8-13. Dy(III) and Er(III) complexes 2, 8 and 3, 5, respectively, exhibit field induced single molecule magnet (SMM) behavior, with Ueff values ranging from 11.7 (3) to 41(2) K. Additionally, the solid-state photophysical properties of these complexes are presented showing that ligand L(2-) is able to sensitize Tb(III)- and Dy(III)-based luminescence in the visible region through an energy transfer process (antenna effect). The efficiency of this process is much lower when NIR emitters such as Er(III), Nd(III), and Yb(III) are considered. When the luminophore 9-anthracene carboxylate is incorporated into these complexes, the NIR luminescence is enhanced which proves the efficiency of this bridging ligand to act as antenna group. Complexes 2, 3, 5, and 8 can be considered as dual materials as they combine SMM behavior and luminescent properties.

  13. Synthesis, crystal structure, and magnetic properties of a two-fold interpenetrated diamondoid open framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jing-Yun, E-mail: jyunwu@ncnu.edu.tw; Cheng, Fu-Yin; Chiang, Ming-Hsi, E-mail: mhchiang@chem.sinica.edu.tw

    2016-10-15

    Self-assembly of an enlarged angular pyridinecarboxylate ligand and cobalt(II) acetate under mild conditions afforded a three-dimensional open-framework coordination polymer, [Co{sub 2}(μ-H{sub 2}O)(pyca-43){sub 4}]{sub n} (1, Hpyca-43=(E)−3-((pyridin-4-yl)methyleneamino)benzoic acid). The molecular structure of 1 has rationalized to be a porous two-fold interpenetrated diamondoid-like network, with dinuclear Co{sub 2}(μ-H{sub 2}O)(O{sub 2}C){sub 4}N{sub 4} clusters as tetrahedral secondary building units (SBUs), possessing highly solvent accessible volume of approximately 53.0%. Least-squares fit of the magnetic susceptibility data (20–300 K) of 1 yields Curie constant C=6.15 cm{sup 3} mol{sup –1} K and Weiss constant θ=–11.6 K. Every Co{sub 2} subunit within the network is magnetically insulatedmore » to other dimers. The magnetic exchange parameter between Co(II) centers is estimated to −0.72 cm{sup –1}, suggesting a weak antiferromagnetic interaction. The g{sub av} value of 4.65 from fitting to the Lines model indicates that the decrease of the χ{sub M}T value upon cooling is dominated by depopulation of the excited Kramer's states to the effective ground singlet. In addition, the thermal stability and adsorption properties of 1 are also reported. - Graphical abstract: This work has synthesized and structurally characterized a porous two-fold interpenetrated diamondoid-like network, which possesses highly solvent accessible volume of approximately 53.0% and shows a weak antiferromagnetic interaction between the Co(II) centers.« less

  14. Spectroscopic characteristic (FT-IR, 1H, 13C NMR and UV-Vis) and theoretical calculations (MEP, DOS, HOMO-LUMO, PES, NBO analysis and keto-enol tautomerism) of new tetradentate N,N‧-bis(4-hydroxysalicylidene)-1,4-phenylenediamine ligand as chelating agent for the synthesis of dinuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Rajaei, Iman; Mirsattari, Seyed Nezamoddin

    2018-07-01

    The synthesis and characterization of a novel symmetrical Schiff base ligand N,Nʹ-bis(4-hydroxysalicylidene)-1,4-phenylenediamine (BHSP) was presented in this study and characterized by FT-IR, NMR (1H and 13C) and UV-Vis spectroscopy experimentally and theoretically. Also a series of binuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes of BHSP ligand have been synthesized by conventional sequential route in 1:1 equivalent of L:M ratio and characterized by routine physicochemical characterizations. The molecular geometry and vibrational frequencies of the BHSP in the ground state were calculated by using density functional theory (DFT) B3LYP method invoking 6-31G(d,p) and 6-31++G(d,p) basis sets. To study different conformations of the molecule, potential energy surface (PES) scan investigations were performed. The energetic behavior of the ligand compound (BHSP) in solvent media has been examined using B3LYP method with the 6-31G(d,p) and 6-31++G(d,p) basis sets by applying the polarized continuum model (PCM). In addition, DFT calculations of the BHSP ligand, molecular electrostatic potential (MEP), contour map, natural bond orbital (NBO) analysis, frontier molecular orbitals (FMO) analysis, NMR analysis and TD-DFT calculations were conducted. The calculated properties are in agreement with the available experimental data and closely related molecule BSP. The calculated results show that the optimized geometry can well reproduce the crystal structural parameters.

  15. Low-coordinate rare-earth complexes of the asymmetric 2,4-di-tert-butylphenolate ligand prepared by redox transmetallation/protolysis reactions, and their reactivity towards ring-opening polymerisation.

    PubMed

    Clark, Lawrence; Deacon, Glen B; Forsyth, Craig M; Junk, Peter C; Mountford, Philip; Townley, Josh P

    2010-08-07

    New trivalent lanthanoid aryloxide complexes have been prepared by redox transmetallation/protolysis (rtp) reactions using 2,4-di-tert-butylphenol (dbpH). Mononuclear octahedral complexes from tetrahydrofuran (thf) were of the type [Ln(dbp)(3)(thf)(3)] (Ln = La (1), Pr (2), Nd (3), Gd (4), Er (5)). The lanthanoid contraction results in the rather subtle change in stereochemistry from meridional (La, Pr, Nd, Gd) to facial (Er). An analogous reaction with neodymium in dimethoxyethane (dme), resulted in the isolation of the seven coordinate [Nd(dbp)(3)(dme)(2)] (6), and this is comparable with the thf complexes in terms of steric crowding. Dinuclear complexes of the type [Ln(2)(dbp)(6)(thf)(2)], (Ln = Nd (7), Er (8)) were obtained when 1 and 5 were recrystallised from toluene. These dimeric complexes contain two bridging and four terminal phenolates, as well as a single coordinated molecule of thf at each metal. A similar structural motif was observed for the products when the reaction was performed in diethyl ether, and in the absence of a solvent, yielding [Nd(2)(dbp)(6)(Et(2)O)(2)] (9) and [Nd(2)(dbp)(6)(dbpH)(2)] (10) respectively. Complexes 3 and 4 alone were efficient but poorly-controlled initiators for the ROP of rac-lactide, but with an excess of BnOH as a co-initiator they showed features consistent with immortal polymerisation. Use of BnNH(2) led to well-controlled, amine-initiated immortal ROP of rac-lactide, only the second report of this type of process for a group 3 or lanthanoid system.

  16. Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases.

    PubMed

    Fujita, Etsuko; Muckerman, James T; Himeda, Yuichiro

    2013-01-01

    Recent investigations of the interconversion of CO2 and formic acid using Ru, Ir and Fe complexes are summarized in this review. During the past several years, both the reaction rates and catalyst stabilities have been significantly improved. Remarkably, the interconversion (i.e., reversibility) has also been achieved under mild conditions in environmentally benign water solvent by slightly changing the pH of the aqueous solution. Only a few catalysts seem to reflect a bio-inspired design such as the use of proton responsive ligands, ligands with pendent bases or acids for a second-coordination-sphere interaction, electroresponsive ligands, and/or ligands having a hydrogen bonding function with a solvent molecule or an added reagent. The most successful of these is an iridium dinuclear complex catalyst that at least has the first three of these characteristics associated with its bridging ligand. By utilizing an acid/base equilibrium for proton removal, the ligand becomes a strong electron donor, resulting in Ir(I) character with a vacant coordination site at each metal center in slightly basic solution. Complemented by DFT calculations, kinetic studies of the rates of formate production using a related family of Ir complexes with and without such functions on the ligand reveal that the rate-determining step for the CO2 hydrogenation is likely to be H2 addition through heterolytic cleavage involving a "proton relay" through the pendent base. The dehydrogenation of formic acid, owing to the proton responsive ligands changing character under slightly acidic pH conditions, is likely to occur by a mechanism with a different rate-determining step. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Dihydroxo-bridged dimeric Cu(II) system containing sandwiched non-coordinating phenylacetate anion: Crystal structure, spectroscopic, anti-bacterial, anti-fungal and DNA-binding studies of [(phen)(H2O)Cu(OH)2Cu(H2O)(phen)]2L.6H2O: (HL = phenylacetic acid; phen = 1,10-phenanthroline)

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Shah, Naseer Ali

    2017-09-01

    This paper reports the synthesis, X-ray crystal structure, DNA-binding, antibacterial and antifungal studies of a rare dihydroxo-bridged dinuclear copper(II) complex including 1,10-phenanthroline (Phen) ligands and phenylacetate (L) anions, [Cu2(Phen)2(OH)2(H2O)2].2L.6H2O. Structural data revealed distorted square-pyramidal geometry for each copper(II) atom with the basal plane formed by the two nitrogen atoms of the phenantroline ligand and the oxygen atoms of two bridging hydroxyl groups. The apical positions are filled by the oxygen atom from a water molecule. This forms a centrosymmetric cationic dimer where the uncoordinated phenylacetate ligands serve to balance the electrical charge. The dimers interact by means of hydrogen bonds aided by the coordinated as well as uncoordinated water molecules and phenyl-acetate moieties in the crystal lattice. The binding ability of the complex with salmon sperm DNA was determined using cyclic voltammetry and absorption spectroscopy yielding binding constants 2.426 × 104 M-1 and 1.399 × 104 M-1, respectively. The complex was screened against two Gram-positive (Micrococcus luteus and Bacillus subtilis) and one Gram-negative (Escherichia coli) bacterial strains exhibiting significant activity against all the three strains. The complex exhibited significant, moderate and no activity against fungal strains Mucor piriformis, Helminthosporium solani and Aspergillus Niger, respectively. These preliminary tests indicate the competence of the complex towards the development of a potent biological drug.

  18. Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure

    NASA Astrophysics Data System (ADS)

    Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.

    2014-08-01

    Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver hfodd that is based on the harmonic-oscillator basis expansion. Several examples are considered, including the self-consistent HFB problem for spin-polarized trapped cold fermions and the Skyrme-Hartree-Fock (+BCS) problem for triaxial deformed nuclei. Conclusions: The new madness-hfb framework has many attractive features when applied to nuclear and atomic problems involving many-particle superfluid systems. Of particular interest are weakly bound nuclear configurations close to particle drip lines, strongly elongated and dinuclear configurations such as those present in fission and heavy-ion fusion, and exotic pasta phases that appear in neutron star crust.

  19. Carbon dioxide binding at a Ni/Fe center: synthesis and characterization of Ni(η1-CO2-κC) and Ni-μ-CO2-κC:κ2 O,O′-Fe† †Electronic supplementary information (ESI) available: Characterization data for 3 and 5. CCDC 1492006 and 1492007. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc03450k Click here for additional data file. Click here for additional data file.

    PubMed Central

    Yoo, Changho

    2017-01-01

    The degree of CO2 activation can be tuned by incorporating a distinct electronic coordination environment at the nickel center. A mononuclear nickel carboxylate species (Ni–CO2, 3) and a dinuclear nickel–iron carboxylate species (Ni–CO2–Fe, 5) were prepared. The structure of 3 reveals a rare η1-κC binding mode of CO2, while that of 5 shows bridging CO2 binding (μ2-κC:κ2 O,O′) between the nickel and iron, presented as the first example of a nickel-μ-CO2-iron species. The structural analyses of 3 and 5 based on XRD and DFT data reveal a higher degree of CO2 activation in 5, imparted by the additional interaction with an iron ion. PMID:28616135

  20. Pyrrolo-dC Metal-Mediated Base Pairs in the Reverse Watson-Crick Double Helix: Enhanced Stability of Parallel DNA and Impact of 6-Pyridinyl Residues on Fluorescence and Silver-Ion Binding.

    PubMed

    Yang, Haozhe; Mei, Hui; Seela, Frank

    2015-07-06

    Reverse Watson-Crick DNA with parallel-strand orientation (ps DNA) has been constructed. Pyrrolo-dC (PyrdC) nucleosides with phenyl and pyridinyl residues linked to the 6 position of the pyrrolo[2,3-d]pyrimidine base have been incorporated in 12- and 25-mer oligonucleotide duplexes and utilized as silver-ion binding sites. Thermal-stability studies on the parallel DNA strands demonstrated extremely strong silver-ion binding and strongly enhanced duplex stability. Stoichiometric UV and fluorescence titration experiments verified that a single (2py) PyrdC-(2py) PyrdC pair captures two silver ions in ps DNA. A structure for the PyrdC silver-ion base pair that aligns 7-deazapurine bases head-to-tail instead of head-to-head, as suggested for canonical DNA, is proposed. The silver DNA double helix represents the first example of a ps DNA structure built up of bidentate and tridentate reverse Watson-Crick base pairs stabilized by a dinuclear silver-mediated PyrdC pair. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Pincer-CNC mononuclear, dinuclear and heterodinuclear Au(III) and Pt(II) complexes supported by mono- and poly-N-heterocyclic carbenes: synthesis and photophysical properties.

    PubMed

    Gonell, S; Poyatos, M; Peris, E

    2016-04-07

    A family of cyclometallated Au(iii) and Pt(ii) complexes containing a CNC-pincer ligand (CNC = 2,6-diphenylpyridine) supported by pyrene-based mono- or bis-NHC ligands have been synthesized and characterized, together with the preparation of a Pt-Au hetero-dimetallic complex based on a Y-shaped tris-NHC ligand. The photophysical properties of all the new species and of two related Ru(ii)-arene complexes were studied and compared. Whereas the pyrene-based complexes only exhibit emission in solution, those containing the Y-shaped tris-NHC ligand are only luminescent when dispersed in poly(methyl methacrylate) (PMMA). In particular, the pyrene-based complexes were found to be emissive in the range of 373-440 nm, with quantum yields ranging from 3.1 to 6.3%, and their emission spectra were found to be almost superimposable, pointing to the fluorescent pyrene-centered nature of the emission. This observation suggests that the emission properties of the pyrene fragment may be combined with some of the numerous applications of NHCs as supporting ligands allowing, for instance, the design of biological luminescent agents.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ijam, M.J.; Qatami, S.Y.A.; Arif, S.F.

    For several decades removal of aromatics from crude oil fractions (e.g. kerosene and lubricating oils) has been practiced in oil refining to produce fuels and lubricants of lower aromatic content and hence of improved quality. These aromatics are suitable raw materials for the manufacture of aromatic solvents, aromatic process oils, high octane gasoline, and as basic materials for making detergents, perfumes and dyes. Detailed study of molecular structure and substituent effects on the retention characteristics of aromatic hydrocarbons have been reported on alumina, silica and various chemically bonded silicas containing -C/sub 18/, -NH/sub 2/, -R(NH)/sub 2//sub 2/, -CN, RCN, RONmore » and phenyl-mercuric acetate for the compound class (ring-numbered) high performance liquid chromatography (2, 3, 8, 12, 24, 28). Previous work in this laboratory has demonstrated that individual normal and branched aliphatic hydrocarbons from kerosene and light gas oil were isolated and identified. This paper describes the extension of this work to cover the separation and identification of aromatic ring classes (mono-, di-, and tri-aromatics) in the gas oil fraction of Kuwait petroleum. Characterization and identification of the major components in the dinuclear aromatics is our primary objective in this study.« less

  3. Assembly of Multi-Phthalocyanines on a Porphyrin Template by Fourfold Rotaxane Formation.

    PubMed

    Yamada, Yasuyuki; Kato, Tatsuhisa; Tanaka, Kentaro

    2016-08-22

    A stacked assembly composed of a porphyrin and two phthalocyanines was prepared through fourfold rotaxane formation. Two phthalocyanine molecules, bearing four 24-crown-8 units, were assembled onto a porphyrin template incorporating four sidechains with two dialkylammonium ions each through pseudorotaxane formation between crown ether units and ammonium ions. The Staudinger phosphite reaction, as the stoppering reaction, resulted in the formation of the stacked heterotrimer composed of a porphyrin and two phthalocyanines connected through a fourfold rotaxane structure. UV/Vis spectroscopic and electrochemical studies of the heterotrimer indicated that there is a significant electronic interaction between the two phthalocyanine units due to the close stacking. The electrochemical oxidation process of the stacked heterotrimer was studied by cyclic voltammetry and spectroelectrochemistry. Electron paramagnetic resonance (EPR) spectroscopy of a dinuclear Cu(II) complex, in which two Cu(II) phthalocyanines were assembled on a metal-free porphyrin template, revealed that two Cu(II) phthalocyanines were located within the stacking distance, which resulted in an antiferromagnetic interaction between the two S=1/2 spins in the ground state of the Cu(2+) ions in the heterotrimer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Selective hydrolysis of phosphate monoester by a supramolecular phosphatase formed by the self-assembly of a bis(Zn(2+)-cyclen) complex, cyanuric acid, and copper in an aqueous solution (cyclen = 1,4,7,10-tetraazacyclododecane).

    PubMed

    Zulkefeli, Mohd; Suzuki, Asami; Shiro, Motoo; Hisamatsu, Yosuke; Kimura, Eiichi; Aoki, Shin

    2011-10-17

    In Nature, organized nanoscale structures such as proteins and enzymes are formed in aqueous media via intermolecular interactions between multicomponents. Supramolecular and self-assembling strategies provide versatile methods for the construction of artificial chemical architectures for controlling reaction rates and the specificities of chemical reactions, but most are designed in hydrophobic environments. The preparation of artificial catalysts that have potential in aqueous media mimicking natural enzymes such as hydrolases remains a great challenge in the fields of supramolecular chemistry. Herein, we describe that a dimeric Zn(2+) complex having a 2,2'-bipyridyl linker, cyanuric acid, and a Cu(2+) ion automatically assembles in an aqueous solution to form a 4:4:4 complex, which is stabilized by metal-ligand coordination bonds, π-π-stacking interactions, and hydrogen bonding and contains μ-Cu(2)(OH)(2) cores analogous to the catalytic centers of phosphatase, a dinuclear metalloenzyme. The 4:4:4 complex selectively accelerates the hydrolysis of a phosphate monoester, mono(4-nitrophenyl)phosphate, at neutral pH.

  5. Humidity-controlled rectification switching in ruthenium-complex molecular junctions

    NASA Astrophysics Data System (ADS)

    Atesci, Huseyin; Kaliginedi, Veerabhadrarao; Celis Gil, Jose A.; Ozawa, Hiroaki; Thijssen, Joseph M.; Broekmann, Peter; Haga, Masa-aki; van der Molen, Sense Jan

    2018-02-01

    Although molecular rectifiers were proposed over four decades ago1,2, until recently reported rectification ratios (RR) were rather moderate2-11 (RR 101). This ceiling was convincingly broken using a eutectic GaIn top contact12 to probe molecular monolayers of coupled ferrocene groups (RR 105), as well as using scanning tunnelling microscopy-break junctions13-16 and mechanically controlled break junctions17 to probe single molecules (RR 102-103). Here, we demonstrate a device based on a molecular monolayer in which the RR can be switched by more than three orders of magnitude (between RR 100 and RR ≥ 103) in response to humidity. As the relative humidity is toggled between 5% and 60%, the current-voltage (I-V) characteristics of a monolayer of di-nuclear Ru-complex molecules reversibly change from symmetric to strongly asymmetric (diode-like). Key to this behaviour is the presence of two localized molecular orbitals in series, which are nearly degenerate in dry circumstances but become misaligned under high humidity conditions, due to the displacement of counter ions (PF6-). This asymmetric gating of the two relevant localized molecular orbital levels results in humidity-controlled diode-like behaviour.

  6. Efficient Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation: Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation

    DOE PAGES

    Xu, Shaoan; Onishi, Naoya; Tsurusaki, Akihiro; ...

    2015-11-09

    Here, we report newly developed iridium catalysts with electron-donating imidazoline moieties as ligands for the hydrogenation of CO 2 to formate in aqueous solution. Interestingly, these new complexes promote CO 2 hydrogenation much more effectively than their imidazole analogues and exhibit a turnover frequency (TOF) of 1290 h –1 for the bisimidazoline complex compared to that of 20 h –1 for the bisimidazole complex at 1 MPa and 50 °C. Additionally, the hydrogenation proceeds smoothly even under atmospheric pressure at room temperature. The TOF of 43 h –1 for the bisimidazoline complex is comparable to that of a dinuclear complexmore » (70 h –1, highest TOF reported) [Nat. Chem. 2012, 4, 383], which incorporates proton-responsive ligands with pendent-OH groups in the second coordination sphere. The catalytic activity of the complex with an N-methylated imidazoline moiety is much the same as that of the corresponding pyridylimidazoline analogue. Our result and the UV/Vis titrations of the imidazoline complexes indicate that the high activity is not attributable to the deprotonation of NH on the imidazoline under the reaction conditions.« less

  7. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.

  8. Polymer-Supported Optically Active fac(S)-Tris(thiotato)rhodium(III) Complex for Sulfur-Bridging Reaction With Precious Metal Ions.

    PubMed

    Aizawa, Sen-Ichi; Tsubosaka, Soshi

    2016-01-01

    The optically active mixed-ligand fac(S)-tris(thiolato)rhodium(III) complexes, ΔL -fac(S)-[Rh(aet)2 (L-cys-N,S)](-) (aet = 2-aminoethanethiolate, L-cys = L-cysteinate) () and ΔLL -fac(S)-[Rh(aet)(L-cys-N,S)2 ](2-) were newly prepared by the equatorial preference of the carboxyl group in the coordinated L-cys ligand. The amide formation reaction of with 1,10-diaminodecane and polyallylamine gave the diamine-bridged dinuclear Rh(III) complex and the single-chain polymer-supported Rh(III) complex with retention of the ΔL configuration of , respectively. These Rh(III) complexes reacted with Co(III) or Co(II) to give the linear-type trinuclear structure with the S-bridged Co(III) center and the two Δ-Rh(III) terminal moieties. The polymer-supported Rh(III) complex was applied not only to the CD spectropolarimetric detection and determination of a trace of precious metal ions such as Au(III), Pt(II), and Pd(II) but also to concentration and extraction of these metal ions into the solid polymer phase. Chirality 28:85-91, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  9. Preparation and reactivity of the heterobimetallic ReIr face-shared bioctahedral compounds Cp*Ir(mu-Cl)(3)Re(CO)(3) and Cp*Ir(mu-SC6H4Me-4)(3)Re(CO)(3): X-ray diffraction structures and redox behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoping; Hammons, Casey; Richmond, Michael G.

    2009-01-01

    Thermolysis of the dinuclear compound [Cp*IrCl2](2) (1) with ClRe(CO)(5) (2) leads to the formation of the confacial bioctahedral compound Cp*Ir(mu-Cl)(3)Re(CO)(3) (3) in high yield. Whereas the substitution of the chloride ligands in 3 is observed on treatment with excess p-methylbenzenethiol to furnish the sulfido-bridged compound Cp*Ir(mu-SC6H4Me-4)(3)Re(CO)(3) (4), 3 undergoes fragmentation upon reaction with tertiary phosphines [PPh3 and P(OMe)(3)] to furnish the mononuclear compounds CP*IrCl2P and fac-ClRe-(CO3)P-2. Both 3 and 4 have been isolated and fully characterized in solution by IR and H-1 NMR spectroscopies, and their solid-state structures have been established by X-ray crystallography. The redox properties of 3 andmore » 4 have been explored by cyclic voltammetry, and the results are discussed relative to extended Huckel MO calculations.« less

  10. Redesigning the blue copper azurin into a redox-active mononuclear nonheme iron protein: preparation and study of Fe(II)-M121E azurin.

    PubMed

    Liu, Jing; Meier, Katlyn K; Tian, Shiliang; Zhang, Jun-Long; Guo, Hongchao; Schulz, Charles E; Robinson, Howard; Nilges, Mark J; Münck, Eckard; Lu, Yi

    2014-09-03

    Much progress has been made in designing heme and dinuclear nonheme iron enzymes. In contrast, engineering mononuclear nonheme iron enzymes is lagging, even though these enzymes belong to a large class that catalyzes quite diverse reactions. Herein we report spectroscopic and X-ray crystallographic studies of Fe(II)-M121E azurin (Az), by replacing the axial Met121 and Cu(II) in wild-type azurin (wtAz) with Glu and Fe(II), respectively. In contrast to the redox inactive Fe(II)-wtAz, the Fe(II)-M121EAz mutant can be readily oxidized by Na2IrCl6, and interestingly, the protein exhibits superoxide scavenging activity. Mössbauer and EPR spectroscopies, along with X-ray structural comparisons, revealed similarities and differences between Fe(II)-M121EAz, Fe(II)-wtAz, and superoxide reductase (SOR) and allowed design of the second generation mutant, Fe(II)-M121EM44KAz, that exhibits increased superoxide scavenging activity by 2 orders of magnitude. This finding demonstrates the importance of noncovalent secondary coordination sphere interactions in fine-tuning enzymatic activity.

  11. Synthesis and characterization of the ((CO)/sub 4/MoS/sub 2/MS/sub 2/)/sup 2 -/ and ((CO)/sub 4/MoS/sub 2/MS/sub 2/Mo(CO)/sub 4/)/sup 2 -/ ions (M = Mo, W): species containing group VI (6) metals in widely separated formal oxidation states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenhein, L.D.; McDonald, J.W.

    1987-10-07

    Dinuclear and trinuclear sulfide-bridged complexes of the types (Et/sub 4/N)/sub 2/(MS/sub 4/(Mo(CO)/sub 4/)) and (Et/sub 4/N)/sub 2/(MS/sub 4/(Mo(CO)/sub 4/)/sub 2/) were prepared by the reaction of one or two equivalents of Mo(CO)/sub 4/(C/sub 7/H/sub 8/) (C/sub 7/H/sub 8/ = norbornadiene) with (Et/sub 4/N)/sub 2/(MS/sub 4/) (M = Mo, W) in methyl alcohol. Elemental analyses were consistent with the proposed formulae. Infrared spectra of all four compounds contain strong bands in the carbonyl region and low-energy bands characteristic of terminal and bridging M-S vibrations in linear, polynuclear, and sulfido-bridged species. Electrochemical experimental results support the hypothesis that the di- and trinuclearmore » species contain both M(IV) (M = Mo, W) and Mo(0) oxidation states in the same complex. 33 references, 2 tables.« less

  12. Identification on Membrane and Characterization of Phosphoproteins Using an Alkoxide-Bridged Dinuclear Metal Complex as a Phosphate-Binding Tag Molecule

    PubMed Central

    Nakanishi, Tsuyoshi; Ando, Eiji; Furuta, Masaru; Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru; Tsunasawa, Susumu; Nishimura, Osamu

    2007-01-01

    We have developed a method for on-membrane direct identification of phosphoproteins, which are detected by a phosphate-binding tag (Phos-tag) that has an affinity to phosphate groups with a chelated Zn2+ ion. This rapid profiling approach for phosphoproteins combines chemical inkjet technology for microdispensing of reagents onto a tiny region of target proteins with mass spectrometry for on-membrane digested peptides. Using this method, we analyzed human epidermoid carcinoma cell lysates of A-431 cells stimulated with epidermal growth factor, and identified six proteins with intense signals upon affinity staining with the phosphate-binding tag. It was already known that these proteins are phosphorylated, and our new approach proved to be effective at rapid profiling of phosphoproteins. Furthermore, we tried to determine their phosphorylation sites by MS/MS analysis after in-gel digestion of the corresponding spots on the 2DE gel to the rapid on-membrane identifications. As one example of use of information gained from the rapid-profiling approach, we successfully characterized a phosphorylation site at Ser-113 on prostaglandin E synthase 3. PMID:18166671

  13. Models for B12-conjugated radiopharmaceuticals. Cobaloxime binding to new fac-[Re(CO)3(Me2bipyridine)(amidine)]BF4 complexes having an exposed pyridyl nitrogen.

    PubMed

    Lewis, Nerissa A; Marzilli, Patricia A; Fronczek, Frank R; Marzilli, Luigi G

    2014-10-20

    New mononuclear amidine complexes, fac-[Re(CO)3(Me2bipy)(HNC(CH3)(pyppz))]BF4 [(4,4'-Me2bipy (1), 5,5'-Me2bipy (2), and 6,6'-Me2bipy (3)] (bipy = 2,2'-bipyridine), were synthesized by treating the parent fac-[Re(I)(CO)3(Me2bipy)(CH3CN)]BF4 complex with the C2-symmetrical amine 1-(4-pyridyl)piperazine (pyppzH). The axial amidine ligand has an exposed, highly basic pyridyl nitrogen. The reaction of complexes 1-3 with a B12 model, (py)Co(DH)2Cl (DH = monoanion of dimethylglyoxime), in CH2Cl2 yielded the respective dinuclear complexes, namely, fac-[Re(CO)3(Me2bipy)(μ-(HNC(CH3)(pyppz)))Co(DH)2Cl]BF4 [(4,4'-Me2bipy (4), 5,5'-Me2bipy (5), and 6,6'-Me2bipy (6)]. (1)H NMR spectroscopic analysis of all compounds and single-crystal X-ray crystallographic data for 2, 3, 5, and 6 established that the amidine had only the E configuration in both the solid and solution states and that the pyridyl group is bound to Co in 4-6. Comparison of the NMR spectra of 1-3 with spectra of 4-6 reveals an unusually large "wrong-way" upfield shift for the pyridyl H2/6 signal for 4-6. The wrong-way H2/6 shift of (4-Xpy)Co(DH)2Cl (4-Xpy = 4-substituted pyridine) complexes increased with increasing basicity of the 4-Xpy derivative, a finding attributed to the influence of the magnetic anisotropy of the cobalt center on the shifts of the (1)H NMR signals of the pyridyl protons closest to Co. Our method of employing a coordinate bond for conjugating the fac-[Re(I)(CO)3] core to a vitamin B12 model could be extended to natural B12 derivatives. Because B12 compounds are known to accumulate in cancer cells, such an approach is a very attractive method for the development of (99m)Tc and (186/188)Re radiopharmaceuticals for targeted tumor imaging and therapy.

  14. Crystal Structure and Magnetic Behavior of Two New Dinuclear Carbonato-Bridged Copper(II) Compounds. Superexchange Pathway for the Different Coordination Modes of the Carbonato Bridge in Polynuclear Copper(II) Compounds.

    PubMed

    Escuer, Albert; Mautner, Franz A.; Peñalba, Evaristo; Vicente, Ramon

    1998-08-24

    Four new &mgr;-CO(3)(2-) copper(II) complexes with different coordination modes for the carbonato bridge have been obtained by fixation of atmospheric CO(2): {(&mgr;(3)-CO(3))[Cu(3)(ClO(4))(3)(Et(3)dien)(3)]}(ClO(4)) (1), Et(3)dien = N,N',N"-triethylbis(2-aminoethane)amine; {(&mgr;-CO(3))[Cu(2)(H(2)O)(Et(4)dien)(2)]}(ClO(4))(2).H(2)O (2), Et(4)dien = N,N,N",N"-tetraethyl-bis(2-aminoethane)amine; {(&mgr;-CO(3))[Cu(2)(H(2)O)(2)(EtMe(4)dien)(2)]} (ClO(4))(2).2H(2)O (3), EtMe(4)dien = N'-ethyl-N,N,N",N"-tetramethylbis(2-aminoethane)amine; and {(&mgr;-CO(3))[Cu(2)(H(2)O)(Me(5)dien)(2)]}(ClO(4))(2).H(2)O (4), Me(5)dien = N,N,N',N",N"-pentamethylbis(2-aminoethane)amine. The crystal structures have been solved for 2, monoclinic system, space group P2(1)/n, formula [C(25)H(62)Cl(2)Cu(2)N(6)O(13)] with a = 12.763(6) Å, b = 25.125(8) Å, c = 13.261(4) Å, beta = 111.85(3) degrees, Z = 4, and for 3, triclinic system, space group P&onemacr;, formula [C(21)H(58)Cl(2)Cu(2)N(6)O(15)] with a = 8.412(3) Å, b = 14.667(4) Å, c = 16.555(5) Å, alpha = 99.66(2) degrees, beta = 102.14(2) degrees, gamma = 104.72(2) degrees, Z = 2. Susceptibility measurements show ferromagnetic behavior (J = +6.7(6) cm(-)(1)) for the trinuclear compound 1 whereas 2-4 are antiferromagnetically coupled with J = -17.8(8), -125.5(9), and -21.2(3) cm(-)(1) respectively. Certain synthetic aspects that may be related to the nuclearity of the copper(II) &mgr;-CO(3)(2-) compounds and the superexchange pathway for the different coordination modes of the carbonato bridge are discussed.

  15. Actinides and Life's Origins.

    PubMed

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus release, and possible abiotic production of sugars, amino acids, activated phosphorus, prototypical organometallic enzymes, and oligomer catalysts at a single putative beach site.

  16. Multiple Condensation Reactions Involving Pt(II) /Pd(II) -OH2 , Pt-NH3 , and Cytosine-NH2 Groups: New Twists in Cisplatin-Nucleobase Chemistry.

    PubMed

    Yin-Bandur, Lu; Sanz Miguel, Pablo J; Rodríguez-Santiago, Luis; Sodupe, Mariona; Berghaus, Melanie; Lippert, Bernhard

    2016-09-12

    The coordination chemistry of the antitumor agent cisplatin and related complexes with DNA and its constituents, that is, the nucleobases, appears to be dominated by 1:1 and 1:2 adducts of the types cis-[Pta2 (nucleobase)X] and cis-[Pta2 (nucleobase)2 ] (a=NH3 or amine; a2 =diamine or diimine; X=Cl, OH or OH2 ). Here, we have studied the interactions of the putative 1:1 adducts cis-[Pta2 (1-MeC-N3)(OH2 )](2+) (with a=NH3 , a2 =2,2'-bpy (2,2'-bipyridine), 1-MeC=model nucleobase 1-methylcytosine) with additional cis-[Pt(NH3 )2 (OH2 )2 ](2+) or its kinetically superior analogues [Pd(en)(OH2 )2 ](2+) (en=ethylenediamine) and [Pd(2,2'-bpy)(OH2 )2 ](2+) . Depending upon the conditions applied different compounds of different nuclearity are formed. Without exception they represent condensation products of the components, containing μ-1-MeC-H , μ-OH(-) , as well as μ-NH2 (-) bridges. In the presence of Ag(+) ions, the isolated products in several cases display additionally Pt→Ag dative bonds. On the basis of the cytosine-containing structures established by X-ray crystallography, it is proposed that any of the feasible initial 1:1 nucleobase adducts of cisplatin could form dinuclear Pt complexes upon reaction with additional hydrolyzed cisplatin, thereby generating nucleobase adducts other than the presently established ones. Two findings appear to be of particular significance: First, hydrolyzed cisplatin can have a moderately accelerating effect on the formation of a secondary nucleobase product. Second, NH3 ligands of the cisplatin moiety can be converted into bridging amido ligands following condensation with the diaqua species of cisplatin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Actinides and Life's Origins

    NASA Astrophysics Data System (ADS)

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uranium- and thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3rd by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus release, and possible abiotic production of sugars, amino acids, activated phosphorus, prototypical organometallic enzymes, and oligomer catalysts at a single putative beach site.

  18. Two-dimensional 3d-4f heterometallic coordination polymers: syntheses, crystal structures, and magnetic properties of six new Co(II)-Ln(III) compounds.

