High-Reliability Pump Module for Non-Planar Ring Oscillator Laser
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak
2007-01-01
We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.
Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.
2005-01-01
Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.
Large-area high-power VCSEL pump arrays optimized for high-energy lasers
NASA Astrophysics Data System (ADS)
Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel
2012-06-01
Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.
Diode pumped solid-state laser oscillators for spectroscopic applications
NASA Technical Reports Server (NTRS)
Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.
1987-01-01
The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.
Method and system for homogenizing diode laser pump arrays
Bayramian, Andrew James
2016-05-03
An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.
Method and system for homogenizing diode laser pump arrays
Bayramian, Andy J
2013-10-01
An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.
Scalable diode array pumped Nd rod laser
NASA Technical Reports Server (NTRS)
Zenzie, H. H.; Knights, M. G.; Mosto, J. R.; Chicklis, E. P.; Perkins, P. E.
1991-01-01
Experiments were carried out on a five-array pump head which utilizes gold-coated reflective cones to couple the pump energy to Nd:YAG and Nd:YLF rod lasers, demonstrating high efficiency and uniform energy deposition. Because the cones function as optical diodes to light outside their acceptance angle (typically 10-15 deg), much of the diode energy not absorbed on the first pass can be returned to the rod.
GaAs laser diode pumped Nd:YAG laser
NASA Technical Reports Server (NTRS)
Conant, L. C.; Reno, C. W.
1974-01-01
A 1.5-mm by 3-cm neodymium-ion doped YAG laser rod has been side pumped using a GaAs laser diode array tuned to the 8680-A absorption line, achieving a multimode average output power of 120 mW for a total input power of 20 W to the final-stage laser diode drivers. The pumped arrangement was designed to take advantage of the high brightness of a conventional GaAs array as a linear source by introducing the pump light through a slit into a close-wrapped gold coated pump cavity. This cavity forms an integrating chamber for the pump light.
Diode pumped Nd:YAG laser development
NASA Technical Reports Server (NTRS)
Reno, C. W.; Herzog, D. G.
1976-01-01
A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.
Qualification Testing of Laser Diode Pump Arrays for a Space-Based 2-micron Coherent Doppler Lidar
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.
2007-01-01
The 2-micron thulium and holmium-based lasers being considered as the transmitter source for space-based coherent Doppler lidar require high power laser diode pump arrays operating in a long pulse regime of about 1 msec. Operating laser diode arrays over such long pulses drastically impact their useful lifetime due to the excessive localized heating and substantial pulse-to-pulse thermal cycling of their active regions. This paper describes the long pulse performance of laser diode arrays and their critical thermal characteristics. A viable approach is then offered that allows for determining the optimum operational parameters leading to the maximum attainable lifetime.
Environmental testing of a diode-laser-pumped Nd:YAG laser and a set of diode-laser-arrays
NASA Technical Reports Server (NTRS)
Hemmati, H.; Lesh, J. R.
1989-01-01
Results of the environmental test of a compact, rigid and lightweight diode-laser-pumped Nd:YAG laser module are discussed. All optical elements are bonded onto the module using space applicable epoxy, and two 200 mW diode laser arrays for pump sources are used to achieve 126 mW of CW output with about 7 percent electrical-to-optical conversion efficiency. This laser assembly and a set of 20 semiconductor diode laser arrays were environmentally tested by being subjected to vibrational and thermal conditions similar to those experienced during launch of the Space Shuttle, and both performed well. Nevertheless, some damage to the laser front facet in diode lasers was observed. Significant degradation was observed only on lasers which performed poorly in the life test. Improvements in the reliability of the Nd:YAG laser are suggested.
Diode-pumped ytterbium-doped Sr{sub 5}(PO{sub 4}){sub 3}F laser performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C.D.; Smith, L.K.; Beach, R.J.
The performance of the first diode-pumped Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sup 3}F (Yb:S-FAP) solid-state laser is discussed. An InGaAs diode array has been fabricated that has suitable specifications for pumping a 3 x 3 x 30 mm Yb:S-FAP rod. The saturation fluence for diode pumping was deduced to be 5.5 J/cm{sup 2} for the particular 2.8 kW peak power diode array utilized in the studies. This is 2.5{times} higher than the intrinsic 2.2 J/cm{sup 2} saturation fluence as is attributed to the 6.5 nm bandwidth of the diode pump array. The small signal gain is consistent with the previously measuredmore » emission cross section of 6.0 {times} 10{sup {minus}20} cm{sup 2}, obtained from a narrowband-laser pumped gain experiment. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6 x 6 x 44 mm Yb:S-FAP amplifier rod. In a free running configuration, diode-pumped slope efficiencies up to 43% (laser output energy/absorbed pump energy) were observed with output energies up to {approximately}0.5 J per 1 ms pulse. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 {micro}s pulses.« less
Characterization of High-power Quasi-cw Laser Diode Arrays
NASA Technical Reports Server (NTRS)
Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.
2005-01-01
NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.
Koshel, R J; Walmsley, I A
1993-03-20
We investigate the absorption distribution in a cylindrical gain medium that is pumped by a source of distributed laser diodes by means of a pump cavity developed from the edge-ray principle of nonimaging optics. The performance of this pumping arrangement is studied by using a nonsequential, numerical, three-dimensional ray-tracing scheme. A figure of merit is defined for the pump cavities that takes into account the coupling efficiency and uniformity of the absorption distribution. It is found that the nonimaging pump cavity maintains a high coupling efficiency with extended two-dimensional diode arrays and obtains a fairly uniform absorption distribution. The nonimaging cavity is compared with two other designs: a close-coupled side-pumped cavity and an imaging design in the form of a elliptical cavity. The nonimaging cavity has a better figure of merit per diode than these two designs. It also permits the use of an extended, sparse, two-dimensional diode array, which reduces thermal loading of the source and eliminates all cavity optics other than the main reflector.
Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.
2004-01-01
Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.
Thermal Lens Measurement in Diode-Pumped Nd:YAG Zig-Zag Slab
NASA Technical Reports Server (NTRS)
Smoak, M. C.; Kay, R. B.; Coyle, D. B.; Hopf, D.
1998-01-01
A major advantage that solid state zig-zag slab lasers have over conventional rod-based designs is that a much weaker thermal lens is produced in the slab when side-pumped with Quasi-CW laser diode arrays, particularly if the pump radiation is kept well away from the Brewster-cut ends. This paper reports on a rather strong thermal lens produced when diode pump radiation is collimated into a narrow portion of the zig-zag slab. The collimation of multi-bar pump packages to increase brightness and improve overlap is a direct consequence of designs which seek to maximize performance and efficiency. Our slab design employed a 8.1 cm x 2.5 mm x 5 mm slab with opposing Brewster end faces. It was pumped through the 2.5 mm direction by seven laser diode array packages, each housing four 6OW diode bars, 1 cm in width. The pump face, anti-reflection (AR) coated at 809 nm, was 6.8 cm in width and the 8.1 cm opposing side, high-reflection (HR) coated at 809 nm, reflected the unabsorbed pump beam for a second pass through the slab.
Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.
2007-01-01
Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.
Qualification of Laser Diode Arrays for Mercury Laser Altimeter
NASA Technical Reports Server (NTRS)
Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.
2004-01-01
NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance of Quasi-CW, High-power, laser diode arrays under extended use is presented. We report the optical power over several hundred million pulse operation and the effect of power cycling and temperature cycling of the laser diode arrays. Data on the initial characterization of the devices is also presented.
Ruggedized microchannel-cooled laser diode array with self-aligned microlens
Freitas, Barry L.; Skidmore, Jay A.
2003-11-11
A microchannel-cooled, optically corrected, laser diode array is fabricated by mounting laser diode bars onto Si surfaces. This approach allows for the highest thermal impedance, in a ruggedized, low-cost assembly that includes passive microlens attachment without the need for lens frames. The microlensed laser diode array is usable in all solid-state laser systems that require efficient, directional, narrow bandwidth, high optical power density pump sources.
Quasi-CW 110 kW AlGaAs Laser Diode Array Module for Inertial Fusion Energy Laser Driver
NASA Astrophysics Data System (ADS)
Kawashima, Toshiyuki; Kanzaki, Takeshi; Matsui, Ken; Kato, Yoshinori; Matsui, Hiroki; Kanabe, Tadashi; Yamanaka, Masanobu; Nakatsuka, Masahiro; Izawa, Yasukazu; Nakai, Sadao; Miyamoto, Masahiro; Kan, Hirofumi; Hiruma, Teruo
2001-12-01
We have successfully demonstrated a large aperture 803 nm AlGaAs diode laser module as a pump source for a 1053 nm, 10 J output Nd:glass slab laser amplifier for diode-pumped solid-state laser (DPSSL) fusion driver. Detailed performance results of the laser diode module are presented, including bar package and stack configuration, and their thermal design and analysis. A sufficiently low thermal impedance of the stack was realized by combining backplane liquid cooling configuration with modular bar package architecture. Total peak power of 110 kW and electrical to optical conversion efficiency of 46% were obtained from the module consisting of a total of 1000 laser diode bars. A peak intensity of 2.6 kW/cm2 was accomplished across an emitting area of 418 mm× 10 mm. Currently, this laser diode array module with a large two-dimensional aperture is, to our knowledge, the only operational pump source for the high output energy DPSSL.
885-nm laser diode array pumped ceramic Nd:YAG master oscillator power amplifier system
NASA Astrophysics Data System (ADS)
Yu, Anthony W.; Li, Steven X.; Stephen, Mark A.; Seas, Antonios; Troupaki, Elisavet; Vasilyev, Aleksey; Conley, Heather; Filemyr, Tim; Kirchner, Cynthia; Rosanova, Alberto
2010-04-01
The objective of this effort is to develop more reliable, higher efficiency diode pumped Nd:YAG laser systems for space applications by leveraging technology investments from the DoD and other commercial industries. Our goal is to design, build, test and demonstrate the effectiveness of combining 885 nm laser pump diodes and the use of ceramic Nd:YAG for future flight missions. The significant reduction in thermal loading on the gain medium by the use of 885 nm pump lasers will improve system efficiency.
High-power laser diodes at various wavelengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emanuel, M.A.
High power laser diodes at various wavelengths are described. First, performance and reliability of an optimized large transverse mode diode structure at 808 and 941 nm are presented. Next, data are presented on a 9.5 kW peak power array at 900 nm having a narrow emission bandwidth suitable for pumping Yb:S-FAP laser materials. Finally, results on a fiber-coupled laser diode array at {approx}730 nm are presented.
NASA Astrophysics Data System (ADS)
Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi
2018-03-01
We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.
Beach, Raymond J.
1997-01-01
Wing pumping a Tm.sup.3+ doped, end pumped solid state laser generates 2 .mu.m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm.sup.3+ absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm.sup.3+ because high Tm.sup.3+ concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation.
Beach, R.J.
1997-11-18
Wing pumping a Tm{sup 3+} doped, end pumped solid state laser generates 2 {micro}m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm{sup 3+} absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm{sup 3+} because high Tm{sup 3+} concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation. 7 figs.
Diode pumped, regenerative Nd:YAG ring amplifier for space application
NASA Technical Reports Server (NTRS)
Coyle, D. B.; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.
1992-01-01
The study reviews the research and development of a prototype laser used to study one possible method of short-pulse production and amplification, in particular, a pulsed Nd:YAG ring laser pumped by laser diode arrays and injected seeded by a 100-ps source. The diode array pumped, regenerative amplifier consists of only five optical elements, two mirrors, one thin film polarizer, one Nd:YAG crystal, and one pockels cell. The pockels cell performed both as a Q-switch and a cavity dumper for amplified pulse ejection through the thin film polarizer. The total optical efficiency was low principally due to the low gain provided by the 2-bar pumped laser head. After comparison with a computer model, a real seed threshold of about 10 exp -15 J was achieved because only about 0.1 percent of the injected energy mode-matched with the ring.
Resonantly diode laser pumped 1.6-μm Er:YAG laser
NASA Astrophysics Data System (ADS)
Garbuzov, Dmitri; Kudryashov, Igor; Dubinskii, Mark
2005-06-01
We report what is believed to be the first demonstration of direct resonant diode pumping of a 1.6-mm Er3+-doped bulk solid-state laser (DPSSL). The most of the results is obtained with pumping Er:YAG by the single mode diode laser packaged in fibered modules. The fibered modules, emitting at 1470 nm and 1530 nm wavelength with and without fiber grating (FBG) stabilization, have been used in pumping experiments. The very first results on high power DPSSL operation achieved with diode array pumping also will be presented. The highest absorbed photon conversion efficiency of 26% has been obtained for Er:YAG DPSSL using the 1470-nm single-mode module. Analysis of the DPSSL input-output characteristics suggests that the obtained slope efficiency can be increased at least up to 40% through the reduction of intracavity losses and pumping efficiency improvement. Diode pumped SSL (DPSSL) operates at a wavelength of 1617 nm and 1645 nm.
High power diode lasers for solid-state laser pumps
NASA Technical Reports Server (NTRS)
Linden, Kurt J.; Mcdonnell, Patrick N.
1994-01-01
The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.
One joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry
NASA Technical Reports Server (NTRS)
Kasinski, Jeffrey J.; Hughes, Will; Dibiase, Don; Bournes, Patrick; Burnham, Ralph
1992-01-01
Output of 1.25 J per pulse (1.064 micron) with an absolute optical efficiency of 28 percent and corresponding electrical efficiency of 10 percent was demonstrated in a diode-array-pumped Nd:YAG laser using a side-pumped rod geometry in a master-oscillator/power-amplifier configuration. In Q-switched operation, an output of 0.75 J in a 17-ns pulse was obtained. The fundamental laser output was frequency doubled in KTP with 60 percent conversion efficiency to obtain 0.45 J in a 16-ns pulse at 532 nm. The output beam had high spatial quality with pointing stability better than 40 microrad and a shot-to-shot pulse energy fluctuation of less than +/-3 percent.
Analyses of absorption distribution of a rubidium cell side-pumped by a Laser-Diode-Array (LDA)
NASA Astrophysics Data System (ADS)
Yu, Hang; Han, Juhong; Rong, Kepeng; Wang, Shunyan; Cai, He; An, Guofei; Zhang, Wei; Yu, Qiang; Wu, Peng; Wang, Hongyuan; Wang, You
2018-01-01
A diode-pumped alkali laser (DPAL) has been regarded as one of the most potential candidates to achieve high power performances of next generation. In this paper, we investigate the physical properties of a rubidium cell side-pumped by a Laser-Diode-Array (LDA) in this study. As the saturated concentration of a gain medium inside a vapor cell is extremely sensitive to the temperature, the populations of every energy-level of the atomic alkali are strongly relying on the vapor temperature. Thus, the absorption characteristics of a DPAL are mainly dominated by the temperature distribution. In this paper, the temperature, absorption, and lasing distributions in the cross-section of a rubidium cell side-pumped by a LDA are obtained by means of a complicated mathematic procedure. Based on the original end-pumped mode we constructed before, a novel one-direction side-pumped theoretical mode has been established to explore the distribution properties in the transverse section of a rubidium vapor cell by combining the procedures of heat transfer and laser kinetics together. It has been thought the results might be helpful for design of a side-pumped configuration in a high-powered DPAL.
High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array
Freitas, Barry L.
1998-01-01
An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.
High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array
Freitas, B.L.
1998-10-27
An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.
1-mJ Q-switched diode-pumped Nd:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Agnesi, Antonio; Carraro, Giovanni; Guandalini, Annalisa; Reali, Giancarlo; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro
2004-08-01
We report what is to our knowledge the first high repetition rate Q-switched Nd:BaY2F8 (Nd:BaYF) laser pumped with a multiwatt fiber-coupled diode array tuned at 806 nm. As much as 2.42 W of average power and up to 1.05 mJ of pulse energy were obtained with 6.1 W of absorbed pump power, with excellent beam quality (M2<1.2) and linear polarization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaffers, K.I.; Bayramian, A.J.; Marshall, C.D.
Crystals of Yb{sup 3+}:Sr{sub 1-x}Ba{sub x}(PO{sub 4}){sub 3}F (0 < x < 5) have been investigated as a means to obtain broader absorption bands than are currently available with Yb{sup 3+}:S-FAP [Yb{sup 3+}: Sr{sub 5}(PO{sub 4}){sub 3}F], thereby improving diode-pumping efficiency for high peak power applications. Large diode-arrays have a FWHM pump band of >5 nm while the FWHM of the 900 nm absorption band for Yb:S-FAP is 5.5 nm; therefore, a significant amount of pump power can be wasted due to the nonideal overlap. Spectroscopic analysis of Yb:Sr{sub 5-x}Ba{sub x}-FAP crystals indicates that adding barium to the lattice increasesmore » the pump band to 13-16 run which more than compensates for the diode-array pump source without a detrimental reduction in absorption cross section. However, the emission cross section decreases by approximately half with relatively no effect on the emission lifetime. The small signal gain has also been measured and compared to the parent material Yb:S-FAP and emission cross sections have been determined by the method of reciprocity, the Filchtbauer-Ladenburg method, and small signal gain. Overall, Yb{sup 3+}:Sr{sub 5-x}Ba{sub x}(PO{sub 4}){sub 3}F crystals appear to achieve the goal of nearly matching the favorable thermal and laser performance properties of Yb:S-FAP while having a broader absorption band to better accommodate diode pumping.« less
Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.
2006-01-01
Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.
Laser diode arrays based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 62%
NASA Astrophysics Data System (ADS)
Ladugin, M. A.; Marmalyuk, A. A.; Padalitsa, A. A.; Telegin, K. Yu; Lobintsov, A. V.; Sapozhnikov, S. M.; Danilov, A. I.; Podkopaev, A. V.; Simakov, V. A.
2017-08-01
The results of development of quasi-cw laser diode arrays operating at a wavelength of 808 nm with a high efficiency are demonstrated. The laser diodes are based on semiconductor AlGaAs/GaAs quantum-well heterostructures grown by MOCVD. The measured spectral, spatial, electric and power characteristics are presented. The output optical power of the array with an emitting area of 5 × 10 mm is 2.7 kW at a pump current of 100 A, and the maximum efficiency reaches 62%.
UV diode-pumped solid state laser for medical applications
NASA Astrophysics Data System (ADS)
Apollonov, Victor V.; Konstantinov, K. V.; Sirotkin, A. A.
1999-07-01
A compact, solid-state, high-efficiency, and safe UV laser medical system with optical fiber output was created for treatment of destructive forms of pulmonary tuberculosis. A frequency-quadruped quasi-CW Nd:YVO4 laser system pumped by laser-diode array is investigated with various resonator configurations. A longitudinal end-pumping scheme was used in a compact acousto-optical Q-switched laser for producing stable pulses of UV radiation at the repetition frequency 10-20 kHz and the duration 7-10 ns with the fiber-guide output power exceeding 10 mW.
Medium-power diode-pumped Nd:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Agnesi, Antonio; Guandalini, Annalisa; Lucca, Andrea; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro; dell'Acqua, Stefano
2003-05-01
We report what is to our knowledge the first Nd:BaY2F8 (Nd:BaYF) laser pumped with a multiwatt fiber-coupled diode array tuned at approximately 804 nm. As much as 2.4 W were obtained with 6.2 W of absorbed pump power, showing efficient operation (51% slope efficiency), excellent beam quality (M2=1.1), and weak thermal lensing. Small intracavity losses (<1%) were measured, indicating both reduced thermally induced aberrations and good optical quality of the laser crystal.
Thin planar package for cooling an array of edge-emitting laser diodes
Mundinger, David C.; Benett, William J.
1992-01-01
A laser diode array is disclosed that includes a plurality of planar assemblies and active cooling of each assembly. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar assembly having the laser diode bar located proximate to one edge. In an array, a number of such thin planar assemblies are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink proximate to the laser diode bar to absorb heat generated by laser operation. To provide the coolant to the microchannels, each thin planar assembly comprises passageways that connect the microchannels to inlet and outlet corridors. Each inlet passageway may comprise a narrow slot that directs coolant into the microchannels and increases the velocity of flow therethrough. The corridors comprises holes extending through each of the assemblies in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has applications as an optical pump for high power solid state lasers, or by mating the diodes with fiber optic lenses. Further, the arrays can be useful in applications having space constraints and energy limitations, and in military and space applications. The arrays can be incorporated in equipment such as communications devices and active sensors.
High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel
2003-01-01
Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.
Solar-pumped laser for free space power transmission
NASA Technical Reports Server (NTRS)
Lee, Ja H.
1989-01-01
Laser power transmission; laser systems; space-borne and available lasers; 2-D and 1 MW laser diode array systems; technical issues; iodine solar pumped laser system; and laser power transmission applications are presented. This presentation is represented by viewgraphs only.
Modular package for cooling a laser diode array
Mundinger, David C.; Benett, William J.; Beach, Raymond J.
1992-01-01
A laser diode array is disclosed that includes a plurality of planar packages and active cooling. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar package having the laser diode bar located proximate to one edge. In an array, a number of such thin planar packages are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink that is attached proximate to the laser bar so that it absorbs heat generated by laser operation. To provide the coolant to the microchannels, each thin planar package comprises a thin inlet manifold and a thin outlet manifold connected to an inlet corridor and an outlet corridor. The inlet corridor comprises a hole extending through each of the packages in the array, and the outlet corridor comprises a hole extending through each of the packages in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has application as an optical pump for high power solid state lasers. Further, it can be incorporated in equipment such as communications devices and active sensors, and in military and space applications, and it can be useful in applications having space constraints and energy limitations.
Semiconductor Laser Diode Arrays by MOCVD (Metalorganic Chemical Vapor Deposition)
1987-09-01
laser diode arrays are intended to be used as an optical pump for solid state yttrium aluminum garnet (YAG) lasers. In particular, linear uniform...corresponds to about . , 8080A. Such thin layer structures, while difficult to grow by such conventional growth methods as liquid phase epitaxy ( LPE ...lower yet than for DH lasers grown by LPE . , - Conventional self-aligned stripe laser This structure is formed by growing (on an n-type GaAs substrate
Qualification of Laser Diode Arrays for Mercury Laser Altimeter Mission
NASA Technical Reports Server (NTRS)
Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.
2004-01-01
NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. The MESSENGER mission is flying the Mercury Laser Altimeter (MLA) which is a diode-pumped Nd:YAG laser instrument designed to map the topography of Mercury. The environment imposed on the instrument by the orbital dynamics places special requirements on the laser diode arrays. In order to limit the radiative heating of the satellite from the surface of Mercury, the satellite is designed to have a highly elliptical orbit. The satellite will heat near perigee and cool near apogee. The laser power is cycled during these orbits so that the laser is on for only 30 minutes (perigee) in a 12 hour orbit. The laser heats 10 C while powered up and cools while powered down. In order to simulate these operational conditions, we designed a test to measure the LDA performance while being temperature and power cycled. Though the mission requirements are specific to NASA and performance requirements are derived from unique operating conditions, the results are general and widely applicable. We present results on the performance of twelve LDAs operating for several hundred million pulses. The arrays are 100 watt, quasi-CW, conductively-cooled, 808 nm devices. Prior to testing, we fully characterize each device to establish a baseline for individual array performance and status. Details of this characterization can be found in reference. Arrays are divided into four groups and subjected to the temperature and power cycling matrix are shown.
Nd:YAG end pumped by semiconductor laser arrays for free space optical communications
NASA Technical Reports Server (NTRS)
Sipes, D. L., Jr.
1985-01-01
Preliminary experimental results are reported for a diode-pumped Nd:YAG laser employing a tightly focused end-pump geometry. The resonator configuration is planoconcave, with the pumped end of the Nd:YAG rod being coated for high reflection at 1.06 microns. This geometry rectifies nearly all the inefficiencies plaguing side-pumped schemes. This laser is further considered as a candidate for optical communication over the deep space channel.
Robust modeling and performance analysis of high-power diode side-pumped solid-state laser systems.
Kashef, Tamer; Ghoniemy, Samy; Mokhtar, Ayman
2015-12-20
In this paper, we present an enhanced high-power extrinsic diode side-pumped solid-state laser (DPSSL) model to accurately predict the dynamic operations and pump distribution under different practical conditions. We introduce a new implementation technique for the proposed model that provides a compelling incentive for the performance assessment and enhancement of high-power diode side-pumped Nd:YAG lasers using cooperative agents and by relying on the MATLAB, GLAD, and Zemax ray tracing software packages. A large-signal laser model that includes thermal effects and a modified laser gain formulation and incorporates the geometrical pump distribution for three radially arranged arrays of laser diodes is presented. The design of a customized prototype diode side-pumped high-power laser head fabricated for the purpose of testing is discussed. A detailed comparative experimental and simulation study of the dynamic operation and the beam characteristics that are used to verify the accuracy of the proposed model for analyzing the performance of high-power DPSSLs under different conditions are discussed. The simulated and measured results of power, pump distribution, beam shape, and slope efficiency are shown under different conditions and for a specific case, where the targeted output power is 140 W, while the input pumping power is 400 W. The 95% output coupler reflectivity showed good agreement with the slope efficiency, which is approximately 35%; this assures the robustness of the proposed model to accurately predict the design parameters of practical, high-power DPSSLs.
Compact intra-cavity frequency doubled line beam green laser by a laser diode array pumped
NASA Astrophysics Data System (ADS)
Yan, Boxia; Qi, Yan; Wang, Yanwei
2016-10-01
Compact, high power, and low-cost green laser light sources are needed in projection-related applications such as digital cinema, rear-projection television, simulators, and command and control stations. We report a LD array directly pumped intracavity SHG Nd:YVO4/PPMgLN laser without lens or waveguide in this letter. A compact 3.12 W green laser was demonstrated by intra-cavity frequency doubled using a PPMgLN bulk crystal by a 19-emitter LD array pumped(single bar), the conversion efficiency from input LD array was 9.2%. A line-beam output suitable for laser projectors was generated, which has the potential to be scalable to small volumes and low costs for laser projection displays.
Method and system for powering and cooling semiconductor lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Telford, Steven J; Ladran, Anthony S
A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.
Power scaling of diode-pumped neodymium yttrium aluminum borate laser
NASA Technical Reports Server (NTRS)
Hemmati, Hamid
1991-01-01
Preliminary results are presented of the efficient diode-pumped operation of a neodymium yttrium aluminum borate (NYAB) laser at 531.5 nm using two 1-W diode-laser arrays for the pump. With 1380 mW of CW power incident on the crystal, as much as 51 mW of 532.5-nm laser radiation was obtained with the unoptimized cavity. The corresponding optical-to-optical conversion efficiency was 3.7 percent. A plot of the output 531.5 nm vs incident 807 nm pump power is shown. The crystal output power was critically dependent on the rotational and translational adjustment of the NYAB crystal inside the cavity. It is suggested that a crystal cut at the exact phase matching angle, placed in a cavity with proper optimal reflection and transmission mirror coatings, and pumped at proper wavelength can result in higher output power. Thus, the NYAB output power approaches that of a CW intracavity frequency doubled Nd:YAG laser.
Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deri, R J
2011-01-03
Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and productionmore » capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and increased reliability. The high-level requirements on the semiconductor lasers involve reliability, price points on a price-per-Watt basis, and a set of technical requirements. The technical requirements for the amplifier design in reference 1 are discussed in detail and are summarized in Table 1. These values are still subject to changes as the overall laser system continues to be optimized. Since pump costs can be a significant fraction of the overall laser system cost, it is important to achieve sufficiently low price points for these components. At this time, the price target for tenth-of-akind IFE plant is $0.007/Watt for packaged devices. At this target level, the pumps account for approximately one third of the laser cost. The pump lasers should last for the life of the power plant, leading to a target component lifetime requirement of roughly 14 Ghosts, corresponding to a 30 year plant life and 15 Hz repetition rate. An attractive path forward involes pump operation at high output power levels, on a Watts-per-bar (Watts/chip) basis. This reduces the cost of pump power (price-per-Watt), since to first order the unit price does not increase with power/bar. The industry has seen a continual improvement in power output, with current 1 cm-wide bars emitting up to 500 W QCW (quasi-continuous wave). Increased power/bar also facilitates achieving high irradiance in the array plane. On the other hand, increased power implies greater heat loads and (possibly) higher current drive, which will require increased attention to thermal management and parasitic series resistance. Diode chips containing multiple p-n junctions and quantum wells (also called nanostack structures) may provide an additional approach to reduce the peak current.« less
High Energy 2-Micron Laser Developments
NASA Technical Reports Server (NTRS)
Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.
2007-01-01
A master oscillator power amplifier, high energy Q-switched 2-micron laser system has been recently demonstrated. The laser and amplifiers are all designed in side-pumped rod configuration, pumped by back-cooled conductive packaged GaAlAs diode laser arrays. This 2-micron laser system provides nearly transform limited beam quality.
NASA Astrophysics Data System (ADS)
Lang, Ye; Chen, Yanzhong; Liao, Lifen; Guo, Guangyan; He, Jianguo; Fan, Zhongwei
2018-03-01
In high power diode lasers, the input cooling water temperature would affect both output power and output spectrum. In double face pumped slab laser, the spectrum of two laser diode arrays (LDAs) must be optimized for efficiency reason. The spectrum mismatch of two LDAs would result in energy storing decline. In this work, thermal induced efficiency decline due to spectral overlap between high power LDAs and laser medium was investigated. A numerical model was developed to describe the energy storing variation with changing LDAs cooling water temperature and configuration (series/parallel connected). A confirmatory experiment was conducted using a double face pumped slab module. The experiment results show good agreements with simulations.
High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments
NASA Technical Reports Server (NTRS)
Eegholm, Niels; Ott, Melanie; Stephen, Mark; Leidecker, Henning
2005-01-01
Semiconductor laser diodes emit coherent light by simulated emission generated inside the cavity formed by the cleaved end facets of a slab of semiconductor that is typically less than a millimeter in any dimension for single emitters. The diode is pumped by current injection in the p-n junction through the metallic contacts. Laser diodes emitting in the range of 0.8 micron to 1.06 micron have a wide variety of applications from pumping erbium doped fiber amplifiers, dual-clad fiber lasers, solid-state lasers used in telecom, aerospace, military, medical purposes and all the way to CD players, laser printers and other consumer and industrial products. Laser diode bars have many single emitters side by side and spaced approximately .5 mm on a single slab of semiconductor material approximately .5 mm x 10 mm. The individual emitters are connected in parallel maintaining the voltage at -2V but increasing the current to 50-100A/bar. Stacking these laser diode bars in multiple layers, 2 to 20+ high, yields high power laser diode arrays capable of emitting several hundreds of Watts. Electrically the bars are wired in series increasing the voltage by 2V/bar but maintaining the total current at 50-100A. These arrays are one of the enabling technologies for efficient, high power solid-state lasers. Traditionally these arrays are operated in QCW (Quasi CW) mode with pulse widths 10-200 (mu)s and with repetition rates of 10-200Hz. In QCW mode the wavelength and the output power of the laser reaches steady-state but the temperature does not. The advantage is a substantially higher output power than in CW mode, where the output power would be limited by the internal heating and hence the thermal and heat sinking properties of the device. The down side is a much higher thermal induced mechanical stress caused by the constant heating and cooling cycle inherent to the QCW mode.
Efficient Dual Head Nd:YAG 100mJ Oscillator for Remote Sensing
NASA Technical Reports Server (NTRS)
Coyle, Donald B.; Stysley, Paul R.; Kay, Richard b.; Poulios, Demetrios
2007-01-01
A diode pumped, Nd:YAG laser producing 100 mJ Q-switched pulses and employing a dual-pump head scheme in an unstable resonator configuration is described. Each head contains a side pumped zig-zag slab and four 6-bar QCW 808 nm diodes arrays which are de-rated 23%. Denoting 'z' as the lasing axis, the pump directions were along the x-axis in one head and the y-axis in the other, producing a circularized thermal lens, more typical in laser rod-based cavities. The dual head design's effective thermal lens is now corrected with a proper HR mirror curvature selection. This laser has demonstrated over 100 mJ output with high optical efficiency (24%), good TEM(sub 00) beam quality, and high pointing stability.
Advancements of ultra-high peak power laser diode arrays
NASA Astrophysics Data System (ADS)
Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.
2018-02-01
Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.
885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System
NASA Technical Reports Server (NTRS)
Yu, Anthony
2012-01-01
The performance of a traditional diode pumped solid-state laser that is typically pumped with 808-nm laser diode array (LDA) and crystalline Nd:YAG was improved by using 885-nm LDAs and ceramic Nd:YAG. The advantage is lower quantum defect, which will improve the thermal loading on laser gain medium, resulting in a higher-performance laser. The use of ceramic Nd:YAG allows a higher Nd dopant level that will make up the lower absorption at the 885-nm wavelength on Nd:YAG. When compared to traditional 808-nm pump, 885-nm diodes will have 30% less thermal load (or wasted heat) and will thus see a similar percentage improvement in the overall laser efficiency. In order to provide a more efficient laser system for future flight missions that require the use of low-repetition- rate (
NASA Astrophysics Data System (ADS)
Rawlins, W. T.; Galbally-Kinney, K. L.; Davis, S. J.; Hoskinson, A. R.; Hopwood, J. A.
2014-03-01
The optically pumped rare-gas metastable laser is a chemically inert analogue to diode-pumped alkali (DPAL) and alkali-exciplex (XPAL) laser systems. Scaling of these devices requires efficient generation of electronically excited metastable atoms in a continuous-wave electric discharge in flowing gas mixtures at atmospheric pressure. This paper describes initial investigations of the use of linear microwave micro-discharge arrays to generate metastable rare-gas atoms at atmospheric pressure in optical pump-and-probe experiments for laser development. Power requirements to ignite and sustain the plasma at 1 atm are low, <30 W. We report on the laser excitation dynamics of argon metastables, Ar (4s, 1s5) (Paschen notation), generated in flowing mixtures of Ar and He at 1 atm. Tunable diode laser absorption measurements indicate Ar(1s5) concentrations near 3 × 1012 cm-3 at 1 atm. The metastables are optically pumped by absorption of a focused beam from a continuous-wave Ti:S laser, and spectrally selected fluorescence is observed with an InGaAs camera and an InGaAs array spectrometer. We observe the optical excitation of the 1s5-->2p9 transition at 811.5 nm and the corresponding laser-induced fluorescence on the 2p10-->1s5 transition at 912.3 nm; the 2p10 state is efficiently populated by collisional energy transfer from 2p9. Using tunable diode laser absorption/gain spectroscopy, we observe small-signal gains of ~1 cm-1 over a 1.9 cm path. We also observe stable, continuous-wave laser oscillation at 912.3 nm, with preliminary optical efficiency ~55%. These results are consistent with efficient collisional coupling within the Ar(4s) manifold.
Promoting Robust Design of Diode Lasers for Space: A National Initiative
NASA Technical Reports Server (NTRS)
Tratt, David M.; Amzajerdian, Farzin; Kashem, Nasir B.; Shapiro, Andrew A.; Mense, Allan T.
2007-01-01
The Diode-laser Array Working Group (DAWG) is a national-level consumer/provider forum for discussion of engineering and manufacturing issues which influence the reliability and survivability of high-power broad-area laser diode devices in space, with an emphasis on laser diode arrays (LDAs) for optical pumping of solid-state laser media. The goals of the group are to formulate and validate standardized test and qualification protocols, operational control recommendations, and consensus manufacturing and certification standards. The group is using reliability and lifetime data collected by laser diode manufacturers and the user community to develop a set of standardized guidelines for specifying and qualifying laser diodes for long-duration operation in space, the ultimate goal being to promote an informed U.S. Government investment and procurement strategy for assuring the availability and durability of space-qualified LDAs. The group is also working to establish effective implementation of statistical design techniques at the supplier design, development, and manufacturing levels to help reduce product performance variability and improve product reliability for diodes employed in space applications
2.07-micron CW diode-laser-pumped Tm,Ho:YLiF4 room-temperature
NASA Technical Reports Server (NTRS)
Hemmati, Hamid
1989-01-01
Continuous-wave action is obtained at 2.07 microns from a 2-mm-long Tm-sensitized Ho:YLiF4 crystal at room temperature when longitudinally pumped by a pair of diode-laser arrays. Laser output power at 300 K is 26 mW, with a 30-percent slope efficiency and a lasing threshold of 108 mW. A maximum output power of 187 mW is obtained from a 4-mm-long crystal at 77 K, with a 67 percent slope efficiency. A preliminary demonstration of cavity Q switching produced 165 microJ of pulse energy at a repetition rate of 100 Hz.
Diode-pumped Yb:Sr{sub 5}(PO{sub 4}){sub 3}F laser performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C.D.; Payne, S.A.; Smith, L.K.
The performance of the first diode-pumped Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) laser is discussed. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0 x 10{sup -20} cm{sup 2} that falls within error bars of the previously reported value of 7.3 x 10{sup -20} cm{supmore » 2}, obtained from spectroscopic techniques. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6 x 6 x 44 mm Yb:S-FAP amplifier rod. An InGaAs diode array has been fabricated that has suitable specifications for pumping a 3 x 3 x 30 mm Yb:S-FAP rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to {approximately}0.5 J per 1 ms pulse. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz and 500 {mu}s pulses.« less
High duty cycle hard soldered kilowatt laser diode arrays
NASA Astrophysics Data System (ADS)
Klumel, Genady; Karni, Yoram; Oppenheim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom
2010-02-01
High-brightness laser diode arrays operating at a duty cycle of 10% - 20% are in ever-increasing demand for the optical pumping of solid state lasers and directed energy applications. Under high duty-cycle operation at 10% - 20%, passive (conductive) cooling is of limited use, while micro-coolers using de-ionized cooling water can considerably degrade device reliability. When designing and developing actively-cooled collimated laser diode arrays for high duty cycle operation, three main problems should be carefully addressed: an effective local and total heat removal, a minimization of packaging-induced and operational stresses, and high-precision fast axis collimation. In this paper, we present a novel laser diode array incorporating a built-in tap water cooling system, all-hard-solder bonded assembly, facet-passivated high-power 940 nm laser bars and tight fast axis collimation. By employing an appropriate layout of water cooling channels, careful choice of packaging materials, proper design of critical parts, and active optics alignment, we have demonstrated actively-cooled collimated laser diode arrays with extended lifetime and reliability, without compromising their efficiency, optical power density, brightness or compactness. Among the key performance benchmarks achieved are: 150 W/bar optical peak power at 10% duty cycle, >50% wallplug efficiency and <1° collimated fast axis divergence. A lifetime of >0.5 Ghots with <2% degradation has been experimentally proven. The laser diode arrays have also been successfully tested under harsh environmental conditions, including thermal cycling between -20°C and 40°C and mechanical shocks at 500g acceleration. The results of both performance and reliability testing bear out the effectiveness and robustness of the manufacturing technology for high duty-cycle laser arrays.
Update on diode-pumped solid-state laser experiments for inertial fusion energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C.; Smith, L.; Payne, S.
The authors have completed the initial phase of the diode-pumped solid-state laser (DPSSL) experimental program to validate the expected pumping dynamics and extraction cross-sections of Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) crystals. Yb:S-FAP crystals up to 25 x 25 x 175 mm in size have been grown for this purpose which have acceptable loss characteristics (<1 %/cm) and laser damage thresholds ({approximately}20 J/cm{sup 2}). The saturation fluence for pumping has been measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gainmore » under saturated pumping conditions was measured. These measurements imply an emission cross section of 6.0 x 10{sup {minus}20} cm{sup 2} that falls within error bars of the previously reported value of 7.3 x 10{sup {minus}20} cm{sup 2}, obtained from purely spectroscopic techniques. The effects of radiation trapping on the emission lifetime have been quantified. The long lifetime of Yb:S-FAP has beneficial effects for diode-pumped amplifier designs, relative to materials with equivalent cross sections but shorter lifetimes, in that less peak pump intensity is required (thus lower diode costs) and that lower spontaneous emission rates lead to a reduction in amplified spontaneous emission. Consequently, up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6x6x44 mm Yb:S-FAP amplifier rod; this stored energy density is large relative to typical flashlamp-pumped Nd:glass values of 0.3 to 0.5 J/cm{sup 3}. A 2.4 kW peak power InGaAs diode array has been fabricated by Beach, Emanuel, and co-workers which meets the central wavelength, bandwidth, and energy specifications for the author`s immediate experiments. These results further increase their optimism of being able to produce a {approximately} 10% efficient diode-pumped solid state laser for inertial fusion energy.« less
Laser Diode Pumped Solid State Lasers
1987-01-01
Report N66001-83-C-0071, 17 April 1986, prepared for NOSC. 4.6 W.T. Welford, R. Winston , "The Option of Nonimaging Concentrators ," Academic Press, 1978...by non-imac optics such as reflective or refractive flux concentrators . Simple considerations regarding the optimum pumping configuration, high marks...reduced if the arrays can stand-off from the Nd:YAG laser. As mentioned before, compound parabolic concentrators or refractive optics cat employed to
Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays
Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.
2005-08-30
By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.
NASA Astrophysics Data System (ADS)
Chu, Shu-Chun
2009-02-01
This paper introduces a scheme for generation of vortex laser beams from a solid-state laser with off-axis laser-diode pumping. The proposed system consists of a Dove prism embedded in an unbalanced Mach-Zehnder interferometer configuration. This configuration allows controlled construction of p × p vortex array beams from Ince-Gaussian modes, IGep,p modes. An incident IGe p,p laser beam of variety order p can easily be generated from an end-pumped solid-state laser with an off-axis pumping mechanism. This study simulates this type of vortex array laser beam generation and discusses beam propagation effects. The formation of ordered transverse emission patterns have applications in a variety of areas such as optical data storage, distribution, and processing that exploit the robustness of soliton and vortex fields and optical manipulations of small particles and atoms in the featured intensity distribution.
LED pumped Nd:YAG laser development program
NASA Technical Reports Server (NTRS)
Farmer, G. I.; Kiang, Y. C.; Lynch, R. J.
1973-01-01
The results of a development program for light emitting diode (LED) pumped Nd:YAG lasers are described. An index matching method to increase the coupling efficiency of the laser is described. A solid glass half-cylinder of 5.0 by 5.6 centimeters was used for index matching and also as a pumping cavity reflector. The laser rods were 1.5 by 56 millimeters with dielectric coatings on both end surfaces. The interfaces between the diode array, glass cylinder, and laser rod were filled with viscous fluid of refractive index n = 1.55. Experiments performed with both the glass cylinder and a gold coated stainless steel reflector of the same dimensions under the same operating conditions indicate that the index matching cylinder gave 159 to 200 percent improvement of coupling efficiency over the metal reflector at various operating temperatures.
Tunable diode laser-pumped Tm,Ho:YLF laser operated in continuous-wave and Q-switched modes
NASA Technical Reports Server (NTRS)
Mcguckin, B. T.; Hemmati, H.; Menzies, R. T.
1992-01-01
Tunable continuous-wave and pulsed laser output was obtained from a Tm-sensitized Ho:YLiF4 crystal at subambient temperatures when longitudinally pumped with a diode laser array. A conversion efficiency of 42 percent and slope efficiency of approximately 60 percent relative to the absorbed pumped power have been achieved at a crystal temperature of 275 K. The emission spectrum was etalon tunable over a range of 16/cm centered at 2067 nm with fine tuning capability of the transition frequency with crystal temperature at measured rate of -0.03/cm/K. Output energies of 0.22 mJ per pulse and 22 ns pulse duration were recorded at Q-switch frequencies that correspond to an effective upper laser level lifetime of 6 ms, and a pulse energy extraction efficiency of 64 percent.
Activation of theMercury Laser System: A Diode-Pumped Solid-State Laser Driver for Inertial Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A J; Beach, R J; Bibeau, C
Initial measurements are reported for the Mercury laser system, a scalable driver for rep-rated inertial fusion energy. The performance goals include 10% electrical efficiency at 10 Hz and 100 J with a 2-10 ns pulse length. We report on the first Yb:S-FAP crystals grown to sufficient size for fabricating full size (4 x 6 cm) amplifier slabs. The first of four 160 kW (peak power) diode arrays and pump delivery systems were completed and tested with the following results: 5.5% power droop over a 0.75 ms pulse, 3.95 nm spectral linewidth, far field divergence of 14.0 mrad and 149.5 mradmore » in the microlensed and unmicrolensed directions respectively, and 83% optical-to-optical transfer efficiency through the pump delivery system.« less
ARPA solid state laser and nonlinear materials program
NASA Astrophysics Data System (ADS)
Moulton, Peter F.
1994-06-01
The Research Division of Schwartz Electro-Optics, as part of the ARPA Solid State Laser and Nonlinear Materials Program, conducted a three-year study 'Erbium-Laser-Based Infrared Sources.' The aim of the study was to improve the understanding of semiconductor-laser-pumped, infrared (IR) solid state lasers based on the trivalent rare-earth ion erbium (Er) doped into a variety of host crystals. The initial program plan emphasized operation of erbium-doped materials on the 2.8-3.0 micrometers laser transition. Pulsed, Q-switched sources using that transition, when employed as a pump source for parametric oscillators, can provide tunable mid-IR energy. The dynamics of erbium lasers are more complex than conventional neodymium (Nd)-doped lasers and we intended to use pump-probe techniques to measure the level and temporal behavior of gain in various materials. To do so we constructed a number of different cw Er-doped lasers as probe sources and employed the Cr:LiSAF(LiSrAlF6) laser as a pulsed pump source that would simulate pulsed diode arrays. We identified the 970-nm wavelength pump band of Er as the most efficient and were able to make use of recently developed cw and pulsed InGaAs strained-quantum-well diode lasers in the effort. At the conclusion of the program we demonstrated the first pulsed diode bar pumping of the most promising materials for pulsed operation, the oxide garnets YSGG and GGG and the fluoride BaY2F8.
High Energy Solid State and Free Electron Laser Systems in Tactical Aviation
2005-06-01
specifically neodymium and ytterbium doped yttrium aluminum garnet (Nd:YAG and Yb:YAG) have been shown to produce pump absorption efficiencies (i.e...Search Radar Dish Aluminum Alloy 2.71 10.0 0.91 321 932 300 22.1 SAM nosecone Ceramic* 3.0 1.0 0.9 1600 3300 250 12.1 T-72 Tank Armor Steel...development at Lawrence Livermore National Laboratory, is the solid-state heat capacity laser, which is an array of diode- pumped neodymium-doped gadolinium
Solid state laser disk amplifer architecture: the normal-incidence stack
Dane, C. Brent; Albrecht, Georg F.; Rotter, Mark D.
2005-01-25
Normal incidence stack architecture coupled with the development of diode array pumping enables the power/energy per disk to be increased, a reduction in beam distortions by orders of magnitude, a beam propagation no longer restricted to only one direction of polarization, and the laser becomes so much more amendable to robust packaging.
670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Schlecht, Erich T.; Lee, Choonsup; Lin, Robert H.; Gill, John J.; Mehdi, Imran; Sin, Seth; Deal, William; Loi, Kwok K.; Nam, Peta;
2012-01-01
GaAs-based, sub-harmonically pumped Schottky diode mixers offer a number of advantages for array implementation in a heterodyne receiver system. Since the radio frequency (RF) and local oscillator (LO) signals are far apart, system design becomes much simpler. A proprietary planar GaAs Schottky diode process was developed that results in very low parasitic anodes that have cutoff frequencies in the tens of terahertz. This technology enables robust implementation of monolithic mixer and frequency multiplier circuits well into the terahertz frequency range. Using optical and e-beam lithography, and conventional epitaxial layer design with innovative usage of GaAs membranes and metal beam leads, high-performance terahertz circuits can be designed with high fidelity. All of these mixers use metal waveguide structures for housing. Metal machined structures for RF and LO coupling hamper these mixers to be integrated in multi-pixel heterodyne array receivers for spectroscopic and imaging applications. Moreover, the recent developments of terahertz transistors on InP substrate provide an opportunity, for the first time, to have integrated amplifiers followed by Schottky diode mixers in a heterodyne receiver at these frequencies. Since the amplifiers are developed on a planar architecture to facilitate multi-pixel array implementation, it is quite important to find alternative architecture to waveguide-based mixers.
