Science.gov

Sample records for diode laser systems

  1. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  2. Lighting with laser diodes

    NASA Astrophysics Data System (ADS)

    Basu, Chandrajit; Meinhardt-Wollweber, Merve; Roth, Bernhard

    2013-08-01

    Contemporary white light-emitting diodes (LEDs) are much more efficient than compact fluorescent lamps and hence are rapidly capturing the market for general illumination. LEDs are also replacing halogen lamps or even newer xenon based lamps in automotive headlamps. Because laser diodes are inherently much brighter and often more efficient than corresponding LEDs, there is great research interest in developing laser diode based illumination systems. Operating at higher current densities and with smaller form factors, laser diodes may outperform LEDs in the future. This article reviews the possibilities and challenges in the integration of visible laser diodes in future illumination systems.

  3. A Direct Diode Laser System Using a Planar Lightwave Circuit

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kazuo; Matsubara, Hiroyuki; Ichikawa, Tadashi; Maeda, Mitsutoshi; Ito, Hiroshi

    2008-08-01

    In this paper we propose a direct diode laser (DDL) system consisting of laser diode (LD) bars, a planar lightwave circuit (PLC), and an optical fiber. We have developed a PLC as an optical power combiner and an LD mounting technology that is suitable for coupling to the PLC. A DDL system is presented that consists of six LD-PLC optical modules for the laser-welding of highly heat-resistant plastics. The total output power is in the 200 W class, with a spot diameter of 5.52 mm for the major axis and 5.00 mm for the minor axis at a focal length of 50 mm. The total output efficiency is 60.9% from the laser diode to the welding torch.

  4. Battery-driven miniature LDA system with semiconductor laser diode

    NASA Astrophysics Data System (ADS)

    Damp, S.

    1988-06-01

    A one-component miniature system with dimensions of 11 by 4 by 4 cubic centimeters for laser-Doppler anemometry (LDA) is described. As power supply a 12V battery or any other source with the capability to drive a current up to 200mA can be used. The system contains the whole electronics to drive the used laser diode is a safe way. The electronics to amplify and buffer the LDA-signal which is received by a PIN-diode is included. The output of the system can directly fit a filterbank for example. Possible applications in rough environments are mentioned. Measurements show the reliability of the system.

  5. Direct laser diode welding system with anti-reflection unit

    NASA Astrophysics Data System (ADS)

    Nagayasu, Doukei; Wang, Jing-bo

    2003-11-01

    A high power laser diode system for welding is widely known. However, the reliability and the reasonability are required by an industrial market. Reliability, especially lifetime, mainly depends on the temperature of laser diode (LD) and it might be rise if LD would receive reflection from welding point. This paper conducted the measurement of the reflection during welding by applying 1/4 wavelength plate and PBS. Results indicated the reflection during welding was inevitable. We developed a prototype high power laser diode system, which equipped an anti-reflection unit, to improve the reliability. The system traveled 3m/min and its bead width was 1.2 mm for 1.5 mm Al (A5052) under the spot size 2.7 x 0.6 mm FWHM. Additionally, we started to develop fast and slow collimation lenses for LD to realize a reasonale price for system The brief evaluation of fast collimation lenses was also reported.

  6. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  7. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andrew James

    2016-05-03

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  8. 1047 nm laser diode master oscillator Nd:YLF power amplifier laser system

    NASA Technical Reports Server (NTRS)

    Yu, A. W.; Krainak, M. A.; Unger, G. L.

    1993-01-01

    A master oscillator power amplifier (MOPA) laser transmitter system at 1047 nm wavelength using a semiconductor laser diode and a diode pumped solid state (Nd:YLF) laser (DPSSL) amplifier is described. A small signal gain of 23 dB, a near diffraction limited beam, 1 Gbit/s modulation rates and greater than 0.6 W average power are achieved. This MOPA laser has the advantage of amplifying the modulation signal from the laser diode master oscillator (MO) with no signal degradation.

  9. A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr.

    PubMed

    Shimada, Yosuke; Chida, Yuko; Ohtsubo, Nozomi; Aoki, Takatoshi; Takeuchi, Makoto; Kuga, Takahiro; Torii, Yoshio

    2013-06-01

    We develop a simplified light source at 461 nm for laser cooling of Sr without frequency-doubling crystals but with blue laser diodes. An anti-reflection coated blue laser diode in an external cavity (Littrow) configuration provides an output power of 40 mW at 461 nm. Another blue laser diode is used to amplify the laser power up to 110 mW by injection locking. For frequency stabilization, we demonstrate modulation-free polarization spectroscopy of Sr in a hollow cathode lamp. The simplification of the laser system achieved in this work is of great importance for the construction of transportable optical lattice clocks.

  10. A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr

    PubMed Central

    Shimada, Yosuke; Chida, Yuko; Ohtsubo, Nozomi; Aoki, Takatoshi; Takeuchi, Makoto; Kuga, Takahiro; Torii, Yoshio

    2013-01-01

    We develop a simplified light source at 461 nm for laser cooling of Sr without frequency-doubling crystals but with blue laser diodes. An anti-reflection coated blue laser diode in an external cavity (Littrow) configuration provides an output power of 40 mW at 461 nm. Another blue laser diode is used to amplify the laser power up to 110 mW by injection locking. For frequency stabilization, we demonstrate modulation-free polarization spectroscopy of Sr in a hollow cathode lamp. The simplification of the laser system achieved in this work is of great importance for the construction of transportable optical lattice clocks. PMID:23822327

  11. Off-line-locked laser diode species monitor system

    NASA Technical Reports Server (NTRS)

    Lee, Jamine (Inventor); Goldstein, Neil (Inventor); Richtsmeier, Steven (Inventor); Bien, Fritz (Inventor); Gersh, Michael (Inventor)

    1995-01-01

    An off-line-locked laser diode species monitor system includes: reference means for including at least one known species having a first absorption wavelength; a laser source for irradiating the reference means and at least one sample species having a second absorption wavelength differing from the first absorption wavelength by a predetermined amount; means for locking the wavelength of the laser source to the first wavelength of the at least one known species in the reference means; a controller for defeating the means for locking and for displacing the laser source wavelength from said first absorption wavelength by said predetermined amount to the second absorption wavelength; and a sample detector device for determining laser radiation absorption at the second wavelength transmitted through the sample to detect the presence of the at least one sample species.

  12. Superluminescent diode versus Fabry-Perot laser diode seeding in pulsed MOPA fiber laser systems for SBS suppression

    NASA Astrophysics Data System (ADS)

    Melo, M.; Sousa, J. M.; Salcedo, J. R.

    2015-03-01

    We demonstrate the use of a pulsed superluminescent diode (SLD) through direct current injection modulation as seeding source in a master oscillator power amplifier (MOPA) configuration when compared to a Fabry-Perot (FP) laser diode in the same system. The performance limitations imposed by the use of the Fabry-Perot lasers, caused by the backward high peak power pulses triggered due to stimulated Brillouin scattering (SBS) are not observed in the case of the SLD. Compared to conventional Fabry-Perot laser diodes, the SLD provides a smooth and broad output spectrum which is independent of the input pulse parameters. Moreover, the spectrum can be sliced and tailored to the application. Thus, free SBS operation is shown when using the SLD seeder in the same system, allowing for a significant increase on the extractable power and energy.

  13. Tunable laser diode system for noninvasive blood glucose measurements

    NASA Astrophysics Data System (ADS)

    Olesberg, Jonathon T.; Arnold, Mark A.; Mermelstein, Carmen; Schmitz, Johannes; Wagner, Joachim

    2005-03-01

    Tight control of blood glucose levels has been shown to dramatically reduce the long-term complications of diabetes. Current invasive technology for monitoring glucose levels is effective but underutilized by people with diabetes because of the pain of repeated finger-sticks and the cost of reagent strips. Optical sensing of glucose could potentially allow more frequent monitoring and tighter glucose control for people with diabetes. The key to a successful optical non-invasive measurement of glucose is the collection of an optical spectrum with a very high signal-to-noise-ratio in a spectral region with significant glucose absorption. Unfortunately, the optical throughput of skin is very small due to absorption and scattering. To overcome these difficulties, we have developed a high-brightness tunable laser system for measurements in the 2.0-2.5 μm wavelength range. The system is based on a 2.3 micron wavelength, strained quantum-well laser diode incorporating GaInAsSb wells and AlGaAsSb barrier and cladding layers. Wavelength control is provided by coupling the laser diode to an external cavity that includes an acousto-optic tunable filter. Tuning ranges of greater than 110 nm have been obtained. Because the tunable filter has no moving parts, scans can be completed very quickly, typically in less than 10 ms. We describe the performance of the laser system and its potential for use in a non-invasive glucose sensor.

  14. The study of laser beam riding guided system based on 980nm diode laser

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Xu, Haifeng; Sui, Xin; Yang, Kun

    2015-10-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  15. Numerical simulations of a diode laser BPH treatment system

    NASA Astrophysics Data System (ADS)

    London, Richard A.; Esch, Victor C.; Papademetriou, Stephanos

    1999-06-01

    Numerical simulations are presented of the laser-tissue interaction of a diode laser system for treating benign prostate hyperplasia. The numerical model includes laser light transport, heat transport, cooling due to blood perfusion, thermal tissue damage, and enthalpy of tissue damage. Comparisons of the stimulation results to clinical data are given. We report that a reasonable variation from a standard set of input data produces heating times which match those measured in the clinical trials. A general trend of decreasing damage volume with increasing heating time is described. We suggest that the patient-to-patient variability seen in the data can be explained by differences in fundamental biophysical properties such as the optical coefficients. Further work is identified, including the measurement and input to the model of several specific data parameters such as optical coefficients, blood perfusion cooling rate, and coagulation rates.

  16. Numerical simulations of a diode laser BPH treatment system

    SciTech Connect

    Esch, V; London, R A; Papademetriou, S

    1999-02-23

    Numerical simulations are presented of the laser-tissue interaction of a diode laser system for treating benign prostate hyperplasia. The numerical model includes laser light transport, heat transport, cooling due to blood perfusion, thermal tissue damage, and enthalpy of tissue damage. Comparisons of the simulation results to clinical data are given. We report that a reasonable variation from a standard set of input data produces heating times which match those measured in the clinical trials. A general trend of decreasing damage volume with increasing heating time is described. We suggest that the patient-to- patient variability seen in the data can be explained by differences in fundamental biophysical properties such as the optical coefficients. Further work is identified, including the measurement and input to the model of several specific data parameters such as optical coefficients, blood perfusion cooling rate, and coagulation rates.

  17. Coagulative and ablative characteristics of a novel diode laser system (1470nm) for endonasal applications

    NASA Astrophysics Data System (ADS)

    Betz, C. S.; Havel, M.; Janda, P.; Leunig, A.; Sroka, R.

    2008-02-01

    Introduction: Being practical, efficient and inexpensive, fibre guided diode laser systems are preferable over others for endonasal applications. A new medical 1470 nm diode laser system is expected to offer good ablative and coagulative tissue effects. Methods: The new 1470 nm diode laser system was compared to a conventional 940 nm system with regards to laser tissue effects (ablation, coagulation, carbonization zones) in an ex vivo setup using fresh liver and muscle tissue. The laser fibres were fixed to a computer controlled stepper motor, and the light was applied using comparable power settings and a reproducible procedure under constant conditions. Clinical efficacy and postoperative morbidity was evaluated in two groups of 10 patients undergoing laser coagulation therapy of hyperplastic nasal turbinates. Results: In the experimental setup, the 1470 nm laser diode system proved to be more efficient in inducing tissue effects with an energy factor of 2-3 for highly perfused hepatic tissue to 30 for muscular tissue. In the clinical case series, the higher efficacy of the 1470 nm diode laser system led to reduced energy settings as compared to the conventional system with comparable clinical results. Postoperative crusting was less pronounced in the 1470 nm laser group. Conclusion: The 1470 nm diode laser system offers a highly efficient alternative to conventional diode laser systems for the coagulation of hyperplastic nasal turbinates. According to the experimental results it can be furthermore expected that it disposes of an excellent surgical potential with regards to its cutting abilities.

  18. Diode-pumped laser with improved pumping system

    DOEpatents

    Chang, Jim J.

    2004-03-09

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  19. Laser Diode Ignition (LDI)

    NASA Technical Reports Server (NTRS)

    Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.

    1994-01-01

    This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.

  20. Velocimetry with diode lasers

    NASA Astrophysics Data System (ADS)

    de Mul, F. F. M.; Jentink, H. W.; Koelink, M.; Greve, J.; Aarnoudse, J. G.

    The history of the application of diode lasers in velocimetry is reviewed. Some problems arising when using those lasers, e.g., mode hopping and wavelength shifts caused by temperature effects, are discussed, together with coherence effects encountered with diode lasers. The application in dual-beam velocimetry, in direct-contact velocimetry and in velocimetry using self-mixing will be discussed.

  1. Etalon laser diode

    SciTech Connect

    Allen, L.B.; Koenig, H.G.; Rice, R.R.

    1981-08-18

    A laser diode is disclosed that is suitable for integrated and fiber optic applications requiring single transverse and single longitudinal mode operation. The single transverse mode is provided by making a gallium arsenide double heterostructural laser diode with a narrow stripe width and a relatively long length. The single longitudinal mode operation is provided by cracking the diode transverse to the stripe at one or more locations to form internal etalons in the laser cavity.

  2. NIR transmittance puse oximetry system with laser diodes

    NASA Astrophysics Data System (ADS)

    Lopez Silva, Sonnia M.; Silveira, Juan P.; Sendra, Jose R.; Giannetti, Romano; Dotor, Maria L.; Golmayo, Dolores

    2001-05-01

    A transmittance pulse oximetry system based on near-infrared laser diodes (LD) for monitoring arterial blood hemoglobin oxygen saturation (So2) has been previously reported. In this work we present the results obtained after improvements in the sensor configuration, signal processing algorithm and calibration procedure. The pulse oximetry system also comprises the sensor electronics, and a data acquisition board installed on a handheld personal computer. The two LD chips are mounted on a single metal heat-sink and as photo- detectors are used silicon p-i-n photodiodes with the first amplifier stage situated in their back side. The real time calculation of the parameters related to So2 is carried out through a numeric separation of the pulsatile and non- pulsatile components of the photoplethysmographic signals for both wavelengths and a non-linear filtering. Patients with respiratory failure conditions were monitored as a part of the calibration procedure in order to cover a wide range of So2-values. A calibration curve have been derived through the determination of in vitro arterial So2 with a significant quantity of experimental points ranging from 60 to almost 100%. The obtained results demonstrate that it is possible to apply the proposed system to monitoring a wide range of oxygen saturation levels.

  3. Optical phase dynamics in mutually coupled diode laser systems exhibiting power synchronization

    NASA Astrophysics Data System (ADS)

    Pal, Vishwa; Prasad, Awadhesh; Ghosh, R.

    2011-12-01

    We probe the physical mechanism behind the known phenomenon of power synchronization of two diode lasers that are mutually coupled via their delayed optical fields. In a diode laser, the amplitude and the phase of the optical field are coupled by the so-called linewidth enhancement factor, α. In this work, we explore the role of optical phases of the electric fields in amplitude (and hence power) synchronization through α in such mutually delay-coupled diode laser systems. Our numerical results show that the synchronization of optical phases drives the powers of lasers to synchronized death regimes. We also find that as α varies for different diode lasers, the system goes through a sequence of in-phase amplitude-death states. Within the windows between successive amplitude-death regions, the cross-correlation between the field amplitudes exhibits a universal power-law behaviour with respect to α.

  4. Diode Laser Arrays

    NASA Astrophysics Data System (ADS)

    Botez, Dan; Scifres, Don R.

    2005-11-01

    Contributors; 1. Monolithic phase-locked semiconductor laser arrays D. Botez; 2. High power coherent, semiconductor laser master oscillator power amplifiers and amplifier arrays D. F. Welch and D. G. Mehuys; 3. Microoptical components applied to incoherent and coherent laser arrays J. R. Leger; 4. Modeling of diode laser arrays G. R. Hadley; 5. Dynamics of coherent semiconductor laser arrays H. G. Winfuland and R. K. Defreez; 6. High average power semiconductor laser arrays and laser array packaging with an emphasis for pumping solid state lasers R. Solarz; 7. High power diode laser arrays and their reliability D. R. Scifres and H. H. Kung; 8. Strained layer quantum well heterostructure laser arrays J. J. Coleman; 9. Vertical cavity surface emitting laser arrays C. J. Chang-Hasnain; 10. Individually addressed arrays of diode lasers D. Carlin.

  5. Reliability of high power diode laser systems based on single emitters

    NASA Astrophysics Data System (ADS)

    Leisher, Paul; Reynolds, Mitch; Brown, Aaron; Kennedy, Keith; Bao, Ling; Wang, Jun; Grimshaw, Mike; DeVito, Mark; Karlsen, Scott; Small, Jay; Ebert, Chris; Martinsen, Rob; Haden, Jim

    2011-03-01

    Diode laser modules based on arrays of single emitters offer a number of advantages over bar-based solutions including enhanced reliability, higher brightness, and lower cost per bright watt. This approach has enabled a rapid proliferation of commercially available high-brightness fiber-coupled diode laser modules. Incorporating ever-greater numbers of emitters within a single module offers a direct path for power scaling while simultaneously maintaining high brightness and minimizing overall cost. While reports of long lifetimes for single emitter diode laser technology are widespread, the complex relationship between the standalone chip reliability and package-induced failure modes, as well as the impact of built-in redundancy offered by multiple emitters, are not often discussed. In this work, we present our approach to the modeling of fiber-coupled laser systems based on single-emitter laser diodes.

  6. AlGaInN laser diode technology and systems for defence and security applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lujca; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2015-10-01

    AlGaInN laser diodes is an emerging technology for defence and security applications such as underwater communications and sensing, atomic clocks and quantum information. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries. Ridge waveguide laser diodes are fabricated to achieve single mode operation with optical powers up to 100mW with the 400-440nm wavelength range with high reliability. Visible free-space and underwater communication at frequencies up to 2.5GHz is reported using a directly modulated 422nm GaN laser diode. Low defectivity and highly uniform GaN substrates allow arrays and bars to be fabricated. High power operation operation of AlGaInN laser bars with up to 20 emitters have been demonstrated at optical powers up to 4W in a CS package with common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space or optical fibre system integration with a very small form-factor.

  7. Power-scalable system of phase-locked single-mode diode lasers.

    PubMed

    Bartelt-Berger, L; Brauch, U; Giesen, A; Huegel, H; Opower, H

    1999-09-20

    The direct use of diode lasers for high-power applications in material processing is limited to applications with relatively low beam quality and power density requirements. To achieve high beam quality one must use single-mode diode lasers, however with the drawback of relatively low optical output powers from these components. To realize a high-power system while conserving the high beam quality of the individual emitters requires coherent coupling of the emitters. Such a power-scalable system consisting of 19 slave lasers that are injection locked by one master laser has been built and investigated, with low-power diode lasers used for system demonstration. The optical power of the 19 injection-locked lasers is coupled into polarization-maintaining single-mode fibers and geometrically superimposed by a lens array and a focusing lens. The phase of each emitter is controlled by a simple electronic phase-control loop. The coherence of each slave laser is stabilized by computer control of the laser current and guarantees a stable degree of coherence of the whole system of 0.7. An enhancement factor of 13.2 in peak power density compared with that which was achievable with the incoherent superposition of the diode lasers was observed.

  8. Trace Detection with Diode Lasers

    NASA Astrophysics Data System (ADS)

    Fox, Richard W.

    1995-01-01

    Diode lasers were used to detect trace quantities of calcium, lead, chromium, cesium and rubidium. Extended -cavities were often employed for wavelength tuning and linewidth narrowing, and design considerations for the cavities are discussed. Calcium was detected under low pressure, Doppler-free conditions, and consequently the frequency stability of the laser's power spectrum was studied. The laser's frequency noise spectral density was measured and converted by calculation to the power spectrum. Examples of laser frequency noise densities with corresponding calculated power spectrums for free-running and frequency-locked conditions are given. An electronic feedback system to narrow a 657 nm wavelength diode laser's linewidth was constructed, and the resulting linewidth with respect to the locking cavity was measured to be approximately 500 Hz. Calcium atom concentrations of 0.35 x 10E-09 in water samples were measured by flame laser-enhanced ionization using a 423 nm wavelength frequency-doubled diode laser system. Analysis of the ionization signal and the noise was performed. Additional measurements of water samples with diode lasers demonstrated chromium detection at 25 x 10E-09, cesium at 0.25 x 10E -09, and rubidium at 0.25 x 10E-09. Lead was detected using a frequency-doubled diode system at a wavelength of 405 nm. The detection was by absorption from a metastable energy level; lead atoms in an argon vapor were excited into the metastable level by a radio-frequency discharge.

  9. Compact and smart laser diode systems for cancer treatment

    NASA Astrophysics Data System (ADS)

    Svirin, Viatcheslav N.; Sokolov, Victor V.; Solovieva, Tatiana I.

    2003-04-01

    To win the cancer is one of the most important mankind task to be decided in III Millenium. New technology of treatment is to recognize and kill cancer cells with the laser light not by surgery operation, but by soft painless therapy. Even though from the beginning of the 80s of the last century this technology, so-called photodynamic therapy (PDT) has received acceptance in America, Europe and Asia it is still considered in the medical circles to be a new method with the little-known approaches of cancer treatment. Recently the next step was done, and the unique method of PDT combined with laser-induced thermotherapy (LITT) was developed. Compact and smart diode laser apparatus "Modul-GF" for its realization was designed. In this report the concept of this method, experimental materials on clinical trials and ways of optimization of technical decisions and software of apparatus "Modul-GF", including the autotuning of laser power dependently on tissue temperature measured with thermosensors are discussed. The special instruments such as fiber cables and special sensors are described to permit application of "Modul-GF" for the treatment of the tumors of the different localizations, both surface and deeply located with using of the endoscopy method. The examples of the oncological and nononcological pathologies" treatment by the developed method and apparatus in urology, gynecology, gastroenterology, dermatology, cosmetology, bronchology, pulmonology are observed. The results of clinical approval the developed combination of PDT&LITT realized with "Modul-GF" leads to essentially increasing of the treatment effectiveness.

  10. Infrared diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Civiš, S.; Cihelka, J.; Matulková, I.

    2010-12-01

    Three types of lasers (double-heterostructure 66 K InAsSb/InAsSbP laser diode, room temperature, multi quantum wells with distributed feedback (MQW with DFB) (GaInAsSb/AlGaAsSb based) diode laser and vertical cavity surface emitting lasers (VCSELs) (GaSb based) have been characterized using Fourier transform emission spectroscopy and compared. The photoacoustic technique was employed to determine the detection limit of formaldehyde (less than 1 ppmV) for the strongest absorption line of the v3 + v5 band in the emission region of the GaInAsSb/AlGaAsSb diode laser. The detection limit (less than 10 ppbV) of formaldehyde was achieved in the 2820 cm-1 spectral range in case of InAsSb/InAsSbP laser (fundamental bands of v1, v5). Laser sensitive detection (laser absorption together with high resolution Fourier transform infrared technique including direct laser linewidth measurement, infrared photoacoustic detection of neutral molecules (methane, form-aldehyde) is discussed. Additionally, very sensitive laser absorption techniques of such velocity modulation are discussed for case of laser application in laboratory research of molecular ions. Such sensitive techniques (originally developed for lasers) contributed very much in identifying laboratory microwave spectra of a series of anions (C6H-, C4H-, C2H-, CN-) and their discovery in the interstellar space (C6H-, C4H-).

  11. Design of a kW-output fiber coupled diode laser system

    NASA Astrophysics Data System (ADS)

    Wu, Hualing; Guo, Linhui; Yu, Junhong; Gao, Songxin; Wu, Deyong

    2015-10-01

    Fiber-coupled diode laser pumping source is one of the key components of high-power fiber laser system. Its performance is significant to the output power of fiber laser system. A 1.8kW fiber-coupled diode laser system is designed by using ZEMAX optical design software. The technologies of high-precision beam collimation, spatial multiplexing, polarization multiplexing, beam expanding, focusing and coupling are used to couple the beams of 42 diode laser bars into a fiber with a core diameter of 200μm and NA 0.22. Every beam emit from diode laser bar is single polarization, and its central wavelength is 976nm @ 55W. The desigh result showed the fiber output power could reach 1800W, and the fiber-coupling efficiency was 78%, the brightness was 37MW/(cm2·sr),corresponding. This fiber-coupled system can be used in fiber pumping, material process and many other areas.

  12. Profile homogenization and monitoring for a multiple 100 J diode-laser pumping system

    NASA Astrophysics Data System (ADS)

    Siebold, M.; Podleska, S.; Hein, J.; Bödefeld, R.; Hornung, M.; Schnepp, M.; Sauerbrey, R.

    2005-09-01

    Multi-pass amplification to the 10 joule level for a femto-second CPA laser system is aimed at diode-pumping Yb3+ doped fluoride-phosphate glass with an energy of 240 J at 940 nm. Collimated pump light of 1000 laser diode bars is focussed onto an a circular glass disk with 28mm diameter. A two-sided ring shaped assembly of diode stacks and attached optics is applied for longitudinal pumping. We developed a computer aided optimization routine for positioning single pump foci with size of 4 × 8mm2 to achieve a smooth homogeneously distributed top-hat shaped pump profile with a diameter of 18 mm. For monitoring purpose the pulse energy of each diode stack is measured with a solar panel placed behind a reflecting mirror.

  13. Multi-diode laser system for UV exposure of the photoresists

    NASA Astrophysics Data System (ADS)

    Barbucha, R.; Tanski, M.; Kocik, M.

    2015-06-01

    PCB (Printed Circuit Board) industry is a global business for many years. PCB can be found in every electronic devices and since it becomes smaller, lighter and more efficient, new sophisticated machines need to be developed to meet this demands. The main parameter for the manufacturing machines is throughput. In this paper a multi-diode laser system for UV exposure of the photoresist on Printed Circuit Board is presented. The multi-diode laser system presents high throughput at high resolution of the pattern as well as low development costs.

  14. Diode laser satellite systems for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Kwon, J. H.; Walker, G. H.; Humes, D. H.

    1990-01-01

    A power system composed of an orbiting laser satellite and a surface-based receiver/converter is described. Power is transmitted from the satellite to the receiver/converter by laser beam. The satellite components are: (1) solar collector; (2) blackbody; (3) photovoltaic cells; (4) heat radiators; (5) laser system; and (6) transmission optics. The receiver/converter components are: receiver dish; lenticular lens; photocells; and heat radiator. Although the system can be adapted to missions at many locations in the solar system, only two are examined here: powering a lunar habitat; and powering a lunar rover. Power system components are described and their masses, dimensions, operating powers, and temperatures, are estimated using known or feasible component capabilities. The critical technologies involved are discussed and other potential missions are mentioned.