    PubMed

    Díaz-Gallifa, Pau; Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2014-06-16

    Six new heterometallic cobalt(II)-lanthanide(III) complexes of formulas [Ln(bta)(H2O)2]2[Co(H2O)6]·10H2O [Ln = Nd(III) (1) and Eu(III) (2)] and [Ln2Co(bta)2(H2O)8]n·6nH2O [Ln = Eu(III) (3), Sm(III) (4), Gd(III) (5), and Tb(III) (6)] (H4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized via single-crystal X-ray diffraction. 1 and 2 are isostructural compounds with a structure composed of anionic layers of [Ln(bta)(H2O)2]n(n-) sandwiching mononuclear [Co(H2O)6](2+) cations plus crystallization water molecules, which are interlinked by electrostatic forces and hydrogen bonds, leading to a supramolecular three-dimensional network. 3-6 are also isostructural compounds, and their structure consists of neutral layers of formula [Ln2Co(bta)2(H2O)8]n and crystallization water molecules, which are connected through hydrogen bonds to afford a supramolecular three-dimensional network. Heterometallic chains formed by the regular alternation of two nine-coordinate lanthanide(III) polyhedra [Ln(III)O9] and one compressed cobalt(II) octahedron [Co(II)O6] along the crystallographic c-axis are cross-linked by bta ligands within each layer of 3-6. Magnetic susceptibility measurements on polycrystalline samples for 3-6 have been carried out in the temperature range of 2.0-300 K. The magnetic behavior of these types of Ln(III)-Co(II) complexes, which have been modeled by using matrix dagonalization techniques, reveals the lack of magnetic coupling for 3 and 4, and the occurrence of weak antiferromagnetic interactions within the Gd(III)-Gd(III) (5) and Tb(III)-Tb(III) (6) dinuclear units through the exchange pathway provided by the double oxo(carboxylate) and double syn-syn carboxylate bridges.

  19. Dinuclear RuII(bipy)2 Derivatives: Structural, Biological, and in Vivo Zebrafish Toxicity Evaluation.

    PubMed

    Lenis-Rojas, Oscar A; Roma-Rodrigues, Catarina; Fernandes, Alexandra R; Marques, Fernanda; Pérez-Fernández, David; Guerra-Varela, Jorge; Sánchez, Laura; Vázquez-García, Digna; López-Torres, Margarita; Fernández, Alberto; Fernández, Jesús J

    2017-06-19

    Ruthenium-based drugs exhibit interesting properties as potential anticancer pharmaceuticals. We herein present the synthesis and characterization of a new family of ruthenium complexes with formulas [{Ru(bipy) 2 } 2 (μ-L)][CF 3 SO 3 ] 4 (L = bptz, 1a) and [{Ru(bipy) 2 } 2 (μ-L)][CF 3 SO 3 ] 2 (L = arphos, 2a; dppb, 3a; dppf, 4a), which were synthesized from the Ru(II) precursor compound cis-Ru(bipy) 2 Cl 2 . The complexes were characterized by elemental analysis, mass spectrometry, 1 H and 31 P{ 1 H} NMR, IR spectroscopy, and conductivity measurements. The molecular structures for three Ru(II) compounds were determined by single-crystal X-ray diffraction. The newly developed compounds interact with CT-DNA by intercalation, in particular, 2a, 3a, and 4a, which also seemed to induce some extent of DNA degradation. This effect seemed to be related with the formation of reactive oxygen species. The cytotoxic activity was evaluated against A2780, MCF7, and MDAMB231 human tumor cells. Compounds 2a and 4a were the most cytotoxic with activity compared to cisplatin (∼2 μM, 72 h) in the A2780 cisplatin sensitive cells. All the compounds induced A2780 cell death by apoptosis, however, to a lesser extent for compounds 4a and 2a. For these compounds, the mechanism of cell death in addition to apoptosis seemed to involve autophagy. In vivo toxicity was evaluated using the zebrafish embryo model. LC 50 estimates varied from 5.397 (3a) to 39.404 (1a) mg/L. Considering the in vivo toxicity in zebrafish embryos and the in vitro cytotoxicity in cancer cells, compound 1a seems to be the safest having no effect on dechirionation and presenting a good antiproliferative activity against ovarian carcinoma cells.

  20. Structural, Spectroscopic, and Electrochemical Properties of Nonheme Fe(II)-Hydroquinonate Complexes: Synthetic Models of Hydroquinone Dioxygenases

    PubMed Central

    Baum, Amanda E.; Park, Heaweon; Wang, Denan; Lindeman, Sergey V.; Fiedler, Adam T.

    2012-01-01

    Using the tris(3,5-diphenylpyrazol-1-yl)borate (Ph2Tp) supporting ligand, a series of mono- and dinuclear ferrous complexes containing hydroquinonate (HQate) ligands have been prepared and structurally characterized with X-ray crystallography. The monoiron(II) complexes serve as faithful mimics of the substrate-bound form of hydroquinone dioxygenases (HQDOs) – a family of nonheme Fe enzymes that catalyze the oxidative cleavage of 1,4-dihydroxybenzene units. Reflecting the variety of HQDO substrates, the synthetic complexes feature both mono- and bidentate HQate ligands. The bidentate HQates cleanly provide five-coordinate, high-spin Fe(II) complexes with the general formula [Fe(Ph2Tp)(HLX)] (1X), where HLX is a HQate(1-) ligand substituted at the 2-position with a benzimidazolyl (1A), acetyl (1B and 1C), or methoxy (1D) group. In contrast, the monodentate ligand 2,6-dimethylhydroquinone (H2LF) exhibited a greater tendency to bridge between two Fe(II) centers, resulting in formation of [Fe2(Ph2Tp)2(μ-LF)(MeCN)] [2F(MeCN)]. However, addition of one equivalent of “free” pyrazole (Ph2pz) ligand provided the mononuclear complex, [Fe(Ph2Tp)(HLF)(Ph2pz)] [1F(Ph2pz)], which is stabilized by an intramolecular hydrogen bond between the HLF and Ph2pz donors. Complex 1F(Ph2pz) represents the first crystallographically-characterized example of a monoiron complex bound to an untethered HQate ligand. The geometric and electronic structures of the Fe/HQate complexes were further probed with spectroscopic (UV-vis absorption, 1H NMR) and electrochemical methods. Cyclic voltammograms of complexes in the 1X series revealed an Fe-based oxidation between 0 and −300 mV (vs. Fc+/0), in addition to irreversible oxidation(s) of the HQate ligand at higher potentials. The one-electron oxidized species (1Xox) were examined with UV-vis absorption and electron paramagnetic resonance (EPR) spectroscopies. PMID:22930005

  1. Coordination of N,O-donor appended Schiff base ligand (H2L1) towards Zinc(II) in presence of pseudohalides: Syntheses, crystal structures, photoluminescence, antimicrobial activities and Hirshfeld surfaces

    NASA Astrophysics Data System (ADS)

    Majumdar, Dhrubajyoti; Biswas, Jayanta Kumar; Mondal, Monojit; Surendra Babu, M. S.; Metre, Ramesh K.; Das, Sourav; Bankura, Kalipada; Mishra, Dipankar

    2018-03-01

    A series of dinuclear Zn(II) complexes [Zn2 (L1) (CH3OH)2(SCN) (OAc)](1), [Zn2 (L1) (CH3OH)2(N3)2](2) and [Zn2 (L1) (Cl)2(CH3OH)]·CH3OH (3) have been synthesized by the reaction of compartmental Schiff base ligand (H2L1) [N,N‧-Bis(3-ethoxysalicylidenimino)-1,3-diaminopropane] with Zn(OAc)2·2H2O in presence of coligand like KSCN, NaN3 and NaCl respectively. X-ray diffraction analysis revealed that all the complexes are neutral and possess a 4-membered Zn2 (μ2-O)2 ring fastened by the unified coordination action of a doubly deprotonated ligand. In addition, solid state structure of the complexes display extensive intermolecular interaction which has been supported theoretically by Hirshfeld surface analysis with 2D Fingerprint plots. The synthesized Zn(II) metal complexes observed enhancement of luminescence emission compared to the parent Schiff base due to emanating ligand based intraligand (π→π∗) fluorescence. Additionally, Zn(II) metal complexes exhibited considerable antimicrobial potency against some important Gram +ve and Gram -ve bacteria.

  2. Complexes of a dianionic bis(diphosphinomethanide) with lithium, sodium, potassium and zirconium. Effect of substitution on the Schlenk dimerisation of vinylidene phosphines.

    PubMed

    Izod, Keith; McFarlane, William; Tyson, Brent V; Clegg, William; Harrington, Ross W

    2004-12-07

    The vinylidene phosphine (Pr(n)(2)P)(2)C=CH(2) (1) undergoes Schlenk dimerisation on treatment with an excess of any of the alkali metals Li, Na or K to give the butane-1,4-diide complexes [(L)M{(Pr(n)(2)P)(2)CCH(2)}](2)[(L)M =(THF)(2)Li (6), (THF)(3)Na (7b), (DME)(2)K (8b)], after recrystallisation. Whereas the reaction between the analogous phenyl derivative (Ph(2)P)(2)C=CH(2) and K results in cleavage of a P-C bond, 1 reacts smoothly with K to give 8, with no evidence for P-C cleavage. Compound 6 is an excellent ligand transfer reagent: metathesis reactions between either 6 or its phenyl analogue [(THF)(2)Li{(Ph(2)P)(2)CCH(2)}](2) (2) and two equivalents of Cp(2)ZrCl(2) in THF give the corresponding dinuclear zirconocene derivatives [Cp(2)Zr(Cl){(R(2)P)(2)CCH(2)}](2) in good yields [R = Ph (11), Pr(n)(12)]. Compounds 6, 7b, 8b, 11 and 12 have been characterised by multi-element NMR spectroscopy and, where possible, by elemental analysis; compounds 6, 7b, 11 and 12 have additionally been characterised by X-ray crystallography.

  3. Synthesis of Unsupported d(1)-d(x) Oxido-Bridged Heterobimetallic Complexes Containing V(IV): A New Direction for Metal-to-Metal Charge Transfer.

    PubMed

    Wu, Xinyuan; Huang, Tao; Lekich, Travis T; Sommer, Roger D; Weare, Walter W

    2015-06-01

    Heterobimetallic complexes composed only of first-row transition metals [(TMTAA)V(IV)═O→M(II)Py5Me2](OTf)2 (TMTAA = 7,16-dihydro-6,8,15,17-tetramethyldibenzo[b,i][1,4,8,11]tetraazacyclotetradecine; Py5Me2 = 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine; M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II); OTf = trifluoromethanesulfonate) have been synthesized through a dative interaction between a terminal oxido and M(II) metal centers. This is the first series of V(IV)═O→M(II) heterobimetallic complexes containing an unsupported oxido bridge. Among these five complexes, only V(IV)═O→Fe(II) (3b) has a clear new absorption band upon formation of the dinuclear species (502 nm, ε = 1700 M(-1) cm(-1)). This feature is assigned to a metal-to-metal charge transfer (MMCT) transition from V(IV) to Fe(II), which forms a V(V)-O-Fe(I) excited state. This assignment is supported by electrochemical data, electronic absorption profiles, and resonance Raman spectroscopy and represents the first report of visible-light induced MMCT in a heterobimetallic oxido-bridged molecule where the electron originates on a d(1) metal center.

  4. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes

    NASA Astrophysics Data System (ADS)

    Chang, Hui-Qin; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Xu, Zhou-Qing; Chen, Ru-Hua; Ma, Tie-Liang; Wang, Yuan; Wu, Wei-Na

    2016-02-01

    Three nickel(II) complexes, [Ni2(L1)2(tren)2(H2O)](ClO4)3 (1), [NiL2(tren)2](ClO4)·2.5H2O (2), [NiL2(tren)2]I·1.5H2O·CH3OH (3) based on amino acid reduced Schiff ligands are synthesized and characterized by physico-chemical and spectroscopic methods. The results show that in all complexes, the amino acid ligand is deprotonated and acts as an anionic ligand. In the dinuclear complex 1, each Ni(II) atom has a distorted octahedron geometry while with different coordination environment. However, the complexes 2 and 3 are mononuclear, almost with the same coordination environment. Furthermore, in vitro experiments are carried out, including MTT assay, Annexin V/PI flow cytometry and western blotting, to assess whether the complexes have antitumor effect. And the results show that all the three complexes have moderate anticancer activity towards human hepatic cancer (HepG2), human cervical cancer (HeLa) and human prostate (PC3) cell lines, in a concentration dependent way. The complex 1 exhibit higher cytotoxicity than the other two complexes and can induce human hepatic cancer cell (HepG2) to cell apoptosis by activating caspase 3.

  5. Cyanide-limited complexation of molybdenum(III): synthesis of octahedral [Mo(CN)(6)](3-) and cyano-bridged [Mo(2)(CN)(11)](5-).

    PubMed

    Beauvais, Laurance G; Long, Jeffrey R

    2002-03-13

    Octahedral coordination of molybdenum(III) is achieved by limiting the amount of cyanide available upon complex formation. Reaction of Mo(CF(3)SO(3))(3) with LiCN in DMF affords Li(3)[Mo(CN)(6)] x 6DMF (1), featuring the previously unknown octahedral complex [Mo(CN)(6)](3-). The complex exhibits a room-temperature moment of mu(eff) = 3.80 mu(B), and assignment of its absorption bands leads to the ligand field parameters Delta(o) = 24800 cm(-1) and B = 247 cm(-1). Further restricting the available cyanide in a reaction between Mo(CF(3)SO(3))(3) and (Et(4)N)CN in DMF, followed by recrystallization from DMF/MeOH, yields (Et(4)N)(5)[Mo(2)(CN)(11)] x 2DMF x 2MeOH (2). The dinuclear [Mo(2)(CN)(11)](5-) complex featured therein contains two octahedrally coordinated Mo(III) centers spanned by a bridging cyanide ligand. A fit to the magnetic susceptibility data for 2, gives J = -113 cm(-1) and g = 2.33, representing the strongest antiferromagnetic coupling yet observed through a cyanide bridge. Efforts to incorporate these new complexes in magnetic Prussian blue-type solids are ongoing.

  6. A Dicobalt Complex with an Unsymmetrical Quinonoid Bridge Isolated in Three Units of Charge: A Combined Structural, (Spectro)electrochemical, Magnetic and Spectroscopic Study.

    PubMed

    van der Meer, Margarethe; Rechkemmer, Yvonne; Frank, Uta; Breitgoff, Frauke D; Hohloch, Stephan; Su, Cheng-Yong; Neugebauer, Petr; Marx, Raphael; Dörfel, María; van Slageren, Joris; Sarkar, Biprajit

    2016-09-19

    Quinonoid ligands are excellent bridges for generating redox-rich dinuclear assemblies. A large majority of these bridges are symmetrically substituted, with examples of unsymmetrically substituted quinonoid bridges being extremely rare. We present here a dicobalt complex in its various redox states with an unsymmetrically substituted quinonoid bridging ligand. Two homovalent forms and one mixed-valent form have been isolated and characterized by single crystal X-ray diffraction. The complex displays a large comproportionation constant for the mixed-valent state which is three orders of magnitude higher than that observed for the analogous complex with a symmetrically substituted bridge. Results from electrochemistry, UV/Vis/NIR spectroelectrochemistry, SQUID magnetometry, multi-frequency EPR spectroscopy and FIR spectroscopy are used to probe the electronic structures of these complexes. FIR provides direct evidence of exchange coupling. The results presented here display the advantages of using an unsymmetrically substituted bridge: site specific redox chemistry, high thermodynamic stabilization of the mixed-valent form, isolation and crystallization of various redox forms of the complex. This work represents an important step on the way to generating heterodinuclear complexes for use in cooperative catalysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Kinetic and structural studies reveal a unique binding mode of sulfite to the nickel center in urease.

    PubMed

    Mazzei, Luca; Cianci, Michele; Benini, Stefano; Bertini, Leonardo; Musiani, Francesco; Ciurli, Stefano

    2016-01-01

    Urease is the most efficient enzyme known to date, and catalyzes the hydrolysis of urea using two Ni(II) ions in the active site. Urease is a virulence factor in several human pathogens, while causing severe environmental and agronomic problems. Sporosarcina pasteurii urease has been used extensively in the structural characterization of the enzyme. Sodium sulfite has been widely used as a preservative in urease solutions to prevent oxygen-induced oxidation, but its role as an inhibitor has also been suggested. In the present study, isothermal titration microcalorimetry was used to establish sulfite as a competitive inhibitor for S. pasteurii urease, with an inhibition constant of 0.19mM at pH7. The structure of the urease-sulfite complex, determined at 1.65Å resolution, shows the inhibitor bound to the dinuclear Ni(II) center of urease in a tridentate mode involving bonds between the two Ni(II) ions in the active site and all three oxygen atoms of the inhibitor, supporting the observed competitive inhibition kinetics. This coordination mode of sulfite has never been observed, either in proteins or in small molecule complexes, and could inspire synthetic coordination chemists as well as biochemists to develop urease inhibitors based on this chemical moiety. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Synthesis, structure and properties of zinc(II) coordination polymers with 9H-carbazole-2,7-dicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Yi, Xiu-Chun; Xi, Fu-Gui; Wang, Kun; Su, Zhao; Gao, En-Qing

    2013-10-01

    From a new dicarboxylate ligand, 9H-carbazole-2,7-dicarboxylic acid (2,7-H2CDC), three Zn(II) metal-organic frameworks were synthesized in the absence or presence of ditopic N-donor ligands. They are formulated as [Zn5(μ3-OH)2(2,7-CDC)4(DEF)2] (1) (DEF=N,N-diethylformamide), [Zn2(2,7-CDC)2(DABCO)(H2O)]·5DMF·H2O (2) (DABCO=1-diaza-bicyclo[2.2.2]octane, DMF=N,N-dimethylformamide), and [Zn2(2,7-CDC)2(bpea)]·3DMA·2 H2O (3) (bpea=1,2-bis(4-pyridyl)ethylane, DMA=N,N-dimethylacetamide). Compounds 1 and 3 display the 3D pcu frameworks. In 1 the unusual pentanuclear [Zn5(μ3-OH)2(COO)8] secondary building units (SBUs) are linked by dicarboxylate ligands. Differently, in 3 the well-known paddle-wheel [Zn2(COO)4] SBUs are linked by dicarboxylate and dipyridyl ligands. Compound 2 shows the rare self-catenated 3D alb-3,6-C2/c net topology based on the dinuclear paddle-wheel SBU and a mononuclear unit. The stability and fluorescent properties of the compounds have been studied.

  9. Structure And Specificity of a Quorum-Quenching Lactonase (AiiB) From Agrobacterium Tumefaciens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, D.; Thomas, P.W.; Momb, J.

    2009-06-03

    N-Acyl-l-homoserine lactone (AHL) mediated quorum-sensing regulates virulence factor production in a variety of Gram-negative bacteria. Proteins capable of degrading these autoinducers have been called 'quorum-quenching' enzymes, can block many quorum-sensing dependent phenotypes, and represent potentially useful reagents for clinical, agricultural, and industrial applications. The most characterized quorum-quenching enzymes to date are the AHL lactonases, which are metalloproteins that belong to the metallo-beta-lactamase superfamily. Here, we report the cloning, heterologous expression, purification, metal content, substrate specificity, and three-dimensional structure of AiiB, an AHL lactonase from Agrobacterium tumefaciens. Much like a homologous AHL lactonase from Bacillus thuringiensis, AiiB appears to be amore » metal-dependent AHL lactonase with broad specificity. A phosphate dianion is bound to the dinuclear zinc site and the active-site structure suggests specific mechanistic roles for an active site tyrosine and aspartate. To our knowledge, this is the second representative structure of an AHL lactonase and the first of an AHL lactonase from a microorganism that also produces AHL autoinducers. This work should help elucidate the hydrolytic ring-opening mechanism of this family of enzymes and also facilitate the design of more effective quorum-quenching catalysts.« less

  10. Kinetics and mechanism of vanadium catalysed asymmetric cyanohydrin synthesis in propylene carbonate

    PubMed Central

    Omedes-Pujol, Marta

    2010-01-01

    Summary Propylene carbonate can be used as a green solvent for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers from aldehydes and trimethylsilyl cyanide catalysed by VO(salen)NCS, though reactions are slower in this solvent than the corresponding reactions carried out in dichloromethane. A mechanistic study has been undertaken, comparing the catalytic activity of VO(salen)NCS in propylene carbonate and dichloromethane. Reactions in both solvents obey overall second-order kinetics, the rate of reaction being dependent on the concentration of both the aldehyde and trimethylsilyl cyanide. The order with respect to VO(salen)NCS was determined and found to decrease from 1.2 in dichloromethane to 1.0 in propylene carbonate, indicating that in propylene carbonate, VO(salen)NCS is present only as a mononuclear species, whereas in dichloromethane dinuclear species are present which have previously been shown to be responsible for most of the catalytic activity. Evidence from 51V NMR spectroscopy suggested that propylene carbonate coordinates to VO(salen)NCS, blocking the free coordination site, thus inhibiting its Lewis acidity and accounting for the reduction in catalytic activity. This explanation was further supported by a Hammett analysis study, which indicated that Lewis base catalysis made a much greater contribution to the overall catalytic activity of VO(salen)NCS in propylene carbonate than in dichloromethane. PMID:21085513

  11. Impact of aryloxy initiators on the living and immortal polymerization of lactide.

    PubMed

    Chile, L-E; Ebrahimi, T; Wong, A; Aluthge, D C; Hatzikiriakos, S G; Mehrkhodavandi, P

    2017-05-23

    This report describes two different methodologies for the synthesis of aryl end-functionalized poly(lactide)s (PLAs) catalyzed by indium complexes. In the first method, a series of para-functionalized phenoxy-bridged dinuclear indium complexes [(NNO)InCl] 2 (μ-Cl)(μ-OPh R ) (R = OMe (1), Me (2), H (3), Br (4), NO 2 (5)) were synthesized and fully characterized. The solution and solid state structures of these complexes reflect the electronic differences between these initiators. The polymerization rates correlate with the electron donating ability of the phenoxy initiators: the para-nitro substituted complex 5 is essentially inactive. However, the para-methoxy variant, while less active than the ethoxy-bridged complex [(NNO)InCl] 2 (μ-Cl)(μ-OEt) (A), shows sufficient activity. Alternatively, aryl-capped PLAs were synthesized via immortal polymerization of PLA with A in the presence of a range of arylated chain transfer agents. Certain aromatic diols shut down polymerization by chelating one indium centre to form a stable metal complex. Immortal ROP was successful when using phenol, and 1,5-naphthalenediol. These polymers were analysed and chain end fidelity was confirmed using 1 H NMR spectroscopy, MALDI-TOF mass spectrometry, and UV-Vis spectroscopy. This study shed light on possible speciation when attempting to generate PLA-lignin copolymers.

  12. Phosphorescent binuclear iridium complexes based on terpyridine-carboxylate: an experimental and theoretical study.

    PubMed

    Andreiadis, Eugen S; Imbert, Daniel; Pécaut, Jacques; Calborean, Adrian; Ciofini, Ilaria; Adamo, Carlo; Demadrille, Renaud; Mazzanti, Marinella

    2011-09-05

    The phosphorescent binuclear iridium(III) complexes tetrakis(2-phenylpyridine)μ-(2,2':6',2''-terpyridine-6,6''-dicarboxylic acid)diiridium (Ir1) and tetrakis(2-(2,4-difluorophenyl) pyridine))μ-(2,2':6',2''-terpyridine-6,6''-dicarboxylic acid)diiridium (Ir2) were synthesized in a straightforward manner and characterized using X-ray diffraction, NMR, UV-vis absorption, and emission spectroscopy. The complexes have similar solution structures in which the two iridium centers are equivalent. This is further confirmed by the solid state structure of Ir2. The newly reported complexes display intense luminescence in dichloromethane solutions with maxima at 538 (Ir1) and 477 nm (Ir2) at 298 K (496 and 468 nm at 77 K, respectively) and emission quantum yields reaching ~18% for Ir1. The emission quantum yield for Ir1 is among the highest values reported for dinuclear iridium complexes. It shows only a 11% decrease with respect to the emission quantum yield reported for its mononuclear analogue, while the molar extinction coefficient is roughly doubled. This suggests that such architectures are of potential interest for the development of polymetallic assemblies showing improved optical properties. DFT and time-dependent-DFT calculations were performed on the ground and excited states of the complexes to provide insights into their structural, electronic, and photophysical properties.

  13. Gas-phase fragmentation of coordination compounds: loss of CO(2) from inorganic carbonato complexes to give metal oxide ions

    PubMed

    Dalgaard; McKenzie

    1999-10-01

    Using electrospray ionization mass spectrometry, novel transition metal oxide coordination complex ions are proposed as the products of the collision-induced dissociation (CID) of some carbonato complex ions through the loss of a mass equivalent to CO(2). CID spectra of [(tpa)CoCO(3)](+) (tpa = tris(2-pyridylmethyl)methylamine), [(bispicMe(2)en)Fe(&mgr;-O)(&mgr;-CO(3))Fe(bispicMe(2)en)]2+ (bispicMe(2)en = N,N'-dimethyl-N,N'-bis(2-pyridylmethy)eth- ane-1, 2-diamine) and [(bpbp)Cu(2)CO(3)](+) (bpbp(-) = bis[(bis-(2-pyridylmethyl)amino)methyl]-4-tertbutylpheno-lato(1-)), show peaks assigned to the mono- and dinuclear oxide cations, [(tpa)CoO](+), [(bispicMe(2)en)(2)Fe(2)(O)(2)]2+ and [(bpbp)Cu(2)O](+), as the dominant species. These results can be likened to the reverse of typical synthetic reactions in which metal hydroxide compounds react with CO(2) to give metal carbonato compounds. Because of the lack of available protons in the gas phase, novel oxide species rather than the more common hydroxide ions are generated. These oxide ions are relevant to the highly oxidizing species proposed in oxygenation reactions catalysed by metal oxides and metalloenzymes. Copyright 1999 John Wiley & Sons, Ltd.

  14. Exploring the Influence of Diamagnetic Ions on the Mechanism of Magnetization Relaxation in {CoIII2LnIII2} (Ln = Dy, Tb, Ho) "Butterfly" Complexes.

    PubMed

    Vignesh, Kuduva R; Langley, Stuart K; Murray, Keith S; Rajaraman, Gopalan

    2017-03-06

    The synthesis and magnetic and theoretical studies of three isostructural heterometallic [Co III 2 Ln III 2 (μ 3 -OH) 2 (o-tol) 4 (mdea) 2 (NO 3 ) 2 ] (Ln = Dy (1), Tb (2), Ho (3)) "butterfly" complexes are reported (o-tol = o-toluate, (mdea) 2- = doubly deprotonated N-methyldiethanolamine). The Co III ions are diamagnetic in these complexes. Analysis of the dc magnetic susceptibility measurements reveal antiferromagnetic exchange coupling between the two Ln III ions for all three complexes. ac magnetic susceptibility measurements reveal single-molecule magnet (SMM) behavior for complex 1, in the absence of an external magnetic field, with an anisotropy barrier U eff of 81.2 cm -1 , while complexes 2 and 3 exhibit field induced SMM behavior, with a U eff value of 34.2 cm -1 for 2. The barrier height for 3 could not be quantified. To understand the experimental observations, we performed DFT and ab initio CASSCF+RASSI-SO calculations to probe the single-ion properties and the nature and magnitude of the Ln III -Ln III magnetic coupling and to develop an understanding of the role the diamagnetic Co III ion plays in the magnetization relaxation. The calculations were able to rationalize the experimental relaxation data for all complexes and strongly suggest that the Co III ion is integral to the observation of SMM behavior in these systems. Thus, we explored further the effect that the diamagnetic Co III ions have on the magnetization blocking of 1. We did this by modeling a dinuclear {Dy III 2 } complex (1a), with the removal of the diamagnetic ions, and three complexes of the types {K I 2 Dy III 2 } (1b), {Zn II 2 Dy III 2 } (1c), and {Ti IV 2 Dy III 2 } (1d), each containing a different diamagnetic ion. We found that the presence of the diamagnetic ions results in larger negative charges on the bridging hydroxides (1b > 1c > 1 > 1d), in comparison to 1a (no diamagnetic ion), which reduces quantum tunneling of magnetization effects, allowing for more desirable SMM characteristics. The results indicate very strong dependence of diamagnetic ions in the magnetization blocking and the magnitude of the energy barriers. Here we propose a synthetic strategy to enhance the energy barrier in lanthanide-based SMMs by incorporating s- and d-block diamagnetic ions. The presented strategy is likely to have implications beyond the single-molecule magnets studied here.

  15. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C-H and O-H Bond Activation.

    PubMed

    Ansari, Azaj; Ansari, Mursaleem; Singha, Asmita; Rajaraman, Gopalan

    2017-07-26

    Activation of inert C-H bonds such as those of methane are extremely challenging for chemists but in nature, the soluble methane monooxygenase (sMMO) enzyme readily oxidizes methane to methanol by using a diiron(IV) species. This has prompted chemists to look for similar model systems. Recently, a (μ-oxo)bis(μ-carboxamido)diiron(IV) ([Fe IV 2 O(L) 2 ] 2+ L=N,N-bis-(3',5'-dimethyl-4'-methoxypyridyl-2'-methyl)-N'-acetyl-1,2-diaminoethane) complex has been generated by bulk electrolysis and this species activates inert C-H bonds almost 1000 times faster than mononuclear Fe IV =O species and at the same time selectively activates O-H bonds of alcohols. The very high reactivity and selectivity of this species is puzzling and herein we use extensive DFT calculations to shed light on this aspect. We have studied the electronic and spectral features of diiron {Fe III -μ(O)-Fe III } +2 (complex I), {Fe III -μ(O)-Fe IV } +3 (II), and {Fe IV -μ(O)-Fe IV } +4 (III) complexes. Strong antiferromagnetic coupling between the Fe centers leads to spin-coupled S=0, S=3/2, and S=0 ground state for species I-III respectively. The mechanistic study of the C-H and O-H bond activation reveals a multistate reactivity scenario where C-H bond activation is found to occur through the S=4 spin-coupled state corresponding to the high-spin state of individual Fe IV centers. The O-H bond activation on the other hand, occurs through the S=2 spin-coupled state corresponding to an intermediate state of individual Fe IV centers. Molecular orbital analysis reveals σ-π/π-π channels for the reactivity. The nature of the magnetic exchange interaction is found to be switched during the course of the reaction and this offers lower energy pathways. Significant electronic cooperativity between two metal centers during the course of the reaction has been witnessed and this uncovers the reason behind the efficiency and selectivity observed. The catalyst is found to prudently choose the desired spin states based on the nature of the substrate to effect the catalytic transformations. These findings suggest that the presence of such factors play a role in the reactivity of dinuclear metalloenzymes such as sMMO. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Shuang; Yi, Fei-Yan; Li, Guanghua

    Two coordination polymers [Co{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 2}]·H{sub 2}O (1) and [Ni{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 4}]·3H{sub 2}O (2) were prepared by hydrothermal reactions of MCl{sub 2}·6H{sub 2}O (M = Co, Ni) with a V-shaped ligand TDPA (3,3′,4,4′-thiodiphthalic anhydride) and a I-shaped N-donor co-ligand (4,4′-bipy). They were characterized by elemental analyses, thermogravinetric analyses, and magnetic behavior. As is expected, TDPA hydrolyzes into the corresponding tetra-carboxylate acid H{sub 4}TA (3,3′,4,4′-thiodiphthalic acid) during the reactions. Co{sub 2} dimer and Ni mononuclear center are connected into two-dimensional (2D) layers by H{sub 4}TA and 4,4′-bipy bridge in 1 and 2, respectively. The most amazing featuremore » is that 1 and 2 exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively, with the critical Néel temperature of T{sub N} =4 K for 1 and T{sub N} =13 K for 2, based on variable temperature magnetic susceptibility measurements. In low mono- or dinuclear metal system, such magnetic behaviors have rare been observed. Furthermore, complex 1 will be a potential metamagnet material. - Graphical abstract: Two Co(II) and Ni(II) coordination polymers were synthesized by hydrothermal reactions from a V-shape ligand (3,3′,4,4′-thiodiphthalic anhydride) and a I-shape ligand (4,4′-bipy), which were characterized by single crystal X-ray diffraction, elemental analyses, thermogravinetric analyses, and magnetic behavior, and exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively. - Highlights: • Two Co(II) and Ni(II) coordination polymers were successfully synthesized. • Co(II) coordination polymer shows an interesting spin-canting metamagnetism. • Ni(II) coordination polymer exhibits a weak ferromagnetic behavior.« less

  17. Substrate-Triggered Addition of Dioxygen to the Diferrous Cofactor of Aldehyde-Deformylating Oxygenase to form a Diferric-Peroxide Intermediate†

    PubMed Central

    Nørgaard, Hanne; Warui, Douglas M.; Rajakovich, Lauren J.; Chang, Wei-chen; Booker, Squire J.; Krebs, Carsten; Bollinger, J. Martin

    2013-01-01

    Cyanobacterial aldehyde-deformylating oxygenases (ADOs) belong to the ferritin-like diiron-carboxylate superfamily of dioxygen-activating proteins. They catalyze conversion of saturated or mono-unsaturated Cn fatty aldehydes to formate and the corresponding Cn-1 alkanes or alkenes, respectively. This unusual, apparently redox-neutral transformation actually requires four electrons per turnover to reduce the O2 co-substrate to the oxidation state of water and incorporates one O-atom from O2 into the formate co-product. We show here that the complex of the diiron(II/II) form of ADO from Nostoc punctiforme (Np) with an aldehyde substrate reacts with O2 to form a colored intermediate with spectroscopic properties suggestive of a Fe2III/III complex with a bound peroxide. Its Mössbauer spectra reveal that the intermediate possesses an antiferromagnetically (AF) coupled Fe2III/III center with resolved sub-sites. The intermediate is long-lived in the absence of a reducing system, decaying slowly (t1/2 ~ 400 s at 5 °C) to produce a very modest yield of formate (< 0.15 enzyme equivalents), but reacts rapidly with the fully reduced form of 1-methoxy-5-methylphenazine (MeOPMS) to yield product, albeit at only ~ 50% of the maximum theoretical yield (owing to competition from one or more unproductive pathway). The results represent the most definitive evidence to date that ADO can use a diiron cofactor (rather than a homo- or hetero-dinuclear cluster involving another transition metal) and provide support for a mechanism involving attack on the carbonyl of the bound substrate by the reduced O2 moiety to form a Fe2III/III-peroxyhemiacetal complex, which undergoes reductive O-O-bond cleavage, leading to C1–C2 radical fragmentation and formation of the alk(a/e)ne and formate products. PMID:23987523

  18. Tuning of chain chirality by interchain stacking forces and the structure-property relationship in coordination systems constructed by meridional FeIII cyanide and MnIII Schiff bases.