Simulation of deleterious processes in a static-cell diode pumped alkali laser
NASA Astrophysics Data System (ADS)
Oliker, Benjamin Q.; Haiducek, John D.; Hostutler, David A.; Pitz, Greg A.; Rudolph, Wolfgang; Madden, Timothy J.
2014-02-01
The complex interactions in a diode pumped alkali laser (DPAL) gain cell provide opportunities for multiple deleterious processes to occur. Effects that may be attributable to deleterious processes have been observed experimentally in a cesium static-cell DPAL at the United States Air Force Academy [B.V. Zhdanov, J. Sell, R.J. Knize, "Multiple laser diode array pumped Cs laser with 48 W output power," Electronics Letters, 44, 9 (2008)]. The power output in the experiment was seen to go through a "roll-over"; the maximum power output was obtained with about 70 W of pump power, then power output decreased as the pump power was increased beyond this point. Research to determine the deleterious processes that caused this result has been done at the Air Force Research Laboratory utilizing physically detailed simulation. The simulations utilized coupled computational fluid dynamics (CFD) and optics solvers, which were three-dimensional and time-dependent. The CFD code used a cell-centered, conservative, finite-volume discretization of the integral form of the Navier-Stokes equations. It included thermal energy transport and mass conservation, which accounted for chemical reactions and state kinetics. Optical models included pumping, lasing, and fluorescence. The deleterious effects investigated were: alkali number density decrease in high temperature regions, convective flow, pressure broadening and shifting of the absorption lineshape including hyperfine structure, radiative decay, quenching, energy pooling, off-resonant absorption, Penning ionization, photoionization, radiative recombination, three-body recombination due to free electron and buffer gas collisions, ambipolar diffusion, thermal aberration, dissociative recombination, multi-photon ionization, alkali-hydrocarbon reactions, and electron impact ionization.
Pump Diode Characterization for an Unstable Diode-Pumped Alkali Laser Resonator
2013-03-01
2003. Petersen, A., and R. Lane, Second harmonic operation of diode-pumped Rb vapor lasers , Proc. of SPIE, 7005, 2008. Siegman , A. E., Lasers ...University Science Books, Sausalito, CA, 1986. Siegman , A. E., Defining, measuring and optimizing laser beam quality, Proc. of SPIE, 1868, 1993. Steck, D...PUMP DIODE CHARACTERIZATION FOR AN UNSTABLE DIODE-PUMPED ALKALI LASER RESONATOR THESIS Chad T. Taguba, Master Sergeant, USAF AFIT-ENP-13-M-33
Mass modeling for electrically powered space-based Yb:YAG lasers
NASA Astrophysics Data System (ADS)
Fitzgerald, Kevin F.; Leshner, Richard B.; Winsor, Harry V.
2000-05-01
An estimate for the mass of a nominal high-energy laser system envisioned for space applications is presented. The approach features a diode pumped solid state Yb:YAG laser. The laser specifications are10 MW average output power, and periods of up to 100 seconds continuous, full-power operation without refueling. The system is powered by lithium ion batteries, which are recharged by a solar array. The power requirements for this system dominate over any fixed structural features, so the critical issues in scaling a DPSSL to high power are made transparent. When based on currently available space qualified batteries, the design mass is about 500 metric tons. Therefore, innovations are required before high power electrical lasers will be serious contenders for use in space systems. The necessary innovations must improve the rate at which lithium ion batteries can output power. Masses for systems based on batteries that should be available in the near future are presented. This analysis also finds that heating of the solid state lasing material, cooling of the diode pump lasers and duty cycle are critical issues. Features dominating the thermal control requirements are the heat capacity of garnet, the operational temperature range of the system, and the required cooling time between periods of full operation. The duty cycle is a critical factor in determining both the mass of the diode array needed, and the mass of the power supply system.
Method for optical pumping of thin laser media at high average power
Zapata, Luis E [Livermore, CA; Beach, Raymond J [Livermore, CA; Honea, Eric C [Sunol, CA; Payne, Stephen A [Castro Valley, CA
2004-07-13
A thin, planar laser material is bonded to a light guide of an index-matched material forming a composite disk. Diode array or other pump light is introduced into the composite disk through the edges of the disk. Pump light trapped within the composite disk depletes as it multi-passes the laser medium before reaching an opposing edge of the disk. The resulting compound optical structure efficiently delivers concentrated pump light and to a laser medium of minimum thickness. The external face of the laser medium is used for cooling. A high performance cooler attached to the external face of the laser medium rejects heat. Laser beam extraction is parallel to the heat flux to minimize optical distortions.
LD-pumped erbium and neodymium lasers with high energy and output beam quality
NASA Astrophysics Data System (ADS)
Kabanov, Vladimir V.; Bezyazychnaya, Tatiana V.; Bogdanovich, Maxim V.; Grigor'ev, Alexandr V.; Lebiadok, Yahor V.; Lepchenkov, Kirill V.; Ryabtsev, Andrew G.; Ryabtsev, Gennadii I.; Shchemelev, Maxim A.
2013-05-01
Physical and fabrication peculiarities which provide the high output energy and beam quality for the diode pumped erbium glass and Nd:YAG lasers are considered. Developed design approach allow to make passively Q-switched erbium glass eye-safe portable laser sources with output energy 8 - 12 mJ (output pulse duration is less than 25 ns, pulse repetition rate up to 5 Hz) and beam quality M2 less than 1.3. To reach these values the erbium laser pump unit parameters were optimized also. Namely, for the powerful laser diode arrays the optimal near-field fill-factor, output mirror reflectivity and heterostructure properties were determined. Construction of advanced diode and solid-state lasers as well as the optical properties of the active element and the pump unit make possible the lasing within a rather wide temperature interval (e.g. from minus forty till plus sixty Celsius degree) without application of water-based chillers. The transversally pumped Nd:YAG laser output beam uniformity was investigated depending on the active element (AE) pump conditions. In particular, to enhance the pump uniformity within AE volume, a special layer which practically doesn't absorb the pump radiation but effectively scatters the pump and lasing beams, was used. Application of such layer results in amplified spontaneous emission suppression and improvement of the laser output beam uniformity. The carried out investigations allow us to fabricate the solid-state Nd:YAG lasers (1064 nm) with the output energy up to 420 mJ at the pulse repetition rate up to 30 Hz and the output energy up to 100 mJ at the pulse repetition rate of of 100 Hz. Also the laser sources with following characteristics: 35 mJ, 30 Hz (266 nm); 60 mJ, 30 Hz (355 nm); 100 mJ, 30 Hz (532 nm) were manufactured on the base of the developed Nd:YAG quantrons.
Multi-wavelength and multiband RE-doped optical fiber source array for WDM-GPON applications
NASA Astrophysics Data System (ADS)
Perez-Sanchez, G. G.; Bertoldi-Martins, I.; Gallion, P.; Gosset, C.; Álvarez-Chávez, J. A.
2013-12-01
In this paper, a multiband, multi-wavelength, all-fibre source array consisting of an 810nm pump laser diode, thretwo fiber splitters and three segments of Er-, Tm- and Nd-doped fiber is proposed for PON applications. In the set-up, cascaded pairs of standard fiber gratings are used for extracting the required multiple wavelengths within their corresponding bands. A thorough design parameter description, optical array details and full simulation results, such as: full multi-wavelength spectrum, peak and average powers for each generated wavelength, linewidth at FWHM for each generated signal, and individual and overall conversion efficiency, will be included in the manuscript.
The Mercury Project: A High Average Power, Gas-Cooled Laser For Inertial Fusion Energy Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A; Armstrong, P; Ault, E
Hundred-joule, kilowatt-class lasers based on diode-pumped solid-state technologies, are being developed worldwide for laser-plasma interactions and as prototypes for fusion energy drivers. The goal of the Mercury Laser Project is to develop key technologies within an architectural framework that demonstrates basic building blocks for scaling to larger multi-kilojoule systems for inertial fusion energy (IFE) applications. Mercury has requirements that include: scalability to IFE beamlines, 10 Hz repetition rate, high efficiency, and 10{sup 9} shot reliability. The Mercury laser has operated continuously for several hours at 55 J and 10 Hz with fourteen 4 x 6 cm{sup 2} ytterbium doped strontiummore » fluoroapatite (Yb:S-FAP) amplifier slabs pumped by eight 100 kW diode arrays. The 1047 nm fundamental wavelength was converted to 523 nm at 160 W average power with 73% conversion efficiency using yttrium calcium oxy-borate (YCOB).« less
NASA Astrophysics Data System (ADS)
Goering, Rolf; Hoefer, Bernd; Kraeplin, Anke; Schreiber, Peter; Kley, Ernst-Bernhard; Schmeisser, Volkmar
1999-04-01
A novel technique, the so-called skew ray imaging concept, has been developed for beam transformation of high power diode laser bars. It leads to beam circularization with optimum brightness conservation. This concept uses two key microoptical components: a fast axis collimator microlens (FAC) of high isoplanatism and a special array of beam deflecting elements, the number of which corresponds to the single emitter number of the diode laser. Using this concept of skew ray imaging in a modified form, prototypes of pumping sources for visible fiber laser have been developed and built up. Several watts of optical power have been focused into a small spot of 25 micrometers with a numerical aperture of 0.35. GRIN cylindrical microlenses with 0.1 mm focal length and diffractive blazed gratings as redirector have been used. The grating periods of the redirector sections have been between 8 and 100 (mu) M. They have been produced by e-beam direct writing in resist. After optimization of the fabrication process the diffraction efficiencies of al sections have been beyond 86 percent with good reproducibility. Special techniques have been sued for system integration. The FAC microlenses have been attached to a copper lens holder with a subsequent gluing process of the holder to the laser diode heatsink. A UV-curable adhesive with extremely low shrinkage has been selected. The redirector element has been integrated with an additional possibility for lateral adjustment in order to compensate minor residual walk-off effects of the microlens when the laser power is varied from zero to maximum. A very compact pumping source of 3 inches X 1 inch X 1 inch dimensions has been realized with 5 W optical power in the desired spot. First diode pumped fiber laser operation in the visible has been demonstrated with this source.
Narrowband diode laser pump module for pumping alkali vapors.
Rotondaro, M D; Zhdanov, B V; Shaffer, M K; Knize, R J
2018-04-16
We describe a method of line narrowing and frequency-locking a diode laser stack to an alkali atomic line for use as a pump module for Diode Pumped Alkali Lasers. The pump module consists of a 600 W antireflection coated diode laser stack configured to lase using an external cavity. The line narrowing and frequency locking is accomplished by introducing a narrowband polarization filter based on magneto-optical Faraday effect into the external cavity, which selectively transmits only the frequencies that are in resonance with the 6 2 S 1/2 → 6 2 P 3/2 transition of Cs atoms. The resulting pump module has demonstrated that a diode laser stack, which lases with a line width of 3 THz without narrowbanding, can be narrowed to 10 GHz. The line narrowed pump module produced 518 Watts that is 80% of the power generated by the original broadband diode laser stack.
Water-cooled hard-soldered kilowatt laser diode arrays operating at high duty cycle
NASA Astrophysics Data System (ADS)
Klumel, Genady; Karni, Yoram; Oppenhaim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom; Risemberg, Shlomo
2010-04-01
High brightness laser diode arrays are increasingly found in defense applications either as efficient optical pumps or as direct energy sources. In many instances, duty cycles of 10- 20 % are required, together with precise optical collimation. System requirements are not always compatible with the use of microchannel based cooling, notwithstanding their remarkable efficiency. Simpler but effective solutions, which will not involve high fluid pressure drops as well as deionized water, are needed. The designer is faced with a number of challenges: effective heat removal, minimization of the built- in and operational stresses as well as precise and accurate fast axis collimation. In this article, we report on a novel laser diode array which includes an integral tap water cooling system. Robustness is achieved by all around hard solder bonding of passivated 940nm laser bars. Far field mapping of the beam, after accurate fast axis collimation will be presented. It will be shown that the design of water cooling channels , proper selection of package materials, careful design of fatigue sensitive parts and active collimation technique allow for long life time and reliability, while not compromising the laser diode array efficiency, optical power density ,brightness and compactness. Main performance characteristics are 150W/bar peak optical power, 10% duty cycle and more than 50% wall plug efficiency with less than 1° fast axis divergence. Lifetime of 0.5 Gshots with less than 10% power degradation has been proved. Additionally, the devices have successfully survived harsh environmental conditions such as thermal cycling of the coolant temperature and mechanical shocks.
Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode
Backus, Sterling; Colorado State Univ., Fort Collins, CO; Kirchner, Matt; ...
2017-05-18
We demonstrate a direct diode-pumped Kerr Lens Modelocked Ti:sapphire laser producing 13 fs pulses with 1.85 nJ energy at 78 MHz (145 mW) using a single laser diode pump. We also present a similar laser using three spectrally combined diodes, generating >300 mW output power with >50 nm bandwidth. We discuss the use of far-from TEM 00 pump laser sources, and their effect on the Kerr lens modelocking process.
Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, Sterling; Colorado State Univ., Fort Collins, CO; Kirchner, Matt
We demonstrate a direct diode-pumped Kerr Lens Modelocked Ti:sapphire laser producing 13 fs pulses with 1.85 nJ energy at 78 MHz (145 mW) using a single laser diode pump. We also present a similar laser using three spectrally combined diodes, generating >300 mW output power with >50 nm bandwidth. We discuss the use of far-from TEM 00 pump laser sources, and their effect on the Kerr lens modelocking process.
System for beaming power from earth to a high altitude platform
Friedman, Herbert W.; Porter, Terry J.
2002-01-01
Power is transmitted to a high altitude platform by an array of diode pumped solid state lasers each operated at a single range of laser wavelengths outside of infrared and without using adaptive optics. Each laser produces a beam with a desired arrival spot size. An aircraft avoidance system uses a radar system for automatic control of the shutters of the lasers.
Gürel, Kutan; Wittwer, Valentin J; Hakobyan, Sargis; Schilt, Stéphane; Südmeyer, Thomas
2017-03-15
We demonstrate the first diode-pumped Ti:sapphire laser frequency comb. It is pumped by two green laser diodes with a total pump power of 3 W. The Ti:sapphire laser generates 250 mW of average output power in 61-fs pulses at a repetition rate of 216 MHz. We generated an octave-spanning supercontinuum spectrum in a photonic-crystal fiber and detected the carrier envelope offset (CEO) frequency in a standard f-to-2f interferometer setup. We stabilized the CEO-frequency through direct current modulation of one of the green pump diodes with a feedback bandwidth of 55 kHz limited by the pump diode driver used in this experiment. We achieved a reduction of the CEO phase noise power spectral density by 140 dB at 1 Hz offset frequency. An advantage of diode pumping is the ability for high-bandwidth modulation of the pump power via direct current modulation. After this experiment, we studied the modulation capabilities and noise properties of green pump laser diodes with improved driver electronics. The current-to-output-power modulation transfer function shows a bandwidth larger than 1 MHz, which should be sufficient to fully exploit the modulation bandwidth of the Ti:sapphire gain for CEO stabilization in future experiments.
Active mode-locked operation of a diode pumped colour-centre laser
NASA Astrophysics Data System (ADS)
Mazighi, K.; Doualan, J. L.; Hamel, J.; Margerie, J.; Mounier, D.; Ostrovsky, A.
1991-09-01
The cw laser diode pumping of an (F +2) ∗ colour centre laser has been recently demonstrated in our laboratory. The intensity of the pumping diode can easily be hf modulated. We present here the first experiments in which the colour centre laser is synchronously pumped at the mode spacing frequency, resulting in the emission of clean, regularly spaced pulses. The opto-electronic feedback is a very promising method of obtaining such a pulsed operation of a diode pumped colour centre laser without the use of an external hf oscillator.
Passively Q-switched side pumped monolithic ring laser
NASA Technical Reports Server (NTRS)
Li, Steven X. (Inventor)
2012-01-01
Disclosed herein are systems and methods for generating a side-pumped passively Q-switched non-planar ring oscillator. The method introduces a laser into a cavity of a crystal, the cavity having a round-trip path formed by a reflection at a dielectrically coated front surface, a first internal reflection at a first side surface of the crystal at a non-orthogonal angle with the front, a second internal reflection at a top surface of the crystal, and a third internal reflection at a second side surface of the crystal at a non-orthogonal angle with the front. The method side pumps the laser at the top or bottom surface with a side pump diode array beam and generates an output laser emanating at a location on the front surface. The design can include additional internal reflections to increase interaction with the side pump. Waste heat may be removed by mounting the crystal to a heatsink.
A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping.
Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung
2014-07-01
An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies.
A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping
Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S.; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung
2014-01-01
An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies. PMID:25379101
Cladding-pumped passively mode-locked fiber laser generating femtosecond and picosecond pulses
NASA Astrophysics Data System (ADS)
Fermann, M. E.; Harter, D.; Minelly, J. D.; Vienne, G. G.
1996-07-01
Passively mode-locked fiber lasers cladding pumped by broad-area diode-laser arrays are described. With a dispersion-compenstated erbium-ytterbium fiber oscillator, 200-fs pulses with pulse energies up to 100 pJ are generated at a wavelength of 1560 nm. In a highly dispersive cavity, pulse widths of 3 ps with pulse energies up to 1 nJ are obtained. A saturable absorber is used for pulse startup, whereas nonlinear polarization evolution is exploited for steady-state pulse shaping. An environmentally stable design is ensured by use of a compensation scheme for linear polarization drifts in the cavity.
Cladding-pumped passively mode-locked fiber laser generating femtosecond and picosecond pulses.
Fermann, M E; Harter, D; Minelly, J D; Vienne, G G
1996-07-01
Passively mode-locked fiber lasers cladding pumped by broad-area diode-laser arrays are described. With a dispersion-compenstated erbium-ytterbium fiber oscillator, 200-fs pulses with pulse energies up to 100 pJ are generated at a wavelength of 1560 nm. In a highly dispersive cavity, pulse widths of 3 ps with pulse energies up to 1 nJ are obtained. A saturable absorber is used for pulse startup, whereas nonlinear polarization evolution is exploited for steady-state pulse shaping. An environmentally stable design is ensured by use of a compensation scheme for linear polarization drifts in the cavity.
High power fiber coupled diode lasers for display and lighting applications
NASA Astrophysics Data System (ADS)
Drovs, Simon; Unger, Andreas; Dürsch, Sascha; Köhler, Bernd; Biesenbach, Jens
2017-02-01
The performance of diode lasers in the visible spectral range has been continuously improved within the last few years, which was mainly driven by the goal to replace arc lamps in cinema or home projectors. In addition, the availability of such high power visible diode lasers also enables new applications in the medical field, but also the usage as pump sources for other solid state lasers. This paper summarizes the latest developments of fiber coupled sources with output power from 1.4 W to 120 W coupled into 100 μm to 400 μm fibers in the spectral range around 405 nm and 640 nm. New developments also include the use of fiber coupled multi single emitter arrays at 450 nm, as well as very compact modules with multi-W output power.
Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael
2011-06-20
For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.
Laser-diode-pumped 1319-nm monolithic non-planar ring single-frequency laser
NASA Astrophysics Data System (ADS)
Wang, Qing; Gao, Chunqing; Zhao, Yan; Yang, Suhui; Wei, Guanghui; 2, Dongmei Hong
2003-10-01
Single-frequency 1319-nm laser was obtained by using a laser-diode-pumped monolithic Nd:YAG crystal with a non-planar ring oscillator (NPRO). When the NPRO laser was pumped by an 800-?m fiber coupled laser diode, the output power of the single-frequency 1319-nm laser was 220 mW, and the slope efficiency was 16%. With a 100-1m fiber coupled diode laser pumped, 99-mW single-frequency 1319-nm laser was obtained with a slope efficiency of 29%.
Resonantly diode-pumped Er:YAG laser: 1470-nm versus 1530-nm CW pumping case
NASA Astrophysics Data System (ADS)
Kudryashov, Igor; Ter-Gabrielyan, Nikolai; Dubinskii, Mark
2009-05-01
Growing interest to high power lasers in the eye-safe spectral domain initiated a new wave of activity in developing solid-state lasers based on bulk Er3+-doped materials. The resonant pumping of SSL allows for shifting significant part of thermal load from gain medium itself to the pump diodes, thus greatly reducing gain medium thermal distortions deleterious to SSL power scaling with high beam quality. The two major resonant pumping bands in Er:YAG are centered around 1470 and 1532 nm. Pumping into each of these bands has its pros and contras. The best approach to resonant pumping of Er:YAG active media in terms of pump wavelength is yet to be determined. We report the investigation results of high power diode-pumped Er:YAG laser aimed at direct comparison of resonant pumping at 1470 and 1532 nm. Two sources used for pumping were: 1530-nm 10-diode bar stack (>300 W CW) and 1470-nm 10-diode bar stack (>650 W CW). Both pumps were spectrally narrowed by external volume Bragg gratings. The obtained spectral width of less than 1 nm allowed for 'in-line' pumping of Er3+ in either band. The obtained CW power of over 87 W is, to the best of our knowledge, the record high power reported for resonantly pumped Er:YAG DPSSL at room temperature.
Means for phase locking the outputs of a surface emitting laser diode array
NASA Technical Reports Server (NTRS)
Lesh, James R. (Inventor)
1987-01-01
An array of diode lasers, either a two-dimensional array of surface emitting lasers, or a linear array of stripe lasers, is phase locked by a diode laser through a hologram which focuses the output of the diode laser into a set of distinct, spatially separated beams, each one focused onto the back facet of a separate diode laser of the array. The outputs of the diode lasers thus form an emitted coherent beam out of the front of the array.
Four-Pass Coupler for Laser-Diode-Pumped Solid-State Laser
NASA Technical Reports Server (NTRS)
Coyle, Donald B.
2008-01-01
A four-pass optical coupler affords increased (in comparison with related prior two-pass optical couplers) utilization of light generated by a laser diode in side pumping of a solid-state laser slab. The original application for which this coupler was conceived involves a neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal slab, which, when pumped by a row of laser diodes at a wavelength of 809 nm, lases at a wavelength of 1,064 nm. Heretofore, typically, a thin laser slab has been pumped in two passes, the second pass occurring by virtue of reflection of pump light from a highly reflective thin film on the side opposite the side through which the pump light enters. In two-pass pumping, a Nd:YAG slab having a thickness of 2 mm (which is typical) absorbs about 84 percent of the 809-nm pump light power, leaving about 16 percent of the pump light power to travel back toward the laser diodes. This unused power can cause localized heating of the laser diodes, thereby reducing their lifetimes. Moreover, if the slab is thinner than 2 mm, then even more unused power travels back toward the laser diodes. The four-pass optical coupler captures most of this unused pump light and sends it back to the laser slab for two more passes. As a result, the slab absorbs more pump light, as though it were twice as thick. The gain and laser cavity beam quality of a smaller laser slab in conjunction with this optical coupler can thus be made comparable to those of a larger two-pass-pumped laser slab.
Space Qualification of Laser Diode Arrays
NASA Technical Reports Server (NTRS)
Troupaki, Elisavet; Kashem, Nasir B.; Allan, Graham R.; Vasilyev, Aleksey; Stephen, Mark
2005-01-01
Laser instruments have great potential in enabling a new generation of remote-sensing scientific instruments. NASA s desire to employ laser instruments aboard satellites, imposes stringent reliability requirements under severe conditions. As a result of these requirements, NASA has a research program to understand, quantify and reduce the risk of failure to these instruments when deployed on satellites. Most of NASA s proposed laser missions have base-lined diode-pumped Nd:YAG lasers that generally use quasi-constant wave (QCW), 808 nm Laser Diode Arrays (LDAs). Our group has an on-going test program to measure the performance of these LDAs when operated in conditions replicating launch and orbit. In this paper, we report on the results of tests designed to measure the effect of vibration loads simulating launch into space and the radiation environment encountered on orbit. Our primary objective is to quantify the performance of the LDAs in conditions replicating those of a satellite instrument, determine their limitations and strengths which will enable better and more robust designs. To this end we have developed a systematic testing strategy to quantify the effect of environmental stresses on the optical and electrical properties of the LDA.
CO.sub.2 optically pumped distributed feedback diode laser
Rockwood, Stephen D.
1980-01-01
A diode laser optically pumped by a CO.sub.2 coherent source. Interference fringes generated by feeding the optical pumping beam against a second beam, periodically alter the reflectivity of the diode medium allowing frequency variation of the output signal by varying the impingent angle of the CO.sub.2 laser beams.
Overview on new diode lasers for defense applications
NASA Astrophysics Data System (ADS)
Neukum, Joerg
2012-11-01
Diode lasers have a broad wavelength range, from the visible to beyond 2.2μm. This allows for various applications in the defense sector, ranging from classic pumping of DPSSL in range finders or target designators, up to pumping directed energy weapons in the 50+ kW range. Also direct diode applications for illumination above 1.55μm, or direct IR countermeasures are of interest. Here an overview is given on some new wavelengths and applications which are recently under discussion. In this overview the following aspects are reviewed: • High Power CW pumps at 808 / 880 / 940nm • Pumps for DPAL - Diode Pumped Alkali Lasers • High Power Diode Lasers in the range < 1.0 μm • Scalable Mini-Bar concept for high brightness fiber coupled modules • The Light Weight Fiber Coupled module based on the Mini-Bar concept Overall, High Power Diode Lasers offer many ways to be used in new applications in the defense market.
NASA Astrophysics Data System (ADS)
Pena, Ana; Wang, Zengbo; Whitehead, David; Li, Lin
2010-11-01
A practical approach to a well-known technique of laser micro/nano-patterning by optical near fields is presented. It is based on surface patterning by scanning a Gaussian laser beam through a self-assembled monolayer of silica micro-spheres on a single-crystalline silicon (Si) substrate. So far, the outcome of this kind of near-field patterning has been related to the simultaneous, parallel surface-structuring of large areas either by top hat or Gaussian laser intensity distributions. We attempt to explore the possibility of using the same technique in order to produce single, direct writing of features. This could be of advantage for applications in which only some areas need to be patterned (i.e. local area selective patterning) or single lines are required (e.g. a particular micro/nano-fluidic channel). A diode pumped Nd:YVO4 laser system (wavelength of 532 nm, pulse duration of 8 ns, repetition rate of 30 kHz) with a computer-controlled 3 axis galvanometer beam scanner was employed to write user-defined patterns through the particle lens array on the Si substrate. After laser irradiation, the obtained patterns which are in the micro-scale were composed of sub-micro/micro-holes or bumps. The micro-pattern resolution depends on the dimension of both the micro-sphere’s diameter and the beam’s spot size. The developed technique could potentially be employed to fabricate photonic crystal structures mimicking nature’s butterfly wings and anti-reflective “moth eye” arrays for photovoltaic cells.
Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping
NASA Astrophysics Data System (ADS)
Arbabzadah, E. A.; Damzen, M. J.
2016-06-01
We report the investigation of an Alexandrite laser end-pumped by a fibre-coupled red diode laser module. Power, efficiency, spatial, spectral, and wavelength tuning performance are studied as a function of pump and laser cavity parameters. It is the first demonstration, to our knowledge, of greater than 1 W power and also highest laser slope efficiency (44.2%) in a diode-pumped Alexandrite laser with diffraction-limited TEM00 mode operation. Spatial quality was excellent with beam propagation parameter M 2 ~ 1.05. Wavelength tuning from 737-796 nm was demonstrated using an intracavity birefringent tuning filter. Using a novel double pass end-pumping scheme to get efficient absorption of both polarisation states of the scrambled fibre-delivered diode pump, a total output coupled power of 1.66 W is produced in TEM00 mode with 40% slope efficiency.
Kerr-lens mode-locked Ti:Sapphire laser pumped by a single laser diode
NASA Astrophysics Data System (ADS)
Kopylov, D. A.; Esaulkov, M. N.; Kuritsyn, I. I.; Mavritskiy, A. O.; Perminov, B. E.; Konyashchenko, A. V.; Murzina, T. V.; Maydykovskiy, A. I.
2018-04-01
The performance of a Ti:sapphire laser pumped by a single 461 nm laser diode is presented for both the continuous-wave and the mode-locked regimes of operation. We introduce a simple astigmatism correction scheme for the laser diode beam consisting of two cylindrical lenses affecting the pump beam along the fast axis of the laser diode, which provides the mode-matching between the nearly square-shaped pump beam and the cavity mode. The resulting efficiency of the suggested Ti:Sapphire oscillator pumped by such a laser diode is analyzed for the Ti:sapphire crystals of 3 mm, 5 mm and 10 mm in length. We demonstrate that such a system provides the generation of ultrashort pulses up to 15 fs in duration with the repetition rate of 87 MHz, the average power being 170 mW.
Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
Chang, Suk Tai; Beaumont, Erin; Petsev, Dimiter N; Velev, Orlin D
2008-01-01
We demonstrate new principles of microfluidic pumping and mixing by electronic components integrated into a microfluidic chip. The miniature diodes embedded into the microchannel walls rectify the voltage induced between their electrodes from an external alternating electric field. The resulting electroosmotic flows, developed in the vicinity of the diode surfaces, were utilized for pumping or mixing of the fluid in the microfluidic channel. The flow velocity of liquid pumped by the diodes facing in the same direction linearly increased with the magnitude of the applied voltage and the pumping direction could be controlled by the pH of the solutions. The transverse flow driven by the localized electroosmotic flux between diodes oriented oppositely on the microchannel was used in microfluidic mixers. The experimental results were interpreted by numerical simulations of the electrohydrodynamic flows. The techniques may be used in novel actively controlled microfluidic-electronic chips.
Theoretical study on the thermal and optical features of a diode side-pumped alkali laser
NASA Astrophysics Data System (ADS)
Han, Juhong; Liu, Xiaoxu; Wang, Hongyuan; Cai, He; An, Guofei; Zhang, Wei; Wang, You
2018-03-01
As one of the most hopeful candidates to achieve high power performances, a diode-pumped alkali laser (DPAL) has attracted a lot of attention in the last decade. Comparing with a diode end-pumped alkali laser (DEPAL), a diode side-pumped alkali laser (DSPAL) has great potentiality to realize an even-higher output of alkali lasers. However, there are few related researching studies concern DSPAL. In this paper, we introduce a theoretical model to investigate the physical features of a double-directions side-pumped alkali laser. The distributions of the population density, temperature, and absorption power at the cross section of a vapor cell are systematically studied. The analyses should be valuable for design of a steady high-powered DPAL.
One joule per Q-switched pulse diode-pumped laser
NASA Technical Reports Server (NTRS)
Holder, Lonnie E.; Kennedy, Chandler; Long, Larry; Dube, George
1992-01-01
Q-switched 1-J output has been achieved from diode-pumped zig-zag Nd:YAG slabs in an oscillator-amplifier configuration. The oscillator was single transverse and longitudinal model. This laser set records for Q-switched energy per pulse, and for average power from a diode-pumped laser. The laser was constructed in a rugged configuration suitable for routine laboratory use.
Tunable, diode side-pumped Er: YAG laser
Hamilton, Charles E.; Furu, Laurence H.
1997-01-01
A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 .mu.m, and is tunable over a 6 nm range near about 2.936 .mu.m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 .mu.m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 .mu.m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems.
Tunable, diode side-pumped Er:YAG laser
Hamilton, C.E.; Furu, L.H.
1997-04-22
A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.
High-resolution smile measurement and control of wavelength-locked QCW and CW laser diode bars
NASA Astrophysics Data System (ADS)
Rosenkrantz, Etai; Yanson, Dan; Klumel, Genady; Blonder, Moshe; Rappaport, Noam; Peleg, Ophir
2018-02-01
High-power linewidth-narrowed applications of laser diode arrays demand high beam quality in the fast, or vertical, axis. This requires very high fast-axis collimation (FAC) quality with sub-mrad angular errors, especially where laser diode bars are wavelength-locked by a volume Bragg grating (VBG) to achieve high pumping efficiency in solid-state and fiber lasers. The micron-scale height deviation of emitters in a bar against the FAC lens causes the so-called smile effect with variable beam pointing errors and wavelength locking degradation. We report a bar smile imaging setup allowing FAC-free smile measurement in both QCW and CW modes. By Gaussian beam simulation, we establish optimum smile imaging conditions to obtain high resolution and accuracy with well-resolved emitter images. We then investigate the changes in the smile shape and magnitude under thermal stresses such as variable duty cycles in QCW mode and, ultimately, CW operation. Our smile measurement setup provides useful insights into the smile behavior and correlation between the bar collimation in QCW mode and operating conditions under CW pumping. With relaxed alignment tolerances afforded by our measurement setup, we can screen bars for smile compliance and potential VBG lockability prior to assembly, with benefits in both lower manufacturing costs and higher yield.
Volume Bragg grating improves characteristic of resonantly diode-pumped Er:YAG, 1.65-μm DPSSL
NASA Astrophysics Data System (ADS)
Kudryashov, Igor; Garbuzov, Dmitri; Dubinskii, Mark
2007-02-01
Significant performance improvement of the Er(0.5%):YAG diode pumped solid state laser (DPSSL) has been achieved by pump diode spectral narrowing via implementation of external volumetric Bragg grating (VBG). Without spectral narrowing, with a pump path length of 15 mm, only 37% of 1532 nm pump was absorbed. After the VBG spectral narrowing, the absorption of the pumping radiation increased to 62%. As a result, the incident power threshold was reduced by a factor of 2.5; the efficiency increased by a factor of 1.7, resulting in a slope efficiency of ~23%. A maximum of 51 W of CW power was obtained versus 31 W without the pump spectrum narrowing.
Towards diode-pumped mid-infrared praseodymium-ytterbium-doped fluoride fiber lasers
NASA Astrophysics Data System (ADS)
Woodward, R. I.; Hudson, D. D.; Jackson, S. D.
2018-02-01
We explore the potential of a new mid-infrared laser transition in praseodymium-doped fluoride fiber for emission around 3.4 μm, which can be conveniently pumped by 0.975 μm diodes via ytterbium sensitizer co-doping. Optimal cavity designs are determined through spectroscopic measurements and numerical modeling, suggesting that practical diode-pumped watt-level mid-infrared fiber sources beyond 3 μm could be achieved.
Laser Space Propulsion Overview (Postprint)
2006-09-01
meet with currently fielded thruster technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a...with Cm = 56µN/W and ηAB = 100%. These two units will be combined in a single device using low-mass diode-pumped glass fiber laser amplifiers to...advantage of extremely lightweight diode-pumped glass fiber lasers onboard the spacecraft to provide thrust with variable Isp and unmatched thrust
Laser Space Propulsion Overview (Preprint)
2006-08-22
thruster technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a total of 350-W optical power...achieved Isp = 3660s with Cm = 56µN/W and ηAB = 100%. These two units will be combined in a single device using low-mass diode-pumped glass fiber...diode-pumped glass fiber lasers onboard the spacecraft to provide thrust with variable Isp and unmatched thrust efficiency deriving from exothermic
High power diode and solid state lasers
NASA Astrophysics Data System (ADS)
Eichler, H. J.; Fritsche, H.; Lux, O.; Strohmaier, S. G.
2017-01-01
Diode lasers are now basic pump sources of crystal, glass fiber and other solid state lasers. Progress in the performance of all these lasers is related. Examples of recently developed diode pumped lasers and Raman frequency converters are described for applications in materials processing, Lidar and medical surgery.
NASA Technical Reports Server (NTRS)
Poberezhskiy, Ilya Y; Chang, Daniel H.; Erlig, Herman
2011-01-01
Optical metrology system reliability during a prolonged space mission is often limited by the reliability of pump laser diodes. We developed a metrology laser pump module architecture that meets NASA SIM Lite instrument optical power and reliability requirements by combining the outputs of multiple single-mode pump diodes in a low-loss, high port count fiber coupler. We describe Monte-Carlo simulations used to calculate the reliability of the laser pump module and introduce a combined laser farm aging parameter that serves as a load-sharing optimization metric. Employing these tools, we select pump module architecture, operating conditions, biasing approach and perform parameter sensitivity studies to investigate the robustness of the obtained solution.
A 1J LD pumped Nd:YAG pulsed laser system
NASA Astrophysics Data System (ADS)
Yi, Xue-bin; Wang, Bin; Yang, Feng; Li, Jing; Liu, Ya-Ping; Li, Hui-Jun; Wang, Yu; Chen, Ren
2017-11-01
A 1J LD pumped Nd;YAG pulsed laser was designed. The laser uses an oscillation and two-staged amplification structure, and applies diode bar integrated array as side-pump. The TEC temperature control device combing liquid cooling system is organized to control the temperature of the laser system. This study also analyzed the theoretical threshold of working material, the effect of thermal lens and the basic principle of laser amplification. The results showed that the laser system can achieve 1J, 25Hz pulse laser output, and the laser pulse can be output at two width: 6-7ns and 10ns, respectively, and the original beam angle is 1.2mrad. The laser system is characterized by small size, light weight, as well as good stability, which make it being applied in varied fields such as photovoltaic radar platform and etc
Design of a quasi-CW laser diode driver for space-based laser transmitter
NASA Astrophysics Data System (ADS)
Singh, Ravindra; Dangwal, Nishma; Chandraprakash, .; Agrawal, Lalita; Pal, Suranjan; Kamlakar, J. A.
2006-12-01
LASTEC Delhi in a joint collaborative activity with LEOS, Bangalore is developing a space qualified diode array pumped Nd:YAG laser transmitter delivering 30 mJ @ 10 pps of 10 ns duration. For space applications laser diodes are preferred because of their excellent reliability with lifetimes exceeding 100,000 hours. However, they are extremely sensitive to electro-static discharge, excessive current levels, and current spikes and transients. Small variations in bias voltage may produce large fluctuations in the current causing instability and damage to the device. Hence instead of the traditional power supplies a current controlled laser diode driver is required. This paper presents the design of a Q-CW laser diode driver based on closed loop current regulator, capable of driving 24 QCW laser diode bars each with 75W peak power at 70 A. The driver can generate up to 100 Amp peak current and 200μsec pulse width operating at 10 Hz. The current source design includes special circuits for low noise operation, slow turn-on and turn-off, circuits for over voltage and transient current protection; and good regulation. Space qualified and radiation hardened components are required to be used to sustain stringent space environment requirements during mission life of two years.
Nonimaging concentrators for diode-pumped slab lasers
NASA Astrophysics Data System (ADS)
Lacovara, Philip; Gleckman, Philip L.; Holman, Robert L.; Winston, Roland
1991-10-01
Diode-pumped slab lasers require concentrators for high-average power operation. We detail the properties of diode lasers and slab lasers which set the concentration requirements and the concentrator design methodologies that are used, and describe some concentrator designs used in high-average power slab lasers at Lincoln Laboratory.
High-efficiency, 154 W CW, diode-pumped Raman fiber laser with brightness enhancement.
Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark
2017-01-20
We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).
Diode-laser-pump module with integrated signal ports for pumping amplifying fibers and method
Savage-Leuchs,; Matthias, P [Woodinville, WA
2009-05-26
Apparatus and method for collimating pump light of a first wavelength from laser diode(s) into a collimated beam within an enclosure having first and second optical ports, directing pump light from the collimated beam to the first port; and directing signal light inside the enclosure between the first and second port. The signal and pump wavelengths are different. The enclosure provides a pump block having a first port that emits pump light to a gain fiber outside the enclosure and that also passes signal light either into or out of the enclosure, and another port that passes signal light either out of or into the enclosure. Some embodiments use a dichroic mirror to direct pump light to the first port and direct signal light between the first and second ports. Some embodiments include a wavelength-conversion device to change the wavelength of at least some of the signal light.
Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.
Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J
2010-06-21
We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.
Frequency stabilization of diode-laser-pumped solid state lasers
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1988-01-01
The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.
Noise and loss in balanced and subharmonically pumped mixers. I - Theory. II - Application
NASA Technical Reports Server (NTRS)
Kerr, A. R.
1979-01-01
The theory of noise and frequency conversion for two-diode balanced and subharmonically pumped mixers is presented. The analysis is based on the equivalent circuit of the Schottky diode, having nonlinear capacitance, series resistance, and shot and thermal noise. Expressions for the conversion loss, noise temperature, and input and output impedances are determined in a form suitable for numerical analysis. In Part II, the application of the theory to practical mixers is demonstrated, and the properties of some two-diode mixers are examined. The subharmonically pumped mixer is found to be much more strongly affected by the loop inductance than the balanced mixer, and the ideal two-diode mixer using exponential diodes has a multiport noise-equivalent network (attenuator) similar to that of the ideal single-diode mixer. It is concluded that the theory can be extended to mixers with more than two diodes and will be useful for their design and analysis, provided a suitable nonlinear analysis is available to determine the diode waveforms.
Spatial Combining of Laser-Diode Beams for Pumping an NPRO
NASA Technical Reports Server (NTRS)
Gelsinger, Paul; Liu, Duncan; Mulder, Jerry; Aguayo, Francisco
2008-01-01
A free-space optical beam combiner now undergoing development makes it possible to use the outputs of multiple multimode laser diodes to pump a neodymium-doped yttrium aluminum garnet (Nd:YAG) non-planar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, a Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained in this article, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. To minimize coupling loss, one must ensure that the NA (approximately equal to 0.3) of the combined laser-diode beams is less than the NA of the fiber. The A(Omega) of the laser-diode beam in the slow-axis plane is 1/1.3 as large as that of the fiber. This A(Omega) is small enough to enable efficient coupling of light into the optical fiber, but too large for combining of beams in the slow-axis plane. Therefore, a pair of cylindrical lenses is used to cancel the slow-axis plane magnification introduced by the on-cylindrical lenses used to effect magnification in the fast-axis plane.
Diode-pumped laser with improved pumping system
Chang, Jim J.
2004-03-09
A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.
Efficient, diode-laser-pumped, diode-laser-seeded, high-peak-power Nd:YLF regenerative amplifier.
Selker, M D; Afzal, R S; Dallas, J L; Yu, A W
1994-04-15
Optical amplification of 11 orders of magnitude in a microlens-collimated, diode-laser-pumped regenerative amplifier has been demonstrated. The amplifier was seeded with 20-ps pulses from an FM mode-locked oscillator and with 0.9-ns pulses from a modulated diode laser. Seed pulses from both sources were amplified to energies exceeding 2.5 mJ. With the thermoelectric coolers and the Pockels cell electronics neglected, the diode-seeded system exhibited an electrical-to-optical efficiency of 2.2%.
Laser diode bars based on strain-compensated AlGaPAs/GaAs heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marmalyuk, Aleksandr A; Ladugin, M A; Yarotskaya, I V
2012-01-31
Traditional (in the AlGaAs/GaAs system) and phosphorus-compensated (in the AlGaAs/AlGaPAs/GaAs system) laser heterostructures emitting at a wavelength of 850 nm are grown by MOVPE and studied. Laser diode bars are fabricated and their output characteristics are studied. The method used to grow heterolayers allowed us to control (minimise) mechanical stresses in the AlGaPAs/GaAs laser heterostructure, which made it possible to keep its curvature at the level of the initial curvature of the substrate. It is shown that the use of a compensated AlGaPAs/GaAs heterostructure improves the linear distribution of emitting elements in the near field of laser diode arrays andmore » allows the power - current characteristic to retain its slope at high pump currents owing to a uniform contact of all emitting elements with the heat sink. The radius of curvature of the grown compensated heterostructures turns out to be smaller than that of traditional heterostructures.« less
NASA Astrophysics Data System (ADS)
Zhao, Y. D.; Liu, J. H.
2013-08-01
We report a laser architecture to obtain continuous-wave (CW) yellow-orange light sources at the 591 nm wavelength. An 808 nm diode pumped a Nd:GdVO4 crystal emitting at 1063 nm. A part of the pump power was then absorbed by the Nd:CNGG crystal. The remaining pump power was used to pump a Nd:CNGG crystal emitting at 1329 nm. Intracavity sum-frequency mixing at 1063 and 1329 nm was then realized in a LiB3O5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 494 mW at 591 nm with a pump laser diode emitting 17.8 W at 808 nm.
NASA Technical Reports Server (NTRS)
Welford, David; Rines, David M.; Dinerman, Bradley J.; Martinsen, Robert
1992-01-01
The authors report operation of a laser-diode side-pumped Nd:YAG laser with a novel pumping geometry that ensures efficient conversion of pump energy into the TEM00 mode. Significant enhancement of thermally induced lensing due to the near-Gaussian energy deposition profile of the pump radiation was observed. An induced lens of approximately 3.2-m focal length was measured at average incident pump powers of only 3.2 W (corresponding to a 0.6 W heat load).
Diffractive Combiner of Single-Mode Pump Laser-Diode Beams
NASA Technical Reports Server (NTRS)
Liu, Duncan; Wilson, Daniel; Qiu, Yueming; Forouhar, Siamak
2007-01-01
An optical beam combiner now under development would make it possible to use the outputs of multiple single-mode laser diodes to pump a neodymium: yttrium aluminum garnet (Nd:YAG) nonplanar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, an Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained below, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. Figure 1 schematically illustrates the principle of operation of a laser-diode-pumped Nd:YAG NPRO. The laser beam path is confined in a Nd:YAG crystal by means of total internal reflections on the three back facets and a partial-reflection coating on the front facet. The wavelength of the pump beam - 808 nm - is the wavelength most strongly absorbed by the Nd:YAG crystal. The crystal can lase at a wavelength of either 1,064 nm or 1,319 nm - which one depending on the optical coating on the front facet. A thermal lens effect induced by the pump beam enables stable lasing in the lowest-order transverse electromagnetic mode (the TEM00 mode). The frequency of this laser is very stable because of the mechanical stability of the laser crystal and the unidirectional nature of the lasing. The unidirectionality is a result of the combined effects of (1) a Faraday rotation induced by an externally applied magnetic field and (2) polarization associated with non-normal incidence and reflection on the front facet.
High temperature semiconductor diode laser pumps for high energy laser applications
NASA Astrophysics Data System (ADS)
Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel
2018-02-01
Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.
Diode-pumped passively mode-locked and passively stabilized Nd3+:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Agnesi, Antonio; Guandalini, Annalisa; Tomaselli, Alessandra; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro
2004-07-01
Continuous-wave mode locking (CW-ML) of a diode-pumped Nd3+:BaY2F8 laser is reported for the first time to our knowledge. Pulses as short as 4.8 ps were measured with a total output power of almost equal to 1 W at 1049 nm, corresponding to 3.4 W of absorbed power from the pump diode at 806 nm. A novel technique for passive stabilization of CW-ML has been demonstrated.
Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers.
Demirbas, Umit; Schmalz, Michael; Sumpf, Bernd; Erbert, Götz; Petrich, Gale S; Kolodziejski, Leslie A; Fujimoto, James G; Kärtner, Franz X; Leitenstorfer, Alfred
2011-10-10
We report compact, low-cost and efficient Cr:Colquiriite lasers that are pumped by high brightness tapered laser diodes. The tapered laser diodes provided 1 to 1.2 W of output power around 675 nm, at an electrical-to-optical conversion efficiency of about 30%. Using a single tapered diode laser as the pump source, we have demonstrated output powers of 500 mW and 410 mW together with slope efficiencies of 47% and 41% from continuous wave (cw) Cr:LiSAF and Cr:LiCAF lasers, respectively. In cw mode-locked operation, sub-100-fs pulse trains with average power between 200 mW and 250 mW were obtained at repetition rates around 100 MHz. Upon pumping the Cr:Colquiriite lasers with two tapered laser diodes (one from each side of the crystal), we have observed scaling of cw powers to 850 mW in Cr:LiSAF and to 650 mW in Cr:LiCAF. From the double side pumped Cr:LiCAF laser, we have also obtained ~220 fs long pulses with 5.4 nJ of pulse energy at 77 MHz repetition rate. These are the highest energy levels reported from Cr:Colquiriite so far at these repetition rates. Our findings indicate that tapered diodes in the red spectral region are likely to become the standard pump source for Cr:Colquiriite lasers in the near future. Moreover, the simplified pumping scheme might facilitate efficient commercialization of Cr:Colquiriite systems, bearing the potential to significantly boost applications of cw and femtosecond lasers in this spectral region (750-1000 nm).
NASA Astrophysics Data System (ADS)
Hemenway, M.; Chen, Z.; Urbanek, W.; Dawson, D.; Bao, L.; Kanskar, M.; DeVito, M.; Martinsen, R.