  15. A commercial tunable diode laser (TDL) system for on-line remote measurements of automobile emissions

    NASA Astrophysics Data System (ADS)

    Weber, Konradin; Ropertz, Alexander; Schwabe, Thomas; Fischer, Christian; van Haren, Gunther

    2004-11-01

    An innovative tunable diode laser (TDL) measurement system has been used for the on-line estimation of emissions of cars, driving through the measurement beam of the system. This paper describes the measurement principle and gives first measurement results, taken for different types of cars.

  16. Blue-green diode-pumped solid state laser system for transcutaneous bilirubinometry in neonatal jaundice

    NASA Astrophysics Data System (ADS)

    Hamza, Mostafa; El-Ahl, Mohammad H. S.; Hamza, Ahmad M.

    2001-01-01

    The authors introduce the design of a blue-green diode- pumped solid-state laser system for transcutaneous measurement of serum bilirubin level in jaundiced new born infant. The system follows the principles of optical bilirubinometry. The choice of wavelengths provides correction for the presence of hemoglobin. The new design is more compact and less expensive.

  17. Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations.

    PubMed

    Miao, Xinyu; Yin, Longfei; Zhuang, Wei; Luo, Bin; Dang, Anhong; Chen, Jingbiao; Guo, Hong

    2011-08-01

    We demonstrate an external-cavity laser system using an anti-reflection coated laser diode as gain medium with about 60 nm fluorescence spectrum, and a Rb Faraday anomalous dispersion optical filter (FADOF) as frequency-selecting element with a transmission bandwidth of 1.3 GHz. With 6.4% optical feedback, a single stable longitudinal mode is obtained with a linewidth of 69 kHz. The wavelength of this laser is operating within the center of the highest transmission peak of FADOF over a diode current range from 55 mA to 142 mA and a diode temperature range from 15 °C to 35 °C, thus it is immune to the fluctuations of current and temperature.

  18. A simple readout electronics for automatic power controlled self-mixing laser diode systems.

    PubMed

    Cattini, Stefano; Rovati, Luigi

    2008-08-01

    The paper describes a simple electronic circuit to drive a laser diode for self-mixing interferometry. The network integrates a stable commercial automatic power controller and a current mirror based readout of the interferometric signal. The first prototype version of the circuit has been realized and characterized. The system allows easily performing precise interferometric measurements with no thermostatic circuitry to stabilize the laser diode temperature and an automatic control gain network to compensate emitted optical power fluctuations. To achieve this result, in the paper a specific calibration procedure to be performed is described.

  19. Schlieren with a laser diode source

    NASA Astrophysics Data System (ADS)

    Burner, A. W.; Franke, J. M.

    1981-10-01

    The use of a laser diode as a light source for a schlieren system designed to study phase objects such as a wind-tunnel flow is explored. A laser diode schlieren photograph and a white light schlieren photograph (zirconium arc source) are presented for comparison. The laser diode has increased sensitivity, compared with light schlieren, without appreciable image degradiation, and is an acceptable source for schlieren flow visualization.

  20. A compact and robust diode laser system for atom interferometry on a sounding rocket

    NASA Astrophysics Data System (ADS)

    Schkolnik, V.; Hellmig, O.; Wenzlawski, A.; Grosse, J.; Kohfeldt, A.; Döringshoff, K.; Wicht, A.; Windpassinger, P.; Sengstock, K.; Braxmaier, C.; Krutzik, M.; Peters, A.

    2016-08-01

    We present a diode laser system optimized for laser cooling and atom interferometry with ultra-cold rubidium atoms aboard sounding rockets as an important milestone toward space-borne quantum sensors. Design, assembly and qualification of the system, combing micro-integrated distributed feedback (DFB) diode laser modules and free space optical bench technology, is presented in the context of the MAIUS (Matter-wave Interferometry in Microgravity) mission. This laser system, with a volume of 21 l and total mass of 27 kg, passed all qualification tests for operation on sounding rockets and is currently used in the integrated MAIUS flight system producing Bose-Einstein condensates and performing atom interferometry based on Bragg diffraction. The MAIUS payload is being prepared for launch in fall 2016. We further report on a reference laser system, comprising a rubidium stabilized DFB laser, which was operated successfully on the TEXUS 51 mission in April 2015. The system demonstrated a high level of technological maturity by remaining frequency stabilized throughout the mission including the rocket's boost phase.

  1. High speed photoacoustic tomography system with low cost portable pulsed diode laser

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Sivasubramanian, Kathyayini; Pramanik, Manojit

    2015-07-01

    Photoacoustic tomography (PAT) is a potential hybrid imaging modality that has attracted great attention in the fields of medical imaging. In order to generate photoacoustic signal efficiently Q-switched Nd:YAG pump lasers capable of generating tens of millijoules of nanosecond laser pulses have been widely used. However, PAT systems using such lasers have limitations in clinical applications because of their high cost, large size, and cooling requirements. Furthermore, the low pulse repetition rate (PRR) of tens of hertz is not suitable for real-time PAT. So, there is a need for inexpensive, compact, simple, fast imaging system for clinical applications. Nanosecond pulsed laser diodes could meet these requirements. In this work, we present a high-speed photoacoustic tomography imaging system that uses a compact and yet relatively powerful near-infrared pulsed laser diode. The PAT system was tested on phantoms to verify its potential imaging speed. Photoacoustic reconstructed images at different scanning speeds are presented. With single ultrasound detector scanning, the system could provide PA image ~10 times faster than the Nd:YAG laser based systems.

  2. Properties and Frequency Conversion of High-Brightness Diode-Laser Systems

    NASA Astrophysics Data System (ADS)

    Boller, Klaus-Jochen; Beier, Bernard; Wallenstein, Richard

    An overview of recent developments in the field of high-power, high-brightness diode-lasers, and the optically nonlinear conversion of their output into other wavelength ranges, is given. We describe the generation of continuous-wave (CW) laser beams at power levels of several hundreds of milliwatts to several watts with near-perfect spatial and spectral properties using Master-Oscillator Power-Amplifier (MOPA) systems. With single- or double-stage systems, using amplifiers of tapered or rectangular geometry, up to 2.85 W high-brightness radiation is generated at wavelengths around 810nm with AlGaAs diodes. Even higher powers, up to 5.2W of single-frequency and high spatial quality beams at 925nm, are obtained with InGaAs diodes. We describe the basic properties of the oscillators and amplifiers used. A strict proof-of-quality for the diode radiation is provided by direct and efficient nonlinear optical conversion of the diode MOPA output into other wavelength ranges. We review recent experiments with the highest power levels obtained so far by direct frequency doubling of diode radiation. In these experiments, 100mW single-frequency ultraviolet light at 403nm was generated, as well as 1W of single-frequency blue radiation at 465nm. Nonlinear conversion of diode radiation into widely tunable infrared radiation has recently yielded record values. We review the efficient generation of widely tunable single-frequency radiation in the infrared with diode-pumped Optical Parametric Oscillators (OPOs). With this system, single-frequency output radiation with powers of more than 0.5W was generated, widely tunable around wavelengths of 2.1,m and 1.65,m and with excellent spectral and spatial quality. These developments are clear indicators of recent advances in the field of high-brightness diode-MOPA systems, and may emphasize their future central importance for applications within a vast range of optical

  3. Nonlinear distortion evaluation in a directly modulated distributed feedback laser diode-based fiber-optic cable television transport system

    NASA Astrophysics Data System (ADS)

    Li, Chung-Yi; Ying, Cheng-Ling; Lin, Chun-Yu; Chu, Chien-An

    2015-12-01

    This study evaluated a directly modulated distributed feedback (DFB) laser diode (LD) for cable TV systems with respect to carrier-to-nonlinear distortion of LDs. The second-order distortion-to-carrier ratio is found to be proportional to that of the second-order coefficient-to-first-order coefficient of the DFB laser diode driving current and to the optical modulation index (OMI). Furthermore, the third-order distortion-to-carrier ratio is proportional to that of the third-order coefficient-to-first-order coefficient of the DFB laser diode driving current, and to the OMI2.

  4. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    PubMed

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  5. Controlling Fringe Sensitivity of Electro-Optic Holography Systems Using Laser Diode Current Modulation

    NASA Technical Reports Server (NTRS)

    Bybee, Shannon J.

    2001-01-01

    Electro-Optic Holography (EOH) is a non-intrusive, laser-based, displacement measurement technique capable of static and dynamic displacement measurements. EOH is an optical interference technique in which fringe patterns that represent displacement contour maps are generated. At excessively large displacements the fringe density may be so great that individual fringes are not resolvable using typical EOH techniques. This thesis focuses on the development and implementation of a method for controlling the sensitivity of the EOH system. This method is known as Frequency Translated Electro-Optic Holography (FTEOH). It was determined that by modulating the current source of the laser diode at integer multiples of the object vibration, the fringe pattern is governed by higher order Bessel function of the first kind and the number of fringes that represent a given displacement can be controlled. The reduction of fringes is theoretically unlimited but physically limited by the frequency bandwidth of the signal generator, providing modulation to the laser diode. Although this research technique has been verified theoretically and experimentally in this thesis, due to the current laser diode capabilities it is a tedious and time consuming process to acquire data using the FTEOH technique.

  6. Laser diode initiated detonators for space applications

    NASA Technical Reports Server (NTRS)

    Ewick, David W.; Graham, J. A.; Hawley, J. D.

    1993-01-01

    Ensign Bickford Aerospace Company (EBAC) has over ten years of experience in the design and development of laser ordnance systems. Recent efforts have focused on the development of laser diode ordnance systems for space applications. Because the laser initiated detonators contain only insensitive secondary explosives, a high degree of system safety is achieved. Typical performance characteristics of a laser diode initiated detonator are described in this paper, including all-fire level, function time, and output. A finite difference model used at EBAC to predict detonator performance, is described and calculated results are compared to experimental data. Finally, the use of statistically designed experiments to evaluate performance of laser initiated detonators is discussed.

  7. Diode laser (980nm) cartilage reshaping

    NASA Astrophysics Data System (ADS)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  8. Qualification and Selection of Flight Diode Lasers for Space Applications

    NASA Technical Reports Server (NTRS)

    Liebe, Carl C.; Dillon, Robert P.; Gontijo, Ivair; Forouhar, Siamak; Shapiro, Andrew A.; Cooper, Mark S.; Meras, Patrick L.

    2010-01-01

    The reliability and lifetime of laser diodes is critical to space missions. The Nuclear Spectroscopic Telescope Array (NuSTAR) mission includes a metrology system that is based upon laser diodes. An operational test facility has been developed to qualify and select, by mission standards, laser diodes that will survive the intended space environment and mission lifetime. The facility is situated in an electrostatic discharge (ESD) certified clean-room and consist of an enclosed temperature-controlled stage that can accommodate up to 20 laser diodes. The facility is designed to characterize a single laser diode, in addition to conducting laser lifetime testing on up to 20 laser diodes simultaneously. A standard laser current driver is used to drive a single laser diode. Laser diode current, voltage, power, and wavelength are measured for each laser diode, and a method of selecting the most adequate laser diodes for space deployment is implemented. The method consists of creating histograms of laser threshold currents, powers at a designated current, and wavelengths at designated power. From these histograms, the laser diodes that illustrate a performance that is outside the normal are rejected and the remaining lasers are considered spaceborne candidates. To perform laser lifetime testing, the facility is equipped with 20 custom laser drivers that were designed and built by California Institute of Technology specifically to drive NuSTAR metrology lasers. The laser drivers can be operated in constant-current mode or alternating-current mode. Situated inside the enclosure, in front of the laser diodes, are 20 power-meter heads to record laser power throughout the duration of lifetime testing. Prior to connecting a laser diode to the current source for characterization and lifetime testing, a background program is initiated to collect current, voltage, and resistance. This backstage data collection enables the operational test facility to have full laser diode

  9. Materials Systems for 2- to 5-Micrometers Wavelength Diode Lasers

    DTIC Science & Technology

    1990-08-22

    for the Department of the Air Force under Contract F19628.90.C.0002. Approved for public release; distribution is unlimited This report is based on...Department of the Air Force under Contract F19628-90-C-0002. This report ma be reproduced to satisfy needs of U.S. Government agencies. The ESD Public...energy band vs distance for a strained-layer MQW laser. Discrete levels in the wells are not shown. Occupied states under forward-bias conditions are

  10. 11-kW direct diode laser system with homogenized 55 × 20 mm2 Top-Hat intensity distribution

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Noeske, Axel; Kindervater, Tobias; Wessollek, Armin; Brand, Thomas; Biesenbach, Jens

    2007-02-01

    In comparison with other laser systems diode lasers are characterized by a unique overall efficiency, a small footprint and high reliability. However, one major drawback of direct diode laser systems is the inhomogeneous intensity distribution in the far field. Furthermore the output power of current commercially available systems is limited to about 6 kW. We report on a diode laser system with 11 kW output power at a single wavelength of 940 nm aiming for customer specific large area treatment. To the best of our knowledge this is the highest output power reported so far for a direct diode laser system. In addition to the high output power the intensity distribution of the laser beam is homogenized in both axes leading to a 55 x 20 mm2 Top-Hat intensity profile at a working distance of 400 mm. Homogeneity of the intensity distribution is better than 90%. The intensity in the focal plane is 1 kW/cm2. We will present a detailed characterization of the laser system, including measurements of power, power stability and intensity distribution of the homogenized laser beam. In addition we will compare the experimental data with the results of non-sequential raytracing simulations.

  11. Laterally injected light-emitting diode and laser diode

    DOEpatents

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  12. Diode Pumped Fiber Laser

    DTIC Science & Technology

    1983-07-01

    acousto - optic beam deflector for greater absolute accuracy. The detection system was also upgraded to a response time of • 1 usec. The... 2 C. SUMMARY OF RESULTS.., 3 D . GENERAL PLAN 5 II. Nd:YAG FIBER PREPARATION 7 A. FIBER GROWTH 7 B. PHYSICAL PROPERTIES OF Nd:YAG...A. INTRODUCTION 25 B. GENERAL FORMALISM 26 C. FREE-SPACE LASERS 35 D . FIBER LASERS 43 1. Fiber Laser Configuration 43 2 . F

  13. A clinical study of failure in microchannel cooled diodes used in large laser systems

    NASA Astrophysics Data System (ADS)

    Jackel, Steven; Meir, Avi; Horvitz, Zvi; Moshe, Inon; Shimoni, Yehoshua; Lumer, Yaakov; Feldman, Revital; Hershko, Izhak; Pekin, Yotam

    2011-04-01

    In this paper we investigate the source of failure in commercial, microchannel cooled CW diode bars placed in 12 bar horizontal arrays. The arrays were used to pump Nd:YAG rods in our 10 kW developmental laser. The laser was operated at low duty factor over a period of over 2 years. Experimental evidence indicated that the sudden, catastrophic failure was because of degraded cooling. We used optical microscopes, an X-ray microfocus imager, and a thermal neutron scattering camera to look inside the microcoolers. Our investigations revealed only one possible failure mechanism: cooling flow reduction because of delamination of the Au coating the walls of the microcoolers and the entrapment of Au flakes within the microchannel structures. We observed blisters in the microcoolers under working bars, and flake-like structures in the microcoolers under burnt-out bars (all taken from the laser). We observed no evidence of either massive blockages because of electrochemical deposits, or of corrosion/erosion in the microchannel walls. Integral operation times of the high flow-rate cooling system and of the diodes themselves were too short by one and two orders of magnitude, respectively, to explain the observed failures. Microchannel immersion times in the deionized water were, however, long enough to allow for corrosion of metals that may have been exposed through defects in the Au coatings. Three-dimensional heat flow simulations showed that blockage of multiple microchannels towards the edge of a bar can easily lead to catastrophic temperature increases.

  14. Design Considerations for the Diode-pumped Laser Ignition Project

    DTIC Science & Technology

    2013-01-01

    ABSTRACT This technical note explores the design of the monolithic neodymium (Nd): yttrium aluminum garnet (YAG) laser used in the diode-pumped laser...manufacturer on fabrication cost, the optimum design can be determined. 15. SUBJECT TERMS Solid state laser, neodymium , diode pumping 16... neodymium (Nd): yttrium aluminum garnet (YAG) laser used in the diode-pumped laser ignition system (DPLIS). Emphasis is placed on the divergence of

  15. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  16. Highly modular high-brightness diode laser system design for a wide application range

    NASA Astrophysics Data System (ADS)

    Fritsche, Haro; Kruschke, Bastian; Koch, Ralf; Ferrario, Fabio; Kern, Holger; Pahl, Ullrich; Ehm, Einar; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang

    2015-03-01

    For an economic production it is important to serve as many applications as possible while keeping the product variations minimal. We present our modular laser design, which is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking. Those emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100W with BPP of <3.5 mm*mrad (FA) and <5 mm*mrad (SA). Further power scaling is accomplished by polarization and wavelength multiplexing yielding high optical efficiencies of more than 80% and results in about 500 W launched into a 100 μm fiber with 0.15 NA. Subsequently those building blocks can be stacked also by the very same dense spectral combing technique up to multi kW Systems without further reduction of the BPP. These "500W building blocks" are consequently designed in a way that without any system change new wavelengths can be implemented by only exchanging parts but without change of the production process. This design principal offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR. From laser pumping and scientific applications to materials processing such as cutting and welding of copper aluminum or steel and also medical application. Operating at wavelengths between 900 nm and 1100 nm, these systems are mainly used in cutting and welding, but the technology can also be adapted to other wavelength ranges, such as 793 nm and 1530 nm. Around 1.5 μm the diodes are already successfully used for resonant pumping of Erbium lasers.[1] Furthermore, the fully integrated electronic concept allows addressing further applications, as it is capable of very short μs pulses up to cw mode operation by simple software commands.

  17. Enhanced vbasis laser diode package

    DOEpatents

    Deri, Robert J.; Chen, Diana; Bayramian, Andy; Freitas, Barry; Kotovsky, Jack

    2014-08-19

    A substrate having an upper surface and a lower surface is provided. The substrate includes a plurality of v-grooves formed in the upper surface. Each v-groove includes a first side and a second side perpendicular to the first side. A laser diode bar assembly is disposed within each of the v-grooves and attached to the first side. The laser diode bar assembly includes a first adhesion layer disposed on the first side of the v-groove, a metal plate attached to the first adhesion layer, a second adhesion layer disposed over the metal plate, and a laser diode bar attached to the second adhesion layer. The laser diode bar has a coefficient of thermal expansion (CTE) substantially similar to that of the metal plate.

  18. Coordinate interferometric system for measuring the position of a sample with infrared telecom laser diode

    NASA Astrophysics Data System (ADS)

    Holá, Miroslava; Lazar, Josef; Čížek, Martin; Hucl, Václav; Řeřucha, Šimon; Číp, Ondřej

    2016-11-01

    We report on a design of an interferometric position measuring system for control of a sample stage in an e-beam writer with reproducibility of the position on nanometer level and resolution below nanometer. We introduced differential configuration of the interferometer where the position is measured with respect to a central reference point to eliminate deformations caused by thermal and pressure effects on the vacuum chamber. The reference is here the electron gun of the writer. The interferometer is designed to operate at infrared, telecommunication wavelength due to the risk of interference of stray light with sensitive photodetectors in the chamber. The laser source is here a narrow-linewidth DFB laser diode with electronics of our own design offering precision and stability of temperature and current, low-noise, protection from rf interference, and high-frequency modulation. Detection of the interferometric signal relies on a novel derivative technique utilizing hf frequency modulation and phase-sensitive detection.

  19. Design of a novel pulsed laser diode induced photoacoustic imaging system for tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Zeng, Lvming; Liu, Guodong; Huang, Zhen

    2012-03-01

    The tumors are one of most dangerous diseases in lots of diseases Expect for the actively treating of antitumor, the early detection of tumors is a key important step in the course of tumor treatment. Since some drawbacks existed in the traditional methods of tumor detection, such as ultrasound imaging, X radiography, CT imaging, OCT and MRI, etc, a novel hybrid and promising imaging method, that is, photoacoustic imaging (PAI) technology, is used to the tumors diagnosis(TD) in this work. This novel method has higher resolution, contrast and penetration depth due to the merits combination of ultrasonic with optics. And the detected photoacoustic signal not only reflects the structural characteristic of tissue but also the metabolic and pathological changes. So, the novel TD based on the PAI is proposed in this paper. Meanwhile, a novel single pulsed laser diode with 905nm wavelength is used as the light source, and a focused ultrasonic transducer with the forward-mode is used to acquire the photoacoustic signal. Finally, PA images were reconstructed with the improved filtered back projection algorithm. Experimental results show the signal acquisition time is less than 0.2 s in each scan of 128 averages. And it is proved that the photoacoustic imaging system for TD with a high-power pulsed laser diode is available. Therefore, this system has the potential value in the biomedical research fields.

  20. Design of a novel pulsed laser diode induced photoacoustic imaging system for tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Zeng, Lvming; Liu, Guodong; Huang, Zhen

    2011-11-01

    The tumors are one of most dangerous diseases in lots of diseases Expect for the actively treating of antitumor, the early detection of tumors is a key important step in the course of tumor treatment. Since some drawbacks existed in the traditional methods of tumor detection, such as ultrasound imaging, X radiography, CT imaging, OCT and MRI, etc, a novel hybrid and promising imaging method, that is, photoacoustic imaging (PAI) technology, is used to the tumors diagnosis(TD) in this work. This novel method has higher resolution, contrast and penetration depth due to the merits combination of ultrasonic with optics. And the detected photoacoustic signal not only reflects the structural characteristic of tissue but also the metabolic and pathological changes. So, the novel TD based on the PAI is proposed in this paper. Meanwhile, a novel single pulsed laser diode with 905nm wavelength is used as the light source, and a focused ultrasonic transducer with the forward-mode is used to acquire the photoacoustic signal. Finally, PA images were reconstructed with the improved filtered back projection algorithm. Experimental results show the signal acquisition time is less than 0.2 s in each scan of 128 averages. And it is proved that the photoacoustic imaging system for TD with a high-power pulsed laser diode is available. Therefore, this system has the potential value in the biomedical research fields.

  1. Versatile subnanosecond laser diode driver

    NASA Astrophysics Data System (ADS)

    Żbik, Mateusz; Wieczorek, Piotr Z.

    2016-09-01

    This article presents a laser diode driver that provides a fast modulation of a laser beam. A pulsed current source was designed and built to test Infra-Red (I-R) receivers in the Time Domain (TD). The proposed solution allows to estimate pulse responses of various photodetectors, whereas the testing was performed with a PiN photodetector. The pulse response brings the information on the behavior of the device under test in a wide frequency range. In addition, an experimental application of the proposed method is presented too. System discussed in this paper has been fully designed and manufactured in Warsaw University of Technology (WUT) in Institute of Electronic Systems (ISE).

  2. Calibrated feedback for laser diodes

    SciTech Connect

    Howard, P.G.

    1986-04-22

    A method is described of calibrating the feedback output from the feedback light detector of the laser diode of an optical disk drive of a laser light pen which consists of mounting a first and a second resistor in a laser light pen; connecting the first resistor between the feedback light detector and ground; connecting the second resistor between the feedback light detector and a feedback output; operating the laser diode to produce a predetermined light power output; adjusting the resistance of the first resistor to produce a predetermined voltage at the feedback output; and adjusting the resistance of the second resistor to produce a predetermined impedance at the feedback output.

  3. Novel diode-based laser system for combined transcutaneous monitoring and computer-controlled intermittent treatment of jaundiced neonates

    NASA Astrophysics Data System (ADS)

    Hamza, Mostafa; El-Ahl, Mohammad H. S.; Hamza, Ahmad M.

    2001-06-01

    The high efficacy of laser phototherapy combined with transcutaneous monitoring of serum bilirubin provides optimum safety for jaundiced infants from the risk of bilirubin encephalopathy. In this paper the authors introduce the design and operating principles of a new laser system that can provide simultaneous monitoring and treatment of several jaundiced babies at one time. The new system incorporates diode-based laser sources oscillating at selected wavelengths to achieve both transcutaneous differential absorption measurements of bilirubin concentration in addition to the computer controlled intermittent laser therapy through a network of optical fibers. The detailed description and operating characteristics of this system are presented.

  4. A novel control system for automatically locking a diode laser frequency to a selected gas absorption line

    NASA Astrophysics Data System (ADS)

    Dong, Lei; Yin, Wangbao; Ma, Weiguang; Jia, Suotang

    2007-05-01

    A novel control system has been developed for avoiding manual operation during traditional frequency locking. The control system uses a computer with a commercial data acquisition card. This accomplishes the whole operation of frequency locking, including generating ramp, searching locking point, engaging a proportional-integral-differential (PID) regulator at the proper time and outputting PID compensation signal. Moreover, a new method has also been employed to make the novel control system accurately identify the locking points of all absorption lines within the scanning range, so that the laser frequency can be automatically firmly brought onto any selected absorption line centre without any adjusting time. The operation of the system, the ability to identify absorption lines and the performance of the frequency locking were discussed in detail. Successful tests were made with two different lasers: external cavity diode lasers and distributed feedback diode lasers.

  5. A hybrid WDM transport system based on mutually injection-locked Fabry Perot laser diodes

    NASA Astrophysics Data System (ADS)

    Ying, Cheng-Ling; Lu, Hai-Han; Tzeng, Shah-Jye; Ma, Hsien-Li; Chuang, Yao-Wei

    2007-08-01

    A hybrid wavelength-division-multiplexing (WDM) transport system based on mutually injection-locked Fabry-Perot laser diodes (FP LDs) for CATV, 256-QAM and OC-48 transmission is proposed and demonstrated. Mutually injection-locked FP LDs as broadband light source could be relatively simple and cost-effective compared with other demonstrated light source schemes. The proposed hybrid WDM transport system employs four filtered wavelengths (modes) to transmit 111 AM-VSB channels, four 256-QAM digital passband channels, and one OC-48 digital baseband channel simultaneously. Since our proposed system does not use multiple distributed feedback (DFB) LDs, it reveals a prominent one with simpler and more economic advantages.

  6. [Treatment of tracheobronchial malignant tumors using a new high power diode contact laser (GaAlAs) system].

    PubMed

    Ishiguro, Takashi; Sawa, Toshiyuki; Yoshida, Tsutomu; Yokoyama, Mitsuru; Murakawa, Shinji; Azuma, Kenichirou; Tomida, Yoshiteru

    2002-11-01

    We treated ten patients with tracheobronchial malignant tumors using a new high power diode contact laser (GaAlAs) system (DIOMED 25, OLYMPUS) with a flexible bronchofiberscope (OLYMPUS BF IT200 or BF IT240). The total energy of the high power diode laser was 811 J, with a range of 64-3,960 J. With this method 85.7 percent of the symptoms such as dyspnea and hemoptysis were improved, and there was no incidence of massive hemorrhage or serious respiratory failure. The results confirmed the usefulness and safety of this method of treatment for obstructive lesions due to tracheobronchial polypoid malignant tumor and bleeding of the tracheobronchial tree.