    PubMed

    Sohn, Ah Ram; Lim, Kwang Soo; Kang, Dong Won; Song, Jeong Hwa; Koh, Eui Kwan; Moon, Dohyun; Hong, Chang Seop

    2016-12-06

    We synthesized six Fe(iii)-Mn(iii) bimetallic compounds by self-assembling the newly developed mer-Fe cyanide PPh 4 [Fe(Clqpa)(CN) 3 ]·H 2 O (1) and PPh 4 [Fe(Brqpa)(CN) 3 ]·H 2 O (2) with Mn Schiff base Mn(5-Xsalen) + cations. These compounds include [Fe(Xqpa)(CN) 3 ][Mn(5-Ysalen)]·pMeOH·qH 2 O [qpaH 2 = N-(quinolin-8-yl)picolinamide; salen = N,N'-ethylenebis(salicylideneiminato) dianion; X = Cl, Y = H (3); X = Cl, Y = Br (4); X = Br, Y = H (5); X = Br, Y = F (6); X = Br, Y = Cl (7); X = Br, Y = Br (8)]. When precursor 1 was used, compounds 3 and 4 were isolated to give a dinuclear entity and a linear chain structure, respectively. The reaction of precursor 2 with the Schiff bases afforded four linear Fe(iii)-Mn(iii) chain complexes. Chain chirality with P- and M-helicity emerges in 4, 7, and 8, while 5 exhibits chain helicity opposite to the previous chain complexes and 6 presents no chain helicity. Such a structural feature is heavily dependent on the interchain π-π contacts and the Fe precursor bridging unit. Chiral induction from a local ethylenediamine link of Y-salen is propagated over the chain via noncovalent π-π interactions. All the bimetallic compounds show antiferromagnetic interactions transmitted by the cyanide linkage. A field-induced metamagnetic transition is involved in 4, 7, and 8, while a field-induced two-step transition is evident in 6. From a magnetostructural viewpoint, the coupling constant is primarily governed by the Mn-N ax -C ax angle (ax = axial) in the bimetallic chain complexes composed of mer-Fe(iii) tricyanides, although the torsion angle plays a role.

  19. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, Hideshi, E-mail: h-yokoya@u-shizuoka-ken.ac.jp; Tsuruta, Osamu; Akao, Naoya

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}-more » or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.« less

  20. Trapping and Characterization of a Reaction Intermediate in Carbapenem Hydrolysis by B. cereus Metallo-β-lactamase

    PubMed Central

    Tioni, Mariana F.; Llarrull, Leticia I.; Poeylaut-Palena, Andrés A.; Martí, Marcelo A.; Saggu, Miguel; Periyannan, Gopal R.; Mata, Ernesto G.; Bennett, Brian; Murgida, Daniel H.; Vila, Alejandro J.

    2009-01-01

    Metallo-β-lactamases hydrolyze most β-lactam antibiotics. The lack of a successful inhibitor for them is related to the previous failure to characterize a reaction intermediate with a clinically useful substrate. Stopped-flow experiments together with rapid freeze-quench EPR and Raman spectroscopies were used to characterize the reaction of Co(II)-BcII with imipenem. These studies show that Co(II)-BcII is able to hydrolyze imipenem both in the mono- and dinuclear forms. In contrast to the situation met for penicillin, the species that accumulates during turnover is an enzyme-intermediate adduct in which the β-lactam bond has already been cleaved. This intermediate is a metal-bound anionic species, with a novel resonant structure, that is stabilized by the metal ion at the DCH or Zn2 site. This species has been characterized based on its spectroscopic features. This represents a novel, previously unforeseen intermediate, that is related to the chemical nature of carbapenems, as confirmed by the finding of a similar intermediate for meropenem. Since carbapenems are the only substrates cleaved by B1, B2 and B3 lactamases, the identification of this intermediate could be exploited as a first step towards the design of transition state based inhibitors for all three classes of metallo-β-lactamases. PMID:18980308

  1. Synthesis and spectral characterization of 2-((2-hydroxybenzylidene)amino)-2-methylpropane-1,3-diol derived complexes: Molecular docking and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Ansari, Istikhar A.; Sama, Farasha; Raizada, Mukul; Shahid, M.; Rajpoot, Ravi Kant; Siddiqi, Zafar A.

    2017-01-01

    A series of four homo-dinuclear transition metal complexes with stoichiometry [M2(HL)2(H2O)2] [M = Fe (1), Co (2), Ni (3) and Cu (4); H3L = 2-((2-hydroxybenzylidene)amino)-2-methylpropane-1,3-diol] has been prepared. Ligand (H3L) was obtained by the condensation of 2-amino-2-methyl-1,3-propanediol (H2ampd) with salicylaldehyde. The complexes (1-4) are characterized employing elemental analysis, FTIR, ESI mass, 1H &13C NMR, EPR, UV Visible, TGA, cyclic voltammetry, and magnetic studies. Spectral data ascertained the bonding features and the geometry of the complexes and revealed that all the complexes adopt distorted octahedral geometry with high spin state of metal ions. Thermal and ESI mass data confirmed the proposed stoichiometry of the complexes. Cyclic voltammetric (CV) studies ascertain the formation of MII/MIII quasi-reversible redox couples in solution. The antimicrobial activities of the present complexes have been examined against few bacteria (E. coli, B. subtilis, S. aureus and S. typhymurium) and fungi (C. albicans, A. fumigatus and P. marneffeiin) suggesting that the present compounds show moderate to high antimicrobial properties. Among all the compounds tested, complex (4) exhibited highest antibacterial as well as antifungal activity. Molecular docking studies of the free ligand and the complexes are performed with BDNA.

  2. Coordination chemistry of highly hemilabile bidentate sulfoxide N-heterocyclic carbenes with palladium(II).

    PubMed

    Yu, Kuo-Hsuan; Wang, Chia-Ching; Chang, I-Hsin; Liu, Yi-Hung; Wang, Yu; Elsevier, Cornelis J; Liu, Shiuh-Tzung; Chen, Jwu-Ting

    2014-12-01

    Imidazolium salts, [RS(O)-CH2 (C3 H3 N2 )Mes]Cl (R=Me (L1a), Ph (L1b)); Mes=mesityl), make convenient carbene precursors. Palladation of L1a affords the monodentate dinuclear complex, [(PdCl2 {MeS(O)CH2 (C3 H2 N2 )Mes})2 ] (2a), which is converted into trans-[PdCl2 (NHC)2] (trans-4a; N-heterocyclic carbene) with two rotamers in anti and syn configurations. Complex trans-4a can isomerize into cis-4a(anti) at reflux in acetonitrile. Abstraction of chlorides from 4a or 4b leads to the formation of a new dication: trans-[Pd{RS(O)CH2(C3H2N2)Mes}2](PF6)2 (R=Me (5a), Ph (5b)). The X-ray structure of 5a provides evidence that the two bidentate SO-NHC ligands at palladium(II) are in square-planar geometry. Two sulfoxides are sulfur- and oxygen-bound, and constitute five- and six-membered chelate rings with the metal center, respectively. In acetonitrile, complexes 5a or 5b spontaneously transform into cis-[Pd(NHC)2(NCMe)2](PF6)2. Similar studies of thioether-NHCs have also been examined for comparison. The results indicate that sulfoxides are more labile than thioethers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Six complexes based on bis(imidazole/benzimidazole-1-yl)pyridazine ligands: Syntheses, structures and properties

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Fang; Du, Ceng-Ceng; Zhou, Sheng-Bin; Wang, Duo-Zhi

    2017-01-01

    Herein we reported six new Ni(II)/Cu(II)/Zn(II) complexes, namely, [Ni(L1)4(OH)2] (1), [Cu(L1)4(OH)2] (2), [Cu(L1)2(SiF6)]n (3), {[Cu(L2)(HCOO)2]·H2O·CH3OH}n (4), [Ni(L2)2(NO3)2]n (5) and {[Zn(L2)Cl2]·DMF}n (6) (L1 = 3,6-bis(imidazole-1-yl)pyridazine, L2 = 3,6-bis(benzimidazole-1-yl)pyridazine), which were characterized by single-crystal X-ray diffraction, elemental analysis, IR, PXRD. These complexes have been successfully constructed under interface diffusion process, heating reflux or hydrothermal conditions. The structures of 1 and 2 are mononuclear complexes. Complex 3 exhibits a 6-connected 3D topology network with the Schläfli symbol of (412·63). In complex 4, two Cu(II) were connected through two HCOO- anions to form dinuclear structure unit, which is arranged into a 1D ladder-like structure by μ2-L2 ligands. Complexes 5 and 6 are 1D zigzag chains connected by L2 ligands, but the Ni(II) ion is six-coordinated in 5 and the Zn(II) ion is four-coordinated in 6. Moreover, the solid-state luminescence property and UV-vis diffuse reflection spectrum of complex 6 have been investigated and discussed.

  4. Cyclopentadienyl ruthenium-nickel catalysts for biomimetic hydrogen evolution: electrocatalytic properties and mechanistic DFT studies.

    PubMed

    Canaguier, Sigolène; Vaccaro, Loredana; Artero, Vincent; Ostermann, Rainer; Pécaut, Jacques; Field, Martin J; Fontecave, Marc

    2009-09-21

    The new dinuclear nickel-ruthenium complexes [Ni(xbsms)RuCp(L)][PF(6)] (H(2)xbsms = 1,2-bis(4-mercapto-3,3-dimethyl-2-thiabutyl)benzene; Cp(-) = cyclopentadienyl; L = DMSO, CO, PPh(3), and PCy(3)) are reported and are bioinspired mimics of NiFe hydrogenases. These compounds were characterized by X-ray diffraction techniques and display novel structural motifs. Interestingly, [Ni(xbsms)RuCpCO][PF(6)] is stereochemically nonrigid in solution and an isomerization mechanism was derived with the help of density functional theory (DFT) calculations. Because of an increased electron density on the metal centers [Eur. J. Inorg. Chem. 2007, 18, 2613-2626] with respect to the previously described [Ni(xbsms)Ru(CO)(2)Cl(2)] and [Ni(xbsms)Ru(p-cymene)Cl](+) complexes, [Ni(xbsms)RuCp(dmso)][PF(6)] catalyzes hydrogen evolution from Et(3)NH(+) in DMF with an overpotential reduced by 180 mV and thus represents the most efficient NiFe hydrogenase functional mimic. DFT calculations were carried out with several methods to investigate the catalytic cycle and, coupled with electrochemical measurements, allowed a mechanism to be proposed. A terminal or bridging hydride derivative was identified as the active intermediate, with the structure of the bridging form similar to that of the Ni-C active state of NiFe hydrogenases.

  5. Amperometric immunosensor for α-fetoprotein antigen in human serum based on co-immobilizing dinuclear copper complex and gold nanoparticle doped chitosan film

    NASA Astrophysics Data System (ADS)

    Gan, Ning; Meng, Ling Hua; Wang, Feng

    2009-09-01

    A sensitive amperometric immunosensor for α-fetoprotein (AFP), a tumor marker for the diagnosis of hepatocellular carcinoma (HCC), was constructed, The immunosensor is prepared by co-immobilizing [Cu2(phen)2Cl2] (μ-Cl)2 (CuL), nano-Au/Chitosan(Chit) composite, horseradish peroxidase (HRP) and AFP antibody(anti-AFP) on a glassy carbon electrode (GCE). Firstly, CuL was irreversibly absorb on GCE electrode through π-π stacking interaction; then nano-Au/Chit composite was immobilized onto the electrode because of its excellent membrane-forming ability, finally HRP and anti-AFP was adsorbed onto the surface of the gold nanoparticles to construct GCE | CuL/nanoAu-chit/HRP/anti-AFP immunosensor. The preparation procedure of the electrode was characterized by electrochemical and spectroscopy method. The results showed that this immunosensor exhibited an excellent electrocatalytic response to the reduction of hydrogen peroxide (H2O2) without the aid of an electron mediator, offers a high-sensitivity (1710 nA · ng-1 · ml-1) for the detection of AFP and has good correlation for detection of AFP in the range of 0.2 to 120.0 ng/ml with a detection limit of 0.05 ng/ml. The biosensor showed high selectivity as well as good stability and reproductivity.

  6. Versatile organoaluminium catalysts based on heteroscorpionate ligands for the preparation of polyesters.

    PubMed

    Martínez, J; Martínez de Sarasa Buchaca, M; de la Cruz-Martínez, F; Alonso-Moreno, C; Sánchez-Barba, L F; Fernandez-Baeza, J; Rodríguez, A M; Rodríguez-Diéguez, A; Castro-Osma, J A; Otero, A; Lara-Sánchez, A

    2018-05-22

    A series of alkyl aluminium complexes based on heteroscorpionate ligands were designed as catalysts for the ring-opening polymerisation of cyclic esters and ring-opening copolymerisation of epoxides and anhydrides. Treatment of AlX3 (X = Me, Et) with ligands bpzbeH [bpzbe = 1,1-bis(3,5-dimethylpyrazol-1-yl)-3,3-dimethyl-2-butoxide], bpzteH [bpzte = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1-para-tolylethoxide], and (R,R)-bpzmmH [(R,R)-bpzmm = (1R)-1-{(1R)-6,6-dimethyl-bicyclo[3.1.1]-2-hepten-2-yl}-2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide] for 2 hours at 0 °C afforded the mononuclear dialkyl aluminium complexes [AlMe2{κ2-bpzbe}] (1), [AlEt2{κ2-bpzbe}] (2), [AlMe2{κ2-(R,R)-bpzmm}] (3) and [AlEt2{κ2-(R,R)-bpzmm}] (4), and the dinuclear dialkyl complexes [AlMe2{κ2-bpzte}]2 (5) and [AlEt2{κ2-bpzte}]2 (6). The molecular structures of the new complexes were determined by spectroscopic methods and confirmed by X-ray crystallography. The alkyl-containing aluminium complexes can act as highly efficient single-component initiators for the ring-opening polymerisation of ε-caprolactone and l-lactide and for the ring-opening copolymerisation of cyclohexene oxide and phthalic anhydride to give a range of biodegradable polyesters.

  7. Decaaquabis(μ3-4-hydroxypyridine-2,6-dicarboxylato)bis(4-hydroxypyridine-2,6-dicarboxylato)tetramanganese(II) 3.34-hydrate: a new three-dimensional open metal-organic framework based on a tetranuclear Mn(II) complex of chelidamic acid and undecameric stitching water clusters.

    PubMed

    Mirzaei, M; Lippolis, V; Eshtiagh-Hosseini, H; Mahjoobizadeh, M

    2012-01-01

    4-Hydroxypyridine-2,6-dicarboxylic acid (chelidamic acid, cdaH(3)) reacts with MnCl(2)·2H(2)O in the presence of 2-amino-4-methylpyrimidine in water to afford the tetranuclear title complex, [Mn(4)(C(8)H(3)NO(5))(4)(H(2)O)(10)]·3.34H(2)O, built through carboxylate bridging. The tetranuclear complex sits on a centre of inversion at (½, ½, ½). In the crystal, discrete undecameric (H(2)O)(10.34) water clusters (involving both coordinated and uncoordinated water molecules, with one site of an uncoordinated water molecule not fully occupied) assemble these tetranuclear Mn(II) complex units via an intricate array of hydrogen bonding into an overall three-dimensional network. The degree of structuring of the (H(2)O)(10.34) supramolecular association of water molecules observed in the present compound, imposed by its environment and vice versa, will be discussed in comparison to that observed for the (H(2)O)(14) supramolecular clusters in the case of the dinuclear complex [Mn(2)(cdaH)(2)(H(2)O)(4)]·4H(2)O [Ghosh et al. (2005). Inorg. Chem. 44, 3856-3862]. © 2012 International Union of Crystallography

  8. Fast reduction of a copper center in laccase by nitric oxide and formation of a peroxide intermediate.

    PubMed

    Torres, Jaume; Svistunenko, Dimitri; Karlsson, Bo; Cooper, Chris E; Wilson, Michael T

    2002-02-13

    The rapid reduction of one of the copper atoms (type 2) of tree laccase by nitric oxide (NO) has been detected. Addition of NO to native laccase in the presence of oxygen leads to EPR changes consistent with fast reduction and slow reoxidation of this metal center. These events are paralleled by optical changes that are reminiscent of formation and decay of the peroxide intermediate in a fraction of the enzyme population. Formation of this species is only possible if the trinuclear copper cluster (type 2 plus type 3) is fully reduced. This condition can only be met if, as suggested previously, a fraction of the enzyme contains both type 3 coppers already reduced before addition of NO. Our data are consistent with this assumption. We have suggested recently that fast reduction of copper is the mechanism by which NO interacts with the oxidized dinuclear center in cytochrome c oxidase. The present experiments using laccase strongly support this view and suggest this reaction as a general mechanism by which copper proteins interact with NO. In addition, this provides an unexploited way to produce a stable peroxide intermediate in copper oxidases in which the full complement of copper atoms is present. This enables the O-O scission step in the catalytic cycle to be studied by electron addition to the peroxide derivative through the native electron entry site, type 1 copper.

  9. Tungsten phosphanylarylthiolato complexes [W{PhP(2-SC6H4)2-kappa3S,S',P} 2] and [W{P(2-SC6H4)3-kappa4S,S',S",P}2]: synthesis, structures and redox chemistry.

    PubMed

    Hildebrand, Alexandra; Lönnecke, Peter; Silaghi-Dumitrescu, Luminita; Hey-Hawkins, Evamarie

    2008-09-14

    PhP(2-SHC6H4)2 (PS2H2) reacts with WCl6 with reduction of tungsten to give the air-sensitive tungsten(IV) complex [W{PhP(2-SC6H4)2-kappa(3)S,S',P}2] (1). 1 is oxidised in air to [WO{PhPO(2-SC6H4)2-kappa(3)S,S',O}{PhP(2-SC6H4)2-kappa(3)S,S',P}] (2). The attempted synthesis of 2 by reaction of 1 with iodosobenzene as oxidising agent was unsuccessful. [W{P(2-SC6H4)3-kappa(4)S,S',S",P}2] (3) was formed in the reaction of P(2-SHC6H4)3 (PS3H3) with WCl6. The W(VI) complex 3 contains two PS3(3-) ligands, each coordinated in a tetradentate fashion resulting in a tungsten coordination number of eight. The reaction of 3 with AgBF4 yields the dinuclear tungsten complex [W2{P(2-SC6H4)3-kappa(4)S,S',S",P}3]BF4 (4). Complexes 1-4 were characterised by spectral methods and X-ray structure determination.

  10. Syntheses, crystal structures, and water adsorption behaviors of jungle-gym-type porous coordination polymers containing nitro moieties

    NASA Astrophysics Data System (ADS)

    Uemura, Kazuhiro; Onishi, Fumiaki; Yamasaki, Yukari; Kita, Hidetoshi

    2009-10-01

    NO 2 containing dicarboxylate bridging ligands, nitroterephthalate (bdc-NO 2) and 2,5-dinitroterephthalate (bdc-(NO 2) 2), afford porous coordination polymers, {[Zn 2(bdc-NO 2) 2(dabco)]· solvents} n ( 2⊃ solvents) and {[Zn 2(bdc-(NO 2) 2) 2(dabco)]· solvents} n ( 3⊃ solvents). Both compounds form jungle-gym-type regularities, where a 2D square grid composed of dinuclear Zn 2 units and dicarboxylate ligands is bridged by dabco molecules to extend the 2D layers into a 3D structure. In 2⊃ solvents and 3⊃ solvents, a rectangle pore surrounded by eight Zn 2 corners contains two and four NO 2 moieties, respectively. Thermal gravimetry (TG) and X-ray powder diffraction (XRPD) measurements reveal that both compounds maintain the frameworks regularities without guest molecules and with solvents such as MeOH, EtOH, i-PrOH, and Me 2CO. Adsorption measurements reveal that dried 2 and 3 adsorb H 2O molecules to be {[Zn 2(bdc-NO 2) 2(dabco)]·4H 2O} n ( 2⊃4H 2O) and {[Zn 2(bdc-(NO 2) 2) 2(dabco)]·6H 2O} n ( 3⊃6H 2O), showing the pore hydrophilicity enhancement caused by NO 2 group introduction.

  11. Synthesis and characterization of two dehydroacetic acid derivatives and molybdenum(V) complexes: an NMR and crystallographic study

    NASA Astrophysics Data System (ADS)

    Cindrić, Marina; Vrdoljak, Višnja; Kajfež Novak, Tanja; Ćurić, Manda; Brbot-Šaranović, Ana; Kamenar, Boris

    2004-09-01

    Two enaminones ethyl 4-(4-hydroxy-6-methyl-2 H-pyran-2-on-3-yl)-2-(tryptamino)-4-oxo-2-butenoate ( HL1) and 3-(1-tryptaminoetylidene)-6-methyl-2 H-pyran-2,4(3H)-dione ( HL2) have been prepared by the reactions of tryptamine with 2-hydroxy-4-(4-hydroxy)-6-methyl)-2 Hbb-pyrane-2-on-3-yl)-4-oxo-2-butenoate (ehmpb) or with dehydroacetic acid (dha). The NMR spectroscopy confirmed that both tautomeric forms of HL1: endo-enol (tautomer A with hydroxyl group at position 4) and exo-enol form (tautomer B with hydroxyl group at position 7) are present in the DMSO- d6 solution. The molecular and crystal structure as well as the NMR data of HL2 showed that the condensation of dha and tryptamine occurs at acetyl-carbonyl and not at the pyrone-carbonyl group. Also new dinuclear [Mo 2O 4(L 1) 2(CH 3OH) 2] ( 1) and hexanuclear molybdenum(V) complexes (C 10H 12NH)[Mo 6O 12(OCH 3) 4(acac) 3] ( 2) have been prepared by the reactions of [Mo 2O 3(acac) 4] (acac=acetilacetonate ion) with HL1 or with tryptamine. All compounds have been characterized also by means of elemental analyses, IR spectroscopy as well as by thermal analyses.

  12. Clinical Variants of New Delhi Metallo-β-Lactamase Are Evolving To Overcome Zinc Scarcity.

    PubMed

    Stewart, Alesha C; Bethel, Christopher R; VanPelt, Jamie; Bergstrom, Alex; Cheng, Zishuo; Miller, Callie G; Williams, Cameron; Poth, Robert; Morris, Matthew; Lahey, Olivia; Nix, Jay C; Tierney, David L; Page, Richard C; Crowder, Michael W; Bonomo, Robert A; Fast, Walter

    2017-12-08

    Use and misuse of antibiotics have driven the evolution of serine β-lactamases to better recognize new generations of β-lactam drugs, but the selective pressures driving evolution of metallo-β-lactamases are less clear. Here, we present evidence that New Delhi metallo-β-lactamase (NDM) is evolving to overcome the selective pressure of zinc(II) scarcity. Studies of NDM-1, NDM-4 (M154L), and NDM-12 (M154L, G222D) demonstrate that the point mutant M154L, contained in 50% of clinical NDM variants, selectively enhances resistance to the penam ampicillin at low zinc(II) concentrations relevant to infection sites. Each of the clinical variants is shown to be progressively more thermostable and to bind zinc(II) more tightly than NDM-1, but a selective enhancement of penam turnover at low zinc(II) concentrations indicates that most of the improvement derives from catalysis rather than stability. X-ray crystallography of NDM-4 and NDM-12, as well as bioinorganic spectroscopy of dizinc(II), zinc(II)/cobalt(II), and dicobalt(II) metalloforms probe the mechanism of enhanced resistance and reveal perturbations of the dinuclear metal cluster that underlie improved catalysis. These studies support the proposal that zinc(II) scarcity, rather than changes in antibiotic structure, is driving the evolution of new NDM variants in clinical settings.

  13. Vanadate complexes bearing an imidazolidine-bridged bis(aryloxido) ligand: synthesis and solid state and solution structure.

    PubMed

    Kober, Ewa; Nerkowski, Tomasz; Janas, Zofia; Jerzykiewicz, Lucjan B

    2012-05-07

    A new imidazolidine-bridged bis(aryloxido) ligand precursor (H(2)L) [H(2)L = 2,2'-(imidazolidine-1,3-diylbis(methylene))bis(4-(1,1,3,3-tetramethylbutyl-2-yl)phenol)] was prepared in a relatively high yield (∼60%) via a single-step Mannich condensation of 4-(1,1,3,3-tetramethylbutyl)phenol, ethylenediamine and paraformaldehyde at 2:1:3 molar ratio and characterized by chemical and physical techniques including X-ray crystallography. Reactions of H(2)L with [VO(OEt)(3)] at 1:1 and 1:2 molar ratios in toluene afforded [V(L-κ(3)O,N,N,O)(O)(OEt)] (1) and [V(2)(μ-L-κ(4)O,N,N,O)(μ-OEt)(2)(O)(2)(OEt)(2)] (2), respectively. Alcoholysis of 1 with EtOH enables elimination of one molecule of H(2)L and the formation of 2. Compounds 1 and 2 were characterized by IR and NMR spectroscopy as well as ES-MS experiments. The definitive molecular structure of 2 was provided by a single-crystal analysis and revealed its dinuclear nature, featuring two octahedral vanadium centres bridged by both OEt groups and the L ligand. The (51)V, (1)H and (13)C NMR spectra as well as ES-MS showed that 2 does not stay intact in solution and undergoes dissociation to give 1 and [VO(OEt)(3)].

  14. A new preparation of a bifunctional crystalline heterogeneous copper electrocatalyst by electrodeposition using a Robson-type macrocyclic dinuclear copper complex for efficient hydrogen and oxygen evolution from water.

    PubMed

    Majumder, Samit; Abdel Haleem, Ashraf; Nagaraju, Perumandla; Naruta, Yoshinori

    2017-07-18

    The development of low-cost, stable bifunctional electrocatalysts, which operate in the same electrolyte with a low overpotential for water splitting, including the oxygen evolution reaction and the hydrogen evolution reaction, remains an attractive prospect and a great challenge. In this study, a water soluble Robson-type macrocyclic dicopper(ii) complex has been used for the first time as a catalyst precursor for the generation of a copper-based bifunctional heterogeneous catalyst film, which can be used for both HER and OER at a near neutral pH. In sodium borate buffer at pH 9.20, this complex decomposed to give a Cu(OH) 2 /Cu 2 O-based thin film on FTO that catalyzes both hydrogen production and water oxidation. The morphology, nature and composition of the thin film were fully characterized by scanning electron microscopy, powder X-ray diffraction, X-ray photoelectron, and energy dispersive X-ray spectroscopies. The catalyst film showed high stability during the course of electrolysis in either the cathodic or the anodic direction for more than 4 h. Faradaic efficiencies of ∼92% for HER and ∼96% for OER were achieved. The switch between the two half-reactions of catalytic water splitting was fully reversible in nature.

  15. Structural and magnetic diversity in cyano-bridged bi- and trimetallic complexes assembled from cyanometalates and [M(rac-CTH)]n+ building blocks (CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane).

    PubMed

    Rodríguez-Diéguez, Antonio; Kivekäs, Raikko; Sillanpää, Reijo; Cano, Joan; Lloret, Francesc; McKee, Vickie; Stoeckli-Evans, Helen; Colacio, Enrique

    2006-12-25

    Seven new cyano-bridged heterometallic systems have been prepared by assembling [M'(rac-CTH)]n+ complexes (M' = CrIII, NiII, CuII), which have two cis available coordination positions, and [M(CN)6]3- (M = FeIII, CrIII) and [Fe(CN)2(bpy)2]+ cyanometalate building blocks. The assembled systems, which have been characterized by X-ray crystallography and magnetic investigations, are the molecular squares (meso-CTH-H2)[{Ni(rac-CTH)}2{Fe(CN)6)}2].5H2O (2) and [{Ni(rac-CTH)}2{Fe(CN)2(bpy)2}2](ClO4)4.H2O (5), the bimetallic chain [{Ni(rac-CTH)}2{Cr(CN)6)}2Ni(meso-CTH)].4H2O (3), the trimetallic chain [{Ni(rac-CTH)}2{Fe(CN)6)}2Cu(cyclam)]6H2O (4), the pentanuclear complexes [{Cu(rac-CTH}3{Fe(CN)6}2].2H2O (6) and [{Cu(rac-CTH)}3{Cr(CN)6)}2].2H2O (7), and the dinuclear complex [Cr(rac-CTH)(H2O)Fe(CN)6].2H2O (8). With the exception of 5, all compounds exhibit ferromagnetic interaction between the metal ions (JFeNi = 12.8(2) cm-1 for 2; J1FeCu= 13.8(2) cm-1 and J2FeCu= 3.9(4) cm-1 for 6; J1CrCu= 6.95(3) cm-1 and J2CrCu= 1.9(2)cm-1 for 7; JCrFe = 28.87(3) cm-1 for 8). Compound 5 exhibits the end of a transition from the high-spin to the low-spin state of the octahedral FeII ions. The bimetallic chain 3 behaves as a metamagnet with a critical field Hc = 300 G, which is associated with the occurrence of week antiferromagnetic interactions between the chains. Although the trimetallic chain 4 shows some degree of spin correlation along the chain, magnetic ordering does not occur. The sign and magnitude of the magnetic exchange interaction between CrIII and FeIII in compound 8 have been justified by DFT type calculations.

  16. Metallosupramolecular Architectures Obtained from Poly-N-heterocyclic Carbene Ligands.

    PubMed

    Sinha, Narayan; Hahn, F Ekkehardt

    2017-09-19

    Over the past two decades, self-assembly of supramolecular architectures has become a field of intensive research due to the wide range of applications for the resulting assemblies in various fields such as molecular encapsulation, supramolecular catalysis, drug delivery, metallopharmaceuticals, chemical and photochemical sensing, and light-emitting materials. For these purposes, a large number of coordination-driven metallacycles and metallacages featuring different sizes and shapes have been prepared and investigated. Almost all of these are Werner-type coordination compounds where metal centers are coordinated by nitrogen and/or oxygen donors of polydentate ligands. With the evolving interest in the coordination chemistry of N-heterocyclic carbenes (NHCs), discrete supramolecular complexes held together by M-C NHC bonds have recently become of interest. The construction of such metallosupramolecular assemblies requires the synthesis of suitable poly-NHC ligands where the NHC donors form labile bonds with metal centers thus enabling the formation of the thermodynamically most stable reaction product. In organometallic chemistry, these conditions are uniquely met by the combination of poly-NHCs and silver(I) ions where the resulting assemblies also offer the possibility to generate new structures by transmetalation of the poly-NHC ligands to additional metal centers forming more stable C NHC -M bonds. Stable metallosupramolecular assemblies obtained from poly-NHC ligands feature special properties such as good solubility in many less polar organic solvents and the presence of the often catalyticlly active {M(NHC) n } moiety as building block. In this Account, we review recent developments in organometallic supramolecular architectures derived from poly-NHC ligands. We describe dinuclear (M = Ag I , Au I , Cu I ) tetracarbene complexes obtained from bis-NHC ligands with an internal olefin or two external coumarin pendants and their postsynthetic modification via a photochemically induced single or double [2 + 2] cycloaddition to form dinuclear tetracarbene complexes featuring cyclobutane units. Even three-dimensional cage-like structures can be prepared by this postsynthetic strategy. Cylinder-like trinuclear, tetranuclear, and hexanuclear (M = Ag I , Au I , Cu I , Hg II , Pd II ) complexes have been obtained from benzene-bridged tris-, tetrakis-, or hexakis-NHC ligands. These complexes resemble polynuclear assemblies obtained from related polydentate Werner-type ligands. Contrary to the Werner-type complexes, cylinder-like assemblies with three, four, or six silver(I) ions sandwiched in between two tris-, tetrakis-, or hexakis-NHC ligands undergo a facile transmetalation reaction to give the complexes featuring more stable M-C NHC bonds, normally with retention of the metallosupramolecular structure. This unique behavior of NHC-Ag + complexes allows the prepration of assemblies containing various metals from the poly-NHC silver(I) assemblies. Narcissistic self-sorting phenomena have also been observed for mixtures of selected poly-NHC ligands and silver(I) ions. Even a very early type of metallosupramolecular assembly, the tetranuclear molecular square, can be prepared from four bridging dicarbene ligands and four transition metal ions either by a stepwise assembly or by a single-step protocol. At this point, it appears that procedures for the synthesis of metallosupramolecular assemblies using polydentate Werner-type ligands and metal ions can be transferred to organometallic chemistry by using suitable poly-NHC ligands. The resulting structures feature stable M-C NHC bonds (with the exception of the labile C NHC -Ag + bond) when compared to M-N/M-O bonds in classical Werner-type complexes. The generally good solubility of the compounds and the presence of the often catalytically active {M(NHC) n } moiety make organometallic supramolecular complexes a promising new class of molecular hosts for catalytic transformations and encapsulation of selected substrates.

  17. A series of silver(I) coordination polymers with saccarinate and flexible aliphatic diamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr; Karamahmut, Bingül; Semerci, Fatih

    A series of Ag(I) complexes with aliphatic diamines having a different chain length (NH{sub 2}-(CH{sub 2}){sub n}-NH{sub 2}, n=4–9), with the formulas, [Ag(μ-sac)(μ-db){sub 0.5}]{sub n} (1), ([Ag{sub 4}(sac){sub 4}(μ-dp){sub 2}]·4H{sub 2}O){sub n} (2){sub ,} ([Ag{sub 2}(sac){sub 2}(μ-dz)]·2H{sub 2}O){sub n} (3), ([Ag{sub 2}(sac){sub 2}(μ-dh)]·H{sub 2}O){sub n} (4), ([Ag{sub 2}(sac){sub 2}(μ-do)]·H{sub 2}O){sub n} (5a), [Ag{sub 2}(sac){sub 2}(μ-do){sub 2}] (5b) and [Ag{sub 4}(sac){sub 4}(μ-dn){sub 2}]·2H{sub 2}O (6), where sac=saccharinate, db=1,4-diaminobutane, dp=1,5-diaminopentane, dz=1,6-diaminohexane, dh=1,7-diaminoheptane, do=1,8-diaminooctane and dn=1,9-diaminononane, were synthesized and characterized by elemental analysis, infrared spectra and single-crystal X-ray diffraction analysis. In 1, the sac ligand bridges adjacent Ag(I) ions through the nitrogen andmore » carbonyl oxygen atoms to form eight-membered bimetallic rings with the Ag···Ag distance being 3.897 Å, which are linked by db ligands to give a 1D zigzag chain. The complexes 2–5a consist of a one-dimensional (1D) linear cationic chains and discrete mononuclear anions. The discreet complex units are further connected by ligand unsupported argentophilic interactions. In 6, the dn ligands bridge adjacent silver centers to form 24-membered macrometallacyclic rings, which are further connected to the anionic [Ag(sac){sub 2}]{sup -} units by argentophilic Ag1···Ag2 interactions to form a tetranuclear structure. The adjacent dinuclear units are further linked together through ligand-unsupported argentophilic Ag···Ag (3.207(1) Å) interactions, generating a one-dimensional linear chain. The most striking feature of complexes is the presence of the rare intermolecular C-H···Ag interactions. In 5b, the do ligand bridges two Ag(I) ions to form a dinuclear with a 22-membered macrometallacyclic ring. Furthermore, biological activities, luminescence properties and thermal analysis (TG/DTA) of the complexes were investigated. - Graphical abstract: In this study, six new silver coordination compounds were synthesized by using saccharinate and flexible aliphatic diamine derivatives. All the compounds were characterized by elemental analysis, IR and single-crystal X-ray analysis. TG/DTA. Furthermore, biological activities, luminescence properties and thermal analysis (TG/DTA) of the complexes have been investigated. Complexes 1–5a and 6 were synthesized with the same reactant ratio and room temperature by using a mixture of AgNO{sub 3}, sac and different length diamine derivatives. The complex 5b is also synthesized was similar to that of 1 at 80 °C. In the complexes, the diamine derivatives ligands show bis(bridging) coordination mode. The sac ligand exhibits a µ-bridging coordination mode in 1 and N-donor monodentate coordination mode in 2–6. Complexes 1–5 exhibit 1D chain structure while complex 6 are tetranuclear structure. In the crystal packing of complexes, 3D supramolecular frameworks are formed via C-H···Ag, Ag···π and Ag···Ag interactions.« less

  18. Density functional studies on the exchange interaction of a dinuclear Gd(iii)-Cu(ii) complex: method assessment, magnetic coupling mechanism and magneto-structural correlations.