2018-02-01
Both the fibber laser and diode-pumped solid-state laser market continue to drive advances in pump diode module brightness. We report on the continued progress by nLIGHT to develop and deliver the highest brightness diode-laser pumps using single-emitter technology. Continued advances in multimode laser diode technology [13] and fiber-coupling techniques have enabled higher emitter counts in the element packages, enabling us to demonstrate 305 W into 105 μm - 0.16 NA. This brightness improvement is achieved by leveraging our prior-reported package re-optimization, allowing an increase in the emitter count from two rows of nine emitters to two rows of twelve emitters. Leveraging the two rows off twelve emitter architecture,, product development has commenced on a 400 W into 200 μm - 00.16 NA package. Additionally, the advances in pump technology intended for CW Yb-doped fiber laser pumping has been leveraged to develop the highest brightness 793 nm pump modules for 2 μm Thulium fiber laser pumping, generating 150 W into 200 μm - 0.18 NA and 100 W into 105 μm - 0.15 NA. Lastly, renewed interest in direct diode materials processing led us to experiment with wavelength multiplexing our existing state of the art 200 W, 105 μm - 00.15 NA package into a combined output of 395 WW into 105 μm - 0.16 NA.
Noncontact Characterization of PV Detector Arrays
1990-06-01
11-7 3 III DIODE ARRAY AS A SAW CONVOLVER/STORAGE CORRELATOR .... III-1 III.A NONLINEAR ( VARACTOR ) ACTION OF THE DIODES .......................... I...associated with the diodes in the detector array. The varactor action of the diodes produces a voltage across the diodes which is pro- portional to the...type of interactions desired herein. An alternative approach is to em- ploy thin dielectric overlays, such as zinc oxide or silicon nitride
Reliability of High Power Laser Diode Arrays Operating in Long Pulse Mode
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.
2006-01-01
Reliability and lifetime of quasi-CW laser diode arrays are greatly influenced by their thermal characteristics. This paper examines the thermal properties of laser diode arrays operating in long pulse duration regime.
Diode-pumped quasi-three-level Nd:GdV O4-Nd:YAG sum-frequency laser at 464 nm
NASA Astrophysics Data System (ADS)
Lu, Jie
2014-04-01
We report a laser architecture to obtain continuous-wave (cw) blue radiation at 464 nm. A 808 nm diode pumped a Nd:GdV O4 crystal emitting at 912 nm. A part of the pump power was then absorbed by the Nd:GdV O4 crystal. The remainder was used to pump a Nd:YAG crystal emitting at 946 nm. Intracavity sum-frequency mixing at 912 and 946 nm was then realized in a LiB3O5 (LBO) crystal to produce blue radiation. We obtained a cw output power of 1.52 W at 464 nm with a pump laser diode emitting 18.4 W at 808 nm.
High-energy directly diode-pumped Q-switched 1617 nm Er:YAG laser at room temperature.
Wang, Mingjian; Zhu, Liang; Chen, Weibiao; Fan, Dianyuan
2012-09-01
We describe high-energy Erbium-doped yttrium aluminum garnet (Er:YAG) lasers operating at 1617 nm, resonantly pumped using 1532 nm fiber-coupled laser diodes. A maximum continuous wave output power of 4.3 W at 1617 nm was achieved with an output coupler of 20% transmission under incident pump power of 29.7 W, resulting in an optical conversion of 14% with respect to the incident pump power. In Q-switched operation, the pulse energy of 11.8 mJ at 100 Hz pulse repetition frequency and 81 ns pulse duration was obtained. This energy is the highest pulse energy reported for a directly diode-pumped Q-switched Er:YAG laser operating at 1617 nm.
Single-frequency diode-pumped lasers for free-space optical communication
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Cheng, Emily A. P.; Gerstenberger, David C.; Wallace, Richard W.
1990-01-01
Recent advances in laser technology for intersatellite optical communication systems are reviewed and illustrated with graphs and diagrams. Topics addressed include (1) single-frequency diode-pumped Nd:YAG lasers of monolithic ring configuration (yielding 368-384 mW output power with 1-W pumping), (2) injection chaining of up to 10 monolithic resonators to achieve redundancy and/or higher output power, (3) 2-kHz-linewidth 5-mW versions of (1) which are tunable over a 30-MHz range for use as local oscillators in coherent communication, (4) resonant external modulation and doubling or resonant phase modulation of diode-pumped lasers, and (5) wavelength multiplexing.
Resonantly diode-pumped eye-safe Er:YAG laser with fiber-shaped crystal
NASA Astrophysics Data System (ADS)
Němec, Michal; Šulc, Jan; Hlinomaz, Kryštof; Jelínková, Helena; Nejezchleb, Karel; Čech, Miroslav
2018-02-01
Solid-state eye-safe lasers are interesting sources for various applications, such as lidar, remote sensing, and ranging. A resonantly diode-pumped Er:YAG laser could be one of them allowing to reach a tunable laser emission in 1.6 μm spectral region. To overcome low pump absorption and poor pumping beam quality generated by commercially available laser diode, an active medium could be formed to long and thin laser rod guiding pumping radiation. Such an effective cooling during a high power pumping, which is a "crystal-fiber" benefit, may be useful for "standard" crystal active medium. The main goal of this work was to investigate the laser characteristics of new developed Er:YAG crystal with a special shape for diode-pumping. Er:YAG fiber-shape crystal with square cross-section (1x1mm) and 40mm in length was doped by 0.1% Er3+ ions. All sides of this crystal were polished and in addition the end-faces of it were antireflection coatings for the wavelength 1470 and 1645 nm. As a pump system, a fiber coupled laser diode (f = 10 Hz, t = 10 ms) emitting radiation at 1465 nm wavelength was used. Er:YAG fiber-shape crystal was placed onto a copper holder in the 85 mm long plan-concave resonator consisting of a pump flat mirror and output curved (r = 150 mm) coupler with a reflectivity of 96 % @ 1645 nm. The dependence of the output peak power on absorbed pump power was investigated and the maximum 0.8 W was obtained. The corresponding slope efficiency was 14.5 %. The emitting wavelength was equaled to 1645 nm (4 nm linewidth, FWHM). The spatial beam structure was close to the Gaussian mode.
High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers
NASA Technical Reports Server (NTRS)
Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.
1991-01-01
The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.
Er-doped YVO4 amplifier diode pumped at 976 nm
NASA Astrophysics Data System (ADS)
Newburgh, G. A.; Dubinskii, Mark
2016-05-01
We report on the use of a 976 nm diode pumped Er:YVO4 slab for the amplification of 1603 nm laser radiation with a small signal gain of 2.1. To the best of our knowledge, this represents the first use of Er:YVO4 as a non-resonantly pumped amplifier.
NASA Astrophysics Data System (ADS)
An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg
2015-03-01
We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.
Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power.
Gaponenko, Maxim; Kuleshov, Nikolay; Südmeyer, Thomas
2014-05-19
We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM(00) mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.
Effect of laser speckle on light from laser diode-pumped phosphor-converted light sources.
Aquino, Felipe; Jadwisienczak, Wojciech M; Rahman, Faiz
2017-01-10
Laser diode (LD) pumped white light sources are being developed as an alternative to light-emitting diode-pumped sources for high efficiency and/or high brightness applications. While several performance metrics of laser-pumped phosphor-converted light sources have been investigated, the effect of laser speckle has not been sufficiently explored. This paper describes our experimental studies on how laser speckle affects the behavior of light from laser-excited phosphor lamps. A single LD pumping a phosphor plate was the geometry explored in this work. Overall, our findings are that the down-converted light did not exhibit any speckle, whereas speckle was present in the residual pump light but much reduced from that in direct laser light. Furthermore, a thicker coating of small-grained phosphors served to effectively reduce speckle through static pump light diffusion in the phosphor coating. Our investigations showed that speckle is not of concern in illumination from LD-pumped phosphor-converted light sources.
NASA Technical Reports Server (NTRS)
Frese, Erich A.; Chiragh, Furqan L.; Switzer, Robert; Vasilyev, Aleksey A.; Thomes, Joe; Coyle, D. Barry; Stysley, Paul R.
2018-01-01
Flight quality solid-state lasers require a unique and extensive set of testing and qualification processes, both at the system and component levels to insure the laser's promised performance. As important as the overall laser transmitter design is, the quality and performance of individual subassemblies, optics, and electro-optics dictate the final laser unit's quality. The Global Ecosystem Dynamics Investigation (GEDI) laser transmitters employ all the usual components typical for a diode-pumped, solid-state laser, yet must each go through their own individual process of specification, modeling, performance demonstration, inspection, and destructive testing. These qualification processes and results for the laser crystals, laser diode arrays, electro-optics, and optics, will be reviewed as well as the relevant critical issues encountered, prior to their installation in the GEDI flight laser units.
High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Eegholm, Niels; Stephen, Mark; Leidecker, Henning; Plante, Jeannette; Meadows, Byron; Amzajerdian, Farzin; Jamison, Tracee; LaRocca, Frank
2006-01-01
High-power laser diode arrays (LDAs) are used for a variety of space-based remote sensor laser programs as an energy source for diode-pumped solid-state lasers. LDAs have been flown on NASA missions including MOLA, GLAS and MLA and have continued to be viewed as an important part of the laser-based instrument component suite. There are currently no military or NASA-grade, -specified, or - qualified LDAs available for "off-the-shelf" use by NASA programs. There has also been no prior attempt to define a standard screening and qualification test flow for LDAs for space applications. Initial reliability studies have also produced good results from an optical performance and stability standpoint. Usage experience has shown, howeve that the current designs being offered may be susceptible to catastrophic failures due to their physical construction (packaging) combined with the electro-optical operational modes and the environmental factors of space application. design combined with operational mode was at the root of the failures which have greatly reduced the functionality of the GLAS instrument. The continued need for LDAs for laser-based science instruments and past catastrophic failures of this part type demand examination of LDAs in a manner which enables NASA to select, buy, validate and apply them in a manner which poses as little risk to the success of the mission as possible.
Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser.
Ma, J; Xie, G Q; Gao, W L; Yuan, P; Qian, L J; Yu, H H; Zhang, H J; Wang, J Y
2012-04-15
A diode-end-pumped passively mode-locked femtosecond Tm-doped calcium lithium niobium gallium garnet (Tm:CLNGG) disordered crystal laser was demonstrated for the first time to our knowledge. With a 790 nm laser diode pumping, stable CW mode-locking operation was obtained by using a semiconductor saturable absorber mirror. The disordered crystal laser generated mode-locked pulses as short as 479 fs, with an average output power of 288 mW, and repetition rate of 99 MHz in 2 μm spectral region. © 2012 Optical Society of America
High efficiency, linearly polarized, directly diode-pumped Er:YAG laser at 1617 nm.
Yu, Zhenzhen; Wang, Mingjian; Hou, Xia; Chen, Weibiao
2014-12-01
An efficient, directly diode-pumped Er:YAG laser at 1617 nm was demonstrated. A folding mirror with high reflectivity for the s-polarized light at the laser wavelength was used to achieve a linearly polarized laser. A maximum continuous-wave output power of 7.73 W was yielded under incident pump power of 50.57 W, and the optical conversion efficiency with respect to incident pump power was ∼15.28%, which was the highest optical conversion efficiency with directly diode-pumped Er:YAG lasers up to now; in Q-switched operation, the maximum pulse energy of 7.82 mJ was generated with pulse duration of about 80 ns at a pulse repetition frequency of 500 Hz.
A diode-pumped Nd:YAlO3 dual-wavelength yellow light source
NASA Astrophysics Data System (ADS)
Zhang, Jing; Fu, Xihong; Zhai, Pei; Xia, Jing; Li, Shutao
2013-11-01
We present what is, to the best of our knowledge, the first diode-pumped Nd:YAlO3 (Nd:YAP) continuous-wave (cw) dual-wavelength yellow laser at 593 nm and 598 nm, based on sum-frequency generation between 1064 and 1339 nm in a-axis polarization using LBO crystal and between 1079 and 1341 nm in c-axis polarization using PPKTP crystal, respectively. At an incident pump power of 17.3 W, the maximum output power obtained at 593 nm and 598 nm is 0.18 W and 1.86 W, respectively. The laser experiment shows that Nd:YAP crystal can be used for an efficient diode-pumped dual-wavelength yellow laser system.
Lin, Mu-Han; Veltchev, Iavor; Koren, Sion; Ma, Charlie; Li, Jinsgeng
2015-07-08
Robotic radiosurgery system has been increasingly employed for extracranial treatments. This work is aimed to study the feasibility of a cylindrical diode array and a planar ion chamber array for patient-specific QA with this robotic radiosurgery system and compare their performance. Fiducial markers were implanted in both systems to enable image-based setup. An in-house program was developed to postprocess the movie file of the measurements and apply the beam-by-beam angular corrections for both systems. The impact of noncoplanar delivery was then assessed by evaluating the angles created by the incident beams with respect to the two detector arrangements and cross-comparing the planned dose distribution to the measured ones with/without the angular corrections. The sensitivity of detecting the translational (1-3 mm) and the rotational (1°-3°) delivery errors were also evaluated for both systems. Six extracranial patient plans (PTV 7-137 cm³) were measured with these two systems and compared with the calculated doses. The plan dose distributions were calculated with ray-tracing and the Monte Carlo (MC) method, respectively. With 0.8 by 0.8 mm² diodes, the output factors measured with the cylindrical diode array agree better with the commissioning data. The maximum angular correction for a given beam is 8.2% for the planar ion chamber array and 2.4% for the cylindrical diode array. The two systems demonstrate a comparable sensitivity of detecting the translational targeting errors, while the cylindrical diode array is more sensitive to the rotational targeting error. The MC method is necessary for dose calculations in the cylindrical diode array phantom because the ray-tracing algorithm fails to handle the high-Z diodes and the acrylic phantom. For all the patient plans, the cylindrical diode array/ planar ion chamber array demonstrate 100% / > 92% (3%/3 mm) and > 96% / ~ 80% (2%/2 mm) passing rates. The feasibility of using both systems for robotic radiosurgery system patient-specific QA has been demonstrated. For gamma evaluation, 2%/2 mm criteria for cylindrical diode array and 3%/3 mm criteria for planar ion chamber array are suggested. The customized angular correction is necessary as proven by the improved passing rate, especially with the planar ion chamber array system.
Power degradation and reliability study of high-power laser bars at quasi-CW operation
NASA Astrophysics Data System (ADS)
Zhang, Haoyu; Fan, Yong; Liu, Hui; Wang, Jingwei; Zah, Chungen; Liu, Xingsheng
2017-02-01
The solid state laser relies on the laser diode (LD) pumping array. Typically for high peak power quasi-CW (QCW) operation, both energy output per pulse and long term reliability are critical. With the improved bonding technique, specially Indium-free bonded diode laser bars, most of the device failures were caused by failure within laser diode itself (wearout failure), which are induced from dark line defect (DLD), bulk failure, point defect generation, facet mirror damage and etc. Measuring the reliability of LD under QCW condition will take a rather long time. Alternatively, an accelerating model could be a quicker way to estimate the LD life time under QCW operation. In this report, diode laser bars were mounted on micro channel cooler (MCC) and operated under QCW condition with different current densities and junction temperature (Tj ). The junction temperature is varied by modulating pulse width and repetition frequency. The major concern here is the power degradation due to the facet failure. Reliability models of QCW and its corresponding failures are studied. In conclusion, QCW accelerated life-time model is discussed, with a few variable parameters. The model is compared with CW model to find their relationship.
Kwon, Osung; Ra, Young-Sik; Kim, Yoon-Ho
2009-07-20
Coherence properties of the photon pair generated via spontaneous parametric down-conversion pumped by a multi-mode cw diode laser are studied with a Mach-Zehnder interferometer. Each photon of the pair enters a different input port of the interferometer and the biphoton coherence properties are studied with a two-photon detector placed at one output port. When the photon pair simultaneously enters the interferometer, periodic recurrence of the biphoton de Broglie wave packet is observed, closely resembling the coherence properties of the pump diode laser. With non-zero delays between the photons at the input ports, biphoton interference exhibits the same periodic recurrence but the wave packet shapes are shown to be dependent on both the input delay as well as the interferometer delay. These properties could be useful for building engineered entangled photon sources based on diode laser-pumped spontaneous parametric down-conversion.
Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings.
Chen, Y L; Chen, W W; Du, C E; Chang, W K; Wang, J L; Chung, T Y; Chen, Y H
2009-12-07
We report on the demonstration of a narrow-line, cw orange 593-nm laser achieved via intracavity sum-frequency generation (SFG) of a diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO(4) laser using two volume Bragg grating (VBG) reflectors. At diode pump power of up to 3.6 W, the 593-nm intracavity SFG laser radiates at the single longitudinal mode of spectral linewidth as narrow as approximately 15 MHz. More than 23-mW single-longitudinal-mode or 40-mW, <8.5-GHz (10-pm) linewidth (at 4.2-W diode pump power) 593-nm orange lights can be obtained from this compact laser system. Spectral tuning of the orange light was performed via the temperature tuning of the two VBGs in this system, achieving an effective tuning rate of ~5 pm/degrees C.
Novel high-brightness fiber coupled diode laser device
NASA Astrophysics Data System (ADS)
Haag, Matthias; Köhler, Bernd; Biesenbach, Jens; Brand, Thomas
2007-02-01
High brightness becomes more and more important in diode laser applications for fiber laser pumping and materials processing. For OEM customers fiber coupled devices have great advantages over direct beam modules: the fiber exit is a standardized interface, beam guiding is easy with nearly unlimited flexibility. In addition to the transport function the fiber serves as homogenizer: the beam profile of the laser radiation emitted from a fiber is symmetrical with highly repeatable beam quality and pointing stability. However, efficient fiber coupling requires an adaption of the slow-axis beam quality to the fiber requirements. Diode laser systems based on standard 10mm bars usually employ beam transformation systems to rearrange the highly asymmetrical beam of the laser bar or laser stack. These beam transformation systems (prism arrays, lens arrays, fiber bundles etc.) are expensive and become inefficient with increasing complexity. This is especially true for high power devices with small fiber diameters. On the other hand, systems based on single emitters are claimed to have good potential in cost reduction. Brightness of the inevitable fiber bundles, though, is limited due to inherent fill-factor losses. At DILAS a novel diode laser device has been developed combining the advantages of diode bars and single emitters: high brightness at high reliability with single emitter cost structure. Heart of the device is a specially tailored laser bar (T-Bar), which epitaxial and lateral structure was designed such that only standard fast- and slow-axis collimator lenses are required to couple the beam into a 200μm fiber. Up to 30 of these T-Bars of one wavelength can be combined to reach a total of > 500W ex fiber in the first step. Going to a power level of today's single emitter diodes even 1kW ex 200μm fiber can be expected.
V-shaped resonators for addition of broad-area laser diode arrays
Liu, Bo; Liu, Yun; Braiman, Yehuda Y.
2012-12-25
A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.
Stacked, Filtered Multi-Channel X-Ray Diode Array
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacNeil, Lawrence P.; Dutra, Eric C.; Raphaelian, Mark
2015-08-01
This system meets the need for a low-cost, robust X-ray diode array to use for experiments in hostile environments on multiple platforms, and for experiments utilizing forces that may destroy the diode(s). Since these uses require a small size with a minimal single line-of-sight, a parallel array often cannot be used. So a stacked, filtered multi-channel X-ray diode array was developed that was called the MiniXRD. The design was modeled, built, and tested at National Security Technologies, LLC (NSTec) Livermore Operations (LO) to determine fundamental characteristics. Then, several different systems were fielded as ancillary “ridealong” diagnostics at several national facilitiesmore » to allow us to iteratively improve the design and usability. Presented here are design considerations and experimental results. This filtered diode array is currently at Technical Readiness Level (TRL) 6.« less
Latest developments in resonantly diode-pumped Er:YAG lasers
NASA Astrophysics Data System (ADS)
Kudryashov, Igor; Garbuzov, Dmitri; Dubinskii, Mark
2007-04-01
Significant performance improvement of the Er(0.5%):YAG diode pumped solid state laser (DPSSL) has been achieved by pump diode spectral narrowing via implementation of an external volumetric Bragg grating (VBG). Without spectral narrowing, with a pump path length of 15 mm, only 37% of 1532 nm pump was absorbed. After the VBG spectral narrowing, the absorption of the pumping radiation increased to 62 - 70%. As a result, the incident power threshold was reduced by a factor of 2.5, and the efficiency increased by a factor of 1.7, resulting in a slope efficiency of ~23 - 30%. A maximum of 51 W of CW power was obtained versus 31 W without the pump spectrum narrowing. More than 180 mJ QCW pulse output energy was obtained in a stable-unstable resonator configuration with a beam quality of M2 = 1.3 in the stable direction and M2 = 1.1 in the unstable direction. The measured slope efficiency was 0.138 J/J with a threshold energy of 0.91 J.
Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm.
Lee, Hee Chul; Byeon, Sung Ug; Lukashev, Alexei
2012-04-01
We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.
Diode-pumped SrMoO4:Tm3+ crystal lasing near 1500 nm
NASA Astrophysics Data System (ADS)
Doroshenko, M. E.; Sulc, J.; Jelinkova, H.; Nemec, M.; Ivleva, L. I.; Dunaeva, E. E.
2018-04-01
Diode-pumped lasing of Tm3+ ions in SrMoO4 crystal at wavelength near 1500 nm was obtained for the first time to our best knowledge. Two laser lines with orthogonal polarizations were observed at 1452 and 1492 nm. The laser pulse was self-terminated about 500 µs after the pump start.
Single-frequency Ince-Gaussian mode operations of laser-diode-pumped microchip solid-state lasers.
Ohtomo, Takayuki; Kamikariya, Koji; Otsuka, Kenju; Chu, Shu-Chun
2007-08-20
Various single-frequency Ince-Gaussian mode oscillations have been achieved in laser-diode-pumped microchip solid-state lasers, including LiNdP(4)O(12) (LNP) and Nd:GdVO(4), by adjusting the azimuthal symmetry of the short laser resonator. Ince-Gaussian modes formed by astigmatic pumping have been reproduced by numerical simulation.
CW lasing of Ho in KLu(WO4)2 in-band pumped by a diode-pumped Tm:KLu(WO4)2 laser.
Mateos, Xavier; Jambunathan, Venkatesan; Pujol, Maria Cinta; Carvajal, Joan Josep; Díaz, Francesc; Aguiló, Magdalena; Griebner, Uwe; Petrov, Valentin
2010-09-27
We demonstrate continuous wave (CW) room temperature laser operation of the monoclinic Ho(3+)-doped KLu(WO(4))(2) crystal using a diode-pumped Tm(3+):KLu(WO(4))(2) laser for in-band pumping. The slope efficiency achieved amounts to ~55% with respect to the absorbed power and the maximum output power of 648 mW is generated at 2078 nm.
Transversely diode-pumped alkali metal vapour laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkhomenko, A I; Shalagin, A M
2015-09-30
We have studied theoretically the operation of a transversely diode-pumped alkali metal vapour laser. For the case of high-intensity laser radiation, we have obtained an analytical solution to a complex system of differential equations describing the laser. This solution allows one to exhaustively determine all the energy characteristics of the laser and to find optimal parameters of the working medium and pump radiation (temperature, buffer gas pressure, and intensity and width of the pump spectrum). (lasers)
Face pumping of thin, solid-state slab lasers with laser diodes.
Faulstich, A; Baker, H J; Hall, D R
1996-04-15
A new technique for face pumping of slab lasers uses transfer of light from 10 quasi-cw laser diode bars through a slotted mirror into a rectangular, highly ref lective pump chamber, giving efficient multipass pumping of a thin Nd:glass slab laser. A slope efficiency of 28% and a maximum pulse energy of 65 mJ have been obtained, and gain and loss measurements with thickness t = 0.45-1.04 mm have confirmed the 1/t scaling of gain in thin slabs and the high efficiency of pump light transfer.
Comparison of electrically driven lasers for space power transmission
NASA Technical Reports Server (NTRS)
Deyoung, R. J.; Lee, J. H.; Williams, M. D.; Schuster, G.; Conway, E. J.
1988-01-01
High-power lasers in space could provide power for a variety of future missions such as spacecraft electric power requirements and laser propulsion. This study investigates four electrically pumped laser systems, all scaled to 1-MW laser output, that could provide power to spacecraft. The four laser systems are krypton fluoride, copper vapor, laser diode array, and carbon dioxide. Each system was powered by a large solar photovoltaic array which, in turn, provided power for the appropriate laser power conditioning subsystem. Each system was block-diagrammed, and the power and efficiency were found for each subsystem block component. The copper vapor system had the lowest system efficiency (6 percent). The CO2 laser was found to be the most readily scalable but has the disadvantage of long laser wavelength.
Theoretical analyses of an injection-locked diode-pumped rubidium vapor laser.
Cai, He; Gao, Chunqing; Liu, Xiaoxu; Wang, Shunyan; Yu, Hang; Rong, Kepeng; An, Guofei; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You
2018-04-02
Diode-pumped alkali lasers (DPALs) have drawn much attention since they were proposed in 2001. The narrow-linewidth DPAL can be potentially applied in the fields of coherent communication, laser radar, and atomic spectroscopy. In this study, we propose a novel protocol to narrow the width of one kind of DPAL, diode-pumped rubidium vapor laser (DPRVL), by use of an injection locking technique. A kinetic model is first set up for an injection-locked DPRVL with the end-pumped configuration. The laser tunable duration is also analyzed for a continuous wave (CW) injection-locked DPRVL system. Then, the influences of the pump power, power of a master laser, and reflectance of an output coupler on the output performance are theoretically analyzed. The study should be useful for design of a narrow-linewidth DPAL with the relatively high output.
AlGaAs diode pumped tunable chromium lasers
Krupke, William F.; Payne, Stephen A.
1992-01-01
An all-solid-state laser system is disclosed wherein the laser is pumped in the longwave wing of the pump absorption band. By utilizing a laser material that will accept unusually high dopant concentrations without deleterious effects on the crystal lattice one is able to compensate for the decreased cross section in the wing of the absorption band, and the number of pump sources which can be used with such a material increases correspondingly. In a particular embodiment a chromium doped colquiriite-structure crystal such as Cr:LiSrAlF.sub.6 is the laser material. The invention avoids the problems associated with using AlGaInP diodes by doping the Cr:LiSrAlF.sub.6 heavily to enable efficient pumping in the longwave wing of the absorption band with more practical AlGaAs diodes.
By-Pass Diode Temperature Tests of a Solar Array Coupon under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon
2016-01-01
By-Pass diodes are a key design feature of solar arrays and system design must be robust against local heating, especially with implementation of larger solar cells. By-Pass diode testing was performed to aid thermal model development for use in future array designs that utilize larger cell sizes that result in higher string currents. Testing was performed on a 56-cell Advanced Triple Junction solar array coupon provided by SSL. Test conditions were vacuum with cold array backside using discrete by-pass diode current steps of 0.25 A ranging from 0 A to 2.0 A.
Jackson, Stuart D
2009-08-01
A high-power diode-cladding-pumped Ho(3+), Pr(3+)-doped fluoride glass fiber laser is demonstrated. The laser produced a maximum output power of 2.5 W at a slope efficiency of 32% using diode lasers emitting at 1,150 nm. The long-emission wavelength of 2.94 microm measured at maximum pump power, which is particularly suited to medical applications, indicates that tailoring of the proportion of Pr(3+) ions can provide specific emission wavelengths while providing sufficient de-excitation of the lower laser level.
Wavelength switchable high-power diode-side-pumped rod Tm:YAG Laser around 2µm.
Wang, Caili; Du, Shifeng; Niu, Yanxiong; Wang, Zhichao; Zhang, Chao; Bian, Qi; Guo, Chuan; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Lei, Wenqiang; Xu, Zuyan
2013-03-25
We report a high-power diode-side-pumped rod Tm:YAG laser operated at either 2.07 or 2.02 µm depending on the transmission of pumped output coupler. The laser yields 115W of continuous-wave output power at 2.07 µm with 5% output coupling, which is the highest output power for all solid-state 2.07 μm cw rod Tm:YAG laser reported so far. With an output coupler of 10% transmission, the center wavelength of the laser is switched to 2.02 μm with an output power of 77.1 W. This is the first observation of high-power wavelength switchable diode-side-pumped rod Tm:YAG laser around 2 µm.
Efficient blue emission of ytterbium-doped Sr5(PO4)3F under quasi-three-level intracavity pumping
NASA Astrophysics Data System (ADS)
Yang, Y.; Cao, G. H.
2012-02-01
We report an Yb:Sr5(PO4)3F (Yb:S-FAP) laser emitting at 985 nm intracavity pumped by a 912 nm diode-pumped Nd:GdVO4 laser. A 808 nm diode laser is used to pump the Nd:GdVO4 crystal emitting at 912 nm, and the Yb:S-FAP laser emitting at 985 nm intracavity pumped at 912 nm. With incident pump power of 17.5 W, intracavity second harmonic generation has been demonstrated with a power of 131 mW at 492.5 nm by using a LBO nonlinear crystal.
Beach, R.J.; Benett, W.J.
1994-04-26
A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding is described. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic. 3 figures.
Theoretical investigation of output features of a diode-pumped rubidium vapor laser
NASA Astrophysics Data System (ADS)
Wang, You; Cai, He; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Han, Juhong
2014-02-01
In the recent years, diode-pumped alkali lasers (DPALs) have been paid many attentions because of their excellent performances. In fact, the characteristics of a DPAL strongly depend on the physical features of buffer gases. In this report, we selected a diode-pumped rubidium vapor laser (DPRVL), which is an important type among three common DPALs, to investigate how the characteristics of a DPRVL are affected by different conditions. The results signify that the population ratio of two excitation energy-levels are close to that corresponding to thermal equilibrium as the pressure of buffer gases and the temperature of a vapor cell become higher. It has been found that quenching of the upper levels cannot be simply ignored especially for the case of weak pump. The conclusions are thought to be helpful for the configuration design of an end-pumped DPAL.
Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing
2010-07-20
We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF.
High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system.
Noom, Daniel W E; Witte, Stefan; Morgenweg, Jonas; Altmann, Robert K; Eikema, Kjeld S E
2013-08-15
We report on a high-power quasi-CW pumped Nd:YAG laser system, producing 130 mJ, 64 ps pulses at 1064 nm wavelength with a repetition rate of 300 Hz. Pulses from a Nd:YVO(4) oscillator are first amplified by a regenerative amplifier to the millijoule level and then further amplified in quasi-CW diode-pumped Nd:YAG modules. Pulsed diode pumping enables a high gain at repetition rates of several hundred hertz, while keeping thermal effects manageable. Birefringence compensation and multiple thermal-lensing-compensated relay-imaging stages are used to maintain a top-hat beam profile. After frequency doubling, 75 mJ pulses are obtained at 532 nm. The intensity stability is better than 1.1%, which makes this laser an attractive pump source for a high-repetition-rate optical parametric amplification system.
Laser diode and pumped Cr:Yag passively Q-switched yellow-green laser at 543 nm
NASA Astrophysics Data System (ADS)
Yao, Y.; Ling, Zhao; Li, B.; Qu, D. P.; Zhou, K.; Zhang, Y. B.; Zhao, Y.; Zheng, Q.
2013-03-01
Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.
Compact and highly efficient laser pump cavity
Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.
1999-01-01
A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.
Diode-pumped solid state green laser for ophthalmologic application
NASA Astrophysics Data System (ADS)
Eno, Taizo; Goto, Yoshiaki; Momiuchi, Masayuki
2002-10-01
We have developed diode pumped solid state green laser suitable for ophthalmologic applications. Beam parameters were designed by considering the coagulation system. We have lowered the beam quality to multi transverse and longitudinal mode on purpose to improve the speckle noise of the slit lamp output beam. The beam profile shows homogeneous intensity and it is very useful for ophthalmologic application. End pumping and short cavity configuration made it possible.
Subpicosecond Electrooptic Sampling
1993-01-01
22GHz, limited by the photodector and spectrum analzyer used as the receiver. The more interesting type of system, and the type we have with the...economical, low-noise, diode-pumped, infrared wavelength short-pulsed sources. This need is addressed in the first part of the thesis, where a 20 GHz...pumped, infrared wavelength short-pulsed sources. In recent years this has led to increased interest in mode-locking of diode-pumped Chapter 1
2.4 μm diode-pumped Dy2+:CaF2 laser
NASA Astrophysics Data System (ADS)
Švejkar, Richard; Papashvili, Alexander G.; Šulc, Jan; Němec, Michal; Jelínková, Helena; Doroshenko, Maxim E.; Batygov, Sergei H.; Osiko, Vyacheslav V.
2018-01-01
In this work, a cryogenic cooled, longitudinal diode-pumped Dy2+ :CaF2 laser was investigated for the first time. The temperature dependence of the spectroscopy and the laser properties of Dy2+ :CaF2 are presented. The tested Dy2+ :CaF2 crystal was a longitudinal pump in a near-IR region (926 nm) by laser diode radiation. The maximal mean output power and slope efficiency at 78 K during the pulse regime of the laser were 57.5 mW and 7%, respectively. Furthermore, the CW regime was successfully tested and a maximum output power of 0.37 W was obtained for the absorbed pumping power 5.7 W. The emission laser wavelength was 2367 nm.
NASA Technical Reports Server (NTRS)
Poberezhskiy, Ilya; Chang, Daniel; Erlig, Hernan
2011-01-01
Non Planar Ring Oscillator (NPRO) lasers are highly attractive for metrology applications. NPRO reliability for prolonged space missions is limited by reliability of 808 nm pump diodes. Combined laser farm aging parameter allows comparing different bias approaches. Monte-Carlo software developed to calculate the reliability of laser pump architecture, perform parameter sensitivity studies To meet stringent Space Interferometry Mission (SIM) Lite lifetime reliability / output power requirements, we developed a single-mode Laser Pump Module architecture that: (1) provides 2 W of power at 808 nm with >99.7% reliability for 5.5 years (2) consists of 37 de-rated diode lasers operating at -5C, with outputs combined in a very low loss 37x1 all-fiber coupler
Nd:GdVO4 ring laser pumped by laser diodes
NASA Astrophysics Data System (ADS)
Hao, E. J.; Li, T.; Wang, Z. D.; Zhang, Y.
2013-02-01
The design and operation of a laser diode-pumped Nd:GdVO4 ring laser is described. A composite crystal (Nd:GdVO4/YVO4) with undoped ends is single-end pumped by a fiber-coupled laser diode (LD) at 808 nm. A four-mirror ring cavity is designed to keep the laser operating unidirectionally, which eliminates spatial hole burning in the standing-wave cavity. This laser can operate either as continuous wave (CW) or Q-switched. The single-frequency power obtained was 9.1 W at 1063 nm. Q-switched operation produced 0.23 mJ/pulse at 20 kHz in the fundamental laser.
808nm high-power high-efficiency GaAsP/GaInP laser bars
NASA Astrophysics Data System (ADS)
Wang, Ye; Yang, Ye; Qin, Li; Wang, Chao; Yao, Di; Liu, Yun; Wang, Lijun
2008-11-01
808nm high power diode lasers, which is rapidly maturing technology technically and commercially since the introduction in 1999 of complete kilowatt-scale diode laser systems, have important applications in the fields of industry and pumping solid-state lasers (DPSSL). High power and high power conversion efficiency are extremely important in diode lasers, and they could lead to new applications where space, weight and electrical power are critical. High efficiency devices generate less waste heat, which means less strain on the cooling system and more tolerance to thermal conductivity variation, a lower junction temperature and longer lifetimes. Diode lasers with Al-free materials have superior power conversion efficiency compared with conventional AlGaAs/GaAs devices because of their lower differential series resistance and higher thermal conductivity. 808nm GaAsP/GaInP broad-waveguide emitting diode laser bars with 1mm cavity length have been fabricated. The peak power can reach to 100.9W at 106.5A at quasicontinuous wave operation (200μs, 1000Hz). The maximum power conversion efficiency is 57.38%. Based on these high power laser bars, we fabricate a 1x3 arrays, the maximum power is 64.3W in continuous wave mode when the current is 25.0A. And the threshold current is 5.9A, the slope efficiency is 3.37 W/A.
All solid-state diode pumped Nd:YAG MOPA with stimulated Brillouin phase conjugate mirror
NASA Astrophysics Data System (ADS)
Offerhaus, H. L.; Godfried, H. P.; Witteman, W. J.
1996-02-01
At the Nederlands Centrum voor Laser Research (NCLR) a 1 kHz diode-pumped Nd:YAG Master Oscillator Power Amplifier (MOPA) chain with a Stimulated Brillouin Scattering (SBS) Phase Conjugate mirror is designed and operated. A small Brewster angle Nd:YAG slab (2 by 2 by 20 mm) is side pumped with 200 μs diode pulses in a stable oscillator. The oscillator is Q-switched and injection seeded with a commercial diode pumped single frequency CW Nd:YAG laser. The output consists of single-transverse, single-longitudinal mode 25 ns FWHM-pulses at 1064 nm. The oscillator slab is imaged on a square aperture that transmits between 3 and 2 mJ (at 100 and 400 Hz, resp.) The aperture is subsequently imaged four times in the amplifier. The amplifier is a 3 by 6 by 60 mm Brewster angle zig-zag slab, pumped by an 80-bar diode stack with pulses up to 250 μs. After the second pass the light is focused in two consecutive cells containing Freon-113 for wave-front reversal in an oscillator/amplifier-setup with a reflectivity of 60%. The light then passes through the amplifier twice more to produce 20 W (at 400 Hz) of output with near diffraction limited beam quality. To increase the output to 50 W at 1 kHz thermal lensing in the oscillator will be reduced.
Effect of interface layer on the performance of high power diode laser arrays
NASA Astrophysics Data System (ADS)
Zhang, Pu; Wang, Jingwei; Xiong, Lingling; Li, Xiaoning; Hou, Dong; Liu, Xingsheng
2015-02-01
Packaging is an important part of high power diode laser (HPLD) development and has become one of the key factors affecting the performance of high power diode lasers. In the package structure of HPLD, the interface layer of die bonding has significant effects on the thermal behavior of high power diode laser packages and most degradations and failures in high power diode laser packages are directly related to the interface layer. In this work, the effects of interface layer on the performance of high power diode laser array were studied numerically by modeling and experimentally. Firstly, numerical simulations using finite element method (FEM) were conducted to analyze the effects of voids in the interface layer on the temperature rise in active region of diode laser array. The correlation between junction temperature rise and voids was analyzed. According to the numerical simulation results, it was found that the local temperature rise of active region originated from the voids in the solder layer will lead to wavelength shift of some emitters. Secondly, the effects of solder interface layer on the spectrum properties of high power diode laser array were studied. It showed that the spectrum shape of diode laser array appeared "right shoulder" or "multi-peaks", which were related to the voids in the solder interface layer. Finally, "void-free" techniques were developed to minimize the voids in the solder interface layer and achieve high power diode lasers with better optical-electrical performances.
Red laser-diode pumped 806 nm Tm3+: ZBLAN fibre laser
NASA Astrophysics Data System (ADS)
Juárez-Hernández, M.; Mejía, E. B.
2017-06-01
A Tm3+-doped fluorozirconate (ZBLAN) fibre laser operating CW at 806 nm when diode-pumped at 687 nm is described for the first time. This device is based on the 3F4 → 3H6 transition, and is suitable for first telecom window and sensing applications. A slope efficiency of 50.3% and low threshold pump-power of 11.6 mW were obtained. Maximum output power of 15 mW for 40 mW coupled pump was achieved.
Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser
Durfee, Charles G.; Storz, Tristan; Garlick, Jonathan; Hill, Steven; Squier, Jeff A.; Kirchner, Matthew; Taft, Greg; Shea, Kevin; Kapteyn, Henry; Murnane, Margaret; Backus, Sterling
2012-01-01
We describe a Ti:sapphire laser pumped directly with a pair of 1.2W 445nm laser diodes. With over 30mW average power at 800 nm and a measured pulsewidth of 15fs, Kerr-lens-modelocked pulses are available with dramatically decreased pump cost. We propose a simple model to explain the observed highly stable Kerr-lens modelocking in spite of the fact that both the mode-locked and continuous-wave modes are smaller than the pump mode in the crystal. PMID:22714433
NASA Astrophysics Data System (ADS)
Guryev, D. A.; Nikolaev, D. A.; Tsvetkov, V. B.; Shcherbakov, I. A.
2018-05-01
A study of how the transverse distribution of an optical path changes in a Nd:YVO4 active disk was carried out in a ten-beam spatially periodic diode pumping in the one-dimensional case. The pumping beams’ transverse dimensions were comparable with the distances between them. The investigations were carried out using laser interferometry methods. It was found that the optical thickness changing in the active disk along the line of pumping spots was well described by a Gaussian function.
High mobility emissive organic semiconductor
Liu, Jie; Zhang, Hantang; Dong, Huanli; Meng, Lingqiang; Jiang, Longfeng; Jiang, Lang; Wang, Ying; Yu, Junsheng; Sun, Yanming; Hu, Wenping; Heeger, Alan J.
2015-01-01
The integration of high charge carrier mobility and high luminescence in an organic semiconductor is challenging. However, there is need of such materials for organic light-emitting transistors and organic electrically pumped lasers. Here we show a novel organic semiconductor, 2,6-diphenylanthracene (DPA), which exhibits not only high emission with single crystal absolute florescence quantum yield of 41.2% but also high charge carrier mobility with single crystal mobility of 34 cm2 V−1 s−1. Organic light-emitting diodes (OLEDs) based on DPA give pure blue emission with brightness up to 6,627 cd m−2 and turn-on voltage of 2.8 V. 2,6-Diphenylanthracene OLED arrays are successfully driven by DPA field-effect transistor arrays, demonstrating that DPA is a high mobility emissive organic semiconductor with potential in organic optoelectronics. PMID:26620323
Laser-Powered Thrusters for High Efficiency Variable Specific Impulse Missions (Preprint)
2007-04-10
technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a total of 350-W optical power can...in a single device using low-mass diode-pumped glass fiber laser amplifiers to operate in either long- or short-pulse regimes at will. Adequate fiber...pulsewidth glass fiber oscillator-amplifiers, rather than the diodes used in the µ LPT, to achieve Table 2. Demonstrated technology basis Ablation Fuel Gold
NASA Astrophysics Data System (ADS)
Otsuka, Kenju; Nemoto, Kana; Kamikariya, Koji; Miyasaka, Yoshihiko; Chu, Shu-Chun
2007-09-01
Detailed oscillation spectra and polarization properties have been examined in laser-diode-pumped (LD-pumped) microchip ceramic (i.e., polycrystalline) Nd:YAG lasers and the inherent segregation of lasing patterns into local modes possessing different polarization states was observed. Single-frequency linearly-polarized stable oscillations were realized by forcing the laser to Ince-Gaussian mode operations by adjusting azimuthal cavity symmetry.
Resonator design and performance estimation for a space-based laser transmitter
NASA Astrophysics Data System (ADS)
Agrawal, Lalita; Bhardwaj, Atul; Pal, Suranjan; Kamalakar, J. A.
2006-12-01
Development of a laser transmitter for space applications is a highly challenging task. The laser must be rugged, reliable, lightweight, compact and energy efficient. Most of these features are inherently achieved by diode pumping of solid state lasers. Overall system reliability can further be improved by appropriate optical design of the laser resonator besides selection of suitable electro-optical and opto-mechanical components. This paper presents the design details and the theoretically estimated performance of a crossed-porro prism based, folded Z-shaped laser resonator. A symmetrically pumped Nd: YAG laser rod of 3 mm diameter and 60 mm length is placed in the gain arm with total input peak power of 1800 W from laser diode arrays. Electro-optical Q-switching is achieved through a combination of a polarizer, a fractional waveplate and LiNbO 3 Q-switch crystal (9 x 9 x 25 mm) placed in the feedback arm. Polarization coupled output is obtained by optimizing azimuth angle of quarter wave plate placed in the gain arm. Theoretical estimation of laser output energy and pulse width has been carried out by varying input power levels and resonator length to analyse the performance tolerances. The designed system is capable of meeting the objective of generating laser pulses of 10 ns duration and 30 mJ energy @ 10 Hz.
A high power diode-side-pumped Nd:YAG/BaWO4 Raman laser at 1103 nm
NASA Astrophysics Data System (ADS)
Li, Lei; Zhang, Xingyu; Liu, Zhaojun; Wang, Qingpu; Cong, Zhenhua; Zhang, Yuangeng; Wang, Weitao; Wu, Zhenguo; Zhang, Huaijin
2013-04-01
Pulsed operation at 1103 nm of a diode-side-pumped Nd:YAG laser with intracavity Raman shifting in BaWO4 is reported. The first Stokes wavelength at 1103 nm was generated by a Raman shift of 332 cm-1 from the fundamental wave (1064 nm). A maximum power at 1103 nm of 9.4 W was obtained for a diode pump power of 115 W at a pulse repetition rate of 15 kHz. The pump-to-Stokes conversion efficiency was up to 8.2%. When the output power at 1103 nm was over 7 W, a second Stokes line at 1145 nm was also observed in the experiment. Our research indicates that efficient Raman conversion can be realized by a Raman frequency shift at 332 cm-1 in BaWO4 Raman lasers.
The HALNA project: Diode-pumped solid-state laser for inertial fusion energy
NASA Astrophysics Data System (ADS)
Kawashima, T.; Ikegawa, T.; Kawanaka, J.; Miyanaga, N.; Nakatsuka, M.; Izawa, Y.; Matsumoto, O.; Yasuhara, R.; Kurita, T.; Sekine, T.; Miyamoto, M.; Kan, H.; Furukawa, H.; Motokoshi, S.; Kanabe, T.
2006-06-01
High-enery, rep.-rated, diode-pumped solid-state laser (DPSSL) is one of leading candidates for inertial fusion energy driver (IFE) and related laser-driven high-field applications. The project for the development of IFE laser driver in Japan, HALNA (High Average-power Laser for Nuclear Fusion Application) at ILE, Osaka University, aims to demonstrate 100-J pulse energy at 10 Hz rep. rate with 5 times diffraction limited beam quality. In this article, the advanced solid-state laser technologies for one half scale of HALNA (50 J, 10 Hz) are presented including thermally managed slab amplifier of Nd:phosphate glass and zig-zag optical geometry, and uniform, large-area diode-pumping.
Mode-locked solid state lasers using diode laser excitation
Holtom, Gary R [Boston, MA
2012-03-06
A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.
Laser Demonstration of Diode-Pumped Nd3+-Doped Fluorapatite Anisotropic Ceramics
NASA Astrophysics Data System (ADS)
Akiyama, Jun; Sato, Yoichi; Taira, Takunori
2011-02-01
We report the first demonstration of a diode-pumped anisotropic ceramic laser that uses microdomain-controlled neodymium-doped hexagonal fluorapatite [Nd3+:Ca10(PO4)6F2, Nd:FAP] polycrystalline ceramics as the gain medium, which were fabricated by the rare-earth-assisted magnetic grain-orientation control method, as a step toward achieving giant micro photonics. The laser delivers 1063.10 and 1063.22 nm output beams when pumped with a central wavelength of 807.5 nm and a 2 nm bandwidth diode laser operating in quasi-continuous-wave (QCW) mode. We obtained a maximum QCW peak power of 255 mW with an uncoated 2 at. % Nd:FAP material.
Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra
2016-01-01
The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258
Novel diode laser-based sensors for gas sensing applications
NASA Technical Reports Server (NTRS)
Tittel, F. K.; Lancaster, D. G.; Richter, D.
2000-01-01
The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.
NASA Astrophysics Data System (ADS)
Lindsay, I. D.; Groß, P.; Lee, C. J.; Adhimoolam, B.; Boller, K.-J.
2006-12-01
We describe the implementation of the wavelength- and frequency-modulation spectroscopy techniques using a singly-resonant optical parametric oscillator (OPO) pumped by a fiber-amplified diode laser. Frequency modulation of the diode laser was transferred to the OPO’s mid-infrared idler output, avoiding the need for external modulation devices. This approach thus provides a means of implementing these important techniques with powerful, widely tunable, mid-infrared sources while retaining the simple, flexible modulation properties of diode lasers.