  7. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    PubMed

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell

  8. Development of gas fire detection system using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Y. L.; Li, G.; Yang, T.; Wang, J. J.

    2017-01-01

    The conventional fire detection methods mainly produce an alarm through detecting the changes in smoke concentration, flame radiation, heat and other physical parameters in the environment, but are unable to provide an early warning of a fire emergency. We have designed a gas fire detection system with a high detection sensitivity and high selectivity using the tunable semiconductor diode laser as a light source and combining wavelength modulation and harmonic detection technology. This system can invert the second harmonic signal obtained to obtain the concentration of carbon monoxide gas (a fire characteristic gas) so as to provide an early warning of fire. We reduce the system offset noise and the background noise generated due to the laser interference by deducting the system background spectrum lines from the second harmonic signal. This can also eliminate the interference of other gas spectral lines to a large extent. We detected the concentration of the carbon monoxide gas generated in smoldering sandalwood fire and open beech wood fire with the homemade fire simulator, and tested the lowest detectable limit of system. The test results show that the lowest detectable limit can reach 5×10-6 the system can maintain stable operation for a long period of time and can automatically trigger a water mist fire extinguishing system, which can fully meet the needs of early fire warning.

  9. Diode laser and endoscopic laser surgery.

    PubMed

    Sullins, Kenneth E

    2002-05-01

    Two functionally important differences exist between the diode laser and the carbon dioxide (CO2) laser (used more commonly in small animal surgery). Diode laser energy is delivered through a quartz fiber instead of being reflected through an articulated arm or waveguide. Quartz fibers are generally more flexible and resilient than waveguides and can be inserted through an endoscope for minimally invasive procedures. Laser-tissue interaction is the other significant difference. The CO2 laser is completely absorbed by water, which limits the effect to visible tissue. The diode wavelength is minimally absorbed by water and may affect tissue as deep as 10 mm below the surface in the free-beam mode. With proper respect for the tissue effect, these differences can be used to the advantage of the patient.

  10. Activation of theMercury Laser System: A Diode-Pumped Solid-State Laser Driver for Inertial Fusion

    SciTech Connect

    Bayramian, A J; Beach, R J; Bibeau, C; Ebbers, C A; Freitas, B L; Kanz, V K; Payne, S A; Schaffers, K I; Skulina, K M; Smith, L K; Tassano, J B

    2001-09-10

    Initial measurements are reported for the Mercury laser system, a scalable driver for rep-rated inertial fusion energy. The performance goals include 10% electrical efficiency at 10 Hz and 100 J with a 2-10 ns pulse length. We report on the first Yb:S-FAP crystals grown to sufficient size for fabricating full size (4 x 6 cm) amplifier slabs. The first of four 160 kW (peak power) diode arrays and pump delivery systems were completed and tested with the following results: 5.5% power droop over a 0.75 ms pulse, 3.95 nm spectral linewidth, far field divergence of 14.0 mrad and 149.5 mrad in the microlensed and unmicrolensed directions respectively, and 83% optical-to-optical transfer efficiency through the pump delivery system.

  11. Semiconductor Laser Diodes and the Design of a D.C. Powered Laser Diode Drive Unit

    DTIC Science & Technology

    1988-06-01

    the design of a laser diode modulation circuit is the determination of the input imped- ence and equivalent circuit of the laser diode and packag- ing...current source with a high internal impedance as compared to the input imped- ance of the laser. [Ref. l:p. 33] Summarizing the above, laser diodes...switches. The modula- tion circuitry is connected in parallel with the laser diode and provides a modulated input to the laser diode superim- posed onto

  12. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Parker, Ron; Carr, Zak; MacLean, Mathew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  13. Quantum Noise in Laser Diodes

    NASA Technical Reports Server (NTRS)

    Giacobino, E.; Marin, F.; Bramati, A.; Jost, V.; Poizat, J. Ph.; Roch, J.-F.; Grangier, P.; Zhang, T.-C.

    1996-01-01

    We have investigated the intensity noise of single mode laser diodes, either free-running or using different types of line narrowing techniques at room temperature. We have measured an intensity squeezing of 1.2 dB with grating-extended cavity lasers and 1.4 dB with injection locked lasers (respectively 1.6 dB and 2.3 dB inferred at the laser output). We have observed that the intensity noise of a free-running nominally single mode laser diode results from a cancellation effect between large anti-correlated fluctuations of the main mode and of weak longitudinal side modes. Reducing the side modes by line narrowing techniques results in intensity squeezing.

  14. Computer processing of tunable diode laser spectra

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1989-01-01

    A computer-controlled tunable diode laser spectrometer and spectral analysis software are described. The three-channel system records simultaneously the transmission of a subject gas, a temperature-stabilized etalon, and a calibration gas. The software routines are applied to diode laser spectra of HNO3 and NO2 to illustrate the procedures adopted for conversion of raw spectral data to useful transmission and harmonic spectra. Extraction of line positions, absorption intensities, collisional broadening coefficients, and gas concentrations from recorded spectra is also described.

  15. High power, high reliability laser diodes

    NASA Astrophysics Data System (ADS)

    Scifres, D. R.; Welch, D. F.; Craig, R. R.; Zucker, E.; Major, J. S.; Harnagel, G. L.; Sakamoto, M.; Haden, J. M.; Endriz, J. G.; Kung, H.

    1992-06-01

    Results are presented on catastrophic damage limits and life-test measurements for four types of high-power laser diodes operating at wavelengths between 980 nm and 690 nm. The laser diodes under consideration are CW multimode lasers, CW laser bars, quasi-CW bars/2D stacked arrays, and single transverse mode lasers.

  16. Primary investigations on the potential of a novel diode pumped Er:YAG laser system for middle ear surgery

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Wurm, Holger; Hausladen, Florian

    2016-02-01

    Flashlamp pumped Er:YAG lasers are successfully used clinically for both precise soft and hard tissue ablation. Since several years a novel diode pumped Er:YAG laser system (Pantec Engineering AG) is available, with mean laser power up to 40 W and pulse repetition rate up to 1 kHz. The aim of the study was to investigate the suitability of the laser system specifically for stapedotomy. Firstly an experimental setup was realized with a beam focusing unit and a computer controlled translation stage to move the samples (slices of porcine bone) with a defined velocity while irradiation with various laser parameters. A microphone was positioned in a defined distance to the ablation point and the resulting acoustic signal of the ablation process was recorded. For comparison, measurements were also performed with a flash lamp pumped Er:YAG laser system. After irradiation the resulting ablation quality and efficacy were determined using light microscopy. Using a high speed camera and "Töpler-Schlierentechnik" the cavitation bubble in water after perforation of a bone slice was investigated. The results show efficient bone ablation using the diode pumped Er:YAG laser system. Also a decrease of the sound level and of the cavitation bubble volume was observed with decreasing pulse duration. Higher repetition rates lead to a slightly increase of thermal side effects but have no influence on the ablation efficiency. In conclusion, these first experiments demonstrate the high potential of the diode pumped Er:YAG laser system for use in middle ear surgery.

  17. Optical logic inverter and AND elements using laser or light-emitting diodes and photodetectors in a bistable system.

    PubMed

    Okumura, K; Ogawa, Y; Ito, H; Inaba, H

    1984-11-01

    Fundamental optical digital data-processing functions of optical inverter and optical AND elements are proposed and demonstrated experimentally for the first reported time using light-emitting diodes and a photodetector in a hybrid optoelectronic bistable system. The inherent simplicity of these bistable optical devices that use either a laser or a light-emitting diode should make it possible to realize these optical logic functions by monolithic optoelectronic integration. Specific integration schemes are also proposed, and future interesting and useful applications are discussed.

  18. Improvement and evaluation of a low-cost laser diode photoacoustic microscopy system for ovarian tissue imaging

    NASA Astrophysics Data System (ADS)

    Erfanzadeh, Mohsen; Salehi, Hassan S.; Kumavor, Patrick; Zhu, Quing

    2016-03-01

    We present a laser diode-based photoacoustic microscopy (PAM) system with a minimized light intensity loss for ovarian tissue imaging. A 905 nm, 650 W output peak power pulsed laser diode (PLD) is utilized as the light source. The intrinsic properties and the construction of this PLD typically make it challenging to focus its beam to a small spot size with a lowloss optical system. An optical system comprising a combination of aspheric and cylindrical lenses is presented that allows a low-loss collimation and tight focusing of the light beam. The lateral resolution of this PAM system is measured to be 40 μm using edge spread function estimation. Images of black human hairs, polyethylene tubes filled with rat blood, ex vivo mouse ear and ex vivo porcine ovary are presented.

  19. A three-beam water vapor sensor system for combustion diagnostics using a 1390 nm tunable diode laser

    SciTech Connect

    Wang, L.G.; Vay, S.

    1995-12-31

    H{sub 2}O(v) is an important species in combustion and hypersonic flow measurements because it is a primary combustion product. Measurements of water vapor can be used to determine performance parameters, such as extent and efficiency of combustion in propulsion and aerodynamics facilities. Water vapor concentration measurement in these high-temperature hypervelocity combustion conditions requires very high sensitivity and fast time response. A three-beam diode laser H{sub 2}O(v) measurement system for nonintrusive combustion diagnostics has been developed at NASA Langley Research Center and successfully tested and installed at GASL NASA HYPULSE facility for routine operation. The system was built using both direct laser absorption spectroscopy and frequency modulation laser spectroscopy. The output beam from a distributed feedback (DFB) InGaAsP diode laser (emitting around 1.39 {micro}m) is split into three equal-powered equal-distanced parallel beams with separation of 9 mm. With three beams, the authors are able to obtain water vapor number densities at three locations. Frequency modulation spectroscopy technique is used to achieve high detection sensitivity. The diode laser is modulated at radio frequency (RF), while the wavelength of the diode laser is tuned to scan over a strong water vapor absorption line. The detected RF signal is then demodulated at the fundamental frequency of the modulation (one-F demodulation). A working model and a computer software code have been developed for data process and data analysis. Water vapor number density measurements are achieved with consideration of temperature dependence. Experimental results and data analysis will be presented.

  20. Diode laser-based sensor system for long-path absorption measurements of atmospheric concentration and near-IR molecular spectral parameters

    SciTech Connect

    Goldstein, N.; Lee, J.; Adler-Golden, S.M.; Bien, F.

    1993-12-31

    Line-locked near-IR diode lasers and a simple retroreflector/telescope system were used for remote sensing of atmospheric constituents over long atmospheric paths. The experimental configuration used in preliminary measurements of atmospheric water vapor and oxygen with AlGaAs diode lasers is presented. A prototype field sensor system currently under development shares the same basic configuration but incorporates interchangeable AlGaAs and InGaAsP diode-laser modules for monitoring a variety of atmospheric gases.

  1. "Diode Pumped Solid State Lasers At 2 And 3 µm"

    NASA Astrophysics Data System (ADS)

    Esterowitz, Leon

    1988-06-01

    The most attractive alternative to flashlamp pumping of solid state lasers is the diode laser. In the past two decades numerous laboratory devices have been assembled which incorporated single diode lasers, small laser diode arrays or LED's for pumping of Nd:YAG, Nd:glass and a host of other Nd lasers. The low power output, low packaging density, and extremely high cost of diode lasers prevented any serious applications for laser pumping in the past. The reason for the continued interest in this area stems from the potential dramatic increase in system efficiency and component lifetime, and reduction of thermal load of the solid-state laser material. The latter not only will reduce thereto-optic effects and therefore lead to better beam quality but also will enable an increase in pulse repetition frequency. The attractive operating parameters combined with low voltage operation and the compactness of an all solid-state laser system have a potential high payoff. The high pumping efficiency compared to flashlamps stems from the good spectral match between the laser diode emission and the rare earth activator absorption bands. A significant advantage of laser diode pumping compared to arc lamps is system lifetime and reliability. Laser diode arrays have exhibited lifetimes on the order of 10,000 hours in cw operation and 109 shots in the pulsed mode. Flashlamp life is on the order of 107 shots, and about 200 hours for cw operation. In addition, the high pump flux combined with a substantial UV content in lamp pumped systems causes material degradation in the pump cavity and in the coolant. Such problems are virtually eliminated with laser diode pump sources. The absence of high voltage pulses, high temperatures and UV radiation encountered with arc lamps leads to much more benign operating features for solid state laser systems employing laser diode pumps. Laser diode technology dates back to 1962 when laser action in GaAs diodes was first demonstrated. However, it

  2. Diode Laser Application in Soft Tissue Oral Surgery

    PubMed Central

    Azma, Ehsan; Safavi, Nassimeh

    2013-01-01

    Introduction: Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Discussion: Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. Conclusion: The diode laser can be used as a modality for oral soft tissue surgery PMID:25606331

  3. Investigations on the potential of a low power diode pumped Er:YAG laser system for oral surgery

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Wurm, Holger; Hausladen, Florian; Wagner, Sophia; Hibst, Raimund

    2015-02-01

    Flash lamp pumped Er:YAG-lasers are used in clinical practice for dental applications successfully. As an alternative, several diode pumped Er:YAG laser systems (Pantec Engineering AG) become available, with mean laser power of 2W, 15W, and 30W. The aim of the presented study is to investigate the potential of the 2W Er:YAG laser system for oral surgery. At first an appropriate experimental set-up was realized with a beam delivery and both, a focusing unit for non-contact tissue cutting and a fiber tip for tissue cutting in contact mode. In order to produce reproducible cuts, the samples (porcine gingiva) were moved by a computer controlled translation stage. On the fresh samples cutting depth and quality were determined by light microscopy. Afterwards histological sections were prepared and microscopically analyzed regarding cutting depth and thermal damage zone. The experiments show that low laser power ≤ 2W is sufficient to perform efficient oral soft tissue cutting with cut depth up to 2mm (sample movement 2mm/s). The width of the thermal damage zone can be controlled by the irradiation parameters within a range of about 50μm to 110μm. In general, thermal injury is more pronounced using fiber tips in contact mode compared to the focused laser beam. In conclusion the results reveal that even the low power diode pumped Er:YAG laser is an appropriate tool for oral surgery.

  4. System analysis of wavelength beam combining of high-power diode lasers for photoacoustic endoscopy

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; Gallego, Daniel C.; Gawali, Sandeep B.; Sánchez, Miguel; Rodriguez, Sergio; Osiński, Marek; Sacher, Joachim; Carpintero, Guillermo; Lamela, Horacio

    2016-04-01

    This paper, originally published on 27 April 2016, was replaced with a corrected/revised version on 8 June 2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. The purpose of wavelength-beam combining (WBC) is to improve the output power of a multi-wavelength laser system while maintaining the quality of the combined beam. This technique has been primarily proposed for industrial applications, such as metal cutting and soldering, which require optical peak power between kilowatts and megawatts. In order to replace the bulkier solid-state lasers, we propose to use the WBC technique for photoacoustic (PA) applications, where a multi-wavelength focused beam with optical peak power between hundreds of watts up to several kilowatts is necessary to penetrate deeply into biological tissues. In this work we present an analytical study about the coupling of light beams emitted by diode laser bars at 808 nm, 880 nm, 910 nm, 940 nm, and 980 nm into a < 600-μm core-diameter optical fiber for PA endoscopy. In order to achieve an efficient coupling it is necessary to collimate the beams in both fast and slow axes by means of cylindrical lenses and to use partial reflection mirrors at 45° tilt. We show an example of beam collimation using cylindrical lenses in both fast and slow axes. In a real PA scenario, the resulting beam should have a sufficient peak power to generate significant PA signals from a turbid tissue>.

  5. Variable FOV optical illumination system with constant aspect ratio for 2-D array lasers diodes

    NASA Astrophysics Data System (ADS)

    Arasa, J.; de la Fuente, M. C.; Ibañez, C.

    2008-09-01

    In this contribution we present a compact system to create an illumination distribution with a constant aspect ratio 3:4 and FOV from 0.4 to 1 degree. Besides, the system must delivery 40 W from 170 individual laser diodes placed in a regular 2-D array distribution of 10 x 20 mm. The main problem that must be solved is the high asymmetry of the individual sources; emission divergence's ratio 3:73 (0.3 vs. 7.4 degree) combined with the flux holes due to the laser's heat drain. In one axis (divergence of 0.3º) the best design strategy approach is a Galileo telescope but in the other axis a collimator configuration is the best solution. To manage both solutions at the same time is the aim of this contribution. Unfortunately for the Galileo strategy, source dimensions are too large so aspheric surfaces are needed, and the collimator configuration requires an EFL that must change from 573 to 1432 mm. The presented solution uses a set of three fixed anamorphic lenses, two of them pure cylinders, combined with a wheel of anamorphic lenses that have the function to change the FOV of the system. The most important contribution of the design is to obtain a constant final ratio 3:4 from an initial ratio of 3:73 with no losses of energy. The proposed solution produces an illumination pattern with peaks and valleys lower than 40%. This pattern distribution might be unacceptable for a standard illumination solution. However, the actual FOV is used to illuminate far away targets thus air turbulence is enough to homogenize the distribution on the target.

  6. High power diode and solid state lasers

    NASA Astrophysics Data System (ADS)

    Eichler, H. J.; Fritsche, H.; Lux, O.; Strohmaier, S. G.

    2017-01-01

    Diode lasers are now basic pump sources of crystal, glass fiber and other solid state lasers. Progress in the performance of all these lasers is related. Examples of recently developed diode pumped lasers and Raman frequency converters are described for applications in materials processing, Lidar and medical surgery.

  7. IC Fabrication Methods Improve Laser Diodes

    NASA Technical Reports Server (NTRS)

    Miller, M.; Pickhardt, V.

    1984-01-01

    Family of high-performance, tunable diode lasers developed for use as local oscillators in passive laser heterodyne spectrometer. Diodes fabricated using standard IC processes include photolithography, selective etching and vacuum deposition of metals and insulators. Packaging refinements improved thermal-cycling characteristics of diodes and increased room-temperature shelf life.

  8. Diode laser-pumped solid-state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    An evaluation is made of the consequences for solid-state lasers of novel diode laser-pumping technology. Diode laser-pumped neodymium lasers have operated at an electrical-to-optical efficiency of 10 percent in a single spatial mode, with linewidths of less than 10 kHz, and with a spectral power brightness sufficiently great to allow frequency extension by harmonic generation in nonlinear crystals; this has yielded green and blue sources of coherent radiation. Q-switched operation with kW peak powers and mode-locked operation with 10-picosec pulse widths have also been demonstrated. All-solid-state lasers at prices comparable to those of current flash-lamp-pumped laser systems are foreseen, as are power levels exceeding 1 kW, for coherent radar, global satellite sensing, and micromachining.

  9. Effect of radiant heat on conventional glass ionomer cements during setting by using a blue light diode laser system (445 nm).

    PubMed

    Dionysopoulos, Dimitrios; Tolidis, Kosmas; Strakas, Dimitrios; Gerasimou, Paris; Sfeikos, Thrasyvoulos; Gutknecht, Norbert

    2017-04-01

    The aim of this in vitro study was to evaluate the effect of radiant heat on surface hardness of three conventional glass ionomer cements (GICs) by using a blue diode laser system (445 nm) and a light-emitting diode (LED) unit. Additionally, the safety of the laser treatment was evaluated. Thirty disk-shaped specimens were prepared of each tested GIC (Equia Fil, Ketac Universal Aplicap and Riva Self Cure). The experimental groups (n = 10) of the study were as follows: group 1 was the control group of the study; in group 2, the specimens were irradiated for 60 s at the top surface using a LED light-curing unit; and in group 3, the specimens were irradiated for 60 s at the top surface using a blue light diode laser system (445 nm). Statistical analysis was performed using one-way ANOVA and Tukey post-hoc tests at a level of significance of a = 0.05. Radiant heat treatments, with both laser and LED devices, increased surface hardness (p < 0.05) but in different extent. Blue diode laser treatment was seemed to be more effective compared to LED treatment. There were no alterations in surface morphology or chemical composition after laser treatment. The tested radiant heat treatment with a blue diode laser may be advantageous for the longevity of GIC restorations. The safety of the use of blue diode laser for this application was confirmed.

  10. Noninvasive blood glucose monitoring with laser diode

    NASA Astrophysics Data System (ADS)

    Zhang, Xiqin; Chen, Jianhong; Ooi, Ean Tat; Yeo, Joon Hock

    2006-02-01

    The non-invasive measurement of blood sugar level was studied by use of near infrared laser diodes. The in vitro and in vivo experiments were carried out using six laser diodes having wavelengths range from 1550 nm to 1750nm. Several volunteers were tested for OGTT (Oral Glucose Tolerance Test) experiment. We took blood from a fingertip and measured its concentration with a glucose meter while taking signal voltage from laser diodes system. The data of signal voltage were processed to do calibration and prediction; in this paper PLS (Partial Least Square) method was used to do modeling. For in vitro experiment, good linear relationship between predicted glucose concentration and real glucose concentration was obtained. For in vivo experiments, we got the blood sugar level distributions in Clarke error grid that is a reference for doctors to do diagnosis and treatment. In the Clarke error grid, 75% of all data was in area A and 25 % was in area B. From the in vitro and in vivo results we know that multiple laser diodes are suitable for non-invasive blood glucose monitoring.

  11. Development of visible diode-laser/fiber-optic colorimetric system for the simple and inexpensive quantification of a protein

    NASA Astrophysics Data System (ADS)

    Kim, SungHo; Noh, Young S.; Byun, Gill S.; Jang, Sung-Keun

    1998-04-01

    A simple and inexpensive quantitative detection of protein in one droplet solution was achieved by a portable diode-laser- based-optical-fiber absorption spectrometry. A system consisted of a visible diode laser, a photodiode and a pair of optical fibers. The conventional Lowry method was used to measure the blue-colored protein solutions. In this study, one droplet of sample, which filled up the void between the end surfaces of two optical fibers, served as a sample cell. The volume of a droplet was 50 (mu) L, which is 1/100 of the cuvette of UV/VIS spectrometer cell used in Lowry method. Although the required sample volume decreased up to 100 times, the detection range was comparable to that of conventional Lowry method in the range of g/L - mg/L.

  12. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    NASA Astrophysics Data System (ADS)

    Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej

    2017-04-01

    We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He–Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.

  13. Intensity Scaling for Diode Pumped Alkali Lasers

    DTIC Science & Technology

    2012-01-01

    unphased diode lasers is absorbed in the near IR by atomic potassium, rubidium , or cesium. The gain cell for a DPAL system using a heat pipe design is...demonstrated linear scaling of a rubidium laser to 32 times threshold.3 In our present work, we explore scaling to pump in- tensities of >100kW/cm2. The...of output power. Each alkali atom in the laser medium may be required to cycle as many as 1010 pump photons per second. We demonstrated a rubidium

  14. Investigations on the potential of a novel diode pumped Er:YAG laser system for dental applications

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Hausladen, Florian; Hibst, Raimund

    2012-01-01

    The successful clinical application of the Er:YAG-laser in dentistry is well known, documented by numerous published studies. These lasers are flash lamp pumped systems and emit pulses of typically some 100 μs duration with energies of up to 1 J. Pulse repetition rates can reach up to 100Hz, and mean powers are up to about 8W. As an alternative to these laser systems recently a novel diode pumped Er:YAG laser system (Pantec Engineering AG) became available. This laser can provide a pulse repetition rate up to 2kHz and a mean laser power up to 15W. The aim of the presented study is to investigate the effect of this laser system on dental hard and soft tissue at various irradiation parameters, particular at repetition rates more than 100 Hz. At first an appropriate experimental set-up was realized with a beam delivery and focusing unit, a computer controlled stepper unit with sample holder, and a shutter unit. The stepper unit allows to move the samples (dentin or enamel slides of extracted human teeth, chicken breast, pig bone) with a defined velocity during irradiation by various laser parameters. For rinsing the sample surface a water spray was also included. The laser produced grooves and cuts were analyzed by light microscopy and laser scanning microscopy regarding to the ablation quality, geometry, ablation efficacy, and thermal effects. The grooves in dentin and enamel show a rough surface, typical for Er:YAG laser ablation. The craters are slightly cone shaped with sharp edges on the surface. Water cooling is essential to prevent thermal injury. The ablation efficacy in dentin is comparable to literature values of the flash lamp pumped Er:YAG laser. The cutting of bone and soft tissue is excellent and appears superior to earlier results obtained with flash lamp pumped system. As a further advantage, the broad range of repetition rates allows to widely vary the thermal side effects. In conclusion, these first experiments with a diode pumped Er:YAG laser

  15. Fixed-wavelength H2O absorption spectroscopy system enhanced by an on-board external-cavity diode laser

    NASA Astrophysics Data System (ADS)

    Brittelle, Mack S.; Simms, Jean M.; Sanders, Scott T.; Gord, James R.; Roy, Sukesh

    2016-03-01

    We describe a system designed to perform fixed-wavelength absorption spectroscopy of H2O vapor in practical combustion devices. The system includes seven wavelength-stabilized distributed feedback (WSDFB) lasers, each with a spectral accuracy of  ±1 MHz. An on-board external cavity diode laser (ECDL) that tunes 1320-1365 nm extends the capabilities of the system. Five system operation modes are described. In one mode, a sweep of the ECDL is used to monitor each WSDFB laser wavelength with an accuracy of  ±30 MHz. Demonstrations of fixed-wavelength thermometry at 10 kHz bandwidth in near-room-temperature gases are presented; one test reveals a temperature measurement error of ~0.43%.

  16. Diode pumped tunable dye laser

    NASA Astrophysics Data System (ADS)

    Burdukova, O.; Gorbunkov, M.; Petukhov, V.; Semenov, M.

    2017-03-01

    A wavelength-tunable dye laser pumped by blue laser diodes (λ =445 nm) in a 200 ns pulsed mode has been developed. We used a 3-mirror cavity with transverse excitation and total internal reflection of laser beam in the active element. Tuning curves for 8 dyes in benzyl alcohol were measured in the range of 506-700 nm. Four dyes have their tuning range more than 60 nm, which is comparable to the tuning ranges of other dye lasers pumped by more expensive sources. The output energy obtained at the generation maximum of both DCM and coumarin 540A dyes was approximately 130 nJ while the pump energy was 2400 nJ.

  17. Self-Injection Locking Of Diode Lasers

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1991-01-01

    Simple optical coupling scheme locks array of gain-guided diode lasers into oscillation in single mode and with single-lobed output beam. Selective feedback from thin etalon self-injection-locks array into desired mode. One application of new scheme for pumping of neodymium: yttrium aluminum garnet lasers with diode-laser arrays.