    PubMed

    Rajaraman, Gopalan; Totti, Federico; Bencini, Alessandro; Caneschi, Andrea; Sessoli, Roberta; Gatteschi, Dante

    2009-05-07

    Density functional calculations have been performed on a [Gd(iii)Cu(ii)] complex [L(1)CuGd(O(2)CCF(3))(3)(C(2)H(5)OH)(2)] () (where L(1) is N,N'-bis(3-ethoxy-salicylidene)-1,2-diamino-2-methylpropanato) with an aim of assessing a suitable functional within the DFT formalism to understand the mechanism of magnetic coupling and also to develop magneto-structural correlations. Encouraging results have been obtained in our studies where the application of B3LYP on the crystal structure of yields a ferromagnetic J value of -5.8 cm(-1) which is in excellent agreement with the experimental value of -4.42 cm(-1) (H = JS(Gd).S(Cu)). After testing varieties of functional for the method assessment we recommend the use of B3LYP with a combination of an effective core potential basis set. For all electron basis sets the relativistic effects should be incorporated either via the Douglas-Kroll-Hess (DKH) or zeroth-order regular approximation (ZORA) methods. A breakdown approach has been adopted where the calculations on several model complexes of have been performed. Their wave functions have been analysed thereafter (MO and NBO analysis) in order to gain some insight into the coupling mechanism. The results suggest, unambiguously, that the empty Gd(iii) 5d orbitals have a prominent role on the magnetic coupling. These 5d orbitals gain partial occupancy via Cu(ii) charge transfer as well as from the Gd(iii) 4f orbitals. A competing 4f-3d interaction associated with the symmetry of the complex has also been observed. The general mechanism hence incorporates both contributions and sets forth rather a prevailing mechanism for the 3d-4f coupling. The magneto-structural correlations reveal that there is no unique parameter which the J values are strongly correlated with, but an exponential relation to the J value found for the O-Cu-O-Gd dihedral angle parameter is the most credible correlation.

  19. Biomimetic Mn-Catalases Based on Dimeric Manganese Complexes in Mesoporous Silica for Potential Antioxidant Agent.

    PubMed

    Escriche-Tur, Luis; Corbella, Montserrat; Font-Bardia, Mercè; Castro, Isabel; Bonneviot, Laurent; Albela, Belén

    2015-11-02

    Two new structural and functional models of the Mn-catalase with formula [{Mn(III)(bpy)(H2O)}(μ-2-MeOC6H4CO2)2(μ-O){Mn(III)(bpy)(X)}]X, where X = NO3 (1) and ClO4 (2) and bpy = 2,2'-bipyridine, were synthesized and characterized by X-ray diffraction. In both cases, a water molecule and an X ion occupy the monodentate positions. The magnetic properties of these compounds reveal a weak antiferromagnetic behavior (2J = -2.2 cm(-1) for 1 and -0.7 cm(-1) for 2, using the spin Hamiltonian H = -2J S1·S2) and negative zero-field splitting parameter DMn (-4.6 cm(-1) and -3.0 cm(-1) for 1 and 2, respectively). This fact, together with the nearly orthogonal orientation of the Jahn-Teller axes of the Mn(III) ions explain the unusual shape of χMT versus T plot at low temperature. Compound 1 presents a better catalase activity than 2 in CH3CN-H2O media, probably due to a beneficial interaction of the NO3(-) ion with the Mn complex in solution. These compounds were successfully inserted inside two-dimensional hexagonal mesoporous silica (MCM-41 type) leading to the same hybrid material ([Mn2O]@SiO2), without the X group. The manganese complex occupies approximately half of the available pore volume, keeping the silica's hexagonal array intact. Magnetic measurements of [Mn2O]@SiO2 suggest that most of the dinuclear unit is preserved, as a non-negligible interaction between Mn ions is still observed. The X-ray photoelectron spectroscopy analysis of the Mn 3s peak confirms that Mn remains as Mn(III) inside the silica. The catalase activity study of material [Mn2O]@SiO2 reveals that the complex is more active inside the porous silica, probably due to the surface silanolate groups of the pore wall. Moreover, the new material shows catalase activity in water media, while the coordination compounds are not active.

  20. The nature of the exchange coupling between high-spin Fe(III) heme o3 and CuBII in Escherichia coli quinol oxidase, cytochrome bo3: MCD and EPR studies.

    PubMed

    Cheesman, Myles R; Oganesyan, Vasily S; Watmough, Nicholas J; Butler, Clive S; Thomson, Andrew J

    2004-04-07

    Fully oxidized cytochrome bo3 from Escherichia coli has been studied in its oxidized and several ligand-bound forms using electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopies. In each form, the spin-coupled high-spin Fe(III) heme o3 and CuB(II) ion at the active site give rise to similar fast-relaxing broad features in the dual-mode X-band EPR spectra. Simulations of dual-mode spectra are presented which show that this EPR can arise only from a dinuclear site in which the metal ions are weakly coupled by an anisotropic exchange interaction of J 1 cm-1. A variable-temperature and magnetic field (VTVF) MCD study is also presented for the cytochrome bo3 fluoride and azide derivatives. New methods are used to extract the contribution to the MCD of the spin-coupled active site in the presence of strong transitions from low-spin Fe(III) heme b. Analysis of the MCD data, independent of the EPR study, also shows that the spin-coupling within the active site is weak with J approximately 1 cm-1. These conclusions overturn a long-held view that such EPR signals in bovine cytochrome c oxidase arise from an S' = 2 ground state resulting from strong exchange coupling (J > 10(2) cm-1) within the active site.

  1. Halide/pseudohalide complexes of cadmium(II) with benzimidazole: Synthesis, crystal structures and fluorescence properties

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Yan; Yang, Fu-Li; Li, Na; Wang, Xiao-Jing

    2017-11-01

    Two new dinuclear Cd(II) complexes, [CdL1Cl2]2·H2O (1) and [CdL1(N3)2]2·CH3OH (2) and one dicyanamide bridged one-dimensional polynuclear network [CdL1(μ1,5-dca)dca]n (3) of the potentially tridentate NNN-donor Schiff base 2-((1H-benzimidazol-2-yl-ethylimino)-methyl)pyridine (L1) and another dinucler Cd(II) complex [CdL2Cl(dca)]2 (4) of a similar NNN-donor Schiff base ligand 2-((1H-benzimidazol-2-yl-propylimino)-methyl)pyridine (L2), have been synthesized and characterized by elemental analyses, IR and single crystal X-ray crystallography. The ligands L1 and L2 are [1 + 1] condensation products of pyridine-2-carbaldehyde with 2-aminoethyl-1H-benzimidazole and 2-aminopropyl-1H-benzimidazole, respectively. In the complexes 1 and 4 the two Cd(II) centers are held together by the bridged chloride ligands, while in 2 the two Cd(II) centers are bridged by μ1,1-azide ions. Complex 3 has a one-dimensional infinite chain structure in which Cd(II) ions are bridged by single dicyanamide groups in end-to-end fashion. All the metal centers have a distorted octahedral geometry and H-bonding or π⋯π interactions are operative to bind the complex units in the solid state. Furthermore, these complexes have been investigated by thermogravimetric analyses and fluorescence spectra.

  2. Synthesis and characterization of a 1D chain-like Cu{sub 6} substituted sandwich-type phosphotungstate with pendant dinuclear Cu–azido complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yan-Ying; Zhao, Jun-Wei, E-mail: zhaojunwei@henu.edu.cn; Wei, Qi

    A novel Cu–azido complex modified hexa-Cu{sup II} substituted sandwich-type phosphotungstate [Cu(en){sub 2}]([Cu{sub 2}(en){sub 2}(μ-1,1-N{sub 3}){sub 2}(H{sub 2}O)]{sub 2}[Cu{sub 6}(en){sub 2}(H{sub 2}O){sub 2}(B-α-PW{sub 9}O{sub 34}){sub 2}])·6H{sub 2}O (1) (en=ethylene-diamine) has been prepared under hydrothermal conditions and structurally characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. 1 displays a beautiful 1-D chain architecture constructed from sandwich-type [Cu{sub 2}(en){sub 2}(μ-1,1-N{sub 3}){sub 2}(H{sub 2}O)]{sub 2}[Cu{sub 6}(en){sub 2}(H{sub 2}O){sub 2}(B-α-PW{sub 9}O{sub 34}){sub 2}]{sup 2−} units and [Cu(en){sub 2}]{sup 2+} linkers. To our knowledge, 1 represents the first hexa-Cu{sup II} sandwiched phosphotungstate with supporting Cu–azido complexes. - Graphical abstract: Themore » first hexa-Cu{sup II} sandwiched phosphotungstate with supporting Cu–azido complexes has been prepared and characterized. Display Omitted - Highlights: • Hexa-copper-substituted phosphotungstate. • Cu–azido complexes modified hexa-Cu{sup II} substituted sandwich-type polyoxometalate. • 1-D chain architecture built by hexa-copper-substituted polyoxotungstate units.« less

  3. Cloning, sequence determination, and regulation of the ribonucleotide reductase subunits from Plasmodium falciparum: a target for antimalarial therapy.

    PubMed Central

    Rubin, H; Salem, J S; Li, L S; Yang, F D; Mama, S; Wang, Z M; Fisher, A; Hamann, C S; Cooperman, B S

    1993-01-01

    Malaria remains a leading cause of morbidity and mortality worldwide, accounting for more than one million deaths annually. We have focused on the reduction of ribonucleotides to 2'-deoxyribonucleotides, catalyzed by ribonucleotide reductase, which represents the rate-determining step in DNA replication as a target for antimalarial agents. We report the full-length DNA sequence corresponding to the large (PfR1) and small (PfR2) subunits of Plasmodium falciparum ribonucleotide reductase. The small subunit (PfR2) contains the major catalytic motif consisting of a tyrosyl radical and a dinuclear Fe site. Whereas PfR2 shares 59% amino acid identity with human R2, a striking sequence divergence between human R2 and PfR2 at the C terminus may provide a selective target for inhibition of the malarial enzyme. A synthetic oligopeptide corresponding to the C-terminal 7 residues of PfR2 inhibits mammalian ribonucleotide reductase at concentrations approximately 10-fold higher than that predicted to inhibit malarial R2. The gene encoding the large subunit (PfR1) contains a single intron. The cysteines thought to be involved in the reduction mechanism are conserved. In contrast to mammalian ribonucleotide reductase, the genes for PfR1 and PfR2 are located on the same chromosome and the accumulation of mRNAs for the two subunits follow different temporal patterns during the cell cycle. Images Fig. 2 Fig. 4 Fig. 5 PMID:8415692

  4. Simple preparations of Pd6Cl12, Pt6Cl12, and Qn[Pt2Cl8+n], n=1, 2 (Q=TBA+, PPN+) and structural characterization of [TBA][Pt2Cl9] and [PPN]2[Pt2Cl10].C7H8.

    PubMed

    Dell'Amico, Daniela Belli; Calderazzo, Fausto; Marchetti, Fabio; Ramello, Stefano; Samaritani, Simona

    2008-02-04

    The hexanuclear Pd6Cl12, i.e., the crystal phase classified as beta-PdCl2, was obtained by reacting [TBA]2[Pd2Cl6] with AlCl3 (or FeCl3) in CH2Cl2. The action of AlCl3 on PtCl42-, followed by digestion of the resulting solid in 1,2-C2H4Cl2 (DCE), CHCl3, or benzene, produced Pt6Cl12.DCE, Pt6Cl12.CHCl3, or Pt6Cl12.C6H6, respectively. Treating [TBA]2[PtCl6] with a slight excess of AlCl3 afforded [TBA][Pt2Cl9], whose anion was established crystallographically to be constituted by two "PtCl6" octahedra sharing a face. Dehydration of H2PtCl6.nH2O with SOCl2 gave an amorphous compound closely analyzing as PtCl4, reactive with [Q]Cl in SOCl2 to yield [Q][Pt2Cl9] or [Q]2[Pt2Cl10], depending on the [Q]Cl/Pt molar ratio (Q=TBA+, PPN+). A single-crystal X-ray diffraction study has shown [PPN]2[Pt2Cl10].C7H8 to contain dinuclear anions formed by two edge-sharing PtCl6 octahedra.

  5. Titanium, aluminum and zinc complexes containing diamine-bis(benzotriazole phenolate) ligands: Synthesis, structural characterization and catalytic studies for ring-opening polymerization of ε-caprolactone

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Tang; Li, Chen-Yu; Chen, Jhy-Der; Liu, Wan-Ling; Tsai, Chen-Yen; Ko, Bao-Tsan

    2017-04-01

    Structurally diverse metal complexes bearing diamine-bis(benzotriazole phenolate) (DiBTP) ligands have been synthesized and fully characterized by single crystal X-ray crystallography. The reaction of Ti(OiPr)4 with C8MEADiBTP-H2 or C8BEADiBTP-H2 (1.0 mol equiv.) generated the monomeric titanium alkoxy complexes [(C8MEADiBTP)Ti(OiPr)2] (1) and [(C8BEADiBTP)Ti(OiPr)2] (2), respectively. Moreover, C8BEADiBTP-H2 reacted with 2.0 molar equiv. of AlMe3 to give the tetra-coordinated di-aluminum complex [(C8BEADiBTP)Al2Me4] (3). Zinc complex [(C8BEADiBTP)Zn2Et2] (4) could be obtained by the alkane elimination of ZnEt2 (2.0 equiv.) with C8BEADiBTP-H2 as the pro-ligand under similar synthetic methods in good yield. Single-crystal X-ray diffraction indicates that 3 is a bimetallic aluminum dimethyl complex with a tetradentate C8BEADiBTP moiety chelating two metal atoms, whereas complex 4 displays the dinuclear feature containing both tetra- and penta-coordinated zinc atoms bonded by one ONNON-pentadentate C8BEADiBTP ligand. Catalytic studies for ring-opening polymerization of ε-caprolactone of complex 1-4 were systematic explored; the comparative studies of such polymerization were also discussed.

  6. Crystal chemistry and the role of ionic radius in rare earth tetrasilicates: Ba2RE2Si4O12F2 (RE = Er3+-Lu3+) and Ba2RE2Si4O13 (RE = La3+-Ho3+).

    PubMed

    Fulle, Kyle; Sanjeewa, Liurukara D; McMillen, Colin D; Kolis, Joseph W

    2017-10-01

    Structural variations across a series of barium rare earth (RE) tetrasilicates are studied. Two different formulas are observed, namely those of a new cyclo-silicate fluoride, BaRE 2 Si 4 O 12 F 2 (RE = Er 3+ -Lu 3+ ) and new compounds in the Ba 2 RE 2 Si 4 O 13 (RE = La 3+ -Ho 3+ ) family, covering the whole range of ionic radii for the rare earth ions. The Ba 2 RE 2 Si 4 O 13 series is further subdivided into two polymorphs, also showing a dependence on rare earth ionic radius (space group P{\\overline 1} for La 3+ -Nd 3+ , and space group C2/c for Sm 3+ -Ho 3+ ). Two of the structure types identified are based on dinuclear rare earth units that differ in their crystal chemistries, particularly with respect to the role of fluorine as a structural director. The broad study of rare earth ions provides greater insight into understanding structural variations within silicate frameworks and the nature of f-block incorporation in oxyanion frameworks. The single crystals are grown from high-temperature (ca 953 K) hydrothermal fluids, demonstrating the versatility of the technique to access new phases containing recalcitrant rare earth oxides, enabling the study of structural trends.

  7. Hydrolysis mechanisms of BNPP mediated by facial copper(II) complexes bearing single alkyl guanidine pendants: cooperation between the metal centers and the guanidine pendants.

    PubMed

    Zhang, Xuepeng; Liu, Xueping; Phillips, David Lee; Zhao, Cunyuan

    2016-01-28

    The hydrolysis mechanisms of DNA dinucleotide analogue BNPP(-) (bis(p-nitrophenyl) phosphate) catalyzed by mononuclear/dinuclear facial copper(ii) complexes bearing single alkyl guanidine pendants were investigated using density functional theory (DFT) calculations. Active catalyst forms have been investigated and four different reaction modes are proposed accordingly. The [Cu2(L(1))2(μ-OH)](3+) (L(1) is 1-(2-guanidinoethyl)-1,4,7-triazacyclononane) complex features a strong μ-hydroxo mediated antiferromagnetic coupling between the bimetallic centers and the corresponding more stable open-shell singlet state. Three different reaction modes involving two catalysts and a substrate were proposed for L(1) entries and the mode 1 in which an inter-complex nucleophilic attack by a metal bound hydroxide was found to be more favorable. In the L(3)-involved reactions (L(3) is 1-(4-guanidinobutyl)-1,4,7-triazacyclononane), the reaction mode in which an in-plane intracomplex scissoring-like nucleophilic attack by a Cu(ii)-bound hydroxide was found to be more competitive. The protonated guanidine pendants in each proposed mechanism were found to play crucial roles in stabilizing the reaction structures via hydrogen bonds and in facilitating the departure of the leaving group via electrostatic attraction. The calculated results are consistent with the experimental observations that the Cu(ii)-L(3) complexes are hydrolytically more favorable than their L(1)-involved counterparts.

  8. Butterfly deformation modes in a photoexcited pyrazolate-bridged Pt complex measured by time-resolved x-ray scattering in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haldrup, Kristoffer; Dohn, Asmus O.; Shelby, Megan L.

    2016-08-27

    Pyrazolate-bridged di-nuclear Pt complexes represent a series of molecules with tunable absorption and emission properties that can be directly modulated by structural factors, such as the Pt-Pt distance. However, direct experimental information regarding the structure of the emissive triplet excited state has remained scarce. Using time-resolved wide angle X-ray scattering (WAXS), the molecular structure of the triplet excited state for one of the complexes [Pt(ppy)(μ-tBu 2pz)] 2 was obtained in a dilute (0.5 mM) toluene solution utilizing the monochromatic X-ray beamline 11IDD of the Advanced Photon Source. The excited state structural analysis was carried out based on the results frommore » both transient WAXS measurements and DFT calculations to shed light on the primary structural changes, in particular the Pt-Pt distance and ligand rotation taking place following the photo-excitation of [Pt(ppy)(μ-tBu 2pz)] 2 in toluene solution. We find that in the triplet excited state a pronounced contraction along the Pt-Pt axis has taken place accompanied by rotational motions of ppy ligands toward one another. Our results suggest that the contraction is larger than what has previously been reported, but are in good agreement with recent theoretical efforts and suggest the ppy moieties as targets for rational synthesis aimed at tuning the excited-state structure and properties« less

  9. Velocity of the high-spin low-spin interface inside the thermal hysteresis loop of a spin-crossover crystal, via photothermal control of the interface motion.

    PubMed

    Slimani, Ahmed; Varret, François; Boukheddaden, Kamel; Garrot, Damien; Oubouchou, Hassane; Kaizaki, Sumio

    2013-02-22

    We investigated by optical microscopy the thermal transition of the spin-crossover dinuclear iron(II) compound [(Fe(NCSe)(py)(2))(2)(m-bpypz)]. In a high-quality crystal the high-spin (HS) low-spin (LS) thermal transition took place with a sizable hysteresis, at ~108 K and ~116 K on cooling and heating, respectively, through the growth of a single macroscopic domain with a straight LS and HS interface. The interface orientation was almost constant and its propagation velocity was close to ~6 and 26 μ m s(-1) for the on-cooling and on-heating processes, respectively. We found that the motion of the interface was sensitive to the intensity of the irradiation beam of the microscope, through a photothermal effect. By fine-tuning the intensity we could stop and even reverse the interface motion. This way we stabilized a biphasic state of the crystal, and we followed the spontaneous motion of the interface at different temperatures inside the thermal hysteresis loop. This experiment gives access for the first time to an accurate determination of the equilibrium temperature in the case of thermal hysteresis--which was not accessible by the usual quasistatic investigations. The temperature dependence of the propagation velocity inside the hysteretic interval was revealed to be highly nonlinear, and it was quantitatively reproduced by a dynamical mean-field theory, which made possible an estimate of the macroscopic energy barrier.

  10. Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Coordinated Two-Stage Mn(II)/(III) and Mn(III)/(IV) Mechanism.

    PubMed

    Soldatova, Alexandra V; Romano, Christine A; Tao, Lizhi; Stich, Troy A; Casey, William H; Britt, R David; Tebo, Bradley M; Spiro, Thomas G

    2017-08-23

    The bacterial manganese oxidase MnxG of the Mnx protein complex is unique among multicopper oxidases (MCOs) in carrying out a two-electron metal oxidation, converting Mn(II) to MnO 2 nanoparticles. The reaction occurs in two stages: Mn(II) → Mn(III) and Mn(III) → MnO 2 . In a companion study , we show that the electron transfer from Mn(II) to the low-potential type 1 Cu of MnxG requires an activation step, likely forming a hydroxide bridge at a dinuclear Mn(II) site. Here we study the second oxidation step, using pyrophosphate (PP) as a Mn(III) trap. PP chelates Mn(III) produced by the enzyme and subsequently allows it to become a substrate for the second stage of the reaction. EPR spectroscopy confirms the presence of Mn(III) bound to the enzyme. The Mn(III) oxidation step does not involve direct electron transfer to the enzyme from Mn(III), which is shown by kinetic measurements to be excluded from the Mn(II) binding site. Instead, Mn(III) is proposed to disproportionate at an adjacent polynuclear site, thereby allowing indirect oxidation to Mn(IV) and recycling of Mn(II). PP plays a multifaceted role, slowing the reaction by complexing both Mn(II) and Mn(III) in solution, and also inhibiting catalysis, likely through binding at or near the active site. An overall mechanism for Mnx-catalyzed MnO 2 production from Mn(II) is presented.

  11. Crystal structure of bis-(μ-3-nitro-benzoato)-κ3O,O':O;κ3O:O,O'-bis-[bis-(3-cyano-pyridine-κN1)(3-nitro-benzoato-κ2O,O')cadmium].

    PubMed

    Hökelek, Tuncer; Akduran, Nurcan; Özen, Azer; Uğurlu, Güventürk; Necefoğlu, Hacali

    2017-03-01

    The asymmetric unit of the title compound, [Cd 2 (C 7 H 4 NO 4 ) 4 (C 6 H 4 N 2 ) 4 ], contains one Cd II atom, two 3-nitro-benzoate (NB) anions and two 3-cyano-pyridine (CPy) ligands. The two CPy ligands act as monodentate N(pyridine)-bonding ligands, while the two NB anions act as bidentate ligands through the carboxyl-ate O atoms. The centrosymmetric dinuclear complex is generated by application of inversion symmetry, whereby the Cd II atoms are bridged by the carboxyl-ate O atoms of two symmetry-related NB anions, thus completing the distorted N 2 O 5 penta-gonal-bipyramidal coordination sphere of each Cd II atom. The benzene and pyridine rings are oriented at dihedral angles of 10.02 (7) and 5.76 (9)°, respectively. In the crystal, C-H⋯N hydrogen bonds link the mol-ecules, enclosing R 2 2 (26) ring motifs, in which they are further linked via C-H⋯O hydrogen bonds, resulting in a three-dimensional network. In addition, π-π stacking inter-actions between parallel benzene rings and between parallel pyridine rings of adjacent mol-ecules [shortest centroid-to-centroid distances = 3.885 (1) and 3.712 (1) Å, respectively], as well as a weak C-H⋯π inter-action, may further stabilize the crystal structure.

  12. Self-assembly of Metallamacrocycles Employing a New Benzil-based Organometallic Bisplatinum(II) Acceptor.

    PubMed

    Roy, Bijan; Shanmugaraju, Sankarasekaran; Saha, Rupak; Mukherjee, Partha Sarathi

    2015-01-01

    A benzil-based semi-rigid dinuclear-organometallic acceptor 4,4'-bis[trans-Pt(PEt(3))(2)(NO(3))(ethynyl)]benzil (bisPt-NO(3)) containing a Pt-ethynyl functionality was synthesized in good yield and characterized by multinuclear NMR ((1)H, (31)P, and (13)C), electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction analysis of the iodide analogue bisPt-I. The stoichiometric (1:1) combination of the acceptor bisPt-NO(3) separately with four different ditopic donors (L(1)-L(4); L(1) = 9-ethyl-3,6-di(1H-imidazol-1-yl)-9H-carbazole, L(2) = 1,4-bis((1H-imidazol-1-yl)methyl)benzene, L(3) = 1,3-bis((1H-imidazol-1-yl)methyl)benzene and L(4) = 9,10-bis((1H-imidazol-1-yl) methyl)anthracene) yielded four [2 + 2] self-assembled metallacycles M(1)-M(4) in quantitative yields, respectively. All these newly synthesized assemblies were characterized by various spectroscopic techniques (NMR, IR, ESI-MS) and their sizes/shapes were predicted through geometry optimization employing the PM6 semi-empirical method. The benzil moiety was introduced in the backbone of the acceptor bisPt-NO(3) due to the interesting structural feature of long carbonyl C-C bond (∼1.54 Å), which enabled us to probe the role of conformational flexibility on size and shapes of the resulting coordination ensembles.

  13. Versatile chelating behavior of benzil bis(thiosemicarbazone) in zinc, cadmium, and nickel complexes.

    PubMed

    López-Torres, Elena; Mendiola, Ma Antonia; Pastor, César J; Pérez, Beatriz Souto

    2004-08-23

    Reactions of benzil bis(thiosemicarbazone), LH(6), with M(NO(3))(2).nH(2)O (M = Zn, Cd, and Ni), in the presence of LiOH.H(2)O, show the versatile behavior of this molecule. The structure of the ligand, with the thiosemicarbazone moieties on opposite sides of the carbon backbone, changes to form complexes by acting as a chelating molecule. Complexes of these metal ions with empirical formula [MLH(4)] were obtained, although they show different molecular structures depending on their coordinating preferences. The zinc complex is the first example of a crystalline coordination polymer in which a bis(thiosemicarbazone) acts as bridging ligand, through a nitrogen atom, giving a 1D polymeric structure. The coordination sphere is formed by the imine nitrogen and sulfur atoms, and the remaining position, in a square-based pyramid, is occupied by an amine group of another ligand. The cadmium derivative shows the same geometry around the metal ion but consists of a dinuclear structure with sulfur atoms acting as a bridge between the metal ions. However, in the nickel complex LH(6) acts as a N(2)S(2) ligand yielding a planar structure for the nickel atom. The ligand and its complexes have been characterized by X-ray crystallography, microanalysis, mass spectrometry, IR, (1)H, and (13)C NMR spectroscopies and for the cadmium complex by (113)Cd NMR in solution and in the solid state.

  14. Self-recognition of the racemic ligand in the formation of homochiral dinuclear V(V) complex: In vitro anticancer activity, DNA and HSA interaction.

    PubMed

    Kazemi, Zahra; Amiri Rudbari, Hadi; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Kajani, Abolghasem Abbasi; Azimi, Gholamhassan

    2017-07-28

    The reaction of a racemic mixture of Schiff base tridentate ligand with vanadium(V) affords homochiral vanadium complex, (VO(R-L)) 2 O and (VO(S-L)) 2 O due to ligand "self-recognition" process. The formation of homochiral vanadium complex was confirmed by 1 H NMR, 13 C NMR and X-ray diffraction. The HSA- and DNA-binding of the resultant complex is assessed by absorption, fluorescence and circular dichroism (CD) spectroscopy methods. Based on the results, the HSA- and DNA-binding constant, K b , were found to be 8.0 × 10 4 and 1.9 × 10 5  M -1 , respectively. Interestingly, in vitro cytotoxicity assay revealed the potent anticancer activity of this complex on two prevalent cancer cell lines of MCF-7 (IC50 value of 14 μM) and HeLa (IC50 value of 36 μM), with considerably low toxicity on normal human fibroblast cells. The maximum cell mortality of 12.3% obtained after 48 h incubation of fibroblast cells with 100 μM of the complex. Additionally, the specific DNA- and HSA-binding was also shown using molecular docking method. The synthesized complex displayed high potential for biomedical applications especially for development of novel and efficient anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Bimetallic catalysis involving dipalladium(I) and diruthenium(I) complexes.

    PubMed

    Das, Raj K; Saha, Biswajit; Rahaman, S M Wahidur; Bera, Jitendra K

    2010-12-27

    Dipalladium(I) and diruthenium(I) compounds bridged by two [{(5,7-dimethyl-1,8-naphthyridin-2-yl)amino}carbonyl]ferrocene (L) ligands have been synthesized. The X-ray structures of [Pd(2)L(2)][BF(4)](2) (1) and [Ru(2)L(2)(CO)(4)][BF(4)](2) (2) reveal dinuclear structures with short metal-metal distances. In both of these structures, naphthyridine bridges the dimetal unit, and the site trans to the metal-metal bond is occupied by weakly coordinating oxygen from the amido fragment. The catalytic utilities of these bimetallic compounds are evaluated. Compound 1 is an excellent catalyst for phosphine-free, Suzuki cross-coupling reactions of aryl bromides with arylboronic acids and provides high yields in short reaction times. Compound 1 is also found to be catalytically active for aryl chlorides, although the corresponding yields are lower. A bimetallic mechanism is proposed, which involves the oxidative addition of aryl bromide across the Pd-Pd bond and the bimetallic reductive elimination of the product. Compound 1 is also an efficient catalyst for the Heck cross-coupling of aryl bromides with styrenes. The mechanism for aldehyde olefination with ethyl diazoacetate (EDA) and PPh(3), catalyzed by 2, has been fully elucidated. It is demonstrated that 2 catalyzes the formation of phosphorane utilizing EDA and PPh(3), which subsequently reacts with aldehyde to produce a new olefin and phosphine oxide. The efficacy of bimetallic complexes in catalytic organic transformations is illustrated in this work.

  16. Four new 3D metal-organic frameworks constructed by the asymmetrical pentacarboxylate: gas sorption behaviour and magnetic properties.

    PubMed

    Yan, Yang-Tian; Zhang, Wen-Yan; Wu, Yun-Long; Li, Jiang; Xi, Zheng-Ping; Wang, Yao-Yu; Hou, Lei

    2016-10-04

    By using an asymmetrical rigid pentacarboxylic acid ligand, 2,4-di(3',5'-dicarboxylphenyl)benzoic acid (H 5 L), four new three-dimensional (3D) metal-organic frameworks (MOFs), namely {[Cu 2 (HL)(H 2 O) 2 ]·2DMF·2H 2 O} n (1), {[Co 2 (L)(DMA)]·H 2 N(Me) 2 } n (2), {[Co 2 (L)(H 2 O)]·H 2 N(Me) 2 } n (3), {[Mn 2 (L)(DMF)(H 2 O)]·H 2 N(Me) 2 } n (4), were solvothermally synthesized. H 5 L in 1-4 shows different coordination modes and can easily form various metal clusters (secondary building units, SBUs) in the final structures. 1 is a 3D porous framework with a (4,4)-connected pts topology based on the [Cu 2 (COO) 4 ] paddlewheel SBU, wherein six SBUs are connected by twelve HL 4- to get an unprecedented Cu 12 hendecahedron nanocage. 2-4 possess similar dinuclear [M 2 (COO) 5 ] SBUs (M = Co, Mn), which are further extended by L 5- to give rise to 3D frameworks with the uncommon (5,5)-connected nia-5,5-P2 1 /c and bnn topologies. In addition, the desolvated framework of 1 contains polar channels decorated with uncoordinated carboxylate groups, leading to selective adsorption for CO 2 over CH 4 at 195, 273 and 298 K. Moreover, the magnetic properties of 1-4 show that there exist antiferromagnetic interactions between metal ions.

  17. A combination of experimental and computational studies on a new oxamido bridged dinuclear copper(II) complex

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Arnab; Saha, Pinki; Saha, Baptu; Maiti, Debasish; Mitra, Partha; Naskar, Jnan Prakash; Chowdhury, Shubhamoy

    2017-10-01

    Reaction of N,N‧-bis(2-pyridylmethyl)oxamide (H2L), and copper(II)nitrate trihydrate in 1:2 M proportion in methanol generates oxamido bridged dimeric copper(II) compound, [Cu2L(H2O)2(NO3)2]H2O (1a.H2O) in good yield. 1a.H2O has been characterized by C, H and N microanalyses, copper estimation, FT-IR, UV-Vis and room temperature magnetic susceptibility measurements. The X-ray crystal structure of 1a.H2O has been determined. Bond Valence Sum (BVS) analysis was undertaken to assign the oxidation state of each copper center in 1a. Thermal behavior of 1a.H2O has been studied by TGA. Electrochemical studies on 1a.H2O shows single electron two step sequential reductions of Cu(II) to Cu(I) in dimethyl sulphoxide. Our optimized geometry of 1a as obtained through conceptual Density Functional Theory (DFT) corroborates well with that obtained from single crystal X-ray diffraction. TD-DFT method was also adopted to delve into the electronic properties of 1a. We have taken recourse to employ our optimized structure of 1a to investigate systematically the relative stabilities of various dimeric Cu(II) complexes obtained through variation of ligands bearing uni-donor anion through substitution of nitrate in 1a. The in vitro antibacterial potentiality of 1a.H2O was also tested against some bacterial cell lines, pathogenic to mankind.

  18. Unexpected ferromagnetic interaction in a new tetranuclear copper(II) complex: synthesis, crystal structure, magnetic properties, and theoretical studies.

    PubMed

    Fondo, Matilde; García-Deibe, Ana M; Corbella, Monstserrat; Ruiz, Eliseo; Tercero, Javier; Sanmartín, Jesús; Bermejo, Manuel R

    2005-07-11

    The new tetranuclear carbonate complex [Cu2L)2(CO3)] x 8H2O (1 x 8H2O) (H3L = (2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) has been obtained by two different synthetic routes and fully characterized. Recrystallization of 1 x 8H2O in methanol yields single crystals of {[(Cu2L)2(CO3)]}2 x 12H2O (1 x 6H2O), suitable for X-ray diffraction studies. The crystal structure of 1 x 6H2O shows two crystallographically different tetranuclear molecules in the asymmetric unit, 1a and 1b. Both molecules can be understood as self-assembled from two dinuclear [Cu2L]+ cations, joined by a mu4-eta(2):eta(1):eta(1) carbonate ligand. The copper atoms of each crystallographically different [(Cu2L)2(CO3)] molecule present miscellaneous coordination polyhedra: in both 1a and 1b, two metal centers are in square pyramidal environments, one displays a square planar chromophore and the other one has a geometry that can be considered as an intermediate between square pyramid and trigonal bipyramid. Magnetic studies reveal net intramolecular ferromagnetic coupling between the metal atoms. Density functional calculations allow the assignment of the different magnetic coupling constants and explain the unexpected ferromagnetic behavior, because of the presence of an unusual NCN bridging moiety and countercomplementarity of the phenoxo (or carbonate) and NCN bridges.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, Erik V.; Poineau, Frederic; Todorova, Tanya K.