NASA Astrophysics Data System (ADS)
Shi, Jindan; Feng, Xian
2018-03-01
We report a diode pumped self-frequency-doubled nonlinear crystalline waveguide on glass fiber. A ribbon fiber has been drawn on the glass composition of 50GeO2-25B2O3-25(La,Yb)2O3. Surface channel waveguides have been written on the surface of the ribbon fiber, using space-selective laser heating method with the assistance of a 244 nm CW UV laser. The Raman spectrum of the written area indicates that the waveguide is composed of structure-deformed nonlinear (La,Yb)BGeO5 crystal. The laser-induced surface wavy cracks have also been observed and the forming mechanism of the wavy cracks has been discussed. Efficient second harmonic generation has been observed from the laser-induced crystalline waveguide, using a 976 nm diode pump. 13 μW of 488 nm output has been observed from a 17 mm long waveguide with 26.0 mW of launched diode pump power, corresponding to a normalized conversion efficiency of 4.4%W-1.
Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator.
Jia, Yufei; Kerner, Ross A; Grede, Alex J; Brigeman, Alyssa N; Rand, Barry P; Giebink, Noel C
2016-07-13
Organic-inorganic lead halide perovskite semiconductors have recently reignited the prospect of a tunable, solution-processed diode laser, which has the potential to impact a wide range of optoelectronic applications. Here, we demonstrate a metal-clad, second-order distributed feedback methylammonium lead iodide perovskite laser that marks a significant step toward this goal. Optically pumping this device with an InGaN diode laser at low temperature, we achieve lasing above a threshold pump intensity of 5 kW/cm(2) for durations up to ∼25 ns at repetition rates exceeding 2 MHz. We show that the lasing duration is not limited by thermal runaway and propose instead that lasing ceases under continuous pumping due to a photoinduced structural change in the perovskite that reduces the gain on a submicrosecond time scale. Our results indicate that the architecture demonstrated here could provide the foundation for electrically pumped lasing with a threshold current density Jth < 5 kA/cm(2) under sub-20 ns pulsed drive.
Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation.
Ertel, K; Banerjee, S; Mason, P D; Phillips, P J; Siebold, M; Hernandez-Gomez, C; Collier, J C
2011-12-19
We present a numerical model of a pulsed, diode-pumped Yb:YAG laser amplifier for the generation of high energy ns-pulses. This model is used to explore how optical-to-optical efficiency depends on factors such as pump duration, pump spectrum, pump intensity, doping concentration, and operating temperature. We put special emphasis on finding ways to achieve high efficiency within the practical limitations imposed by real-world laser systems, such as limited pump brightness and limited damage fluence. We show that a particularly advantageous way of improving efficiency within those constraints is operation at cryogenic temperature. Based on the numerical findings we present a concept for a scalable amplifier based on an end-pumped, cryogenic, gas-cooled multi-slab architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honea, E.C., LLNL
We derive approximate expressions for transient output power and wavelength chirp of high- peak-power laser-diode bars assuming one-dimensional heat flow and linear temperature dependences for chirp and efficiency. The model is derived for pulse durations, 10 < {tau} < 1000 ps, typically used for diode-pumped solid-state lasers and is in good agreement with experimental data for Si heatsink mounted 940 nm laser-diode bars operating at 100 W/cm. The analytic expressions are more flexible and easily used than the results of operating point dependent numerical modeling. In addition, the analytic expressions used here can be integrated to describe the energy permore » unit wavelength for a given pulse duration, initial emission bandwidth and heatsink material. We find that the figure-of-merit for a heatsink material in this application is ({rho}C{sub p}K) where {rho}C{sub p} is the volumetric heat capacity and K is the thermal conductivity. As an example of the utility of the derived expressions, we determine an effective absorption coefficient as a function of pump pulse duration for a diode-pumped solid-state laser utilizing Yb:Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) as the gain medium.« less
Ji, Yongsung; Zeigler, David F; Lee, Dong Su; Choi, Hyejung; Jen, Alex K-Y; Ko, Heung Cho; Kim, Tae-Wook
2013-01-01
Flexible organic memory devices are one of the integral components for future flexible organic electronics. However, high-density all-organic memory cell arrays on malleable substrates without cross-talk have not been demonstrated because of difficulties in their fabrication and relatively poor performances to date. Here we demonstrate the first flexible all-organic 64-bit memory cell array possessing one diode-one resistor architectures. Our all-organic one diode-one resistor cell exhibits excellent rewritable switching characteristics, even during and after harsh physical stresses. The write-read-erase-read output sequence of the cells perfectly correspond to the external pulse signal regardless of substrate deformation. The one diode-one resistor cell array is clearly addressed at the specified cells and encoded letters based on the standard ASCII character code. Our study on integrated organic memory cell arrays suggests that the all-organic one diode-one resistor cell architecture is suitable for high-density flexible organic memory applications in the future.
Diode pumped alkali vapor fiber laser
Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.
2007-10-23
A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.
Diode pumped alkali vapor fiber laser
Payne, Stephen A [Castro Valley, CA; Beach, Raymond J [Livermore, CA; Dawson, Jay W [Livermore, CA; Krupke, William F [Pleasanton, CA
2006-07-26
A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.
1989-08-30
nm to produce blue light at 455 nm (Figure 1). A 20 Hz doubled Nd:YAG pump laser emitting up to 150 mJ at 532 nm 147 WA4-2 was used to resonantly...pumped by a diode laser, then in addition to the processes of Fig. 1, excited state absorption of the pump light from both 4I13,/z and 4I3112 may be...are visible and UV systems pumped at wavelengths that are available from semiconductor diode lasers and infrared emitting systems having high slope
Otsuka, Kenju; Chu, Shu-Chun
2013-05-01
We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken. Experimental results have been well reproduced by numerical simulations.
An Efficient End-Pumped Ho:Tm:YLF Disk Amplifier
NASA Technical Reports Server (NTRS)
Yu, Ji-Rong; Petros, Mulugeta; Singh, Upendra N.; Barnes, Norman P.
2000-01-01
An efficient diode-pumped, room temperature Ho:Tm:YLF disk amplifier was realized by end-pump configuration. Compared to side pump configuration, about a factor three improvement in system efficiency has been demonstrated.
16.7 W 885 nm diode-side-pumped actively Q-switched Nd:YAG/YVO4 intracavity Raman laser at 1176 nm
NASA Astrophysics Data System (ADS)
Jiang, Pengbo; Zhang, Guizhong; Liu, Jian; Ding, Xin; Sheng, Quan; Yu, Xuanyi; Sun, Bing; Shi, Rui; Wu, Liang; Wang, Rui; Yao, Jianquan
2017-11-01
We proposed and experimentally demonstrated the generation of high-power 1176 nm Stokes wave by frequency shifting of a 885 nm diode-side-pumped Nd:YAG laser using a YVO4 crystal in a Z-shaped cavity configuration. Employing the 885 nm diode-side-pumped scheme and the Z-shaped cavity, for the first time to our knowledge, we realized the thermal management effectively, achieving excellent 1176 nm Stokes wave consequently. With an incident pump power of ~190.0 W, a maximum average output power of 16.7 W was obtained at the pulse repetition frequency of 10 kHz. The pulse duration and spectrum linewidth of the Stokes wave at the maximum output power were 20.3 ns and ~0.08 nm, respectively.
Modeling of a diode-pumped thin-disk cesium vapor laser
NASA Astrophysics Data System (ADS)
An, Guofei; Cai, He; Liu, Xiaoxu; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You
2018-03-01
A diode pumped alkali laser (DPAL) provides a significant potential for construction of high-powered lasers. Until now, a series of models have been established to analyze the kinetic process and most of them are based on the end-pumped alkali laser system in which the vapor cell are usually cylindrical and cuboid. In this paper, a mathematic model is constructed to investigate the kinetic processes of a diode pumped thin-disk cesium vapor laser, in which the cesium vapor and the buffer gases are beforehand filled in a sealed glass cell with a thin-disk structure. We systemically study the influences of the cell temperature and cell thickness on the output features of a thin-disk DPAL. Further, we study the thin-disk DPAL with the W-shaped resonator and multiple-disk configuration. To the best of our knowledge, there have not been any similar reports so far.
Array size and area impact on nanorectenna performance properties
NASA Astrophysics Data System (ADS)
Arsoy, Elif Gul; Durmaz, Emre Can; Shafique, Atia; Ozcan, Meric; Gurbuz, Yasar
2017-02-01
The metal-insulator-metal (MIM) diodes have high speed and compatibility with integrated circuits (IC's) making MIM diodes very attractive to detect and harvest energy for infrared (IR) regime of the electromagnetic spectrum. Due to the fact that small size of the MIM diodes, it is possible to obtain large volume of devices in same unit area. Hence, MIM diodes offer a feasible solution for nanorectennas (nano rectifiying antenna) in IR regime. The aim of this study is to design and develop MIM diodes as array format coupled with antennas for energy harvesting and IR detection. Moreover, varying number of elements which are 4x4, and 40x30 has been fabricated in parallel having 0.040, 0.065 and 0.080 μm2 diode area. For this work we have studied given type of material; Ti-HfO2-Ni, is used for fabricating MIM diodes as a part of rectenna. The effect of the diode array size is investigated. Furthermore, the effect of the array size is also investigated for larger arrays by applying given type of material set; Cr-HfO2-Ni. The fabrication processes in physical vapor deposition (PVD) systems for the MIM diodes resulted in the devices having high non-linearity and responsivity. Also, to achieve uniform and very thin insulator layer atomic layer deposition (ALD) was used. The nonlinearity 1.5 mA/V2 and responsivity 3 A/W are achieved for Ti-HfO2-Ni MIM diodes under low applied bias of 400 mV. The responsivity and nonlinearity of Cr-HfO2-Ni are found to be 5 A/W and 65 μA/V2, respectively. The current level of Cr-HfO2-Ni and Ti-HfO2-Ni is around μA range therefore corresponding resistance values are in 1-10 kΩ range. The comparison of single and 4x4 elements revealed that 4x4 elements have higher current level hence lower resistance value is obtained for 4x4 elements. The array size is 40x30 elements for Cr-HfO2-Ni type of MIM diodes with 40, 65 nm2 diode areas. By increasing the diode area, the current level increases for same size of array. The current level is increased from10 μA to100 μA with increasing the diode area. Therefore resistance decreased in the range of 10 kΩ and nonlinearity is increased from 58 μA/V2 to 65 μA/V2.
Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.
2000-01-01
A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.
Diode pumped tunable lasers based on Tm:CaF2 and Tm:Ho:CaF2 ceramics
NASA Astrophysics Data System (ADS)
Šulc, Jan; Němec, Michal; Jelinková, Helena; Doroshenko, Maxim E.; Fedorov, Pavel P.; Osiko, Vyacheslav V.
2014-02-01
The Tm:CaF2 (4% of TmF3) and Tm:Ho:CaF2 (2% of TmF3, 0.3% of HoF3) ceramics, prepared using hot pressing, and hot formation technique had been used as an active medium of diode pumped mid-infrared tunable laser. A fibre (core diameter 400 μm, NA = 0.22) coupled laser diode (LIMO, HLU30F400-790) was used to longitudinal pumping. The laser diode was operating in the pulsed regime (6 ms pulse length, 10 Hz repetition rate). The duty-cycle 6% ensures a low thermal load even under the maximum diode pumping power amplitude 25W (ceramics samples were only air-cooled). The laser diode emission wavelength was 786 nm. The 80mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.85 - 2.15 μm, HT @ 0.78 μm) and a curved (r = 150mm) output coupler with a reflectivity of ˜ 98% @ 1.85 - 2.0 μm for Tm:CaF2 laser or ˜ 99.5% @ 2.0 - 2.15 μm for Ho:Tm:CaF2. Tuning of the laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle. Both samples offered broad and smooth tuning possibilities in mid-IR spectral range and the lasers were continuously tunable over ˜ 100 nm. The obtained Tm:CaF2 tunability ranged from 1892 to 1992nm (the maximum output energy 1.8mJ was reached at 1952nm for absorbed pumping energy 78 mJ). In case of Tm:Ho:CaF2 laser tunability from 2016 to 2111nm was reached (the maximum output energy 1.5mJ was reached at 2083nm for absorbed pumping energy 53 mJ). Both these material are good candidates for a future investigation of high energy, ultra-short, laser pulse generation.
1.5 kW efficient CW Nd:YAG planar waveguide MOPA laser.
Wang, Juntao; Wu, Zhenhai; Su, Hua; Zhou, Tangjian; Lei, Jun; Lv, Wenqiang; He, Jing; Xu, Liu; Chen, Yuejian; Wang, Dan; Tong, Lixin; Hu, Hao; Gao, Qingsong; Tang, Chun
2017-08-15
In this Letter, we report a 1064 nm continuous wave Nd:YAG planar waveguide laser with an output power of 1544 W based on the structure of the master oscillator power amplification. A fiber laser is used as the master oscillator, and diode laser arrays are used as the pump source of the waveguide laser amplifier. The dimension of the waveguide is 1 mm (T)×10 mm (W)×60 mm (L), and the dual end oblique pumping is adopted with different angles. After a single-pass amplification, the power is scaled from 323 to 1544 W with the pump power of 2480 W, leading to an optical-to-optical efficiency of 49%. At the maximum output, the beam quality M 2 are measured to be 2.8 and 7.0 in the guided direction and the unguided direction, respectively. To the best of our knowledge, this is the highest output power of a Nd:YAG planar waveguide laser to date.
Integrated injection-locked semiconductor diode laser
Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert
1991-01-01
A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.
1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks.
Xiao, Y; Brunet, F; Kanskar, M; Faucher, M; Wetter, A; Holehouse, N
2012-01-30
We have demonstrated a monolithic cladding-pumped ytterbium-doped single all-fiber laser oscillator generating 1 kW of CW signal power at 1080 nm with 71% slope efficiency and near diffraction-limited beam quality. Fiber components were highly integrated on "spliceless" passive fibers to promote laser efficiency and alleviate non-linear effects. The laser was pumped through a 7:1 pump combiner with seven 200-W 91x nm fiber-pigtailed wavelength-beam-combined diode-stack modules. The signal power of such a single all-fiber laser oscillator showed no evidence of roll-over, and the highest output was limited only by available pump power.
Laser-diode pumped 40-W Yb:YAG ceramic laser.
Hao, Qiang; Li, Wenxue; Pan, Haifeng; Zhang, Xiaoyi; Jiang, Benxue; Pan, Yubai; Zeng, Heping
2009-09-28
We demonstrated a high-power continuous-wave (CW) polycrystalline Yb:YAG ceramic laser pumped by fiber-pigtailed laser diode at 968 nm with 400 mum fiber core. The Yb:YAG ceramic laser performance was compared for different Yb(3+) ion concentrations in the ceramics by using a conventional end-pump laser cavity consisting of two flat mirrors with output couplers of different transmissions. A CW laser output of 40 W average power with M(2) factor of 5.8 was obtained with 5 mol% Yb concentration under 120 W incident pump power. This is to the best of our knowledge the highest output power in end-pumped bulk Yb:YAG ceramic laser.
Investigation of diode-pumped 2.8- mu m laser performance in Er:BaY2F8
NASA Astrophysics Data System (ADS)
Pollnau, M.; Lüthy, W.; Weber, H. P.; Jensen, T.; Huber, G.; Cassanho, A.; Jenssen, H. P.; McFarlane, R. A.
1996-01-01
Laser operation at 2.8 mu m in BaY2F 8 with erbium concentrations of 7.5% and 20% is investigated under laser-diode pumping at 967 nm. Output powers as high as 250 mW and slope efficiencies as high as 24% are obtained. Results are comparable with those of Er3+ : LiYF4 under the same pump conditions. Slope efficiencies above 30% are predicted for optimized erbium concentrations.
Polarization methods for diode laser excitation of solid state lasers
Holtom, Gary R.
2008-11-25
A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.
NASA Astrophysics Data System (ADS)
Kumar, Manasvi; Sharifi Dehsari, Hamed; Anwar, Saleem; Asadi, Kamal
2018-03-01
Organic bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers have emerged as promising candidates for non-volatile information storage for low-cost solution processable electronics. One of the bottlenecks impeding upscaling is stability and reliable operation of the array in air. Here, we present a memory array fabricated with an air-stable amine-based semiconducting polymer. Memory diode fabrication and full electrical characterizations were carried out in atmospheric conditions (23 °C and 45% relative humidity). The memory diodes showed on/off ratios greater than 100 and further exhibited robust and stable performance upon continuous write-read-erase-read cycles. Moreover, we demonstrate a 4-bit memory array that is free from cross-talk with a shelf-life of several months. Demonstration of the stability and reliable air operation further strengthens the feasibility of the resistance switching in ferroelectric memory diodes for low-cost applications.
Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system
Backus, Sterling; Durfee, Charles; Lemons, Randy; ...
2017-02-10
Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less
Active media for up-conversion diode-pumped lasers
NASA Astrophysics Data System (ADS)
Tkachuk, Alexandra M.
1996-03-01
In this work, we consider the different methods of populating the initial and final working levels of laser transitions in TR-doped crystals under the selective 'up-conversion' and 'avalanche' diode laser pumping. On the basis of estimates of the probabilities of competing non-radiative energy-transfer processes rates obtained from the experimental data and theoretical calculations, we estimated the efficiency of the up-conversion pumping and selfquenching of the upper TR3+ states excited by laser-diode emission. The effect of the host composition, dopant concentration, and temperature on the output characteristics and up-conversion processes in YLF:Er; BaY2F8:Er; BaY2F8:Er,Yb and BaY2F8:Yb,Ho are determined.
12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression.
Liu, Tinghao; Sui, Zhan; Chen, Lin; Li, Zhupeng; Liu, Qiang; Gong, Mali; Fu, Xing
2017-09-04
Experimental amplification of 10-ns pulses to an energy of 12.2 J at the repetition rate of 1-10 Hz is reported from a diode-pumped room-temperature distributed active mirror amplifier chain (DAMAC) based on Nd:YAG slabs. Efficient power scaling at the optical-optical efficiency of 20.6% was achieved by suppressing the transverse parasitic oscillation with ASE absorbers. To the best of our knowledge, this is the first demonstration of a diode-pumped Nd:YAG active-mirror laser with nanosecond pulse energy beyond 10 joules. The verified DAMAC concept holds the promise of scaling the energy to a 50 J level and higher by adding 10-12 more pieces of active mirror in the chain.
Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, Sterling; Durfee, Charles; Lemons, Randy
Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less
Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser
NASA Astrophysics Data System (ADS)
Zhu, Jiangfeng; Zhang, Lijuan; Gao, Ziye; Wang, Junli; Wang, Zhaohua; Su, Liangbi; Zheng, Lihe; Wang, Jingya; Xu, Jun; Wei, Zhiyi
2015-03-01
A passively mode-locked femtosecond laser based on an Nd, Y-codoped CaF2 disordered crystal was demonstrated. The Y3+-codoping in Nd : CaF2 markedly suppressed the quenching effect and improved the fluorescence quantum efficiency and emission spectra. With a fiber-coupled laser diode as the pump source, the continuous wave tuning range covering from 1042 to 1076 nm was realized, while the mode-locked operation generated 264 fs pulses with an average output power of 180 mW at a repetition rate of 85 MHz. The experimental results show that the Nd, Y-codoped CaF2 disordered crystal has potential in a new generation diode-pumped high repetition rate chirped pulse amplifier.
Advancements in high-power diode laser stacks for defense applications
NASA Astrophysics Data System (ADS)
Pandey, Rajiv; Merchen, David; Stapleton, Dean; Patterson, Steve; Kissel, Heiko; Fassbender, Wilhlem; Biesenbach, Jens
2012-06-01
This paper reports on the latest advancements in vertical high-power diode laser stacks using micro-channel coolers, which deliver the most compact footprint, power scalability and highest power/bar of any diode laser package. We present electro-optical (E-O) data on water-cooled stacks with wavelengths ranging from 7xx nm to 9xx nm and power levels of up to 5.8kW, delivered @ 200W/bar, CW mode, and a power-conversion efficiency of >60%, with both-axis collimation on a bar-to-bar pitch of 1.78mm. Also, presented is E-O data on a compact, conductively cooled, hardsoldered, stack package based on conventional CuW and AlN materials, with bar-to-bar pitch of 1.8mm, delivering average power/bar >15W operating up to 25% duty cycle, 10ms pulses @ 45C. The water-cooled stacks can be used as pump-sources for diode-pumped alkali lasers (DPALs) or for more traditional diode-pumped solid-state lasers (DPSSL). which are power/brightness scaled for directed energy weapons applications and the conductively-cooled stacks as illuminators.
Diode-Laser Pumped Far-Infrared Local Oscillator Based on Semiconductor Quantum Wells
NASA Technical Reports Server (NTRS)
Kolokolov, K.; Li, J.; Ning, C. Z.; Larrabee, D. C.; Tang, J.; Khodaparast, G.; Kono, J.; Sasa, S.; Inoue, M.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
The contents include: 1) Tetrahertz Field: A Technology Gap; 2) Existing THZ Sources and Shortcomings; 3) Applications of A THZ Laser; 4) Previous Optical Pumped LW Generations; 5) Optically Pumped Sb based Intersubband Generation Whys; 6) InGaAs/InP/AlAsSb QWs; 7) Raman Enhanced Optical Gain; 8) Pump Intensity Dependence of THZ Gain; 9) Pump-Probe Interaction Induced Raman Shift; 10) THZ Laser Gain in InGaAs/InP/AlAsSb QWs; 11) Diode-Laser Pumped Difference Frequency Generation (InGaAs/InP/AlAsSb QWs); 12) 6.1 Angstrom Semiconductor Quantum Wells; 13) InAs/GaSb/AlSb Nanostructures; 14) InAs/AlSb Double QWs: DFG Scheme; 15) Sb-Based Triple QWs: Laser Scheme; and 16) Exciton State Pumped THZ Generation. This paper is presented in viewgraph form.
A Modular Control Platform for a Diode Pumped Alkali Laser
NASA Astrophysics Data System (ADS)
Shapiro, J.; Teare, S.
Many of the difficulties of creating compact, high power laser systems can be overcome if the heat dissipating properties of chemical lasers can be combined with the efficiency of diode lasers. Recently, the novel idea of using solid state diode lasers to pump gaseous gain media, such as is done in diode pumped alkali lasers (DPALs), has been proposed and early experiments have shown promising results. However, a number of technical issues need to be overcome to realize high output power from these lasers. In order to achieve higher power, the efficiency of coupling between pump laser energy and the chemical cell must be increased, and eventually multiple high power diode pumps must be combined and synchronized so that their energy can pump the chemical cell. Additionally, an inter-cavity adaptive optics system may be a requirement to be able to propagate these lasers with high efficiency. DPAL systems are complex and require a significant amount of data fusion and active feedback to control and optimize their performance. There are a wide range of components including pump lasers, gain cells and monitoring points needed to study and refine the overall laser system. In support of this dynamic development environment, we have developed a hardware framework using commercial off the shelf (COTS) components which supports the rapid assembly of functional system blocks into a cohesive integrated system. Critical to this system are a simple communication protocol, industry standard communication pipes (USB, Bluetooth, etc), and flexible high level scripting. Simplifying the integration process has the benefit of allowing flexible "on the fly" modifications to adapt the system as needed and enhance available functionality. The modular nature of the architecture allows scalability and adaptability as more pieces are added to the system. Key components of this system are demonstrated for selected portions of a DPAL system using a USB backbone.
First demonstration of green and amber LED-pumped Nd:YAG laser
NASA Astrophysics Data System (ADS)
Tarkashvand, M.; Farahbod, A. H.; Hashemizadeh, S. A.
2018-05-01
For the first time, to the best of our knowledge, a green (520 nm) and amber (592 nm) light emitting diode-pumped Nd:YAG laser is reported. The laser oscillator is a stable semi-planar resonator with a total length of 140 mm. The green (amber) light emitting diode-pumped laser produced a 107 (52) µJ laser energy, at 2.6 (0.7) J electrical pump energy. The oscillator operated at a low repetition rate (about 0.1 Hz) in free-running mode, where the laser spikes were initiated about 210–280 µs after the leading edge of the pump pulse. Moreover, the transverse mode profiles of the resonator, pump absorption efficiency, and optical gain have been studied in some detail.
Open-path atmospheric transmission for a diode-pumped cesium laser.
Rice, Christopher A; Lott, Gordon E; Perram, Glen P
2012-12-01
A tunable diode laser absorption spectroscopy device was developed to study atmospheric propagation for emerging high-energy laser weapons. The cesium diode-pumped alkali laser operates near 895 nm in the vicinity of several water-vapor absorption lines. Temperature, pressure, and water vapor concentration were determined for 150 m and 1 km open paths with statistical errors of ∼0.2%. Comparison with meteorological instruments yields agreement for the 1 km path to within 0.6% for temperature, 3.7% for pressure, and 2.4% for concentration.
Studies of spin-exchange optical pumping
NASA Astrophysics Data System (ADS)
Chann, Bien
Although we still do not understand fully the alkali-alkali relaxation at pressures of an atmosphere or more, an important part of the spin-relaxation comes from the classical dipole-dipole anisotropic spin-axis interaction acting in triplet dimer molecules. The key observation is the existence of magnetic resonances in the magnetic decoupling curves which are predicted from the spin-axis interaction. We identified a new gas-phase, room temperature spin relaxation that is due to the spin-rotation coupling in bound 129Xe-Xe van der Waals molecules. This 129Xe-Xe molecular spin-relaxation is more than an order of magnitude stronger than the well-known 129 Xe-Xe binary spin-relaxation and is the fundamental spin-relaxation process at gas densities below 14 amagat. With external cavity diode laser array bar, we find, based on tests of several cells, that the power required to reach the same polarization is typically three times lower for the spectrally narrowed laser as compared to the unnarrowed diode array bar. This last result indicates that spectrally narrowed lasers are critical to obtaining the highest noble gas polarizations. Furthermore, we find, circularly polarized light propagating at an angle as small as a few degrees to the external magnetic field does not optically pump the atoms to full transparency and causes excess absorption of the pump beam. We measured the Rb-3He spin-exchange rate coefficients using three different methods. We obtained 6.73 +/- 0.12 x 10 -20 cm3/s for the repolarization method. We deduced the spin-exchange rate coefficient to be 6.61 +/- 0.12 x 10 -20 cm3/s for the rate balance method. The third method uses a temperature dependence relaxation of 3He and the deduced value is 8.85 +/- 0.32 x 10-20 cm3/s. This is about 30% higher than the other two methods. This implies a temperature-dependence wall-relaxation or a large value of anisotropic spin-exchange rate coefficient for Rb-3He and would explain the shortfall 3He measured polarization.
Diode lasers optimized in brightness for fiber laser pumping
NASA Astrophysics Data System (ADS)
Kelemen, M.; Gilly, J.; Friedmann, P.; Hilzensauer, S.; Ogrodowski, L.; Kissel, H.; Biesenbach, J.
2018-02-01
In diode laser applications for fiber laser pumping and fiber-coupled direct diode laser systems high brightness becomes essential in the last years. Fiber coupled modules benefit from continuous improvements of high-power diode lasers on chip level regarding output power, efficiency and beam characteristics resulting in record highbrightness values and increased pump power. To gain high brightness not only output power must be increased, but also near field widths and far field angles have to be below a certain value for higher power levels because brightness is proportional to output power divided by beam quality. While fast axis far fields typically show a current independent behaviour, for broadarea lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness and therefore their use in fibre coupled modules. These limitations can be overcome by carefully optimizing chip temperature, thermal lensing and lateral mode structure by epitaxial and lateral resonator designs and processing. We present our latest results for InGaAs/AlGaAs broad-area single emitters with resonator lengths of 4mm emitting at 976nm and illustrate the improvements in beam quality over the last years. By optimizing the diode laser design a record value of the brightness for broad-area lasers with 4mm resonator length of 126 MW/cm2sr has been demonstrated with a maximum wall-plug efficiency of more than 70%. From these design also pump modules based on 9 mini-bars consisting of 5 emitters each have been realized with 360W pump power.
Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm
NASA Astrophysics Data System (ADS)
Guan, Chen; Liu, Zhaojun; Cong, Zhenhua; Liu, Yang; Xu, Xiaodong; Xu, Jun; Huang, Qingjie; Rao, Han; Chen, Xia; Zhang, Yanmin; Wu, Qianwen; Bai, Fen; Zhang, Sasa
2017-02-01
A diode-end-pumped passively Q-switched Nd:LuAG laser at 1442.6 nm was demonstrated with a V3+:YAG crystal as the saturable absorber. Under continuous-wave (CW) operation, the maximum output power of 1.83 W was obtained with an absorbed pumping power of 11.1 W. The corresponding optical-to-optical conversion efficiency was 16.5%. Under Q-switched operation, the maximum average output power of 424 mW was obtained at the same pumping power. The pulse duration and pulse repetition rate were 72 ns and 17.4 kHz, respectively.
NASA Astrophysics Data System (ADS)
M, H. Moghtader Dindarlu; M Kavosh, Tehrani; H, Saghafifar; A, Maleki
2015-12-01
In this paper, according to the temperature and strain distribution obtained by considering the Gaussian pump profile and dependence of physical properties on temperature, we derive an analytical model for refractive index variations of the diode side-pumped Nd:YAG laser rod. Then we evaluate this model by numerical solution and our maximum relative errors are 5% and 10% for variations caused by thermo-optical and thermo-mechanical effects; respectively. Finally, we present an analytical model for calculating the focal length of the thermal lens and spherical aberration. This model is evaluated by experimental results.
Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.
2017-03-01
Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.
High-brightness line generators and fiber-coupled sources based on low-smile laser diode arrays
NASA Astrophysics Data System (ADS)
Watson, J.; Schleuning, D.; Lavikko, P.; Alander, T.; Lee, D.; Lovato, P.; Winhold, H.; Griffin, M.; Tolman, S.; Liang, P.; Hasenberg, T.; Reed, M.
2008-02-01
We describe the performance of diode laser bars mounted on conductive and water cooled platforms using low smile processes. Total smile of <1μm is readily achieved on both In and AuSn based platforms. Combined with environmentally robust lensing, these mounts form the basis of multiple, high-brightness products. Free-space-coupled devices utilizing conductively-cooled bars delivering 100W from a 200μm, 0.22NA fiber at 976nm have been developed for pumping fiber lasers, as well as for materials processing. Additionally, line generators for graphics and materials processing applications have been produced. Starting from single bars mounted on water-cooled packages that do not require de-ionized or pH-controlled water, these line generators deliver over 80W of power into a line with an aspect ratio of 600:1, and have a BPP of <2mm-mrad in the direction orthogonal to the line.
Xu, B; Starecki, F; Pabœuf, D; Camy, P; Doualan, J L; Cai, Z P; Braud, A; Moncorgé, R; Goldner, Ph; Bretenaker, F
2013-03-11
We report the basic luminescence properties and the continuous-wave (CW) laser operation of a Pr(3+)-doped KYF(4) single crystal in the Red and Orange spectral regions by using a new pumping scheme. The pump source is an especially developed, compact, slightly tunable and intra-cavity frequency-doubled diode-pumped Nd:YAG laser delivering a CW output power up to about 1.4 W around 469.1 nm. At this pump wavelength, red and orange laser emissions are obtained at about 642.3 and 605.5 nm, with maximum output powers of 11.3 and 1 mW and associated slope efficiencies of 9.3% and 3.4%, with respect to absorbed pump powers, respectively. For comparison, the Pr:KYF(4) crystal is also pumped by a InGaN blue laser diode operating around 444 nm. In this case, the same red and orange lasers are obtained, but with maximum output powers of 7.8 and 2 mW and the associated slope efficiencies of 7 and 5.8%, respectively. Wavelength tuning for the two lasers is demonstrated by slightly tilting the crystal. Orange laser operation and laser wavelength tuning are reported for the first time.
NASA Astrophysics Data System (ADS)
Hamza, Mostafa; El-Ahl, Mohammad H. S.; Hamza, Ahmad M.
2001-01-01
The authors introduce the design of a blue-green diode- pumped solid-state laser system for transcutaneous measurement of serum bilirubin level in jaundiced new born infant. The system follows the principles of optical bilirubinometry. The choice of wavelengths provides correction for the presence of hemoglobin. The new design is more compact and less expensive.
Gün, Teoman; Metz, Philip; Huber, Günter
2011-03-15
We report efficient cw laser operation of laser diode pumped Pr(3+)-doped LiYF4 crystals in the visible spectral region. Using two InGaN laser diodes emitting at λ(P)=443.9 nm with maximum output power of 1 W each and a 2.9-mm-long crystal with a doping concentration of 0.5%, output powers of 938 mW, 418 mW, 384 mW, and 773 mW were achieved for the laser wavelengths 639.5 nm, 607.2 nm, 545.9 nm, and 522.6 nm, respectively. The maximum absorbed pump powers were approximately 1.5 W, resulting in slope efficiencies of 63.6%, 32.0%, 52.1%, and 61.5%, as well as electro-optical efficiencies of 9.4%, 4.2%, 3.8%, and 7.7%, respectively. Within these experiments, laser diode-pumped laser action at 545.9 nm was demonstrated for what is believed to be the first time.
DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser.
Banerjee, Saumyabrata; Ertel, Klaus; Mason, Paul D; Phillips, P Jonathan; De Vido, Mariastefania; Smith, Jodie M; Butcher, Thomas J; Hernandez-Gomez, Cristina; Greenhalgh, R Justin S; Collier, John L
2015-07-27
The Diode Pumped Optical Laser for Experiments (DiPOLE) project at the Central Laser Facility aims to develop a scalable, efficient high pulse energy diode pumped laser amplifier system based on cryogenic gas cooled, multi-slab ceramic Yb:YAG technology. We present recent results obtained from a scaled down prototype laser system designed for operation at 10 Hz pulse repetition rate. At 140 K, the system generated 10.8 J of energy in a 10 ns pulse at 1029.5 nm when pumped by 48 J of diode energy at 940 nm, corresponding to an optical to optical conversion efficiency of 22.5%. To our knowledge, this represents the highest pulse energy obtained from a cryo cooled Yb laser to date and the highest efficiency achieved by a multi-Joule diode pumped solid state laser system. Additionally, we demonstrated shot-to-shot energy stability of 0.85% rms for the system operated at 7 J, 10 Hz during several runs lasting up to 6 hours, with more than 50 hours in total. We also demonstrated pulse shaping capability and report on beam, wavefront and focal spot quality.
Study of phase-locked diode laser array and DFB/DBR surface emitting laser diode
NASA Astrophysics Data System (ADS)
Hsin, Wei
New types of phased-array and surface-emitting lasers are designed. The importance and approaches (or structures) of different phased array and surface emitting laser diodes are reviewed. The following are described: (1) a large optical cavity channel substrate planar laser array with layer thickness chirping; (2) a vertical cavity surface emitter with distributed feedback (DFB) optical cavity and a transverse junction buried heterostructure; (3) a microcavity distributed Bragg reflector (DBR) surface emitter; and (4) two surface emitting laser structures which utilized lateral current injection schemes to overcome the problems occurring in the vertical injection scheme.
Integrated injection-locked semiconductor diode laser
Hadley, G.R.; Hohimer, J.P.; Owyoung, A.
1991-02-19
A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.
High-speed electronic beam steering using injection locking of a laser-diode array
NASA Astrophysics Data System (ADS)
Swanson, E. A.; Abbas, G. L.; Yang, S.; Chan, V. W. S.; Fujimoto, J. G.
1987-01-01
High-speed electronic steering of the output beam of a 10-stripe laser-diode array is reported. The array was injection locked to a single-frequency laser diode. High-speed steering of the locked 0.5-deg-wide far-field lobe is demonstrated either by modulating the injection current of the array or by modulating the frequency of the master laser. Closed-loop tracking bandwidths of 70 kHz and 3 MHz, respectively, were obtained. The beam-steering bandwidths are limited by the FM responses of the modulated devices for both techniques.
Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markosyan, Aram H.
Here, lasing on the D 1 transition (6 2P 1/2 → 6 2S 1/2) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D 2 transition (6 2S 1/2 → 6 2P 3/2) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D 1 transition, differences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side inmore » Ar/C 2H 6/Cs.« less
Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers
Markosyan, Aram H.
2018-01-05
Here, lasing on the D 1 transition (6 2P 1/2 → 6 2S 1/2) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D 2 transition (6 2S 1/2 → 6 2P 3/2) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D 1 transition, differences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side inmore » Ar/C 2H 6/Cs.« less
Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers.
Markosyan, Aram H
2018-01-08
Lasing on the D 1 transition (6 2 P 1/2 → 6 2 S 1/2 ) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D 2 transition (6 2 S 1/2 → 6 2 P 3/2 ) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D 1 transition, differences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side in Ar/C 2 H 6 /Cs.
Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode.
Jelínková, Helena; Doroshenko, Maxim E; Jelínek, Michal; Sulc, Jan; Osiko, Vyacheslav V; Badikov, Valerii V; Badikov, Dmitrii V
2013-08-15
In this Letter, we demonstrate the pulsed and CW operation of the Dy:PbGa(2)S(4) laser directly pumped by the 1.7 μm laser diode. In the pulsed regime (pulse duration 5 ms; repetition rate 20 Hz), the maximum mean output power of 9.5 mW was obtained with the slope efficiency of 9.3% with respect to the absorbed pump power. The generated wavelength was 4.32 μm, and the laser beam cross section was approximately Gaussian on both axes. Stable CW laser generation was also successfully obtained with the maximum output power of 67 mW and the slope efficiency of 8%. Depopulation of the lower laser level by 1.7 μm pump radiation absorption followed by 1.3 μm upconversion fluorescence was demonstrated. These results show the possibility of construction of the compact diode-pumped solid-state pulsed or CW laser generating at 4.3 μm in the power level of tens mW operating at room temperature.
NASA Astrophysics Data System (ADS)
Kornienko, Vladimir V.; Kitaeva, Galiya Kh.; Sedlmeir, Florian; Leuchs, Gerd; Schwefel, Harald G. L.
2018-05-01
We study a calibration scheme for terahertz wave nonlinear-optical detectors based on spontaneous parametric down-conversion. Contrary to the usual low wavelength pump in the green, we report here on the observation of spontaneous parametric down-conversion originating from an in-growth poled lithium niobate crystal pumped with a continuous wave 50 mW, 795 nm diode laser system, phase-matched to a terahertz frequency idler wave. Such a system is more compact and allows for longer poling periods as well as lower losses in the crystal. Filtering the pump radiation by a rubidium-87 vapor cell allowed the frequency-angular spectra to be obtained down to ˜0.5 THz or ˜1 nm shift from the pump radiation line. The presence of an amplified spontaneous emission "pedestal" in the diode laser radiation spectrum significantly hampers the observation of spontaneous parametric down-conversion spectra, in contrast to conventional narrowband gas lasers. Benefits of switching to longer pump wavelengths are pointed out, such as collinear optical-terahertz phase-matching in bulk crystals.
Advances in high-power 9XXnm laser diodes for pumping fiber lasers
NASA Astrophysics Data System (ADS)
Skidmore, Jay; Peters, Matthew; Rossin, Victor; Guo, James; Xiao, Yan; Cheng, Jane; Shieh, Allen; Srinivasan, Raman; Singh, Jaspreet; Wei, Cailin; Duesterberg, Richard; Morehead, James J.; Zucker, Erik
2016-03-01
A multi-mode 9XXnm-wavelength laser diode was developed to optimize the divergence angle and reliable ex-facet power. Lasers diodes were assembled into a multi-emitter pump package that is fiber coupled via spatial and polarization multiplexing. The pump package has a 135μm diameter output fiber that leverages the same optical train and mechanical design qualified previously. Up to ~ 270W CW power at 22A is achieved at a case temperature ~ 30ºC. Power conversion efficiency is 60% (peak) that drops to 53% at 22A with little thermal roll over. Greater than 90% of the light is collected at < 0.12NA at 16A drive current that produces 3.0W/(mm-mr)2 radiance from the output fiber.
Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser
NASA Astrophysics Data System (ADS)
Zi-Ye, Gao; Jiang-Feng, Zhu; Ke, Wang; Jun-Li, Wang; Zhao-Hua, Wang; Zhi-Yi, Wei
2016-02-01
We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration. Project supported by the National Major Scientific Instrument Development Project of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant No. 61205130), and the Fundamental Research Funds for the Central Universities, China (Grant No. JB140502).
Meyn, J P; Huber, G
1994-09-15
Neodymium-doped lanthanum scandium borate [Nd:LaSc(3)(BO(3))(4)] is a new material for efficient and compact diode-pumped solid-state lasers. A simple plane-plane 3-mm-long resonator is formed by a coated Nd(10%):LaSc(3)(BO(3))(4) crystal and a coated potassium titanyl phosphate (KTP) crystal. The second-harmonic output power at 531 nm is 522 mW at 2.05-W incident pump power of the diode laser. The corresponding optical efficiency is 25%, and the conversion efficiency from the fundamental to the second harmonic is 55%. The wellknown chaotic power fluctuations of intracavity frequency-doubled lasers (green problem) are avoided by use of a short KTP crystal, between 0.5 and 2 mm in length.
NASA Technical Reports Server (NTRS)
Kwon, Jin H.; Lee, Ja H.
1989-01-01
The far-field beam pattern and the power-collection efficiency are calculated for a multistage laser-diode-array amplifier consisting of about 200,000 5-W laser diode arrays with random distributions of phase and orientation errors and random diode failures. From the numerical calculation it is found that the far-field beam pattern is little affected by random failures of up to 20 percent of the laser diodes with reference of 80 percent receiving efficiency in the center spot. The random differences in phases among laser diodes due to probable manufacturing errors is allowed to about 0.2 times the wavelength. The maximum allowable orientation error is about 20 percent of the diffraction angle of a single laser diode aperture (about 1 cm). The preliminary results indicate that the amplifier could be used for space beam-power transmission with an efficiency of about 80 percent for a moderate-size (3-m-diameter) receiver placed at a distance of less than 50,000 km.
Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power.
Gürel, K; Wittwer, V J; Hoffmann, M; Saraceno, C J; Hakobyan, S; Resan, B; Rohrbacher, A; Weingarten, K; Schilt, S; Südmeyer, T
2015-11-16
We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.
Pulsed and cw laser oscillations in LiF:F-2 color center crystal under laser diode pumping.
Basiev, Tasoltan T; Vassiliev, Sergey V; Konjushkin, Vasily A; Gapontsev, Valentin P
2006-07-15
Continuous-wave laser oscillations in LiF:F-2 crystal optically pumped by a laser diode at 970 nm were demonstrated for what is believed to be the first time. The slope efficiency of 14% and conversion efficiency of 5.5% were achieved for 80 micros pump pulse duration and 5 Hz pulse repetition rate. An efficiency twice as low was measured at a 6.25 kHz pulse repetition rate (50% off-duty factor) and in cw mode of laser operation.
Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 μm
NASA Astrophysics Data System (ADS)
Wu, Z. H.; Sun, D. L.; Wang, S. Z.; Luo, J. Q.; Li, X. L.; Huang, L.; Hu, A. L.; Tang, Y. Q.; Guo, Q.
2013-05-01
We demonstrated a 967 nm diode end-pumped Er:GSGG laser operated at 2.794 μm with spectral width 3.6 nm in the continuous wave (CW) mode. A maximum output power of 440 mW is obtained at an incident pumping power of 3.4 W, which corresponds to an optical-to-optical efficiency of 13% and slope efficiency of 13.2%. The results suggest that a short cavity and efficient cooling setup for the crystal help to improve laser performance.
Continuous-wave operation of a room-temperature, diode-laser-pumped, 946-nm Nd:YAG laser
NASA Technical Reports Server (NTRS)
Fan, T. Y.; Byer, Robert L.
1987-01-01
Single-stripe diode-laser-pumped operation of a continuous-wave 946-nm Nd:YAG laser with less than 10-mW threshold has been demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. KNbO3 and periodically poled LiNbO3 appear to be the most promising.
2009-03-30
seeded with 15 W of single-frequency laser light at 1064 nm and cladding -pumped of 700 W in the forward direction and 300 W in the opposite direction...57-W single-mode phosphate fiber laser Our early studies of phosphate fiber lasers taught us that adding an air-hole to the inner cladding and... cladding -pumped with a fiber-coupled laser diode at 977 nm through a dichroic beam splitter placed on the OC side. The fiber ends were cooled using the
Versatile IEEE-488 data acquisition and control routines for a diode array spectrophotometer
Shiundu, Paul M.
1991-01-01
The UV-visible diode array spectrophotometer is a work-horse instrument for many laboratories. This article provides simple data acquisition and control routines in Microsoft QuickBasic for a HP-8452A diode array spectrophotometer interfaced to an IBM PC/XT/AT, or compatible, microcomputer. These allow capture of full spectra and measure absorbance at one or several wavelengths at preset time intervals. The variance in absorbance at each wavelength is available as an option. PMID:18924888
Miniature Lightweight Ion Pump
NASA Technical Reports Server (NTRS)
Sinha, Mahadeva P.
2010-01-01
This design offers a larger surface area for pumping of active gases and reduces the mass of the pump by eliminating the additional vacuum enclosure. There are three main components to this ion pump: the cathode and anode pumping elements assembly, the vacuum enclosure (made completely of titanium and used as the cathode and maintained at ground potential) containing the assembly, and the external magnet. These components are generally put in a noble diode (or differential) configuration of the ion pump technology. In the present state of the art, there are two cathodes, one made of titanium and the other of tantalum. The anodes are made up of an array of stainless steel cylinders positioned between the two cathodes. All the elements of the pump are in a vacuum enclosure. After the reduction of pressure in this enclosure to a few microns, a voltage is applied between the cathode and the anode elements. Electrons generated by the ionization are accelerated toward the anodes that are confined in the anode space by the axial magnetic field. For the generation of the axial field along the anode elements, the magnet is designed in a C-configuration and is fabricated from rare earth magnetic materials (Nd-B-Fe or Sm-Co) possessing high energy product values, and the yoke is fabricated from the high permeability material (Hiperco-50A composed of Fe-Co-V). The electrons in this region collide with the gas molecules and generate their positive ions. These ions are accelerated into the cathode and eject cathode material (Ti). The neutral atoms deposit on the anode surfaces. Because of the chemical activity of Ti, the atoms combine with chemically active gas molecules (e.g. N2, O2, etc.) and remove them. New layers of Ti are continually deposited, and the pumping of active gases is thus accomplished. Pumping of the inert gases is accomplished by their burial several atomic layers deep into the cathode. However, they tend to re-emit if the entrapping lattice atoms are sputtered away. For stable pumping of inert gases, one side of the cathode is made of Ta. Impaction on Ta produces energetic, neutral atoms that pump the inert gases on the anode structure at the peripheral areas of the cathodes (between anode rings). For inert gases stability, a post design has been implemented. Here, posts of cathode material (Ti) are mounted on the cathode. These protrude into the initial part of the anode elements. Materials sputtered from the posts condense on the anode assembly and on the cathode plane at higher rates than in the normal diodes due to enhanced sputtering at glancing angles from geometrical considerations. This increases pumping by burial. This post design has enhanced pumping rates for both active and inert gases, compared with conventional designs.
Photodiode arrays having minimized cross-talk between diodes
Guckel, Henry; McNamara, Shamus P.
2000-10-17
Photodiode arrays are formed with close diode-to-diode spacing and minimized cross-talk between diodes in the array by isolating the diodes from one another with trenches that are formed between the photodiodes in the array. The photodiodes are formed of spaced regions in a base layer, each spaced region having an impurity type opposite to that of the base layer to define a p-n junction between the spaced regions and the base layer. The base layer meets a substrate at a boundary, with the substrate being much more heavily doped than the base layer with the same impurity type. The trenches extend through the base layer and preferably into the substrate. Minority carriers generated by absorption of light photons in the base layer can only migrate to an adjacent photodiode through the substrate. The lifetime and the corresponding diffusion length of the minority carriers in the substrate is very short so that all minority carriers recombine in the substrate before reaching an adjacent photodiode.