  18. Diode Pumped Fiber Laser.

    DTIC Science & Technology

    1984-12-01

    72 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2. Mechanical Q-Switching ..................... 72 3...nonuniform heating of the molten zone due to the manner in which the laser beams are inc ident upon the source rod, and (3) mechanical vibrations in the motor...were attached to a solid block of aluminum for better mechanical stability. Curved mirrors (R = 10 cm) were obtained from an outside manufacturer for

  19. Diode Pumped Fiber Laser.

    DTIC Science & Technology

    1987-08-01

    mounting fixture beeame soft and gradually come out of the fixture. S)me chemical reaction was takin- place between the epoxy and the dye solvent , which...loose. The solvent apparenlly did no)t affect the bonding agent used to attach the fibers inside the capillarie,. \\lthmigh individual capillarv tubes...pure solvent . was added to the cavity laser oscillation ceased, and was onlv re, ,t()red after readjuisting the orientation of the output coupler, as

  20. Prototype laser-diode-pumped solid state laser transmitters

    NASA Technical Reports Server (NTRS)

    Kane, Thomas J.; Cheng, Emily A. P.; Wallace, Richard W.

    1989-01-01

    Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique.

  1. Effects of radiation on laser diodes.

    SciTech Connect

    Phifer, Carol Celeste

    2004-09-01

    The effects of ionizing and neutron radiation on the characteristics and performance of laser diodes are reviewed, and the formation mechanisms for nonradiative recombination centers, the primary type of radiation damage in laser diodes, are discussed. Additional topics include the detrimental effects of aluminum in the active (lasing) volume, the transient effects of high-dose-rate pulses of ionizing radiation, and a summary of ways to improve the radiation hardness of laser diodes. Radiation effects on laser diodes emitting in the wavelength region around 808 nm are emphasized.

  2. Advances in high power semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  3. Excess noise in tunable diode lasers

    NASA Technical Reports Server (NTRS)

    Rowland, C. W.

    1981-01-01

    The method and the apparatus for identifying excess-noise regions in tunable diode lasers are described. These diode lasers exhibit regions of excess noise as their wavelength is tuned. If a tunable diode laser is to be used as a local oscillator in a superheterodyne optical receiver, these excess-noise regions severely degrade the performance of the receiver. Measurement results for several tunable diode lasers are given. These results indicate that excess noise is not necessarily associated with a particular wavelength, and that it is possible to select temperature and injection current such that the most ideal performance is achieved.

  4. Industrial applications of high power diode lasers in materials processing

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich

    2003-03-01

    Diode lasers are widely used in communication, computer and consumer electronics technology. These applications are based on systems, which provide power in the milliwatt range. However, in the mean time high power diode lasers have reached the kilowatt power range. This became possible by special cooling and mounting as well as beam combination and beam forming technologies. Such units are nowadays used as a direct source for materials processing. High power diode lasers have entered the industrial manufacturing area [Proceedings of the Advanced Laser Technologies Conference 2001, Proc. SPIE, Constanta, Romania, 11-14 September 2001].

  5. Composite photopolymerization with diode laser.

    PubMed

    Knezevic, Alena; Ristic, Mira; Demoli, Nazif; Tarle, Zrinka; Music, Svetozar; Negovetic Mandic, Visnja

    2007-01-01

    Under clinical conditions, the time needed for the proper light curing of luting composites or the multi-incremental buildup of a large restoration with halogen curing units is quite extensive. Due to the development of high power curing devices, such as argon lasers and plasma arc lights and, in order to decrease curing time, halogen and LED devices have developed a high intensity polymerization mode. This study compared the degree of conversion using Fourier Transform Infrared Spectroscopy (FT-IR) of two composite materials: Tetric Ceram and Tetric EvoCeram polymerized with three polymerization modes (high, low and soft mode) of a Bluephase 16i LED curing unit and blue diode laser intensity of 50 mW on the output of the laser beam and 35 mW/cm2 on the resin composite sample. Descriptive statistic, t-test, ANOVA, Pearson Correlation and Tukey Post hoc tests were used for statistical analyses. The results show a higher degree of conversion for the polymerization of composite samples with all photopolymerization modes of the LED curing unit. However, there is no significant difference in the degree of conversion between the LED unit and 50-second polymerization with the blue diode laser. Tetric EvoCeram shows a lower degree of conversion regardless of the polymerization mode (or light source) used.

  6. High-speed pre-clinical brain imaging using pulsed laser diode based photoacoustic tomography (PLD-PAT) system

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2016-03-01

    Photoacoustic tomography (PAT) is a promising biomedical imaging modality for small animal imaging, breast cancer imaging, monitoring of vascularisation, tumor angiogenesis, blood oxygenation, total haemoglobin concentration etc. The existing PAT systems that uses Q-switched Nd:YAG and OPO nanosecond lasers have limitations in clinical applications because they are expensive, non-potable and not suitable for real-time imaging due to their low pulse repetition rate. Low-energy pulsed near-infrared diode laser which are low-cost, compact, and light-weight (<200 grams), can be used as an alternate. In this work, we present a photoacoustic tomography system with a pulsed laser diode (PLD) that can nanosecond pulses with pulse energy 1.3 mJ/pulse at ~803 nm wavelength and 7000 Hz repetition rate. The PLD is integrated inside a single-detector circular scanning geometric system. To verify the high speed imaging capabilities of the PLD-PAT system, we performed in vivo experimental results on small animal brain imaging using this system. The proposed system is portable, low-cost and can provide real-time imaging.

  7. Diode laser potential in laser cleaning of stones

    NASA Astrophysics Data System (ADS)

    Salimbeni, Renzo; Pini, Roberto; Siano, Salvatore; Bachmann, Friedrich G.; Meyer, Frank

    2001-10-01

    In this work we investigated for the first time the laser cleaning process of encrusted stones by employing a high power diode laser system. The test have been carried out using a Rofin-Sinar mod. DL025S emitting up to 2.5 kW CW power to clean various samples representing natural encrustation by pollution exposition and graffiti, typically encountered on historical monuments and buildings in urban environment.

  8. Digital control of diode laser for atmospheric spectroscopy

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Rutledge, C. W. (Inventor)

    1985-01-01

    A system is described for remote absorption spectroscopy of trace species using a diode laser tunable over a useful spectral region of 50 to 200 cm(-1) by control of diode laser temperature over range from 15 K to 100 K, and tunable over a smaller region of typically 0.1 to 10 cm(-1) by control of the diode laser current over a range from 0 to 2 amps. Diode laser temperature and current set points are transmitted to the instrument in digital form and stored in memory for retrieval under control of a microprocessor during measurements. The laser diode current is determined by a digital to analog converter through a field effect transistor for a high degree of ambient temperature stability, while the laser diode temperature is determined by set points entered into a digital to analog converter under control of the microprocessor. Temperature of the laser diode is sensed by a sensor diode to provide negative feedback to the temperature control circuit that responds to the temperature control digital to analog converter.

  9. Long-path monitoring of atmospheric carbon monoxide with a tunable diode laser system.

    PubMed

    Ku, R T; Hinkley, E D; Sample, J O

    1975-04-01

    Long-path measurements of carbon monoxide in the atmosphere are described. The technique of resonance absorption was used in which the wavelength of radiation from a PbS(0.82)MbSe(0.18) semiconductor diode laser was tuned into coincidence with an absorption line of CO in its fundamental band around 4.7 microm. By employing rapid frequency modulation of the laser emission to overcome atmospheric turbulence effects, it was possible to achieve a minimum detectable concentration of 5 parts per billion over a 0.61-km path. Continuous around-the-clock monitoring was also performed and permitted increases in the ambient CO level due to commuter traffic to be observed.

  10. Laser welding of polymers using high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich G.; Russek, Ulrich A.

    2002-06-01

    Laser welding of polymers using high power diode lasers offers specific process advantages over conventional technologies, such as short process times while providing optically and qualitatively valuable weld seams, contactless yielding of the joining energy, absence of process induced vibrations, imposing minimal thermal stress and avoiding particle generation. Furthermore, this method exhibits high integration capabilities and automatization potential. Moreover, because of the current favorable cost development within the high power diode laser market laser welding of polymers has become more and more an industrially accepted joining method. This novel technology permits both, reliable high quality joining of mechanically and electronically highly sensitive micro components and hermetic sealing of macro components. There are different welding strategies available, which are adaptable to the current application. Within the frame of this discourse scientific and also application oriented result concerning laser transmission welding of polymers using preferably diode lasers are presented. Besides the sue laser system the fundamental process strategies as well as decisive process parameters are illustrated. The importance of optical, thermal and mechanical properties is discussed. Applications at real technical components will be presented, demonstrating the industrial implementation capability and the advantages of a novel technology.

  11. Laser welding of polymers using high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich G.; Russek, Ulrich A.

    2003-09-01

    Laser welding of polymers using high power diode lasers offers specific process advantages over conventional technologies, such as short process times while providing optically and qualitatively valuable weld seams, contactless yielding of the joining energy, absence of process induced vibrations, imposing minimal thermal stress and avoiding particle generation. Furthermore this method exhibits high integration capabilities and automatization potential. Moreover, because of the current favorable cost development within the high power diode laser market laser welding of polymers has become more and more an industrially accepted joining method. This novel technology permits both, reliable high quality joining of mechanically and electronically highly sensitive micro components and hermetic sealing of macro components. There are different welding strategies available, which are adaptable to the current application. Within the frame of this discourse scientific and also application oriented results concerning laser transmission welding of polymers using preferably diode lasers are presented. Besides the used laser systems the fundamental process strategies as well as decisive process parameters are illustrated. The importance of optical, thermal and mechanical properties is discussed. Applications at real technical components will be presented, demonstrating the industrial implementation capability and the advantages of a novel technology.

  12. Laser diode array pumped continuous wave Rubidium vapor laser.

    PubMed

    Zhdanov, B V; Stooke, A; Boyadjian, G; Voci, A; Knize, R J

    2008-01-21

    We have demonstrated continuous wave operation of a laser diode array pumped Rb laser with an output power of 8 Watts. A slope efficiency of 60% and a total optical efficiency of 45% were obtained with a pump power of 18 Watts. This laser can be scaled to higher powers by using multiple laser diode arrays or stacks of arrays.

  13. Laser diode package with enhanced cooling

    DOEpatents

    Deri, Robert J.; Kotovsky, Jack; Spadaccini, Christopher M.

    2011-09-13

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  14. Laser diode package with enhanced cooling

    SciTech Connect

    Deri, Robert J; Kotovsky, Jack; Spadaccini, Christopher M

    2012-06-12

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  15. Laser diode package with enhanced cooling

    SciTech Connect

    Deri, Robert J; Kotovsky, Jack; Spadaccini, Christopher M

    2012-06-26

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  16. Hermetic diode laser transmitter module

    NASA Astrophysics Data System (ADS)

    Ollila, Jyrki; Kautio, Kari; Vahakangas, Jouko; Hannula, Tapio; Kopola, Harri K.; Oikarinen, Jorma; Sivonen, Matti

    1999-04-01

    In very demanding optoelectronic sensor applications it is necessary to encapsulate semiconductor components hermetically in metal housings to ensure reliable operation of the sensor. In this paper we report on the development work to package a laser diode transmitter module for a time- off-light distance sensor application. The module consists of a lens, laser diode, electronic circuit and optomechanics. Specifications include high acceleration, -40....+75 degree(s)C temperature range, very low gas leakage and mass-production capability. We have applied solder glasses for sealing optical lenses and electrical leads hermetically into a metal case. The lens-metal case sealing has been made by using a special soldering glass preform preserving the optical quality of the lens. The metal housings are finally sealed in an inert atmosphere by welding. The assembly concept to retain excellent optical power and tight optical axis alignment specifications is described. The reliability of the laser modules manufactured has been extensively tested using different aging and environmental test procedures. Sealed packages achieve MIL- 883 standard requirements for gas leakage.

  17. Diode Lasers and Practical Trace Analysis.

    ERIC Educational Resources Information Center

    Imasaka, Totaro; Nobuhiko, Ishibashi

    1990-01-01

    Applications of lasers to molecular absorption spectrometry, molecular fluorescence spectrometry, visible semiconductor fluorometry, atomic absorption spectrometry, and atomic fluorescence spectrometry are discussed. Details of the use of the frequency-doubled diode laser are provided. (CW)

  18. A near-infrared methane detection system using a 1.654 μm wavelength-modulated diode laser

    NASA Astrophysics Data System (ADS)

    Fu, Yang; Liu, Hui-fang; Sui, Yue; Li, Bin; Ye, Wei-lin; Zheng, Chuan-tao; Wang, Yi-ding

    2016-03-01

    By adopting a distributed feedback laser (DFBL) centered at 1.654 μm, a near-infrared (NIR) methane (CH4) detection system based on tunable diode laser absorption spectroscopy (TDLAS) is experimentally demonstrated. A laser temperature control as well as wavelength modulation module is developed to control the laser's operation temperature. The laser's temperature fluctuation can be limited within the range of -0.02—0.02 °C, and the laser's emitting wavelength varies linearly with the temperature and injection current. An open reflective gas sensing probe is realized to double the absorption optical path length from 0.2 m to 0.4 m. Within the detection range of 0—0.01, gas detection experiments were conducted to derive the relation between harmonic amplitude and gas concentration. Based on the Allan deviation at an integral time of 1 s, the limit of detection ( LoD) is decided to be 2.952×10-5 with a path length of 0.4 m, indicating a minimum detectable column density of ~1.2×10-5 m. Compared with our previously reported NIR CH4 detection system, this system exhibits some improvement in both optical and electrical structures, including the analogue temperature controller with less software consumption, simple and reliable open reflective sensing probe.

  19. Optical communication with semiconductor laser diode

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic; Sun, X.

    1989-01-01

    This interim report describes the progress in the construction of a 220 Mbps Q=4 PPM optical communication system that uses a semiconductor laser as the optical transmitter and an avalanche photodiode (APD) as the photodetector. The transmitter electronics have been completed and contain both GaAs and ECL III IC's. The circuit was able to operate at a source binary data rate from 75 Mbps to 290 Mbps with pulse rise and fall times of 400 ps. The pulse shapes of the laser diode and the response from the APD/preamplifier module were also measured.

  20. Diode Laser Ear Piercing: A Novel Technique.

    PubMed

    Suseela, Bibilash Babu; Babu, Preethitha; Chittoria, Ravi Kumar; Mohapatra, Devi Prasad

    2016-01-01

    Earlobe piercing is a common office room procedure done by a plastic surgeon. Various methods of ear piercing have been described. In this article, we describe a novel method of laser ear piercing using the diode laser. An 18-year-old female patient underwent an ear piercing using a diode laser with a power of 2.0 W in continuous mode after topical local anaesthetic and pre-cooling. The diode laser was fast, safe, easy to use and highly effective way of ear piercing. The advantages we noticed while using the diode laser over conventional methods were more precision, minimal trauma with less chances of hypertrophy and keloids, no bleeding with coagulation effect of laser, less time taken compared to conventional method and less chance of infection due to thermal heat effect of laser.

  1. Diode Laser Ear Piercing: A Novel Technique

    PubMed Central

    Suseela, Bibilash Babu; Babu, Preethitha; Chittoria, Ravi Kumar; Mohapatra, Devi Prasad

    2016-01-01

    Earlobe piercing is a common office room procedure done by a plastic surgeon. Various methods of ear piercing have been described. In this article, we describe a novel method of laser ear piercing using the diode laser. An 18-year-old female patient underwent an ear piercing using a diode laser with a power of 2.0 W in continuous mode after topical local anaesthetic and pre-cooling. The diode laser was fast, safe, easy to use and highly effective way of ear piercing. The advantages we noticed while using the diode laser over conventional methods were more precision, minimal trauma with less chances of hypertrophy and keloids, no bleeding with coagulation effect of laser, less time taken compared to conventional method and less chance of infection due to thermal heat effect of laser. PMID:28163460

  2. Compact, robust, and spectrally pure diode-laser system with a filtered output and a tunable copy for absolute referencing

    NASA Astrophysics Data System (ADS)

    Kirilov, E.; Mark, M. J.; Segl, M.; Nägerl, H.-C.

    2015-05-01

    We report on a design of a compact laser system composed of an extended-cavity diode laser with high passive stability and a pre-filter Fabry-Perot cavity. The laser is frequency-stabilized relative to the cavity using a serrodyne technique with a correction bandwidth of ≥6 MHz and a dynamic range of ≥700 MHz. The free-running laser system has a power spectral density (PSD) ≤100 Hz2/Hz centered mainly in the acoustic frequency range. A highly tunable, 0.5-1.3 GHz copy of the spectrally pure output beam is provided, which can be used for further stabilization of the laser system to an ultra-stable reference. We demonstrate a simple one-channel lock to such a reference that brings down the PSD to the sub-Hz level. The tuning, frequency stabilization, and sideband imprinting are achieved by a minimum number of key elements comprising a fibered electro-optic modulator, acousto-optic modulator, and a nonlinear transmission line. The system is easy to operate, scalable, and highly applicable to atomic/molecular experiments demanding high spectral purity, long-term stability, and robustness.

  3. Smart medical diode lasers: fantasy becoming reality

    NASA Astrophysics Data System (ADS)

    Soltz, Barbara A.

    1995-05-01

    Design principles and rules are currently being formulated for building intelligent machines for `factories of the future'. The intelligent machine is one which has control functions that resemble the `brain', `eyes' and other anthropomorphic substitutes for the skilled expert. These skills are related to the expert's knowledge and abilities to plan complex actions and to detect errors with a continual upgrade of machine understanding. A craft related language enables a high level of communication between the system and the operator. These same capabilities can be embodied in a medical laser system. This paper will define the key characteristics of a smart medical laser and will describe the advantages of an intelligent system based on diode laser technology. System control functions and software architecture will be explained and the main subsystems highlighted.

  4. Diode lasers: From laboratory to industry

    NASA Astrophysics Data System (ADS)

    Nasim, Hira; Jamil, Yasir

    2014-03-01

    The invention of first laser in 1960 triggered the discovery of several new families of lasers. A rich interplay of different lasing materials resulted in a far better understanding of the phenomena particularly linked with atomic and molecular spectroscopy. Diode lasers have gone through tremendous developments on the forefront of applied physics that have shown novel ways to the researchers. Some interesting attributes of the diode lasers like cost effectiveness, miniature size, high reliability and relative simplicity of use make them good candidates for utilization in various practical applications. Diode lasers are being used by a variety of professionals and in several spectroscopic techniques covering many areas of pure and applied sciences. Diode lasers have revolutionized many fields like optical communication industry, medical science, trace gas monitoring, studies related to biology, analytical chemistry including elemental analysis, war fare studies etc. In this paper the diode laser based technologies and measurement techniques ranging from laboratory research to automated field and industry have been reviewed. The application specific developments of diode lasers and various methods of their utilization particularly during the last decade are discussed comprehensively. A detailed snapshot of the current state of the art diode laser applications is given along with a detailed discussion on the upcoming challenges.

  5. Modular package for cooling a laser diode array

    DOEpatents

    Mundinger, David C.; Benett, William J.; Beach, Raymond J.

    1992-01-01

    A laser diode array is disclosed that includes a plurality of planar packages and active cooling. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar package having the laser diode bar located proximate to one edge. In an array, a number of such thin planar packages are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink that is attached proximate to the laser bar so that it absorbs heat generated by laser operation. To provide the coolant to the microchannels, each thin planar package comprises a thin inlet manifold and a thin outlet manifold connected to an inlet corridor and an outlet corridor. The inlet corridor comprises a hole extending through each of the packages in the array, and the outlet corridor comprises a hole extending through each of the packages in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has application as an optical pump for high power solid state lasers. Further, it can be incorporated in equipment such as communications devices and active sensors, and in military and space applications, and it can be useful in applications having space constraints and energy limitations.

  6. Comparison of Antibacterial Effects of 810 and 980- nanometer Diode Lasers on Enterococcus Faecalis in the Root Canal System -An in vitro study.

    PubMed

    Asnaashari, Mohamad; Ebad, Leila Tahmasebi; Shojaeian, Shiva

    2016-10-01

    Background and aim: Use of laser technology in endodontics has greatly increased in the recent years due to the introduction of new wavelengths and methods and optimal antimicrobial and smear layer removal properties of lasers. This in vitro study aimed to compare the antibacterial effects of diode lasers of 810 nm and 980 nm wavelength on Enterococcus faecalis (E. faecalis) biofilm in the root canal system. Materials and methods: Fifty single-canal human anterior teeth were cleaned, shaped, sterilized and randomly divided into four groups namely two experimental, one positive and one negative control group. The experimental and positive control groups were inoculated with E. faecalis and incubated for two weeks. The experimental group one (n=20) received 810 nm diode laser irradiation (1.5W) while the experimental group two (n=20) was subjected to 980 nm diode laser irradiation (1.5W). The E. faecalis colony forming units (CFUs) were counted in each root canal before and after laser irradiation. Results: Laser irradiation significantly decreased the bacterial colony count in both experimental groups. The reduction in microbial count was significantly greater in 810 nm laser group compared to 980 nm laser group. Conclusion: Irradiation of both 810 and 980 nm lasers significantly decreased the E. faecalis count in the root canal system; 810 nm laser was more effective in decreasing the intracanal microbial load.

  7. Comparison of Antibacterial Effects of 810 and 980- nanometer Diode Lasers on Enterococcus Faecalis in the Root Canal System —An in vitro study

    PubMed Central

    Asnaashari, Mohamad; Ebad, Leila Tahmasebi

    2016-01-01

    Background and aim: Use of laser technology in endodontics has greatly increased in the recent years due to the introduction of new wavelengths and methods and optimal antimicrobial and smear layer removal properties of lasers. This in vitro study aimed to compare the antibacterial effects of diode lasers of 810 nm and 980 nm wavelength on Enterococcus faecalis (E. faecalis) biofilm in the root canal system. Materials and methods: Fifty single-canal human anterior teeth were cleaned, shaped, sterilized and randomly divided into four groups namely two experimental, one positive and one negative control group. The experimental and positive control groups were inoculated with E. faecalis and incubated for two weeks. The experimental group one (n=20) received 810 nm diode laser irradiation (1.5W) while the experimental group two (n=20) was subjected to 980 nm diode laser irradiation (1.5W). The E. faecalis colony forming units (CFUs) were counted in each root canal before and after laser irradiation. Results: Laser irradiation significantly decreased the bacterial colony count in both experimental groups. The reduction in microbial count was significantly greater in 810 nm laser group compared to 980 nm laser group. Conclusion: Irradiation of both 810 and 980 nm lasers significantly decreased the E. faecalis count in the root canal system; 810 nm laser was more effective in decreasing the intracanal microbial load. PMID:27853346

  8. Multiple-Diode-Laser Gas-Detection Spectrometer

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; Beer, Reinhard; Sander, Stanley P.

    1988-01-01

    Small concentrations of selected gases measured automatically. Proposed multiple-laser-diode spectrometer part of system for measuring automatically concentrations of selected gases at part-per-billion level. Array of laser/photodetector pairs measure infrared absorption spectrum of atmosphere along probing laser beams. Adaptable to terrestrial uses as monitoring pollution or control of industrial processes.

  9. Phase shifting and phase retrieval with a fully automated laser diode system.

    PubMed

    Rivera-Ortega, Uriel; Dirckx, Joris; Meneses-Fabian, Cruz

    2015-11-20

    A low-cost and fully automated process for phase-shifting interferometry (PSI) by continuously changing the input voltage of a laser diode (LD) under the scheme of an unbalanced Twyman-Green interferometer (TGI) setup is presented. The input signal of a LD is controlled by a data acquisition (NI-DAQ) device that allows it to change its wavelength according to its tunability features. The automation and data analysis will be done using LabVIEW in combination with MATLAB. The phase map is obtained using the Carré algorithm. Measurements of visibility and phase shift to verify the PSI requirements are shown. It is demonstrated with experimental results and statistical analysis that the phase retrieval can be successfully achieved without calibration and using minimal optical devices.

  10. Frequency stabilization of diode-laser-pumped solid state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.

  11. Improved Thermoelectrically Cooled Laser-Diode Assemblies

    NASA Technical Reports Server (NTRS)

    Glesne, Thomas R.; Schwemmer, Geary K.; Famiglietti, Joe

    1994-01-01

    Cooling decreases wavelength and increases efficiency and lifetime. Two improved thermoelectrically cooled laser-diode assemblies incorporate commercial laser diodes providing combination of both high wavelength stability and broad wavelength tuning which are broadly tunable, highly stable devices for injection seeding of pulsed, high-power tunable alexandrite lasers used in lidar remote sensing of water vapor at wavelengths in vicinity of 727 nanometers. Provide temperature control needed to take advantage of tunability of commercial AlGaAs laser diodes in present injection-seeding application.

  12. Scaling brilliance of high power laser diodes

    NASA Astrophysics Data System (ADS)

    König, Harald; Grönninger, Guenther; Lauer, Christian; Reill, Wolfgang; Arzberger, Markus; Strauß, Uwe; Kissel, Heiko; Biesenbach, Jens; Kösters, Arnd; Malchus, Joerg; Krause, Volker K.

    2010-02-01

    New direct diode laser systems and fiber lasers require brilliant fiber coupled laser diodes for efficient operation. In the German funded project HEMILAS different laser bar designs are investigated with tailored beam parameter products adapted for efficient fiber coupling. In this paper we demonstrate results on 9xx and 1020nm bars suitable for coupling into 200μm fibers. With special facet technology and optimised epitaxial structure COD-free laser bars were fabricated with maximum efficiency above 66%. For short bars consisting of five 100μm wide emitters 75W CW maximum output power was reached. In QCW-mode up to 140W are demonstrated. The 10% fill factor bars with 4mm cavity are mounted with hard solder. Lifetime tests in long pulse mode with 35W output power exceed 5000 hours of testing without degradation or spontaneous failures. Slow axis divergence stays below 7° up to power levels of 40W and is suitable for simple fiber coupling into 200μm NA 0.22 fibers with SAC and FAC lenses. For fiber coupling based on beam rearrangement with step mirrors, bars with higher fill factor of 50% were fabricated and tested. The 4mm cavity short bars reach efficiencies above 60%. Lifetime tests at accelerated powers were performed. Finally fiber coupling results with output powers of up to 2.4 kW and beam quality of 30 mm mrad are demonstrated.

  13. Transversely diode-pumped alkali metal vapour laser

    SciTech Connect

    Parkhomenko, A I; Shalagin, A M

    2015-09-30

    We have studied theoretically the operation of a transversely diode-pumped alkali metal vapour laser. For the case of high-intensity laser radiation, we have obtained an analytical solution to a complex system of differential equations describing the laser. This solution allows one to exhaustively determine all the energy characteristics of the laser and to find optimal parameters of the working medium and pump radiation (temperature, buffer gas pressure, and intensity and width of the pump spectrum). (lasers)

  14. Flight demonstration of laser diode initiated ordnance

    NASA Technical Reports Server (NTRS)

    Boucher, Craig J.; Schulze, Norman R.