    The dinuclear rhenium(II) complex Re 2Br 4(PMe 3) 4 was prepared from the reduction of [Re 2Br 8] 2– with ( n-Bu 4N)BH 4 in the presence of PMe 3 in propanol. The complex was characterized by single-crystal X-ray diffraction (SCXRD) and UV–visible spectroscopy. It crystallizes in the monoclinic C2/c space group and is isostructural with its molybdenum and technetium analogues. The Re–Re distance (2.2521(3) Å) is slightly longer than the one in Re 2Cl 4(PMe 3) 4 (2.247(1) Å). The molecular and electronic structure of Re 2X 4(PMe 3) 4 (X = Cl, Br) were studied by multiconfigurational quantummore » chemical methods. The computed ground-state geometry is in excellent agreement with the experimental structure determined by SCXRD. The calculated total bond order (2.75) is consistent with the presence of an electron-rich triple bond and is similar to the one found for Re 2Cl 4(PMe 3) 4. The electronic absorption spectrum of Re 2Br 4(PMe 3) 4 was recorded in benzene and shows a series of low-intensity bands in the range 10 000–26 000 cm –1. The absorption bands were assigned based on calculations of the excitation energies with the multireference wave functions followed by second-order perturbation theory using the CASSCF/CASPT2 method. As a result, calculations predict that the lowest energy band corresponds to the δ* → σ* transition, while the next higher energy bands were attributed to the δ* → π*, δ → σ*, and δ → π* transitions.« less

  20. CASPT2 study of inverse sandwich-type dinuclear Cr(I) and Fe(I) complexes of the dinitrogen molecule: significant differences in spin multiplicity and coordination structure between these two complexes.

    PubMed

    Nakagaki, Masayuki; Sakaki, Shigeyoshi

    2014-02-20

    Inverse sandwich-type complexes (ISTCs), (μ-N2)[M(AIP)]2 (AIPH = (Z)-1-amino-3-imino-prop-1-ene; M = Cr and Fe), were investigated with the CASPT2 method. In the ISTC of Cr, the ground state takes a singlet spin multiplicity. However, the singlet to nonet spin states are close in energy to each other. The thermal average of effective magnetic moments (μeff) of these spin multiplicities is close to the experimental value. The η(2)-side-on coordination structure of N2 is calculated to be more stable than the η(1)-end-on coordination one. This is because the d-orbital of Cr forms a strong dπ-π* bonding interaction with the π* orbital of N2 in molecular plane. In the ISTC of Fe, on the other hand, the ground state takes a septet spin multiplicity, which agrees well with the experimentally reported μeff value. The η(1)-end-on structure of N2 is more stable than the η(2)-side-on structure. In the η(1)-end-on structure, two doubly occupied d-orbitals of Fe can form two dπ-π* bonding interactions. The negative spin density is found on the bridging N2 ligand in the Fe complex but is not in the Cr complex. All these interesting differences between ISTCs of Cr and Fe are discussed on the basis of the electronic structure and bonding nature.

  1. Scanning tunneling microscopy studies of pulse deposition of dinuclear organometallic molecules on Au(111)

    NASA Astrophysics Data System (ADS)

    Guo, Song; Alex Kandel, S.

    2008-01-01

    Ultrahigh-vacuum scanning tunneling microscopy (STM) was used to study trans-[Cl(dppe)2Ru(CC)6Ru(dppe)2Cl] [abbreviated as Ru2, diphenylphosphinoethane (dppe)] on Au(111). This large organometallic molecule was pulse deposited onto the Au(111) surface under ultrahigh-vacuum (UHV) conditions. UHV STM studies on the prepared sample were carried out at room temperature and 77K in order to probe molecular adsorption and to characterize the surface produced by the pulse deposition process. Isolated Ru2 molecules were successfully imaged by STM at room temperature; however, STM images were degraded by mobile toluene solvent molecules that remain on the surface after the deposition. Cooling the sample to 77K allows the solvent molecules to be observed directly using STM, and under these conditions, toluene forms organized striped domains with regular domain boundaries and a lattice characterized by 5.3 and 2.7Å intermolecular distances. When methylene chloride is used as the solvent, it forms analogous domains on the surface at 77K. Mild annealing under vacuum causes most toluene molecules to desorb from the surface; however, this annealing process may lead to thermal degradation of Ru2 molecules. Although pulse deposition is an effective way to deposit molecules on surfaces, the presence of solvent on the surface after pulse deposition is unavoidable without thermal annealing, and this annealing may cause undesired chemical changes in the adsorbates under study. Preparation of samples using pulse deposition must take into account the characteristics of sample molecules, solvent, and surfaces.

  2. A hexanuclear gold carbonyl cluster† †Dedicated to Prof. Dr Pablo Espinet on the occasion of his 65th birthday. Abbreviations are defined prior to the Acknowledgements section. As defined in ref. 1, “clusters are molecular units which may contain small or large numbers of similar atoms where there are several short internuclear distances between atom pairs.” This definition is fully compatible with that originally given by F. A. Cotton (ref. 2). ‡ ‡Electronic supplementary information (ESI) available: Experimental procedures, comments on the X-ray structure determinations and 3D Hirschfeld surfaces for the ions constituting the crystal of 4. CCDC 1049919–1049921. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc01578b Click here for additional data file. Click here for additional data file.

    PubMed Central

    Martínez-Salvador, Sonia; Falvello, Larry R.; Martín, Antonio

    2015-01-01

    The hexanuclear gold carbonyl cluster [PPh4]2[Au6(CF3)6Br2(CO)2] (4) has been obtained by spontaneous self-assembly of the following independent units: CF3AuCO (1) and [PPh4][Br(AuCF3)2] (3). The cyclo-Au6 aggregate 4, in which the components are held together by unassisted, fairly strong aurophilic interactions (Au···Au ∼310 pm), exhibits a cyclohexane-like arrangement with chair conformation. These aurophilic interactions also result in significant ν(CO) lowering: from 2194 cm–1 in the separate component 1 to 2171 cm–1 in the mixed aggregate 4. Procedures to prepare the single-bridged dinuclear component 3 as well as the mononuclear derivative [PPh4][CF3AuBr] (2) are also reported. PMID:28717445

  3. Synthesis, characterization, DFT calculations and antibacterial activity of palladium(II) cyanide complexes with thioamides

    NASA Astrophysics Data System (ADS)

    Ahmad, Saeed; Nadeem, Shafqat; Anwar, Aneela; Hameed, Abdul; Tirmizi, Syed Ahmed; Zierkiewicz, Wiktor; Abbas, Azhar; Isab, Anvarhusein A.; Alotaibi, Mshari A.

    2017-08-01

    Palladium(II) cyanide complexes of thioamides (or thiones) having the general formula PdL2(CN)2, where L = Thiourea (Tu), Methylthiourea (Metu), N,N‧-Dimethylthiourea (Dmtu), Tetramethylthiourea (Tmtu), 2-Mercaptopyridine (Mpy) and 2-Mercaptopyrimidine (Mpm) were prepared by reacting K2[PdCl4] with potassium cyanide and thioamides in the molar ratio of 1:2:2. The complexes were characterized by elemental analysis, thermal and spectroscopic methods (IR, 1H and 13C NMR). The structures of three of the complexes were predicted by DFT calculations. The appearance of a band around 2100 cm-1 in IR and resonances around 120-130 ppm in the 13C NMR spectra indicated the coordination of cyanide to palladium(II). More than one resonances were observed for CN- carbon atoms in 13C NMR indicating the existence of equilibrium between different species in solution. DFT calculations revealed that in the case of the palladium(II) complex of Tmtu, the ionic dinuclear [Pd(Tmtu)4][Pd(CN)4] form was more stable than the dimer of mononuclear complex [Pd(Tmtu)2(CN)2] by 0.91 kcal mol-1, while for the complexes of Tu or Mpy ligands, the nonionic [Pd(L)2(CN)2] forms were more stable than the corresponding [Pd(L)4][Pd(CN)4] complexes by 1.26 and 6.49 kcal mol-1 for L = Tu and Mpy, respectively. The complexes were screened for antibacterial effects and some of them showed significant activities against both gram positive as well as gram negative bacteria.

  4. The role of hydroxo-bridged dinuclear species and the influence of "innocent" buffers in the reactivity of cis-[Co(III)(cyclen)(H₂O)₂]³⁺ and [Co(III)(tren)(H₂O)₂]³⁺ complexes with biologically relevant ligands at physiological pH.

    PubMed

    Basallote, Manuel G; Martínez, Manuel; Vázquez, Marta

    2014-07-28

    In view of the relevance of the reactivity of inert tetraamine Co(III) complexes having two substitutionally active cis positions capable of interact with biologically relevant ligands, the study of the reaction of cis-[Co(cyclen)(H2O)2](3+) and [Co(tren)(H2O)2](3+) with chlorides, inorganic phosphate and 5'-CMP (5'-cytidinemonophosphate) has been pursued at physiological pH. The results indicate that, in addition to the actuation of the expected labilising conjugate-base mechanism, the formation of mono and inert bis hydroxo-bridged species is relevant for understanding their speciation and reactivity. The reactivity pattern observed also indicates the key role played by the "innocent" buffers frequently used in most in vitro studies, which can make the results unreliable in many cases. The differences between the reactivity of inorganic and biologically relevant phosphates has also been found to be remarkable, with outer-sphere hydrogen bonding interactions being a dominant factor for the process. While for the inorganic phosphate substitution process the formation of μ-η(2)-OPO2O represents the termination of the reactivity monitored, for 5'-CMP only the formation of η(1)-OPO3 species is observed, which evolve with time to the final dead-end bis hydroxo-bridged complexes. The promoted hydrolysis of the 5'-CMP phosphate has not been observed in any of the processes studied.

  5. Structure-based function prediction of the expanding mollusk tyrosinase family

    NASA Astrophysics Data System (ADS)

    Huang, Ronglian; Li, Li; Zhang, Guofan

    2017-11-01

    Tyrosinase (Ty) is a common enzyme found in many different animal groups. In our previous study, genome sequencing revealed that the Ty family is expanded in the Pacific oyster ( Crassostrea gigas). Here, we examine the larger number of Ty family members in the Pacific oyster by high-level structure prediction to obtain more information about their function and evolution, especially the unknown role in biomineralization. We verified 12 Ty gene sequences from Crassostrea gigas genome and Pinctada fucata martensii transcriptome. By using phylogenetic analysis of these Tys with functionally known Tys from other molluscan species, eight subgroups were identified (CgTy_s1, CgTy_s2, MolTy_s1, MolTy-s2, MolTy-s3, PinTy-s1, PinTy-s2 and PviTy). Structural data and surface pockets of the dinuclear copper center in the eight subgroups of molluscan Ty were obtained using the latest versions of prediction online servers. Structural comparison with other Ty proteins from the protein databank revealed functionally important residues (HA1, HA2, HA3, HB1, HB2, HB3, Z1-Z9) and their location within these protein structures. The structural and chemical features of these pockets which may related to the substrate binding showed considerable variability among mollusks, which undoubtedly defines Ty substrate binding. Finally, we discuss the potential driving forces of Ty family evolution in mollusks. Based on these observations, we conclude that the Ty family has rapidly evolved as a consequence of substrate adaptation in mollusks.

  6. Phenoxo bridged dinuclear Zn(II) Schiff base complex as new precursor for preparation zinc oxide nanoparticles: Synthesis, characterization, crystal structures and photoluminescence studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeednia, S., E-mail: sami_saeednia@yahoo.com; Iranmanesh, P.; Ardakani, M. Hatefi

    Highlights: • A novel nano-scale Zn(II) complex was synthesized by solvothermal method. • Chemical structure of the nanostructures was characterized as well as bulk complex. • The photoluminescence property of the complex was investigated at room temperature. • The thermogravimetry and differential thermal analysis were carried out. • Thermal decomposition of the nanostructures was prepared zinc oxide nanoparticles. - Abstract: Nanoparticles of a novel Zn(II) Schiff base complex, [Zn(HL)NO{sub 3}]{sub 2} (1), (H{sub 2}L = 2-[(2-hydroxy-propylimino) methyl] phenol), was synthesized by using solvothermal method. Shape, morphology and chemical structure of the synthesized nanoparticles were characterized by scanning electron microscopy (SEM),more » X-ray powder diffraction (XRD), Fourier Transform Infrared Spectoscopy (FT-IR) and UV–vis spectroscopy. Structural determination of compound 1 was determined by single-crystal X-ray diffraction. The results were revealed that the zinc complex is a centrosymmetric dimer in which deprotonated phenolates bridge the two five-coordinate metal atoms and link the two halves of the dimer. The thermal stability of compound 1 was analyzed by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effect of the initial substrates concentration and reaction time on size and morphology of compound 1 nanostructure was investigated as well. Furthermore, the luminescent properties of the complex 1 were examined. ZnO nanoparticles with diameter between 15 and 20 nm were simply synthesized by solid-state transformation of compound 1 at 700 °C.« less

  7. Tuning of Exchange Coupling and Switchable Magnetization Dynamics by Displacing the Bridging Ligands Observed in Two Dimeric Manganese(III) Compounds

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-Yu; Cen, Pei-Pei; Wu, Li-Zhou; Li, Fei-Fei; Song, Wei-Ming; Xie, Gang; Chen, San-Ping

    2017-03-01

    Two Mn(III)-based dimers, [Mn2(bpad)2(CH3O)4]n (1) and [Mn2(bpad)2(pa)2]n·2H2O (2) (Hbpad = N3-benzoylpyridine-2-carboxamidrazone, H2pa = phthalic acid), have been assembled from a tridentate Schiff-base chelator and various anionic coligands. Noteworthily, compound 1 could be identified as a reaction precursor to transform to 2 in the presence of phthalic acid, resulting in a rarely structural conversion process in which the bridges between intradimer Mn(III) ions alter from methanol oxygen atom with μ2-O mode in 1 (Mn Mn distance of 3.046 Å) to syn-anti carboxylate in 2 (Mn Mn distance of 4.043 Å), while the Mn(III) centers retain hexa-coordinated geometries with independently distorted octahedrons in two compounds. The dc magnetic determinations reveal that ferromagnetic coupling between two metal centers with J = 1.31 cm-1 exists in 1, whereas 2 displays weak antiferromagnetic interactions with the coupling constant J of -0.56 cm-1. Frequency-dependent ac susceptibilities in the absence of dc field for 1 suggest slow relaxation of the magnetization with an energy barrier of 13.9 K, signifying that 1 features single-molecule magnet (SMM) behavior. This work presents a rational strategy to fine-tune the magnetic interactions and further magnetization dynamics of the Mn(III)-containing dinuclear units through small structural variations driven by the ingenious chemistry.

  8. Dimeric Fe (II, III) complex of quinoneoxime as functional model of PAP enzyme: Mössbauer, magneto-structural and DNA cleavage studies

    NASA Astrophysics Data System (ADS)

    Salunke-Gawali, Sunita; Ahmed, Khursheed; Varret, François; Linares, Jorge; Zaware, Santosh; Date, Sadgopal; Rane, Sandhya

    2008-07-01

    Purple acid phosphatase, ( PAP), is known to contain dinuclear Fe2 + 2, + 3 site with characteristic Fe + 3 ← Tyr ligand to metal charge transfer in coordination. Phthiocoloxime (3-methyl-2-hydroxy-1,4-naphthoquinone-1-oxime) ligand L, mimics (His/Tyr) ligation with controlled and unique charge transfers resulting in valence tautomeric coordination with mixed valent diiron site in model compound Fe-1: [μ-OH-Fe2 + 2, + 3 ( o-NQCH3ox) ( o-NSQCH3ox)2 (CAT) H2O]. Fe-2: [Fe + 3( o-NQCH3ox) ( p-NQCH3ox)2]2 a molecularly associated dimer of phthiocoloxime synthesized for comparison of charge transfer. 57Fe Mössbauer studies was used to quantitize unusual valences due to ligand in dimeric Fe-1 and Fe-2 complexes which are supported by EPR and SQUID studies. 57Fe Mössbauer spectra for Fe-1 at 300 K indicates the presence of two quadrupole split asymmetric doublets due to the differences in local coordination geometries of [Fe + 3]A and [Fe + 2]B sites. The hyperfine interaction parameters are δ A = 0.152, (Δ E Q)A = 0.598 mm/s with overlapping doublet at δ B = 0.410 and (Δ E Q)B = 0.468 mm/s. Due to molecular association tendency of ligand, dimer Fe-2 possesses 100% Fe + 3(h.s.) hexacoordinated configuration with isomer shift δ = 0.408 mm/s. Slightly distorted octahedral symmetry created by NQCH3ox ligand surrounding Fe + 3(h.s.) state generates small field gradient indicated by quadrupole split Δ E Q = 0.213 mm/s. Decrease of isomer shifts together with variation of quadrupole splits with temperature in Fe-1 dimer compared to Fe-2 is result of charge transfers in [Fe2 + 2, + 3 SQ] complexes. EPR spectrum of Fe-1 shows two strong signals at g 1 = 4.17 and g 2 = 2.01 indicative of S = 3/2 spin state with an intermediate spin of Fe + 3(h.s.) configuration. SQUID data of χ _m^{corr} .T were best fitted by using HDVV spin pair model S = 2, 3/2 resulting in antiferromagnetic exchange ( J = -13.5 cm - 1 with an agreement factor of R = 1.89 × 10 - 5). The lower J value of antiferromagnetic exchange leads to Fe+3μ-(OH) Fe + 2 bridging in Fe-1 dimer instead of μ-oxo bridge. The intermolecular association through H-bonds may lead to weakly coupled antiferromagnetic interaction between two Fe-2 molecules having Fe + 3(h.s.) centers. Using S = 5/2, 5/2 spin pair model we obtained best-fitted parameters such as J = -12.4 cm - 1, g = 2.3 with R = 3.58 × 10 - 5. Synthetic strategy results in non-equivalent iron sites in Fe-1 dimer analogues to PAP enzyme hence its reconstitution results in pUC-19 DNA cleavage activity, as physiological functionality of APase. It is compared with nuclease activity of Fe-2 RAPase.

  9. Characterization of the 2′,3′ cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage λ phosphatase

    PubMed Central

    Keppetipola, Niroshika; Shuman, Stewart

    2007-01-01

    Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5′ and 3′ end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage λ phosphatase (λ-Pase). CthPnkp is a Ni2+/Mn2+-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn2+-dependent 2′,3′ cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2′,3′ cyclic phosphate to a 3′,5′ cyclic phosphate. A single H189D mutation imposes strict specificity for a 2′,3′ cyclic phosphate, which is cleaved to form a single 2′-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and kcat. We also characterize a previously unrecognized phosphodiesterase activity of λ-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. λ-Pase also has cyclic phosphodiesterase activity with nucleoside 2′,3′ cyclic phosphates, which it hydrolyzes to yield a mixture of 2′-NMP and 3′-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire. PMID:17986465

  10. Metallohydrolase biomimetics with catalytic and structural flexibility.

    PubMed

    Mendes, Luisa L; Englert, Daniel; Fernandes, Christiane; Gahan, Lawrence R; Schenk, Gerhard; Horn, Adolfo

    2016-11-22

    The structural and functional properties of zinc(ii) complexes of two nitrogen rich polydentate ligands, HTPDP = 1,3-bis(bis-pyridin-2-ylmethylamino)propan-2-ol and HTPPNOL = N,N,N'-tris-(2-pyridylmethyl)-1,3-diaminopropan-2-ol, are compared. HTPDP is a hepta-dentate ligand with four pyridyl groups attached to a 1,3-diaminopropan-2-ol backbone while HTPPNOL contains only three pyridyl groups. In reactions with Zn(ClO 4 ) 2 , HTPDP forms a dinuclear zinc compound [Zn 2 (TPDP)(OAc)](ClO 4 ) 2 , 1. On the other hand, mononuclear [Zn(HTPPNOL)](ClO 4 ) 2 , 2, and tetranuclear [Zn 4 (TPPNOL) 2 (OAc) 3 ](ClO 4 ) 3 , 3, complexes were isolated with the ligand HTPPNOL. Kinetic measurements with the substrate bis(2,4-dinitrophenyl)phosphate (BDNPP) revealed that compound 1 (k cat = 31.4 × 10 -3 min -1 ) is more reactive than 3 (k cat = 7.7 × 10 -3 min -1 ) at pH = 8.5, whilst the mononuclear compound 2 is inactive. Compound 1 displays a typical steady-state kinetic behaviour, while compound 3 exhibits steady-state behaviour only ∼120 s after starting the reaction, preceded by a burst-phase. 31 P NMR studies confirm that 1 can promote the hydrolysis of both ester bonds in BDNPP, generating the monoester DNPP and inorganic phosphate in the process. In contrast, DNPP is not a substrate for 3. The crystal structure of the complex formed by 3 and DNPP reveals the formation of a tetranuclear zinc complex [Zn 4 (TPPNOL) 2 (DNPP) 2 ](ClO 4 ) 2 , 4, in which the phosphate moiety of DNPP adopts an unusual tridentate μ-η 1 :η 1 :η 1 coordination mode.

  11. Activation of SO2 with [(η(5) -C5 Me5 )2 Ln(THF)2 ] (Ln=Eu, Yb) leading to dithionite and sulfinate complexes.

    PubMed

    Klementyeva, Svetlana V; Gamer, Michael T; Schmidt, Anna-Corina; Meyer, Karsten; Konchenko, Sergey N; Roesky, Peter W

    2014-10-13

    The reaction of decamethylytterbocene [(η(5) -C5 Me5 )2 Yb(THF)2 ] with SO2 at low temperature gave two new compounds, namely, the Yb(III) dithionite/sulfinate complex [{(η(5) -C5 Me5 )2 Yb(μ3 ,1κ(2) O(1,3) ,2κ(3) O(2,2',4) -S2 O4 )}2 {(η(5) -C5 Me5 )Yb(μ,1κO,2κO'-C5 Me5 SO2 )}2 ] (1) and the Yb(III) dithionite complex [{(η(5) -C5 Me5 )2 Yb}2 (μ,1κ(2) O(1,3) ,2κ(2) O(2,4) -S2 O4 )] (2). After extraction of 1, the mixture was heated to give the dinuclear tetrasulfinate complex [{(η(5) -C5 Me5 )Yb}2 (μ,κO,κO'-C5 Me5 SO2 )4 ] (3 a). In contrast, from the reaction of [(η(5) -C5 Me5 )2 Eu(THF)2 ] with SO2 only the tetrasulfinate complex [{(η(5) -C5 Me5 )Eu}2 (μ,κO,κO'-C5 Me5 SO2 )4 ] (3 b) was isolated. Two major reaction pathways were observed: 1) reductive coupling of two SO2 molecules to form the dithionite anion S2 O4 (2-) ; and 2) nucleophilic attack of one metallocene C5 Me5 ligand on the sulfur atom of SO2 . The compounds presented are the first dithionite and sulfinate complexes of the f-elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winghart, Marc-Oliver, E-mail: marc-oliver.winghart@kit.edu; Unterreiner, Andreas-Neil; Yang, Ji-Ping

    2016-02-07

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet {sup 1}A{sub 2u} state and concomitant rise in population of the triplet {sup 3}A{sub 2u} state, via sub-picosecond intersystem crossing (ISC). Wemore » find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet {sup 1}A{sub 2u} state takes only a few picoseconds, ESETD from the triplet {sup 3}A{sub 2u} state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} is the first example of a photoexcited multianion for which ESETD has been observed following ISC.« less

  13. (Pentamethylcyclopentadienyl)molybdenum(IV) chloride. Synthesis, structure, and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abugideiri, F.; Desai, J.U.; Gordon, J.C.

    1994-08-17

    Three different syntheses of trichloro(pentamethylcyclopentadienyl)molybdenum(IV) are described, I.E. (1) thermal decarbonylation of Cp{sup *}MoCl{sub 3}(CO){sub 2}, (2) reduction of Cp{sup *}MoCl{sub 4}, and (3) chlorination of [Cp{sup *}MoCl{sub 2}]{sub 2}. A fourth route (conproportionation of [Cp{sup *}MoCl{sub 2}]{sub 2} and Cp{sup *}MoCl{sub 4}) has been investigated by {sup 1}H-NMR. The product has a dinuclear, dichloro-bridged structure with a four-legged piano stool geometry around each metal atom; the two piano stools have a mutual anti arrangement and the two metals are 3.888(1) {Angstrom} from each other, indicating the absence of a direct metal-metal bonding interaction. Crystal data: monoclinic, space group P2{submore » 1}/n, a = 8.424(1) {Angstrom}, b = 13.323(4) {Angstrom}, c = 11.266(2) {Angstrom}, {beta} = 93.87(1){degrees}, V = 1261.6(8) {Angstrom}{sup 3}, Z = 2, R = 0.038, R{sub w} = 0.057 for 127 parameters and 1350 observed reflections with F{sub o}{sup 2} > 3{sigma}(F{sub o}{sup 2}). The temperature dependent magnetic moment of the material could be fit to the sum of two Bleany-Bowers equations. [Cp{sup *}MoCl{sub 3}]{sub 2} reacts readily with CO, Cl{sup {minus}}, and PMe{sub 3} to afford Cp{sup *}MoCl{sub 3}(CO){sub 2}, [Cp{sup *}MoCl{sub 4}]{sup {minus}}, and Cp{sup *}MoCl{sub 3}(PMe{sub 3}), respectively, while the reaction with 1,2-bis(diphenylphosphino)ethane (dppe) affords the reduction product Cp{sup *}MoCl{sub 2}(dppe).« less

  14. Pt–Mg, Pt–Ca, and Pt–Zn lantern complexes and metal-only donor–acceptor interactions [Pt-Mg Pt-Ca and Pt-Zn compounds with metal-only donor-acceptor interactions

    DOE PAGES

    Baddour, Frederick G.; Hyre, Ariel S.; Guillet, Jesse L.; ...

    2016-12-12

    Here, Pt-based heterobimetallic lantern complexes of the form [PtM(SOCR) 4(L)] have been shown previously to form intermolecular metallophilic interactions and engage in antiferromagnetic coupling between lanterns having M atoms with open shell configurations. In order to understand better the influence of the carboxylate bridge and terminal ligand on the electronic structure, as well as the metal–metal interactions within each lantern unit, a series of diamagnetic lantern complexes, [PtMg(SAc) 4(OH 2)] (1), [PtMg(tba) 4(OH 2)] (2), [PtCa(tba) 4(OH 2)] (3), [PtZn(tba) 4(OH 2)] (4), and a mononuclear control (Ph 4P) 2[Pt(SAc) 4] (5) have been synthesized. Crystallographic data show close Pt–Mmore » contacts enforced by the lantern structure in each dinuclear case. 195Pt-NMR spectroscopy of 1–4, (Ph 4P) 2[Pt(SAc) 4] (5), and several previously reported lanterns revealed a strong chemical shift dependence on the identity of the second metal (M), mild influence by the thiocarboxylate ligand (SOCR; R = CH 3 (thioacetate, SAc), C 6H 5 (thiobenzoate, tba)), and modest influence from the terminal ligand (L). Fluorescence spectroscopy has provided evidence for a Pt···Zn metallophilic interaction in [PtZn(SAc) 4(OH 2)], and computational studies demonstrate significant dative character. In all of 1–4, the short Pt–M distances suggest that metal-only Lewis donor (Pt)–Lewis acceptor (M) interactions could be present. DFT and NBO calculations, however, show that only the Zn examples have appreciable covalent character, whereas the Mg and Ca complexes are much more ionic.« less

  15. Selective turn-off phosphorescent and colorimetric detection of mercury(II) in water by half-lantern platinum(II) complexes.

    PubMed

    Sicilia, Violeta; Borja, Pilar; Baya, Miguel; Casas, José M

    2015-04-21

    The platinum(ii) half-lantern dinuclear complexes [{Pt(bzq)(μ-C7H4NS2-κN,S)}2] () and [{Pt(bzq)(μ-C7H4NOS-κN,S)}2] () [bzq = benzo[h]quinolinate, C7H4NS2 = 2-mercaptobenzothiazolate, C7H4NOS = 2-mercaptobenzoxazolate] in solution of DMSO-H2O undergo a dramatic color change from yellowish-orange to purple and turn-off phosphorescence in the presence of a small amount of Hg(2+), being discernible by the naked-eye and by spectroscopic methods. Other metal ions as Ag(+), Li(+), Na(+), K(+), Ca(2+), Mg(2+), Ba(2+), Pb(2+), Cd(2+), Zn(2+) and Tl(+) were tested and, even in a big excess, showed no interference in the selective detection of Hg(2+) in water. Job's plot analysis indicated a 1 : 1 stoichiometry in the complexation mode of Hg(2+) by /. The phosphorescence quenching attributed to the formation of [/ : Hg(2+)] complexes showed binding constants of K = 1.13 × 10(5) M(-1) () and K = 1.99 × 10(4) M(-1) (). The limit of detection has been also evaluated. In addition, dried paper test strips impregnated in DMSO solutions of and can detect concentration of Hg(2+) in water as low as 1 × 10(-5) M for and 5 × 10(-5) M for , making these complexes good candidates to be used as real-time Hg(2+) detectors. The nature of the interaction of the Pt2 half-lantern complex with the Hg(2+) cation, has been investigated by theoretical calculations.

  16. 2,3-Di(2-pyridyl)-5-phenylpyrazine: a NN-CNN-type bridging ligand for dinuclear transition-metal complexes.

    PubMed

    Wu, Si-Hai; Zhong, Yu-Wu; Yao, Jiannian

    2013-07-01

    A new bridging ligand, 2,3-di(2-pyridyl)-5-phenylpyrazine (dpppzH), has been synthesized. This ligand was designed so that it could bind two metals through a NN-CNN-type coordination mode. The reaction of dpppzH with cis-[(bpy)2RuCl2] (bpy = 2,2'-bipyridine) affords monoruthenium complex [(bpy)2Ru(dpppzH)](2+) (1(2+)) in 64 % yield, in which dpppzH behaves as a NN bidentate ligand. The asymmetric biruthenium complex [(bpy)2Ru(dpppz)Ru(Mebip)](3+) (2(3+)) was prepared from complex 1(2+) and [(Mebip)RuCl3] (Mebip = bis(N-methylbenzimidazolyl)pyridine), in which one hydrogen atom on the phenyl ring of dpppzH is lost and the bridging ligand binds to the second ruthenium atom in a CNN tridentate fashion. In addition, the RuPt heterobimetallic complex [(bpy)2Ru(dpppz)Pt(C≡CPh)](2+) (4(2+)) has been prepared from complex 1(2+), in which the bridging ligand binds to the platinum atom through a CNN binding mode. The electronic properties of these complexes have been probed by using electrochemical and spectroscopic techniques and studied by theoretical calculations. Complex 1(2+) is emissive at room temperature, with an emission λmax = 695 nm. No emission was detected for complex 2(3+) at room temperature in MeCN, whereas complex 4(2+) displayed an emission at about 750 nm. The emission properties of these complexes are compared to those of previously reported Ru and RuPt bimetallic complexes with a related ligand, 2,3-di(2-pyridyl)-5,6-diphenylpyrazine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond.

    PubMed

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas

    2015-11-14

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.

  18. Pt–Mg, Pt–Ca, and Pt–Zn lantern complexes and metal-only donor–acceptor interactions [Pt-Mg Pt-Ca and Pt-Zn compounds with metal-only donor-acceptor interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baddour, Frederick G.; Hyre, Ariel S.; Guillet, Jesse L.

    Here, Pt-based heterobimetallic lantern complexes of the form [PtM(SOCR) 4(L)] have been shown previously to form intermolecular metallophilic interactions and engage in antiferromagnetic coupling between lanterns having M atoms with open shell configurations. In order to understand better the influence of the carboxylate bridge and terminal ligand on the electronic structure, as well as the metal–metal interactions within each lantern unit, a series of diamagnetic lantern complexes, [PtMg(SAc) 4(OH 2)] (1), [PtMg(tba) 4(OH 2)] (2), [PtCa(tba) 4(OH 2)] (3), [PtZn(tba) 4(OH 2)] (4), and a mononuclear control (Ph 4P) 2[Pt(SAc) 4] (5) have been synthesized. Crystallographic data show close Pt–Mmore » contacts enforced by the lantern structure in each dinuclear case. 195Pt-NMR spectroscopy of 1–4, (Ph 4P) 2[Pt(SAc) 4] (5), and several previously reported lanterns revealed a strong chemical shift dependence on the identity of the second metal (M), mild influence by the thiocarboxylate ligand (SOCR; R = CH 3 (thioacetate, SAc), C 6H 5 (thiobenzoate, tba)), and modest influence from the terminal ligand (L). Fluorescence spectroscopy has provided evidence for a Pt···Zn metallophilic interaction in [PtZn(SAc) 4(OH 2)], and computational studies demonstrate significant dative character. In all of 1–4, the short Pt–M distances suggest that metal-only Lewis donor (Pt)–Lewis acceptor (M) interactions could be present. DFT and NBO calculations, however, show that only the Zn examples have appreciable covalent character, whereas the Mg and Ca complexes are much more ionic.« less

  19. Structural, physicochemical characterization, theoretical studies of carboxamides and their Cu(II), Zn(II) complexes having antibacterial activities against E. coli

    NASA Astrophysics Data System (ADS)

    Aktan, Ebru; Gündüzalp, Ayla Balaban; Özmen, Ümmühan Özdemir

    2017-01-01

    The carboxamides; N,N‧-bis(thiophene-2-carboxamido)-1,3-diaminopropanol (L1) and N,N‧-bis(furan-2-carboxamido)-1,3-diaminopropanol (L2) were synthesized and characterized using 1H NMR, 13C NMR, LC-MS and FT-IR spectrum. The molecular geometries of these molecules were optimized by DFT/B3LYP method with 6-311G(d,p) basis set in Gaussian 09 software. The geometrical parameters, frontier molecular orbitals (FMOs) and molecular electrostatic potential (MEP) mapped surfaces were calculated by the same basis set. Dinuclear Cu(II) and Zn(II) complexes having general formula as [MLCl]2Cl2.nH2O (in which M = Cu(II),Zn(II); n = 0,2) were also synthesized and characterized using LC-MS and FT-IR spectrum, thermogravimetric analysis (TGA/DTA curves), magnetic moments and molar conductivities. Coordination was found to be through carbonyl oxygen and two chlorine atoms as bridging in distorted tetrahedral geometry. The optimized structures, geometrical parameters, frontier molecular orbitals (FMOs) and dipole moments of metal complexes were also obtained by DFT/B3LYP method with LanL2DZ basis set. Antibacterial activities of the compounds were screened against E. coli using microdilution method (MIC's in μg/mL). The activity results show that the corresponding compounds exhibit good to moderate antibacterial effects when compared with sulfamethoxazole and sulfisoxazole antibiotics as positive controls. Also, metal complexes have remarkable increase in their activities than parent ligands against E. coli which is mostly effected by [Cu(L2)Cl]2Cl2 complex as potential antibacterial agent.