Diode-end-pumped single-longitudinal-mode passively Q-switched Nd:GGG laser
NASA Astrophysics Data System (ADS)
Xue, Feng; Zhang, Sasa; Cong, Zhenhua; Huang, Qingjie; Guan, Chen; Wu, Qianwen; Chen, Hui; Bai, Fen; Liu, Zhaojun
2018-03-01
Diode-end-pumped passively Q-switched Nd:GGG laser in a ring cavity at 1062 nm was demonstrated. Single-longitudinal-mode laser linewidth less than 0.5 pm was accomplished by unidirectional operation. The maximum output pulse energy was 437 µJ and the pulse width was 43 ns when Cr4+:YAG with an initial transmission of 61% was used.
Diode-pumped solid state lasers (DPSSLs) for Inertial Fusion Energy (IFE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krupke, W.F.
The status of diode-pumped, transverse-gas-flow cooled, Yb-S-FAP slab lasers is reviewed. Recently acquired experimental performance data are combined with a cost/performance IFE driver design code to define a cost-effective development path for IFE DPSSL drivers. Specific design parameters are described for the Mercury 100J/10 Hz, 1 kW system (first in the development scenario).
5-nJ Femtosecond Ti3+:sapphire laser pumped with a single 1 W green diode
NASA Astrophysics Data System (ADS)
Muti, Abdullah; Kocabas, Askin; Sennaroglu, Alphan
2018-05-01
We report a Kerr-lens mode-locked, extended-cavity femtosecond Ti3+:sapphire laser directly pumped at 520 nm with a 1 W AlInGaN green diode. To obtain energy scaling, the short x-cavity was extended with a q-preserving multi-pass cavity to reduce the pulse repetition rate to 5.78 MHz. With 880 mW of incident pump power, we obtained as high as 90 mW of continuous-wave output power from the short cavity by using a 3% output coupler. In the Kerr-lens mode-locked regime, the extended cavity produced nearly transform-limited 95 fs pulses at 776 nm. The resulting energy and peak power of the pulses were 5.1 nJ and 53 kW, respectively. To our knowledge, this represents the highest pulse energy directly obtained to date from a mode-locked, single-diode-pumped Ti3+:sapphire laser.
Efficient single-mode (TEM{sub 00}) Nd : YVO{sub 4} laser with longitudinal 808-nm diode pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donin, V I; Yakovin, D V; Yakovin, M D
2013-10-31
A single-mode Nd : YVO{sub 4} laser with unidirectional longitudinal pumping by laser diodes with λ = 808 nm and a power of 40 W is studied. In the TEM{sub 00} mode, the output laser power is 24 W with the optical efficiency η{sub opt} = 57.1 % (slope efficiency 63.3 %), which, as far as we know, is the best result for Nd{sup 3+} : YVO{sub 4} lasers with longitudinal pumping at λ = 808 nm from one face of the active crystal. Estimates of thermal effects show that, using a Nd : YVO{sub 4} crystal (length 20 mm,more » diameter 3 mm, dopant concentration 0.27 at%) with two undoped ends and bidirectional diode pumping with a total power of 170 W, one can obtain an output power of ∼100 W in the TEM{sub 00} mode from one active element. (lasers)« less
Femtosecond Nonlinearities in Indium Gallium Arsenic Phosphide Diode Lasers
NASA Astrophysics Data System (ADS)
Hall, Katherine Lavin
Semiconductor optical amplifiers are receiving increasing attention for possible applications to broadband optical communication and switching systems. In this thesis we report the results of an extensive experimental study of the ultrafast gain and refractive index nonlinearities in 1.5 μm InGaAsP laser diode amplifiers. The temporal resolution afforded by the femtosecond optical pulses used in these experiments allows us to study carrier interactions with other carriers as well as carrier interactions with the lattice. The 100-200 fs optical pulses used in the pump -probe experiments are generated by an Additive Pulse Modelocked color center laser. The measured group velocity dispersion in the diodes ranged from -0.6 to -0.95 mu m^{-1 }. Differences in the group velocity for TE - and TM-polarized pulses suggested that cross-polarized pump-probe pulses walk off from each other in the diode. This walk-off can diminish the time resolution of some experiments. A novel heterodyne pump-probe technique was developed to distinguish collinear, copolarized, pump and probe pulses that were nominally at the same wavelength. Comparing cross-polarized and copolarized pump-probe results yielded new information about the physical mechanisms responsible for nonlinear gain in the diodes. We observed a gain compression across the entire bandwidth of the diode, associated with carrier heating. The hot carrier distribution cooled back to the lattice temperature with a 0.6 to 1.0 ps time constant, depending on the device structure. In addition, we observed a 0.1 to 0.25 ps delay in onset of carrier heating. Large gain compression due to two photon absorption was also observed. A small portion of the nonlinear gain is attributed to spectral hole burning. Pulsewidth-dependent output saturation energies were explained by a rate equation model that included the effect of carrier heating. Measurements of pump-induced probe phase changes revealed index nonlinearities due to delayed carrier heating and an instantaneous electronic, or virtual process. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).
New Analysis and Design of a RF Rectifier for RFID and Implantable Devices
Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei
2011-01-01
New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from −15 dBm to −4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitableto passive UHF RFID tag IC and implantable devices. PMID:22163968
New analysis and design of a RF rectifier for RFID and implantable devices.
Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei
2011-01-01
New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from -15 dBm to -4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitable to passive UHF RFID tag IC and implantable devices.
Stimulated emission in quantum well laser diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blood, P.
1989-07-03
We observe that stimulated emission from inhomogeneously pumped quantum well laser diodes is shifted down in energy compared with the subband transition energy. Measured spontaneous emission spectra show that this stimulated emission is due to band-to-band transitions shifted by renormalization at high injected carrier densities, and we suggest that this same mechanism explains reported observations of stimulated emission from inhomogeneously photopumped structures which previously have been interpreted as evidence for longitudinal optic (LO) phonon participation. We show that LO phonon participation cannot account for the photon energy of stimulated emission from conventional homogeneously pumped quantum well laser diodes.
Compact, diode-pumped, solid-state lasers for next generation defence and security sensors
NASA Astrophysics Data System (ADS)
Silver, M.; Lee, S. T.; Borthwick, A.; McRae, I.; Jackson, D.; Alexander, W.
2015-06-01
Low-cost semiconductor laser diode pump sources have made a dramatic impact in sectors such as advanced manufacturing. They are now disrupting other sectors, such as defence and security (D&S), where Thales UK is a manufacturer of sensor systems for application on land, sea, air and man portable. In this talk, we will first give an overview of the market trends and challenges in the D&S sector. Then we will illustrate how low cost pump diodes are enabling new directions in D&S sensors, by describing two diode pumped, solid- state laser products currently under development at Thales UK. The first is a new generation of Laser Target Designators (LTD) that are used to identify targets for the secure guiding of munitions. Current systems are bulky, expensive and require large battery packs to operate. The advent of low cost diode technology, merged with our novel solid-state laser design, has created a designator that will be the smallest, lowest cost, STANAG compatible laser designator on the market. The LTD delivers greater that 50mJ per pulse up to 20Hz, and has compact dimensions of 125×70×55mm. Secondly, we describe an ultra-compact, eye-safe, solid-state laser rangefinder (LRF) with reduced size, weight and power consumption compared to existing products. The LRF measures 100×55×34mm, weighs 200g, and can range to greater than 10km with a single laser shot and at a reprate of 1Hz. This also leverages off advances in laser pump diodes, but also utilises low cost, high reliability, packaging technology commonly found in the telecoms sector. As is common in the D&S sector, the products are designed to work in extreme environments, such as wide temperature range (-40 to +71°C) and high levels of shock and vibration. These disruptive products enable next- generation laser sensors such as rangefinders, target designators and active illuminated imagers.
NASA Astrophysics Data System (ADS)
Stock, Karl; Wurm, Holger; Hausladen, Florian
2016-02-01
Flashlamp pumped Er:YAG lasers are successfully used clinically for both precise soft and hard tissue ablation. Since several years a novel diode pumped Er:YAG laser system (Pantec Engineering AG) is available, with mean laser power up to 40 W and pulse repetition rate up to 1 kHz. The aim of the study was to investigate the suitability of the laser system specifically for stapedotomy. Firstly an experimental setup was realized with a beam focusing unit and a computer controlled translation stage to move the samples (slices of porcine bone) with a defined velocity while irradiation with various laser parameters. A microphone was positioned in a defined distance to the ablation point and the resulting acoustic signal of the ablation process was recorded. For comparison, measurements were also performed with a flash lamp pumped Er:YAG laser system. After irradiation the resulting ablation quality and efficacy were determined using light microscopy. Using a high speed camera and "Töpler-Schlierentechnik" the cavitation bubble in water after perforation of a bone slice was investigated. The results show efficient bone ablation using the diode pumped Er:YAG laser system. Also a decrease of the sound level and of the cavitation bubble volume was observed with decreasing pulse duration. Higher repetition rates lead to a slightly increase of thermal side effects but have no influence on the ablation efficiency. In conclusion, these first experiments demonstrate the high potential of the diode pumped Er:YAG laser system for use in middle ear surgery.
Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm
NASA Astrophysics Data System (ADS)
Zhu, H. Y.; Xu, C. W.; Zhang, J.; Tang, D. Y.; Luo, D. W.; Duan, Y. M.
2013-07-01
Highly efficient CW operation of diode-end-pumped Nd:YAG ceramic lasers at 946 nm is experimentally demonstrated. When a 5 mm long in-house fabricated Nd:YAG ceramic was used as the gain medium, a maximum output power of 10.5 W was obtained under an incident pump power of 35 W, corresponding to an optical conversion efficiency of 30%, while, when a 3 mm long ceramic sample was used, a maximum output power of 8.7 W was generated with a slope efficiency of 65% with respect to the absorbed pump power. Both the optical conversion efficiency and slope efficiency are the highest results reported so far for the diode-pumped 946 nm lasers.
Zhang, H N; Chen, X H; Wang, Q P; Zhang, X Y; Chang, J; Gao, L; Shen, H B; Cong, Z H; Liu, Z J; Tao, X T; Li, P
2014-05-01
A diode-pumped actively Q-switched Raman laser employing BaWO4 as the Raman active medium and a ceramic Nd:YAG laser operating at 1444 nm as the pump source is demonstrated. The first-Stokes-Raman generation at 1666 nm is achieved. With a pump power of 20.3 W and pulse repetition frequency rate of 5 kHz, a maximum output power of 1.21 W is obtained, which is the highest output power for a 1.6 μm Raman laser. The corresponding optical-to-optical conversion efficiency is 6%; the pulse energy and peak power are 242 μJ and 8.96 kW, respectively.
808-nm diode-pumped dual-wavelength passively Q-switched Nd:LuLiF4 laser with Bi-doped GaAs
NASA Astrophysics Data System (ADS)
Li, S. X.; Li, T.; Li, D. C.; Zhao, S. Z.; Li, G. Q.; Hang, Y.; Zhang, P. X.; Li, X. Y.; Qiao, H.
2015-09-01
Diode-pumped CW and passively Q-switched Nd:LuLiF4 lasers with stable, synchronous dual-wavelength operations near 1047 and 1053 nm were demonstrated for the first time. The maximal CW output power of 821 mW was obtained at an incident pump power of 6.52 W. Employing high quality Bi-doped GaAs as saturable absorber, stable dual-wavelength Q-switched operation was realized. Under 6.52 W incident pump power, the minimal pulse duration of 1.5 ns, the largest single pulse energy of 11.32 μJ, and the highest peak power of 7.25 kW were achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A.J.; Marshall, C.D.; Schaffers, K.I.
Ytterbium-doped Sr{sub 5}(PO{sub 4}){sub 3}F (S-FAP) has been shown to be a useful material for diode pumping, since it displays high gain, low loss, and a long radiative lifetime. One of the issues with S-FAP is that it has a relatively narrow absorption bandwidth ({approximately}5 nm) at 900 nm, the diode-pumping wavelength, while the diode`s output bandwidth can be large ({approximately}10 nm). By changing the host slightly, the absorption feature can be broadened to better match the pump bandwidth. Four mixed crystal boules of Yb{sup 3+}:Sr{sub 5{minus}x}Ba{sub x}(PO{sub 4}){sub 3}F were grown by the Czochralski method with x = 0.25,more » 0.5, 1, and 2. The bandwidth of the 900-nm absorption feature was found to grow with increasing barium concentration from 4.7 nm to a maximum of 15.9 nm. Emission spectra showed a similar bandwidth increase with barium content from 4.9 nm to a maximum of 10 nm. Emission cross sections for these materials were deduced by the methods of reciprocity, the Einstein method, and small-signal gain. The absorption feature`s homogeneity was probed using a tunable pump source which qualitatively showed that the barium-broadened lines were at least partly inhomogeneous. Each of these materials lased with a variety of output couplers. This family of materials was found to provide suitable laser hosts where a broader absorption and/or emission bandwidth is desired.« less
Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator.
Wang, Sha; Wang, Yan-Biao; Feng, Guo-Ying; Zhou, Shou-Huan
2016-02-01
We theoretically and experimentally report and evaluate a novel split laser-diode (LD) double-end pumped Yb:KYW ultrafast oscillator aimed at improving the performance of an ultrafast laser. Compared to a conventional unpolarized single-LD end-pumped ultrafast laser system, we improve the laser performance such as absorption efficiency, slope efficiency, cw mode-locking threshold, and output power by this new structure LD-pumped Yb:KYW ultrafast laser. Experiments were carried out with a 1 W output fiber-coupled LD. Experimental results show that the absorption increases from 38.7% to 48.4%, laser slope efficiency increases from 18.3% to 24.2%, cw mode-locking threshold decreases 12.7% from 630 to 550 mW in cw mode-locking threshold, and maximum output-power increases 28.5% from 158.4 to 221.5 mW when we switch the pump scheme from an unpolarized single-end pumping structure to a split LD double-end pumping structure.
Improvement in reduced-mode (REM) diodes enable 315 W from 105-μm 0.15-NA fiber-coupled modules
NASA Astrophysics Data System (ADS)
Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Martinsen, R.; Urbanek, W.; Zhang, S.
2018-02-01
High-power, high-brightness diode lasers have been pursued for many applications including fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. In particular, 915 nm - and 976 nm diodes are of interest as diode pumps for the kilowatt CW fiber lasers. As a result, there have been many technical thrusts for driving the diode lasers to have both high power and high brightness to achieve high-performance and reduced manufacturing costs. This paper presents our continued progress in the development of high brightness fiber-coupled product platform, nLIGHT element®. In the past decade, the power coupled into a single 105 μm and 0.15 NA fiber has increased by over a factor of ten through improved diode laser brightness and the development of techniques for efficiently coupling multiple emitters. In this paper, we demonstrate further brightness improvement and power-scaling enabled by both the rise in chip brightness/power and the increase in number of chips coupled into a given numerical aperture. We report a new chip technology using x-REM design with brightness as high as 4.3 W/mm-mrad at a BPP of 3 mm-mrad. We also report record 315 W output from a 2×12 nLIGHT element with 105 μm diameter fiber using x-REM diodes and these diodes will allow next generation of fiber-coupled product capable of 250W output power from 105 μm/0.15 NA beam at 915 nm.
Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes
NASA Astrophysics Data System (ADS)
Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko
2018-05-01
We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.
Diode-pumped continuous-wave Nd:Gd3Ga5O12 lasers at 1406, 1415 and 1423 nm
NASA Astrophysics Data System (ADS)
Lin, Haifeng; Zhu, Wenzhang; Xiong, Feibing; Ruan, Jianjian
2018-05-01
We report a diode-pumped continuous-wave Nd:Gd3Ga5O12 (GGG) laser operating at 1.4 μm spectral region. A dual-wavelength laser at 1423 and 1406 nm is achieved with output power of about 2.59 W at absorbed pump power of 13.4 W. Further increasing the pump power, simultaneous tri-wavelength laser at 1423, 1415 and 1406 nm is also obtained with a maximum output power of 3.96 W at absorbed pump power of 18.9 W. Single-wavelength lasing is also realized at the three emission lines using an intracavity etalon. The laser result is believed to be the highest output power achieved in Nd:GGG crystal, at present, to the best of our knowledge.
Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd:YVO4 laser
NASA Astrophysics Data System (ADS)
Lü, Yanfei; Xia, Jing; Liu, Huilong; Pu, Xiaoyun
2014-10-01
We report a diode-pumped continuous-wave (cw) triple-wavelength Nd:YVO4 laser operating at 914, 1084, and 1086 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous triple-wavelength laser. Using a T-shaped cavity, we realized an efficient triple-wavelength operation at 4F3/2→4I9/2 and 4F3/2→4I11/2 transitions for Nd:YVO4 crystal, simultaneously. At an absorbed pump power of 16 W (or 25 W of incident pump power), the maximum output power was 2.3 W, which included 914 nm, 1084 nm, and 1086 nm three wavelengths, and the optical conversion efficiency with respect to the absorbed pump power was 14.4%.
Hetzl, Martin; Wierzbowski, Jakob; Hoffmann, Theresa; Kraut, Max; Zuerbig, Verena; Nebel, Christoph E; Müller, Kai; Finley, Jonathan J; Stutzmann, Martin
2018-06-13
Solid-state quantum emitters embedded in a semiconductor crystal environment are potentially scalable platforms for quantum optical networks operated at room temperature. Prominent representatives are nitrogen-vacancy (NV) centers in diamond showing coherent entanglement and interference with each other. However, these emitters suffer from inefficient optical outcoupling from the diamond and from fluctuations of their charge state. Here, we demonstrate the implementation of regular n-type gallium nitride nanowire arrays on diamond as photonic waveguides to tailor the emission direction of surface-near NV centers and to electrically control their charge state in a p-i-n nanodiode. We show that the electrical excitation of single NV centers in such a diode can efficiently replace optical pumping. By the engineering of the array parameters, we find an optical read-out efficiency enhanced by a factor of 10 and predict a lateral NV-NV coupling 3 orders of magnitude stronger through evanescently coupled nanowire antennas compared to planar diamond not covered by nanowires, which opens up new possibilities for large-scale on-chip quantum-computing applications.
Detection system of capillary array electrophoresis microchip based on optical fiber
NASA Astrophysics Data System (ADS)
Yang, Xiaobo; Bai, Haiming; Yan, Weiping
2009-11-01
To meet the demands of the post-genomic era study and the large parallel detections of epidemic diseases and drug screening, the high throughput micro-fluidic detection system is needed urgently. A scanning laser induced fluorescence detection system based on optical fiber has been established by using a green laser diode double-pumped solid-state laser as excitation source. It includes laser induced fluorescence detection subsystem, capillary array electrophoresis micro-chip, channel identification unit and fluorescent signal processing subsystem. V-shaped detecting probe composed with two optical fibers for transmitting the excitation light and detecting induced fluorescence were constructed. Parallel four-channel signal analysis of capillary electrophoresis was performed on this system by using Rhodamine B as the sample. The distinction of different samples and separation of samples were achieved with the constructed detection system. The lowest detected concentration is 1×10-5 mol/L for Rhodamine B. The results show that the detection system possesses some advantages, such as compact structure, better stability and higher sensitivity, which are beneficial to the development of microminiaturization and integration of capillary array electrophoresis chip.
Performance measurements of hybrid PIN diode arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jernigan, J.G.; Arens, J.F.; Kramer, G.
We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format having 10 {times} 64 pixels, each 120 {mu}m square, and the other format having 256 {times} 256 pixels, each 30 {mu}m square. In both cases, the thickness of the PIN diode layer is 300 {mu}m. Measurementsmore » of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 13 figs.« less
High-slope-efficiency 2.06 μm Ho: YLF laser in-band pumped by a fiber-coupled broadband diode.
Ji, Encai; Liu, Qiang; Nie, Mingming; Cao, Xuezhe; Fu, Xing; Gong, Mali
2016-03-15
We first demonstrate the laser performance of a compact 2.06 μm Ho: YLF laser resonantly pumped by a broadband fiber-coupled diode. In continuous-wave (CW) operation, maximum output power of 1.63 W, corresponding to a slope efficiency of 89.2%, was obtained with a near diffraction-limited beam quality. In actively Q-switched operation, maximum pulse energy of 1.1 mJ was achieved at the repetition frequency of 100 Hz. The minimum pulse duration was 43 ns. The performance in both the CW and Q-switched regimes indicates that the current fiber-coupled diode in-band pumped Ho: YLF laser has great potential in certain conditions that require several watts of output power or several millijoules of short pulse energy.
NASA Astrophysics Data System (ADS)
Li, B.; Zhao, L.; Zhang, Y. B.; Zheng, Q.; Zhao, Y.; Yao, Y.
2013-03-01
Efficient and compact green-yellow laser output at 543 nm is generated by intracavity frequency doubling of a CW diode-pumped Nd:LuVO4 laser at 1086 nm under the condition of suppressing the higher gain transition near 1064 nm. With 16 W of diode pump power and the frequency-doubling crystal LBO, as high as 2.17 W of CW output power at 543 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 13.6% and the output power stability over 8 hours is better than 2.86%. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by intracavity frequency doubling of a diode pumped Nd:LuVO4 laser at 1086 nm.
Continuous-wave laser operation at 743 and 753 nm based on a diode-pumped c-cut Pr:YAlO3 crystal
NASA Astrophysics Data System (ADS)
Lin, Xiuji; Huang, Xiaoxu; Liu, Bin; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Li, Dongzhen; Liu, Jian; Xu, Jun
2018-02-01
We report on blue-diode-pumped continuous-wave Pr:YAlO3 (YAP) crystal lasers. Using a b-cut sample, a maximum output power of 181 mW is achieved at ∼747 nm with slope efficiency of 12.7% with respect to the absorbed power. Using a c-cut sample, a dual-wavelength laser at ∼743 and ∼753 nm is obtained with a total maximum output power of 72 mW by using the blue diode pumping, for the first time to our knowledge. These laser emissions are all linearly polarized and M2 factors of these output laser beams are also measured. YAP is experimentally verified to be one of effective oxide hosts for Pr-doped visible laser operation besides its fluoride counterparts.
NASA Astrophysics Data System (ADS)
Šulc, J.; Jelínková, H.; Ryba-Romanowski, W.; Lukasiewicz, T.
2009-03-01
Properties of new pulsed-diode-pumped Er:YVO4 and Er:YVO4+CaO microchip lasers working in an ``eye-safe'' spectral region were investigated. As a pumping source, a fiber coupled (core diameter-200 μm) laser diode emitting radiation at wavelength 976 nm was used. The laser diode was operating in pulsed regime with 3 ms pulse width, and 20 Hz repetition rate. The result obtained was 175 mW and 152 mW output peak power for the Er:YVO4 and Er:YVO4+CaO lasers, respectively. The maximal efficiency with respect to the absorbed power was ~ 5%. The laser emission for Er:YVO4 microchip was observed in detail in the range 1593 nm to 1604 nm with respect to pumping. However, for Er:YVO4+CaO crystal only 1604 nm was generated.
Yb:YAG Lasers for Space Based Remote Sensing
NASA Technical Reports Server (NTRS)
Ewing, J.J.; Fan, T. Y.
1998-01-01
Diode pumped solid state lasers will play a prominent role in future remote sensing missions because of their intrinsic high efficiency and low mass. Applications including altimetry, cloud and aerosol measurement, wind velocity measurement by both coherent and incoherent methods, and species measurements, with appropriate frequency converters, all will benefit from a diode pumped primary laser. To date the "gold standard" diode pumped Nd laser has been the laser of choice for most of these concepts. This paper discusses an alternate 1 micron laser, the YB:YAG laser, and its potential relevance for lidar applications. Conceptual design analysis and, to the extent possible at the time of the conference, preliminary experimental data on the performance of a bread board YB:YAG oscillator will be presented. The paper centers on application of YB:YAG for altimetry, but extension to other applications will be discussed.
InGaAs/InP heteroepitaxial Schottky barrier diodes for terahertz applications
NASA Technical Reports Server (NTRS)
Bhapkar, Udayan V.; Li, Yongjun; Mattauch, Robert J.
1992-01-01
This paper explores the feasibility of planar, sub-harmonically pumped, anti-parallel InGaAs/InP heteroepitaxial Schottky diodes for terahertz applications. We present calculations of the (I-V) characteristics of such diodes using a numerical model that considers tunneling. We also present noise and conversion loss predictions of diode mixers operated at 500 GHz, and obtained from a multi-port mixer analysis, using the I-V characteristics predicted by our model. Our calculations indicate that InGaAs/InP heteroepitaxial Schottky barrier diodes are expected to have an I-V characteristic with an ideality factor comparable to that of GaAs Schottky diodes. However, the reverse saturation current of InGaAs/InP diodes is expected to be much greater than that of GaAs diodes. These predictions are confirmed by experiment. The mixer analyses predict that sub-harmonically pumped anti-parallel InGaAs/InP diode mixers are expected to offer a 2 dB greater conversion loss and a somewhat higher single sideband noise temperature than their GaAs counterparts. More importantly, the InGaAs/InP devices are predicted to require only one-tenth of the local oscillator power required by similar GaAs diodes.
Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films
NASA Astrophysics Data System (ADS)
Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan
2004-03-01
Photoinduced birefringence in bacteriorhodopsin films was investigated using pump-probe method and its application for photonic switching explored. A diode-pumped second-harmonic YAG laser was used as a pumping beam and a diode laser at λ=660 nm was used as a probing beam. The pump and probe beams overlap at the sample. Without the pumping beam, the probing light cannot transmit the analyzer to the detector. However, due to the photoinduced anisotropy, a portion of the probing light is detected when the pumping beam is present. Since λ=660 nm is far from the absorption peak (˜570 nm) of the ground state, the photoinduced birefringence predominates. Using the intensity-dependent photoinduced birefringence in a bacteriorhodopsin film, we have demonstrated a photonic switch with ˜1000:1 contrast ratio, ˜0.6 s rise time and ˜1.5 s decay time.
Injection chaining of diode-pumped single-frequency ring lasers for free-space communication
NASA Technical Reports Server (NTRS)
Cheng, E. A. P.; Kane, T. J.; Wallace, R. W.; Cornwell, D. M., Jr.
1991-01-01
A high-power three-stage laser suitable for use in a space communication system has been built. This laser uses three diode-pumped Nd:YAG oscillators coherently combined using the technique of injection chaining. All three oscillators are in one compact and permanently aligned package, and are actively frequency locked to provide CW single frequency output. The three stages provide the redundancy desirable for space communications.
Gibbs, B F; Alli, I; Mulligan, C N
1996-02-23
A method for the determination of aspartame (N-L-alpha-aspartyl-L-phenylalanine methyl ester) and its metabolites, applicable on a routine quality assurance basis, is described. Liquid samples (diet Coke, 7-Up, Pepsi, etc.) were injected directly onto a mini-cartridge reversed-phase column on a high-performance liquid chromatographic system, whereas solid samples (Equal, hot chocolate powder, pudding, etc.) were extracted with water. Optimising chromatographic conditions resulted in resolved components of interest within 12 min. The by-products were confirmed by mass spectrometry. Although the method was developed on a two-pump HPLC system fitted with a diode-array detector, it is straightforward and can be transformed to the simplest HPLC configuration. Using a single-piston pump (with damper), a fixed-wavelength detector and a recorder/integrator, the degradation of products can be monitored as they decompose. The results obtained were in harmony with previously reported tedious methods. The method is simple, rapid, quantitative and does not involve complex, hazardous or toxic chemistry.
Outgassing rate analysis of a velvet cathode and a carbon fiber cathode
NASA Astrophysics Data System (ADS)
Li, An-Kun; Fan, Yu-Wei; Qian, Bao-Liang; Zhang, Zi-cheng; Xun, Tao
2017-11-01
In this paper, the outgassing-rates of a carbon fiber array cathode and a polymer velvet cathode are tested and discussed. Two different methods of measurements are used in the experiments. In one scheme, a method based on dynamic equilibrium of pressure is used. Namely, the cathode works in the repetitive mode in a vacuum diode, a dynamic equilibrium pressure would be reached when the outgassing capacity in the chamber equals the pumping capacity of the pump, and the outgassing rate could be figured out according to this equilibrium pressure. In another scheme, a method based on static equilibrium of pressure is used. Namely, the cathode works in a closed vacuum chamber (a hard tube), and the outgassing rate could be calculated from the pressure difference between the pressure in the chamber before and after the work of the cathode. The outgassing rate is analyzed from the real time pressure evolution data which are measured using a magnetron gauge in both schemes. The outgassing rates of the carbon fiber array cathode and the velvet cathode are 7.3 ± 0.4 neutrals/electron and 85 ± 5 neutrals/electron in the first scheme and 9 ± 0.5 neutrals/electron and 98 ± 7 neutrals/electron in the second scheme. Both the results of two schemes show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode under similar conditions, which shows that this carbon fiber array cathode is a promising replacement of the velvet cathode in the application of magnetically insulated transmission line oscillators and relativistic magnetrons.
SU-F-T-270: A Technique for Modeling a Diode Array Into the TPS for Lung SBRT Patient Specific QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curley, C; Leventouri, T; Ouhib, Z
2016-06-15
Purpose: To accurately match the treatment planning system (TPS) with the measurement environment, where quality assurance (QA) devices are used to collect data, for lung Stereotactic Body Radiation Therapy (SBRT) patient specific QA. Incorporation of heterogeneities is also studied. Methods: Dual energy computerized tomography (DECT) and single energy computerized tomography (SECT) were used to model phantoms incorporating a 2-D diode array into the TPS. A water-equivalent and a heterogeneous phantom (simulating the thoracic region of a patient) were studied. Monte Carlo and pencil beam planar dose distributions were compared to measured distributions. Composite and individual fields were analyzed for normallymore » incident and planned gantry angle deliveries. γ- analysis was used with criteria 3% 3mm, 2% 2mm, and 1% 1mm. Results: The Monte Carlo calculations for the DECT resulted in improved agreements with the diode array for 46.4% of the fields at 3% 3mm, 85.7% at 2% 2mm, and 92.9% at 1% 1mm.For the SECT, the Monte Carlo calculations gave no agreement for the same γ-analysis criteria. Pencil beam calculations resulted in lower agreements with the diode array in the TPS. The DECT showed improvements for 14.3% of the fields at 3% 3mm and 2% 2mm, and 28.6% at 1% 1mm.In SECT comparisons, 7.1% of the fields at 3% 3mm, 10.7% at 2% 2mm, and 17.9% at 1% 1mm showed improved agreements with the diode array. Conclusion: This study demonstrates that modeling the diode array in the TPS is viable using DECT with Monte Carlo for patient specific lung SBRT QA. As recommended by task groups (e.g. TG 65, TG 101, TG 244) of the American Association of Physicists in Medicine (AAPM), pencil beam algorithms should be avoided in the presence of heterogeneous materials, including a diode array.« less
125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser.
Yu, J; Singh, U N; Barnes, N P; Petros, M
1998-05-15
We describe a diode-pumped, room-temperature Ho:Tm:YLF power oscillator with an optical-to-optical efficiency of 0.03. A Q -switched output energy of as much as 125 mJ at 6 Hz with a pulse width of 170 ns was obtained. Single-frequency, nearly transform-limited operation of the laser was achieved by injection seeding. Laser performance as a function of laser rod temperature and pump intensity was also investigated. The high power and high beam quality of this laser make it well suited for use as a coherent wind lidar transmitter on a space platform.
Diode pumped Yb:CN laser at 1082 nm and intracavity doubling to the green spectral range
NASA Astrophysics Data System (ADS)
Liu, B.; Li, Y. L.; Jiang, H. L.
2011-08-01
A diode pumped Yb:CaNb2O6 (Yb:CN) laser at 1082 nm with a maximum output of 1.35 W at 13.3 W pump power has been demonstrated. The slope efficiency was 12.4%. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a maximum green power of 374 mW by using a LiB3O5 (LBO) nonlinear crystal. To the best of our knowledge, this is the first report on continuous wave (CW) green generation by intracavity frequency doubling Yb:CN laser.
Effect of crystal length on the thermal characteristic in Nd: YLF laser with 20W diode pumped
NASA Astrophysics Data System (ADS)
Yahya, K. A.; Hussein, O. A.; Mustafa, O. H.
2016-03-01
Theoretical results are reported on thermal effects along the π- 1047nm and σ- 1053nm polarizations in a cut Nd: YLF rod crystal by using 20W Diode -End-pumped. The crystal length effects on the fraction of absorbed pump radiation converted into heat, radial temperature distribution, and the change in a radial refractive index. The result from this study has shown that a maximum fraction converted into heat is calculated to be around 24% and thermal effects of π-polarized 1047 nm stronger than σ-polarized 1053 nm.
Highly efficient and high-power diode-pumped femtosecond Yb:LYSO laser
NASA Astrophysics Data System (ADS)
Tian, Wenlong; Wang, Zhaohua; Zhu, Jiangfeng; Zheng, Lihe; Xu, Jun; Wei, Zhiyi
2017-04-01
A diode-pumped high-power femtosecond Yb:LYSO laser with high efficiency is demonstrated. With a semiconductor saturable absorber mirror for passive mode-locking and a Gires-Tournois interferometer mirror for intracavity dispersion compensation, stable mode-locking pulses of 297 fs duration at 1042 nm were obtained. The maximum average power of 3.07 W was realized under 5.17 W absorbed pump power, corresponding to as high as 59.4% opt-opt efficiency. The single pulse energy and peak power are about 35.5 nJ and 119.5 kW, respectively.
Diode-pumped solid-state laser driver experiments for inertial fusion energy applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C.D.; Payne, S.A.; Emanuel, M.E.
Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) amplifier.more » Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0{times}10{sup {minus}20} cm{sup 2}. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6{times}6{times}44 mm{sup 3} Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to {approximately}0.5 J per 1 ms pulse from a 3{times}3{times}30 mm{sup 3} rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 {mu}s pulses.« less
Short range laser obstacle detector. [for surface vehicles using laser diode array
NASA Technical Reports Server (NTRS)
Kuriger, W. L. (Inventor)
1973-01-01
A short range obstacle detector for surface vehicles is described which utilizes an array of laser diodes. The diodes operate one at a time, with one diode for each adjacent azimuth sector. A vibrating mirror a short distance above the surface provides continuous scanning in elevation for all azimuth sectors. A diode laser is synchronized with the vibrating mirror to enable one diode laser to be fired, by pulses from a clock pulse source, a number of times during each elevation scan cycle. The time for a given pulse of light to be reflected from an obstacle and received is detected as a measure of range to the obstacle.
High-efficient Nd:YAG microchip laser for optical surface scanning
NASA Astrophysics Data System (ADS)
Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav
2017-12-01
A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.
Stacked, filtered multi-channel X-ray diode array
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacNeil, Lawrence; Dutra, Eric; Raphaelian, Mark
2015-08-01
There are many types of X-ray diodes used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need exists for a low-cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustnessmore » and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. The authors fielded individual and stacked systems at several national facilities as ancillary "ride-along" diagnostics to test and improve the design usability. This paper presents the MiniXRD system performance, which supports consideration as a viable low-costalternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.« less
Efficient generation of 509 nm light by sum-frequency mixing between two tapered diode lasers
NASA Astrophysics Data System (ADS)
Tawfieq, Mahmoud; Jensen, Ole Bjarlin; Hansen, Anders Kragh; Sumpf, Bernd; Paschke, Katrin; Andersen, Peter E.
2015-03-01
We demonstrate a concept for visible laser sources based on sum-frequency generation of beam combined tapered diode lasers. In this specific case, a 1.7 W sum-frequency generated green laser at 509 nm is obtained, by frequency adding of 6.17 W from a 978 nm tapered diode laser with 8.06 W from a 1063 nm tapered diode laser, inside a periodically poled MgO doped lithium niobate crystal. This corresponds to an optical to optical conversion efficiency of 12.1%. As an example of potential applications, the generated nearly diffraction-limited green light is used for pumping a Ti:sapphire laser, thus demonstrating good beam quality and power stability. The maximum output powers achieved when pumping the Ti:sapphire laser are 226 mW (CW) and 185 mW (mode-locked) at 1.7 W green pump power. The optical spectrum emitted by the mode-locked Ti:sapphire laser shows a spectral width of about 54 nm (FWHM), indicating less than 20 fs pulse width.
Nd:YLF laser for airborne/spaceborne laser ranging
NASA Technical Reports Server (NTRS)
Dallas, Joseph L.; Selker, Mark D.
1993-01-01
In order to meet the need for light weight, long lifetime, efficient, short pulse lasers, a diode-pumped, Nd:YLF oscillator and regenerative amplifier is being developed. The anticipated output is 20 mJ per 10 picosecond pulse, running at a repetition rate of 40 Hz. The fundamental wavelength is at 1047 nm. The oscillator is pumped by a single laser diode bar and mode locked using an electro-optic, intra-cavity phase modulator. The output from the oscillator is injected as a seed into the regenerative amplifier. The regenerative amplifier laser crystal is optically pumped by two 60W quasi-cw laser diode bars. Each diode is collimated using a custom designed micro-lens bar. The injected 10 ps pulse from the oscillator is kept circulating within the regenerative amplifier until this nanojoule level seed pulse is amplified to 2-3 millijoules. At this point the pulse is ejected and sent on to a more standard single pass amplifier where the energy is boosted to 20 mJ. The footprint of the entire laser (oscillator-regenerative amplifier-amplifier) will fit on a 3 by 4 ft. optical pallet.
Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr, Nd:YAG microchip lasers
NASA Astrophysics Data System (ADS)
Dong, J.; Ma, J.; Ren, Y. Y.; Xu, G. Z.; Kaminskii, A. A.
2013-08-01
Direct generation of higher-order Ince-Gaussian (IG) beams from laser-diode end-pumped Cr, Nd:YAG self-Q-switched microchip lasers was achieved with high efficiency and high repetition rate. An average output power of over 2 W was obtained at an absorbed pump power of 8.2 W a corresponding optical-to-optical efficiency of 25% was achieved. Various IG modes with nanosecond pulse width and peak power of over 2 kW were obtained in laser-diode pumped Cr, Nd:YAG microchip lasers under different pump power levels by applying a tilted, large area pump beam. The effect of the inversion population distribution induced by the tilted pump beam and nonlinear absorption of Cr4+-ions for different pump power levels on the oscillation of higher-order IG modes in Cr, Nd:YAG microchip lasers is addressed. The higher-order IG mode oscillation has a great influence on the laser performance of Cr, Nd:YAG microchip lasers.
A portable lidar using a diode-pumped YAG laser
NASA Technical Reports Server (NTRS)
Takeuchi, N.; Okumura, H.; Sugita, T.; Matsumoto, H.; Yamaguchi, S.
1992-01-01
A Mie lidar system is technically established and is used for monitoring air pollution, stratospheric and boundary layer aerosol distribution, plume dispersion, visibility, and the study of atmospheric structure and cloud physics. However, a lidar system is not widely used because of its cumbersome handling and unwieldy portability. Although the author developed a laser diode lidar system based on RM-CW technique, it has a limit of measurement distance. Here we report the development of an all solid Mie lidar system using a diode-pumped Nd:YAG laser and a Si-APD detector. This was constructed as a prototype of a handy lidar system.
A ten-element array of individually addressable channeled-substrate-planar AlGaAs diode lasers
NASA Technical Reports Server (NTRS)
Carlin, D. B.; Goldstein, B.; Bednarz, J. P.; Harvey, M. G.; Dinkel, N. A.
1987-01-01
The fabrication of arrays of channeled-substrate-planar (CSP) AlGaAs diode lasers which emit up to 150 mW CW in a single spatial mode and are applicable to mulitchannel optical recording systems is described. The CSP diode lasers are incorporated in ten-array geometry, and each array is 1.95 nm in width and 100 microns in thickness and is cleaved to have a cavity length of 200 microns and coated to produce 90-percent reflectivity on the back facet and 10-percent reflectivity on the front facet. The array is attached to a thermoelectrically cooled submount. The optical output power versus input current characteristics for the array are evaluated, and the lateral far-field intensity profiles for each of the lasers (at 30 mW CW) and CW spectra of the lasers are analyzed.
NASA Astrophysics Data System (ADS)
Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya
2015-02-01
Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.
Tm:GGAG crystal for 2μm tunable diode-pumped laser
NASA Astrophysics Data System (ADS)
Šulc, Jan; Boháček, Pavel; Němec, Michal; Fibrich, Martin; Jelínková, Helena; Trunda, Bohumil; Havlák, Lubomír.; Jurek, Karel; Nikl, Martin
2016-04-01
The spectroscopy properties and wavelength tunability of diode pumped laser based on Tm-doped mixed gadolinium-gallium-aluminium garnet Gd3(GaxAl1-x)5O12 (Tm:GGAG) single crystal were investigated for the first time. The crystal was grown by Czochralski method in a slightly oxidative atmosphere using an iridium crucible. The tested Tm:GGAG sample was cut from the grown crystal boule perpendicularly to growth direction (c-axis). The composition of sample was determined using electron microprobe X-ray elemental analysis. For spectroscopy and laser experiments 3.5mm thick plane-parallel face-polished plate (without AR coatings) with composition Gd2.76Tm0.0736Ga2.67Al2.50O12 (2.67 at.% Tm/Gd) was used. A fiber (core diameter 400 μm, NA= 0.22) coupled laser diode (emission wavelength 786 nm) was used for longitudinal Tm:GGAG pumping. The laser diode was operating in the pulsed regime (10 ms pulse length, 10 Hz repetition rate, maximum power amplitude 18 W). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.8- 2.10 μm, HT @ 0.78 μm) and curved (r = 150mm) output coupler with a reflectivity of » 97% @ 1.8- 2.10 µm. The maximum laser output power amplitude 1.14W was obtained at wavelength 2003nm for absorbed pump power amplitude 4.12W. The laser slope efficiency was 37% in respect to absorbed pumping power. Wavelength tuning was accomplished by using 2mm thick MgF2 birefringent filter placed inside the laser resonator at the Brewster angle. The laser was continuously tunable over 180nm in a spectral region from 1856nm to 2036 nm.
High repetition-rate Q-switched and intracavity doubled diode-pumped Nd:YAG laser
NASA Technical Reports Server (NTRS)
Hemmati, Hamid; Lesh, James R.
1992-01-01
A Nd:YAG laser was end pumped with 2.2 W of continuous-wave (CW) diode laser output. Efficient operation of the laser at high repetition rates was emphasized. This laser provides 890 mW of TEM00 CW output at 1064 nm, and 340 mW of 532 nm average power at a Q-switched repetition rate of 25 kHz. Experimental data are compared with analysis.
NASA Technical Reports Server (NTRS)
Kane, Thomas J.
1990-01-01
The power spectrum of the relative intensity noise (RIN) of single-frequency diode-pumped Nd:YAG lasers is observed to be shot-noise limited at frequencies above 20 MHz for a photocurrent of up to 4.4 mA. Relaxation oscillations result in noise 60-70 dB above shot noise at a few hundred kHz. These relaxation oscillations have been suppressed using electronic feedback.
Solid state laser systems for space application
NASA Technical Reports Server (NTRS)
Kay, Richard B.
1994-01-01
Since the last report several things have happened to effect the research effort. In laser metrology, measurements using Michelson type interferometers with an FM modulated diode laser source have been performed. The discrete Fourier transform technique has been implemented. Problems associated with this technique as well as the overall FM scheme were identified. The accuracy of the technique is not at the level we would expect at this point. We are now investigating the effect of various types of noise on the accuracy as well as making changes to the system. One problem can be addressed by modifying the original optical layout. Our research effort was also expanded to include the assembly and testing of a diode pumped\\Nd:YAG laser pumped\\Ti sapphire laser for possible use in sounding rocket applications. At this stage, the diode pumped Nd:YAG laser has been assembled and made operational.
Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array
Beach, Raymond J.; Benett, William J.; Mills, Steven T.
1997-01-01
The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a "rack and stack" configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber.
Continued improvement in reduced-mode (REM) diodes enable 272 W from 105 μm 0.15 NA beam
NASA Astrophysics Data System (ADS)
Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Martinsen, R.; Urbanek, W.; Zhang, S.
2017-02-01
High-power, high-brightness diode lasers from 8xx nm to 9xx nm have been pursued in many applications including fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. In particular, 915 nm - 976 nm diodes are of interest as diode pumps for the kilowatt CW fiber lasers. Thus, there have been many technical efforts on driving the diode lasers to have both high power and high brightness to achieve high-performance and reduced manufacturing costs. This paper presents our continued progress in the development of high brightness fiber-coupled product platform, elementTM. In the past decade, the amount of power coupled into a single 105 μm and 0.15 NA fiber has increased by over a factor of ten through improved diode laser brilliance and the development of techniques for efficiently coupling multiple emitters into a single fiber. In this paper, we demonstrate the further brightness improvement and power-scaling enabled by both the rise in chip brightness/power and the increase in number of chips coupled into a given numerical aperture. We report a new x-REM design with brightness as high as 4.3 W/mm-mrad at a BPP of 3 mm-mrad. We also report the record 272W from a 2×9 elementTM with 105 μm/0.15 NA beam using x-REM diodes and a new product introduction at 200W output power from 105 μm/0.15 NA beam at 915 nm.
NASA Astrophysics Data System (ADS)
Liu, L.; Wang, H. Y.; Ning, Y.; Shen, C.; Si, L.; Yang, Y.; Bao, Q. L.; Ren, G.
2017-05-01
A sub-nanosecond seeded optical parametric generator (OPG) based on magnesium oxide-doped periodically poled lithium niobate (MgO:PPLN) crystal is presented. Pumped by an actively Q-switched diode-pumped 1 kHz, 1064 nm, Nd:YAG microlaser and seeded with a low power distributed feedback (DFB) diode continuous-wave (CW) laser, the OPG generated an output energy of 41.4 µJ and 681 ps pulse duration for the signal at 1652.4 nm, achieving a quantum conversion efficiency of 61.2% and a slope efficiency of 41.8%. Signal tuning was achieved from 1651.0 to 1652.4 nm by tuning the seed-laser current. The FWHM of the signal spectrum was approximately from 35 nm to 0.5 nm by injection seed laser. The SHG doubled the frequency of OPG signal to produce a output energy of 12 µJ with the energy conversion efficiency of 29.0% and tunanble wavelength near 826 nm.
Robust and compact entanglement generation from diode-laser-pumped four-wave mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrie, B. J.; Yang, Y.; Eaton, M.
Four-wave-mixing processes are now routinely used to demonstrate multi-spatial-mode Einstein- Podolsky-Rosen entanglement and intensity difference squeezing. Recently, diode-laser-pumped four-wave mixing processes have been shown to provide an affordable, compact, and stable source for intensity difference squeezing, but it was unknown if excess phase noise present in power amplifier pump configurations would be an impediment to achieving quadrature entanglement. Here, we demonstrate the operating regimes under which these systems are capable of producing entanglement and under which excess phase noise produced by the amplifier contaminates the output state. We show that Einstein-Podolsky-Rosen entanglement in two mode squeezed states can be generatedmore » by a four-wave-mixing source deriving both the pump field and the local oscillators from a tapered-amplifier diode-laser. In conclusion, this robust continuous variable entanglement source is highly scalable and amenable to miniaturization, making it a critical step toward the development of integrated quantum sensors and scalable quantum information processors, such as spatial comb cluster states.« less
Robust and compact entanglement generation from diode-laser-pumped four-wave mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrie, B. J., E-mail: lawriebj@ornl.gov; Pooser, R. C.; Yang, Y.
Four-wave-mixing processes are now routinely used to demonstrate multi-spatial-mode Einstein-Podolsky-Rosen entanglement and intensity difference squeezing. Diode-laser-pumped four-wave mixing processes have recently been shown to provide an affordable, compact, and stable source for intensity difference squeezing, but it was unknown if excess phase noise present in power amplifier pump configurations would be an impediment to achieving quadrature entanglement. Here, we demonstrate the operating regimes under which these systems are capable of producing entanglement and under which excess phase noise produced by the amplifier contaminates the output state. We show that Einstein-Podolsky-Rosen entanglement in two mode squeezed states can be generated bymore » a four-wave-mixing source deriving both the pump field and the local oscillators from a tapered-amplifier diode-laser. This robust continuous variable entanglement source is highly scalable and amenable to miniaturization, making it a critical step toward the development of integrated quantum sensors and scalable quantum information processors, such as spatial comb cluster states.« less
Temperature effects on tunable cw Alexandrite lasers under diode end-pumping.