    1995-01-01

    A program has been initiated by NASA Headquarters to validate laser initiated ordnance in flight applications. The primary program goal is to bring together a team of government and industry members to develop a laser initiated ordnance system having the test and analysis pedigree to be flown on launch vehicles. The culmination of this effort was a flight of the Pegasus launch vehicle which had two fin rockets initiated by this laser system. In addition, a laser initiated ordnance squib was fired into a pressure bomb during thrusting flight. The complete ordnance system comprising a laser diode firing unit, fiber optic cable assembly, laser initiated detonator, and laser initiated squib was designed and built by The Ensign Bickford Company. The hardware was tested to the requirements of the Pegasus launch vehicle and integrated into the vehicle by The Ensign Bickford Company and the Orbital Sciences Corporation. Discussions include initial program concept, contract implementation, team member responsibilities, analysis results, vehicle integration, safing architecture, ordnance interfaces, mission timeline and telemetry data. A complete system description, summary of the analyses, the qualification test results, and the results of flight are included.

  15. Diode-pumped laser altimeter

    NASA Technical Reports Server (NTRS)

    Welford, D.; Isyanova, Y.

    1993-01-01

    TEM(sub 00)-mode output energies up to 22.5 mJ with 23 percent slope efficiencies were generated at 1.064 microns in a diode-laser pumped Nd:YAG laser using a transverse-pumping geometry. 1.32-micron performance was equally impressive at 10.2 mJ output energy with 15 percent slope efficiency. The same pumping geometry was successfully carried forward to several complex Q-switched laser resonator designs with no noticeable degradation of beam quality. Output beam profiles were consistently shown to have greater than 90 percent correlation with the ideal TEM(sub 00)-order Gaussian profile. A comparison study on pulse-reflection-mode (PRM), pulse-transmission-mode (PTM), and passive Q-switching techniques was undertaken. The PRM Q-switched laser generated 8.3 mJ pulses with durations as short as 10 ns. The PTM Q-switch laser generated 5 mJ pulses with durations as short as 5 ns. The passively Q-switched laser generated 5 mJ pulses with durations as short as 2.4 ns. Frequency doubling of both 1.064 microns and 1.32 microns with conversion efficiencies of 56 percent in lithium triborate and 10 percent in rubidium titanyl arsenate, respectively, was shown. Sum-frequency generation of the 1.064 microns and 1.32 microns radiations was demonstrated in KTP to generate 1.1 mJ of 0.589 micron output with 11.5 percent conversion efficiency.

  16. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  17. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  18. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  19. A compact high brilliance diode laser

    NASA Astrophysics Data System (ADS)

    Bammer, F.; Holzinger, B.

    2006-02-01

    We explain some technical details regarding time-multiplexing of laser diodes, a method to improve the beam quality of diode lasers, which is still insufficient for many applications. Several pulsed laser diode beams are guided onto a common optical path to superpose the power of the laser diodes while maintaining the beam parameter product of a single laser diode. Pulsed operation of continuous wave laser diodes with average power equal to the specified cw-power of 4 W was tested for 150 hours without failure. We use a fast digital optical multiplexer built up by a cascade of binary optical switches. For the latter we use a Pockel's cell followed by a polarization filter, which allows addressing of two optical paths. Instead of direct on/off-switching we drive the crystals with a harmonic voltage course to avoid ringing caused by piezo-electricity. Up to now an optical power of 10.5 W was generated, 13 W are expected with some improvements. Furthermore we discuss the use of new 8 W laser diodes and the involved implications on driver technology.

  20. Underwater Chaotic Lidar using Blue Laser Diodes

    NASA Astrophysics Data System (ADS)

    Rumbaugh, Luke K.

    The thesis proposes and explores an underwater lidar system architecture based on chaotic modulation of recently introduced, commercially available, low cost blue laser diodes. This approach is experimentally shown to allow accurate underwater impulse response measurements while eliminating the need for several major components typically found in high-performance underwater lidar systems. The proposed approach is to: 1. Generate wideband, noise-like intensity modulation signals using optical chaotic modulation of blue-green laser diodes, and then 2. Use this signal source to develop an underwater chaotic lidar system that uses no electrical signal generator, no electro-optic modulator, no optical frequency doubler, and no large-aperture photodetector. The outcome of this thesis is the demonstration of a new underwater lidar system architecture that could allow high resolution ranging, imaging, and water profiling measurements in turbid water, at a reduced size, weight, power and cost relative to state-of-the-art high-performance underwater lidar sensors. This work also makes contributions to the state of the art in optics, nonlinear dynamics, and underwater sensing by demonstrating for the first time: 1. Wideband noise-like intensity modulation of a blue laser diode using no electrical signal generator or electro-optic modulator. Optical chaotic modulation of a 462 nm blue InGaN laser diode by self-feedback is explored for the first time. The usefulness of the signal to chaotic lidar is evaluated in terms of bandwidth, modulation depth, and autocorrelation peak-to-sidelobe-ratio (PSLR) using both computer and laboratory experiments. In laboratory experiments, the optical feedback technique is shown to be effective in generating wideband, noise-like chaotic signals with strong modulation depth when the diode is operated in an external-cavity dominated state. The modulation signal strength is shown to be limited by the onset of lasing within the diode's internal

  1. Laser diodes for sensing applications: adaptive cruise control and more

    NASA Astrophysics Data System (ADS)

    Heerlein, Joerg; Morgott, Stefan; Ferstl, Christian

    2005-02-01

    Adaptive Cruise Controls (ACC) and pre-crash sensors require an intelligent eye which can recognize traffic situations and deliver a 3-dimensional view. Both microwave RADAR and "Light RADAR" (LIDAR) systems are well suited as sensors. In order to utilize the advantages of LIDARs -- such as lower cost, simpler assembly and high reliability -- the key component, the laser diode, is of primary importance. Here, we present laser diodes which meet the requirements of the automotive industry.

  2. Applications of microlens-conditioned laser diode arrays

    SciTech Connect

    Beach, R.J.; Emanuel, M.A.; Freitas, B.L.

    1995-01-01

    The ability to condition the radiance of laser diodes using shaped-fiber cylindrical-microlens technology has dramatically increased the number of applications that can be practically engaged by diode laser arrays. Lawrence Livermore National Laboratory (LLNL) has actively pursued optical efficiency and engineering improvements in this technology in an effort to supply large radiance-conditioned laser diode array sources for its own internal programs. This effort has centered on the development of a modular integrated laser diode packaging technology with the goal of enabling the simple and flexible construction of high average power, high density, two-dimensional arrays with integrated cylindrical microlenses. Within LLNL, the principal applications of microlens-conditioned laser diode arrays are as high intensity pump sources for diode pumped solid state lasers (DPSSLs). A simple end-pumping architecture has been developed and demonstrated that allows the radiation from microlens-conditioned, two-dimensional diode array apertures to be efficiently delivered to the end of rod lasers. To date, pump powers as high as 2.5 kW have been delivered to 3 mm diameter laser rods. Such high power levels are critical for pumping solid state lasers in which the terminal laser level is a Stark level lying in the ground state manifold. Previously, such systems have often required operation of the solid state gain medium at low temperature to freeze out the terminal laser Stark level population. The authors recently developed high intensity pump sources overcome this difficulty by effectively pumping to much higher inversion levels, allowing efficient operation at or near room temperature. Because the end-pumping technology is scalable in absolute power, the number of rare-earth ions and transitions that can be effectively accessed for use in practical DPSSL systems has grown tremendously.

  3. Percutaneous diode laser disc nucleoplasty

    NASA Astrophysics Data System (ADS)

    Menchetti, P. P.; Longo, Leonardo

    2004-09-01

    The treatment of herniated disc disease (HNP) over the years involved different miniinvasive surgical options. The classical microsurgical approach has been substituted over the years both by endoscopic approach in which is possible to practice via endoscopy a laser thermo-discoplasty, both by percutaneous laser disc nucleoplasty. In the last ten years, the percutaneous laser disc nucleoplasty have been done worldwide in more than 40000 cases of HNP. Because water is the major component of the intervertebral disc, and in HNP pain is caused by the disc protrusion pressing against the nerve root, a 980 nm Diode laser introduced via a 22G needle under X-ray guidance and local anesthesia, vaporizes a small amount of nucleous polposus with a disc shrinkage and a relief of pressure on nerve root. Most patients get off the table pain free and are back to work in 5 to 7 days. Material and method: to date, 130 patients (155 cases) suffering for relevant symptoms therapy-resistant 6 months on average before consulting our department, have been treated. Eightyfour (72%) males and 46 (28%) females had a percutaneous laser disc nucleoplasty. The average age of patients operated was 48 years (22 - 69). The level of disc removal was L3/L4 in 12 cases, L4/L5 in 87 cases and L5/S1 in 56 cases. Two different levels were treated at the same time in 25 patients. Results: the success rate at a minimum follow-up of 6 months was 88% with a complication rate of 0.5%.

  4. Bright diode laser light source.

    PubMed

    Lassila, Erkki; Hernberg, Rolf

    2006-05-20

    A simplified multiwavelength prototype of an axially symmetric diode laser device based on stacks made of single emitters has been made, and the performance of the device has been demonstrated experimentally. The results verify that kilowatt-level light power can be focused into a circular spot with a 1/e2 diameter of 360 microm, a focal length of 100 mm, and a numerical aperture of 0.24, thus producing an average power density in excess of 10 kW/mm2 and a brightness of 6x10(10) W m-2 sr-1. The experiments also predict that it will be possible to increase these values to more than 60 kW/mm2 and 3x10(11) W m-2 sr-1.

  5. High power diode lasers reliability experiment

    NASA Astrophysics Data System (ADS)

    Lu, Guoguang; Xie, Shaofeng; Hao, Mingming; Huang, Yun; En, Yunfei

    2013-12-01

    In order to evaluate and obtain the actual lifetime data of high power laser diodes, an automated high power laser diodes reliability experiment was developed and reported in this paper. This computer controlled setup operates the laser diodes 24 hours a day, the parameters such as output power, wavelength were test once in one hour. The experiment has 60 work stations, the temperature control range is from 25°C to 70°C, and the output power of the aging device is beyond 20W.

  6. High power coherent polarization locked laser diode.

    PubMed

    Purnawirman; Phua, P B

    2011-03-14

    We have coherently combined a broad area laser diode array to obtain high power single-lobed output by using coherent polarization locking. The single-lobed coherent beam is achieved by spatially combining four diode emitters using walk-off crystals and waveplates while their phases are passively locked via polarization discrimination. While our previous work focused on coherent polarization locking of diode in Gaussian beams, we demonstrate in this paper, the feasibility of the same polarization discrimination for locking multimode beams from broad area diode lasers. The resonator is designed to mitigate the loss from smile effect by using retro-reflection feedback in the cavity. In a 980 nm diode array, we produced 7.2 W coherent output with M2 of 1.5x11.5. The brightness of the diode is improved by more than an order of magnitude.

  7. High efficiency >26 W diode end-pumped Alexandrite laser.

    PubMed

    Teppitaksak, Achaya; Minassian, Ara; Thomas, Gabrielle M; Damzen, Michael J

    2014-06-30

    We show for the first time that multi-ten Watt operation of an Alexandrite laser can be achieved with direct red diode-pumping and with high efficiency. An investigation of diode end-pumped Alexandrite rod lasers demonstrates continuous-wave output power in excess of 26W, more than an order of magnitude higher than previous diode end-pumping systems, and slope efficiency 49%, the highest reported for a diode-pumped Alexandrite laser. Wavelength tuning from 730 to 792nm is demonstrated using self-seeding feedback from an external grating. Q-switched laser operation based on polarization-switching to a lower gain axis of Alexandrite has produced ~mJ-pulse energy at 1kHz pulse rate in fundamental TEM(00) mode.

  8. Performance characterization of low-cost, high-speed, portable pulsed laser diode photoacoustic tomography (PLD-PAT) system.

    PubMed

    Upputuri, Paul Kumar; Pramanik, Manojit

    2015-10-01

    Photoacoustic tomography systems that uses Q-switched Nd:YAG/OPO pulsed lasers are expensive, bulky, and hence limits its use in clinical applications. The low pulse repetition rate of these lasers makes it unsuitable for real-time imaging when used with single-element ultrasound detector. In this work, we present a pulsed laser diode photoacoustic tomography (PLD-PAT) system that integrates a compact PLD inside a single-detector circular scanning geometry. We compared its performance against the traditional Nd:YAG/OPO based PAT system in terms of imaging depth, resolution, imaging time etc. The PLD provides near-infrared pulses at ~803 nm wavelength with pulse energy ~1.4 mJ/pulse at 7 kHz repetition rate. The PLD-PAT system is capable of providing 2D image in scan time as small as 3 sec with a signal-to-noise ratio ~30. High-speed and deep-tissue imaging is demonstrated on phantoms and biological samples. The PLD-PAT system is inexpensive, portable, allows high-speed PAT imaging, and its performance is as good as traditional expensive OPO based PAT system. Therefore, it holds promises for future translational biomedical imaging applications.

  9. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  10. Arbitrary waveform generator to improve laser diode driver performance

    SciTech Connect

    Fulkerson, Jr, Edward Steven

    2015-11-03

    An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.

  11. Commercial applications of high-powered laser diodes

    NASA Astrophysics Data System (ADS)

    Cunningham, David L.; Jacobs, Richard D.

    1995-04-01

    The development of high power laser diodes using surface emitting distributed feedback (SEDFB) techniques has matured to the point where serious marketing analyses have been conducted. While development of the base technology continues, the initiation of systems applications and manufacturing engineering has begun. This effort, in direct response to growing market demand, is the critical bridge between research and the development of viable products for commercial applications. This paper addresses the history of laser technology development, the current status of high powered laser diode development, the forces defining current and future markets and the role of `conventional wisdom' in laser technology and market development.

  12. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology

    NASA Technical Reports Server (NTRS)

    Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh

    1998-01-01

    This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.

  13. Portable Diode Pumped Femtosecond Lasers

    DTIC Science & Technology

    2007-03-01

    interest to the USAF is the possible development of enhanced laser gyroscopes. There are still a number of mechanical inertial navigation units being used...aerial systems such as unmanned aerial reconnaissance vehicles could benefit from inertial systems built around smaller and faster pulse rates...Related To Fast Ignitor In Inertial Confinement Fusion, 17, October 1998. 14. Jean-Claude Diels, Wolfgang Rudolph. Ultrashort Laser Pulse Phenomena: Fun

  14. Reliability of high power laser diodes with external optical feedback

    NASA Astrophysics Data System (ADS)

    Bonsendorf, Dennis; Schneider, Stephan; Meinschien, Jens; Tomm, Jens W.

    2016-03-01

    Direct diode laser systems gain importance in the fields of material processing and solid-state laser pumping. With increased output power, also the influence of strong optical feedback has to be considered. Uncontrolled optical feedback is known for its spectral and power fluctuation effects, as well as potential emitter damage. We found that even intended feedback by use of volume Bragg gratings (VBG) for spectral stabilization may result in emitter lifetime reduction. To provide stable and reliable laser systems design, guidelines and maximum feedback ratings have to be found. We present a model to estimate the optical feedback power coupled back into the laser diode waveguide. It includes several origins of optical feedback and wide range of optical elements. The failure thresholds of InGaAs and AlGaAs bars have been determined not only at standard operation mode but at various working points. The influence of several feedback levels to laser diode lifetime is investigated up to 4000h. The analysis of the semiconductor itself leads to a better understanding of the degradation process by defect spread. Facet microscopy, LBIC- and electroluminescence measurements deliver detailed information about semiconductor defects before and after aging tests. Laser diode protection systems can monitor optical feedback. With this improved understanding, the emergency shutdown threshold can be set low enough to ensure laser diode reliability but also high enough to provide better machine usability avoiding false alarms.

  15. V-shaped resonators for addition of broad-area laser diode arrays

    DOEpatents

    Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

    2012-12-25

    A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

  16. Tunable C- and L-band laser source based on colorless laser diode

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Jhang, J. J.; Peng, Y. W.; Bitew, M. A.; Chi, Y. C.; Wu, W. C.; Wang, H. Y.; Lin, G. R.; Li, C. Y.; Lu, H. H.

    2017-03-01

    In this letter, we propose and demonstrate a tunable laser source which covers C- and L-bands based on a colorless laser diode. The proposed laser source is tunable widely and it can tune single-wavelength, dual-wavelength, and triple-wavelength. Additionally, the optical side mode suppression ratio exceeds 30 dB. Since we combine the colorless laser diode with a tunable optical filter, the proposed tunable laser source stabilizes multi-wavelengths simultaneously. Our proposed tunable laser source is very useful for applications such as optical test instruments, optical communication systems, and optical fiber sensing systems.

  17. Narrowband alexandrite laser injection seeded with frequency dithered diode laser

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary; Lee, H. S.; Prasad, Coorg

    1991-01-01

    Narrowband radiation is produced from a pulsed alexandrite laser when injection seeded with the output of a low power, tunable, continuous wave single mode diode laser. Injection seeded power oscillators are easier to frequency stabilize than etalon narrowed lasers, are more efficient and less prone to optical damage. AlGaAs diode lasers are available with wavelengths from 760 to 770 nm in the oxygen A band that can be used for differential absorption lidar remote sensing of atmospheric pressure and temperature. Diodes with room temperature output at 740 nm may be cooled sufficiently to emit in the water vapor absorption band at 720-730 nm for humidity remote sensing. The diode laser linewidth of 200 MHz is sufficient to seed 2 or 3 longitudinal modes of the multi-transverse mode alexandrite laser, giving the pulsed laser a bandwidth of 0.007 to 0.014/cm.

  18. Microcollimated laser diode with low wavefront aberration

    SciTech Connect

    Ogata, S.; Sekii, H.; Maeda, T.; Goto, H.; Yamashita, T.; Imanaka, K. )

    1989-11-01

    The authors developed microcollimated laser diode( MCLD) utilizing a 1 mm short focal length, phi, lc 0.5 mm small diameter micro Fresnel lens (MFL) for the first time as the collimating lens. The MCLD is assembled with a 780 nm quantum-well laser diode dice and an MFL in the smallest commercial available laser package. The radiated laser beam form the MCLD has higher than 2mW power at 50 mA driving current, narrow enough as a phi 2 mm beam diameter with nearly Gaussian intensity profile, and low wavefront aberration less than {lambda}14 (rms value) measured at 1 m distance.

  19. Extended-cavity diode lasers with tracked resonances

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-Wey; Long, Quan; Vo, Christoph; Müller, Holger; Chu, Steven

    2007-11-01

    We present a painless, almost-free upgrade to present extended-cavity diode lasers (ECDLs) that improves the long-term mode-hop-free performance by stabilizing the resonance of the internal cavity to the external cavity. This stabilization is based on the observation that the frequency or amplitude noise of the ECDL is lowest at the optimum laser diode temperature or injection current. Thus, keeping the diode current at the level where the noise is lowest ensures mode-hop-free operation within one of the stable regions of the mode chart, even if these should drift due to external influences. This method can be applied directly to existing laser systems without modifying the optical setup. We demonstrate the method in two ECDLs stabilized to vapor cells at 852 and 895 nm wavelengths. We achieve long-term mode-hop-free operation and low noise at low power consumption, even with an inexpensive non-antireflection-coated diode.

  20. Low-cost automated system for phase-shifting and phase retrieval based on the tunability of a laser diode

    NASA Astrophysics Data System (ADS)

    Rivera-Ortega, Uriel; Dirckx, Joris

    2016-09-01

    A low-cost and fully automated process for phase-shifting interferometry by continuously changing and turning on-off the input voltage of a laser diode under the scheme of an unbalanced Twyman-Green interferometer setup is presented. The input signal of a laser diode is controlled by a Data Acquisition (NI-DAQ) device which permits to change its wavelength according to its tunability features. The automation and data analysis will be done using LabVIEW in combination with MATLAB. By using Carré algorithm the phase map is obtained. Measurements of visibility and phase-shift to verify the PSI requirements are also shown.

  1. High average power diode pumped solid state lasers for CALIOPE

    SciTech Connect

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory`s water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW`s 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL`s first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers.

  2. Picosecond pulsed diode ring laser gyroscope

    SciTech Connect

    Rosker, M.J.; Christian, W.R.; McMichael, I.C.

    1994-12-31

    An external ring cavity containing as its active medium a pair of InGaAsP diodes is modelocked to produce picosecond pulses. In such a laser, a small frequency difference proportional to the nonreciprocal phase shift (resulting from, e.g., the Sagnac effect) can be observed by beating together the counter propagating laser arms; the device therefore acts as a rotating sensor. In contrast to a conventional (cw) ring laser gyroscope, the pulsed gyroscope can avoid gain competition, thereby enabling the use of homogeneously broadened gain media like semiconductor diodes. Temporal separation of the pulses within the cavity also discriminates against frequency locking of the lasers. The picosecond pulsed diode ring laser gyroscope is reviewed. Both active and passive modelocking are discussed.

  3. Composite resonator vertical cavity laser diode

    SciTech Connect

    Choquette, K.D.; Hou, H.Q.; Chow, W.W.; Geib, K.M.; Hammons, B.E.

    1998-05-01

    The use of two coupled laser cavities has been employed in edge emitting semiconductor lasers for mode suppression and frequency stabilization. The incorporation of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. Composite resonators can be utilized to control spectral and temporal properties within the laser; previous studies of coupled cavity vertical cavity lasers have employed photopumped structures. The authors report the first composite resonator vertical cavity laser diode consisting of two optical cavities and three monolithic distributed Bragg reflectors. Cavity coupling effects and two techniques for external modulation of the laser are described.

  4. Wavelength-Agile External-Cavity Diode Laser for DWDM

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Bomse, David S.

    2006-01-01

    A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.

  5. Semipolar III–nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system

    NASA Astrophysics Data System (ADS)

    Shen, Chao; Lee, Changmin; Stegenburgs, Edgars; Holguin Lerma, Jorge; Khee Ng, Tien; Nakamura, Shuji; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2017-04-01

    A high-performance waveguide photodetector (WPD) integrated with a laser diode (LD) sharing the single InGaN/GaN quantum well active region is demonstrated on a semipolar GaN substrate. The photocurrent of the integrated WPD is effectively tuned by the emitted optical power from the LD. The responsivity ranges from 0.018 to 0.051 A/W with increasing reverse bias from 0 to 10 V. The WPD shows a large 3 dB modulation bandwidth of 230 MHz. The integrated device, being used for power monitoring and on-chip communication, paves the way towards the eventual realization of a III–nitride on-chip photonic system.

  6. Small Integrated Optical Head Device Using a Blue-Violet Laser Diode for Blu-ray Disc System

    NASA Astrophysics Data System (ADS)

    Manoh, Kiyoshi; Yoshida, Hiroshi; Kobayashi, Takashi; Takase, Motohiro; Yamauchi, Kiyoshi; Fujiwara, Satoshi; Ohno, Tsuyoshi; Nishi, Noriaki; Ozawa, Masafumi; Ikeda, Masao; Tojyo, Tsuyoshi; Taniguchi, Tadashi

    2003-02-01

    We report the first integrated optical head device using a blue-violet laser diode (LD), which is a key device for realizing a small and thin Blu-ray Disc drive. While integrating seven optical elements and semiconductor chips into one device by adopting a molded optical element with high transmittance to the blue-violet wavelength, both small aberration and the small device size of 11 mm× 6 mm× 4.1 mm have been realized. We have also improved heat dissipation efficiency from this device to the base unit by adopting a newly developed package. At this time, we have implemented a performance evaluation of this small head device and have confirmed its good read/write performance as well as its adequate tolerances required for the Blu-ray Disc system.

  7. Ruggedized microchannel-cooled laser diode array with self-aligned microlens

    DOEpatents

    Freitas, Barry L.; Skidmore, Jay A.

    2003-11-11

    A microchannel-cooled, optically corrected, laser diode array is fabricated by mounting laser diode bars onto Si surfaces. This approach allows for the highest thermal impedance, in a ruggedized, low-cost assembly that includes passive microlens attachment without the need for lens frames. The microlensed laser diode array is usable in all solid-state laser systems that require efficient, directional, narrow bandwidth, high optical power density pump sources.

  8. Design of drive circuit of laser diode

    NASA Astrophysics Data System (ADS)

    Ran, Yingying; Huang, Xuegong; Xu, Xiaobin

    2016-10-01

    Aiming at the difficult problem of high precision frequency stabilization of semiconductor laser diode, the laser frequency control is realized through the design of the semiconductor drive system. Above all, the relationship between the emission frequency and the temperature of LD is derived theoretically. Then the temperature corresponding to the stable frequency is obtained. According to the desired temperature stability of LD, temperature control system is designed, which is composed of a temperature setting circuit, temperature gathering circuit, the temperature display circuit, analog PID control circuit and a semiconductor refrigerator control circuit module. By sampling technology, voltage of platinum resistance is acquired, and the converted temperature is display on liquid crystal display. PID analog control circuit controls speed stability and precision of temperature control. The constant current source circuit is designed to provide the reference voltage by a voltage stabilizing chip, which is buffered by an operational amplifier. It is connected with the MOSFET to drive the semiconductor laser to provide stable current for the semiconductor laser. PCB circuit board was finished and the experimental was justified. The experimental results show that: the design of the temperature control system could achieve the goal of temperature monitoring. Meanwhile, temperature can be stabilized at 40°C +/- 0.1°C. The output voltage of the constant current source is 2 V. The current is 35 mA.

  9. Thermal management, beam control, and packaging designs for high power diode laser arrays and pump cavity designs for diode laser array pumped rod shaped lasers

    NASA Astrophysics Data System (ADS)

    Chung, Te-Yuan

    Several novel techniques for controlling, managing and utilizing high power diode lasers are described. Low pressure water spray cooling for a high heat flux system is developed and proven to be an ideal cooling method for high power diode laser arrays. In order to enable better thermal and optical performance of diode laser arrays, a new and simple optical element, the beam control prism, is invented. It provides the ability to accomplish beam shaping and beam tilting at the same time. Several low thermal resistance diode packaging designs using beam control prisms are proposed, studied and produced. Two pump cavity designs using a diode laser array to uniformly pump rod shape gain media are also investigated.

  10. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms

    SciTech Connect

    Hosoya, Toshiyuki; Miranda, Martin; Inoue, Ryotaro; Kozuma, Mikio

    2015-07-15

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system does not depend on complex nonlinear frequency-doubling and can be made compact, which will be useful for providing light sources for laser cooling experiments including transportable optical lattice clocks.