  20. Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osuka, Hisao; Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192; Shomura, Yasuhito

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Ni-A state of [NiFe] hydrogenase showed light sensitivity. Black-Right-Pointing-Pointer New FT-IR bands were observed with light irradiation of the Ni-A state. Black-Right-Pointing-Pointer EPR g-values of the Ni-A state shifted upon light irradiation. Black-Right-Pointing-Pointer The light-induced state converted back to the Ni-A state under the dark condition. -- Abstract: [NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni-Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenasemore » from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm{sup -1} of the Ni-A state shifted to 1971, 2086 and 2098 cm{sup -1} in the Ni-AL state. The g-values of g{sub x} = 2.30, g{sub y} = 2.23 and g{sub z} = 2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for -0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site.« less

  1. Molecular and electronic structure of Re 2Br 4(PMe 3) 4

    DOE PAGES

    Johnstone, Erik V.; Poineau, Frederic; Todorova, Tanya K.; ...

    2016-07-07

    The dinuclear rhenium(II) complex Re 2Br 4(PMe 3) 4 was prepared from the reduction of [Re 2Br 8] 2– with ( n-Bu 4N)BH 4 in the presence of PMe 3 in propanol. The complex was characterized by single-crystal X-ray diffraction (SCXRD) and UV–visible spectroscopy. It crystallizes in the monoclinic C2/c space group and is isostructural with its molybdenum and technetium analogues. The Re–Re distance (2.2521(3) Å) is slightly longer than the one in Re 2Cl 4(PMe 3) 4 (2.247(1) Å). The molecular and electronic structure of Re 2X 4(PMe 3) 4 (X = Cl, Br) were studied by multiconfigurational quantummore » chemical methods. The computed ground-state geometry is in excellent agreement with the experimental structure determined by SCXRD. The calculated total bond order (2.75) is consistent with the presence of an electron-rich triple bond and is similar to the one found for Re 2Cl 4(PMe 3) 4. The electronic absorption spectrum of Re 2Br 4(PMe 3) 4 was recorded in benzene and shows a series of low-intensity bands in the range 10 000–26 000 cm –1. The absorption bands were assigned based on calculations of the excitation energies with the multireference wave functions followed by second-order perturbation theory using the CASSCF/CASPT2 method. As a result, calculations predict that the lowest energy band corresponds to the δ* → σ* transition, while the next higher energy bands were attributed to the δ* → π*, δ → σ*, and δ → π* transitions.« less

  2. Crystal structure of bis­(ethyl­enedi­thio)­tetra­thia­fulvalenium μ2-acetato-bis­[tri­bromido­rhenate(III)] 1,1,2-tri­chloro­ethane hemisolvate

    PubMed Central

    Golichenko, Alexander A.; Kravchenko, Andrey V.; Omelchenko, Irina V.; Chudak, Denis M.; Starodub, Vladimir A.; Barszcz, Boleslaw; Shtemenko, Alexander V.

    2016-01-01

    The asymmetric unit of the title salt, (C10H8S8)[Re2Br6(CH3COO)]·0.5C2H3Cl3, contains one bis­(ethyl­enedi­thio)­tetra­thia­fulvalene (ET) radical cation, one μ2-acetato-bis­[tri­bromido­rhenate(III)] anion and a 1,1,2-tri­chloro­ethane mol­ecule with half-occupancy disordered about a twofold rotation axis. The tetra­thia­fulvalene fragment adopts an almost planar configuration typical of the ET radical cation. The C atoms of both ethyl­enedi­thio fragments in the cation are disordered over two orientations with occupancy factors 0.65:0.35 and 0.77:0.23. In the anion, six Br atoms and a μ2-acetate ligand form a strongly distorted cubic O2Br6 coordination polyhedron around the Re2 dinuclear centre. In the crystal, centrosymmetrically related ET cations and Re2O2Br6 anions are linked into dimers by π–π stacking inter­actions [centroid-to-centroid distance = 3.826 (8) Å] and by pairs of additional Re⋯Br contacts [3.131 (3) Å], respectively. The dimers are further packed into a three-dimensional network by non-directional inter­ionic electrostatic forces and by C—H⋯Br and C—H⋯S hydrogen bonds. The disordered 1,1,2-tri­chloro­ethane mol­ecules occupy solvent-accessible channels along the b axis. PMID:27308025

  3. Dissociation kinetics of Mn2+ complexes of NOTA and DOTA.

    PubMed

    Drahoš, Bohuslav; Kubíček, Vojtěch; Bonnet, Célia S; Hermann, Petr; Lukeš, Ivan; Tóth, Éva

    2011-03-07

    The kinetics of transmetallation of [Mn(nota)](-) and [Mn(dota)](2-) was investigated in the presence of Zn(2+) (5-50-fold excess) at variable pH (3.5-5.6) by (1)H relaxometry. The dissociation is much faster for [Mn(nota)](-) than for [Mn(dota)](2-) under both experimental and physiologically relevant conditions (t(½) = 74 h and 1037 h for [Mn(nota)](-) and [Mn(dota)](2-), respectively, at pH 7.4, c(Zn(2+)) = 10(-5) M, 25 °C). The dissociation of the complexes proceeds mainly via spontaneous ([Mn(nota)](-)k(0) = (2.6 ± 0.5) × 10(-6) s(-1); [Mn(dota)](2-)k(0) = (1.8 ± 0.6) × 10(-7) s(-1)) and proton-assisted pathways ([Mn(nota)](-)k(1) = (7.8 ± 0.1) × 10(-1) M(-1) s(-1); [Mn(dota)](2-)k(1) = (4.0 ± 0.6) × 10(-2) M(-1) s(-1), k(2) = (1.6 ± 0.1) × 10(3) M(-2) s(-1)). The observed suppression of the reaction rates with increasing Zn(2+) concentration is explained by the formation of a dinuclear Mn(2+)-L-Zn(2+) complex which is about 20-times more stable for [Mn(dota)](2-) than for [Mn(nota)](-) (K(MnLZn) = 68 and 3.6, respectively), and which dissociates very slowly (k(3)∼10(-5) M(-1) s(-1)). These data provide the first experimental proof that not all Mn(2+) complexes are kinetically labile. The absence of coordinated water makes both [Mn(nota)](-) and [Mn(dota)](2-) complexes inefficient for MRI applications. Nevertheless, the higher kinetic inertness of [Mn(dota)](2-) indicates a promising direction in designing ligands for Mn(2+) complexation.

  4. The preparation and use of metal salen complexes derived from cyclobutane diamine

    NASA Astrophysics Data System (ADS)

    Patil, Smita

    The helix is an important chiral motif in nature, there is increasing development in field of helical transition metal complexes and related supramolecular structures. Hence, the goals of this work are to apply the principles of helicity in order to produce metal complexes with predictable molecular shapes and to study their properties as asymmetric catalysts. Computational studies suggest that the (1R,2 R)-cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy barrier between the M and P helical forms. To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical coordination complexes. These ligands were metallated with zinc, iron and manganese salts to produce salen metal complexes which were characterized by NMR analysis, high-resolution mass spectrometry, and IR spectroscopy. A second ligand type, neutral bis(pyridine-imine) has also been synthesized from (1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine) ligands was conducted using greener method, solvent assisted grinding. These ligands, in-situ with nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions. The third ligand type studied was chiral acid-functionalized Schiff-base ligands. These were synthesized by the condensation of 3-formyl-5-methyl salicylic acid and (1R,2R)-cyclobutyldiamine. With this type of ligand, there is possibility of producing both mono and dinuclear metal complexes. In our studies, we were only able to synthesize mononuclear complexs. These were tested as catalysts for asymmetric direct Mannich-type reaction, but were found to be ineffective.

  5. Multistep Oxidation of Diethynyl Oligophenylamine-Bridged Diruthenium and Diiron Complexes.

    PubMed

    Zhang, Jing; Guo, Shen-Zhen; Dong, Yu-Bao; Rao, Li; Yin, Jun; Yu, Guang-Ao; Hartl, František; Liu, Sheng Hua

    2017-01-17

    Homo-dinuclear nonlinear complexes [{M(dppe)Cp*} 2 {μ-(-C≡C) 2 X}] (dppe = 1,2-bis(diphenylphosphino)ethane; Cp* = η 5 -C 5 Me 5 ; X = triphenylamine (TPA), M = Ru (1a) and Fe (1b); X = N,N,N',N'-tetraphenylphenylene-1,4-diamine (TPPD), M = Ru (2a)) were prepared and characterized by 1 H, 13 C, and 31 P NMR spectroscopy and single-crystal X-ray diffraction (1a, 2a). Attempts to prepare the diiron analogue of 2a were not successful. Experimental data obtained from cyclic voltammetry, square wave voltammetry, UV-vis-NIR (NIR = near-infrared) spectro-electrochemistry, and very informative IR spectro-electrochemistry in the C≡C stretching region, combined with density functional theory calculations, afford to make an emphasizing assessment of the close association between the metal-ethynyl termini and the oligophenylamine bridge core as well as their respective involvement in sequential one-electron oxidations of these complexes. The anodic behavior of the homo-bimetallic complexes depends strongly both on the metal center and the length of the oligophenylamine bridge core. The poorly separated first two oxidations of diiron complex 1b are localized on the electronically nearly independent Fe termini. In contrast, diruthenium complex 1a exhibits a significantly delocalized character and a marked electronic communication between the ruthenium centers through the diethynyl-TPA bridge. The ruthenium-ethynyl halves in 2a, separated by the doubly extended and more flexible TPPD bridge core, show a lower degree of electronic coupling, resulting in close-lying first two anodic waves and the NIR electronic absorption of [2a] + with an indistinctive intervalence charge transfer character. Finally, the third anodic waves in the voltammetric responses of the homo-bimetallic complexes are associated with the concurrent exclusive oxidation of the TPA or TPPD bridge cores.

  6. Silver baits for the "miraculous draught" of amphiphilic lanthanide helicates.

    PubMed

    Terazzi, Emmanuel; Guénée, Laure; Varin, Johan; Bocquet, Bernard; Lemonnier, Jean-François; Emery, Daniel; Mareda, Jiri; Piguet, Claude

    2011-01-03

    The axial connection of flexible thioalkyls chains of variable length (n=1-12) within the segmental bis-tridentate 2-benzimidazole-8-hydroxyquinoline ligands [L12(Cn) -2 H](2-) provides amphiphilic receptors designed for the synthesis of neutral dinuclear lanthanides helicates. However, the stoichiometric mixing of metals and ligands in basic media only yields intricate mixtures of poorly soluble aggregates. The addition of Ag(I) in solution restores classical helicate architectures for n=3, with the quantitative formation of the discrete D(3) -symmetrical [Ln(2) Ag2(L12(C3) -2 H)(3) ](2+) complexes at millimolar concentration (Ln=La, Eu, Lu). The X-ray crystal structure supports the formation of [La(2) Ag(2) (L12(C3) -2 H)(3) ][OTf](2) , which exists in the solid state as infinite linear polymers bridged by S-Ag-S bonds. In contrast, molecular dynamics (MD) simulations in the gas phase and in solution confirm the experimental diffusion measurements, which imply the formation of discrete molecular entities in these media, in which the sulfur atoms of each lipophilic ligand are rapidly exchanged within the Ag(I) coordination sphere. Turned as a predictive tool, MD suggests that this Ag(I) templating effect is efficient only for n=1-3, while for n>3 very loose interactions occur between Ag(I) and the thioalkyl residues. The subsequent experimental demonstration that only 25 % of the total ligand speciation contributes to the formation of [Ln(2) Ag(2) (L12(C12) -2 H)(3) ](2+) in solution puts the bases for a rational approach for the design of amphiphilic helical complexes with predetermined molecular interfaces. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reactivity of the parent amido complexes of iridium with olefins: C-NH2 bond formation versus C-H activation.

    PubMed

    Mena, Inmaculada; García-Orduña, Pilar; Polo, Víctor; Lahoz, Fernando J; Casado, Miguel A; Oro, Luis A

    2017-08-29

    Herein we report on the different chemical reactivity displayed by two mononuclear terminal amido compounds depending on the nature of the coordinated diene. Hence, treatment of amido-bridged iridium complexes [{Ir(μ-NH 2 )(tfbb)} 3 ] (1; tfbb = tetrafluorobenzobarrelene) with dppp (dppp = bis(diphenylphosphane)propane) leads to the rupture of the amido bridges forming the mononuclear terminal amido compound [Ir(NH 2 )(dppp)(tfbb)] (3) in the first stage. On changing the reaction conditions, the formation of a C-NH 2 bond between the amido moiety and the coordinated diene is observed and a new dinuclear complex [{Ir(1,2-η 2 -4-κ-C 12 H 8 F 4 N)(dppp)} 2 (μ-dppp)] (4) has been isolated. On the contrary, the diiridium amido-bridged complex [{Ir(μ-NH 2 )(cod)} 2 ] (2; cod = 1,5-cyclooctadiene) in the presence of dppb (dppb = bis(diphenylphosphane)butane) allows the isolation of a mononuclear complex [Ir(1,2,3-η 3 -6-κ-C 8 H 10 )H(dppb)] (5), as a consequence of the extrusion of ammonia. The monitoring of the reaction of 2 with dppb (and dppp) allowed us to detect terminal amido complexes [Ir(NH 2 )(P-P)(cod)] (P-P = dppb (6), dppp (7)) in solution, as confirmed by an X-ray analysis of 7. Complex 7 was observed to evolve into hydrido species 5 at room temperature. DFT studies showed that C-H bond activation occurs through the deprotonation of one methylene fragment of the cod ligand by the highly basic terminal amido moiety instead of C-H oxidative addition to the Ir(i) center.

  8. Construction of three lanthanide metal-organic frameworks: Synthesis, structure, magnetic properties and highly selective sensing of metal ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiu-Mei, E-mail: zhangxiumeilb@126.com; Li, Peng; Gao, Wei

    Three lanthanide metal-organic frameworks (Ln-MOFs), [Ln(TZI)(H{sub 2}O){sub 4}]·3H{sub 2}O (Ln=Gd (1) and Tb (2) and Dy (3), H{sub 3}TZI=5-(1H-tetrazol-5-yl)isophthalic acid), have been synthesized under hydrothermal conditions. Single crystal X-ray diffraction reveals that 1–3 are isostructural and display a 1D double chain based on dinuclear motifs with (μ-COO){sub 2} double bridges. Magnetic studies indicate antiferromagnetic interactions in 1, ferromagnetic interactions in 2 and 3. Furthermore, compound 3 displays a slow relaxation behavior. Compound 2 exhibits intense characteristic green emission of Tb(III) ions in the solid state, which can be observed by the naked eye under UV light. Interestingly, 2 can selectivelymore » sense Pb{sup 2+} and Fe{sup 3+} ions through luminescence enhancement and quenching, respectively. The luminescence quenching mechanisms have been investigated in detail. The study on luminescence Ln-MOFs as a probe for sensing Pb{sup 2+} and Fe{sup 3+} ions is exceedingly rare example. - Graphical abstract: Three Ln-MOFs were successfully synthesized using a 5-(1H-tetrazol-5-yl)isophthalic acid ligand. They displays different magnetic behavior. Especially, the Dy(III) compound slow relaxation behavior. Interestingly, the Tb(III) compound can selectively sense Pb{sup 2+} and Fe{sup 3+} ions through luminescence enhancement and quenching, respectively. - Highlights: • Three Ln-MOFs with tetrazolate dicarboxylate ligand. • Dy(III) compound displays slow relaxation behavior. • The Tb(III) compound shows highly selective luminescence sensing of the Fe{sup 3+} and Pb{sup 2+} ions.« less

  9. Synthesis, DNA Cleavage Activity, Cytotoxicity, Acetylcholinesterase Inhibition, and Acute Murine Toxicity of Redox-Active Ruthenium(II) Polypyridyl Complexes.

    PubMed

    Alatrash, Nagham; Narh, Eugenia S; Yadav, Abhishek; Kim, Mahn-Jong; Janaratne, Thamara; Gabriel, James; MacDonnell, Frederick M

    2017-07-06

    Four mononuclear [(L-L) 2 Ru(tatpp)] 2+ and two dinuclear [(L-L) 2 Ru(tatpp)Ru(L-L) 2 ] 4+ ruthenium(II) polypyridyl complexes (RPCs) containing the 9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (tatpp) ligand were synthesized, in which L-L is a chelating diamine ligand such as 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me 4 phen) or 4,7-diphenyl-1,10-phenanthroline (Ph 2 phen). These Ru-tatpp analogues all undergo reduction reactions with modest reducing agents, such as glutathione (GSH), at pH 7. These, plus several structurally related but non-redox-active RPCs, were screened for DNA cleavage activity, cytotoxicity, acetylcholinesterase (AChE) inhibition, and acute mouse toxicity, and their activities were examined with respect to redox activity and lipophilicity. All of the redox-active RPCs show single-strand DNA cleavage in the presence of GSH, whereas none of the non-redox-active RPCs do. Low-micromolar cytotoxicity (IC 50 ) against malignant H358, CCL228, and MCF7 cultured cell lines was mainly restricted to the redox-active RPCs; however, they were substantially less toxic toward nonmalignant MCF10 cells. The IC 50 values for AChE inhibition in cell-free assays and the acute toxicity of RPCs in mice revealed that whereas most RPCs show potent inhibitory action against AChE (IC 50 values <15 μm), Ru-tatpp complexes as a class are surprisingly well tolerated in animals relative to other RPCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Acetate-Bridged Platinum(III) Complexes Derived from Cisplatin

    PubMed Central

    Wilson, Justin J.

    2012-01-01

    Oxidation of the acetate-bridged half-lantern platinum(II) complex, cis-[PtII(NH3)2(µ-OAc)2PtII(NH3)2](NO3)2, [1](NO3)2, with iodobenzene dichloride or bromine generates the halide-capped platinum(III) species, cis-[XPtIII(NH3)2(µ-OAc)2PtIII(NH3)2X](NO3)2, where X is Cl in [2](NO3)2, or Br in [3](NO3)2, respectively. These three complexes, characterized structurally by X-ray crystallography, feature short (≈ 2.6 Å) Pt–Pt separations, consistent with formation of a formal metal-metal bond upon oxidation. Elongated axial Pt–X distances occur, reflecting the strong trans influence of the metal-metal bond. The three structures are compared to those of other known dinuclear platinum complexes. A combination of 1H, 13C, 14N, and 195Pt NMR spectroscopy was used to characterize [1]2+–[3]2+ in solution. All resonances shift downfield upon oxidation of [1]2+ to [2]2+ and [3]2+. For the platinum(III) complexes, the 14N and 195Pt resonances exhibit decreased linewidths by comparison to those of [1]2+. Density functional theory (DFT) calculations suggest that the decrease in 14N linewidth arises from a diminished electric field gradient (EFG) at the 14N nuclei in the higher valent compounds. The oxidation of [1](NO3)2 with the alternative oxidizing agent, bis(trifluoroacetoxy) iodobenzene, affords the novel tetranuclear complex, cis-[(O2CCF3)PtIII(NH3)2(µ-OAc)2PtIII(NH3)(µ-NH2)]2(NO3)4, [4](NO3)4, also characterized structurally by X-ray crystallography. In solution, this complex exists as a mixture of species, the identities of which are proposed. PMID:22946515

  11. Synthesis and structural characterization of group 4 metal carboxylates for nanowire production.

    PubMed

    Boyle, Timothy J; Yonemoto, Daniel T; Doan, Thu Q; Alam, Todd M

    2014-12-01

    The synthesis and characterization of a series of group 4 carboxylate derivatives ([M(ORc)4] where M = Ti, Zr, Hf) was undertaken for potential utility as precursors to ceramic nanowires. The attempted syntheses of the [M(ORc)4] precursors were undertaken from the reaction of [M(OBu(t))4] with a select set of carboxylic acids (H-ORc where ORc = OPc (O2CCH(CH3)2), OBc (O2CC(CH3)3), ONc (O2CCH2C(CH3)3)). The products were identified by single-crystal X-ray diffraction studies as [Ti(η(2)-OBc)3(OBu(t))] (1), [Zr2(μ3-O)(μ-OPc)4(μ,η(2)-OPc)(η(2)-OPc)]2 (2), [H]2[Zr(η(2)-OBc)2(OBc)2(OBc)2] (3), [Zr(μ-ONc)2(η(2)-ONc)2]2 (4), or [Hf(μ-ORc)2(η(2)-ORc)2]2 [ORc = OPc (5), OBc (6, shown), ONc (7)]. The majority of compounds (4-7) were isolated as dinuclear species with a dodecahedral-like (CN-8) bonding mode around the metals due to chelation and bridging of the ORc ligand. The two monomers (1 and 3) were found to adopt a capped trigonal prismatic and CN-8 geometry, respectively, due to chelating ORc and terminal ORc or OBu(t) ligands. The metals of the oxo-species 2 were isolated in octahedral and CN-8 arrangements. These compounds were then processed by electrospinning methods (applied voltage 10 kV, flow rate 30-60 μL/min, electric field 0.5 kV/cm), and wire-like morphologies were isolated using compounds 4, 6 (shown), and 7.

  12. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials.

    PubMed

    Chun, Hyungphil; Dybtsev, Danil N; Kim, Hyunuk; Kim, Kimoon

    2005-06-06

    A systematic modulation of organic ligands connecting dinuclear paddle-wheel motifs leads to a series of isomorphous metal-organic porous materials that have a three-dimensional connectivity and interconnected pores. Aromatic dicarboxylates such as 1,4-benzenedicarboxylate (1,4-bdc), tetramethylterephthalate (tmbdc), 1,4-naphthalenedicarboxylate (1,4-ndc), tetrafluoroterephthalate (tfbdc), or 2,6-naphthalenedicarboxylate (2,6-ndc) are linear linkers that form two-dimensional layers, and diamine ligands, 4-diazabicyclo[2.2.2]octane (dabco) or 4,4'-dipyridyl (bpy), coordinate at both sides of Zn(2) paddle-wheel units to bridge the layers vertically. The resulting open frameworks [Zn(2)(1,4-bdc)(2)(dabco)] (1), [Zn(2)(1,4-bdc)(tmbdc)(dabco)] (2), [Zn(2)(tmbdc)(2)(dabco)] (3), [Zn(2)(1,4-ndc)(2)(dabco)] (4), [Zn(2)(tfbdc)(2)(dabco)] (5), and [Zn(2)(tmbdc)(2)(bpy)] (8) possess varying size of pores and free apertures originating from the side groups of the 1,4-bdc derivatives. [Zn(2)(1,4-bdc)(2)(bpy)] (6) and [Zn(2)(2,6-ndc)(2)(bpy)] (7) have two- and threefold interpenetrating structures, respectively. The non-interpenetrating frameworks (1-5 and 8) possess surface areas in the range of 1450-2090 m(2)g(-1) and hydrogen sorption capacities of 1.7-2.1 wt % at 78 K and 1 atm. A detailed analysis of the sorption data in conjunction with structural similarities and differences concludes that porous materials with straight channels and large openings do not perform better than those with wavy channels and small openings in terms of hydrogen storage through physisorption.

  13. Resonance Raman studies of Escherichia coli cytochrome bd oxidase. Selective enhancement of the three heme chromophores of the "as-isolated" enzyme and characterization of the cyanide adduct.

    PubMed

    Sun, J; Osborne, J P; Kahlow, M A; Kaysser, T M; Hil, J J; Gennis, R B; Loehr, T M

    1995-09-26

    Cytochrome bd oxidase is a terminal bacterial oxidase containing three cofactors: a low-spin heme (b558), a high-spin heme (b595), and a chlorin d. The center of dioxygen reduction has been proposed to be at a dinuclear b595/d site, whereas b558 is mainly involved in transferring electrons from ubiquinone. One of the unique functional features of this enzyme is its resistance to high concentrations of cyanide (Ki in the millimolar range). With the appropriate selection of laser lines, the ligation and spin states of the b558, b595, and d hemes can be probed selectively by resonance Raman (rR) spectroscopy. Wavelengths between 400 and 500 nm predominantly excite the rR spectra of the b558 and b595 chromophores. Spectra obtained within this interval show a mixed population of spin and ligation states arising from b558 and b595, with the former more strongly enhanced at higher energy. Red excitation wavelengths (590-650 nm) generate rR spectra characteristic of chlorins, indicating the selective enhancement of the d heme. These rR results reveal that cytochrome bd oxidase "as isolated" contains the b558 heme in a six-coordinate low-spin ferric state, the b595 heme in a five-coordinate high-spin (5cHS) ferric state, and the d heme in a mixture of oxygenated (FeIIO2 <--> FeIIIO2-; d650) and ferryl-oxo (FeIV = O; d680) states. However, the rR spectra of these two chlorin species indicate that they are both in the 5cHS state, suggesting that the d heme is lacking a strongly coordinated sixth ligand.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. The assembly of two isomorphous coordination compounds based on 1,4-cyclohexanedicarboxylic acid and 2,4-diamino-6-phenyl-1,3,5-triazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xue-Fei; Wang, Xiao; Lun, Hui-Jie

    The compounds [Co(e,a-cis-1,4-chdc)(phdat)]{sub n} (1) and [Cd(e,a-cis-1,4-chdc)(phdat)]{sub n} (2) have been synthesized under hydrothermal method by using 1,4-cyclohexanedicarboxylic acid (1,4-H{sub 2}chdc), 2,4-diamino-6-phenyl-1,3,5-triazine (phdat) as well as CoCl{sub 2}·6H{sub 2}O, CdCl{sub 2}·2.5H{sub 2}O respectively and characterized by IR spectra, X-ray single-crystal diffraction, powder X-ray single-crystal diffraction (PXRD), elemental analyses and thermogravimetric analyses (TGA). The results show the compounds 1 and 2 are isomorphous and exhibit paddle-wheel dinuclear Co{sub 2}(CO{sub 2}){sub 4}/Cd{sub 2}(CO{sub 2}){sub 4} units, which are further connected to 1D chain structures by μ{sub 4}:η{sup 1}:η{sup 1}:η{sup 1}:η{sup 1} 1,4-chdc{sup 2–} ligands and extended into a 3D structures via differentmore » hydrogen bonding and π…π stacking interactions. Furthermore, compound 1 exhibits antiferromagnetic behavior and compound 2 displays luminescent behavior at solid state. - Graphical abstract: Two isomorphous coordination compounds 1–2 have been synthesized and characterized by XRD, IR spectra and TGA etc. Compound 1 and 2 display antiferromagnetic behavior and luminescent behavior respectively. - Highlights: • Two novel polymers based on 1,4-cyclohexanedicarboxylic acid have been synthesized. • Compounds 1 and 2 feather 1D chain structure built up from paddle-wheel SBUs. • The magnetism of 2 is investigated. • The electrochemical property and luminescent property of 1 are investigated.« less

  15. Hexanuclear, heterometallic, Ni₃Ln₃ complexes possessing O-capped homo- and heterometallic structural subunits: SMM behavior of the dysprosium analogue.

    PubMed

    Goura, Joydeb; Guillaume, Rogez; Rivière, Eric; Chandrasekhar, Vadapalli

    2014-08-04

    The reaction of hetero donor chelating mannich base ligand 6,6'-{(2-(dimethylamino)ethylazanediyl)bis(methylene)}bis(2-methoxy-4-methylphenol) with Ni(ClO4)2·6H2O and lanthanide(III) salts [Dy(III) (1); Tb(III) (2); Gd (III) (3); Ho(III) (4); and Er(III) (5)] in the presence of triethylamine and pivalic acid afforded a series of heterometallic hexanuclear Ni(II)-Ln(III) coordination compounds, [Ni3Ln3(μ3-O)(μ3-OH)3(L)3(μ-OOCCMe3)3]·(ClO4)·wCH3CN·xCH2Cl2·yCH3OH·zH2O [for 1, w = 8, x = 3, y = 0, z = 5.5; for 2, w = 0, x = 5, y = 0, z = 6.5; for 3, w = 15, x = 18, y = 3, z = 7.5; for 4, w = 15, x = 20, y = 6, z = 9.5; and for 5, w = 0, x = 3, y = 2, z = 3]. The molecular structure of these complexes reveals the presence of a monocationic hexanuclear derivative containing one perchlorate counteranion. The asymmetric unit of each of the hexanuclear derivatives comprises the dinuclear motif [NiLn(L)(μ3-O)(μ3-OH)(μ-Piv)]. The cation contains three interlinked O-capped clusters: one Ln(III)3O and three Ni(II)Ln(III)2O. Each of the lanthanide centers is eight- coordinated (distorted trigonal-dodecahedron), while the nickel centers are hexacoordinate (distorted octahedral). The study of the magnetic properties of all compounds are reported and suggests single molecule magnet behavior for the Dy(III) derivative (1).

  16. Water exit pathways and proton pumping mechanism in B-type cytochrome c oxidase from molecular dynamics simulations.

    PubMed

    Yang, Longhua; Skjevik, Åge A; Han Du, Wen-Ge; Noodleman, Louis; Walker, Ross C; Götz, Andreas W

    2016-09-01

    Cytochrome c oxidase (CcO) is a vital enzyme that catalyzes the reduction of molecular oxygen to water and pumps protons across mitochondrial and bacterial membranes. While proton uptake channels as well as water exit channels have been identified for A-type CcOs, the means by which water and protons exit B-type CcOs remain unclear. In this work, we investigate potential mechanisms for proton transport above the dinuclear center (DNC) in ba3-type CcO of Thermus thermophilus. Using long-time scale, all-atom molecular dynamics (MD) simulations for several relevant protonation states, we identify a potential mechanism for proton transport that involves propionate A of the active site heme a3 and residues Asp372, His376 and Glu126(II), with residue His376 acting as the proton-loading site. The proposed proton transport process involves a rotation of residue His376 and is in line with experimental findings. We also demonstrate how the strength of the salt bridge between residues Arg225 and Asp287 depends on the protonation state and that this salt bridge is unlikely to act as a simple electrostatic gate that prevents proton backflow. We identify two water exit pathways that connect the water pool above the DNC to the outer P-side of the membrane, which can potentially also act as proton exit transport pathways. Importantly, these water exit pathways can be blocked by narrowing the entrance channel between residues Gln151(II) and Arg449/Arg450 or by obstructing the entrance through a conformational change of residue Tyr136, respectively, both of which seem to be affected by protonation of residue His376. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Carbonate formation within a nickel dimer: synthesis of a coordinatively unsaturated bis(mu-hydroxo) dinickel complex and its reactivity toward carbon dioxide.

    PubMed

    Wikstrom, Jeffrey P; Filatov, Alexander S; Mikhalyova, Elena A; Shatruk, Michael; Foxman, Bruce M; Rybak-Akimova, Elena V

    2010-03-14

    The tridentate aminopyridine ligand bearing a bulky tert-butyl substituent at the amine nitrogen, tert-butyl-dipicolylamine (tBuDPA), occupies three coordination sites in six-coordinate complexes of nickel(ii), leaving the remaining three sites available for additional ligand binding and activation. New crystallographically characterized complexes include two mononuclear species with 1:1 metal:ligand complexation: a trihydrate solvate (1.3H(2)O) and a monohydrate biacetonitrile solvate (1.H(2)O.2CH(3)CN). Complexation in the presence of sodium hydroxide results in a bis(mu-hydroxo) complex (2), the bridging hydroxide anions of which are labile and become displaced by methoxide anions in methanol solvent, affording bis-methoxo-bridged (4). Nickel(II) centers in 2 are five-coordinate and antiferromagnetically coupled (with J = -31.4(5) cm(-1), H = -2JS(1)S(2), in agreement with Ni-O-Ni angle of 103.7 degrees). Bridging hydroxide or alkoxide anions in coordinatively unsaturated dinuclear nickel(II) complexes with tBuDPA react as active nucleophiles. 2 readily performs carbon dioxide fixation, resulting in the formation of a bis(mu-carbonato) tetrameric complex (3), which features a novel binding geometry in the form of an inverted butterfly-type nickel-carbonate core. Temperature-dependent magnetic measurements of tetranuclear carbonato-bridged revealed relatively weak antiferromagnetic coupling (J(1) = -3.1(2) cm(-1)) between the two nickel centers in the core of the cluster, as well as weak antiferromagnetic pairwise interactions (J(2) = J(3) = -4.54(5) cm(-1)) between central and terminal nickel ions.

  18. Dicopper(II) metallacyclophanes as multifunctional magnetic devices: a joint experimental and computational study.

    PubMed

    Castellano, María; Ruiz-García, Rafael; Cano, Joan; Ferrando-Soria, Jesús; Pardo, Emilio; Fortea-Pérez, Francisco R; Stiriba, Salah-Eddine; Julve, Miguel; Lloret, Francesc

    2015-03-17

    Metallosupramolecular complexes constitute an important advance in the emerging fields of molecular spintronics and quantum computation and a useful platform in the development of active components of spintronic circuits and quantum computers for applications in information processing and storage. The external control of chemical reactivity (electro- and photochemical) and physical properties (electronic and magnetic) in metallosupramolecular complexes is a current challenge in supramolecular coordination chemistry, which lies at the interface of several other supramolecular disciplines, including electro-, photo-, and magnetochemistry. The specific control of current flow or spin delocalization through a molecular assembly in response to one or many input signals leads to the concept of developing a molecule-based spintronics that can be viewed as a potential alternative to the classical molecule-based electronics. A great variety of factors can influence over these electronically or magnetically coupled, metallosupramolecular complexes in a reversible manner, electronic or photonic external stimuli being the most promising ones. The response ability of the metal centers and/or the organic bridging ligands to the application of an electric field or light irradiation, together with the geometrical features that allow the precise positioning in space of substituent groups, make these metal-organic systems particularly suitable to build highly integrated molecular spintronic circuits. In this Account, we describe the chemistry and physics of dinuclear copper(II) metallacyclophanes with oxamato-containing dinucleating ligands featuring redox- and photoactive aromatic spacers. Our recent works on dicopper(II) metallacyclophanes and earlier ones on related organic cyclophanes are now compared in a critical manner. Special focus is placed on the ligand design as well as in the combination of experimental and computational methods to demonstrate the multifunctionality nature of these metallosupramolecular complexes. This new class of oxamato-based dicopper(II) metallacyclophanes affords an excellent synthetic and theoretical set of models for both chemical and physical fundamental studies on redox- and photo-triggered, long-distance electron exchange phenomena, which are two major topics in molecular magnetism and molecular electronics. Apart from their use as ground tests for the fundamental research on the relative importance of the spin delocalization and spin polarization mechanisms of the electron exchange interaction through extended π-conjugated aromatic ligands in polymetallic complexes, oxamato-based dicopper(II) metallacyclophanes possessing spin-containing electro- and chromophores at the metal and/or the ligand counterparts emerge as potentially active (magnetic and electronic) molecular components to build a metal-based spintronic circuit. They are thus unique examples of multifunctional magnetic complexes to get single-molecule spintronic devices by controlling and allowing the spin communication, when serving as molecular magnetic couplers and wires, or by exhibiting bistable spin behavior, when acting as molecular magnetic rectifiers and switches. Oxamato-based dicopper(II) metallacyclophanes also emerge as potential candidates for the study of coherent electron transport through single molecules, both experimentally and theoretically. The results presented herein, which are a first step in the metallosupramolecular approach to molecular spintronics, intend to attract the attention of physicists and materials scientists with a large expertice in the manipulation and measurement of single-molecule electron transport properties, as well as in the processing and addressing of molecules on different supports.

  19. Computational studies on the photophysical properties and NMR fluxionality of dinuclear platinum(II) A-frame alkynyl diphosphine complexes.