Kerridge-Johns, William R; Damzen, Michael J
2018-03-19
Diode pumped Alexandrite is a promising route to high power, efficient and inexpensive lasers with a broad (701 nm to 858 nm) gain bandwidth; however, there are challenges with its complex laser dynamics. We present an analytical model applied to experimental red diode end-pumped Alexandrite lasers, which enabled a record 54 % slope efficiency with an output power of 1.2 W. A record lowest lasing wavelength (714 nm) and record tuning range (104 nm) was obtained by optimising the crystal temperature between 8 °C and 105 °C in the vibronic mode. The properties of Alexandrite and the analytical model were examined to understand and give general rules in optimising Alexandrite lasers, along with their fundamental efficiency limits. It was found that the lowest threshold laser wavelength was not necessarily the most efficient, and that higher and lower temperatures were optimal for longer and shorter laser wavelengths, respectively. The pump excited to ground state absorption ratio was measured to decrease from 0.8 to 0.7 by changing the crystal temperature from 10 °C to 90 °C.
Robust and compact entanglement generation from diode-laser-pumped four-wave mixing
Lawrie, B. J.; Yang, Y.; Eaton, M.; ...
2016-04-11
Four-wave-mixing processes are now routinely used to demonstrate multi-spatial-mode Einstein- Podolsky-Rosen entanglement and intensity difference squeezing. Recently, diode-laser-pumped four-wave mixing processes have been shown to provide an affordable, compact, and stable source for intensity difference squeezing, but it was unknown if excess phase noise present in power amplifier pump configurations would be an impediment to achieving quadrature entanglement. Here, we demonstrate the operating regimes under which these systems are capable of producing entanglement and under which excess phase noise produced by the amplifier contaminates the output state. We show that Einstein-Podolsky-Rosen entanglement in two mode squeezed states can be generatedmore » by a four-wave-mixing source deriving both the pump field and the local oscillators from a tapered-amplifier diode-laser. In conclusion, this robust continuous variable entanglement source is highly scalable and amenable to miniaturization, making it a critical step toward the development of integrated quantum sensors and scalable quantum information processors, such as spatial comb cluster states.« less
Payne, Stephen A.; Marshall, Christopher D.; Powell, Howard T.; Krupke, William F.
2001-01-01
In a master oscillator-power amplifier (MOPA) hybrid laser system, the master oscillator (MO) utilizes a Nd.sup.3+ -doped gain medium and the power amplifier (PA) utilizes a diode-pumped Yb.sup.3+ -doped material. The use of two different laser gain media in the hybrid MOPA system provides advantages that are otherwise not available. The Nd-doped gain medium preferably serves as the MO because such gain media offer the lowest threshold of operation and have already been engineered as practical systems. The Yb-doped gain medium preferably serves in the diode-pumped PA to store pump energy effectively and efficiently by virtue of the long emission lifetime, thereby reducing diode pump costs. One crucial constraint on the MO and PA gain media is that the Nd and Yb lasers must operate at nearly the same wavelength. The 1.047 .mu.m Nd:YLF/Yb:S-FAP [Nd:LiYF.sub.4 /Yb:Sr.sub.5 (PO.sub.4).sub.3 F] hybrid MOPA system is a preferred embodiment of the hybrid Nd/Yb MOPA.
Diode-pumped Nd:GAGG-LBO laser at 531 nm
NASA Astrophysics Data System (ADS)
Zou, J.; Chu, H.; Wang, L. R.
2012-03-01
We report a green laser at 531 nm generation by intracavity frequency doubling of a continuous wave (cw) laser operation of a 1062 nm Nd:GAGG laser under in-band diode pumping at 808 nm. A LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 18.5 W, as high as 933 mW of cw output power at 531 nm is achieved. The fluctuation of the green output power was better than 3.5% in the given 4 h.
Passively Q-switched microchip Er, Yb:YAl3(BO3)4 diode-pumped laser.
Kisel, V E; Gorbachenya, K N; Yasukevich, A S; Ivashko, A M; Kuleshov, N V; Maltsev, V V; Leonyuk, N I
2012-07-01
We report, for the first time to our knowledge, a diode-pumped cw and passively Q-switched microchip Er, Yb:YAl(3)(BO(3))(4) laser. A maximal output power of 800 mW at 1602 nm in the cw regime was obtained at an absorbed pump power of 7.7 W. By using Co(2+):MgAl(2)O(4) as a saturable absorber, a TEM(00)-mode Q-switched average output power of 315 mW was demonstrated at 1522 nm, with pulse duration of 5 ns and pulse energy of 5.25 μJ at a repetition rate of 60 kHz.
Micromirror Array Control of a Phase-Locked Laser Diode Array
1995-12-01
Micromirror Intensity-Voltage Curve . From the intensity plot, maxima (Ix) and minima (IMN) are noted. If IMAX and IMn are known, A4 can be calculated for...of the micromirror array used. Mirror 9 600 500 E 400- S300- C, -0200 lOO_ 0 0 5 10 15 20 25 30 Volts Figure 3b. Mirror Deflection Curve Corresponding...AFIT/GAP/ENP/95D-2 MICROMIRROR ARRAY CONTROL OF A PHASE-LOCKED LASER DIODE ARRAY THESIS Carl J. Christensen, Captain, USAF AFIT/GAP/ENP/95D-2
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1987-01-01
Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Nilsson, Alan C.; Byer, Robert L.
1987-01-01
The frequency stability of laser-diode-pumped, monolithic Nd:YAG solid-state unidirectional nonplanar ring oscillators was studied by heterodyne measurements. CW single-axial- and transverse-mode power of 25 mW at 1064 nm was obtained at a slope efficiency of 19 percent. Two independent oscillators were offset-locked at 17 MHz with frequency fluctuations of less than + or - 40 kHz for periods of 8 min.
High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers.
Jackson, Stuart D; Bugge, Frank; Erbert, Götz
2007-11-15
We demonstrate high-power operation from a singly Ho3+-doped silica fiber laser that is cladding pumped directly with diode lasers operating at 1150 nm. Internal slope efficiencies approaching the Stokes limit were produced, and the maximum output power was 2.2W. This result was achieved using a low Ho3+-ion concentration and La3+-ion codoping, which together limit the transfer of energy between excited Ho3+ ions.
Gigahertz frequency comb from a diode-pumped solid-state laser.
Klenner, Alexander; Schilt, Stéphane; Südmeyer, Thomas; Keller, Ursula
2014-12-15
We present the first stabilization of the frequency comb offset from a diode-pumped gigahertz solid-state laser oscillator. No additional external amplification and/or compression of the output pulses is required. The laser is reliably modelocked using a SESAM and is based on a diode-pumped Yb:CALGO gain crystal. It generates 1.7-W average output power and pulse durations as short as 64 fs at a pulse repetition rate of 1 GHz. We generate an octave-spanning supercontinuum in a highly nonlinear fiber and use the standard f-to-2f carrier-envelope offset (CEO) frequency fCEO detection method. As a pump source, we use a reliable and cost-efficient commercial diode laser. Its multi-spatial-mode beam profile leads to a relatively broad frequency comb offset beat signal, which nevertheless can be phase-locked by feedback to its current. Using improved electronics, we reached a feedback-loop-bandwidth of up to 300 kHz. A combination of digital and analog electronics is used to achieve a tight phase-lock of fCEO to an external microwave reference with a low in-loop residual integrated phase-noise of 744 mrad in an integration bandwidth of [1 Hz, 5 MHz]. An analysis of the laser noise and response functions is presented which gives detailed insights into the CEO stabilization of this frequency comb.
Generation of high powers from diode pumped chromium-3+ doped colquiriites
NASA Astrophysics Data System (ADS)
Eichenholz, Jason Matthew
1998-12-01
There is considerable interest in the area of laser diode pumped solid-state lasers. Diode pumped solid-state lasers (DPSSL) operating at high average power levels are attractive light sources for various applications such as materials processing, laser radar, and fundamental physics experiments. These laser systems have become more commonplace because of their efficiency, reliability, compactness, low relative cost, and long operational lifetimes. Induced thermal effects in the solid-state laser medium hinder the scaling of DPSSL's to higher average power levels. Therefore a deep insight into the thermo-mechanical properties of the solid state laser is crucial in order to ensure a laser design which is optimized for high average power operation. A comprehensive study of the factors that contribute to thermal loading of the colquiriites was performed. A three-dimensional thermal model has been created to determine the temperature rise inside the laser crystal. This new model calculates the temperature distribution by considering quantum defect, upconversion, and upper-state lifetime quenching as heating sources. The thermally induced lensing in end pumped Cr3+ doped LiSrAlF6, LiSrGaF6, LiSrCaAlF6, and LiCaAlF6 were experimentally measured. Several diode pumped colquiriite laser systems were assembled to quantitatively observe and identify thermally induced effects. Significant differences in each of the colquiriite materials were observed. These differences are explained by the differences in the thermo-mechanical and thermo-optical properties of the material and are explained by the theoretical thermal model.
Wavelength tunability of laser based on Yb-doped YGAG ceramics
NASA Astrophysics Data System (ADS)
Šulc, Jan; Jelínková, Helena; Jambunathan, Venkatesan; Miura, Taisuke; Endo, Akira; Lucianetti, Antonio; Mocek, TomáÅ.¡
2015-02-01
The wavelength tunability of diode pumped laser based on Yb-doped mixed garnet Y3Ga2Al3O12 (Yb:YGAG) ceramics was investigated. The tested Yb:YGAG sample (10% Yb/Y) was in the form of 2mm thick plane-parallel face-polished plate (without AR coatings). A fiber (core diameter 100 μm, NA= 0.22) coupled laser diode (LIMO, LIMO35-F100-DL980-FG-E) with emission at wavelength 969 nm, was used for longitudinal Yb:YGAG pumping. The laser diode was operating in the pulsed regime (2 ms pulse length, 10 Hz repetition rate). The duty-cycle 2% ensured a low thermal load even under the maximum diode pumping power amplitude 20W (ceramics sample was only air-cooled). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.01 - 1.09 μm, HT @ 0.97 μm) and curved (r = 150mm) output coupler with a reflectivity of ˜ 97% @ 1.01 - 1.09 μm. Wavelength tuning of the ytterbium laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle between the output coupler and the laser active medium. The laser was continuously tunable over ˜ 58nm (from 1022nm to 1080 nm) and the tuning band was mostly limited by the free spectral range of used birefringent filter. The maximum output power amplitude 3W was obtained at wavelength 1046nm for absorbed pump power amplitude 10.6W. The laser slope efficiency was 34%.
Vertical cavity surface-emitting semiconductor lasers with injection laser pumping
NASA Astrophysics Data System (ADS)
McDaniel, D. L., Jr.; McInerney, J. G.; Raja, M. Y. A.; Schaus, C. F.; Brueck, S. R. J.
1990-05-01
Continuous-wave GaAs/GaAlAs edge-emitting diode lasers were used to pump GaAs/AlGaAs and InGaAs/AlGaAs vertical cavity surface-emitting lasers (VCSELs) with resonant periodic gain (RPG) at room temperature. Pump threshold as low as 11 mW, output powers as high as 27 mW at 850 nm, and external differential quantum efficiencies of about 70 percent were observed in GaAs/AlGaAs surface -emitters; spectral brightness 22 times that of the pump laser was also observed. Output powers as high as 85 mW at 950 nm and differential quantum efficiencies of up to 58 percent were recorded for the InGaAs surface-emitting laser. This is the highest quasi-CW output power ever reported for any RPG VCSEL, and the first time such a device has been pumped using an injection laser diode.
DC switching regulated power supply for driving an inductive load
Dyer, George R.
1986-01-01
A power supply for driving an inductive load current from a dc power supply hrough a regulator circuit including a bridge arrangement of diodes and switching transistors controlled by a servo controller which regulates switching in response to the load current to maintain a selected load current. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. The regulator may be operated in three "stages" or modes: (1) For current runup in the load, both first and second transistor switch arrays are turned "on" and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned "off", and load current "flywheels" through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays "off", allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load. The three operating states are controlled automatically by the controller.
DC switching regulated power supply for driving an inductive load
Dyer, G.R.
1983-11-29
A dc switching regulated power supply for driving an inductive load is provided. The regulator basic circuit is a bridge arrangement of diodes and transistors. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. A dc power supply is connected to the input of the bridge and the output is connected to the load. A servo controller is provided to control the switching rate of the transistors to maintain a desired current to the load. The regulator may be operated in three stages or modes: (1) for current runup in the load, both first and second transistor switch arrays are turned on and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned off, and load current flywheels through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays off, allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load.
Diode-side-pumped continuous wave Nd³⁺ : YVO₄ self-Raman laser at 1176 nm.
Kores, Cristine Calil; Jakutis-Neto, Jonas; Geskus, Dimitri; Pask, Helen M; Wetter, Niklaus U
2015-08-01
Here we report, to the best of our knowledge, the first diode-side-pumped continuous wave (cw) Nd3+:YVO4 self-Raman laser operating at 1176 nm. The compact cavity design is based on the total internal reflection of the laser beam at the pumped side of the Nd3+:YVO4 crystal. Configurations with a single bounce and a double bounce of the laser beam at the pumped faced have been characterized, providing a quasi-cw peak output power of more than 8 W (multimode) with an optical conversion efficiency of 11.5% and 3.7 W (TEM00) having an optical conversion efficiency of 5.4%, respectively. Cw output power of 1.8 W has been demonstrated.
Cong, Zhenhua; Zhang, Xingyu; Wang, Qingpu; Liu, Zhaojun; Chen, Xiaohan; Fan, Shuzhen; Zhang, Xiaolei; Zhang, Huaijin; Tao, Xutang; Li, Shutao
2010-06-07
A diode-side-pumped actively Q-switched intracavity frequency-doubled Nd:YAG/BaWO(4)/KTP Raman laser is studied experimentally and theoretically. Rate equations are used to analyze the Q-switched yellow laser by considering the transversal distributions of the intracavity photon density and the inversion population density. An 8.3 W 590 nm laser is obtained with a 125.8 W 808 nm pump power and a 15 kHz pulse repetition frequency. The corresponding optical conversion efficiency from diode laser to yellow laser is 6.57%, much higher than that of the former reported side-pumped yellow laser. The output powers with respect to the incident pump power are in agreement with the theoretical results on the whole.
2016-03-31
transcutaneously via the outer ear using a high-resolution, addressable array of organic light emitting diodes (OLEDs) manufactured on a flexible...therapeutic optical stimulation in optogenetically modified neural tissue. Keywords: Optogenetics; neuromodulation; organic light emitting diode ...the outer ear using a high-resolution, two-dimensional (2-D), addressable array of red organic light - emitting diodes (OLEDs) manufactured on a thin
100W high-brightness multi-emitter laser pump
NASA Astrophysics Data System (ADS)
Duesterberg, Richard; Xu, Lei; Skidmore, Jay A.; Guo, James; Cheng, Jane; Du, Jihua; Johnson, Brad; Vecht, David L.; Guerin, Nicolas; Huang, Benlih; Yin, Dongliang; Cheng, Peter; Raju, Reddy; Lee, Kong Weng; Cai, Jason; Rossin, Victor; Zucker, Erik P.
2011-03-01
We report results of a spatially-multiplexed broad area laser diode platform designed for efficient pumping of fiber lasers or direct-diode systems. Optical output power in excess of 100W from a 105μm core, 0.15NA fiber is demonstrated with high coupling efficiency. The compact form factor and low thermal resistance enable tight packing densities needed for kW-class fiber laser systems. Broad area laser diodes have been optimized to reduce near- and far-field performance and prevent blooming without sacrificing other electro-optic parameters. With proper lens optimization this produces ~5% increase in coupling / wall plug efficiency for our design. In addition to performance characteristics, an update on long term reliability testing of 9XX nm broad area laser diode is provided that continues to show no wear out under high acceleration. Under nominal operating conditions of 12W ex-facet power at 25C, the diode mean time to failure (MTTF) is forecast to be ~ 480 kh.
Auto-locking waveguide amplifier system for lidar and magnetometric applications
NASA Astrophysics Data System (ADS)
Pouliot, A.; Beica, H. C.; Carew, A.; Vorozcovs, A.; Carlse, G.; Kumarakrishnan, A.
2018-02-01
We describe a compact waveguide amplifier system that is suitable for optically pumping rubidium magnetometers. The system consists of an auto-locking vacuum-sealed external cavity diode laser, a semiconductor tapered amplifier and a pulsing unit based on an acousto-optic modulator. The diode laser utilises optical feedback from an interference filter to narrow the linewidth of an inexpensive laser diode to 500 kHz. This output is scannable over an 8 GHz range (at 780 nm) and can be locked without human intervention to any spectral marker in an expandable library of reference spectra, using the autolocking controller. The tapered amplifier amplifies the output from 50 mW up to 2 W with negligible distortions in the spectral quality. The system can operate at visible and near infrared wavelengths with MHz repetition rates. We demonstrate optical pumping of rubidium vapour with this system for magnetometric applications. The magnetometer detects the differential absorption of two orthogonally polarized components of a linearly polarized probe laser following optical pumping by a circularly polarized pump laser. The differential absorption signal is studied for a range of pulse lengths, pulse amplitudes and DC magnetic fields. Our results suggest that this laser system is suitable for optically pumping spin-exchange free magnetometers.
A compact Nd:YAG DPSSL using diamond-cooled technology
NASA Astrophysics Data System (ADS)
Chou, Hsian P.; Wang, Yu-Lin; Hasson, Victor H.; Trainor, Daniel W.
2005-03-01
In our diamond-cooled approach, thin disks of laser gain material, e.g., Nd:YAG, are alternated between thin disks of single crystal synthetic diamond whose heat conductivity is over 2000 W/m-°K. The gain medium is face-pumped (along the optical axis) by the output of laser diode arrays. This optical configuration produces heat transfer from Nd:YAG to the diamond, in the direction of the optical axis, and then heat is rapidly conducted radially outward through the diamond to the cooling fluid circulating at the circumference of the diamond/YAG assembly. This geometry effectively removes the heat from the gain material in a manner that permits the attainment of high power output with excellent beam quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bibeau, C; Bayramian, A; Armstrong, P
We report on the operation of the Mercury laser with fourteen 4 x 6 cm{sup 2} Yb:S-FAP amplifier slabs pumped by eight 100 kW peak power diode arrays. The system was continuously run at 55 J and 10 Hz for several hours, (2 x 10{sup 5} cumulative shots) with over 80% of the energy in a 6 times diffraction limited spot at 1.047 um. Improved optical quality was achieved in Yb:S-FAP amplifiers with magneto-rheological finishing, a deterministic polishing method. In addition, average power frequency conversion employing YCOB was demonstrated at 50% conversion efficiency or 22.6 J at 10 Hz.
1.88 Micrometers InGaAsP Pumped, Room Temperature Ho: LuAG Laser
NASA Technical Reports Server (NTRS)
Barnes, Norman P.; Amzajerdian, Farzin; Reichle, Donald J.; Busch, George; Leisher, Paul
2009-01-01
A room temperature, directly diode pumped Ho:LuAG laser oscillated for the first time. Direct pumping of the Ho upper laser manifold maximizes efficiency, minimizes heating, and eliminates Ho:Tm energy sharing. Design and performance are presented.
High power high repetition rate diode side-pumped Q-switched Nd:YAG rod laser
NASA Astrophysics Data System (ADS)
Lebiush, E.; Lavi, R.; Tzuk, Y.; Jackel, S.; Lallouz, R.; Tsadka, S.
1998-01-01
A Q-switched diode side-pumped Nd:YAG rod laser is presented. The design is based on close coupled diodes which are mounted side by side to a laser rod cut at Brewster angle. No intra-cavity optics are needed to compensate for the induced thermal lensing of the rod. This laser produces 10 W average power with 30 ns pulse width and beam quality of 1.3 times diffraction limited at 10 kHz repetition rate. The light to light conversion efficiency is 12%. The same average power and beam quality is kept while operating the laser at repetition rates up to 50 kHz.
LD-pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser operating at 1166 and 1176 nm
NASA Astrophysics Data System (ADS)
Sun, Xinzhi; Zhang, Xihe; Li, Shutao; Dong, Yuan
2017-12-01
A laser diode pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser is experimentally investigated. Simultaneous pulse outputs at 1166 nm and 1176 nm corresponding to the Raman shifts of 807 and 882 cm-1 are acquired. At the pulse repetition frequency (PRF) of 20 kHz, the maximum output power is 103 mW at 1166 nm with the incident pump power of 2.31 W, while 1176 nm output power reaches 530 mW with the incident pump power of 4.11 W. The maximum output power of Raman laser is 570 mW with the incident pump power of 4.11 W and the PRF of 30 kHz. With the incident pump power of 3.67 W and the PRF of 30 kHz, the highest diode-to-Stokes optical conversion efficiency of 14.9% is obtained with the corresponding average output power of 547 mW.
Phase and Frequency Control of Laser Arrays for Pulse Synthesis
2015-01-02
with the laser array to understand the phase noise of elements on a common heat sink, and the relationship between linewidth and feedback speed...spatial brightness operation of a phase-locked stripe -array diode laser,” Laser Phys. 22, 160 (2012). [2] J. R. Leger, “Lateral mode control of an AlGaAs...Jechow, D. Skoczowsky, and R. Menzel, “Multi-wavelength, high spatial brightness operation of a phase-locked stripe -array diode laser,” Laser Phys. 22
Quasi-CW Laser Diode Bar Life Tests
NASA Technical Reports Server (NTRS)
Stephen, Mark A.; Krainak, Michael A.; Dallas, Joseph L.
1997-01-01
NASA's Goddard Space Flight Center is developing technology for satellite-based, high peak power, LIDAR transmitters requiring 3-5 years of reliable operation. Semi-conductor laser diodes provide high efficiency pumping of solid state lasers with the promise of long-lived, reliable operation. 100-watt quasi- CW laser diode bars have been baselined for the next generation laser altimeters. Multi-billion shot lifetimes are required. The authors have monitored the performance of several diodes for billions of shots and investigated operational modes for improving diode lifetime.
NASA Astrophysics Data System (ADS)
Huang, Wei; Tan, Rongqing; Li, Zhiyong; Han, Gaoce; Li, Hui
2017-03-01
A theoretical model based on common pump structure is proposed to analyze the output characteristics of a diode-pumped alkali vapor laser (DPAL) and XPAL (exciplex-pumped alkali laser). Cs-DPAL and Cs-Ar XPAL systems are used as examples. The model predicts that an optical-to-optical efficiency approaching 80% can be achieved for continuous-wave four- and five-level XPAL systems with broadband pumping, which is several times the pumped linewidth for DPAL. Operation parameters including pumped intensity, temperature, cell's length, mixed gas concentration, pumped linewidth, and output coupler are analyzed for DPAL and XPAL systems based on the kinetic model. In addition, the predictions of selection principal of temperature and cell's length are also presented. The concept of the equivalent "alkali areal density" is proposed. The result shows that the output characteristics with the same alkali areal density but different temperatures turn out to be equal for either the DPAL or the XPAL system. It is the areal density that reflects the potential of DPAL or XPAL systems directly. A more detailed analysis of similar influences of cavity parameters with the same areal density is also presented.
NASA Technical Reports Server (NTRS)
Chen, Y. C.; Lee, K. K.
1993-01-01
The applications of Q-switched lasers are well known, for example, laser radar, laser remote sensing, satellite orbit determination, Moon orbit and 'moon quake' determination, satellite laser communication, and many nonlinear optics applications. Most of the applications require additional properties of the Q-switched lasers, such as single-axial and/or single-transverse mode, high repetition rate, stable pulse shape and pulse width, or ultra compact and rugged oscillators. Furthermore, space based and airborne lasers for lidar and laser communication applications require efficient, compact, lightweight, long-lived, and stable-pulsed laser sources. Diode-pumped solid-state lasers (DPSSL) have recently shown the potential for satisfying all of these requirements. We will report on the operating characteristics of a diode-pumped, monolithic, self-Q-switched Cr,Nd:YAG laser where the chromium ions act as a saturable absorber for the laser emission at 1064 nm. The pulse duration is 3.5 ns and the output is highly polarized with an extinction ratio of 700:1. It is further shown that the output is single-longitudinal-mode with transform-limited spectral line width without pulse-to-pulse mode competition. Consequently, the pulse-to-pulse intensity fluctuation is less than the instrument resolution of 0.25 percent. This self-stabilization mechanism is because the lasing mode bleaches the distributed absorber and establishes a gain-loss grating similar to that used in the distributed feedback semiconductor lasers. A repetition rate above 5 KHz has also been demonstrated. For higher power, this laser can be used for injection seeding an amplifier (or amplifier chain) or injection locking of a power oscillator pumped by diode lasers. We will discuss some research directions on the master oscillator for higher output energy per pulse as well as how to scale the output power of the diode-pumped amplifier(s) to multi-kilowatt average power.
Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array
Beach, R.J.; Benett, W.J.; Mills, S.T.
1997-04-01
The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a ``rack and stack`` configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber. 3 figs.
InGaN/GaN dot-in-nanowire monolithic LEDs and lasers on (001) silicon
NASA Astrophysics Data System (ADS)
Bhattacharya, P.; Hazari, A.; Jahangir, S.
2017-02-01
GaN-based nanowire arrays have been grown on (001)Si substrate by plasma-assisted molecular beam epitaxy and their structural and optical properties have been determined. InxGa1-xN disks inserted in the nanowires behave as quantum dots with emission ranging from visible to near-infrared. We have exploited these nanowire heterostructure arrays to realize light-emitting diodes and diode lasers in which the quantum dots form the active light emitting media. The fabrication and characteristics of 630nm light-emitting diodes and 1.3μm edge-emitting diode lasers are described.
Linear laser diode arrays for improvement in optical disk recording for space stations
NASA Technical Reports Server (NTRS)
Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.
1990-01-01
The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated.
Fabrication and characterization of n-ZnO nanonails array/p(+)-GaN heterojunction diode.
Zhu, G Y; Chen, G F; Li, J T; Shi, Z L; Lin, Y; Ding, T; Xu, X Y; Dai, J; Xu, C X
2012-10-01
A novel heterojunctional structure of n-ZnO nanonails array/p(+)-GaN light-emitting diode was fabricated by Chemical Vapor Deposition method. A broad electroluminescence spectrum shows two peaks centered at 435 nm and 478 nm at room temperature, respectively. By comparing the photoluminescence and electroluminescence spectra, together with analyzing the energy band structure of heterojunction light emitting diode, it suggested that the electroluminescence peak located at 435 nm originates from Mg acceptor level of p(+)-GaN layer, whereas the electroluminescence peak located at 478 nm originates from the defects of n-ZnO nanonails array.
Extended short wavelength infrared HgCdTe detectors on silicon substrates
NASA Astrophysics Data System (ADS)
Park, J. H.; Hansel, D.; Mukhortova, A.; Chang, Y.; Kodama, R.; Zhao, J.; Velicu, S.; Aqariden, F.
2016-09-01
We report high-quality n-type extended short wavelength infrared (eSWIR) HgCdTe (cutoff wavelength 2.59 μm at 77 K) layers grown on three-inch diameter CdTe/Si substrates by molecular beam epitaxy (MBE). This material is used to fabricate test diodes and arrays with a planar device architecture using arsenic implantation to achieve p-type doping. We use different variations of a test structure with a guarded design to compensate for the lateral leakage current of traditional test diodes. These test diodes with guarded arrays characterize the electrical performance of the active 640 × 512 format, 15 μm pitch detector array.
The Fuge Tube Diode Array Spectrophotometer
ERIC Educational Resources Information Center
Arneson, B. T.; Long, S. R.; Stewart, K. K.; Lagowski, J. J.
2008-01-01
We present the details for adapting a diode array UV-vis spectrophotometer to incorporate the use of polypropylene microcentrifuge tubes--fuge tubes--as cuvettes. Optical data are presented validating that the polyethylene fuge tubes are equivalent to the standard square cross section polystyrene or glass cuvettes generally used in…
New laser materials for laser diode pumping
NASA Technical Reports Server (NTRS)
Jenssen, H. P.
1990-01-01
The potential advantages of laser diode pumped solid state lasers are many with high overall efficiency being the most important. In order to realize these advantages, the solid state laser material needs to be optimized for diode laser pumping and for the particular application. In the case of the Nd laser, materials with a longer upper level radiative lifetime are desirable. This is because the laser diode is fundamentally a cw source, and to obtain high energy storage, a long integration time is necessary. Fluoride crystals are investigated as host materials for the Nd laser and also for IR laser transitions in other rare earths, such as the 2 micron Ho laser and the 3 micron Er laser. The approach is to investigate both known crystals, such as BaY2F8, as well as new crystals such as NaYF8. Emphasis is on the growth and spectroscopy of BaY2F8. These two efforts are parallel efforts. The growth effort is aimed at establishing conditions for obtaining large, high quality boules for laser samples. This requires numerous experimental growth runs; however, from these runs, samples suitable for spectroscopy become available.
Time Resolved Efficiency Degradation in Potassium Diode Pumped Alkali Laser
2014-08-07
study of the performance of a Potassium OPAL operating in pulsed mode with pulses up to 5 msec Jong at different pulse energies and cell...temperatures. The experiments showed the OPAL efficiency degradation in time with a characteristic time in the range from 0.5 msec to 4.5 msec. The recorded...Lasers", Optics Express, 19(8), 7894-7902 (20 I I) 1. Introduction There has been extensive research into Diode Pumped Alkali Lasers ( OPALs ) during the
Ultracold Fermions in the P-Orbital Band of an Optical Lattice
2015-07-27
introduces (1) a new degree of freedom due to orbital degeneracy and (2) a tunneling anisotropy which depends on the orientation of the orbital wavefunction...demonstrated this new technique with a diode -pumped solid-state laser operating at 1342 nm that could be frequency doubled to provide 671 nm light for laser...Figure 3: Self-injection locked, diode -pumped solid-state laser for laser cooling of Li atoms. The solid-state Nd:YVO4 laser at the top consists of a
Diode-Pumped Long-Pulse-Length Ho:Tm:YLiF4 Laser at 10 Hz
NASA Technical Reports Server (NTRS)
Jani, Mahendra G.; Naranjo, Felipe L.; Barnes, Norman P.; Murray, Keith E.; Lockard, George E.
1995-01-01
An optical efficiency of 0.052 under normal mode operation for diode-pumped Ho:Tm:YLiF4 at a pulse repetition frequency of 10 Hz has been achieved. Laser output energy of 30 mJ in single Q-switched pulses with 600-ns pulse length were obtained for an input energy of 3 J. A diffusion-bonded birefringent laser rod consisting of Ho:Tm-doped and undoped pieces of YLF was utilized for 10-Hz operation.
Diode-Pumped Thulium (Tm)/Holmium (Ho) Composite Fiber 2.1-Micrometers Laser
2015-09-01
composite fiber laser of holmium-core and thulium-doped cladding . The composite fiber was optically pumped by an 803-nm fiber coupled diode source and was...4 odd and 5 even modes were exclusive to the core and first cladding . As the Tm laser modes are excluded from lasing in the second (undoped...of the Tm-doped clad /Ho-doped core fiber laser . In particular, calculations of the model overlap of the cladding modes with the core have been
2012-09-01
atmosphere”. Applied Physics B: Lasers and Optics, 82(1):133–140, 2006. 11. Barrass, S., Y. Grard, R.J. Holdsworth, and P.A. Martin . “Near-infrared tun...15. Brown, M. S., S. Williams, C. D. Lindstrom , and D. L. Barone. Progress in Applying Tunable Diode Laser Absorption Spectroscopy to Scramjet
Imaging photovoltaic infrared CdHgTe detectors
NASA Astrophysics Data System (ADS)
Haakenaasen, R.; Steen, H.; Selvig, E.; Lorentzen, T.; van Rheenen, A. D.; Trosdahl-Iversen, L.; Hall, D.; Gordon, N.; Skauli, T.; Vaskinn, A. H.
2006-09-01
CdxHg1-xTe layers with bandgap in the mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) regions were grown by molecular beam epitaxy, and one-dimensional (1D) and two-dimensional (2D) arrays of planar photodiodes were fabricated by ion milling of vacancy-doped layers. The grown layers have varying densities of needle-shaped structures on the surface. The needles are not associated with twins or dislocations in the layers, but could instead be due to (111) facets being reinforced by a preferential Te diffusion direction over steps on the surface. The needles do not seem to affect diode quality. 64 element 1D arrays of 26×26 μm2 or 26×56 μm2 diodes were processed, and zero-bias resistance-times-area values (R0A) at 77 K of 4×106 Ω cm2 at cutoff wavelength λCO=4.5 μm were measured, as well as high quantum efficiencies. To avoid creating a leakage current during ball-bonding to the 1D array diodes, a ZnS layer was deposited on top of the CdTe passivation layer, as well as extra electroplated Au on the bonding pads. The median measured noise equivalent temperature difference (NETD) on a LWIR array was 14 mK for the 42 operable diodes. 2D arrays showed reasonably good uniformity of R0A and zero-bias current (I0) values. The first 64×64 element 2D array of 16×16 μm2 MWIR diodes has been hybridized to read-out electronics and gave median NETD of 60 mK. Images from both a 1D and a 2D array are shown.
Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.
ERIC Educational Resources Information Center
Jones, Dianna G.
1985-01-01
A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…
Directly diode-pumped high-energy Ho:YAG oscillator.
Lamrini, Samir; Koopmann, Philipp; Schäfer, Michael; Scholle, Karsten; Fuhrberg, Peter
2012-02-15
We report on the high-energy laser operation of an Ho:YAG oscillator resonantly pumped by a GaSb-based laser diode stack at 1.9 μm. The output energy was extracted from a compact plano-concave acousto-optically Q-switched resonator optimized for low repetition rates. Operating at 100 Hz, pulse energies exceeding 30 mJ at a wavelength of 2.09 μm were obtained. The corresponding pulse duration at the highest pump power was 100 ns, leading to a maximum peak power above 300 kW. Different pulse repetition rates and output coupling transmissions of the Ho:YAG resonator were studied. In addition, intracavity laser-induced damage threshold measurements are discussed.
Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode.
Klinkhammer, Sönke; Liu, Xin; Huska, Klaus; Shen, Yuxin; Vanderheiden, Sylvia; Valouch, Sebastian; Vannahme, Christoph; Bräse, Stefan; Mappes, Timo; Lemmer, Uli
2012-03-12
The fabrication and characterization of continuously tunable, solution-processed distributed feedback (DFB) lasers in the visible regime is reported. Continuous thin film thickness gradients were achieved by means of horizontal dipping of several conjugated polymer and blended small molecule solutions on cm-scale surface gratings of different periods. We report optically pumped continuously tunable laser emission of 13 nm in the blue, 16 nm in the green and 19 nm in the red spectral region on a single chip respectively. Tuning behavior can be described with the Bragg-equation and the measured thickness profile. The laser threshold is low enough that inexpensive laser diodes can be used as pump sources.
Solid-state image sensor with focal-plane digital photon-counting pixel array
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)
1995-01-01
A photosensitive layer such as a-Si for a UV/visible wavelength band is provided for low light level imaging with at least a separate CMOS amplifier directly connected to each PIN photodetector diode to provide a focal-plane array of NxN pixels, and preferably a separate photon-counting CMOS circuit directly connected to each CMOS amplifier, although one row of counters may be time shared for reading out the photon flux rate of each diode in the array, together with a buffer memory for storing all rows of the NxN image frame before transfer to suitable storage. All CMOS circuitry is preferably fabricated in the same silicon layer as the PIN photodetector diode for a monolithic structure, but when the wavelength band of interest requires photosensitive material different from silicon, the focal-plane array may be fabricated separately on a different semiconductor layer bump-bonded or otherwise bonded for a virtually monolithic structure with one free terminal of each diode directly connected to the input terminal of its CMOS amplifier and digital counter for integration of the photon flux rate at each photodetector of the array.
Cladding For Transversely-Pumped Laser Rod
NASA Technical Reports Server (NTRS)
Byer, Robert L.; Fan, Tso Yee
1989-01-01
Combination of suitable dimensioning and cladding of neodymium:yttrium aluminum garnet of similar solid-state laser provides for more efficient utilization of transversely-incident pump light from diode lasers. New design overcomes some of limitations of longitudinal- and older transverse-pumping concepts and promotes operation at higher output powers in TEM00 mode.
Chen, Fei; Xu, Dongdong; Gao, Fei; Zheng, Changbin; Zhang, Kuo; He, Yang; Wang, Chunrui; Guo, Jin
2015-05-04
Employing a fiber-coupled diode-laser with a center wavelength of 852.25 nm and a line width of 0.17 nm, experimental investigation on diode-end-pumped cesium (Cs) vapor laser stably operated at continuous-wave (CW) and pulse regime is carried out. A 5 mm long cesium vapor cell filled with 60 kPa helium and 20 kPa ethane is used as laser medium. Using an output coupler with reflectivity of 48.79%, 1.26 W 894.57 nm CW laser is obtained at an incident pump power of 4.76 W, corresponding an optical-optical efficiency of 26.8% and a slope-efficiency of 28.8%, respectively. The threshold temperature is 67.5 °C. Stable pulsed cesium laser with a maximum average output power of 2.6 W is obtained at a repetition rate of 76 Hz, and the pulse repetition rate can be extend to 1 kHz with a pulse width of 18 μs.
Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability
NASA Astrophysics Data System (ADS)
Parali, Ufuk; Sheng, Xin; Minassian, Ara; Tawy, Goronwy; Sathian, Juna; Thomas, Gabrielle M.; Damzen, Michael J.
2018-03-01
We report the first experimental demonstration of a wavelength tunable passively Q-switched red-diode-end pumped Alexandrite laser using a semiconductor saturable absorber mirror (SESAM). We present the results of the study of passive SESAM Q-switching and wavelength-tuning in continuous diode-pumped Alexandrite lasers in both linear cavity and X-cavity configurations. In the linear cavity configuration, pulsed operation up to 27 kHz repetition rate in fundamental TEM00 mode was achieved and maximum average power was 41 mW. The shortest pulse generated was 550 ns (FWHM) and the Q-switched wavelength tuning band spanned was between 740 nm and 755 nm. In the X-cavity configuration, a higher average power up to 73 mW, and obtained with higher pulse energy 6 . 5 μJ at 11.2 kHz repetition rate, in fundamental TEM00 mode with excellent spatial quality M2 < 1 . 1. The Q-switched wavelength tuning band spanned was between 775 nm and 781 nm.
Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser
Sakadić, Sava; Demirbas, Umit; Mempel, Thorsten R.; Moore, Anna; Ruvinskaya, Svetlana; Boas, David A.; Sennaroglu, Alphan; Kartner, Franz X.; Fujimoto, James G.
2009-01-01
Multi-photon microscopy (MPM) is a powerful tool for biomedical imaging, enabling molecular contrast and integrated structural and functional imaging on the cellular and subcellular level. However, the cost and complexity of femtosecond laser sources that are required in MPM are significant hurdles to widespread adoption of this important imaging modality. In this work, we describe femtosecond diode pumped Cr:LiCAF laser technology as a low cost alternative to femtosecond Ti:Sapphire lasers for MPM. Using single mode pump diodes which cost only $150 each, a diode pumped Cr:LiCAF laser generates ~70-fs duration, 1.8-nJ pulses at ~800 nm wavelengths, with a repetition rate of 100 MHz and average output power of 180 mW. Representative examples of MPM imaging in neuroscience, immunology, endocrinology and cancer research using Cr:LiCAF laser technology are presented. These studies demonstrate the potential of this laser source for use in a broad range of MPM applications. PMID:19065223
NASA Astrophysics Data System (ADS)
Li, Chun-Hao; Tsai, Ming-Jong
2009-06-01
A novel diode-pumped Nd:YAG laser system that employs a fixed active laser medium and a pair of quick-change output couplers on a precision linear stage for 1064 or 532 nm wavelength generation is presented. Fixed elements include a rear mirror, an acousto-optical Q-switch, and a diode-pumped solid-state laser (DPSSL). Movable elements for 1064 nm generation include an intra-cavity aperture as a mode selection element (MSE) and an output coupler. Movable elements for 532 nm generation include an intra-cavity frequency conversion with KTP, an intra-cavity aperture as a mode selection element (MSE), and an output coupler. Under stable operating conditions, the 1064 nm configuration produced a beam propagation ratio of 1.18 whereas the 532 nm configuration produced a beam propagation ratio of 1.1, both of which used an intra-cavity MSE with an aperture of 1.2 mm and a length of 5 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savanier, Marc, E-mail: msavanier@eng.ucsd.edu; Mookherjea, Shayan, E-mail: smookherjea@eng.ucsd.edu
Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, wemore » generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.« less
NASA Astrophysics Data System (ADS)
Savanier, Marc; Mookherjea, Shayan
2016-06-01
Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, we generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.
Quasi-CW diode-pumped self-starting adaptive laser with self-Q-switched output.
Smith, G; Damzen, M J
2007-05-14
An investigation is made into a quasi-CW (QCW) diode-pumped holographic adaptive laser utilising an ultra high gain (approximately 10(4)) Nd:YVO(4) bounce amplifier. The laser produces pulses at 1064 nm with energy approximately 0.6 mJ, duration <3 ns and peak power approximately 200 kW, with high stability, via self-Q-switching effects due to the transient dynamics of the writing and replay of the gain hologram for each pump pulse. The system produces a near-diffraction-limited output with M(2)<1.3 and operates with a single longitudinal mode. In a further adaptive laser configuration, the output was amplified to obtain pulses of approximately 5.6 mJ energy, approximately 7 ns duration and approximately 1 MW peak power. The output spatial quality is also M(2)<1.3 with SLM operation. Up to 2.9 mJ pulse energy of frequency doubled green (532 nm) radiation is obtained, using an LBO crystal, representing approximately 61% conversion efficiency. This work shows that QCW diode-pumped self-adaptive holographic lasers can provide a useful source of high peak power, short duration pulses with excellent spatial quality and narrow linewidth spectrum.
Demirbas, Umit; Baali, Ilyes
2015-10-15
We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.
A compact LIBS system for industrial applications
NASA Astrophysics Data System (ADS)
Noharet, B.; Sterner, C.; Irebo, T.; Gurell, J.; Bengtson, A.; Vainik, R.; Karlsson, H.; Illy, E.
2015-03-01
In recent years, laser-induced breakdown spectroscopy (LIBS) has been established as a promising analytical tool for online chemical analysis. The emitted light spectrum is analyzed for instantaneous determination of the elemental composition of the sample, enabling on-line classification of materials. Two major strengths of the technique are the possibilities to perform both fast and remote chemical analysis to determine the elemental composition of the samples under test. In order to reduce the size of LIBS systems, the use of a compact Q-switched diode-pumped solid-state laser (DPSSL) in a LIBS system is evaluated for the industrial sorting of aluminium alloys. The DPSSL, which delivers 150μJ pulses of high beam quality at more than 7KHz repetition rate, provides irradiance on the target that is appropriate for LIBS measurements. The experimental results indicate that alloy classification and quantitative analysis are possible on scrap aluminium samples placed 50 cm apart from the focusing and collecting lenses, without sample preparation. Similar calibration curves and limits of detection are obtained for traditional high-energy low-frequency flashlamp-pumped and low-energy high-frequency diode-pumped lasers, showing the applicability of compact diode-pumped lasers for industrial LIBS applications.
NASA Astrophysics Data System (ADS)
Eshghi, M. J.; Majdabadi, A.; Koohian, A.
2017-01-01
In this paper, a low threshold diode pumped passively mode-locked Nd:YAG laser has been demonstrated by using a semiconductor saturable absorber mirror. The threshold power for continuous-wave mode-locking is relatively low, about 3.2 W. The resonator stability across the pump power has been analytically examined. Moreover, the mode overlap between the pump beam and the laser fundamental mode has been simulated by MATLAB software. Adopting Z-shaped resonator configuration and suitable design of the resonator’s arm lengths, has enabled the author to prepare mode-locking conditions, and obtain 40 ps pulses with 112 MHz pulse repetition rate. The laser output was stable without any Q switched instability. To the best of our knowledge, this is the lowest threshold for CW mode-locking operation of a Nd:YAG laser.
NASA Astrophysics Data System (ADS)
Iorsh, Ivan; Glauser, Marlene; Rossbach, Georg; Levrat, Jacques; Cobet, Munise; Butté, Raphaël; Grandjean, Nicolas; Kaliteevski, Mikhail A.; Abram, Richard A.; Kavokin, Alexey V.
2012-09-01
The main emission characteristics of electrically driven polariton lasers based on planar GaN microcavities with embedded InGaN quantum wells are studied theoretically. The polariton emission dependence on pump current density is first modeled using a set of semiclassical Boltzmann equations for the exciton polaritons that are coupled to the rate equation describing the electron-hole plasma population. Two experimentally relevant pumping geometries are considered, namely the direct injection of electrons and holes into the strongly coupled microcavity region and intracavity optical pumping via an embedded light-emitting diode. The theoretical framework allows the determination of the minimum threshold current density Jthr,min as a function of lattice temperature and exciton-cavity photon detuning for the two pumping schemes. A Jthr,min value of 5 and 6 A cm-2 is derived for the direct injection scheme and for the intracavity optical pumping one, respectively, at room temperature at the optimum detuning. Then an approximate quasianalytical model is introduced to derive solutions for both the steady-state and high-speed current modulation. This analysis makes it possible to show that the exciton population, which acts as a reservoir for the stimulated relaxation process, gets clamped once the condensation threshold is crossed, a behavior analogous to what happens in conventional laser diodes with the carrier density above threshold. Finally, the modulation transfer function is calculated for both pumping geometries and the corresponding cutoff frequency is determined.
Gargett, Maegan; Oborn, Brad; Metcalfe, Peter; Rosenfeld, Anatoly
2015-02-01
MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named "magic plate," for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. geant4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm(3)) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm(2) area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm(2) photon field size. The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI-linear accelerator systems. In the in-line orientation, the silicon dose is directly proportional to the water dose. In the perpendicular orientation, there is a shift in dose response relative to water in the highest dose gradient regions, at the edge of jaw-defined and single-segment MLC fields. The trend was not observed in-field for an IMRT beam. The array is expected to be a valuable tool in MRIgRT dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gargett, Maegan, E-mail: mg406@uowmail.edu.au; Rosenfeld, Anatoly; Oborn, Brad
2015-02-15
Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-linemore » and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI–linear accelerator systems. In the in-line orientation, the silicon dose is directly proportional to the water dose. In the perpendicular orientation, there is a shift in dose response relative to water in the highest dose gradient regions, at the edge of jaw-defined and single-segment MLC fields. The trend was not observed in-field for an IMRT beam. The array is expected to be a valuable tool in MRIgRT dosimetry.« less
970-nm ridge waveguide diode laser bars for high power DWBC systems
NASA Astrophysics Data System (ADS)
Wilkens, Martin; Erbert, Götz; Wenzel, Hans; Knigge, Andrea; Crump, Paul; Maaßdorf, Andre; Fricke, Jörg; Ressel, Peter; Strohmaier, Stephan; Schmidt, Berthold; Tränkle, Günther
2018-02-01
de lasers are key components in material processing laser systems. While mostly used as pump sources for solid state or fiber lasers, direct diode laser systems using dense wavelength multiplexing have come on the market in recent years. These systems are realized with broad area lasers typically, resulting in beam quality inferior to disk or fiber lasers. We will present recent results of highly efficient ridge waveguide (RW) lasers, developed for dense-wavelength-beamcombining (DWBC) laser systems expecting beam qualities comparable to solid state laser systems and higher power conversion efficiencies (PCE). The newly developed RW lasers are based on vertical structures with an extreme double asymmetric large optical cavity. Besides a low vertical divergence these structures are suitable for RW-lasers with (10 μm) broad ridges, emitting in a single mode with a good beam quality. The large stripe width enables a lateral divergence below 10° (95 % power content) and a high PCE by a comparably low series resistance. We present results of single emitters and small test arrays under different external feedback conditions. Single emitters can be tuned from 950 nm to 975 nm and reach 1 W optical power with more than 55 % PCE and a beam quality of M2 < 2 over the full wavelength range. The spectral width is below 30 pm FWHM. 5 emitter arrays were stabilized using the same setup. Up to now we reached 3 W optical power, limited by power supply, with 5 narrow spectral lines.