  11. 250W diode laser for low pressure Rb vapor pumping

    NASA Astrophysics Data System (ADS)

    Podvyaznyy, A.; Venus, G.; Smirnov, V.; Mokhun, O.; Koulechov, V.; Hostutler, D.; Glebov, L.

    2010-02-01

    The diode pumped alkali vapor lasers operating at subatmospheric pressure require developing of a new generation of high-power laser diode sources with about 10 GHz wide emission spectrum. The latest achievements in the technology of volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass opened new opportunities for the design and fabrication of compact external cavity laser diodes, diode bars and stacks with reflecting VBGs as output couplers. We present a diode laser system providing up to 250 W output power and emission spectral width of 20 pm (FWHM) at the wavelength of 780 nm. The stability and position of an emission wavelength is determined by the resonant wavelength of a VBG which is controlled by temperature. Stability of an emitting wavelength is within 5 pm. Thermal tuning of the wavelength provides maximum overlapping of emitting line with absorption spectrum of a Rb (rubidium)- cell. The designed system consists of 7 modules tuned to the same wavelength corresponding to D2 spectral line of Rb87 or Rb85 and coupled to a single output fiber. Analogous systems could be used for other Rb isotopes spectral lines as well as for lasers based on other alkali metal vapors (Cs and K) or any agents with narrow absorption lines.

  12. Power blue and green laser diodes and their applications

    NASA Astrophysics Data System (ADS)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  13. Comparative hazard evaluation of near-infrared diode lasers.

    PubMed

    Marshall, W J

    1994-05-01

    Hazard evaluation methods from various laser protection standards differ when applied to extended-source, near-infrared lasers. By way of example, various hazard analyses are applied to laser training systems, which incorporate diode lasers, specifically those that assist in training military or law enforcement personnel in the proper use of weapons by simulating actual firing by the substitution of a beam of near-infrared energy for bullets. A correct hazard evaluation of these lasers is necessary since simulators are designed to be directed toward personnel during normal use. The differences among laser standards are most apparent when determining the hazard class of a laser. Hazard classification is based on a comparison of the potential exposures with the maximum permissible exposures in the 1986 and 1993 versions of the American National Standard for the Safe Use of Lasers, Z136.1, and the accessible emission limits of the federal laser product performance standard. Necessary safety design features of a particular system depend on the hazard class. The ANSI Z136.1-1993 standard provides a simpler and more accurate hazard assessment of low-power, near-infrared, diode laser systems than the 1986 ANSI standard. Although a specific system is evaluated, the techniques described can be readily applied to other near-infrared lasers or laser training systems.

  14. Diode-laser-based therapy device

    NASA Astrophysics Data System (ADS)

    Udrea, Mircea V.; Nica, Adriana S.; Florian, Mariana; Poenaru, Daniela; Udrea, Gabriela; Lungeanu, Mihaela; Sporea, Dan G.; Vasiliu, Virgil V.; Vieru, Roxana

    2004-10-01

    A new therapy laser device is presented. The device consists of a central unit and different types of laser probes. The laser probe model SL7-650 delivers seven red (650 nm), 5 mW diode lasers convergent beams. The beams converge at about 30 cm in front of the laser probe and the irradiated area might be varied by simple displacement of the laser probe with respect to the target. The laser probe SL1-808 emits single infrared laser beam up to 500 mW. The efficiency of the use of this device in physiotherapy, and rheumatology, has been put into evidence after years of testing. Dermatology and microsurgery are users of infrared powerful laser probes. The device has successfully passed technical and clinical tests in order to be certified. The laser device design and some medical results are given.

  15. Phase Noise Reduction of Laser Diode

    NASA Technical Reports Server (NTRS)

    Zhang, T. C.; Poizat, J.-Ph.; Grelu, P.; Roch, J.-F.; Grangier, P.; Marin, F.; Bramati, A.; Jost, V.; Levenson, M. D.; Giacobino, E.

    1996-01-01

    Phase noise of single mode laser diodes, either free-running or using line narrowing technique at room temperature, namely injection-locking, has been investigated. It is shown that free-running diodes exhibit very large excess phase noise, typically more than 80 dB above shot-noise at 10 MHz, which can be significantly reduced by the above-mentioned technique.

  16. Rugged, Tunable Extended-Cavity Diode Laser

    NASA Technical Reports Server (NTRS)

    Moore, Donald; Brinza, David; Seidel, David; Klipstein, William; Choi, Dong Ho; Le, Lam; Zhang, Guangzhi; Iniguez, Roberto; Tang, Wade

    2007-01-01

    A rugged, tunable extended-cavity diode laser (ECDL) has been developed to satisfy stringent requirements for frequency stability, notably including low sensitivity to vibration. This laser is designed specifically for use in an atomic-clock experiment to be performed aboard the International Space Station (ISS). Lasers of similar design would be suitable for use in terrestrial laboratories engaged in atomic-clock and atomic-physics research.

  17. Diode laser power module for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Choi, S. H.; Williams, M. D.; Lee, J. H.; Conway, E. J.

    1991-01-01

    Recent progress with powerful, efficient, and coherent monolithic diode master-oscillator/power-amplifier (M-MOPA) systems is promising for the development of a space-based diode laser power station. A conceptual design of a 50-kW diode laser power module was made for space-based power stations capable of beaming coherent power to the moon, Martian rovers, or other satellites. The laser diode power module consists of a solar photovoltaic array or nuclear power source, diode laser arrays (LDAs), a phase controller, beam-steering optics, a thermal management unit, and a radiator. Thermal load management and other relevant aspects of the system (such as power requirements and system mass) are considered. The 50-kW power module described includes the highest available efficiency of LD M-MOPA system to date. However, the overall efficiency of three amplifier stages, including the coupling efficiency, turns out to be 55.5 percent. Though a chain of PA stages generates a high-power coherent beam, there is a penalty due to the coupling loss between stages. The specific power of the 50-kW module using solar power is 6.58 W/kg.

  18. Robust modeling and performance analysis of high-power diode side-pumped solid-state laser systems.

    PubMed

    Kashef, Tamer; Ghoniemy, Samy; Mokhtar, Ayman

    2015-12-20

    In this paper, we present an enhanced high-power extrinsic diode side-pumped solid-state laser (DPSSL) model to accurately predict the dynamic operations and pump distribution under different practical conditions. We introduce a new implementation technique for the proposed model that provides a compelling incentive for the performance assessment and enhancement of high-power diode side-pumped Nd:YAG lasers using cooperative agents and by relying on the MATLAB, GLAD, and Zemax ray tracing software packages. A large-signal laser model that includes thermal effects and a modified laser gain formulation and incorporates the geometrical pump distribution for three radially arranged arrays of laser diodes is presented. The design of a customized prototype diode side-pumped high-power laser head fabricated for the purpose of testing is discussed. A detailed comparative experimental and simulation study of the dynamic operation and the beam characteristics that are used to verify the accuracy of the proposed model for analyzing the performance of high-power DPSSLs under different conditions are discussed. The simulated and measured results of power, pump distribution, beam shape, and slope efficiency are shown under different conditions and for a specific case, where the targeted output power is 140 W, while the input pumping power is 400 W. The 95% output coupler reflectivity showed good agreement with the slope efficiency, which is approximately 35%; this assures the robustness of the proposed model to accurately predict the design parameters of practical, high-power DPSSLs.

  19. Diode pumped Nd:YAG laser development

    NASA Technical Reports Server (NTRS)

    Reno, C. W.; Herzog, D. G.

    1976-01-01

    A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.

  20. Novel high-brightness fiber coupled diode laser device

    NASA Astrophysics Data System (ADS)

    Haag, Matthias; Köhler, Bernd; Biesenbach, Jens; Brand, Thomas

    2007-02-01

    High brightness becomes more and more important in diode laser applications for fiber laser pumping and materials processing. For OEM customers fiber coupled devices have great advantages over direct beam modules: the fiber exit is a standardized interface, beam guiding is easy with nearly unlimited flexibility. In addition to the transport function the fiber serves as homogenizer: the beam profile of the laser radiation emitted from a fiber is symmetrical with highly repeatable beam quality and pointing stability. However, efficient fiber coupling requires an adaption of the slow-axis beam quality to the fiber requirements. Diode laser systems based on standard 10mm bars usually employ beam transformation systems to rearrange the highly asymmetrical beam of the laser bar or laser stack. These beam transformation systems (prism arrays, lens arrays, fiber bundles etc.) are expensive and become inefficient with increasing complexity. This is especially true for high power devices with small fiber diameters. On the other hand, systems based on single emitters are claimed to have good potential in cost reduction. Brightness of the inevitable fiber bundles, though, is limited due to inherent fill-factor losses. At DILAS a novel diode laser device has been developed combining the advantages of diode bars and single emitters: high brightness at high reliability with single emitter cost structure. Heart of the device is a specially tailored laser bar (T-Bar), which epitaxial and lateral structure was designed such that only standard fast- and slow-axis collimator lenses are required to couple the beam into a 200μm fiber. Up to 30 of these T-Bars of one wavelength can be combined to reach a total of > 500W ex fiber in the first step. Going to a power level of today's single emitter diodes even 1kW ex 200μm fiber can be expected.

  1. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  2. Research and Development of Laser Diode Based Instruments for Applications in Space

    NASA Technical Reports Server (NTRS)

    Krainak, Michael; Abshire, James; Cornwell, Donald; Dragic, Peter; Duerksen, Gary; Switzer, Gregg

    1999-01-01

    Laser diode technology continues to advance at a very rapid rate due to commercial applications such as telecommunications and data storage. The advantages of laser diodes include, wide diversity of wavelengths, high efficiency, small size and weight and high reliability. Semiconductor and fiber optical-amplifiers permit efficient, high power master oscillator power amplifier (MOPA) transmitter systems. Laser diode systems which incorporate monolithic or discrete (fiber optic) gratings permit single frequency operation. We describe experimental and theoretical results of laser diode based instruments currently under development at NASA Goddard Space Flight Center including miniature lidars for measuring clouds and aerosols, water vapor and wind for Earth and planetary (Mars Lander) use.

  3. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, B.L.

    1998-10-27

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

  4. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, Barry L.

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  5. 975nm high-peak power ns-diode laser based MOPA system suitable for water vapor DIAL applications

    NASA Astrophysics Data System (ADS)

    Sumpf, Bernd; Klehr, Andreas; Vu, Thi Nghiem; Erbert, Götz; Tränkle, Günther

    2015-03-01

    Micro-DIAL (differential absorption LIDAR) systems require light sources with peak powers in the range of several 10 W together with a spectral line width smaller than the width of absorption lines under study. For water vapor at atmospheric pressure this width should be smaller than 10 pm at 975 nm. In this paper, an all semiconductor master oscillator power amplifier system at an emission wavelength of 975 nm will be presented. This spectral range was selected with respect to a targeted absorption path length of 5000 m and H2O line strengths. A distributed feedback (DFB) ridge waveguide diode laser operated in continuous wave is used as master oscillator whereas a tapered amplifier consisting of a RW section and a flared section is implemented as power amplifier. The RW section acts as optical gate. The current pulses injected into the RW part have a length of 8 ns and the tapered part is driven with 15 ns long pulses. The delay between the pulses is adjusted for optimal pulse shape. The repetition rate is in both cases 25 kHz. A maximal pulse output power of about 16 W limited by the available current supply is achieved. The spectral line width of the system determined by the properties of the DFB laser is smaller than 10 pm. The tuning range amounts 0.9 nm and a SMSR of 40 dB is observed. From the dependence of the peak power on the power injected into the tapered amplifier, the saturation power is determined to 5.3 mW.

  6. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  7. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  8. Adjustable mounting device for high-volume production of beam-shaping systems for high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Haag, Sebastian; Bernhardt, Henning; Rübenach, Olaf; Haverkamp, Tobias; Müller, Tobias; Zontar, Daniel; Brecher, Christian

    2015-02-01

    In many applications for high-power diode lasers, the production of beam-shaping and homogenizing optical systems experience rising volumes and dynamical market demands. The automation of assembly processes on flexible and reconfigurable machines can contribute to a more responsive and scalable production. The paper presents a flexible mounting device designed for the challenging assembly of side-tab based optical systems. It provides design elements for precisely referencing and fixating two optical elements in a well-defined geometric relation. Side tabs are presented to the machine allowing the application of glue and a rotating mechanism allows the attachment to the optical elements. The device can be adjusted to fit different form factors and it can be used in high-volume assembly machines. The paper shows the utilization of the device for a collimation module consisting of a fast-axis and a slow-axis collimation lens. Results regarding the repeatability and process capability of bonding side tab assemblies as well as estimates from 3D simulation for overall performance indicators achieved such as cycle time and throughput will be discussed.

  9. A Treatment of Amblyopia Using Laser Diodes

    NASA Astrophysics Data System (ADS)

    Wang, Di; Wang, Yi-Ding; Liu, Bing-Chun

    2000-04-01

    We propose the treatment of amblyopia using yellow-green laser diodes. There are amblyopia children in excess of fifty million in the world. Because the causative agent of amblyopia hasn't been well understood,only roughly considered to be concerned with visual sense cell, optic nerve network and function of nerve center, no appropriate treatment is found up to date. The vision of person is determined by the center hollow region of retina, where there are three kinds of cone cell. The corresponding peak wavelength in absorption spectrum locates 447nm (blue light), 532nm (green light) and 565nm (yellow light), respectively. When stimulated by white light, excited degree of three kinds of cone cell are identical,or yellow-green light, to which person eye is most sensitive, will significantly takes effects. Therefore the yellow-green laser diode is suitable for treating amblyopia. The weak laser, namely laser power less than mW order of magnitude, shows curative by stimulating bion tissue. When stimulating light power density is less than 0.001W/cm, the compounding speed of nucleic acid DNA is significantly increased. The growth rate of cell, activity of enzyme, content of hemoglobin and the growth of blood vessel, are all increased. However, it's key to control the dose of light. When the dose transcend some value, a inhibition will occur. The little dose of weak laser treatment can be accumulated with a parabolic characteristics, that is the weak laser generate bion response stengthening gradually versus time. Then it will weaken gradually after the peak. When the treatment duration is longer than a certain time, a inhibition also takes place. A suggested theraphy is characterized by little dose and short treatment course. In a conclusion, the yellow-green laser diode should be used for the treatment of amblyopia. The little dose and short treatment couse are to be adopted. Key words:treatment amblyopia laser diode

  10. Advances in laser diodes for pyrotechnic applications

    NASA Technical Reports Server (NTRS)

    Craig, Richard R.

    1993-01-01

    Background information concerning the use of laser diodes in pyrotechnic applications is provided in viewgraph form. The following topics are discussed: damage limits, temperature stability, fiber coupling issues, and small (100 micron) and large (400 micron) fiber results. The discussions concerning fiber results concentrate on the areas of package geometry and electro-optical properties.

  11. Photodynamic therapy laser system

    NASA Astrophysics Data System (ADS)

    Shu, Xiaoqin; Lin, Qing; Wang, Feng; Shu, Chao; Wang, Jianhua

    2009-08-01

    Photodynamic therapy (PDT) treatment is a new treatment for tumour and Dermatology. With the successful development of the second-generation photosensitizer and the significant manifestations in clinics, PDT has shown a more extensive application potentials. To activate the photosensitizer, in this paper, we present a GaAs-based diode laser system with a wavelength of 635 nm. In this system, to prolong the working life-time of the diode lasers, we use specific feedback algorithm to control the current and the temperature of the diode laser with high precision. The clinic results show an excellent effect in the treatment of Condyloma combined with 5-ALA.

  12. Diode Laser Excision of Oral Benign Lesions

    PubMed Central

    Mathur, Ena; Sareen, Mohit; Dhaka, Payal; Baghla, Pallavi

    2015-01-01

    Introduction: Lasers have made tremendous progress in the field of dentistry and have turned out to be crucial in oral surgery as collateral approach for soft tissue surgery. This rapid progress can be attributed to the fact that lasers allow efficient execution of soft tissue procedures with excellent hemostasis and field visibility. When matched to scalpel, electrocautery or high frequency devices, lasers offer maximum postoperative patient comfort. Methods: Four patients agreed to undergo surgical removal of benign lesions of the oral cavity. 810 nm diode lasers were used in continuous wave mode for excisional biopsy. The specimens were sent for histopathological examination and patients were assessed on intraoperative and postoperative complications. Results: Diode laser surgery was rapid, bloodless and well accepted by patients and led to complete resolution of the lesions. The excised specimen proved adequate for histopathological examination. Hemostasis was achieved immediately after the procedure with minimal postoperative problems, discomfort and scarring. Conclusion: We conclude that diode lasers are rapidly becoming the standard of care in contemporary dental practice and can be employed in procedures requiring excisional biopsy of oral soft tissue lesions with minimal problems in histopathological diagnosis. PMID:26464781

  13. DFB diode seeded low repetition rate fiber laser system operating in burst mode

    NASA Astrophysics Data System (ADS)

    Šajn, M.; Petelin, J.; Agrež, V.; Vidmar, M.; Petkovšek, R.

    2017-02-01

    A distributed feedback (DFB) diode, gain switched to produce pulses from 60 ps at high peak power of over 0.5 W, is used in burst mode to seed a fiber amplifier chain. High seed power, spectral filtering between amplifier stages and pulsed pumping are used to mitigate amplified spontaneous emission (ASE). The effect of pulse pumping synchronized with the seed on the ASE is explored for the power amplifier at low repetition. Different input and output energies at different burst repetition rates are examined and up to 85% reduction in ASE is achieved compared to continuous pumping. Finally, a numerical model is used to predict further reduction of ASE.

  14. Real-time power measurement and control for high power diode laser

    NASA Astrophysics Data System (ADS)

    Qin, Wen-bin; Liu, You-qiang; Cao, Yin-hua; Wang, Zhi-yong

    2011-06-01

    As the continual improvement of technology and beam quality, diode laser, with poor beam quality, no longer just apply to pump solid-state laser. As a kind of implement of laser materials processing, high-power diode laser has been used in manufacture, as a brand new means of laser processing. Due to the influence of inevitable unstable factors, for example, the temperature of water-cooler, the current of power supply, etc, the output power of diode laser will be unstable. And laser output power, as an important parameter, frequently affects the performance of the laser beam and the experimental results of processing, especially in the laser materials processing. Therefore, researching the real-time power measurement and control of high power diode laser has great significance, and for diode laser, it would improve performance of itself. To achieve the purpose of real-time detection, traditional measuring method, placing a power sensor behind the total-reflection mirror of laser resonant cavity, is mainly applied in the system of gas laser and solid-state laser. However, Owing to the high integration level of diode laser, traditional measuring method can't be adopted. A technique for real-time measure output power of high power diode laser is developed to improve quality of the laser in this paper. A lens placed at an angle of 45° in the system was used to sample output light of laser, and a piece of ground glass was used to uniform the beam power density, then the photoelectric detector received an optic signal and converted it into electric signal. This feeble signal was processed by amplification circuit with a filter. Finally, this detected electric signal was applied to accomplish the closed-loop control of power. The performance of power measurement and control system was tested with the 300W diode laser, and the measuring inaccuracy achieved was less than +/-1%.

  15. Construction of a Visible Diode Laser Source for Free Radical Photochemistry and Spectroscopy Experiments

    NASA Technical Reports Server (NTRS)

    Newman, Bronjelyn; Halpern, Joshua B.

    1997-01-01

    Tunable diode lasers are reliable sources of narrow-band light and comparatively cheap. Optical feedback simplifies frequency tuning of the laser diodes. We are building an inexpensive diode laser system incorporating optical feedback from a diffraction grating. The external optical cavity can be used with lasers that emit between 2 and 100 mW, and will also work if they are pulsed, although this will significantly degrade the bandwidth. The diode laser output power and bandwidth are comparable to CW dye lasers used in kinetics and dynamics experiments. However, their cost and maintenance will be much less as will alignment time. We intend to use the diode lasers to investigate CN and C2 kinetics as well as to study dissociation dynamics of atmospherically important molecules.

  16. Improved atomic force microscope using a laser diode interferometer

    NASA Astrophysics Data System (ADS)

    Sarid, Dror; Pax, Paul; Yi, Leon; Howells, Sam; Gallagher, Mark; Chen, Ting; Elings, Virgil; Bocek, Dan

    1992-08-01

    The performance of an atomic force microscope using a laser diode interferometer has been improved to the point where its resolution is comparable to that of laser beam deflection systems. We describe the structure of this microscope, present a model that takes into account the main parameters associated with its operation, and demonstrate its sensitivity by showing images of a small area scan with atomic resolution as well as a large area scan in a stand-alone configuration.

  17. Optical communication with semiconductor laser diodes

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1987-01-01

    A 25 megabit/sec direct detection optical communication system that used Q=4 PPM signalling was constructed and its performance measured under laboratory conditions. The system used a single-mode AlGaAs laser diode transmitter and low noise silicon avalanche photodiode (APD) photodetector. Comparison of measured performance with the theoretical revealed that modeling the APD output as a Gaussian process under conditions of negligible background radiation and low (less than 10 to the -12 power A) APD bulk leakage currents leads to substantial underestimates of optimal APD gain to use and overestimates of system bit error probability. A procedure is given to numerically compute system performance which uses the more accurate Webb's Approximation of the exact Conradi distribution for the APD ouput signal that does not require excessive amounts of computer time (a few minutes of VAX 8600 CPU time per system operating point). Examples are given which illustrate the breakdown of the Gaussian approximation in assessing system performance. This system achieved a bit error probability of 10 to the -6 power at a received signal energy corresponding to an average of 60 absorbed photons/bit and optimal APD gain of 700.

  18. Power semiconductor laser diode arrays characterization

    NASA Astrophysics Data System (ADS)

    Zeni, Luigi; Campopiano, Stefania; Cutolo, Antonello; D'Angelo, Giuseppe

    2003-09-01

    Nowadays, power semiconductor laser diode arrays are becoming a widespread source for a large variety of industrial applications. In particular, the availability of low-cost high-power laser diode arrays makes their use possible in the industrial context for material cutting, welding, diagnostics and processing. In the above applications, the exact control of the beam quality plays a very important role because it directly affects the reliability of the final result. In this paper, we present two different approaches useful for the characterization of the beam quality in laser diode arrays. The first one, starting from total intensity measurements on planes orthogonal to the beam propagation path, is able to deduce the working conditions of each laser setting up the array. The second one is aimed at the measurement of a global quality factor of the array itself; to this end, the empirical extension of the M2 concept to composite beams is presented along with some experimental results. As the first technique is especially intended for the non-destructive detection of design problems in the array itself and in the bias circuitry, the second one represents a powerful tool for the rapid on-line diagnostics of the laser beam during its use.

  19. AlGaAs diode pumped tunable chromium lasers

    DOEpatents

    Krupke, William F.; Payne, Stephen A.

    1992-01-01

    An all-solid-state laser system is disclosed wherein the laser is pumped in the longwave wing of the pump absorption band. By utilizing a laser material that will accept unusually high dopant concentrations without deleterious effects on the crystal lattice one is able to compensate for the decreased cross section in the wing of the absorption band, and the number of pump sources which can be used with such a material increases correspondingly. In a particular embodiment a chromium doped colquiriite-structure crystal such as Cr:LiSrAlF.sub.6 is the laser material. The invention avoids the problems associated with using AlGaInP diodes by doping the Cr:LiSrAlF.sub.6 heavily to enable efficient pumping in the longwave wing of the absorption band with more practical AlGaAs diodes.

  20. Diode Laser Velocity Measurements by Modulated Filtered Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mach, J. J.; Varghese, P. L.; Jagodzinski, J. J.

    1999-01-01

    The ability of solid-state lasers to be tuned in operating frequency at MHz rates by input current modulation, while maintaining a relatively narrow line-width, has made them useful for spectroscopic measurements. Their other advantages include low cost, reliability, durability, compact size, and modest power requirements, making them a good choice for a laser source in micro-gravity experiments in drop-towers and in flight. For their size, they are also very bright. In a filtered Rayleigh scattering (FRS) experiment, a diode laser can be used to scan across an atomic or molecular absorption line, generating large changes in transmission at the resonances for very small changes in frequency. The hyperfine structure components of atomic lines of alkali metal vapors are closely spaced and very strong, which makes such atomic filters excellent candidates for sensitive Doppler shift detection and therefore for high-resolution velocimetry. In the work we describe here we use a Rubidium vapor filter, and work with the strong D(sub 2) transitions at 780 nm that are conveniently accessed by near infrared diode lasers. The low power output of infrared laser diodes is their primary drawback relative to other laser systems commonly used for velocimetry. However, the capability to modulate the laser frequency rapidly and continuously helps mitigate this. Using modulation spectroscopy and a heterodyne detection scheme with a lock-in amplifier, one can extract sub-microvolt signals occurring at a specific frequency from a background that is orders of magnitude stronger. The diode laser modulation is simply achieved by adding a small current modulation to the laser bias current. It may also be swept repetitively in wavelength using an additional lower frequency current ramp.

  1. Optical communication with semiconductor laser diodes

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1988-01-01

    Slot timing recovery in a direct detection optical PPM communication system can be achieved by processing the photodetector waveform with a nonlinear device whose output forms the input to a phase lock group. The choice of a simple transition detector as the nonlinearity is shown to give satisfactory synchronization performance. The rms phase error of the recovered slot clock and the effect of slot timing jitter on the bit error probability were directly measured. The experimental system consisted of an AlGaAs laser diode (lambda = 834 nm) and a silicon avalanche photodiode (APD) photodetector and used Q=4 PPM signaling operated at a source data rate of 25 megabits/second. The mathematical model developed to characterize system performance is shown to be in good agreement with actual performance measurements. The use of the recovered slot clock in the receiver resulted in no degradation in receiver sensitivity compared to a system with perfect slot timing. The system achieved a bit error probability of 10 to the minus 6 power at received signal energies corresponding to an average of less than 60 detected photons per information bit.

  2. Optomechanical design of the grating laser beam combiner (GLBC) laser diode header

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Spadin, Paul L.

    1989-01-01

    A laser diode header has been fabricated for a grating laser beam combiner (GLBC). The laser diode header provides the thermal control, the drive electronics, and the optical system necessary for proper operation of the beam combiner. The diode header is required to provide diffraction limited optical performance while providing correction for worst case defocus aberration, 0.6 mrad excess divergence, and worst case decenter aberration, 1.0 mrad pointing error. The design of the header considered the mechanical design and the optical design together resulting in a small, self-contained header with 0.7 mrad range for focus correction and +/- 2.5 mrad of beam steering. The complete diode header is currently undergoing optical and mechanical performance testing.