    PubMed

    Lam, Wai Han; Yam, Vivian Wing-Wah

    2010-12-06

    The structural geometry, electronic structure, photophysical properties, and the fluxional behavior of a series of A-frame diplatinum alkynyl complexes, [Pt(2)(μ-dppm)(2)(μ-C≡CR)(C≡CR)(2)](+) [R = (t)Bu (1), C(6)H(5) (2), C(6)H(4)Ph-p (3), C(6)H(4)Et-p (4), C(6)H(4)OMe-p (5); dppm = bis(diphenylphosphino)methane], have been studied by density functional theory (DFT) and time-dependent TD-DFT associated with conductor-like polarizable continuum model (CPCM) calculations. The results show that the Pt···Pt distance strongly depends on the binding mode of the alkynyl ligands. A significantly shorter Pt···Pt distance is found in the symmetrical form, in which the bridging alkynyl ligand is σ-bound to the two metal centers, than in the unsymmetrical form where the alkynyl ligand is σ-bound to one metal and π-bound to another. For the two structural forms in 1-5, both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels show a dependence on the nature of the substituents attached to the alkynyl ligand. The energies of the HOMO and LUMO are found to increase and decrease, respectively, from R = (t)Bu to R = Ph and to R = C(6)H(4)Ph-p, because of the increase of the π- conjugation of the alkynyl ligand. On the basis of the TDDFT/CPCM calculations, the low-energy absorption band consists of two types of transitions, which are ligand-to-ligand charge-transfer (LLCT) [π(alkynyl) → σ*(dppm)]/metal-centered MC [dσ*(Pt(2)) → pσ(Pt(2))] transitions as well as interligand π → π* transition from the terminal alkynyl ligands to the bridging alkynyl ligand mixed with metal-metal-to-ligand charge transfer MMLCT [dσ*(Pt(2)) → π*(bridging alkynyl)] transition. The latter transition is lower in energy than the former. The calculation also indicates that the emission for the complexes originates from the triplet interligand π(terminal alkynyls) → π*(bridging alkynyl)/MMLCT [dσ*(Pt(2)) → π*(bridging alkynyl)] excited state. In terms of the fluxional behavior, calculations have been performed to study the details of the mechanisms for the three fluxional processes, which are the σ,π-alkynyl exchange, the ring-flipping, and the bridging-to-terminal alkynyl exchange processes.

  20. Synthesis, structure, and electronic properties of a dimer of Ru(bpy)2 doubly bridged by methoxide and pyrazolate.

    PubMed

    Jude, Hershel; Rein, Francisca N; White, Peter S; Dattelbaum, Dana M; Rocha, Reginaldo C

    2008-09-01

    The heterobridged dinuclear complex cis,cis-[(bpy) 2Ru(mu-OCH 3)(mu-pyz)Ru(bpy) 2] (2+) ( 1; bpy = 2,2'-bipyridine; pyz = pyrazolate) was synthesized and isolated as a hexafluorophosphate salt. Its molecular structure was fully characterized by X-ray crystallography, (1)H NMR spectroscopy, and ESI mass spectrometry. The compound 1.(PF 6) 2 (C 44H 38F 12N 10OP 2Ru 2) crystallizes in the monoclinic space group P2 1/ c with a = 13.3312(4) A, b = 22.5379(6) A, c = 17.2818(4) A, beta = 99.497(2) degrees , V = 5121.3(2) A (3), and Z = 4. The meso diastereoisomeric form was exclusively found in the crystal structure, although the NMR spectra clearly demonstrated the presence of two stereoisomers in solution (rac and meso forms at approximately 1:1 ratio). The electronic properties of the complex in acetonitrile were investigated by cyclic voltammetry and UV-vis and NIR-IR spectroelectrochemistries. The stepwise oxidation of the Ru (II)-Ru (II) complex into the mixed-valent Ru (II)-Ru (III) and fully oxidized Ru (III)-Ru (III) states is fully reversible on the time scale of the in situ (spectro)electrochemical measurements. The mixed-valent species displays strong electronic coupling, as evidenced by the large splitting between the redox potentials for the Ru(III)/Ru(II) couples (Delta E 1/2 = 0.62 V; K c = 3 x 10 (10)) and the appearance of an intervalence transfer (IT) band at 1490 nm that is intense, narrow, and independent of solvent. Whereas this salient band in the NIR region originates primarily from highest-energy of the three IT transitions predicted for Ru(II)-Ru(III) systems, a weaker absorption band corresponding to the lowest-energy IT transition was clearly evidenced in the IR region ( approximately 3200 cm (-1)). The observation of totally coalesced vibrational peaks in the 1400-1650 cm (-1) range for a set of five bpy spectator vibrations in Ru (II)-Ru (III) relative to Ru (II)-Ru (II) and Ru (III)-Ru (III) provided evidence for rapid electron transfer and valence averaging on the picosecond time scale. Other than a relatively short Ru...Ru distance (3.72 A for the crystalline Ru (II)-Ru (II) complex), the extensive communication between metal centers is attributed mostly to the pi-donor ability of the bridging ligands (pyz, OMe) combined with the pi-acceptor ability of the peripheral (bpy) ligands.

  1. Distinguishing between Dexter and rapid sequential electron transfer in covalently linked donor-acceptor assemblies.

    PubMed

    Soler, Monica; McCusker, James K

    2008-04-09

    The syntheses, physical, and photophysical properties of a family of complexes having the general formula [M2(L)(mcb)(Ru(4,4'-(X)2-bpy)2)](PF6)3 (where M = Mn(II) or Zn(II), X = CH3 or CF3, mcb is 4'-methyl-4-carboxy-2,2'-bipyridine, and L is a Schiff base macrocycle derived from 2,6-diformyl-4-methylphenol and bis(2-aminoethyl)-N-methylamine) are described. The isostructural molecules all consist of dinuclear metal cores covalently linked to a Ru(II) polypyridyl complex. Photoexcitation of [Mn2(L)(mcb)(Ru((CF3)2-bpy)2)](PF6)3 (4) in deoxygenated CH2Cl2 solution results in emission characteristic of the 3MLCT excited state of the Ru(II) chromophore but with a lifetime (tau(obs) = 5.0 +/- 0.1 ns) and radiative quantum yield (Phi(r) approximately 7 x 10(-4)) that are significantly attenuated relative to the Zn(II) model complex [Zn2(L)(mcb)(Ru((CF3)2-bpy)2)](PF6)3 (6) (tau(obs) = 730 +/- 30 ns and Phi(r) = 0.024, respectively). Quenching of the 3MLCT excited state is even more extensive in the case of [Mn2(L)(mcb)(Ru((CH3)2-bpy)2)](PF6)3 (3), whose measured lifetime (tau(obs) = 45 +/- 5 ps) is >10(4) shorter than the corresponding model complex [Zn2(L)(mcb)(Ru((CH3)2-bpy)2)](PF6)3 (5) (tau(obs) = 1.31 +/- 0.05 micros). Time-resolved absorption measurements on both Mn-containing complexes at room-temperature revealed kinetics that were independent of probe wavelength; no spectroscopic signatures for electron-transfer photoproducts were observed. Time-resolved emission data for complex 4 acquired in CH2Cl2 solution over a range of 200-300 K could be fit to an expression of the form k(nr) = k0 + A x exp{-DeltaE/kB T} with k0 = 1.065 +/- 0.05 x 10(7) s(-1), A = 3.7 +/- 0.5 x 10(10) s(-1), and DeltaE = 1230 +/- 30 cm(-1). Assuming an electron-transfer mechanism, the variable-temperature data on complex 4 would require a reorganization energy of lambda approximately 0.4-0.5 eV which is too small to be associated with charge separation in this system. This result coupled with the lack of enhanced emission at temperatures below the glass-to-fluid transition of the solvent and the absence of visible absorption features associated with the Mn(II)2 core allows for a definitive assignment of Dexter transfer as the dominant excited-state reaction pathway. A similar conclusion was reached for complex 3 based in part on the smaller driving force for electron transfer (DeltaG0(ET) = -0.1 eV), the increase in probability of Dexter transfer due to the closer proximity of the donor excited state to the dimanganese acceptor, and a lack of emission from the compound upon formation of an optical glass at 80 K. Electronic coupling constants for Dexter transfer were determined to be approximately 10 cm(-1) and approximately 0.15 cm(-1) in complexes 3 and 4, respectively, indicating that the change in spatial localization of the excited state from the bridge (complex 3) to the periphery of the chromophore (complex 4) results in a decrease in electronic coupling to the dimanganese core of nearly 2 orders of magnitude. In addition to providing insight into the influence of donor/acceptor proximity on exchange energy transfer, this study underscores the utility of variable-temperature measurements in cases where Dexter and electron-transfer mechanisms can lead to indistinguishable spectroscopic observables.

  2. Syntheses, crystal structures, and magnetic properties of the oxalato-bridged mixed-valence complexes (FeII(bpm)3]2[FeIII2(ox)5].8H2O and FeII(bpm)3Na(H2O)2Fe(ox)(3).4H2O (bpm = 2,2'-bipyrimidine).

    PubMed

    Armentano, D; De Munno, G; Faus, J; Lloret, F; Julve, M

    2001-02-12

    The preparation and crystal structures of two oxalato-bridged FeII-FeIII mixed-valence compounds, [FeII(bpm)3]2[FeIII2(ox)5].8H2O (1) and FeII(bpm)3Na(H2O)2FeIII(ox)(3).4H2O (2) (bpm = 2,2'-bipyrimidine; ox = oxalate dianion) are reported here. Complex 1 crystallizes in the triclinic system, space group P1, with a = 10.998(2) A, b = 13.073(3) A, c = 13.308(3) A, alpha = 101.95(2) degrees, beta = 109.20(2) degrees, gamma = 99.89(2) degrees, and Z = 1. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 12.609(2) A, b = 19.670(5) A, c = 15.843(3) A, beta = 99.46(1) degrees, and Z = 4. The structure of complex 1 consists of centrosymmetric oxalato-bridged dinuclear high-spin iron(III) [Fe2(ox)5]2- anions, tris-chelated low-spin iron(II) [Fe(bpm)3]2+ cations, and lattice water molecules. The iron atoms are hexacoordinated: six oxygen atoms (iron(III)) from two bidentate and one bisbidentate oxalato ligands and six nitrogen atoms (iron(II)) from three bidentate bpm groups. The Fe(III)-O(ox) and Fe(II)-N(bpm) bond distances vary in the ranges 1.967(3)-2.099(3) and 1.967(4)-1.995(3) A, respectively. The iron(III)-iron(III) separation across the bridging oxalato is 5.449(2) A, whereas the shortest intermolecular iron(III)-iron(II) distance is 6.841(2) A. The structure of complex 2 consists of neutral heterotrinuclear Fe(bpm)2Na(H2O)2Fe(ox)3 units and water molecules of crystallization. The tris-chelated low-spin iron(II) ([Fe(bpm)3]2+) and high-spin iron(III) ([Fe(ox)3]3-) entities act as bidentate ligands (through two bpm-nitrogen and two oxalato-oxygen atoms, respectively) toward the univalent sodium cation, yielding the trinuclear (bpm)2Fe(II)-bpm-Na(I)-ox-Fe(III)(ox)2 complex. Two cis-coordinated water molecules complete the distorted octahedral surrounding of the sodium atom. The ranges of the Fe(II)-N(bpm) and Fe(III)-O(ox) bond distances [1.968(6)-1.993(5) and 1.992(6)-2.024(6) A, respectively] compare well with those observed in 1. The Na-N(bpm) bond lengths (2.548(7) and 2.677(7) A) are longer than those of Na-O(ox) (2.514(7) and 2.380(7) A) and Na-O(water) (2.334(15) and 2.356(12) A). The intramolecular Fe(II)...Fe(III) separation is 6.763(2) A, whereas the shortest intermolecular Fe(II)...Fe(II) and Fe(III)...Fe(III) distances are 8.152(2) and 8.992(2) A, respectively. Magnetic susceptibility measurements in the temperature range 2.0-290 K for 1 reveal that the high-spin iron(III) ions are antiferromagnetically coupled (J = -6.6 cm-1, the Hamiltonian being defined as H = -JS1.S2). The magnitude of the antiferromagnetic coupling through the bridging oxalato in the magneto-structurally characterized family of formula [M2(ox)5](2m-10)+ (M = Fe(III) (1), Cr(III), and Ni(II)) is analyzed and discussed by means of a simple orbital model.

  3. Cubes, squares, and books: a simple transition metal/bridging ligand combination can lead to a surprising range of structural types with the same metal/ligand proportions.

    PubMed

    Najar, Adel M; Tidmarsh, Ian S; Adams, Harry; Ward, Michael D

    2009-12-21

    Reaction of two structurally related bridging ligands L(26Py) and L(13Ph), in which two bidentate chelating pyrazolyl-pyridine units are connected to either a 2,6-pyridine-diyl or 1,3-benzene-diyl central group via methylene spacers, with first-row transition metal dications, results in a surprising variety of structures. The commonest is that of an octanuclear coordination cage [M(8)L(12)]X(16) [M = Co(II) or Zn(II); X = perchlorate or tetrafluoroborate] in which a metal ion is located at each of the eight vertices of an approximate cube, and one bis-bidentate bridging ligand spans each edge. The arrangement of fac and mer tris-chelate metal centers around the inversion center results in approximate (non-crystallographic) S(6) symmetry. Another structural type observed in the solid state is a hexanuclear complex [Co(6)(L(13Ph))(9)](ClO(4))(12) in which the six metal ions are in a rectangular array (two rows of three), folded about the central Co-Co vector like a partially open book, with each metal-metal edge containing one bridging ligand apart from the two outermost metal-metal edges which are spanned by a pair of bridging ligands in a double helical array. The final structural type we observed is a tetranuclear square [Ni(4)(L(26Py))(6)](BF(4))(8), with the four Ni-Ni edges spanned alternately by one and two bridging ligand such that it effectively consists of two dinuclear double helicates cross-linked by additional bridging ligands. A balance between the "cube" and "book" forms, which varied from compound to compound, was observed in solution in many cases by (1)H NMR and ES mass spectrometry studies.

  4. Synthesis, structures, nuclease activity, cytotoxicity, DFT and molecular docking studies of two nitrato bridged homodinuclear (Cu-Cu, Zn-Zn) complexes containing 2,2'-bipyridine and a chalcone derivative.

    PubMed

    Gaur, Ruchi; Choubey, Diksha Kumari; Usman, Mohammad; Ward, Benzamin D; Roy, Jagat Kumar; Mishra, Lallan

    2017-08-01

    Nitrato briged dinuclear complexes of type [Cu 2 (L) 2 (bpy) 2 (NO 3 )](NO 3 )·4H 2 O, 1 and [Zn 2 (L) 2 (bpy) 2 (NO 3 )](NO 3 )·4H 2 O, 2 (L=deprotonated form of free ligand LH, [1-(2-hydroxyphenyl)-3-(9-anthracenyl) propenone; bpy=2,2'bipyridine] are synthesized and characterized using a battery of physicochemical techniques and X-ray crystallography. A distorted square pyramidal geometry is assigned to them with N 2 O 3 coordination core around the metal ion. The co-ligand L binds the metal ions through its O,O' atoms in anti-syn mode. The metal centers in complexes 1 and 2 are separated via bridging nitrato group at a distance of 6.073Å and 5.635Å respectively. Their structures and absorption spectra are supported by the computational studies using density functional theory (DFT) and TD-DFT. Both complexes exhibit nuclease activity and cleave supercoiled (form I) DNA. The complex 1 preferentially binds major groove of DNA and follows an oxidative pathway whereas complex 2 binds with minor groove of DNA via hydrolytic pathway. Both complexes inhibit topoisomerase I relaxation activity with IC 50 values of 7 and 35μM. Molecular docking studies support the groove binding and topoisomerase I binding of the complexes. The complex 1 showed a significant cytotoxicity against HeLa cell lines (a cervical cancer cell lines) in vitro with IC 50 value calculated as 2.9±0.021μM as compared to 28.2±0. 044μΜ for complex 2. Complex 2 induces the cell apoptosis at a later-stage as compared to complex 1. The cell apoptosis and topoisomerase inhibition by complexes enable them to be potential candidates as future anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Molecular recognition modes between adenine or adeniniun(1+) ion and binary M(II)(pdc) chelates (MCoZn; pdc=pyridine-2,6-dicarboxylate(2-) ion).

    PubMed

    Del Pilar Brandi-Blanco, María; Choquesillo-Lazarte, Duane; Domínguez-Martín, Alicia; Matilla-Hernández, Antonio; González-Pérez, Josefa María; Castiñeiras, Alfonso; Niclós-Gutiérrez, Juan

    2013-10-01

    Mixed ligand M(II)-complexes (MCoZn) with pyridine-2,6-dicarboxylate(2-) chelator (pdc) and adenine (Hade) have been synthesized and studied by X-ray diffraction and other spectral and thermal methods: [Cu(pdc)(H(N9)ade)(H2O)] (1), [Cu2(pdc)2(H2O)2(μ2-N3,N7-H(N9)ade)]·3H2O (2), trans-[M(pdc)(H(N9)ade)(H2O)2]·nH2O for MCo (3-L, 3-M, 3-H) or Zn (4-L, 4-H), where n is 0, 1 or 3 for the 'lowest' (L), 'medium' (M) and 'highest' (H) hydrated forms, and the salt trans-[Ni(pdc)(H2(N1,N9)ade)(H2O)2]Cl·2H2O (5). In all the nine compounds, both neutral and cationic adenine exist as their most stable tautomer and the molecular recognition pattern between the metal-pdc chelates and the adenine or adeninium(1+) ligands involves the MN7 bond in cooperation with an intra-molecular N6H⋯O(coordinated carboxylate) interligand interaction. In addition the dinuclear copper(II) compound (2) has the CuN3 bond and the N9H⋯O(coord. carboxylate) interaction. The structures of mononuclear ternary complexes proved that the molecular recognition pattern is the same irrespective of (a) the coordination geometry of the complex molecule, (b) the different hydrated forms of crystals with Co or Zn, and (c) the neutral of cationic form of the adenine ligand. These features are related to the mer-NO2 chelating ligand conformation (imposed by the planar rigidity of pdc) as a driving force for the observed metal binding mode. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. The Forgotten Nitroaromatic Phosphines as Weakly Donating P-ligands: An N-Aryl-benzimidazolyl Series in RhCl(CO) Complexes.

    PubMed

    Zhu, Chongwei; Gras, Emmanuel; Duhayon, Carine; Lacassin, Francis; Cui, Xiuling; Chauvin, Remi

    2017-11-02

    The coordination chemistry of a priori weakly σ-donating nitroaromatic phosphines is addressed through a series of nitro-substituted (N-phenyl-benzimidazol-1-yl)diphenylphosphines in Rh I complexes. From a set of seven such phosphines L=L xyz (') (x, y, z=0 or 1=number of NO 2 substituents at the 5, 6 and N-Ph para positions, respectively), including the non-nitrated parent L 000 and its dicationic N-methyl counterpart L 000 ', three LRhCl(COD) and seven L 2 RhCl(CO) complexes have been obtained in 72-95 % yield. Despite of a cis orientation of the L and CO ligands, the C=O IR stretching frequency ν CO varies in the expected sense, from 1967±1 cm -1 for L xy0 to 1978±1 cm -1 for L xy1 , and 2005 cm -1 for L 000 '. The 103 Rh NMR chemical shift δ Rh varies from -288 ppm for L 000 to -316±1 ppm for L 10z or L 01z , and -436 ppm for L 000 '. The ν CO and δ Rh probes thus reveal moderate but systematic variations, and act as "orthogonal" spectroscopic indicators of the presence of nitro groups on the N-Ph group and the benzimidazole core, respectively. For the dicationic ligand L 000 ', a tight electrostatic sandwiching of the Rh-Cl bond by the benzimidazole moities is evidenced by X-ray crystallography (RhCl δ- ⋅⋅⋅CN 2 + ≈3.01 Å). Along with the LRhCl(CO) complexes, dinuclear side-products (μ-CO)(RhClL) 2 were also obtained in low spectroscopic yield: for the dinitro ligand L=L 011 , a unique 1:6.7 clathrate structure, with dichloromethane as solvate, is also revealed by X-ray crystallography. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Long-Range Intramolecular Electronic Communication in a Trinuclear Ruthenium Tropolonate Complex.

    PubMed

    Yoshida, Jun; Kuwahara, Kyohei; Suzuki, Kota; Yuge, Hidetaka

    2017-02-20

    Dinuclear and trinuclear ruthenium complexes, [Ru(trop) 2 (C 2 trop)Ru(dppe)Cp] [2b; trop = tropolonato, C 2 trop = ethynyltropolonato, dppe = 1,2-bis(diphenylphosphino)ethane] and [Ru(trop){(C 2 trop)Ru(dppe)Cp} 2 ] (3), were synthesized, and their electronic and electrochemical properties were investigated in comparison with our previously reported complex [Ru(acac) 2 (C 2 trop)Ru(dppe)Cp] (2a). The electron-donating Ru II (dppe)Cp unit and electron-accepting Ru III O 6 unit are connected by C 2 trop in these complexes. 2a incorporates acetylacetonate as an ancillary ligand, while 2b and 3 incorporate tropolonate as an ancillary ligand. Every complex, 2a, 2b, and 3, exhibits similar UV-vis-near-IR (NIR) absorption spectra, demonstrating the lack of explicit intramolecular electronic communication between the units at least in the neutral state. The weak NIR absorption in 2a further diminished upon electrochemical oxidation, indicating almost no electronic communication between the units. In contrast, 2b and 3 exhibit broad NIR absorptions upon oxidation. Additionally, 3 exhibits four stepwise redox couples in the electrochemical study, which are formally attributed to [Ru II (trop) 3 ] - /[Ru III (trop) 3 ], two [Ru II (dppe)Cp]/[Ru III (dppe)Cp] + , and [Ru III (trop) 3 ]/[Ru IV (trop) 3 ] + couples. Clear separation of the redox couples attributed to the two terminal [Ru(dppe)Cp] units demonstrates the thermodynamic stability of the intermediate oxidation states with respect to disproportionation. Further electrochemical studies using an electrolyte including perfluorinated weakly coordinating anions and density functional theory/time-dependent density functional theory calculations confirmed the effect of ancillary ligands, acetylacetonate and tropolonate. In the case of 2a, electronic delocalization over the whole complex, especially over the [Ru(acac) 2 (trop)] unit, appears to be small. In contrast, the electronic communication between [Ru(dppe)Cp] and [Ru(trop) 3 ] units in 3 seems to be enhanced upon oxidation, resulting in the long-range intramolecular electronic communication.

  8. Series of mixed uranyl-lanthanide (Ce, Nd) organic coordination polymers with aromatic polycarboxylates linkers.

    PubMed

    Mihalcea, Ionut; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry

    2012-09-17

    Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.

  9. Syntheses, structures and magnetic properties of four coordination polymers based on nitrobenzene dicarboxylate and various N-donor coligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Gui-Lian; Yin, Wei-Dong; Liu, Guang-Zhen

    Four new coordination polymers ([Ni(4-Nbdc)(bpa)(H{sub 2}O)]){sub n} (1), ([Co(4-Nbdc)(bpp) (H{sub 2}O)]){sub n} (2), ([Ni(4-Nbdc)(bpp)(H{sub 2}O)]·H{sub 2}O){sub n} (3), and ([Mn{sub 2}(3-Nbdc){sub 2}(bib){sub 3}]·2H{sub 2}O){sub n} (4) (4-Nbdc=4-nitrobenzene-1,2-dicarboxylate, 3-Nbdc=3-nitrobenzene-1,2-dicarboxylate, bpa=1,2-bi(4-pyridyl)ethane, bpp=1,3-bis(4-pyridyl)propane, and bib=1,4-bis(1-imidazoly)benzene), were synthesized by hydrothermal reactions, and characterized by single-crystal X-ray diffractions, elemental analysis, FT-IR, PXRD, TGA and magnetic analysis. Complexes 1 and 2 display quasi-trapezoidal chain and brick-wall layer, and both of them contain metal–carboxylate binuclear units. Complexes 3 and 4 exhibit three-dimensional frameworks with the (6{sup 6}) dia topology and (4{sup 4}.6{sup 10}.8)(4{sup 4}.6{sup 2}) fsc topology, and both of them contain metal–carboxylate chains. The carboxyl groupsmore » with syn-anti coordination mode mediate effectively the weak ferromagnetic coupling interaction within Ni(II)–carboxylate binuclear in 1 (J=1.27 cm{sup −1}) and Ni(II)–carboxylate chain in 3 (J=1.44 cm{sup −1}), respectively, and the carboxyl groups with anti-anti coordination mode leads to the classic antiferromagnetic coupling interaction within Mn(II)–carboxylate chain in 4 (J=−0.77 cm{sup −1}). - Highlights: • Four novel coordination polymers were hydrothermally synthesized. • 1 is 1D quasi-trapezoidal chain and 2 is brick-wall layer both with dinuclear units. • 3 and 4 show 3D frameworks both with 1D metal–carboxylate chains. • 1 and 3 exhibit ferromagnetic coupling, while 4 shows antiferromagnetic coupling.« less

  10. New metal-organic complexes based on bis(tetrazole) ligands: Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Du, Ceng-Ceng; Fan, Jian-Zhong; Wang, Xin-Fang; Zhou, Sheng-Bin; Wang, Duo-Zhi

    2017-04-01

    In this paper, a series of new complexes, [Zn2(HL1)2(H2O)4]·H2O (1), [Co2(HL1)2]·TEA (2), [Co3(HL1)2(H2L1)2(H2O)4]n (3), [Cu(HL1)(H2O)2]n (4), {[Cu5(HL2)2(OH)4(ClO4)2]·4H2O}n (5) and [Cu2(L3)]n (6) were successfully prepared by utilizing three bis(tetrazole) ligands [bis-(1H-tetrazol-5-ylmethyl)-amine (H3L1), bis-(1H-tetrazol-5-ylethyl)-amine (H3L2) and 1,5-bis(5-tetrazolo)-3-thiapentane (H2L3)], all of which have been characterized by elemental analyses, FT-IR spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analyses as well as single-crystal X-ray diffraction analyses showing different dimensionalities (0D, 1D and 3D). Complexes 1 and 2 are 0D structures, 1 shows a dinuclear structure, 2 displays two crystallographically different mononuclear structures, 1 and 2 are further assembled to form 3D supramolecular framework and 2D supramolecular network by hydrogen-bonding interactions, respectively. Complexes 3, 4 and 5 are 1D structures, 3 features a mononuclear unit and a 1D chain, which are arranged into 3D supramolecular architecture by hydrogen-bonding interactions, 4 presents a zigzag chain, 5 shows an infinite chain structure constructed from pentanuclear Cu(II) subunits and ClO4- anions. Complex 6 exhibits a 3D coordination framework based on cyclic [Cu4(L3)2] dimmer subunits as nodes possessing an 8-connected network topology with the point symbol {424·64}. Further, semiconductor behaviors, the solid-state luminescent properties of the complexes 1-3 and 6 were measured and studied seriously at room temperature.

  11. C-C bond formation and related reactions at the CNC backbone in (smif)FeX (smif = 1,3-di-(2-pyridyl)-2-azaallyl): dimerizations, 3 + 2 cyclization, and nucleophilic attack; transfer hydrogenations and alkyne trimerization (X = N(TMS)2, dpma = (di-(2-pyridyl-methyl)-amide)).

    PubMed

    Frazier, Brenda A; Williams, Valerie A; Wolczanski, Peter T; Bart, Suzanne C; Meyer, Karsten; Cundari, Thomas R; Lobkovsky, Emil B

    2013-03-18

    Molecular orbital analysis depicts the CNC(nb) backbone of the smif (1,3-di-(2-pyridyl)-2-azaallyl) ligand as having singlet diradical and/or ionic character where electrophilic or nucleophilic attack is plausible. Reversible dimerization of (smif)Fe{N(SiMe3)2} (1) to [{(Me3Si)2N}Fe]2(μ-κ(3),κ(3)-N,py2-smif,smif) (2) may be construed as diradical coupling. A proton transfer within the backbone-methylated, and o-pyridine-methylated smif of putative ((b)Me2(o)Me2smif)FeN(SiMe3)2 (8) provides a route to [{(Me3Si)2N}Fe]2(μ-κ(4),κ(4)-N,py2,C-((b)Me,(b)CH2,(o)Me2(smif)H))2 (9). A 3 + 2 cyclization of ditolyl-acetylene occurs with 1, leading to the dimer [{2,5-di(pyridin-2-yl)-3,4-di-(p-tolyl-2,5-dihydropyrrol-1-ide)}FeN(SiMe3)2]2 (11), and the collateral discovery of alkyne cyclotrimerization led to a brief study that identified Fe(N(SiMe3)2(THF) as an effective catalyst. Nucleophilic attack by (smif)2Fe (13) on (t)BuNCO and (2,6-(i)Pr2C6H3)NCO afforded (RNHCO-smif)2Fe (14a, R = (t)Bu; 14b, 2,6-(i)PrC6H3). Calculations suggested that (dpma)2Fe (15) would favorably lose dihydrogen to afford (smif)2Fe (13). H2-transfer to alkynes, olefins, imines, PhN═NPh, and ketones was explored, but only stoichiometric reactions were affected. Some physical properties of the compounds were examined, and X-ray structural studies on several dinuclear species were conducted.

  12. Electrochemical Water Oxidation and Stereoselective Oxygen Atom Transfer Mediated by a Copper Complex.

    PubMed

    Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius

    2018-04-06

    Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structure and mechanism of Cu- and Ni-substituted analogs of metallo-β-lactamase L1

    PubMed Central

    Hu, Zhenxin; Spadafora, Lauren J.; Hajdin, Christine E.; Bennett, Brian; Crowder, Michael W.

    2009-01-01

    In an effort to further probe metal binding to metallo-β-lactamase L1 (mβl L1), Cu- (Cu-L1) and Ni-substituted (Ni-L1) L1 were prepared and characterized by kinetic and spectroscopic studies. Cu-L1 bound 1.7 equivalents of Cu and small amounts of Zn(II) and Fe. The EPR spectrum of Cu-L1 exhibited two overlapping, axial signals, indicative of type 2 sites with distinct affinities for Cu(II). Both signals indicated multiple nitrogen ligands. Despite the expected proximity of the Cu(II) ions, however, only indirect evidence was found for spin-spin coupling. Cu-L1 exhibited higher kcat (96 s−1) and Km (224 μM) values, as compared to the values of dinuclear Zn(II)-containing L1, when nitrocefin was used as substrate. The Ni-L1 bound 1 equivalent of Ni and 0.3 equivalents of Zn(II). Ni-L1 was EPR-silent, suggesting that the oxidation state of nickel was +2; this suggestion was confirmed by 1H NMR spectra, which showed relatively sharp proton resonances. Stopped-flow kinetic studies showed that ZnNi-L1 stabilized significant amounts of the nitrocefin-derived intermediate and that the decay of intermediate is rate-limiting. 1H NMR spectra demonstrate that Ni(II) binds in the Zn2 site and that the ring-opened product coordinates Ni(II). Both Cu-L1 and ZnNi-L1 hydrolyze cephalosporins and carbapenems, but not penicillins, suggesting that the Zn2 site modulates substrate preference in mβ1 L1. These studies demonstrate that the Zn2 site in L1 is very flexible and can accommodate a number of different transition metal ions; this flexibility could possibly offer an organism that produces L1 an evolutionary advantage when challenged with β-lactam containing antibiotics. PMID:19228020

  14. Synthesis and structure of tetranuclear orthometallated Pd(II) complexes derived from bis-iminophosphoranes.

    PubMed

    Bielsa, Raquel; Navarro, Rafael; Soler, Tatiana; Urriolabeitia, Esteban P

    2008-04-07

    The reaction of Pd(OAc)2 with bis-iminophosphoranes Ph3P=NCH2CH2CH2N=PPh3 (1a), [C6H4(C(O)N=PPh3)2-1,3] (1b) and [C6H4(C(O)N=PPh3)2-1,2] (1c), gives the orthopalladated tetranuclear complexes [{Pd(mu-Cl){C6H4(PPh2=NCH2-kappa-C,N)-2}}2CH2]2 (2a) [{Pd(mu-OAc){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',3']2 (2b) and [{Pd(mu-OAc){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',2']2 (2c). The reaction takes place in CH2Cl2 for 1a, but must be performed in glacial acetic acid for 1b and 1c. The process implies in all cases the activation of a C-H bond on a Ph ring of the phosphonium group, with concomitant formation of endo complexes. This is the expected behaviour for 1a, but for 1b and 1c reverses the exo orientation observed in other ketostabilized iminophosphoranes. The influence of the solvent in the orientation of the reaction is discussed. The dinuclear acetylacetonate complexes [{Pd(acac-O,O'){C6H4(PPh2=NCH2-kappa-C,N)-2}}2CH2] (3a), [{Pd(acac-O,O'){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',3'] (3b) and [{Pd(acac-O,O'){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',2'] (3c) have been obtained from the halide-bridging tetranuclear derivatives. The X-ray crystal structure of [3c.4CHCl3] is also reported.

  15. Two polymeric nickel(II) complexes with aromatic benzene-1,2,4,5-tetracarboxylate and pyridine-2,5-dicarboxylate linkers.

    PubMed

    Atria, Ana María; Corsini, Gino; González, Lissette; Garland, Maria Teresa; Baggio, Ricardo

    2009-07-01

    (Mu-benzene-1,2,4,5-tetracarboxylato-kappa(2)O(1):O(4))bis[aquabis(2,2-methylpropane-1,3-diamine-kappa(2)N,N')nickel(II)] methanol disolvate tetrahydrate, [Ni(2)(C(10)H(2)O(8))(C(5)H(14)N(2))(4)(H(2)O)(2)].2CH(4)O.4H(2)O, (I), is dinuclear, with elemental units built up around an inversion centre halving the benzene-1,2,4,5-tetracarboxylate (btc) anion, which bridges two symmetry-related Ni(II) cations. The octahedral Ni polyhedron is completed by two chelating 2,2-methylpropane-1,3-diamine (dmpda) groups and a terminal aqua ligand. Two methanol and four water solvent molecules are involved in a number of N-H...O and O-H...O hydrogen bonds which define a strongly bound two-dimensional supramolecular structure. The structure of catena-poly[[[bis(2,2-methylpropane-1,3-diamine-kappa(2)N,N')nickel(II)]-mu-pyridine-2,5-dicarboxylato-kappa(3)O(5):N,O(2)-[(2,2-methylpropane-1,3-diamine-kappa(2)N,N')nickel(II)]-mu-pyridine-2,5-dicarboxylato-kappa(3)N,O(2):O(5)] octahydrate], {[Ni(2)(C(7)H(3)NO(4))(2)(C(5)H(14)N(2))(3)].8H(2)O}(n), (II), is polymeric, forming twisted chains around three independent Ni centres, two of which lie on inversion centres and the third in a general position. There are three chelating dmpda ligands (one disordered over two equally populated positions), which are each attached to a different cation, and two pyridine-2,5-dicarboxylate (pdc) anions, both chelating the Ni centre in general positions through an -O-C-C-N- loop, while acting as bridges to the remaining two centrosymmetric Ni atoms. There are, in addition, eight noncoordinated water molecules in the structure, some of which are disordered.

  16. 3d-4f magnetic interaction with density functional theory plus u approach: local Coulomb correlation and exchange pathways.