Prototype laser-diode-pumped solid state laser transmitters
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Cheng, Emily A. P.; Wallace, Richard W.
1989-01-01
Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique.
Efficient, frequency-stable laser-diode-pumped Nd:YAG laser
NASA Technical Reports Server (NTRS)
Zhou, B.; Kane, T. J.; Dixon, G. J.; Byer, R. L.
1985-01-01
One of the main goals of the study was to demonstrate a low-power efficient Nd:YAG laser oscillator for applications in remote coherent Doppler anemometry. An electrical-to-optical slope efficiency of 6.5 percent has been achieved by using commercially available CW laser diodes of up to 100 mW to pump monolithic Nd:YAG rod lasers. The observed Nd:YAG oscillation threshold is at 2.3 mW of laser-diode output power, i.e., a small fraction of the rated output power. The highest Nd:YAG CW output power reached is 4.4 mW at an overall electrical-to-optical efficiency of 1.5 percent. The frequency jitter is less than 10 kHz in 0.3 s.
Bracket debonding by mid-infrared laser radiation
NASA Astrophysics Data System (ADS)
Jelínková, H.; Šulc, J.; Dostálová, T.; Koranda, P.; Němec, M.; Hofmanova, P.
2009-03-01
The purpose of the study was to determine the proper laser radiation for ceramic bracket debonding and the investigation of the tooth root temperature injury. The debonding was investigated by diode-pumped continuously running Tm:YAP and Nd:YAG lasers, and by GaAs laser diode generating radiation with the wavelengths 1.997 μm, 1.444 μm, and 0.808 μm, respectively. The possibility of brackets removal by laser radiation was investigated together with the tooth and, it specifically, root temperature rise. From the results it follows that continuously running diode pumped Tm:YAG or Nd:YAG laser generating wavelengths 1.997 μm or 1.444 μm, respectively, having the output power 1 W can be good candidates for ceramic brackets debonding.
Integrating IR detector imaging systems
NASA Technical Reports Server (NTRS)
Bailey, G. C. (Inventor)
1984-01-01
An integrating IR detector array for imaging is provided in a hybrid circuit with InSb mesa diodes in a linear array, a single J-FET preamplifier for readout, and a silicon integrated circuit multiplexer. Thin film conductors in a fan out pattern deposited on an Al2O3 substrate connect the diodes to the multiplexer, and thick film conductors also connect the reset switch and preamplifier to the multiplexer. Two phase clock pulses are applied with a logic return signal to the multiplexer through triax comprised of three thin film conductors deposited between layers. A lens focuses a scanned image onto the diode array for horizontal read out while a scanning mirror provides vertical scan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harpool, K; De La Fuente Herman, T; Ahmad, S
Purpose: To investigate quantitatively the accuracy of dose distributions for the Ir-192 high-dose-rate (HDR) brachytherapy source calculated by the Brachytherapy-Planning system (BPS) and measured using a multiple-array-diode-detector in a heterogeneous medium. Methods: A two-dimensional diode-array-detector system (MapCheck2) was scanned with a catheter and the CT-images were loaded into the Varian-Brachytherapy-Planning which uses TG-43-formalism for dose calculation. Treatment plans were calculated for different combinations of one dwell-position and varying irradiation times and different-dwell positions and fixed irradiation time with the source placed 12mm from the diode-array plane. The calculated dose distributions were compared to the measured doses with MapCheck2 delivered bymore » an Ir-192-source from a Nucletron-Microselectron-V2-remote-after-loader. The linearity of MapCheck2 was tested for a range of dwell-times (2–600 seconds). The angular effect was tested with 30 seconds irradiation delivered to the central-diode and then moving the source away in increments of 10mm. Results: Large differences were found between calculated and measured dose distributions. These differences are mainly due to absence of heterogeneity in the dose calculation and diode-artifacts in the measurements. The dose differences between measured and calculated due to heterogeneity ranged from 5%–12% depending on the position of the source relative to the diodes in MapCheck2 and different heterogeneities in the beam path. The linearity test of the diode-detector showed 3.98%, 2.61%, and 2.27% over-response at short irradiation times of 2, 5, and 10 seconds, respectively, and within 2% for 20 to 600 seconds (p-value=0.05) which depends strongly on MapCheck2 noise. The angular dependency was more pronounced at acute angles ranging up to 34% at 5.7 degrees. Conclusion: Large deviations between measured and calculated dose distributions for HDR-brachytherapy with Ir-192 may be improved when considering medium heterogeneity and dose-artifact of the diodes. This study demonstrates that multiple-array-diode-detectors provide practical and accurate dosimeter to verify doses delivered from the brachytherapy Ir-192-source.« less
Solid state lasers for use in non-contact temperature measurements
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.
1989-01-01
The last decade has seen a series of dramatic developments in solid state laser technology. Prominent among these has been the emergence of high power semiconductor laser diode arrays and a deepening understanding of the dynamics of solid state lasers. Taken in tandem these two developments enable the design of laser diode pumped solid state lasers. Pumping solid state lasers with semiconductor diodes relieves the need for cumbersome and inefficient flashlamps and results in an efficient and stable laser with the compactness and reliability. It provides a laser source that can be reliably used in space. These new coherent sources are incorporated into the non-contact measurement of temperature. The primary focus is the development and characterization of new optical materials for use in active remote sensors of the atmosphere. In the course of this effort several new materials and new concepts were studied which can be used for other sensor applications. The general approach to the problem of new non-contact temperature measurements has had two components. The first component centers on passive sensors using optical fibers; an optical fiber temperature sensor for the drop tube was designed and tested at the Marshall Space Flight Center. Work on this problem has given insight into the use of optical fibers, especially new IR fibers, in thermal metrology. The second component of the effort is to utilize the experience gained in the study of passive sensors to examine new active sensor concepts. By active sensor are defined as a sensing device or mechanism which is interrogated in some way be radiation, usually from a laser. The status of solid state lasers as sources for active non-contact temperature sensors are summarized. Some specific electro-optic techniques are described which are applicable to the sensor problems at hand. Work on some of these ideas is in progress while other concepts are still being worked out.
NASA Astrophysics Data System (ADS)
Talla Mbé, Jimmi Hervé; Woafo, Paul
2018-03-01
We report on a simple way to generate complex optical waveforms with very cheap and accessible equipments. The general idea consists in modulating a laser diode with an autonomous electronic oscillator, and in the case of this study, we use a distributed feedback (DFB) laser diode pumped with an electronic Chua's circuit. Based on the adiabatic P-I characteristics of the laser diode at low frequencies, we show that when the total pump is greater than the laser threshold, it is possible to convert the electrical waveforms of the Chua's circuit into optical carriers. But, if that is not the case, the on-off dynamical behavior of the laser permits to obtain many other optical waveform signals, mainly pulses. Our numerical results are consistent with experimental measurements. The work presents the advantage of extending the range of possible chaotic dynamics of the laser diodes in the time domains (millisecond) where it is not usually expected with conventional modulation techniques. Moreover, this new technique of laser diodes modulation brings a general benefit in the physical equipment, reduces their cost and congestion so that, it can constitute a step towards photonic integrated circuits.
Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S
2015-12-28
Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency.
Simultaneous mixing and pumping using asymmetric microelectrodes
NASA Astrophysics Data System (ADS)
Kim, Byoung Jae; Yoon, Sang Youl; Sung, Hyung Jin; Smith, Charles G.
2007-10-01
This study proposes ideas for simultaneous mixing and pumping using asymmetric microelectrode arrays. The driving force of the mixing and pumping was based on electroosmotic flows induced by alternating current (ac) electric fields on asymmetric microelectrodes. The key idea was to bend/incline the microelectrodes like diagonal/herringbone shapes. Four patterns of the asymmetric electrode arrays were considered depending on the shape of electrode arrays. For the diagonal shape, repeated and staggered patterns of the electrode arrays were studied. For the herringbone shape, diverging and converging patterns were examined. These microelectrode patterns forced fluid flows in the lateral direction leading to mixing and in the channel direction leading to pumping. Three-dimensional numerical simulations were carried out using the linear theories of ac electro-osmosis. The performances of the mixing and pumping were assessed in terms of the mixing efficiency and the pumping flow rate. The results indicated that the helical flow motions induced by the electrode arrays play a significant role in the mixing enhancement. The pumping performance was influenced by the slip velocity at the center region of the channel compared to that near the side walls.
An automated method for the determination of carbendazim in water that combines high-performance immunoaffinity chromatography (HPIAC), high-performance liquid chromatography (HPLC) in the reversed-phase mode, and detection by either UV-Vis diode array detector (DAD) spectroscopy...
Wavelength stabilized multi-kW diode laser systems
NASA Astrophysics Data System (ADS)
Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens
2015-03-01
We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.
NASA Astrophysics Data System (ADS)
Kwiatkowski, Jacek; Zendzian, Waldemar; Jabczynski, Jan K.
2016-12-01
A detailed study of a Tm:YAP laser in continuous-wave (CW), single-pass end-pumped by a 793 nm diode laser is presented. The laser based on c-cut 3 at. % Tm:YAP crystal was experimentally examined and presented in the dependence on transmittance and radius of curvature of output coupling mirrors. A detailed spectral analysis was presented. The influence of a heat-sink cooling water temperature on the laser performance was studied. At room temperature, for an output coupling transmission of 19.5%, the maximum CW output power of 4.53 W was achieved, corresponding to a slope efficiency of 41.5% and an optical-to-optical conversion efficiency of 25.7% with respect to the incident pump power, respectively. We have shown that the output spectrum at a certain wavelength (e.g. 1940 nm) for a given pump power can be realized via the change of resonator parameters (OC transmittance, mode size).
Barmashenko, B D; Rosenwaks, S
2012-09-01
A simple, semi-analytical model of flowing gas diode pumped alkali lasers (DPALs) is presented. The model takes into account the rise of temperature in the lasing medium with increasing pump power, resulting in decreasing pump absorption and slope efficiency. The model predicts the dependence of power on the flow velocity in flowing gas DPALs and checks the effect of using a buffer gas with high molar heat capacity and large relaxation rate constant between the 2P3/2 and 2P1/2 fine-structure levels of the alkali atom. It is found that the power strongly increases with flow velocity and that by replacing, e.g., ethane by propane as a buffer gas the power may be further increased by up to 30%. Eight kilowatt is achievable for 20 kW pump at flow velocity of 20 m/s.
Laser diode side-pumped Nd:YVO4 microchip laser with film-etched microcavity mirrors.
Li, Jiyang; Niu, Yanxiong; Chen, Sanbin; Tan, Yidong
2017-10-01
Microchip lasers are applied as the light sources on various occasions with the end-pumping scheme. However, the vibration, the temperature drift, or the mechanical deformation of the pumping light in laser diodes in the end-pumping scheme will lead to instability in the microchip laser output, which causes errors and malfunctioning in the optic systems. In this paper, the side-pumping scheme is applied for improving the disturbance-resisting ability of the microchip laser. The transverse mode and the frequency purity of the laser output are tested. To ensure unicity in the frequency of the laser output, numerical simulations based on Fresnel-Kirchhoff diffraction theory are conducted on the parameters of the microchip laser cavity. Film-etching technique is applied to restrain the area of the film and form the microcavity mirrors. The laser output with microcavity mirrors is ensured to be in single frequency and with good beam quality, which is significant in the applications of microchip lasers as the light sources in optical systems.
Chaotic LIDAR for Naval Applications
2014-08-29
Perot Fiber Laser PD ^^ /- x —► -(YDF\\ {SMFV X — FBG 1 0 r utput FBG 70 Fabry-Perot Laser Output Pump Power (mW) Fig 2. Fabry-Perot...chaotic fiber laser. Left: Block diagram of the laser. Right: Output power versus pump power. (PD: Pump Diode; FBG : Fiber Braggs Grating; YDF: Ytterbium
NASA Astrophysics Data System (ADS)
Lee, Dicky; Moulton, Peter F.
2001-03-01
In this paper we discuss our red, green, and blue (RGB) optical parametric oscillator (OPO) light source for projection display applications. Our source consists of a diode-pumped pump laser and a LBO-based OPO. Based on our Nd:YLF gain-module design, the pump laser is frequency doubled to serve as the pump source for the OPO. The unconverted pump power is recycled as the green light for projection. The singly resonant, non-critically phase- matched OPO has, to date, generated 13 W of 898-nm signal power and an estimated 9.3 W of intra-cavity idler power at 1256 nm. With approximately 76% of pump depletion, the power of the residual green light for projection is about 5.8 W. We have extra-cavity doubled the signal to produce approximately 3.5 W of 449-nm blue light and intra-cavity doubled the idler to produce approximately 6 W of 628-nm red light. The OPO-based RGB source generates about 4000 lumens of D65-balanced white light. The overall electrical power luminous efficiency (diodes only) is about 14.6 lumens/Watt.
Custom ceramic microchannel-cooled array for high-power fiber-coupled application
NASA Astrophysics Data System (ADS)
Junghans, Jeremy; Feeler, Ryan; Stephens, Ed
2018-03-01
A low-SWaP (Size, Weight and Power) diode array has been developed for a high-power fiber-coupled application. High efficiency ( 65%) diodes enable high optical powers while minimizing thermal losses. A large amount of waste heat is still generated and must be extracted. Custom ceramic microchannel-coolers (MCCs) are used to dissipate the waste heat. The custom ceramic MCC was designed to accommodate long cavity length diodes and micro-lenses. The coolers provide similar thermal performance as copper MCCs however they are not susceptible to erosion and can be cooled with standard filtered water. The custom ceramic micro-channel cooled array was designed to be a form/fit replacement for an existing copperbased solution. Each array consisted of three-vertically stacked MCCs with 4 mm CL, 976 nm diodes and beamshaping micro-optics. The erosion and corrosion resistance of ceramic array is intended to mitigate the risk of copperbased MCC corrosion failures. Elimination of the water delivery requirements (pH, resistivity and dissolved oxygen control) further reduces the system SWaP while maintaining reliability. The arrays were fabricated and fully characterized. This work discusses the advantages of the ceramic MCC technology and describes the design parameters that were tailored for the fiber-coupled application. Additional configuration options (form/fit, micro-lensing, alternate coolants, etc.) and on-going design improvements are also discussed.
Concepts and performance of solid state RGB laser sources for large-frame laser projection displays
NASA Astrophysics Data System (ADS)
Nebel, Achim; Wallenstein, Richard E.
2000-04-01
We report on concepts and the performance of diode pumped solid state laser systems which generate simultaneously red (R), green (G) and blue (B) laser light with output powers of up to 7.1 W at 629 nm, 6.9 W at 532 nm and 5.0 W at 446 nm. The superposition of this RGB radiation provides white light with a power of 19 W. In respect to the diode pump power of 110 W the RGB output corresponds to an optical efficiency of 17%.
High-power diode-side-pumped rod Tm:YAG laser at 2.07 μm.
Wang, Caili; Niu, Yanxiong; Du, Shifeng; Zhang, Chao; Wang, Zhichao; Li, Fangqin; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Xu, Zuyan
2013-11-01
We report a high-power diode-laser (LD) side-pumped rod Tm:YAG laser of around 2 μm. The laser was water-cooled at 8°C and yielded a maximum output power of 267 W at 2.07 μm, which is the highest output power for an all solid-state cw 2.07 μm rod Tm:YAG laser reported as far as we know. The corresponding optical-optical conversion efficiency was 20.7%, and the slope efficiency was about 29.8%, respectively.
1047nm 270mJ all solid state diode pumped MOPA at 50 Hz
NASA Astrophysics Data System (ADS)
Ma, Jian; Yang, Qi; Lu, Tingting; Ma, Xiuhua; Zhu, Xiaolei; Chen, Weibiao
2015-02-01
A diode-pumped nanosecond Master Oscillator Power Amplifier (MOPA) system based on Nd:YLF crystal slabs has been demonstrated. The seed pulses with pulse duration of 11 ns were generated in an EO Q-switched Nd:YLF laser, with single pulse energy of 10 mJ. The 1047 nm signal pulses were amplified in a double-pass amplification system. Maximum output pulse energy of 270 mJ at a repetition rate of 50 Hz has been achieved with effective optical-to-optical efficiency of 14.5%.
Design modeling of the 100-J diode-pumped solid-state laser for Project Mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orth, C., LLNL
We present the energy, propagation, and thermal modeling for a diode-pumped solid-state laser called Mercury being designed and built at LLNL using Yb:S-FAP [i.e., Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F crystals] for the gain medium. This laser is intended to produce 100 J pulses at 1 to 10 ns at 10 Hz with an electrical efficiency of {approximately}10%. Our modeling indicates that the laser will be able to meet its performance goals.
Spectroscopy and lasing of Tm:SrMoO4 crystal near 1.5, 1.9, and 2.3-μm under 793-nm excitation
NASA Astrophysics Data System (ADS)
Šulc, Jan; Švejkar, Richard; Němec, Michal; Doroshenko, Maxim E.; Jelínková, Helena; Ivleva, Liudmila I.; Dunaeva, Elizaveta E.
2018-02-01
The spectroscopy properties and lasing of diode pumped Tm-doped strontium molybdate SrMoO4 single crystal were investigated at room temperature. The Tm:SrMoO4 crystal was grown by modified Stepanov method (2 wt.% of TmNbO4 in the melt). The tested Tm:SrMoO4 sample was cut from the grown crystal boule perpendicularly to growth direction 100. For spectroscopy and laser experiments 4.2mm thick plane-parallel face-polished plate (without AR coatings) was used. A fiber-coupled laser diode operating at wavelength 793nm was used for longitudinal Tm:SrMoO4 pumping which corresponds to 3H4 level excitation. Fluorescence spectra measurement showed strong emission in vicinity of 1.8 μm (3F4 -> 3H6 transition), and also significant emission close to wavelengths 1.45 μm (3H4 -> 3F4 transition) and 2.3 μm (3H4 -> 3H5 transition). The lasing was successfully reached for all these three transitions and output characteristics were measured. The pumping laser diode was operating in the pulsed regime with a low duty cycle. The 145mm long semi-hemispherical laser resonator consisted of flat pumping mirror (HT @ 0.79 μm) and curved (r = 150mm) output coupler. For each lasing transition the particular set of resonator mirrors was used to reach high reflexivity of pumping mirror and output coupler transmission 0.5% at laser operation wavelength. The obtained laser emission wavelengths were 1.95 μm, 1.45 & 1.49 μm, and 2.30 μm. In spite of low laser slope efficiency in respect to absorbed pumping power (0.45% for 3H4 -> 3F4 transition, 0.50% for 3F4 -> 3H6 transition and 0.83% for 3H4 -> 3H5 transition), results obtained are promising for further development of diode-pumped laser at 2.3 μm spectral region.
Peristaltic pump noise: A nemesis conquered
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, D.A.
1994-12-31
Continuous-flow analyzers (CFA), and especially Segmented Flow Analyzers (SFA), typically employ peristaltic pumps to generate a carrier stream and add reagents thereto. The resulting pump {open_quotes}noise{close_quotes} usually limits precision, and is generally deemed unavoidable. Although the problem is partially solved by hydraulic debubbling, most modern instruments employ bubble thru the flow-cell (BTTFC) technology and electronic debubbling. The authors have developed an algorithm that can significantly reduce this source of noise, even when the individual segments in the SFA stream are of varying volumes and/or concentrations. It does this, without any modifications to the pump, by examining each individual segment asmore » it passes thru the flowcell. The Alpkem model 304 multichannel pump, for example, can be set to produce 90 bubbles/minutes (and therefore 90 segments/minute), so one has 667 msec in which to gather sufficient information to identify a {open_quotes}bad{close_quotes} segment and modify its value. This hardware includes a Hewlett Packard model 8452A diode array spectrophotometer fitted with fiber optics leading to/from a flowcell (5 mm path length X 1mm ID). Each segment remains in the flowcell 300-500 msec. With a data sampling rate of 10/sec (100 msec integration time), the authors can acquire 3-5 intensity values for each segment and convert these to absorbance values. The software to perform all this was written in QuickBASIC 4.5 and incorporates a few routines from Hewlett Packard`s library. The program will be described in some detail so that analytical chemists who use BTTFC can obtain higher precision.« less
Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Jian; Xu, Jun
2016-04-10
We report a diode-pumped continuous-wave simultaneous dual-wavelength Nd:LSO laser at 1059 and 1067 nm. By employing a specially coated output coupler with relatively high transmissions at high-gain emission lines of 1075 and 1079 nm, the two low-gain emission lines, 1059 and 1067 nm, can be achieved, for the first time to our knowledge, with maximum output power of 1.27 W and slope efficiency of about 29.2%. The output power is only limited by the available pump power. Output beam quality is also measured to be about 1.19 and 1.21 of the beam propagation factors in the x and y directions, respectively.
NASA Astrophysics Data System (ADS)
Jew, Jamison; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel
2017-02-01
Selective removal of caries lesions with high precision is best accomplished using lasers operating at high pulse repetition rates utilizing small spot sizes. Conventional flash-lamp pumped Er:YAG lasers are poorly suited for this purpose, but new diode-pumped solid-state (DPSS) Er:YAG lasers have become available operating at high pulse repetition rates. Microradiography was used to determine the mineral content of the demineralized dentin of 200-μm thick sections with natural caries lesions prior to laser ablation. The purpose of this study was to explore the use of a DPSS Er:YAG laser for the selective removal of demineralized dentin and natural occlusal lesions on extracted teeth.
Yellow light generation by frequency doubling of a diode-pumped Nd:YAG laser
NASA Astrophysics Data System (ADS)
Jia, Fu-qiang; Zheng, Quan; Xue, Qing-hua; Bu, Yi-kun; Qian, Long-sheng
2006-03-01
We demonstrate the generation of TEM00 mode yellow light in critically type II phase-matched KTiOPO4 (KTP) with intracavity frequency doubling of a diode-pumped Nd:YAG laser at room temperature. After a 150 μm thick etalon have been inserted into the cavity, the stability and beam quality of the second harmonic generation (SHG) is enhanced. A continuous wave (CW) TEM00 mode output power of 1.67 W at 556 nm is obtained at a pump level of 16 W. The total optical to optical conversion efficiency is about 10.44%. To the best of our knowledge, this is the first Watt-level yellow light generation by frequency doubling of Nd:YAG laser.
Single-mode oscillation of a diode-pumped Nd:YAG microchip laser at 1835 nm
NASA Astrophysics Data System (ADS)
Lan, Jinglong; Cui, Qin; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping
2016-10-01
Single-mode oscillation of a diode-pumped conventional Nd:YAG laser at 1835 nm is demonstrated, for the first time to our knowledge, in the form of microchip configuration. The achieved maximum output power reaches 189 mW with slope efficiency of about 5.5% with respect to absorbed pump power. The laser spectra are measured with linewidth less than 0.08 nm indicating a single longitudinal mode. The output laser beam is also measured to be near diffraction-limited with M2 factors of about 1.2 and 1.5 in x and y directions. Using a mechanical chopper with 50% duty cycle, the maximum output power is improved to 253 mW with slope efficiency of about 9.7%.
Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang
2007-10-15
We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.
Salamu, Gabriela; Jipa, Florin; Zamfirescu, Marian; Pavel, Nicolaie
2014-03-10
We report on realization of buried waveguides in Nd:YAG ceramic media by direct femtosecond-laser writing technique and investigate the waveguides laser emission characteristics under the pump with fiber-coupled diode lasers. Laser pulses at 1.06 μm with energy of 2.8 mJ for the pump with pulses of 13.1-mJ energy and continuous-wave output power of 0.49 W with overall optical efficiency of 0.13 were obtained from a 100-μm diameter circular cladding waveguide realized in a 0.7-at.% Nd:YAG ceramic. A circular waveguide of 50-μm diameter yielded laser pulses at 1.3 μm with 1.2-mJ energy.
Yao, Wenming; Gao, Jing; Zhang, Long; Li, Jiang; Tian, Yubing; Ma, Yufei; Wu, Xiaodong; Ma, Gangfei; Yang, Jianming; Pan, Yubai; Dai, Xianjin
2015-06-20
We present what is, to the best of our knowledge, the first report on yellow-green laser generation based on the frequency doubling of the 1.1 μm transitions in Nd:YAG ceramics. By employing an 885 nm diode laser as the end-pumping source and a lithium triborate crystal as the frequency doubler, the highest continuous wave output powers of 1.4, 0.5, and 1.1 W at 556, 558, and 561 nm are achieved, respectively. These result in optical-to-optical efficiencies of 6.9%, 2.5%, and 5.4% with respect to the absorbed pump power, respectively.
Highly stable self-pulsed operation of an Er:Lu2O3 ceramic laser at 2.7 µm
NASA Astrophysics Data System (ADS)
Wang, Li; Huang, Haitao; Shen, Deyuan; Zhang, Jian; Chen, Hao; Tang, Dingyuan
2017-04-01
We report on the highly stable self-pulsed operation of a 2.74 µm Er:Lu2O3 ceramic laser pumped by a wavelength locked narrow bandwidth 976 nm laser diode. The operating pulse repetition rate is continuously tunable from 126 kHz to 270 kHz depending on the pump power level. For 12.3 W of absorbed diode pump power, the Er:Lu2O3 ceramic laser generates 820 mW of average output power at a 270 kHz repetition rate and with a pulse duration of 183 ns. The corresponding pulse-to-pulse amplitude fluctuation is estimated to be less than 0.7%. In the continues-wave (CW) mode of operation, the laser yields over 1.3 W of output power with a slope efficiency of 11.9% with respect to the 976 nm pump power.
High power eye-safe Er3+:YVO4 laser diode-pumped at 976 nm and emitting at 1603 nm
NASA Astrophysics Data System (ADS)
Newburgh, G. A.; Dubinskii, M.
2016-02-01
We report on the performance of an eye-safe laser based on a Er:YVO4 single crystal, diode-pumped at 976 nm (4I15/2-->4I11/2 transition) and operating at 1603 nm (4I13/2-->4I15/2 transition) with good beam quality. A 10 mm long Er3+:YVO4 slab, cut with its c-axis perpendicular to the laser cavity axis, was pumped in σ-polarization and lased in π-polarization. The laser operated in a quasi-continuous wave (Q-CW) regime with nearly 9 W output power, and with a slope efficiency of about 39% with respect to absorbed power. This is believed to be the highest efficiency and highest power achieved from an Er3+:YVO4 laser pumped in the 970-980 nm absorption band.
Peuser, Peter; Platz, Willi; Fix, Andreas; Ehret, Gerhard; Meister, Alexander; Haag, Matthias; Zolichowski, Paul
2009-07-01
We report on a compact, tunable ultraviolet laser system that consists of an optical parametric oscillator (OPO) and a longitudinally diode-pumped Nd:YAG master oscillator-power amplifier (MOPA). The pump energy for the whole laser system is supplied via a single delivery fiber. Nanosecond pulses are produced by an oscillator that is passively Q-switched by a Cr(4+):YAG crystal. The OPO is pumped by the second harmonic of the Nd:YAG MOPA. Continuously tunable radiation is generated by an intracavity sum-frequency mixing process within the OPO in the range of 245-260 nm with high beam quality. Maximum pulse energies of 1.2 mJ were achieved, which correspond to an optical efficiency of 3.75%, relating to the pulse energy of the MOPA at 1064 nm.
[The heating effect of the Er3+/Yb3+ doped Y2O3 nanometer powder by 980 nm laser diode pumping].
Zheng, Long-Jiang; Gao, Xiao-Yang; Liu, Hai-Long; Li, Bing; Xu, Chen-Xi
2013-01-01
The Er3+ and Yb3+ doped Y2O3 Nano powder was prepared by sol-gel method. Based on 2H11/2 --> 4I15/2 and 4S3/2 --> 4I15/2 green conversion luminescence intensity rate of Er3+, the sample surface temperature changes caused by the increase in 980 nm diode laser pump power were studied. The results show that with pump power increasing, the sample surface temperature substantially rises. And the surface temperature reached to 820 K when the pump power was 1 000 mW. The phenomenon plays an important role in the analysis of upconversion process, especially with saturation power. And this feature has a potential application prospect in the biomedicine, soft tissue hole burning as well as the field of temperature sensing materials.
1 Hz fast-heating fusion driver HAMA pumped by a 10 J green diode-pumped solid-state laser
NASA Astrophysics Data System (ADS)
Mori, Y.; Sekine, T.; Komeda, O.; Nakayama, S.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Satoh, N.; Kurita, T.; Kawashima, T.; Kan, H.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Hioki, T.; Kakeno, M.; Motohiro, T.; Nishimura, Y.; Sunahara, A.; Sentoku, Y.; Kitagawa, Y.
2013-07-01
A Ti : sapphire laser HAMA pumped by a diode-pumped solid-state laser (DPSSL) is developed to enable a high-repetitive inertial confinement fusion (ICF) experiment to be conducted. To demonstrate a counter-irradiation fast-heating fusion scheme, a 3.8 J, 0.4 ns amplified chirped pulse is divided into four beams: two counter-irradiate a target with intensities of 6 × 1013 W cm-2, and the remaining two are pulse-compressed to 110 fs for heating the imploded target with intensities of 2 × 1017 W cm-2. HAMA contributed to the first demonstration by showing that a 10 J class DPSSL is adaptable to ICF experiments and succeeded in DD neutron generation in the repetition mode. Based on HAMA, we can design and develop an integrated repetitive ICF experiment machine by including target injection and tracking.
Diode-pumped 1.5-1.6 μm laser operation in Er³⁺ doped YbAl₃(BO₃)₄ microchip.
Chen, Yujin; Lin, Yanfu; Zou, Yuqi; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong
2014-06-02
Er3+ doped YbAl3(BO3)4 crystal with large absorption coefficient of 184 cm(-1) at pump wavelength of 976 nm is a promising microchip gain medium of 1.5-1.6 μm laser. End-pumped by a 976 nm diode laser, 1.5-1.6 μm continuous-wave laser with maximum output power of 220 mW and slope efficiency of 8.1% was obtained at incident pump power of 4.54 W in a c-cut 200-μm-thick Er:YbAl3(BO3)4 microchip. When a Co2+:Mg0.4Al2.4O4 crystal was used as the saturable absorber, 1521 nm passively Q-switched pulse laser with about 0.19 μJ energy, 265 ns duration, and 96 kHz repetition rate was realized.
Xu, Yi-Ting; Xu, Jia-Lin; Guo, Ya-Ding; Yang, Feng-Tu; Chen, Yan-Zhong; Xu, Jian; Xie, Shi-Yong; Bo, Yong; Peng, Qin-Jun; Cui, Dafu; Xu, Zu-Yan
2010-08-20
We present a compact high-efficiency and high-average-power diode-side-pumped Nd:YAG rod laser oscillator operated with a linearly polarized fundamental mode. The oscillator resonator is based on an L-shaped convex-convex cavity with an improved module and a dual-rod configuration for birefringence compensation. Under a pump power of 344 W, a linearly polarized average output power of 101.4 W at 1064 nm is obtained, which corresponds to an optical-to-optical conversion efficiency of 29.4%. The laser is operated at a repetition rate of 400 Hz with a beam quality factor of M(2)=1.14. To the best of our knowledge, this is the highest optical-to-optical efficiency for a side-pumped TEM(00) Nd:YAG rod laser oscillator with a 100-W-level output ever reported.
Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power
NASA Astrophysics Data System (ADS)
Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong
2018-03-01
We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.
1047 nm laser diode master oscillator Nd:YLF power amplifier laser system
NASA Technical Reports Server (NTRS)
Yu, A. W.; Krainak, M. A.; Unger, G. L.
1993-01-01
A master oscillator power amplifier (MOPA) laser transmitter system at 1047 nm wavelength using a semiconductor laser diode and a diode pumped solid state (Nd:YLF) laser (DPSSL) amplifier is described. A small signal gain of 23 dB, a near diffraction limited beam, 1 Gbit/s modulation rates and greater than 0.6 W average power are achieved. This MOPA laser has the advantage of amplifying the modulation signal from the laser diode master oscillator (MO) with no signal degradation.
Bartolomé, B; Bengoechea, M L; Pérez-Ilzarbe, F J; Hernández, T; Estrella, I; Gómez-Cordovés, C
1994-03-25
A method is described for the detection of patulin in apple juice and the simultaneous determination of the phenolic composition. Spectral data obtained with diode-array detection showed that patulin can be easily distinguished from compounds eluting under the same conditions. The detection limit for patulin was 8.96 micrograms/l.
NASA Astrophysics Data System (ADS)
Auer-Berger, Manuel; Tretnak, Veronika; Wenzl, Franz-Peter; Krenn, Joachim R.; List-Kratochvil, Emil J. W.
2017-10-01
We examine aluminum-nanodisc-induced collective lattice resonances as a means to enhance the efficiency of organic light emitting diodes. Thus, nanodisc arrays were embedded in the hole transporting layer of a solution-processed phosphorescent organic blue-light emitting diode. Through extinction spectroscopy, we confirm the emergence of array-induced collective lattice resonances within the organic light emitting diode. Through finite-difference time domain simulations, we show that the collective lattice resonances yield an enhancement of the electric field intensity within the emissive layer. The effectiveness for improving the light generation and light outcoupling is demonstrated by electro-optical characterization, realizing a gain in a current efficiency of 35%.
Diode-pumped cw Nd:YAG three-level laser at 869 nm.
Lü, Yanfei; Xia, Jing; Cheng, Weibo; Chen, Jifeng; Ning, Guobin; Liang, Zuoliang
2010-11-01
We report for the first time (to our knowledge) a diode-pumped Nd:YAG laser emitting at 869 nm based on the (4)F(3/2)-(4)I(9/2) transition, generally used for a 946 nm emission. Power of 453 mW at 869 nm has been achieved in cw operation with a fiber-coupled laser diode emitting 35.4 W at 809 nm. Intracavity second-harmonic generation in the cw mode has also been demonstrated with power of 118 mW at 435 nm by using a BiB(3)O(6) nonlinear crystal. In our experiment, we used a LiNbO(3) crystal lens to complement the thermal lens of the laser rod, and we obtained good beam quality and high output power stability.
Fedorova, Ksenia A; Sokolovskii, Grigorii S; Khomylev, Maksim; Livshits, Daniil A; Rafailov, Edik U
2014-12-01
A compact high-power yellow-green continuous wave (CW) laser source based on second-harmonic generation (SHG) in a 5% MgO doped periodically poled congruent lithium niobate (PPLN) waveguide crystal pumped by a quantum-dot fiber Bragg grating (QD-FBG) laser diode is demonstrated. A frequency-doubled power of 90.11 mW at the wavelength of 560.68 nm with a conversion efficiency of 52.4% is reported. To the best of our knowledge, this represents the highest output power and conversion efficiency achieved to date in this spectral region from a diode-pumped PPLN waveguide crystal, which could prove extremely valuable for the deployment of such a source in a wide range of biomedical applications.
System and method for high power diode based additive manufacturing
El-Dasher, Bassem S.; Bayramian, Andrew; Demuth, James A.; Farmer, Joseph C.; Torres, Sharon G.
2018-01-02
A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.
System and method for high power diode based additive manufacturing
El-Dasher, Bassem S.; Bayramian, Andrew; Demuth, James A.; Farmer, Joseph C.; Torres, Sharon G.
2016-04-12
A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.
Power generation in random diode arrays
NASA Astrophysics Data System (ADS)
Shvydka, Diana; Karpov, V. G.
2005-03-01
We discuss nonlinear disordered systems, random diode arrays (RDAs), which can represent such objects as large-area photovoltaics and ion channels of biological membranes. Our numerical modeling has revealed several interesting properties of RDAs. In particular, the geometrical distribution of nonuniformities across a RDA has only a minor effect on its integral characteristics determined by RDA parameter statistics. In the meantime, the dispersion of integral characteristics vs system size exhibits a nontrivial scaling dependence. Our theoretical interpretation here remains limited and is based on the picture of eddy currents flowing through weak diodes in the RDA.
13. CONTROL ROOM OF GENE PUMPING STATION. CONTROL CUBICLES ARRAYED ...
13. CONTROL ROOM OF GENE PUMPING STATION. CONTROL CUBICLES ARRAYED BEHIND MANAGER'S ART DECO-STYLE CONTROL DESK, WITH CONTROL CUBICLE 1 AT FAR RIGHT AND CONTROL CUBICLE 9 AT FAR LEFT. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA
Spin polarization of {sup 87}Rb atoms with ultranarrow linewidth diode laser: Numerical simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z. G.; Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, 410073; College of Science, National University of Defense Technology, Changsha, 410073
2016-08-15
In order to polarize {sup 87}Rb vapor effectively with ultranarrow linewidth diode laser, we studied the polarization as a function of some parameters including buffer gas pressure and laser power. Moreover, we also discussed the methods which split or modulate the diode laser frequency so as to pump the two ground hyperfine levels efficiently. We obtained some useful results through numerical simulation. If the buffer gas pressure is so high that the hyperfine structure is unresolved, the polarization is insensitive to laser frequency at peak absorption point so frequency splitting and frequency modulation methods do not show improvement. At lowmore » pressure and laser power large enough, where the hyperfine structure is clearly resolved, frequency splitting and frequency modulation methods can increase polarization effectively. For laser diodes, frequency modulation is easily realized with current modulation, so this method is attractive since it does not add any other components in the pumping laser system.« less
Chang, Wen-Chung; Su, Sheng-Chien; Wu, Chia-Ching
2016-06-30
Vertically aligned p-type silicon nanowire (SiNW) arrays were fabricated through metal-assisted chemical etching (MACE) of Si wafers. An indium tin oxide/indium zinc oxide/silicon nanowire (ITO/IZO/SiNW) heterojunction diode was formed by depositing ITO and IZO thin films on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and current-voltage (I-V) measurements. Nonlinear and rectifying I-V properties confirmed that a heterojunction diode was successfully formed in the ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions.
High energy diode-pumped solid-state laser development at the Central Laser Facility
NASA Astrophysics Data System (ADS)
Mason, Paul D.; Banerjee, Saumyabrata; Ertel, Klaus; Phillips, P. Jonathan; Butcher, Thomas; Smith, Jodie; De Vido, Mariastefania; Chekhlov, Oleg; Hernandez-Gomez, Cristina; Edwards, Chris; Collier, John
2016-04-01
In this paper we review the development of high energy, nanosecond pulsed diode-pumped solid state lasers within the Central Laser Facility (CLF) based on cryogenic gas cooled multi-slab ceramic Yb:YAG amplifier technology. To date two 10J-scale systems, the DiPOLE prototype amplifier and an improved DIPOLE10 system, have been developed, and most recently a larger scale system, DiPOLE100, designed to produce 100 J pulses at up to 10 Hz. These systems have demonstrated amplification of 10 ns duration pulses at 1030 nm to energies in excess of 10 J at 10 Hz pulse repetition rate, and over 100 J at 1 Hz, with optical-to-optical conversion efficiencies of up to 27%. We present an overview of the cryo-amplifier concept and compare the design features of these three systems, including details of the amplifier designs, gain media, diode pump lasers and the cryogenic gas cooling systems. The most recent performance results from the three systems are presented along with future plans for high energy DPSSL development within the CLF.
Laser interferometric studies of thermal effects of diode-pumped solid state lasing medium
NASA Astrophysics Data System (ADS)
Peng, Xiaoyuan; Asundi, Anand K.; Xu, Lei; Chen, Yihong; Xiong, Zhengjun; Lim, Gnian Cher
2000-04-01
Thermal effects dramatically influence the laser performance of diode-pumped solid state lasers (DPSSL). There are three factors accounting for thermal effects in diode-pumped laser medium: the change of the refractive index due to temperature gradient, the change of the refractive index due to thermal stress, and the change of the physical length due to thermal expansion (end effect), in which the first two effects can be called as thermal parts. A laser interferometer is proposed to measure both the bulk and physical messages of solid-state lasing medium. There are two advantages of the laser interferometry to determine the thermal lensing effect. One is that it allows separating the average thermal lens into thermal parts and end effect. Another is that the laser interferometry provides a non- invasive, full field, high-resolution means of diagnosing such effects by measuring the optical path difference induced by thermal loading in a lasing crystal reliable without disturbing the normal working conditions of the DPSS laser. Relevant measurement results are presented in this paper.
Femtosecond diode-pumped mode-locked neodymium lasers
NASA Astrophysics Data System (ADS)
Kubeček, Václav; Jelínek, Michal; Čech, Miroslav; Vyhlídal, David; Su, Liangbi; Jiang, Dapeng; Ma, Fengkai; Qian, Xiaobo; Wang, Jingya; Xu, Jun
2016-12-01
Fluoride-type crystals (CaF2, SrF2) doped with neodymium Nd3+ and codoped with buffer ions for breaking clusters of active ions and increasing fluorescence efficiency, present interesting alternative as laser active media for the diode-pumped mode-locked lasers. In comparison with widely used materials as Nd:YAG or Nd:YVO4, they have broad emission spectra as well as longer fluorescence lifetime, in comparison with Nd:glass, SrF2 and CaF2 have better thermal conductivity. In spite of the fact, that this thermal conductivity decreases with Nd3+ doping concentration, these crystals are alternative for the Nd:glass in subpicosecond mode-locked laser systems. In this paper we review the basic results reported recently on these active materials and in the second part we present our results achieved in low power diode pumped passively mode locked lasers with Nd,La:CaF2 and Nd,Y:SrF2 crystals. The pulses as short as 258 fs at wavelength of 1057 nm were obtained in the first case, while 5 ps long pulses at 1065 nm were generated from the second laser system.
NASA Astrophysics Data System (ADS)
Tian, Pengfei; Althumali, Ahmad; Gu, Erdan; Watson, Ian M.; Dawson, Martin D.; Liu, Ran
2016-04-01
The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm-2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.
A 25kW fiber-coupled diode laser for pumping applications
NASA Astrophysics Data System (ADS)
Malchus, Joerg; Krause, Volker; Koesters, Arnd; Matthews, David G.
2014-03-01
In this paper we report the development of a new fiber-coupled diode laser for pumping applications capable of generating 25 kW with four wavelengths. The delivery fiber has 2.0 mm core diameter and 0.22 NA resulting in a Beam Parameter Product (BPP) of 220 mm mrad. To achieve the specifications mentioned above a novel beam transformation technique has been developed combining two high power laser stacks in one common module. After fast axis collimation and beam reformatting a beam with a BPP of 200 mm mrad x 40 mm mrad in the slow and fast-axis is generated. Based on this architecture a customer-specific pump laser with 25 kW optical output power has been developed, in which two modules are polarization multiplexed for each wavelength (980nm, 1020nm, 1040m and 1060nm). After slow-axis collimation these wavelengths are combined using dense wavelength coupling before focusing onto the fiber endface. This new laser is based on a turn-key platform, allowing straight-forward integration into any pump application. The complete system has a footprint of less than 1.4m² and a height of less than 1.8m. The laser diodes are water cooled, achieve a wall-plug efficiency of up to 60%, and have a proven lifetime of <30,000 hours. The new beam transformation techniques open up prospects for the development of pump sources with more than 100kW of optical output power.
Zidki, Tomer; Cohen, Haim; Meyerstein, Dan
2010-10-21
Ag(0) and Au(0) nanoparticles suspended in dilute aqueous solutions containing (CH(3))(2)SO are photochemically unstable. The light source of a diode-array spectrophotometer induces, within less than a minute, particle growth and aggregation. The results indicate that this process is triggered by UV light absorption by the (CH(3))(2)SO.
Development of a photo-voltaic pumping system using a brushless D.C. motor and helical rotor pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langridge, D.; Lawrance, W.; Wichert, B.
1996-12-31
A PV pumping system based on a brushless d.c. motor and helical rotor pump has been designed, simulated and a prototype constructed. The paper describes the operation of the system and the development of component models for the array, the brushless d.c. motor and helical rotor pump. Simulation results and subsequent test results for the complete system are included. Efficiencies of between 30 and 50% for the system (excluding the array) have been achieved over a range of loads and operating conditions for 4 x 1 and 4 x 2 array configurations. 9 refs., 10 figs., 2 tabs.
NASA Technical Reports Server (NTRS)
Albyn, K.; Finckenor, M.
2006-01-01
The International Space Station (ISS) solar arrays utilize MD-944 diode tape with silicone pressure-sensitive adhesive to protect the underlying diodes and also provide a high-emittance surface. On-orbit, the silicone adhesive will be exposed and ultimately convert to a glass-like silicate due to atomic oxygen (AO). The current operational plan is to retract ISS solar array P6 and leave it stored under load for a long duration (6 mo or more). The exposed silicone adhesive must not cause the solar array to stick to itself or cause the solar array to fail during redeployment. The Environmental Effects Branch at Marshall Space Flight Center, under direction from the ISS Program Office Environments Team, performed simulated space environment exposures with 5-eV AO, near ultraviolet radiation and ionizing radiation. The exposed diode tape samples were put under preload and then the resulting blocking force was measured using a tensile test machine. Test results indicate that high-energy AO, ultraviolet radiation, and electron ionizing radiation exposure all reduce the blocking force for a silicone-to-silicone bond. AO exposure produces the most significant reduction in blocking force
Comparison of tunable lasers based on diode pumped Tm-doped crystals
NASA Astrophysics Data System (ADS)
Šulc, Jan; Jelínková, Helena; Koranda, Petr; Černý, Pavel; Jabczyński, Jan K.; Żendzian, Waldemar; Kwiatkowski, Jacek; Urata, Yoshiharu; Higuchi, Mikio
2008-12-01
We report on continuously tunable operation of a diode pumped lasers based on Tm-doped materials, emitting in the 1.8 - 2.μ1 m spectral band. In our study we compare results obtained with three various single crystals doped by Tm3+ ions: Yttrium Aluminum perovskite YAP (YAlO3), Gadolinium orthovanadate GdVO4, and Yttrium Lithium Fluoride YLF (YLiF4). Following samples were available: the 3mm long a-cut crystal rod of Tm:YAP with 4% at. Tm/Y (diameter 3 mm); the 8mm long b-cut crystal rod of Tm:YLF with 3.5% at. Tm/Y (diameter 3 mm); the 2.7mm long a-cut crystal block of Tm:GdVO4 with 2% at. Tm/Gd (crystal face 5×3 mm). For active medium pumping, the laser diode radiation was used. Because the tested samples differs significantly in absorption spectra, two fibre-coupled (core diameter 400 µm) temperature-tuned laser diodes were used: first operating at wavelength 793nm was used for Tm:YAP and Tm:YLF; the second operating at wavelength 802nm was used for Tm:GdVO4. In both cases, the continuous power up to 20W was available for pumping. The diode radiation was focused into the active crystal by two achromatic doublet lenses with the focal length f = 75 mm. The measured radius of pumping beam focus inside the crystal was 260 µm. The longitudinally diode pumped crystals were tested in linear, 80mm long, hemispherical laser cavity. The curved (radius 150mm) output coupler reflectivity was ~ 97 % in range from 1.8 up to 2.1 μm. The pumping flat mirror had maximal reflectivity in this range and it had high transmission around 0.8 μm. A 1.5mm thick birefringent plate made from quartz (Lyot filter) inserted under a Brewster's angle was used as a tuning element. This plate was placed inside the resonator between the crystal and the output coupler. Using Tm:YAP crystal, the maximal output power of 2.8W in this set-up was obtained. The laser could be tuned from 1865nm up to 2036nm with a maximum at 1985 nm. Laser based on Tm:YLF crystal was tunable from 1835nm up to 2010nm with a maximum at 1928 nm (3.0W was reached). Using the Tm:GdVO4 tunable operation with greater that 1W output at 1920nm and 130nm tuning range (1842-1972 nm) was demonstrated. The overall reached tuning range of over 200nm covers many important atmospheric absorption lines and contains also the local absorption peak of liquid water, making them attractive for applications such as high resolution spectroscopy, atmospheric remote sensing, laser radar, and laser microsurgery.