  3. Low level diode laser accelerates wound healing.

    PubMed

    Dawood, Munqith S; Salman, Saif Dawood

    2013-05-01

    The effect of wound illumination time by pulsed diode laser on the wound healing process was studied in this paper. For this purpose, the original electronic drive circuit of a 650-nm wavelength CW diode laser was reconstructed to give pulsed output laser of 50 % duty cycle and 1 MHz pulse repetition frequency. Twenty male mice, 3 months old were used to follow up the laser photobiostimulation effect on the wound healing progress. They were subdivided into two groups and then the wounds were made on the bilateral back sides of each mouse. Two sessions of pulsed laser therapy were carried along 15 days. Each mice group wounds were illuminated by this pulsed laser for 12 or 18 min per session during these 12 days. The results of this study were compared with the results of our previous wound healing therapy study by using the same type of laser. The mice wounds in that study received only 5 min of illumination time therapy in the first and second days of healing process. In this study, we found that the wounds, which were illuminated for 12 min/session healed in about 3 days earlier than those which were illuminated for 18 min/session. Both of them were healed earlier in about 10-11 days than the control group did.

  4. Small core fiber coupled 60-W laser diode

    NASA Astrophysics Data System (ADS)

    Fernie, Douglas P.; Mannonen, Ilkka; Raven, Anthony L.

    1995-05-01

    Semiconductor laser diodes are compact, efficient and reliable sources of laser light and 25 W fiber coupled systems developed by Diomed have been in clinical use for over three years. For certain applications, particularly in the treatment of benign prostatic hyperplasia and flexible endoscopy, higher powers are desirable. In these applications the use of flexible optical fibers of no more than 600 micrometers core diameter is essential for compatibility with most commercial delivery fibers and instrumentation. A high power 60 W diode laser system for driving these small core fibers has been developed. The design requirements for medical applications are analyzed and system performance and results of use in gastroenterology and urology with small core fibers will be presented.

  5. Chirped microlens arrays for diode laser circularization and beam expansion

    NASA Astrophysics Data System (ADS)

    Schreiber, Peter; Dannberg, Peter; Hoefer, Bernd; Beckert, Erik

    2005-08-01

    Single-mode diode lasers are well-established light sources for a huge number of applications but suffer from astigmatism, beam ellipticity and large manufacturing tolerances of beam parameters. To compensate for these shortcomings, various approaches like anamorphic prism pairs and cylindrical telescopes for circularization as well as variable beam expanders based on zoomed telescopes for precise adjustment of output beam parameters have been employed in the past. The presented new approach for both beam circularization and expansion is based on the use of microlens arrays with chirped focal length: Selection of lenslets of crossed cylindrical microlens arrays as part of an anamorphic telescope enables circularization, astigmatism correction and divergence tolerance compensation of diode lasers simultaneously. Another promising application of chirped spherical lens array telescopes is stepwise variable beam expansion for circular laser beams of fiber or solid-state lasers. In this article we describe design and manufacturing of beam shaping systems with chirped microlens arrays fabricated by polymer-on-glass replication of reflow lenses. A miniaturized diode laser module with beam circularization and astigmatism correction assembled on a structured ceramics motherboard and a modulated RGB laser-source for photofinishing applications equipped with both cylindrical and spherical chirped lens arrays demonstrate the feasibility of the proposed system design approach.

  6. Diode pumped solid state kilohertz disk laser system for time-resolved combustion diagnostics under microgravity at the drop tower Bremen

    SciTech Connect

    Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang; Eigenbrod, Christian; Klinkov, Konstantin; Larionov, Mikhail; Giesen, Adolf; Stolzenburg, Christian

    2014-03-15

    We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (μg) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (Δλ < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic around 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under μg conditions. In order to demonstrate the capabilities of the capsule laser as a tool for μg combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.

  7. Diode pumped solid state kilohertz disk laser system for time-resolved combustion diagnostics under microgravity at the drop tower Bremen.

    PubMed

    Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang; Eigenbrod, Christian; Klinkov, Konstantin; Larionov, Mikhail; Giesen, Adolf; Stolzenburg, Christian

    2014-03-01

    We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (μg) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM00) at narrowband operation (Δλ < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic around 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under μg conditions. In order to demonstrate the capabilities of the capsule laser as a tool for μg combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.

  8. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    EPA Science Inventory

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  9. Diode pumped solid-state laser oscillators for spectroscopic applications

    NASA Technical Reports Server (NTRS)

    Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.

    1987-01-01

    The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  10. Modeling the brain with laser diodes

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2007-09-01

    The Wilson-Cowan mathematical model is popular for representing a neuron in the brain and may be viewed as two cross-coupled dynamical nonlinear neural networks, one excitatory and one inhibitory. This gives rise to two coupled first order equations. Varying an input parameter, the sum of input intensities from all other incoming neurons, causes the Wilson-Cowan neural oscillator to move through a supercritical Hopf bifurcation so as to switch its output from a stable-off when the input is below a firing threshold to a stable-oscillation (limit cycle) for signals above the threshold; the frequency of which depends on the level of input stimulation. The use of frequency to represent pulse rate makes the brain robust against electromagnetic interference and drift. We show that the laser diode rate equations for a single optically injected laser diode can also be modeled by two coupled first order equations that give rise to supercritical Hopf bifurcations. But the laser rate equations have a complex variable where that for the Wilson-Cowan model equations is real. By using the real part of the complex variable (a projection onto the real plane), the optically injected laser diode can exactly simulate the movement through supercritical Hopf bifurcation of the Wilson-Cowan equations by varying the amplitude and frequency of the optical injection.

  11. Integrated software package for laser diodes characterization

    NASA Astrophysics Data System (ADS)

    Sporea, Dan G.; Sporea, Radu A.

    2003-10-01

    The characteristics of laser diodes (wavelength of the emitted radiation, output optical power, embedded photodiode photocurrent, threshold current, serial resistance, external quantum efficiency) are strongly influenced by their driving circumstances (forward current, case temperature). In order to handle such a complex investigation in an efficient and objective manner, the operation of several instruments (a laser diode driver, a temperature controller, a wavelength meter, a power meter, and a laser beam analyzer) is synchronously controlled by a PC, through serial and GPIB communication. For each equipment, instruments drivers were designed using the industry standards graphical programming environment - LabVIEW from National Instruments. All the developed virtual instruments operate under the supervision of a managing virtual instrument, which sets the driving parameters for each unit under test. The manager virtual instrument scans as appropriate the driving current and case temperature values for the selected laser diode. The software enables data saving in Excel compatible files. In this way, sets of curves can be produced according to the testing cycle needs.

  12. Near-infrared Compressive Line Sensing Imaging System using Individually Addressable Laser Diode Array

    DTIC Science & Technology

    2015-05-11

    Fort Pierce, FL, USA 34946 2. Naval Research Lab,1005 Balch Blvd, Stennis Space Center, MS 39556 3. Department of Engineering, Texas Christian... plate module offered by Intense (Figure 8). The laser wavelength is 808 nm and the peak power of each emitter is 168 mw. LEONARDO provides two data...ports on the National Instruments 6133 data Figure 8. LEONARDO computer-to- plate module Proc. of SPIE Vol. 9484 94840I-6 Downloaded From: http

  13. Diode laser welding of aluminum to steel

    SciTech Connect

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica

    2011-05-04

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  14. Plasma formation in diode pumped alkali lasers sustained in Cs

    NASA Astrophysics Data System (ADS)

    Markosyan, Aram H.; Kushner, Mark J.

    2016-11-01

    In diode pumped alkali lasers (DPALs), lasing action occurs on the resonant lines of alkali atoms following pumping by broadband semiconductor lasers. The goal is to convert the efficient but usually poor optical quality of inexpensive diode lasers into the high optical quality of atomic vapor lasers. Resonant excitation of alkali vapor leads to plasma formation through the excitation transfer from the 2P states to upper lying states, which then are photoionized by the pump and intracavity radiation. A first principles global model was developed to investigate the operation of the He/Cs DPAL system and the consequences of plasma formation on the efficiency of the laser. Over a range of pump powers, cell temperatures, excitation frequency, and mole fraction of the collision mixing agent (N2 or C2H6), we found that sufficient plasma formation can occur that the Cs vapor is depleted. Although N2 is not a favored collisional mixing agent due to large rates of quenching of the 2P states, we found a range of pump parameters where laser oscillation may occur. The poor performance of N2 buffered systems may be explained in part by plasma formation. We found that during the operation of the DPAL system with N2 as the collisional mixing agent, plasma formation is in excess of 1014-1015 cm-3, which can degrade laser output intensity by both depletion of the neutral vapor and electron collisional mixing of the laser levels.

  15. Utilization of pulsed diode lasers to lidar remote sensing

    NASA Astrophysics Data System (ADS)

    Penchev, S.; Pencheva, Vasilka H.; Naboko, Vassily N.; Naboko, Sergei V.; Simeonov, P.

    2001-04-01

    Investigation of new aspects of application of pulsed quantum well (In)GaAs/AlGaAs diode lasers to atmospheric spectroscopy and lidar remote sensing is reported. The presented method utilizing these powerful multichipstack diode lasers of broad radiation line is approved theoretically and experimentally for monitoring of atmospheric humidity. Molecular absorption of gas species in the investigated spectral band 0.85 - 0.9 micrometer implemented by laser technology initiates further development of prospective DIAL analysis. A mobile lidar system is realized, employing optimal photodetection based on computer-operated boxcar and adaptive digital filter processing of the lidar signal in the analytical system. Aerosol profile exhibiting cloud strata in open atmosphere by testing of the sensor is demonstrative of the efficiency and high sensitivity of long-range sounding.

  16. Diode laser welding of high yield steel

    NASA Astrophysics Data System (ADS)

    Lisiecki, Aleksander

    2013-01-01

    The following article describes results of investigations on influence of laser welding parameters on the weld shape, quality and mechanical properties of 2.5 mm thick butt joints of thermo-mechanically rolled, high yield strength steel for cold forming S420MC (according to EN 10149 - 3 and 060XLK according to ASTM) welded with high power diode laser HPDL ROFIN SINAR DL 020 with rectangular laser beam spot and 2.2 kW output power, and 808 nm wavelength. The investigations at the initial stage were focused on detailed analysis of influence of the basic laser welding parameters such as laser power and welding speed on the shape and quality of single bead produced during bead-on-plate welding. Then the optimal parameters were chosen for laser welding of 2.5 mm thick butt joints of the thermo-mechanically rolled, high yield strength steel sheets for cold forming S420MC. The test joints were prepared as single square groove and one-side laser welded without an additional material, at a flat position. Edges of steel sheets were melted in argon atmosphere by the laser beam focused on the top joint surface. The test welded joints were investigated by visual inspection, metallographic examinations, mechanical tests such as tensile tests and bending tests. It was found that the high power diode laser may be applied successfully for one-side welding of the S420MC steel butt joints. Additionally it was found that in the optimal range of laser welding parameters the high quality joint were produced.

  17. A new diode laser acupuncture therapy apparatus

    NASA Astrophysics Data System (ADS)

    Li, Chengwei; Huang, Zhen; Li, Dongyu; Zhang, Xiaoyuan

    2006-06-01

    Since the first laser-needles acupuncture apparatus was introduced in therapy, this kind of apparatus has been well used in laser biomedicine as its non-invasive, pain- free, non-bacterium, and safetool. The laser acupuncture apparatus in this paper is based on single-chip microcomputer and associated by semiconductor laser technology. The function like traditional moxibustion including reinforcing and reducing is implemented by applying chaos method to control the duty cycle of moxibustion signal, and the traditional lifting and thrusting of acupuncture is implemented by changing power output of the diode laser. The radiator element of diode laser is made and the drive circuit is designed. And chaos mathematic model is used to produce deterministic class stochastic signal to avoid the body adaptability. This function covers the shortages of continuous irradiation or that of simple disciplinary stimulate signal, which is controlled by some simple electronic circuit and become easily adjusted by human body. The realization of reinforcing and reducing of moxibustion is technological innovation in traditional acupuncture coming true in engineering.

  18. High power diode lasers for solid-state laser pumps

    NASA Technical Reports Server (NTRS)

    Linden, Kurt J.; Mcdonnell, Patrick N.

    1994-01-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  19. High power diode lasers for solid-state laser pumps

    NASA Astrophysics Data System (ADS)

    Linden, Kurt J.; McDonnell, Patrick N.

    1994-02-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  20. Thin planar package for cooling an array of edge-emitting laser diodes

    DOEpatents

    Mundinger, David C.; Benett, William J.

    1992-01-01

    A laser diode array is disclosed that includes a plurality of planar assemblies and active cooling of each assembly. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar assembly having the laser diode bar located proximate to one edge. In an array, a number of such thin planar assemblies are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink proximate to the laser diode bar to absorb heat generated by laser operation. To provide the coolant to the microchannels, each thin planar assembly comprises passageways that connect the microchannels to inlet and outlet corridors. Each inlet passageway may comprise a narrow slot that directs coolant into the microchannels and increases the velocity of flow therethrough. The corridors comprises holes extending through each of the assemblies in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has applications as an optical pump for high power solid state lasers, or by mating the diodes with fiber optic lenses. Further, the arrays can be useful in applications having space constraints and energy limitations, and in military and space applications. The arrays can be incorporated in equipment such as communications devices and active sensors.

  1. Interferometric investigation of a diode laser source

    SciTech Connect

    Creath, K.

    1985-05-01

    Diode lasers provide a coherent light source in the near IR. They have many desirable characteristics such as small size, high efficiency, a single-longitudinal mode output as large as 15 mW, and can be modulated at high pulse rates. An AlGaAs diode laser operating at 840 nm with an output of 5 mW was evaluated with a Smartt point diffraction interferometer. The wave front observed had astigmatism of approx.2 lambda present over the output beam divergence angle. In a modified Twyman-Green interferometer, the coherence length measured was >15 m with high visibility fringes. This source was found to be stable and highly linearly polarized. When used as an interferometric source, many possibilities for small scale interferometers and test equipment are now viable.

  2. InGaN-BASED Laser Diodes

    NASA Astrophysics Data System (ADS)

    Nakamura, Shuji

    1998-08-01

    Continuous-wave operation of InGaN multi-quantum-well (MQW) structure laser diodes (LDs) has been demonstrated at room temperature with output power up to 50 mW, operating temperature up to 100oC, emission wavelength of 400-420 nm, and a lifetime up to 300 h. InGaN MQW LDs with a lifetime of more than 1000 h are expected soon. Commercialization will begin in 1998 if research on the bluish-purple InGaN-based laser diodes continues to progress. The stimulated emission of the InGaN-based LDs originates from localized energy states of 100-250 meV depth, which are equivalent to quantum dot energy states, probably arising from from InGaN composition fluctuation in the InGaN well layers.

  3. Wavelength Beam-Combined Laser Diode Arrays

    DTIC Science & Technology

    2012-01-01

    focal length f f f Diffraction grating Output...lead Water in/out Figure 3. Lincoln Laboratory-designed WBC “laser in a box.” To reduce the overall size of the WBC device, multiple folding mirrors were implemented between the diode array and the concave mirror . ...spatially merges multiple wave- length sources into a single high-inten- sity beam with an order-of-magnitude improvement in brightness compared

  4. Diode Laser Sensor for Scramjet Inlet

    DTIC Science & Technology

    2010-05-11

    Conference’. 1.2 O’Byrne, S., Huynh, L., Wittig, S. M. and Smith, N. S. A. (2009), Non- intrusive water vapour absorp- tion measurements in a simulated...O’Byrne, L. Huynh, S. M. Wittig and N. S. A. Smith, “Non- intrusive Water Vapour Absorp- tion Measurements in a Simulated Helicopter Exhaust”, Proceedings...rather than at a surface. The measurement techniques used at these hypersonic flow conditions should also be non- intrusive . Tuneable diode laser

  5. Evaluation of a satellite laser ranging technique using pseudonoise code modulated laser diodes

    NASA Technical Reports Server (NTRS)

    Ball, Carolyn Kay

    1987-01-01

    Several types of Satellite Laser Ranging systems exist, operating with pulsed, high-energy lasers. The distance between a ground point and an orbiting satellite can be determined to within a few centimeters. A new technique substitutes pseudonoise code modulated laser diodes, which are much more compact, reliable and less costly, for the lasers now used. Since laser diode technology is only now achieving sufficiently powerful lasers, the capabilities of the new technique are investigated. Also examined are the effects of using an avalanche photodiode detector instead of a photomultiplier tube. The influence of noise terms (including background radiation, detector dark and thermal noise and speckle) that limit the system range and performance is evaluated.

  6. Advancements in flowing diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  7. Space Qualification of Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Troupaki, Elisavet; Kashem, Nasir B.; Allan, Graham R.; Vasilyev, Aleksey; Stephen, Mark

    2005-01-01

    Laser instruments have great potential in enabling a new generation of remote-sensing scientific instruments. NASA s desire to employ laser instruments aboard satellites, imposes stringent reliability requirements under severe conditions. As a result of these requirements, NASA has a research program to understand, quantify and reduce the risk of failure to these instruments when deployed on satellites. Most of NASA s proposed laser missions have base-lined diode-pumped Nd:YAG lasers that generally use quasi-constant wave (QCW), 808 nm Laser Diode Arrays (LDAs). Our group has an on-going test program to measure the performance of these LDAs when operated in conditions replicating launch and orbit. In this paper, we report on the results of tests designed to measure the effect of vibration loads simulating launch into space and the radiation environment encountered on orbit. Our primary objective is to quantify the performance of the LDAs in conditions replicating those of a satellite instrument, determine their limitations and strengths which will enable better and more robust designs. To this end we have developed a systematic testing strategy to quantify the effect of environmental stresses on the optical and electrical properties of the LDA.

  8. Electrostatic Discharge (ESD) Protection for a Laser Diode Ignited Actuator

    SciTech Connect

    SALAS, FREDERICK J.; SANCHEZ, DANIEL H.; WEINLEIN, JOHN HARVEY

    2003-06-01

    The use of laser diodes in devices to ignite pyrotechnics provides unique new capabilities including the elimination of electrostatic discharge (ESD) pulses entering the device. The Faraday cage formed by the construction of these devices removes the concern of inadvertent ignition of the energetic material. However, the laser diode itself can be damaged by ESD pulses, therefore, to enhance reliability, some protection of the laser diode is necessary. The development of the MC4612 Optical Actuator has included a circuit to protect the laser diode from ESD pulses including the ''Fisher'' severe human body ESD model. The MC4612 uses a laser diode and is designed to replace existing hot-wire actuators. Optical energy from a laser diode, instead of electrical energy, is used to ignite the pyrotechnic. The protection circuit is described along with a discussion of how the circuit design addresses and circumvents the historic 1Amp/1Watt requirement that has been applicable to hot-wire devices.

  9. Low-cost laser diode array

    DOEpatents

    Freitas, B.L.; Skidmore, J.A.

    1999-06-01

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

  10. Low-cost laser diode array

    DOEpatents

    Freitas, Barry L.; Skidmore, Jay A.

    1999-01-01

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

  11. Laser Diode Pumped Solid State Lasers

    DTIC Science & Technology

    1987-01-01

    CRYSTAL ._____ ____ &m? * Deuterated • Potassium Dihydrogen . Phosphate - ’ KD PO (KD*P) ~ .~ ,_ .i-; Deuterated Ceslum 43ssI6 1 .. r., Dihydrogen ...as a buffer layer to absorb the thermal strain differential between the diode and a copper heatsink has also been suggested in the past and a recent...Potassium Titanium d33829-3 0.16 *; . ~ Penta- Phosphate - ’(20 na) ;A.: KTiOPOi (KTP) - Barium Sodium d33 8 43 .0j 4 eNilhatsh RA.NaNhO

  12. Highly efficient multimode diode-pumped Yb:KYW laser

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. A.; Pivtsov, V. S.; Semenko, A. V.; Bagayev, S. N.

    2017-01-01

    Record high differential efficiency (53.2%) and full optical efficiency (48%) for a multimode diode-pumped Yb:KYW laser have been achieved. The characteristics of the laser and methods for improving its efficiency using a distributed Bragg reflector tapered diode laser (DBR TDL) are discussed.

  13. A Comparative Study of Enamel Surface Roughness After Bleaching With Diode Laser and Nd: YAG Laser.

    PubMed

    Mirzaie, Mansoreh; Yassini, Esmaiel; Ganji, Saber; Moradi, Zohreh; Chiniforush, Nasim

    2016-01-01

    Introduction: Bleaching process can affect surface roughness of enamel, which is a vital factor in esthetic and resistance of tooth. The aim of this study was to compare surface roughness of enamel in teeth bleached using Diode and Neodymium-Doped Yttrium Aluminium Garnet (Nd: YAG) lasers with those bleached using conventional method. Methods: In this study, 75 anterior human teeth from upper and lower jaws (These teeth extracted because of periodontal disease) were randomly divided into 5 groups. Group 1: Laser white gel (Biolase, USA) with 45% hydrogen peroxide concentration and GaAlAs Diode laser (CHEESE(TM), GIGAA, China), group 2: Heydent gel (JW, Germany) with 30% Hydrogen peroxide concentration and Diode laser, group 3: Laser white gel and Nd:YAG laser (FIDELIS(TM), Fotona, Slovenia), group 4: Heydent gel and Nd:YAG laser and group 5: The Iranian gel Kimia (Iran) with 35% hydrogen peroxide concentration were used. Surface roughness of the samples was measured using the Surface Roughness Tester system (TR 200 Time Group, Germany) before and after bleaching. In each group, one sample was randomly selected for SEM analysis. Results: The results showed that the mean surface roughness of the teeth before and after bleaching had a significant difference in all the study groups. It was indicated that after bleaching, the mean surface roughness had increased in all the study groups. The highest surface roughness was seen in the conventional bleaching group and the lowest surface roughness was reported in group 3 (laser white gel + diode laser), in which the average surface roughness increased by only 0.1 μm. Conclusion: It was concluded that using the Laser white gel and the diode laser for bleaching resulted in the least surface roughness compared to conventional method.

  14. A Comparative Study of Enamel Surface Roughness After Bleaching With Diode Laser and Nd: YAG Laser

    PubMed Central

    Mirzaie, Mansoreh; Yassini, Esmaiel; Ganji, Saber; Moradi, Zohreh; Chiniforush, Nasim

    2016-01-01

    Introduction: Bleaching process can affect surface roughness of enamel, which is a vital factor in esthetic and resistance of tooth. The aim of this study was to compare surface roughness of enamel in teeth bleached using Diode and Neodymium-Doped Yttrium Aluminium Garnet (Nd: YAG) lasers with those bleached using conventional method. Methods: In this study, 75 anterior human teeth from upper and lower jaws (These teeth extracted because of periodontal disease) were randomly divided into 5 groups. Group 1: Laser white gel (Biolase, USA) with 45% hydrogen peroxide concentration and GaAlAs Diode laser (CHEESETM, GIGAA, China), group 2: Heydent gel (JW, Germany) with 30% Hydrogen peroxide concentration and Diode laser, group 3: Laser white gel and Nd:YAG laser (FIDELISTM, Fotona, Slovenia), group 4: Heydent gel and Nd:YAG laser and group 5: The Iranian gel Kimia (Iran) with 35% hydrogen peroxide concentration were used. Surface roughness of the samples was measured using the Surface Roughness Tester system (TR 200 Time Group, Germany) before and after bleaching. In each group, one sample was randomly selected for SEM analysis. Results: The results showed that the mean surface roughness of the teeth before and after bleaching had a significant difference in all the study groups. It was indicated that after bleaching, the mean surface roughness had increased in all the study groups. The highest surface roughness was seen in the conventional bleaching group and the lowest surface roughness was reported in group 3 (laser white gel + diode laser), in which the average surface roughness increased by only 0.1 μm. Conclusion: It was concluded that using the Laser white gel and the diode laser for bleaching resulted in the least surface roughness compared to conventional method. PMID:28144442

  15. Diode Laser Measurements of Concentration and Temperature in Microgravity Combustion

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.; Kane, Daniel J.

    1999-01-01

    Diode laser absorption spectroscopy provides a direct method of determinating species concentration and local gas temperature in combustion flames. Under microgravity conditions, diode lasers are particularly suitable, given their compact size, low mass and low power requirements. The development of diode laser-based sensors for gas detection in microgravity is presented, detailing measurements of molecular oxygen. Current progress of this work and future application possibilities for these methods on the International Space Station are discussed.

  16. A Modular Control Platform for a Diode Pumped Alkali Laser

    DTIC Science & Technology

    2008-09-01

    A Modular Control Platform for a Diode Pumped Alkali Laser Joshua Shapiro, Scott W. Teare New Mexico Institute of Mining and Technology, 801 Leroy...gain media, such as is done in diode pumped alkali lasers (DPALs), has been proposed and early experiments have shown promising results. However...REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE A Modular Control Platform for a Diode Pumped Alkali Laser 5a

  17. New Submount Requirement of Conductively Cooled Laser Diodes for Lidar Applications

    NASA Technical Reports Server (NTRS)

    Mo, S. Y.; Cutler, A. D.; Choi, S. H.; Lee, M. H.; Singh, U. N.

    2000-01-01

    New submount technology is essential for the development of conductively cooled high power diode laser. The simulation and experimental results indicate that thermal conductivity of submount for high power laser-diode must be at least 600 W/m/k or higher for stable operation. We have simulated several theoretical thermal model based on new submount designs and characterized high power diode lasers to determine temperature effects on the performances of laser diodes. The characterization system measures the beam power, output beam profile, temperature distribution, and spectroscopic property of high power diode laser. The characterization system is composed of four main parts: an infrared imaging camera, a CCD camera, a monochromator, and a power meter. Thermal characteristics of two commercial-grade CW 20-W diode laser bars with open heat-sink type were determined with respect to the line shift of emission spectra and beam power stability. The center wavelength of laser emission has a tendency to shift toward longer wavelength as the driving current and heat sink temperature are increased. The increase of heat sink temperature decreases the output power of the laser bar too. Such results lay the guidelines for the design of new submount for high power laser-diodes.

  18. Compact scanning-force microscope using a laser diode

    NASA Astrophysics Data System (ADS)

    Sarid, Dror; Iams, Doug; Weissenberger, Volker; Bell, L. Stephen

    1988-12-01

    The paper describes the operation of a compact scanning-force microscope in which the gradient of force acting on a vibrating tip is monitored by a diode laser and its integrated photodiode. The system does not require reflecting or focusing elements or complicated electronics. Experimental results using this system with magnetic domains on a magnetooptic storage medium attest to the feasibility of this concept.

  19. Use of a semiconductor diode laser in laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Sakr, Ghazi; Watson, Graham M.; Lawrence, William

    1996-05-01

    The gold standard surgical treatment of benign prostatic hyperplasia (BPH) is transurethral resection of the prostate (TURP). Over the past few years, TURP has been challenged by laser prostatectomy, a technique that offered many advantages including minimal bleeding, short hospital stay, no fluid absorption, rapid learning curve and better change to preserve antegrade ejaculation. Laser prostatectomy can be done by vaporizing or coagulating prostatic tissue and more recently by using a combination of both: The hybrid technique Nd:YAG lasers have been used, (coupled with contact tips or with side firing or even bare fibers) to either coagulate or vaporize prostatic tissue. Recently semiconductor diode lasers have become available and offer certain advantages. They are compact portable units with no need for water cooling, yet they have sufficient power for tissue vaporization. Diomed (Cambridge, U.K.), produces a 60 W gallium aluminum arsenide semiconductor diode laser emitting at 810 nm. We report the first clinical experience using a semiconductor diode laser for prostates using a combination of contact tip and sidefiring.