    PubMed

    Zhang, Yachao; Yang, Yang; Jiang, Hong

    2013-12-12

    The 3d-4f exchange interaction plays an important role in many lanthanide based molecular magnetic materials such as single-molecule magnets and magnetic refrigerants. In this work, we study the 3d-4f magnetic exchange interactions in a series of Cu(II)-Gd(III) (3d(9)-4f(7)) dinuclear complexes based on the numerical atomic basis-norm-conserving pseudopotential method and density functional theory plus the Hubbard U correction approach (DFT+U). We obtain improved description of the 4f electrons by including the semicore 5s5p states in the valence part of the Gd-pseudopotential. The Hubbard U correction is employed to treat the strongly correlated Cu-3d and Gd-4f electrons, which significantly improve the agreement of the predicted exchange constants, J, with experiment, indicating the importance of accurate description of the local Coulomb correlation. The high efficiency of the DFT+U approach enables us to perform calculations with molecular crystals, which in general improve the agreement between theory and experiment, achieving a mean absolute error smaller than 2 cm(-1). In addition, through analyzing the physical effects of U, we identify two magnetic exchange pathways. One is ferromagnetic and involves an interaction between the Cu-3d, O-2p (bridge ligand), and the majority-spin Gd-5d orbitals. The other one is antiferromagnetic and involves Cu-3d, O-2p, and the empty minority-spin Gd-4f orbitals, which is suppressed by the planar Cu-O-O-Gd structure. This study demonstrates the accuracy of the DFT+U method for evaluating the 3d-4f exchange interactions, provides a better understanding of the exchange mechanism in the Cu(II)-Gd(III) complexes, and paves the way for exploiting the magnetic properties of the 3d-4f compounds containing lanthanides other than Gd.

  17. Six uranyl-organic frameworks with naphthalene-dicarboxylic acid and bipyridyl-based spacers: syntheses, structures, and properties.

    PubMed

    Xu, Wei; Ren, Ya-Nan; Xie, Miao; Zhou, Lin-Xia; Zheng, Yue-Qing

    2018-03-28

    A new series of uranium coordination polymers have been hydrothermally synthesized by using 1,4-naphthalene dicarboxylic acid (H 2 NDC), namely, (H 3 O) 2 [(UO 2 ) 2 (NDC) 3 ]·H 2 O (1), (H 2 -bpp)[(UO 2 ) 2 (NDC) 3 ]·EtOH·5H 2 O (2), (H 2 -bpe) 2/2 [(UO 2 ) 2 (NDC) 3 ]·EtOH (3), (H 2 -bpp)[(UO 2 ) 2 (NDC) 3 ]·5H 2 O (4), (H 2 -bpp)[(UO 2 )(HNDC)(NDC)] 2 ·2H 2 O (5), and (H 2 -bpy)[(UO 2 )(NDC) 2 ] (6) [bpp = 1,3-di(4-pyridyl) propane, bpe = 4,4'-vinylenedipyridine, bpy = 4,4'-bipyridine]. Single-crystal X-ray diffraction demonstrates that complex 1 represents the uranyl-organic polycatenated framework derived from a simple two-dimensional honeycomb grid network structure via a H 2 NDC linker. Complexes 2-4 contain the dinuclear motifs of the two UO 7 pentagonal and one UO 8 hexagonal bipyramids which are linked by NDC 2- anions creating a (UO 2 ) 4 (NDC) 2 unit, and further extend to a 2D layer through NDC 2- anions. Complex 5 displays a 1D zigzag double chain structure, in which the carboxylate groups of the NDC 2- anions adopt a chelate mode and further extends to a 2D framework via hydrogen bonds. The 1D structure of complex 6 is similar to the zigzag chain of complex 5. In addition, powder X-ray diffraction, elemental analysis, IR, thermal stability and luminescence properties of all complexes have also been investigated in this paper. The photocatalytic properties of the six complexes for the degradation of tetracycline hydrochloride (TC) under UV irradiation have been examined. Moreover, density functional theory (DFT) calculations were carried out to explore the electronic structural and bonding properties of the uranyl complexes 1-6.

  18. Mono- and Dinuclear Manganese Carbonyls Supported by 1,8-Disubstituted (L = Py, SMe, SH) Anthracene Ligand Scaffolds.

    PubMed

    Manes, Taylor A; Rose, Michael J

    2016-06-06

    Presented herein is a synthetic scheme to generate symmetric and asymmetric ligands based on a 1,8-disubstituted anthracene scaffold. The metal-binding scaffolds were prepared by aryl chloride activation of 1,8-dichloroanthracene using Suzuki-type couplings facilitated by [Pd(dba)2] as a Pd source; the choice of cocatalyst (XPhos or SPhos) yielded symmetrically or asymmetrically substituted scaffolds (respectively): namely, Anth-SMe2 (3), Anth-N2 (4), and Anth-NSMe (6). The ligands exhibit a nonplanar geometry in the solid state (X-ray), owing to steric hindrance between the anthracene scaffold and the coupled aryl units. To determine the flexibility and binding characteristics of the anthracene-based ligands, the symmetric scaffolds were complexed with [Mn(CO)5Br] to afford the mononuclear species [(Anth-SMe2)Mn(CO)3Br] (8) and [(Anth-N2)Mn(CO)3Br] (9), in which the donor moieties chelate the Mn center in a cis fashion. The asymmetric ligand Anth-NSMe (6) binds preferentially through the py moieties, affording the bis-ligated complex [(Anth-NSMe)2Mn(CO)3Br] (10), wherein the thioether-S donors remain unbound. Alternatively, deprotection of the thioether in 6 affords the free thiol ligand Anth-NSH (7), which more readily binds the Mn center. Complexation of 7 ultimately affords the mixed-valence Mn(I)/Mn(II) dimer of formula [(Anth-NS)3Mn2(CO)3] (11), which exhibits a fac-{Mn(CO)3} unit supported by a triad of bridging thiolates, which are in turn ligated to a supporting Mn(II) center (EPR: |D| = 0.053 cm(-1), E/|D| = 0.3, Aiso = -150 MHz). All of the metal complexes have been characterized by single-crystal X-ray diffraction, IR spectroscopy and NMR/EPR measurements-all of which demonstrate that the meta-linked, anthracene-based ligand scaffold is a viable approach for the coordination of metal carbonyls.

  19. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Jie-Cen; Wan, Fang; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln{sub 2}(phen){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub n} (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]{sub n} (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO{sub 4}{sup 2−} anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybridmore » lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of {sup 5}D{sub 0}→{sup 7}F{sub J} (J=0–4) of the Eu(III)« less

  20. Hydrothermal synthesis of Bismuth(III) coordination polymer and its transformation to nano α-Bi{sub 2}O{sub 3} for photocatalytic degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Ya-Jing; Zheng, Yue-Qing, E-mail: zhengnbu@163.com; Zhu, Hong-Lin

    A new Bi(III) coordination polymer Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O (H{sub 2}pdc=pyridine-2,6-dicarboxylic acid) was synthesized by hydrothermal method. Solid state thermal decomposition of this complex under 500 °C for 1 h led to the foliated Bi{sub 2}O{sub 3} nanoparticles, which were then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Comparative study on their photocatalytic activity toward the degradation of rhodamine B (RhB), methylene blue (MB) and methyl orange (MO) in polluted water was explored, and the mechanism of these photocatalytic degradation was discussed. These results provided some interesting insights into their photocatalytic applications. - Graphical abstract: Wemore » regard Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O with 1D chain structures as the precursor, then calcinate the complex to prepare nano-powder α-Bi{sub 2}O{sub 3}. The photochemical experiment indicates that Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O can be used as an efficient photocatalyst for the degradation of RhB and MB. Interestingly, nano α-Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of RhB, MB or MO. Display Omitted - Highlights: • A novel dinuclear Bi(III) coordination polymer is hydrothermally synthesized. • Calcinating the precursor Bi-CP will result in the nano Bi{sub 2}O{sub 3} with foliated morphology. • Nano Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of dyes.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Xiu-Chun; Xi, Fu-Gui; Wang, Kun

    From a new dicarboxylate ligand, 9H-carbazole-2,7-dicarboxylic acid (2,7-H{sub 2}CDC), three Zn(II) metal-organic frameworks were synthesized in the absence or presence of ditopic N-donor ligands. They are formulated as [Zn{sub 5}(μ{sub 3}-OH){sub 2}(2,7-CDC){sub 4}(DEF){sub 2}] (1) (DEF=N,N-diethylformamide), [Zn{sub 2}(2,7-CDC){sub 2}(DABCO)(H{sub 2}O)]·5DMF·H{sub 2}O (2) (DABCO=1-diaza-bicyclo[2.2.2]octane, DMF=N,N-dimethylformamide), and [Zn{sub 2}(2,7-CDC){sub 2}(bpea)]·3DMA·2 H{sub 2}O (3) (bpea=1,2-bis(4-pyridyl)ethylane, DMA=N,N-dimethylacetamide). Compounds 1 and 3 display the 3D pcu frameworks. In 1 the unusual pentanuclear [Zn{sub 5}(μ{sub 3}-OH){sub 2}(COO){sub 8}] secondary building units (SBUs) are linked by dicarboxylate ligands. Differently, in 3 the well-known paddle–wheel [Zn{sub 2}(COO){sub 4}] SBUs are linked by dicarboxylate and dipyridyl ligands. Compound 2more » shows the rare self-catenated 3D alb-3,6-C2/c net topology based on the dinuclear paddle–wheel SBU and a mononuclear unit. The stability and fluorescent properties of the compounds have been studied. - Graphical abstract: A new dicarboxylate ligand, 9H-carbazole-2,7-dicarboxylic acid, was used to construct Zn(II) metal-organic frameworks, including a novel self-catenated network with the rare 3D alb-3,6-C2/c net and two pcu-type networks based on an unprecedented pentanuclear clusters and the common paddle–wheel units. The compounds show blue fluorescent properties. Display Omitted - Highlights: • MOFs with a new carbazole-based dicarboxylate ligand. • New pentanuclear [Zn{sub 5}(μ{sub 3}-OH){sub 2}(COO){sub 8}] secondary building unit. • The rare self-catenated 3D alb-3,6-C2/c net.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uemura, Kazuhiro, E-mail: k_uemura@gifu-u.ac.j; Onishi, Fumiaki; Yamasaki, Yukari

    NO{sub 2} containing dicarboxylate bridging ligands, nitroterephthalate (bdc-NO{sub 2}) and 2,5-dinitroterephthalate (bdc-(NO{sub 2}){sub 2}), afford porous coordination polymers, {l_brace}[Zn{sub 2}(bdc-NO{sub 2}){sub 2}(dabco)].solvents{r_brace}{sub n} (2 contains solvents) and {l_brace}[Zn{sub 2}(bdc-(NO{sub 2}){sub 2}){sub 2}(dabco)].solvents{r_brace}{sub n} (3 contains solvents). Both compounds form jungle-gym-type regularities, where a 2D square grid composed of dinuclear Zn{sub 2} units and dicarboxylate ligands is bridged by dabco molecules to extend the 2D layers into a 3D structure. In 2 contains solvents and 3 contains solvents, a rectangle pore surrounded by eight Zn{sub 2} corners contains two and four NO{sub 2} moieties, respectively. Thermal gravimetry (TG) and X-ray powdermore » diffraction (XRPD) measurements reveal that both compounds maintain the frameworks regularities without guest molecules and with solvents such as MeOH, EtOH, i-PrOH, and Me{sub 2}CO. Adsorption measurements reveal that dried 2 and 3 adsorb H{sub 2}O molecules to be {l_brace}[Zn{sub 2}(bdc-NO{sub 2}){sub 2}(dabco)].4H{sub 2}O{r_brace}{sub n} (2 contains 4H{sub 2}O) and {l_brace}[Zn{sub 2}(bdc-(NO{sub 2}){sub 2}){sub 2}(dabco)].6H{sub 2}O{r_brace}{sub n} (3 contains 6H{sub 2}O), showing the pore hydrophilicity enhancement caused by NO{sub 2} group introduction. - Graphical abstract: Two hydrophilic porous coordination polymers, [Zn{sub 2}(bdc-NO{sub 2}){sub 2}(dabco)]{sub n} (2, bdc-NO{sub 2}=nitroterephthalate, dabco=1,4-diazabicyclo[2.2.2]octane) and [Zn{sub 2}(bdc-(NO{sub 2}){sub 2}){sub 2}(dabco)]{sub n} (3, bdc-(NO{sub 2}){sub 2}=2,5-dinitroterephthalate), have been synthesized and characterized by single X-ray analyses, thermal gravimetry, and adsorption measurements.« less

  3. Photoresponsive Molecular Memory Films Composed of Sequentially Assembled Heterolayers Containing Ruthenium Complexes.

    PubMed

    Nagashima, Takumi; Ozawa, Hiroaki; Suzuki, Takashi; Nakabayashi, Takuya; Kanaizuka, Katsuhiko; Haga, Masa-Aki

    2016-01-26

    Photoresponsive molecular memory films were fabricated by a layer-by-layer (LbL) assembling of two dinuclear Ru complexes with tetrapodal phosphonate anchors, containing either 2,3,5,6-tetra(2-pyridyl)pyrazine or 1,2,4,5-tetra(2-pyridyl)benzene as a bridging ligand (Ru-NP and Ru-CP, respectively), using zirconium phosphonate to link the layers. Various types of multilayer homo- and heterostructures were constructed. In the multilayer heterofilms such as ITO||(Ru-NP)m |(Ru-CP)n , the difference in redox potentials between Ru-NP and Ru-CP layers was approximately 0.7 V, which induced a potential gradient determined by the sequence of the layers. In the ITO||(Ru-NP)m |(Ru-CP)n multilayer heterofilms, the direct electron transfer (ET) from the outer Ru-CP layers to the ITO were observed to be blocked for m>2, and charge trapping in the outer Ru-CP layers became evident from the appearance of an intervalence charge transfer (IVCT) band at 1140 nm from the formation of the mixed-valent state of Ru-CP units, resulting from the reductive ET mediation of the inner Ru-NP layers. Therefore, the charging/discharging ("1"and "0") states in the outer Ru-CP layers could be addressed and interconverted by applying potential pulses between -0.5 and +0.7 V. The two states could be read out by the direction of the photocurrent (anodic or cathodic). The molecular heterolayer films thus represent a typical example of a photoresponsive memory device; that is, the writing process may be achieved by the applied potential (-0.5 or +0.7 V), while the readout process is achieved by measuring the direction of the photocurrent (anodic or cathodic). Sequence-sensitive multilayer heterofilms, using redox-active complexes as building blocks, thus demonstrate great potential for the design of molecular functional devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Analysis of Magnetic Anisotropy and the Role of Magnetic Dilution in Triggering Single-Molecule Magnet (SMM) Behavior in a Family of CoII YIII Dinuclear Complexes with Easy-Plane Anisotropy.

    PubMed

    Palacios, María A; Nehrkorn, Joscha; Suturina, Elizaveta A; Ruiz, Eliseo; Gómez-Coca, Silvia; Holldack, Karsten; Schnegg, Alexander; Krzystek, Jurek; Moreno, José M; Colacio, Enrique

    2017-08-25

    Three new closely related Co II Y III complexes of general formula [Co(μ-L)(μ-X)Y(NO 3 ) 2 ] (X - =NO 3 - 1, benzoate 2, or 9-anthracenecarboxylato 3) have been prepared with the compartmental ligand N,N',N''-trimethyl-N,N''-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H 2 L). In these complexes, Co II and Y III are triply bridged by two phenoxide groups belonging to the di-deprotonated ligand (L 2- ) and one ancillary anion X - . The change of the ancillary bridging group connecting Co II and Y III ions induces small differences in the trigonally distorted CoN 3 O 3 coordination sphere with a concomitant tuning of the magnetic anisotropy and intermolecular interactions. Direct current magnetic, high-frequency and -field EPR (HFEPR), frequency domain Fourier transform THz electron paramagnetic resonance (FD-FT THz-EPR) measurements, and ab initio theoretical calculations demonstrate that Co II ions in compounds 1-3 have large and positive D values (≈50 cm -1 ), which decrease with increasing the distortion of the pseudo-octahedral Co II coordination sphere. Dynamic ac magnetic susceptibility measurements indicate that compound 1 exhibits field-induced single-molecule magnet (SMM) behavior, whereas compounds 2 and 3 only display this behavior when they are magnetically diluted with diamagnetic Zn II (Zn/Co=10:1). In view of this, it is always advisable to use magnetically diluted complexes, in which intermolecular interactions and quantum tunneling of magnetism (QTM) would be at least partly suppressed, so that "hidden single-ion magnet (SIM)" behavior could emerge. Field- and temperature-dependence of the relaxation times indicate the prevalence of the Raman process in all these complexes above approximately 3 K. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Different binding modes of Cu and Pb vs. Cd, Ni, and Zn with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schijf, Johan; Christenson, Emily A.; Potter, Kailee J.

    2015-07-01

    The solution speciation in seawater of divalent trace metals (Cd, Cu, Ni, Pb, Zn) is dominated by strong, ostensibly metal-specific organic ligands that may play important roles in microbial metal acquisition and/or detoxification processes. We compare the effective stabilities of these metal-organic complexes to the stabilities of their complexes with a model siderophore, desferrioxamine B (DFOB). While metal-DFOB complexation has been studied in various dilute but often moderately coordinating media, for the purpose of this investigation we measured the stability constants in a non-coordinating background electrolyte at seawater ionic strength (0.7 M NaClO4). Potentiometric titrations of single metals (M) weremore » performed in the presence of ligand (L) at different M:L molar ratios, whereupon the stability constants of multiple complexes were simultaneously determined by non-linear regression of the titration curves with FITEQL, using the optimal binding mode for each metal. Cadmium, Ni, and Zn, like trivalent Fe, sequentially form a bi-, tetra-, and hexadentate complex with DFOB as pH increases, consistent with their coordination number of 6 and regular octahedral geometry. Copper has a Jahn-Teller-distorted square-bipyramidal geometry whereas the geometry of Pb is cryptic, involving a range of bond lengths. Supported by a thermodynamic argument, our data suggest that this impedes binding of the third hydroxamate group and that the hexadentate Cu-DFOB and Pb-DFOB complex identified in earlier reports may instead be a deprotonated tetradentate complex. Absence of the hexadentate complex promotes the formation of a dinuclear (bidentate-tetradentate) complex, M2HL2+, albeit not for Pb in 0.7 M NaCl, evidently due to extensive complexation with chloride. Stabilities of the hexadentate Ni-DFOB, Zn-DFOB, and the tetradentate Pb-DFOB complex are nearly equal, yet about 2 orders of magnitude higher and 4 orders of magnitude lower than those of the hexadentate Cd-DFOB and tetradentate Cu-DFOB complex, respectively. Linear free-energy relations defined by the rare earth elements are able to predict stabilities of the Cd, Zn, and one of the Pb complexes, but underestimate those of the Ni and Cu complexes. The comparison with metal-specific organic ligands detected in seawater yields fair agreement for three of the five metals, implying that they could be siderophore-like. The Cd- and Ni-specific ligands are much stronger and may contain quite different functional groups. Calculations with MINEQL incorporating our new stability constants indicate that very high DFOB concentrations would be required to match the extent of metal-organic complexation observed in seawater, however DFOB may well represent a much broader class of structurally related ligands.« less

  6. An Organolanthanide Building Block Approach to Single-Molecule Magnets.

    PubMed

    Harriman, Katie L M; Murugesu, Muralee

    2016-06-21

    Single-molecule magnets (SMMs) are highly sought after for their potential application in high-density information storage, spintronics, and quantum computing. SMMs exhibit slow relaxation of the magnetization of purely molecular origin, thus making them excellent candidates towards the aforementioned applications. In recent years, significant focus has been placed on the rare earth elements due to their large intrinsic magnetic anisotropy arising from the near degeneracy of the 4f orbitals. Traditionally, coordination chemistry has been utilized to fabricate lanthanide-based SMMs; however, heteroatomic donor atoms such as oxygen and nitrogen have limited orbital overlap with the shielded 4f orbitals. Thus, control over the anisotropic axis and induction of f-f interactions are limited, meaning that the performance of these systems can only extend so far. To this end, we have placed considerable attention on the development of novel SMMs whose donor atoms are conjugated hydrocarbons, thereby allowing us to perturb the crystal field of lanthanide ions through the use of an electronic π-cloud. This approach allows for fine tuning of the anisotropic axis of the molecule, allowing this method the potential to elicit SMMs capable of reaching much larger values for the two vital performance measurements of an SMM, the energy barrier to spin reversal (Ueff), and the blocking temperature of the magnetization (TB). In this Account, we describe our efforts to exploit the inherent anisotropy of the late 4f elements; namely, Dy(III) and Er(III), through the use of cyclooctatetraenyl (COT) metallocenes. With respect to the Er(III) derivatives, we have seen record breaking success, reaching blocking temperatures as high as 14 K with frozen solution magnetometry. These results represent the first example of such a high TB being observed for a system with only a single spin center, formally known as a single-ion magnet (SIM). Our continued interrelationship between theoretical and experimental chemistry allows us to shed light on the mechanisms and electronic properties that govern the slow relaxation dynamics inherent to this unique set of SMMs, thus providing insight into the role by which both symmetry and crystal field effects contribute to the magnetic properties. As we look to the future success of such materials in practical devices, we must gain an understanding of how the 4f elements communicate magnetically, a subject upon which there is still limited knowledge. As such, we have described our work on coupling mononuclear metallocenes to generate new dinuclear SMMs. Through a building block approach, we have been able to gain access to new double,- triple- and quadruple-decker complexes that possess remarkable properties; exhibiting TB of 12 K and Ueff above 300 K. Our goal is to develop a fundamental platform from which to study 4f coupling, while maintaining and enhancing the strict axiality of the anisotropy of the 4f ions. This Account will present a successful strategy employed in the production of novel and high-performing SMMs, as well as a clear overview of the lessons learned throughout.

  7. Electronic communication in phosphine substituted bridged dirhenium complexes - clarifying ambiguities raised by the redox non-innocence of the C4H2- and C4-bridges.

    PubMed

    Li, Yan; Blacque, Olivier; Fox, Thomas; Luber, Sandra; Polit, Walther; Winter, Rainer F; Venkatesan, Koushik; Berke, Heinz

    2016-04-07

    The mononuclear rhenium carbyne complex trans-[Re(C[triple bond, length as m-dash]CSiMe3)([triple bond, length as m-dash]C-Me)(PMe3)4][PF6] (2) was prepared in 90% yield by heating a mixture of the dinitrogen complex trans-[ReCl(N2)(PMe3)4] (1), TlPF6, and an excess of HC[triple bond, length as m-dash]CSiMe3. 2 could be deprotonated with KOtBu to the vinylidene complex trans-[Re(C[triple bond, length as m-dash]CSiMe3)([double bond, length as m-dash]C[double bond, length as m-dash]CH2)(PMe3)4] (3) in 98% yield. Oxidation of 3 with 1.2 equiv. of [Cp2Fe][PF6] at -78 °C gave the Cβ-C'β coupled dinuclear rhenium biscarbyne complex trans-[(Me3SiC[triple bond, length as m-dash]C)(PMe3)4Re[triple bond, length as m-dash]C-CH2-CH2-C[triple bond, length as m-dash]Re(PMe3)4(C[triple bond, length as m-dash]CSiMe3)][PF6]2 (5) in 92% yield. Deprotonation of 5 with an excess of KOtBu in THF produced the diamagnetic trans-[(Me3SiC[triple bond, length as m-dash]C)(PMe3)4Re[double bond, length as m-dash]C[double bond, length as m-dash]CH-CH[double bond, length as m-dash]C[double bond, length as m-dash]Re(PMe3)4(C[triple bond, length as m-dash]CSiMe3)] complex (E-6(S)) in 87% yield with an E-butadienediylidene bridge. Density functional theory (DFT) calculations of E-6(S) confirmed its singlet ground state. The Z-form of 6 (Z-6(S)) could not be observed, which is in accord with its DFT calculated 17.8 kJ mol(-1) higher energy. Oxidation of E-6 with 2 equiv. of [Cp2Fe][PF6] resulted in the stable diamagnetic dicationic trans-[(Me3SiC[triple bond, length as m-dash]C)(PMe3)4Re[triple bond, length as m-dash]C-CH[double bond, length as m-dash]CH-C[triple bond, length as m-dash]Re(PMe3)4(C[triple bond, length as m-dash]CSiMe3)][PF6]2 complex (E-6[PF6]2) with an ethylenylidene dicarbyne structure of the bridge. The paramagnetic mixed-valence (MV) complex E-6[PF6] was obtained by comproportionation of E-6(S) and E-6[PF6]2 or by oxidation of E-6(S) with 1 equiv. of [Cp2Fe][PF6]. The dicationic trans-[(Me3SiC[triple bond, length as m-dash]C)(PMe3)4Re[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]Re(PMe3)4(C[triple bond, length as m-dash]CSiMe3)][PF6]2 (7[PF6]2) complex, attributed a butynedi(triyl) bridge structure, was obtained by deprotonation of E-6[PF6]2 with KOtBu followed by oxidation with 2 equiv. of [Cp2Fe][PF6]. The neutral complex 7 could be accessed best by reduction of 7[PF6]2 with KH in the presence of 18-crown-6. According to DFT calculations 7 possesses two equilibrating electronic states: diamagnetic 7(S) and triplet 7(F) with ferromagnetically coupled spins. The latter is calculated to be 5.2 kcal mol(-1) lower in energy than 7(S). There is experimental evidence that 7(S) prevails in solution. 7 could not be isolated in the crystalline state and is unstable transforming mainly by H-abstraction to give E-6(S). UV-Vis-NIR spectroscopy for the dinuclear rhenium complexes E-6(S), E-6[PF6] and E-6[PF6]2, as well as EPR spectroscopic and variable-temperature magnetization measurements for the MV complex E-6[PF6] were also conducted. Spectro-electrochemical reduction studies on 7[PF6]2 allowed the characterization of the mono- and direduced forms of 7(+) and 7 by means of IR- and UV-Vis-NIR-spectroscopy and revealed the chemical fate of the higher reduced form.

  8. Continuous system modeling

    NASA Technical Reports Server (NTRS)

    Cellier, Francois E.

    1991-01-01

    A comprehensive and systematic introduction is presented for the concepts associated with 'modeling', involving the transition from a physical system down to an abstract description of that system in the form of a set of differential and/or difference equations, and basing its treatment of modeling on the mathematics of dynamical systems. Attention is given to the principles of passive electrical circuit modeling, planar mechanical systems modeling, hierarchical modular modeling of continuous systems, and bond-graph modeling. Also discussed are modeling in equilibrium thermodynamics, population dynamics, and system dynamics, inductive reasoning, artificial neural networks, and automated model synthesis.

  9. Feature-based component model for design of embedded systems

    NASA Astrophysics Data System (ADS)

    Zha, Xuan Fang; Sriram, Ram D.

    2004-11-01

    An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.

  10. The Value of SysML Modeling During System Operations: A Case Study

    NASA Technical Reports Server (NTRS)

    Dutenhoffer, Chelsea; Tirona, Joseph

    2013-01-01

    System models are often touted as engineering tools that promote better understanding of systems, but these models are typically created during system design. The Ground Data System (GDS) team for the Dawn spacecraft took on a case study to see if benefits could be achieved by starting a model of a system already in operations. This paper focuses on the four steps the team undertook in modeling the Dawn GDS: defining a model structure, populating model elements, verifying that the model represented reality, and using the model to answer system-level questions and simplify day-to-day tasks. Throughout this paper the team outlines our thought processes and the system insights the model provided.

  11. The value of SysML modeling during system operations: A case study

    NASA Astrophysics Data System (ADS)

    Dutenhoffer, C.; Tirona, J.

    System models are often touted as engineering tools that promote better understanding of systems, but these models are typically created during system design. The Ground Data System (GDS) team for the Dawn spacecraft took on a case study to see if benefits could be achieved by starting a model of a system already in operations. This paper focuses on the four steps the team undertook in modeling the Dawn GDS: defining a model structure, populating model elements, verifying that the model represented reality, and using the model to answer system-level questions and simplify day-to-day tasks. Throughout this paper the team outlines our thought processes and the system insights the model provided.

  12. A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects

    NASA Technical Reports Server (NTRS)

    Trase, Kathryn; Fink, Eric

    2014-01-01

    Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information

  13. Communication system modeling

    NASA Technical Reports Server (NTRS)

    Holland, L. D.; Walsh, J. R., Jr.; Wetherington, R. D.

    1971-01-01

    This report presents the results of work on communications systems modeling and covers three different areas of modeling. The first of these deals with the modeling of signals in communication systems in the frequency domain and the calculation of spectra for various modulations. These techniques are applied in determining the frequency spectra produced by a unified carrier system, the down-link portion of the Command and Communications System (CCS). The second modeling area covers the modeling of portions of a communication system on a block basis. A detailed analysis and modeling effort based on control theory is presented along with its application to modeling of the automatic frequency control system of an FM transmitter. A third topic discussed is a method for approximate modeling of stiff systems using state variable techniques.

  14. Adaptive System Modeling for Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Thomas, Justin

    2011-01-01

    This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).

  15. Moving alcohol prevention research forward-Part II: new directions grounded in community-based system dynamics modeling.

    PubMed

    Apostolopoulos, Yorghos; Lemke, Michael K; Barry, Adam E; Lich, Kristen Hassmiller

    2018-02-01

    Given the complexity of factors contributing to alcohol misuse, appropriate epistemologies and methodologies are needed to understand and intervene meaningfully. We aimed to (1) provide an overview of computational modeling methodologies, with an emphasis on system dynamics modeling; (2) explain how community-based system dynamics modeling can forge new directions in alcohol prevention research; and (3) present a primer on how to build alcohol misuse simulation models using system dynamics modeling, with an emphasis on stakeholder involvement, data sources and model validation. Throughout, we use alcohol misuse among college students in the United States as a heuristic example for demonstrating these methodologies. System dynamics modeling employs a top-down aggregate approach to understanding dynamically complex problems. Its three foundational properties-stocks, flows and feedbacks-capture non-linearity, time-delayed effects and other system characteristics. As a methodological choice, system dynamics modeling is amenable to participatory approaches; in particular, community-based system dynamics modeling has been used to build impactful models for addressing dynamically complex problems. The process of community-based system dynamics modeling consists of numerous stages: (1) creating model boundary charts, behavior-over-time-graphs and preliminary system dynamics models using group model-building techniques; (2) model formulation; (3) model calibration; (4) model testing and validation; and (5) model simulation using learning-laboratory techniques. Community-based system dynamics modeling can provide powerful tools for policy and intervention decisions that can result ultimately in sustainable changes in research and action in alcohol misuse prevention. © 2017 Society for the Study of Addiction.

  16. A novel simulation theory and model system for multi-field coupling pipe-flow system

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu

    2017-09-01

    Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.

  17. Rule-based simulation models

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph L.; Seraphine, Kathleen M.

    1991-01-01

    Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.

  18. What can formal methods offer to digital flight control systems design

    NASA Technical Reports Server (NTRS)

    Good, Donald I.

    1990-01-01

    Formal methods research begins to produce methods which will enable mathematic modeling of the physical behavior of digital hardware and software systems. The development of these methods directly supports the NASA mission of increasing the scope and effectiveness of flight system modeling capabilities. The conventional, continuous mathematics that is used extensively in modeling flight systems is not adequate for accurate modeling of digital systems. Therefore, the current practice of digital flight control system design has not had the benefits of extensive mathematical modeling which are common in other parts of flight system engineering. Formal methods research shows that by using discrete mathematics, very accurate modeling of digital systems is possible. These discrete modeling methods will bring the traditional benefits of modeling to digital hardware and hardware design. Sound reasoning about accurate mathematical models of flight control systems can be an important part of reducing risk of unsafe flight control.

  19. Component model reduction via the projection and assembly method

    NASA Technical Reports Server (NTRS)

    Bernard, Douglas E.

    1989-01-01

    The problem of acquiring a simple but sufficiently accurate model of a dynamic system is made more difficult when the dynamic system of interest is a multibody system comprised of several components. A low order system model may be created by reducing the order of the component models and making use of various available multibody dynamics programs to assemble them into a system model. The difficulty is in choosing the reduced order component models to meet system level requirements. The projection and assembly method, proposed originally by Eke, solves this difficulty by forming the full order system model, performing model reduction at the the system level using system level requirements, and then projecting the desired modes onto the components for component level model reduction. The projection and assembly method is analyzed to show the conditions under which the desired modes are captured exactly; to the numerical precision of the algorithm.

  20. Vanadium(V) Complexes with Substituted 1,5-bis(2-hydroxybenzaldehyde)carbohydrazones and Their Use As Catalyst Precursors in Oxidation of Cyclohexane.

    PubMed

    Dragancea, Diana; Talmaci, Natalia; Shova, Sergiu; Novitchi, Ghenadie; Darvasiová, Denisa; Rapta, Peter; Breza, Martin; Galanski, Markus; Kožı́šek, Jozef; Martins, Nuno M R; Martins, Luísa M D R S; Pombeiro, Armando J L; Arion, Vladimir B

    2016-09-19

    Six dinuclear vanadium(V) complexes have been synthesized: NH4[(VO2)2((H)LH)] (NH4[1]), NH4[(VO2)2((t-Bu)LH)] (NH4[2]), NH4[(VO2)2((Cl)LH)] (NH4[3]), [(VO2)(VO)((H)LH)(CH3O)] (4), [(VO2)(VO)((t-Bu)LH)(C2H5O)] (5), and [(VO2)(VO)((Cl)LH)(CH3O)(CH3OH/H2O)] (6) (where (H)LH4 = 1,5-bis(2-hydroxybenzaldehyde)carbohydrazone, (t-Bu)LH4 = 1,5-bis(3,5-di-tert-butyl-2-hydroxybenzaldehyde)carbohydrazone, and (Cl)LH4 = 1,5-bis(3,5-dichloro-2-hydroxybenzaldehyde)carbohydrazone). The structures of NH4[1] and 4-6 have been determined by X-ray diffraction (XRD) analysis. In all complexes, the triply deprotonated ligand accommodates two V ions, using two different binding sites ONN and ONO separated by a diazine unit -N-N-. In two pockets of NH4[1], two identical VO2(+) entities are present, whereas, in those of 4-6, two different VO2(+) and VO(3+) are bound. The highest oxidation state of V ions was corroborated by X-ray data, indicating the presence of alkoxido ligand bound to VO(3+) in 4-6, charge density measurements on 4, magnetic susceptibility, NMR spectroscopy, spectroelectrochemistry, and density functional theory (DFT) calculations. All four complexes characterized by XRD form dimeric associates in the solid state, which, however, do not remain intact in solution. Compounds NH4[1], NH4[2], and 4-6 were applied as alternative selective homogeneous catalysts for the industrially significant oxidation of cyclohexane to cyclohexanol and cyclohexanone. The peroxidative (with tert-butyl hydroperoxide, TBHP) oxidation of cyclohexane was performed under solvent-free and additive-free conditions and under low-power microwave (MW) irradiation. Cyclohexanol and cyclohexanone were the only products obtained (high selectivity), after 1.5 h of MW irradiation. Theoretical calculations suggest a key mechanistic role played by the carbohydrazone ligand, which can undergo reduction, instead of the metal itself, to form an active reduced form of the catalyst.

Top