Spectroscopic analysis and efficient diode-pumped 1.9 μm Tm3+-doped β'-Gd2(MoO4)3 crystal laser.
Tang, Jianfeng; Chen, Yujin; Lin, Yanfu; Gong, Xinghong; Huang, Jianhua; Luo, Zundu; Huang, Yidong
2011-07-04
Tm3+-doped β'-Gd2(MoO4)3 single crystal was grown by the Czochralski method. Spectroscopic analysis was carried out along different polarizations. End-pumped by a quasi-cw diode laser at 795 nm in a plano-concave cavity, an average laser output power of 58 mW around 1.9 μm was achieved in a 0.93-mm-thick crystal when the output coupler transmission was 7.1%. The absorbed pump threshold was 8 mW and the slope efficiency of the laser was 57%. This crystal has smooth and broad gain curve around 1.9 μm, which shows that it is also a potential gain medium for tunable and short pulse lasers.
Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 microns
NASA Technical Reports Server (NTRS)
Mcguckin, B. T.; Menzies, Robert T.
1992-01-01
A conversion efficiency of 42 percent and slope efficiency of approximately 60 percent relative to absorbed pump power are reported from a continuous wave diode-pumped Tm, Ho:YLF laser at 2 microns with output power of 84 mW at sub-ambient temperatures. The emission spectrum is etalon tunable over a range of 16/cm centered on 2.067 microns, with fine tuning capability of the transition frequency with crystal temperature at a measured rate of about -0.03/cm-K. The effective emission cross section is measured to be 5 x 10 exp -21 sq cm. These and other aspects of the laser performance are discussed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications.
Continuous-wave Nd:YVO4/KTiOPO4 green laser at 542 nm under diode pumping into the emitting level
NASA Astrophysics Data System (ADS)
Liu, J. H.
2012-10-01
We report a green laser at 542 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1086 nm Nd:YVO4 laser under 880 nm diode pumping into the emitting level 4 F 3/2. A KTiOPO4 (KTP) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 14.5 W, as high as 1.33 W of CW output power at 542 nm is achieved. The optical-to-optical conversion efficiency is up to 9.2%, and the fluctuation of the green output power was better than 3.8% in the given 30 min.
Cryogenic cooling for high power laser amplifiers
NASA Astrophysics Data System (ADS)
Perin, J. P.; Millet, F.; Divoky, M.; Rus, B.
2013-11-01
Using DPSSL (Diode Pumped Solid State Lasers) as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz). The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K-170 K with a heat flux of 1 MW*m-2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.
High-power linearly polarized diode-side-pumped a-cut Nd:GdVO4 rod laser
NASA Astrophysics Data System (ADS)
Li, Xiaowen; Qian, Jianqiang; Zhang, Baitao
2017-03-01
An efficiently high-power diode-side-pumped Nd:GdVO4 rod laser system was successfully demonstrated, operating in continuous wave (CW) and acousto-optically (AO) Q-switched regime. With a 65 mm-long a-cut Nd:GdVO4 crystal, a maximum linearly polarized CW output power of 60 W at 1063.2 nm was obtained under an absorbed pump power of 180 W, corresponding to a slope efficiency of 50.6%. The output laser beam was linearly polarized with a degree of polarization of 98%. In AO Q-switched operation, the highest output power, minimum pulse width, and highest peak power were achieved to be 42 W, 36 ns, and 58 kW at the pulse repetition frequency of 20 kHz.
Diode-pumped continuous-wave and passively Q-switched Nd:GdLuAG laser at 1443.9 nm
NASA Astrophysics Data System (ADS)
Wu, Qianwen; Liu, Zhaojun; Zhang, Sasa; Cong, Zhenghua; Guan, Chen; Xue, Feng; Chen, Hui; Huang, Qingjie; Xu, Xiaodong; Xu, Jun; Qin, Zengguang
2017-12-01
We investigated the 1443.9 nm laser characteristics of Nd:GdLuAG crystal. Diode-end-pumping configuration was employed under both continuous-wave (CW) and passively Q-switched operations. For CW operation, the maximum average output power was 1.36 W with a slope efficiency of 15%. By using a V3+:YAG crystal as the saturable absorber, we obtained the maximum average output power of 164 mW under Q-switched operation. The corresponding pulse energy was 29.3 μJ and pulse duration was 59 ns.
Efficient, high power, Q-switched Nd:YLF slab laser end-pumped by diode stack
NASA Astrophysics Data System (ADS)
Zhang, Hengli; Li, Daijun; Shi, Peng; Diart, Rober; Shell, Alexander; Haas, Claus R.; Du, Keming
2005-06-01
A high power diode stack end-pumped electro-optically Q-switched Nd:YLF slab laser with a stable and off-axis negative-branch confocal unstable hybrid resonator was demonstrated. By using a cylindrical lens in the stable direction the thermal lens effect was compensated. Pulse energy of 25 mJ was obtained with a pulse width of 22.4 ns at repetition rates of 500 Hz and a conversion efficiency of 22%. The stability was better than 0.8% and the beam propagation M2 factor was about 1.2.
Feasibility of supersonic diode pumped alkali lasers: Model calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmashenko, B. D.; Rosenwaks, S.
The feasibility of supersonic operation of diode pumped alkali lasers (DPALs) is studied for Cs and K atoms applying model calculations, based on a semi-analytical model previously used for studying static and subsonic flow DPALs. The operation of supersonic lasers is compared with that measured and modeled in subsonic lasers. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.
Novel Design of Type I High Power Mid-IR Diode Lasers for Spectral Region 3 - 4.2 Microns
2014-09-25
multifold improvement of the device characteristics. Cascade pumping was achieved utilizing efficient interband tunneling through "leaky" window in band...Initially cascade pumping scheme was applied to laser heterostructures utilizing gain sections based on either intersubband [1] or type-II interband ...active regions, metamorphic virtual substrate and cascade pumping scheme. Cascade pumping of type-I quantum well gain section opened the whole new
Eigenpolarization theory of monolithic nonplanar ring oscillators
NASA Technical Reports Server (NTRS)
Nilsson, Alan C.; Gustafson, Eric K.; Byer, Robert L.
1989-01-01
Diode-laser-pumped monolithic nonplanar ring oscillators (NPROs) in an applied magnetic field can operate as unidirectional traveling-wave lasers. The diode laser pumping, monolithic construction, and unidirectional oscillation lead to narrow linewidth radiation. Here, a comprehensive theory of the eigenpolarizations of a monolithic NPRO is presented. It is shown how the properties of the integral optical diode that forces unidirectional operation depend on the choice of the gain medium, the applied magnetic field, the output coupler, and the geometry of the nonplanar ring light path. Using optical equivalence theorems to gain insight into the polarization characteristics of the NPRO, a strategy for designing NPROs with low thresholds and large loss nonreciprocities is given. An analysis of the eigenpolarizations for one such NPRO is presented, alternative optimization approaches are considered, and the prospects for further reducing the linewidths of these lasers are briefly discussed.
Selective Emitter Pumped Rare Earth Laser
NASA Technical Reports Server (NTRS)
Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)
2001-01-01
A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.
Chen, Nan; Qian, Xuemin; Lin, Haowei; Liu, Huibiao; Li, Yongjun; Li, Yuliang
2011-11-07
The end-to-end P-N heterojunction nanowire arrays combined organic (poly[1,4-bis(pyrrol-2-yl)benzene], BPB) and inorganic (CdS) molecules have been successfully designed and fabricated. The electrical properties of P-N heterojunctions of organic-inorganic nanowire arrays were investigated. The diode nature and rectifying feature of P-N heterojunction nanowire arrays were observed. The rectification ratio of the diode increased from 29.9 to 129.7 as the illumination intensity increased. The material exhibits a new property, which is an improvement in the integration of the physical and chemical properties of the two independent components.
NASA Astrophysics Data System (ADS)
Wang, Y. P.; Dai, T. Y.; Wu, J.; Ju, Y. L.; Yao, B. Q.
2018-06-01
We report the acousto-optically Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser. In the continuous-wave operation of Ho:YAG laser, the maximum s-polarized output power of 3.2 W at 2090.3 nm was obtained under the absorbed pump power of 12.9 W by rotating the fast axis of quarter-wave plate to change the output transmission of laser cavity. The corresponding optical-to-optical conversion efficiency was 24.8% and the slope efficiency was 55.7%. When one of the corner cubes was rotated to 11.8° around vertical direction or 6.7° around horizontal direction, the laser could still operate stably. For the Q-switched operation, the pulse energy of Ho:YAG laser was 9.9 mJ with a pulse width of 53 ns at the repetition rate of 100 Hz, resulting in a peak power of 186.8 kW. The beam quality factor M2 of Ho:YAG laser was 1.3.
NASA Astrophysics Data System (ADS)
Stock, Karl; Hausladen, Florian; Stegmayer, Thomas; Wurm, Holger
2018-02-01
Er:YAG lasers (3μm) allow efficient bone ablation caused by the strong absorption in water. Unfortunately, there are only a few and comparable expensive fiber materials for this wavelength available which are suitable for high laser power. The bone ablation efficiency of the Tm:YAG laser is minor (2μm) but inexpensive silica fibers can be used. The aim of this study was to investigate the bone ablation, using novel diode pumped high power Er:YAG (laser power 40W) and Tm:YAG laser system (60W) and adaptive fiber delivery systems. Expected advantage of these lasers is the longer lifetime of the fibers because of the high repetition rate and low pulse energy compared to the flash lamp pumped laser systems. The bare fiber output ends of a sapphire fiber (Er:YAG laser) and of a silica fiber (Tm:YAG laser) were attached under water and a water filled container including the fixed sample (bovine bone slices) was moved by a computer controlled translation stage. In a second set-up we provided a focusing unit and appropriate water spray unit. The generated cut kerfs were analyzed by light microcopy and laser scanning microscopy. The results show that with the diode pumped Er:YAG laser and sapphire fiber a particular high efficient bone ablation (> 0.16mm2/J) is possible both with bare fiber under water and focusing unit with water spray. The higher power of the Tm:YAG laser also results in high ablation rates but causes enlarged thermal damages. In conclusion, this study demonstrates that efficient bone ablation is possible with both diode pumped laser systems. In terms of efficiency the Er:YAG laser is outstanding. The Tm:YAG laser also allows fast bone ablation, provided that the thermal impact is limited by effective cooling and high movement velocity of the laser spot, for example by using an automatic scanner.
Chang, Wen-Chung; Su, Sheng-Chien; Wu, Chia-Ching
2016-01-01
Vertically aligned p-type silicon nanowire (SiNW) arrays were fabricated through metal-assisted chemical etching (MACE) of Si wafers. An indium tin oxide/indium zinc oxide/silicon nanowire (ITO/IZO/SiNW) heterojunction diode was formed by depositing ITO and IZO thin films on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and current−voltage (I−V) measurements. Nonlinear and rectifying I−V properties confirmed that a heterojunction diode was successfully formed in the ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions. PMID:28773656
NASA Astrophysics Data System (ADS)
Wetter, Niklaus U.; Bereczki, Allan; Paes, João. Pedro Fonseca
2018-02-01
Nd:YLiF4 is the gain material of choice whenever outstanding beam quality or a birefringent gain material is necessary such as in certain applications for terahertz radiation or dual-frequency mode-locking. However, for high power CW applications the material is hampered by a low thermal fracture threshold. This problem can be mitigated by special 2D pump set-ups or by keeping the quantum defect to a minimum. Direct pumping into the upper laser level of Nd:YLiF4 is usually performed at 880 nm. For quasi-three level laser emission at 908 nm, direct pumping at this wavelength provides a high quantum defect of 0.97, which allows for very high CW pump powers. Although the direct pumping transition to the upper laser state at 872 nm has a slightly smaller quantum defect of 0.96, its pump absorption cross section along the c-axis is 50% higher than at 880 nm, leading to a higher absorption efficiency. In this work we explore, for the first time to our knowledge, 908 nm lasing under 872 nm diode pumping and compare the results with 880 nm pumping for quasicw and cw operation. By inserting a KGW crystal in the cavity, Raman lines at 990 nm and 972 nm were obtained for the first time from a directly pumped 908 nm Nd:YLF fundamental laser for both quasi-cw and cw conditions.
Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf
2003-07-22
An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.
NASA Technical Reports Server (NTRS)
Anderson, L. M. (Inventor)
1984-01-01
Power is extracted from plasmons, photons, or other guided electromagnetic waves at infrared to midultraviolet frequencies by inelastic tunneling in metal-insulator-semiconductor-metal diodes. Inelastic tunneling produces power by absorbing plasmons to pump electrons to higher potential. Specifically, an electron from a semiconductor layer absorbs a plasmon and simultaneously tunnels across an insulator into metal layer which is at higher potential. The diode voltage determines the fraction of energy extracted from the plasmons; any excess is lost to heat.
NASA Astrophysics Data System (ADS)
Stetson, Suzanne; Weber, Hadley; Crosby, Frank J.; Tinsley, Kenneth; Kloess, Edmund; Nevis, Andrew J.; Holloway, John H., Jr.; Witherspoon, Ned H.
2004-09-01
The Airborne Littoral Reconnaissance Technologies (ALRT) project has developed and tested a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). The Coastal System Station"s ALRT project, under funding from the Office of Naval Research (ONR), has been designing, developing, integrating, and testing commercial arrays using a Cessna airborne platform over the last several years. This has led to the development of the Airborne Laser Diode Array Illuminator wide field-of-view (ALDAI-W) imaging test bed system. The ALRT project tested ALDAI-W at the Army"s Night Vision Lab"s Airborne Mine Detection Arid Test. By participating in Night Vision"s test, ALRT was able to collect initial prototype nighttime operational data using ALDAI-W, showing impressive results and pioneering the way for final test bed demonstration conducted in September 2003. This paper describes the ALDAI-W Arid Test and results, along with processing steps used to generate imagery.
Diode-pumped continuous-wave and passively Q-switched 1066 nm Nd:GYNbO4 laser
NASA Astrophysics Data System (ADS)
Ma, Yufei; Peng, Zhenfang; He, Ying; Li, Xudong; Yan, Renpeng; Yu, Xin; Zhang, Qingli; Ding, Shoujun; Sun, Dunlu
2017-08-01
A diode-pumped passively Q-switched 1066 nm laser with a novel Nd:Gd0.69Y0.3NbO4 mixed crystal was demonstrated for the first time to the best of our knowledge. In the continuous-wave (CW) operation, optimization selection of output couplers was carried out, and a maximum output power of 2.13 W was obtained when the plane mirror with transmission of 25% was chosen and the absorbed pump power was 10.5 W. The Cr4+:YAG passively Q-switched Nd:Gd0.69Y0.3NbO4 laser performance was investigated. At an absorbed pump power of 10.5 W, using Cr4+:YAG with initial transmission of 80%, the obtained minimum pulse width was 7.2 ns with the pulse repetition rate of 19 kHz. The single pulse energy and peak power were estimated to be 26.7 µJ and 3.7 kW, respectively.
Compact diode-pumped continuous-wave and passively Q-switched Nd:GYSO laser at 1.07 μm
NASA Astrophysics Data System (ADS)
Lin, Zhi; Huang, Xiaoxu; Lan, Jinglong; Cui, Shengwei; Wang, Yi; Xu, Bin; Luo, Zhengqian; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Xiaoyan; Wang, Jun; Xu, Jun
2016-08-01
We report diode-pumped continuous-wave (CW) and Q-switched Nd:GYSO lasers using a compact two-mirror linear laser cavity. Single-wavelength laser emissions at 1074.11 nm with 4.1-W power and at 1058.27 nm with 1.47-W power have been obtained in CW mode. The slope efficiencies with respect to the absorbed pump powers are 48.5% and 22.9%, respectively. Wavelength tunability is also demonstrated with range of about 8 nm. Using a MoS2 saturable absorber, maximum average output power up to 410 mW at 1074 nm can be yielded with absorbed pump power 6.41 W and the maximum pulse energy reaches 1.20 μJ with pulse repetition rate of 342.5 kHz and shortest pulse width of 810 ns. The CW laser results represent the best laser performance and the Q-switching also present the highest output power for Q-switched Nd3+ lasers with MoS2 as saturable absorber.
NASA Astrophysics Data System (ADS)
Valone, Thomas F.
2009-03-01
The well known built-in voltage potential for some select semiconductor p-n junctions and various rectifying devices is proposed to be favorable for generating DC electricity at "zero bias" (with no DC bias voltage applied) in the presence of Johnson noise or 1/f noise which originates from the quantum vacuum (Koch et al., 1982). The 1982 Koch discovery that certain solid state devices exhibit measurable quantum noise has also recently been labeled a finding of dark energy in the lab (Beck and Mackey, 2004). Tunnel diodes are a class of rectifiers that are qualified and some have been credited with conducting only because of quantum fluctuations. Microwave diodes are also good choices since many are designed for zero bias operation. A completely passive, unamplified zero bias diode converter/detector for millimeter (GHz) waves was developed by HRL Labs in 2006 under a DARPA contract, utilizing a Sb-based "backward tunnel diode" (BTD). It is reported to be a "true zero-bias diode." It was developed for a "field radiometer" to "collect thermally radiated power" (in other words, 'night vision'). The diode array mounting allows a feed from horn antenna, which functions as a passive concentrating amplifier. An important clue is the "noise equivalent power" of 1.1 pW per root hertz and the "noise equivalent temperature difference" of 10° K, which indicate sensitivity to Johnson noise (Lynch, et al., 2006). There also have been other inventions such as "single electron transistors" that also have "the highest signal to noise ratio" near zero bias. Furthermore, "ultrasensitive" devices that convert radio frequencies have been invented that operate at outer space temperatures (3 degrees above zero point: 3° K). These devices are tiny nanotech devices which are suitable for assembly in parallel circuits (such as a 2-D array) to possibly produce zero point energy direct current electricity with significant power density (Brenning et al., 2006). Photovoltaic p-n junction cells are also considered for possible higher frequency ZPE transduction. Diode arrays of self-assembled molecular rectifiers or preferably, nano-sized cylindrical diodes are shown to reasonably provide for rectification of electron fluctuations from thermal and non-thermal ZPE sources to create an alternative energy DC electrical generator in the picowatt per diode range.
Acousto-optic modulation in diode pumped solid state lasers
NASA Astrophysics Data System (ADS)
Jabczynski, Jan K.; Zendzian, Waldemar; Kwiatkowski, Jacek
2007-02-01
The main properties of acousto-optic modulators (AOM) applied in laser technology are presented and discussed in the paper. The critical review of application of AOMs in several types of diode pumped solid state lasers (DPSSL) is given. The short description of few DPSSLs developed in our group is presented in the following chapters of the paper. The parameters of a simple AO-Q-switched Nd:YVO 4 laser (peak power up to 60 kW, pulse duration of 5-15 ns, repetition rate in the range 10-100 kHz, with average power above 5 W) are satisfactory for different application as follows: higher harmonic generation, pumping of 'eye-safe' OPOs etc. The achieved brightness of 10 17 W/m2/srd is comparable to the strongest technological Q-switched lasers of kW class of average power. The main aim of paper is to present novel type of lasers with acousto-optic modulation namely: AO-q-switched and mode locked (AO-QML) lasers. We have designed the 3.69-m long Z-type resonator of the frequency matched to the RF frequency of AOM. As a gain medium the Nd:YVO 4 crystal end pumped by 20 W laser diode was applied. The energy of envelope of QML pulse train was up to 130 μJ with sub-nanosecond mode locked pulse of maximum 30-μJ energy.
Cylindrical microlens with an internally reflecting surface and a method of fabrication
Beach, Raymond J.; Freitas, Barry L.
2004-03-23
A fast (high numerical aperture) cylindrical microlens, which includes an internally reflective surface, that functions to deviate the direction of the light that enters the lens from its original propagation direction is employed in optically conditioning laser diodes, laser diode arrays and laser diode bars.
A Cylindrical Microlens With An Internally Reflective Surface And A Method Of Fabrication
Beach, Raymond J.; Freitas, Barry L.
2005-09-27
A fast (high numerical aperture) cylindrical microlens, which includes an internally reflective surface, that functions to deviate the direction of the light that enters the lens from its original propagation direction is employed in optically conditioning laser diodes, laser diode arrays and laser diode bars.
Construction of a fast, inexpensive rapid-scanning diode-array detector and spectrometer.
Carter, T P; Baek, H K; Bonninghausen, L; Morris, R J; van Wart, H E
1990-10-01
A 512-element diode-array spectroscopic detection system capable of acquiring multiple spectra at a rate of 5 ms per spectrum with an effective scan rate of 102.9 kHz has been constructed. Spectra with fewer diode elements can also be acquired at scan rates up to 128 kHz. The detector utilizes a Hamamatsu silicon photodiode-array sensor that is interfaced to Hamamatsu driver/amplifier and clock generator boards and a DRA laboratories 12-bit 160-kHz analog-to-digital converter. These are standard, commercially available devices which cost approximately $3500. The system is interfaced to and controlled by an IBM XT microcomputer. Detailed descriptions of the home-built detector housing and control/interface circuitry are presented and its application to the study of the reaction of horseradish peroxidase with hydrogen peroxide is demonstrated.
NASA Astrophysics Data System (ADS)
Bhattacharya, P.; Hazari, A.; Jahangir, S.
2018-02-01
GaN-based nanowire heterostructure arrays epitaxially grown on (001)Si substrates have unique properties and present the potential to realize useful devices. The active light-emitting region in the nanowire heterostructures are usually InGaN disks, whose composition can be varied to tune the emission wavelength. We have demonstrated light emitting diodes and edgeemitting diode lasers with power outputs 10mW with emission in the 600-1300nm wavelength range. These light sources are therefore useful for a variety of applications, including silicon photonics. Molecular beam epitaxial growth of the nanowire heterostructure arrays on (001)Si substrates and the characteristics of 1.3μm nanowire array edge emitting lasers, guided wave photodiodes and a monolithic photonic integrated circuit designed for 1.3μm operation are described.
NASA Astrophysics Data System (ADS)
Lin, Zhi; Wang, Yi; Xu, Bin; Cheng, Yongjie; Xu, Huiying; Cai, Zhiping
2015-12-01
We report on diode-end-pumped a-cut Nd:YLF laser on F→I transition. In a free-running regime, using an output coupler with a radius of curvature of 1000 mm, we obtain dual-wavelength laser operation at both π-polarized 1047 nm and σ-polarized 1053 nm with maximum output power of about 1.25 W and the highest slope efficiency of about 50.9% at pump power of 5.77 W at room temperature, for the first time to our knowledge. Furthermore, using a 0.1-mm glass plate as a wavelength selector, a dual-wavelength laser at 1047 and 1072 nm can also be yielded with the maximum output power of 0.34 W, which has not been reported before.
Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser.
Haiyong, Zhu; Ge, Zhang; Chenghui, Huang; Yong, Wei; Lingxiong, Huang; Jing, Chen; Weidong, Chen; Zhenqiang, Chen
2007-01-20
A diode-side-pumped high-power 1319 nm single-wavelength Nd:YAG continuous wave (cw) laser is described. Through reasonable coating design of the cavity mirrors, the 1064 nm strongest line as well as the 1338 nm one have been successfully suppressed. The laser output powers corresponding to four groups of different output couplers operating at 1319 nm single wavelength have been compared. The output coupler with the transmission T=5.3% has the highest output power, and a 131 W cw output power was achieved at the pumping power of 555 W. The optical-optical conversion efficiency is 23.6%, and the slope efficiency is 46%. The output power is higher than the total output power of the dual-wavelength laser operating at 1319 nm and 1338 nm in the experiment.
High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.
Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan
2012-04-01
We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.
NASA Astrophysics Data System (ADS)
Zhang, Haikun; Xia, Wei; Song, Peng; Wang, Jing; Li, Xin
2018-03-01
A laser-diode-pumped actively Q-switched Yb:NaY(WO4)2 laser operating at around 1040 nm is presented for the first time with acoustic-optic modulator. The dependence of pulse width on incident pump power for different pulse repetition rates is measured. By considering the Guassian spatial distribution of the intracavity photon density and the initial population-inversion density as well as the longitudinal distribution of the photon density along the cavity axis and the turn off time of the acoustic-optic Q-switch, the coupled equations of the actively Q-switched Yb:NaY(WO4)2 laser are given. The coupled rate equations are used to simulate the Q-switched process of laser, and the numerical solutions agree with the experimental results.
NASA Astrophysics Data System (ADS)
Fu, S. C.; Wang, X.; Chu, H.
2013-02-01
We report the generation of a green laser at 543 nm by intracavity frequency doubling of the continuous-wave (cw) laser operation of a 1086 nm Nd:YVO4 laser under 888 nm diode pumping into the emitting level 4F3/2. An LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature, is used for the laser second-harmonic generation. At an incident pump power of 17.8 W, as high as 4.53 W cw output power at 543 nm is achieved. The optical-to-optical conversion efficiency is up to 25.4%, and the fluctuation of the green output power is better than 2.3% in a 30 min period.
Zhuang, W Z; Chen, Yi-Fan; Su, K W; Huang, K F; Chen, Y F
2012-09-24
We experimentally confirm that diamond surface cooling can significantly enhance the output performance of a sub-nanosecond diode-end-pumped passively Q-switched Yb:YAG laser. It is found that the pulse energy obtained with diamond cooling is approximately 1.5 times greater than that obtained without diamond cooling, where a Cr(4+):YAG absorber with the initial transmission of 84% is employed. Furthermore, the standard deviation of the pulse amplitude peak-to-peak fluctuation is found to be approximately 3 times lower than that measured without diamond cooling. Under a pump power of 3.9 W, the passively Q-switched Yb:YAG laser can generate a pulse train of 3.3 kHz repetition rate with a pulse energy of 287 μJ and with a pulse width of 650 ps.
High beam quality of a Q-switched 2-µm Tm,Ho:LuVO4 laser
NASA Astrophysics Data System (ADS)
Wang, Wei; Yang, Xining; Shen, Yingjie; Li, Linjun; Zhou, Long; Yang, Yuqiang; Bai, Yunfeng; Xie, Wenqiang; Ye, Guangchao; Yu, Xiaoyang
2018-05-01
A diode-end-pumped 2.05-µm Q-switched Tm,Ho:LuVO4 laser is reported in this paper. The cryogenic Tm3+ (5.0 at.%),Ho3+ (0.5 at.%):LuVO4 crystal was pumped by an 800-nm laser diode. At a pulse repetition frequency of 10 kHz, the maximum average output power of 3.77 W was achieved at 77 K when an incident pump power of 14.7 W was used. The slope efficiency and optical-optical conversion efficiency were 28.3 and 25.6%, respectively. The maximum per pulse energy was 2.54 mJ for a pulse duration of 69.9 ns. The beam quality factor Mx 2 was approximately 1.17 and My 2 was approximately 1.01 for the Tm,Ho:LuVO4 laser.
Modeling of static and flowing-gas diode pumped alkali lasers
NASA Astrophysics Data System (ADS)
Barmashenko, Boris D.; Auslender, Ilya; Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Rosenwaks, Salman
2016-03-01
Modeling of static and flowing-gas subsonic, transonic and supersonic Cs and K Ti:Sapphire and diode pumped alkali lasers (DPALs) is reported. A simple optical model applied to the static K and Cs lasers shows good agreement between the calculated and measured dependence of the laser power on the incident pump power. The model reproduces the observed threshold pump power in K DPAL which is much higher than that predicted by standard models of the DPAL. Scaling up flowing-gas DPALs to megawatt class power is studied using accurate three-dimensional computational fluid dynamics model, taking into account the effects of temperature rise and losses of alkali atoms due to ionization. Both the maximum achievable power and laser beam quality are estimated for Cs and K lasers. The performance of subsonic and, in particular, supersonic DPALs is compared with that of transonic, where supersonic nozzle and diffuser are spared and high power mechanical pump (needed for recovery of the gas total pressure which strongly drops in the diffuser), is not required for continuous closed cycle operation. For pumping by beams of the same rectangular cross section, comparison between end-pumping and transverse-pumping shows that the output power is not affected by the pump geometry, however, the intensity of the output laser beam in the case of transverse-pumped DPALs is strongly non-uniform in the laser beam cross section resulting in higher brightness and better beam quality in the far field for the end-pumping geometry where the intensity of the output beam is uniform.
Directional control of infrared antenna-coupled tunnel diodes.
Slovick, Brian A; Bean, Jeffrey A; Krenz, Peter M; Boreman, Glenn D
2010-09-27
Directional control of received infrared radiation is demonstrated with a phased-array antenna connected by a coplanar strip transmission line to a metal-oxide-metal (MOM) tunnel diode. We implement a MOM diode to ensure that the measured response originates from the interference of infrared antenna currents at specific locations in the array. The reception angle of the antenna is altered by shifting the diode position along the transmission line connecting the antenna elements. By fabricating the devices on a quarter wave dielectric layer above a ground plane, narrow beam widths of 35° FWHM in power and reception angles of ± 50° are achieved with minimal side lobe contributions. Measured radiation patterns at 10.6 μm are substantiated by electromagnetic simulations as well as an analytic interference model.
Essers, M; van Battum, L; Heijmen, B J
2001-11-01
In vivo dosimetry using thermoluminiscence detectors (TLD) is routinely performed in our institution to determine dose inhomogeneities in the match line region during chest wall irradiation. However, TLDs have some drawbacks: online in vivo dosimetry cannot be performed; generally, doses delivered by the contributing fields are not measured separately; measurement analysis is time consuming. To overcome these problems, the Joined Field Detector (JFD-5), a detector for match line in vivo dosimetry based on diodes, has been developed. This detector and its characteristics are presented. The JFD-5 is a linear array of 5 p-type diodes. The middle three diodes, used to measure the dose in the match line region, are positioned at 5-mm intervals. The outer two diodes, positioned at 3-cm distance from the central diode, are used to measure the dose in the two contributing fields. For three JFD-5 detectors, calibration factors for different energies, and sensitivity correction factors for non-standard field sizes, patient skin temperature, and oblique incidence have been determined. The accuracy of penumbra and match line dose measurements has been determined in phantom studies and in vivo. Calibration factors differ significantly between diodes and between photon and electron beams. However, conversion factors between energies can be applied. The correction factor for temperature is 0.35%/ degrees C, and for oblique incidence 2% at maximum. The penumbra measured with the JFD-5 agrees well with film and linear diode array measurements. JFD-5 in vivo match line dosimetry reproducibility was 2.0% (1 SD) while the agreement with TLD was 0.999+/-0.023 (1 SD). The JFD-5 can be used for accurate, reproducible, and fast on-line match line in vivo dosimetry.
Coherent Doppler lidar for automated space vehicle, rendezvous, station-keeping and capture
NASA Technical Reports Server (NTRS)
Dunkin, James A.
1991-01-01
Recent advances in eye-safe, short wavelength solid-state lasers offer real potential for the development of compact, reliable, light-weight, efficient coherent lidar. Laser diode pumping of these devices has been demonstrated, thereby eliminating the need for flash lamp pumping, which has been a major drawback to the use of these lasers in space based applications. Also these lasers now have the frequency stability required to make them useful in coherent lidar, which offers all of the advantages of non-coherent lidar, but with the additional advantage that direct determination of target velocity is possible by measurement of the Doppler shift. By combining the Doppler velocity measurement capability with the inherent high angular resolution and range accuracy of lidar it is possible to construct Doppler images of targets for target motion assessment. A coherent lidar based on a Tm,Ho:YAG 2-micrometer wavelength laser was constructed and successfully field tested on atmospheric targets in 1990. This lidar incorporated an all solid state (laser diode pumped) master oscillator, in conjunction with a flash lamp pumped slave oscillator. Solid-state laser technology is rapidly advancing, and with the advent of high efficiency, high power, semiconductor laser diodes as pump sources, all-solid-state, coherent lidars are a real possibility in the near future. MSFC currently has a feasibility demonstration effort under way which will involve component testing, and preliminary design of an all-solid-state, coherent lidar for automatic rendezvous, and capture. This two year effort, funded by the Director's Discretionary Fund is due for completion in 1992.
Transition to Complicated Behavior in Infinite Dimensional Dynamical Systems
1990-03-01
solitons in nonlinear refractive periodic media," Phys. Lett. A. 141 37 (1989). A.3. Dynamics of Free-Running and Injection- Locked Laser Diode Arrays...Fibers * Dynamics of Free-Running and Injection- Locked Laser Diode Arrays I Diffraction/Diffusion Mediated Instabilities in Self-focusing/Defocusing...optics, the interplay between the coherence of solitons and the scattering (Anderson localization) effects of randomness, and the value in looking at
2003-04-01
range filters implemented with traditional semiconductor varactor diodes can require complex series-parallel circuit constructions to achieve sufficient...filter slice of the AIU and the varactor array modules are shown in Fig. 6.2. The complexity of the varactor array is clearly apparent. Further, it is...38 Fig. 6.2: Schematic of F-22 AIU UHF tracking filter, 2-pole filter, and varactor diode assembly
Efficient Single-Frequency Thulium Doped Fiber Laser Near 2-micrometers
NASA Technical Reports Server (NTRS)
Geng, Jihong; Wu, Jianfeng; Jiang, Shibin; Yu, Jirong
2007-01-01
We demonstrate highly efficient diode-pumped single-frequency fiber laser with 35% slope efficiency and 50mW output power operating near 2 micrometers, which generated from a 2-cm long piece of highly Tm(3+)-doped germanate glass fiber pumped at 800nm.
NASA Astrophysics Data System (ADS)
Hansen, Anders K.; Jensen, Ole B.; Sumpf, Bernd; Erbert, Götz; Unterhuber, Angelika; Drexler, Wolfgang; Andersen, Peter E.; Petersen, Paul Michael
2014-02-01
Many applications, e.g., within biomedicine stand to benefit greatly from the development of diode laser-based multi- Watt efficient compact green laser sources. The low power of existing diode lasers in the green area (about 100 mW) means that the most promising approach remains nonlinear frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re-focusing and dispersion compensating optics between the two nonlinear crystals. In the low-power limit, such a cascade of two crystals has the theoretical potential for generation of four times as much power as a single crystal without adding significantly to the complexity of the system. The experimentally achieved power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications, such as optical coherence tomography or multimodal imaging devices, e.g., FTCARS-OCT, based on a strongly pumped ultrafast Ti:Sapphire laser.
Free-flying experiment to measure the Schawlow-Townes linewidth limit of a 300 THz laser oscillator
NASA Technical Reports Server (NTRS)
Byer, R. L.; Byvik, C. E.
1988-01-01
Recent advances in laser diode-pumped solid state laser sources permit the design and testing of laser sources with linewidths that approach the Schawlow-Townes limit of 1 Hz/mW of output power. Laser diode pumped solid state ring oscillators have been operated with CW output power levels of 25 mW at electrical efficiencies that exceed 6 percent. These oscillators are expected to operate for lifetimes that approach those of the laser diode sources which is now approaching 20,000 hours. The efficiency and lifetime of these narrow linewidth laser sources will enable space measurements of gravity waves, remote sensing applications (including local range rate and measurements), and laser sources for frequency and time standards. A free-flight experiment, 'SUNLITE', is being designed to measure the linewidth of this all-solid-state laser system.
NASA Astrophysics Data System (ADS)
Tian, Ying; Jing, Xufeng; Xu, Shiqing
2013-11-01
Intense 2.0 μm emission has been obtained in Ho3+/Tm3+ codoped ZBLAY glass pumped by common laser diode. Three intensity parameters and radiative properties have been determined from the absorption spectrum based on the Judd-Ofelt theory. The 2 μm emission characteristics and the energy transfer mechanism upon excitation of a conventional 800 nm laser diode are investigated. Efficient Tm3+ to Ho3+ energy transfer processes have been observed in present glass and investigated using steady-state and time-resolved optical spectroscopy measurement. The energy transfer microscopic parameter has been calculated with the Inokuti-Hirayama and Förster-Dexter models. High quantum efficiency of 2 μm emission (80.35%) and large energy transfer coefficient from Tm3+ to Ho3+ indicates this Ho3+/Tm3+ codoped ZBLAY glass is a promising material for 2.0 μm laser.
2014-01-01
Ordered ZnO nanorod array/p-GaN heterojunction light-emitting diodes (LEDs) have been fabricated by introducing graphene as the current spreading layer, which exhibit improved electroluminescence performance by comparison to the LED using a conventional structure (indium-tin-oxide as the current spreading layer). In addition, by adjusting the diameter of ZnO nanorod array in use, the light emission of the ZnO nanorod array/p-GaN heterojunction LEDs was enhanced further. This work has great potential applications in solid-state lighting, high performance optoelectronic devices, and so on. PACS 78.60.Fi; 85.60.Jb; 78.67.Lt; 81.10.Dn PMID:25489284
Dong, Jing-Jing; Hao, Hui-Ying; Xing, Jie; Fan, Zhen-Jun; Zhang, Zi-Li
2014-01-01
Ordered ZnO nanorod array/p-GaN heterojunction light-emitting diodes (LEDs) have been fabricated by introducing graphene as the current spreading layer, which exhibit improved electroluminescence performance by comparison to the LED using a conventional structure (indium-tin-oxide as the current spreading layer). In addition, by adjusting the diameter of ZnO nanorod array in use, the light emission of the ZnO nanorod array/p-GaN heterojunction LEDs was enhanced further. This work has great potential applications in solid-state lighting, high performance optoelectronic devices, and so on. 78.60.Fi; 85.60.Jb; 78.67.Lt; 81.10.Dn.
SiC-Based Schottky Diode Gas Sensors
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai
1997-01-01
Silicon carbide based Schottky diode gas sensors are being developed for high temperature applications such as emission measurements. Two different types of gas sensitive diodes will be discussed in this paper. By varying the structure of the diode, one can affect the diode stability as well as the diode sensitivity to various gases. It is concluded that the ability of SiC to operate as a high temperature semiconductor significantly enhances the versatility of the Schottky diode gas sensing structure and will potentially allow the fabrication of a SiC-based gas sensor arrays for versatile high temperature gas sensing applications.
High-quality quantum-dot-based full-color display technology by pulsed spray method
NASA Astrophysics Data System (ADS)
Chen, Kuo-Ju; Chen, Hsin-Chu; Tsai, Kai-An; Lin, Chien-Chung; Tsai, Hsin-Han; Chien, Shih-Hsuan; Cheng, Bo-Siao; Hsu, Yung-Jung; Shih, Min-Hsiung; Kuo, Hao-Chung
2013-03-01
We fabricated the colloidal quantum-dot light-emitting diodes (QDLEDs) with the HfO2/SiO2-distributed Bragg reflector (DBR) structure using a pulsed spray coating method. Moreover, pixelated RGB arrays, 2-in. wafer-scale white light emission, and an integrated small footprint white light device were demonstrated. The experimental results showed that the intensity of red, blue, and green (RGB) emissions exhibited considerable enhancement because of the high reflectivity in the UV region by the DBR structure, which subsequently increased the use in the UV optical pumping of RGB QDs. In this experiment, a pulsed spray coating method was crucial in providing uniform RGB layers, and the polydimethylsiloxane (PDMS) film was used as the interface layer between each RGB color to avoid crosscontamination and self-assembly of QDs. Furthermore, the chromaticity coordinates of QDLEDs with the DBR structure remained constant under various pumping powers in the large area sample, whereas a larger shift toward high color temperatures was observed in the integrated device. The resulting color gamut of the proposed QDLEDs covered an area 1.2 times larger than that of the NTSC standard, which is favorable for the next generation of high-quality display technology.
Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials
NASA Astrophysics Data System (ADS)
Lyapin, A. A.; Fedorov, P. P.; Garibin, E. A.; Malov, A. V.; Osiko, V. V.; Ryabochkina, P. A.; Ushakov, S. N.
2013-08-01
The laser quality transparent СаF2:Tm fluoride ceramics has been prepared by hot forming. Comparative study of absorption and emission spectra of СаF2:Tm (4 mol.% TmF3) ceramic and single crystal samples demonstrated that these materials possess almost identical spectroscopic properties. Laser oscillations of СаF2:Tm ceramics were obtained at 1898 nm under diode pumping, with the slope efficiency of 5.5%. Also, the continuous-wave (CW) laser have been obtained for СаF2:Tm single crystal at 1890 nm pumped by a diode laser was demonstrated.
NASA Technical Reports Server (NTRS)
Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.
1988-01-01
56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.
CW and femtosecond operation of a diode-pumped Yb:BaY(2)F(8) laser.
Galzerano, G; Coluccelli, N; Gatti, D; Di Lieto, A; Tonelli, M; Laporta, P
2010-03-15
We report for the first time on laser action of a diode-pumped Yb:BaY(2)F(8) crystal. Both CW and femtosecond operations have been demonstrated at room-temperature conditions. A maximum output power of 0.56 W, a slope efficiency of 34%, and a tunability range from 1013 to 1067 nm have been obtained in CW regime. Transform-limited pulse trains with a minimum duration of 275 fs, an average power of 40 mW, and a repetition rate of 83 MHz have been achieved in a passive mode-locked regime using a semiconductor saturable absorber mirror.
Efficient Ho:LuLiF4 laser diode-pumped at 1.15 μm.
Wang, Sheng-Li; Huang, Chong-Yuan; Zhao, Cheng-Chun; Li, Hong-Qiang; Tang, Yu-Long; Yang, Nan; Zhang, Shuai-Yi; Hang, Yin; Xu, Jian-Qiu
2013-07-15
We report the first laser operation based on Ho(3+)-doped LuLiF(4) single crystal, which is directly pumped with 1.15-μm laser diode (LD). Based on the numerical model, it is found that the "two-for-one" effect induced by the cross-relaxation plays an important role for the laser efficiency. The maximum continuous wave (CW) output power of 1.4 W is produced with a beam propagation factor of M(2) ~2 at the lasing wavelength of 2.066 μm. The slope efficiency of 29% with respect to absorbed power is obtained.
NASA Astrophysics Data System (ADS)
Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.
2018-04-01
The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.
NASA Astrophysics Data System (ADS)
Li, M. X.; Jin, G. Y.; Li, Y.
2018-05-01
In this paper, we investigated the passively Q-switched Nd:GdTaO4 laser based on tungsten disulfide (WS2) saturable absorber (SA). The preparation method of WS2 SA was to attach the WS2-alcohol dispersion onto the quartz substrates. The diode-pumped passively Q-switched Nd:GdTaO4 laser operated at a central wavelength of 1066 nm. The stable pulse output could be obtained at the single pulse width of 560 ns. In a word, WS2 seems to be a suitable saturable absorber for solid state lasers.
Passively mode-locked diode-pumped Tm3+:YLF laser emitting at 1.91 µm using a GaAs-based SESAM
NASA Astrophysics Data System (ADS)
Tyazhev, A.; Soulard, R.; Godin, T.; Paris, M.; Brasse, G.; Doualan, J.-L.; Braud, A.; Moncorgé, R.; Laroche, M.; Camy, P.; Hideur, A.
2018-04-01
We report on a diode-pumped Tm:YLF laser passively mode-locked with an InGaAs saturable absorber. The laser emits a train of 31 ps pulses at a wavelength of 1.91 µm with a repetition rate of 94 MHz and a maximum average power of 95 mW. A sustained and robust mode-locking with a signal-to-noise ratio of ~70 dB is obtained even at high relative air humidity, making this system attractive for applications requiring ultra-short pulses in the spectral window just below 2 µm.
kW-class direct diode laser for sheet metal cutting based on commercial pump modules
NASA Astrophysics Data System (ADS)
Witte, U.; Schneider, F.; Holly, C.; Di Meo, A.; Rubel, D.; Boergmann, F.; Traub, M.; Hoffmann, D.; Drovs, S.; Brand, T.; Unger, A.
2017-02-01
We present a direct diode laser with an optical output power of more than 800 W ex 100 μm with an NA of 0.17. The system is based on 6 commercial pump modules that are wavelength stabilized by use of VBGs. Dielectric filters are used for coarse and dense wavelength multiplexing. Metal sheet cutting tests were performed in order to prove system performance and reliability. Based on a detailed analysis of loss mechanisms, we show that the design can be easily scaled to output powers in the range of 2 kW and to an optical efficiency of 80%.
Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers
NASA Astrophysics Data System (ADS)
Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.
2016-03-01
We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.
NASA Astrophysics Data System (ADS)
Cornacchia, F.; Sani, E.; Toncelli, A.; Tonelli, M.; Marano, M.; Taccheo, S.; Galzerano, G.; Laporta, P.
Single crystals of monoclinic BaY2F8 and tetragonal LiYF4 codoped with the same Tm3+ and Ho3+ concentrations were successfully grown by the Czochralski method. Here we present a comparative analysis of the two hosts including spectroscopic characterization and cw diode-pumped laser experiments in the 2-μm wavelength region at room temperature. The main differences between the two hosts are a lower slope efficiency associated with a much wider tuning range (2005-2094 nm) of BaY2F8 with respect to LiYF4.
Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser
NASA Astrophysics Data System (ADS)
Cornacchia, F.; Parisi, D.; Bernardini, C.; Toncelli, A.; Tonelli, M.
2004-05-01
In this work we report the spectroscopy and laser results of several Thulium doped BaY2F8 single crystals grown using the Czochralski technique. The doping concentration is between 2at.% and 18at.%. We performed room temperature laser experiments pumping the samples with a laser diode at 789 nm obtaining 61% as maximum optical-to-optical efficiency with a maximum output power of 290 mW and a minimum lasing threshold of 26 mW. The lasing wavelength changed with the dopant concentration from 1927 nm up to 2030 nm and the nature of the transition changed from purely electronic to vibronic, accordingly.
2.05 µm holmium-doped all-fiber laser diode-pumped at 1.125 µm
NASA Astrophysics Data System (ADS)
Kir'yanov, A. V.; Barmenkov, Y. O.; Villegas Garcia, I.
2017-08-01
We report a holmium-doped all-fiber laser oscillating at ~2.05 µm in continuous wave at direct in-core pumping by a 1.125 µm laser diode. Two types of home-made holmium-doped alumino-germano-silicate fiber (HDF), differentiated in the Ho3+ doping level, were fabricated to implement the laser, for revealing the effect of Ho3+ concentration upon the laser output. Firstly, the fibers were characterized thoroughly from the material and optical viewpoints. Then, laser action with both HDFs was assessed using the simplest Fabry-Perot cavity, assembled by a couple of spectrally adjusted fiber Bragg gratings, also made-in-house. In the best case, when using the lower-doped HDF of proper length (1.4 m), low threshold (~370 mW) and moderate slope efficiency (~13%) of ~2.05 µm lasing were obtained at 1.125 µm diode pumping. Long-term stability, high brightness, low noise, and purely CW operation are shown to be the laser’s attractive features. Yet, when utilizing the heavier-doped HDF, laser output is revealed to be overall worse, with a possible reason being the deteriorating Ho3+ concentration-related effects.
NASA Technical Reports Server (NTRS)
Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.
1994-01-01
This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.
Highly Efficient Nd:yag Lasers for Free-space Optical Communications
NASA Technical Reports Server (NTRS)
Sipes, D. L., Jr.
1985-01-01
A highly efficient Nd:YAG laser end-pumped by semiconductor lasers as a possible free-space optical communications source is discussed. Because this concept affords high pumping densities, a long absorption length, and excellent mode-matching characteristics, it is estimated that electrical-to-optical efficiencies greater than 5% could be achieved. Several engineering aspects such as resonator size and configuration, pump collecting optics, and thermal effects are also discussed. Finally, possible methods for combining laser-diode pumps to achieve higher output powers are illustrated.
Quasi-passive heat sink for high-power laser diodes
NASA Astrophysics Data System (ADS)
Vetrovec, John
2009-02-01
We report on a novel heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink uses a liquid coolant flowing at high speed in a miniature closed and sealed loop. Diode waste heat is received at high flux and transferred to environment, coolant fluid, heat pipe, or structure at a reduced flux. When pumping solid-state or alkali vapor lasers, diode wavelength can be electronically tuned to the absorption features of the laser gain medium. This paper presents the heat sink physics, engineering design, performance modeling, and configurations.