  20. Laser cooling of beryllium ions using a frequency-doubled 626 nm diode laser.

    PubMed

    Cozijn, F M J; Biesheuvel, J; Flores, A S; Ubachs, W; Blume, G; Wicht, A; Paschke, K; Erbert, G; Koelemeij, J C J

    2013-07-01

    We demonstrate laser cooling of trapped beryllium ions at 313 nm using a frequency-doubled extended cavity diode laser operated at 626 nm, obtained by cooling a ridge waveguide diode laser chip to -31°C. Up to 32 mW of narrowband 626 nm laser radiation is obtained. After passage through an optical isolator and beam shaping optics, 14 mW of 626 nm power remains of which 70% is coupled into an external enhancement cavity containing a nonlinear crystal for second-harmonic generation. We produce up to 35 μW of 313 nm radiation, which is subsequently used to laser cool and detect 6×10(2) beryllium ions, stored in a linear Paul trap, to a temperature of about 10 mK, as evidenced by the formation of Coulomb crystals. Our setup offers a simple and affordable alternative for Doppler cooling, optical pumping, and detection to presently used laser systems.

  1. Diode Laser for Laryngeal Surgery: a Systematic Review

    PubMed Central

    Arroyo, Helena Hotz; Neri, Larissa; Fussuma, Carina Yuri; Imamura, Rui

    2016-01-01

    Introduction The diode laser has been frequently used in the management of laryngeal disorders. The portability and functional diversity of this tool make it a reasonable alternative to conventional lasers. However, whether diode laser has been applied in transoral laser microsurgery, the ideal parameters, outcomes, and adverse effects remain unclear. Objective The main objective of this systematic review is to provide a reliable evaluation of the use of diode laser in laryngeal diseases, trying to clarify its ideal parameters in the larynx, as well as its outcomes and complications. Data Synthesis We included eleven studies in the final analysis. From the included articles, we collected data on patient and lesion characteristics, treatment (diode laser's parameters used in surgery), and outcomes related to the laser surgery performed. Only two studies were prospective and there were no randomized controlled trials. Most of the evidence suggests that the diode laser can be a useful tool for treatment of different pathologies in the larynx. In this sense, the parameters must be set depending on the goal (vaporization, section, or coagulation) and the clinical problem. Conclusion: The literature lacks studies on the ideal parameters of the diode laser in laryngeal surgery. The available data indicate that diode laser is a useful tool that should be considered in laryngeal surgeries. Thus, large, well-designed studies correlated with diode compared with other lasers are needed to better estimate its effects. PMID:27096024

  2. Quasi-CW Laser Diode Bar Life Tests

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Krainak, Michael A.; Dallas, Joseph L.

    1997-01-01

    NASA's Goddard Space Flight Center is developing technology for satellite-based, high peak power, LIDAR transmitters requiring 3-5 years of reliable operation. Semi-conductor laser diodes provide high efficiency pumping of solid state lasers with the promise of long-lived, reliable operation. 100-watt quasi- CW laser diode bars have been baselined for the next generation laser altimeters. Multi-billion shot lifetimes are required. The authors have monitored the performance of several diodes for billions of shots and investigated operational modes for improving diode lifetime.

  3. Realization of high performance random laser diodes

    NASA Astrophysics Data System (ADS)

    Yu, S. F.

    2011-03-01

    For the past four decades, extensive studies have been concentrated on the understanding of the physics of random lasing phenomena in scattering media with optical gain. Although lasing modes can be excited from the mirrorless scattering media, the characteristics of high scattering loss, multiple-direction emission, as well as multiple-mode oscillation prohibited them to be used as practical laser cavities. Furthermore, due to the difficulty of achieving high optical gain under electrical excitation, electrical excitation of random lasing action was seldom reported. Hence, mirrorless random cavities have never been used to realize lasers for practical applications -- CD, DVD, pico-projector, etc. Nowadays, studies of random lasing are still limited to the scientific research. Recently, the difficulty of achieving `battery driven' random laser diodes has been overcome by using nano-structured ZnO as the random medium and the careful design of heterojunctions. This lead to the first demonstration of room-temperature electrically pumped random lasing action under continuity wave and pulsed operation. In this presentation, we proposed to realize an array of quasi-one dimensional ZnO random laser diodes. We can show that if the laser array can be manipulated in a way such that every individual random laser can be coupled laterally to and locked with a particular phase relationship to its adjacent neighbor, the laser array can obtain coherent addition of random modes. Hence, output power can be multiplied and one lasing mode will only be supported due to the repulsion characteristics of random modes. This work was supported by HK PolyU grant no. 1-ZV6X.

  4. Long-Lifetime Laser Materials For Effective Diode Pumping

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1991-01-01

    Long quantum lifetimes reduce number of diodes required to pump. Pumping by laser diodes demonstrated with such common Nd laser materials as neodymium:yttrium aluminum garnet (Nd:YAG) and Nd:YLiF4, but such materials as Nd:LaF3, Nd:NaF.9YF3, and possibly Nd:YF3 more useful because of long lifetimes of their upper laser energy levels. Cost effectiveness primary advantage of solid-state laser materials having longer upper-laser-level lifetimes. Because cost of diodes outweighs cost of laser material by perhaps two orders of magnitude, cost reduced significantly.

  5. Treatment of Gingival Hyperpigmentation by Diode Laser for Esthetical Purposes

    PubMed Central

    El Shenawy, Hanaa M.; Nasry, Sherine A.; Zaky, Ahmed A.; Quriba, Mohamed A. A.

    2015-01-01

    BACKGROUND: Gingival hyperpigmentation is a common esthetical concern in patients with gummy smile or excessive gingival display. Laser ablation has been recognized recently as the most effective, pleasant and reliable technique. It has the advantage of easy handling, short treatment time, hemostasis, decontamination, and sterilization effect. AIM: In the present study we wanted to explore the efficacy of a 980 nm wavelength diode laser in gingival depigmentation clinically by using both VAS and digital imaging method as means of assessment. METHODS: Diode laser ablation was done for 15 patients who requested cosmetic therapy for melanin pigmented gums. The laser beam delivered by fiberoptic with a diameter of 320 µm, the diode laser system has 980 nm wave lengths and 3 W irradiation powers, in a continuous contact mode in all cases, the entire surface of each pigmented maxillary and mandibular gingiva that required treatment was irradiated in a single session. Clinical examination and digital image analysis were done and the patients were followed up for 3 successive months. RESULTS: There was a statistically significant change in prevalence of bleeding after treatment, as none of the cases showed any signs of bleeding 1 week, 1 month and 3 months after ablation. No statistically significant change was observed in the prevalence of swelling after treatment The VAS evaluation demonstrated that only 4 patients complained of mild pain immediately after the procedure. No pain was perceived from the patients in the rest of the follow up period. There was no statistically significant change in prevalence of pain immediately after treatment compared to pain during treatment. There was a decrease in cases with mild pain after 1 week, 1 month as well as 3 months compared to pain during treatment and immediately after treatment. CONCLUSION: Within the limitations of this study, the use of diode laser was shown to be a safe and effective treatment modality that provides

  6. Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers.

    PubMed

    Demirbas, Umit; Schmalz, Michael; Sumpf, Bernd; Erbert, Götz; Petrich, Gale S; Kolodziejski, Leslie A; Fujimoto, James G; Kärtner, Franz X; Leitenstorfer, Alfred

    2011-10-10

    We report compact, low-cost and efficient Cr:Colquiriite lasers that are pumped by high brightness tapered laser diodes. The tapered laser diodes provided 1 to 1.2 W of output power around 675 nm, at an electrical-to-optical conversion efficiency of about 30%. Using a single tapered diode laser as the pump source, we have demonstrated output powers of 500 mW and 410 mW together with slope efficiencies of 47% and 41% from continuous wave (cw) Cr:LiSAF and Cr:LiCAF lasers, respectively. In cw mode-locked operation, sub-100-fs pulse trains with average power between 200 mW and 250 mW were obtained at repetition rates around 100 MHz. Upon pumping the Cr:Colquiriite lasers with two tapered laser diodes (one from each side of the crystal), we have observed scaling of cw powers to 850 mW in Cr:LiSAF and to 650 mW in Cr:LiCAF. From the double side pumped Cr:LiCAF laser, we have also obtained ~220 fs long pulses with 5.4 nJ of pulse energy at 77 MHz repetition rate. These are the highest energy levels reported from Cr:Colquiriite so far at these repetition rates. Our findings indicate that tapered diodes in the red spectral region are likely to become the standard pump source for Cr:Colquiriite lasers in the near future. Moreover, the simplified pumping scheme might facilitate efficient commercialization of Cr:Colquiriite systems, bearing the potential to significantly boost applications of cw and femtosecond lasers in this spectral region (750-1000 nm).

  7. 980nm diode laser pump modules operating at high temperature

    NASA Astrophysics Data System (ADS)

    Campbell, Jenna; Semenic, Tadej; Leisher, Paul; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2016-03-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. This problem is being addressed by the team formed by Freedom Photonics and Teledyne Scientific through the development of novel high power laser chip array architectures that can operate with high efficiency when cooled with coolants at temperatures higher than 50 degrees Celsius and also the development of an advanced thermal management system for efficient heat extraction from the laser chip array. This paper will present experimental results for the optical, electrical and thermal characteristics of 980 nm diode laser pump modules operating effectively with liquid coolant at temperatures above 50 degrees Celsius, showing a very small change in performance as the operating temperature increases from 20 to 50 degrees Celsius. These pump modules can achieve output power of many Watts per array lasing element with an operating Wall-Plug-Efficiency (WPE) of >55% at elevated coolant temperatures. The paper will also discuss the technical approach that has enabled this high level of pump module performance and opportunities for further improvement.

  8. Temperature issues with white laser diodes, calculation and approach for new packages

    NASA Astrophysics Data System (ADS)

    Lachmayer, Roland; Kloppenburg, Gerolf; Stephan, Serge

    2015-01-01

    Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class systems mainly use HID or LED light sources. As a further step laser diode based systems offer a high luminance, efficiency and allow the realization of new dynamic and adaptive light functions and styling concepts. The use of white laser diode systems in automotive applications is still limited to laboratories and prototypes even though announcements of laser based front lighting systems have been made. But the environment conditions for vehicles and other industry sectors differ from laboratory conditions. Therefor a model of the system's thermal behavior is set up. The power loss of a laser diode is transported as thermal flux from the junction layer to the diode's case and on to the environment. Therefor its optical power is limited by the maximum junction temperature (for blue diodes typically 125 - 150 °C), the environment temperature and the diode's packaging with its thermal resistances. In a car's headlamp the environment temperature can reach up to 80 °C. While the difference between allowed case temperature and environment temperature is getting small or negative the relevant heat flux also becomes small or negative. In early stages of LED development similar challenges had to be solved. Adapting LED packages to the conditions in a vehicle environment lead to today's efficient and bright headlights. In this paper the need to transfer these results to laser diodes is shown by calculating the diodes lifetimes based on the presented model.

  9. Laser thermokeratoplasty by means of a continuously emitting laser diode in the mid IR

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf; Koop, Norbert; Kamm, Katharina; Geerling, Gerd; Kampmeier, Juergen; Birngruber, Reginald

    1996-12-01

    Laser thermokeratoplasty (LTK) has been performed with a continuously emitting, tunable laser diode at 1.86 micrometers . A study on enucleated porcine eyes was conducted in order to demonstrate the feasibility of this laser source for LTK and to determine the useful irradiation modalities. Refractive changes achieved with different application systems and a standard coagulation pattern, consisting of 8 coagulation spots on a 6 mm ring, were measured. The most promising sets of parameters were carried out in a first animal study with mini pigs. Initial refractive changes up to 6 D could be achieved in vitro and in vivo with laser powers between 120 mW and 200 mW and irradiation times of several seconds. In conclusion, the mid-IR laser diode operated at a wavelength of 1.86 micrometers seems to be the optimal source for a clinical LTK system.

  10. Beam propagation analysis of a multi-laser diode FSO system through free space

    NASA Astrophysics Data System (ADS)

    Kashani, F. D.; Hedayati Rad, M. Reza; Firozzadeh, Z.; Mahzoun, M. Reza

    2011-10-01

    In this paper beam propagation analysis of a multi-beam multi-collimator optical communication system through free space is studied. For this purpose, the propagation properties of Gaussian multi-beams through a multi-optical path including collimators in transmitters are studied and an analytical formula for intensity distribution is derived. The effects of beam divergence and beam separation distances on the propagation properties of Gaussian multi-beams are studied in detail by calculating the beam width and power in bucket (PIB). The analyses are illustrated by numerical examples.

  11. Mode-locked solid state lasers using diode laser excitation

    DOEpatents

    Holtom, Gary R [Boston, MA

    2012-03-06

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.

  12. Using a Diode Laser for Laser-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Tran, Yang; Whitten, J. E.

    2001-08-01

    The construction and use of a laser fluorimeter from a 635-nm red diode laser and an amplified photodiode detector are described. The low cost and monochromatic nature of diode lasers make them attractive as excitation sources for educational fluorescence experiments. Use of this type of fluorimeter is demonstrated by measuring fluorescence signals for various concentrations of Nile blue A dissolved in methanol; concentrations as low as 1 ppb are easily detected. The use of this instrument for monitoring the decomposition of a dye by an oxidizing agent is demonstrated by measuring the decay of fluorescence as a function of time for a 1 ppm Nile blue A solution after the addition of sodium hypochlorite.

  13. Efficiency of Nd laser materials with laser diode pumping

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Cross, Patricia L.; Skolaut, Milton W., Jr.; Storm, Mark E.

    1990-01-01

    For pulsed laser-diode-pumped lasers, where efficiency is the most important issue, the choice of the Nd laser material makes a significant difference. The absorption efficiency, storage efficiency, and extraction efficiency for Nd:YAG, Nd:YLF, Nd:GSGG, Nd:BEL, Nd:YVO4, and Nd:glass are calculated. The materials are then compared under the assumption of equal quantum efficiency and damage threshold. Nd:YLF is found to be the best candidate for the application discussed here.

  14. Polarization methods for diode laser excitation of solid state lasers

    DOEpatents

    Holtom, Gary R.

    2008-11-25

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  15. Impact of hydrogen peroxide activated by lighting-emitting diode/laser system on enamel color and microhardness: An in situ design

    PubMed Central

    Loiola, Ana Bárbara Araújo; Souza-Gabriel, Aline Evangelista; Scatolin, Renata Siqueira; Corona, Silmara Aparecida Milori

    2016-01-01

    Background: Hydrogen peroxide (HP) at lower concentration can provide less alteration on enamel surface and when combined with laser therapy, could decrease tooth sensitivity. This in situ study evaluated the influence of 15% and 35% HP gel activated by lighting-emitting diode (LED)/laser light for in-office tooth bleaching. Materials and Methods: Forty-four bovine enamel slabs were polished and subjected to surface microhardness (load of 25 g for 5 s). The specimens were placed in intraoral palatal devices of 11 volunteers (n = 11). Sample was randomly distributed into four groups according to the bleaching protocol: 15% HP, 15% HP activated by LED/laser, 35% HP, and 35% HP activated by LED/laser. The experimental phase comprised 15 days and bleaching protocols were performed on the 2nd and 9th days. Surface microhardness (KHN) and color changes were measured and data were analyzed by ANOVA (α = 0.05). Results: There were no significant differences in microhardness values neither in color alteration of enamel treated with 15% HP and 35% HP activated or not by LED/laser system (P > 0.05). Conclusions: Both concentrations of HP (15 or 35%), regardless of activated by an LED/laser light, did not affect the surface microhardness and had the same effectiveness in enamel bleaching. PMID:27630493

  16. Qualification of Laser Diode Arrays for Mercury Laser Altimeter Mission

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.

    2004-01-01

    NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. The MESSENGER mission is flying the Mercury Laser Altimeter (MLA) which is a diode-pumped Nd:YAG laser instrument designed to map the topography of Mercury. The environment imposed on the instrument by the orbital dynamics places special requirements on the laser diode arrays. In order to limit the radiative heating of the satellite from the surface of Mercury, the satellite is designed to have a highly elliptical orbit. The satellite will heat near perigee and cool near apogee. The laser power is cycled during these orbits so that the laser is on for only 30 minutes (perigee) in a 12 hour orbit. The laser heats 10 C while powered up and cools while powered down. In order to simulate these operational conditions, we designed a test to measure the LDA performance while being temperature and power cycled. Though the mission requirements are specific to NASA and performance requirements are derived from unique operating conditions, the results are general and widely applicable. We present results on the performance of twelve LDAs operating for several hundred million pulses. The arrays are 100 watt, quasi-CW, conductively-cooled, 808 nm devices. Prior to testing, we fully characterize each device to establish a baseline for individual array performance and status. Details of this characterization can be found in reference. Arrays are divided into four groups and subjected to the temperature and power cycling matrix are shown.

  17. Compact high brightness diode laser emitting 500W from a 100μm fiber

    NASA Astrophysics Data System (ADS)

    Heinemann, Stefan; Fritsche, Haro; Kruschke, Bastian; Schmidt, Torsten; Gries, Wolfgang

    2013-02-01

    High power, high brightness diode lasers are beginning to compete with solid state lasers, i.e. disk and fiber lasers. The core technologies for brightness scaling of diode lasers are optical stacking and dense spectral combining (DSC), as well as improvements of the diode material. Diode lasers have the lowest cost of ownership, highest efficiency and most compact design among all lasers. Multiple Single Emitter (MSE) modules allow highest power and highest brightness diode lasers based on standard broad area diodes. Multiple single emitters, each rated at 12 W, are stacked in the fast axis with a monolithic slow axis collimator (SAC) array. Volume Bragg Gratings (VBG) stabilizes the wavelength and narrow the linewidth to less than 1 nm. Dichroic mirrors are used for dense wavelength multiplexing of 4 channels within 12 nm. Subsequently polarization multiplexing generates 450 W with a beam quality of 4.5 mm*mrad. Fast control electronics and miniaturized switched power supplies enable pulse rise times of less than 10 μs, with pulse widths continuously adjustable from 20 μs to cw. Further power scaling up to multi-kilowatts can be achieved by multiplexing up to 16 channels. The power and brightness of these systems enables the use of direct diode lasers for cutting and welding. The technologies can be transferred to other wavelengths to include 793 nm and 1530 nm. Optimized spectral combining enables further improvements in spectral brightness and power.

  18. Recent advances in antiguided diode laser arrays

    NASA Astrophysics Data System (ADS)

    Mawst, L. J.; Botez, D.; Jansen, M.; Roth, T. J.; Zmudzinski, C.; Tu, C.; Yun, J.

    1992-06-01

    The paper discusses features of advanced antiguided diode laser arrays optimized for single-spatial-mode operation to high output power. Twenty-element antiguided arrays have been fabricated to operate reproducibly to CW power levels of 0.5 W with 48-50 percent efficiency. These devices were also shown to exhibit thousands of hours of reliable operation. The paper gives special attention to modeling and optimization of multiclad antiguided arrays and presents experimental results on multiclad antiguided arrays fabricated by either of the two techniques, the conventional self-aligned stripe and the complementary self-aligned stripe.

  19. Tunable Diode Laser Heterodyne Spectrophotometry of Ozone

    NASA Technical Reports Server (NTRS)

    Fogal, P. F.; McElroy, C. T.; Goldman, A.; Murcray, D. G.

    1988-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (less than 0.0005/ cm) solar spectra in the 9.6 micron ozone band. Observations have shown that a signal-to-noise ratio of 95 : 1 (35% of theoretical) for an integration time of 1/8 second can be achieved at a resolution of 0.0005 wavenumbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that. measured at the nearby National Oceanographic and Atmospheric Administration (NOAA) ozone monitoring facility in Boulder, Colorado.

  20. Broadband External-Cavity Diode Laser

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.

    2005-01-01

    A broadband external-cavity diode laser (ECDL) has been invented for use in spectroscopic surveys preparatory to optical detection of gases. Heretofore, commercially available ECDLs have been designed, in conjunction with sophisticated tuning assemblies, for narrow- band (and, typically, single-frequency) operation, as needed for high sensitivity and high spectral resolution in some gas-detection applications. However, for preparatory spectroscopic surveys, high sensitivity and narrow-band operation are not needed; in such cases, the present broadband ECDL offers a simpler, less-expensive, more-compact alternative to a commercial narrowband ECDL.

  1. Rubidium dimer destruction by a diode laser

    SciTech Connect

    Ban, T.; Aumiler, D.; Pichler, G.

    2005-02-01

    We observed rubidium dimer destruction by excitation of rubidium vapor with diode laser light tuned across the Rb D{sub 2} resonance line in a 2400 GHz tuning interval. The destruction was measured for rubidium atom concentrations in the (1-9)x10{sup 16} cm{sup -3} range, pump beam power up to 43 mW, and with a 5 Torr of the helium buffer gas. We discuss the physical mechanisms involved and specify the molecular pathways which may effectively lead to the observed dimer destruction.

  2. Use of laser diodes in cavity ring-down spectroscopy

    SciTech Connect

    Zare, R.N.; Paldus, B.A.; Ma, Y.; Xie, J.

    1997-12-31

    We have demonstrated that cavity ring-down spectroscopy (CRDS), a highly sensitive absorption technique, is versatile enough to serve as a complete diagnostic for materials process control. In particular, we have used CRDS in the ultraviolet to determine the concentration profile of methyl radicals in a hot-filament diamond reactor; we have applied CRDS in the mid-infrared to detect 50 ppb of methane in a N{sub 2} environment; and, we have extended CRDS so that we can use continuous-wave diode laser sources. Using a laser diode at 810 nm, we were able to achieve a sensitivity of 2 x 10{sup -8} cm{sup -1}. Thus, CRDS can be used not only as an in situ diagnostic for investigating the chemistry of diamond film deposition, but it can also be used as a gas purity diagnostic for any chemical vapor deposition system.

  3. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Bolshov, M. A.; Kuritsyn, Yu. A.; Romanovskii, Yu. V.

    2015-04-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review.

  4. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    SciTech Connect

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL`s). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL`s which are appropriate for material processing applications, low and intermediate average power DPSSL`s are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.

  5. Effect of thermal processes on critical operation conditions of high-power laser diodes

    SciTech Connect

    Parashchuk, V V; Vu Doan Mien

    2013-10-31

    Using numerical and analytical techniques in a threedimensional approximation, we have modelled the effect of spatial thermoelastic stress nonuniformity in a laser diode – heat sink system on the output characteristics of the device in different operation modes. We have studied the influence of the pulse duration, the geometry of the laser system and its thermophysical parameters on the critical pump current density, in particular for state-of-the-art heat conductive substrate materials. The proposed approach has been used to optimise the laser diode assembly process in terms of the quality of laser crystal positioning (bonding) on a heat sink. (lasers)

  6. Multimode-diode-pumped gas (alkali-vapor) laser

    SciTech Connect

    Page, R H; Beach, R J; Kanz, V K

    2005-08-22

    We report the first demonstration of a multimode-diode-pumped gas laser--Rb vapor operating on the 795 nm resonance transition. Peak output of {approx}1 Watt was obtained using a volume-Bragg-grating stabilized pump diode array. The laser's output radiance exceeded the pump radiance by a factor greater than 2000. Power scaling (by pumping with larger diode arrays) is therefore possible.

  7. CO.sub.2 optically pumped distributed feedback diode laser

    DOEpatents

    Rockwood, Stephen D.

    1980-01-01

    A diode laser optically pumped by a CO.sub.2 coherent source. Interference fringes generated by feeding the optical pumping beam against a second beam, periodically alter the reflectivity of the diode medium allowing frequency variation of the output signal by varying the impingent angle of the CO.sub.2 laser beams.

  8. Monitoring The Atmosphere By Diode-Laser Spectroscopy

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max; Podolske, James

    1988-01-01

    Report describes state of art of tunable-diode-laser second-harmonic spectroscopy applied to measurements of concentrations of trace constituents of atmosphere. Combination of temperature, composition, and drive-current tuning, wavelengths of tunable diode lasers varied over infrared range of 3 to 30 micrometer, containing spectral lines of many molecules of interest in atmospheric research.

  9. Efficient diffractive collimator for edge-emitting laser diodes

    NASA Astrophysics Data System (ADS)

    Kowalik, Andrzej; Góra, Krzysztof; Adamkiewicz, Grażyna; Ziętek, Monika; Mikuła, Grzegorz; Kołodziejczyk, Andrzej; Jaroszewicz, Zbigniew

    2006-04-01

    Compared with conventional optical systems, diffractive optical elements are more suitable to transform laser diode beams because they can form more complex wavefronts and better fulfill requirements of miniaturization. However, high numerical aperture needed to collimate the fast axis of edge-emitting laser diodes demands extremely high spatial frequency elements when single DOE is used. That involves complicated design methods based on rigorous diffraction theory and fabricating technology with sub-wavelength resolution and nanometer accuracy. To overcome these difficulties we propose a transmission DOE consisting of elliptical and cylindrical zone plates fabricated onto opposite sides of a substrate. The main advantage of such a solution lies in fact that each of the zone plates has smaller spatial frequency and can be made even as 8-phase-level element with theoretically 95% diffraction efficiency using available microlithographic technology. In result, monolithic collimating system that allows to compensate astigmatism and to convert an elliptical laser diode light beam to circular one can be achieved with NA higher than 0.5 and efficiency over 80%.

  10. Efficient bone cutting with the novel diode pumped Er:YAG laser system: in vitro investigation and optimization of the treatment parameters

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Diebolder, Rolf; Hausladen, Florian; Hibst, Raimund

    2014-03-01

    It is well known that flashlamp pumped Er:YAG lasers allow efficient bone ablation due to strong absorption at 3μm by water. Preliminary experiments revealed also a newly developed diode pumped Er:YAG laser system (Pantec Engineering AG) to be an efficient tool for use for bone surgery. The aim of the present in vitro study is the investigation of a new power increased version of the laser system with higher pulse energy and optimization of the treatment set-up to get high cutting quality, efficiency, and ablation depth. Optical simulations were performed to achieve various focus diameters and homogeneous beam profile. An appropriate experimental set-up with two different focusing units, a computer controlled linear stage with sample holder, and a shutter unit was realized. By this we are able to move the sample (slices of pig bone) with a defined velocity during the irradiation. Cutting was performed under appropriate water spray by moving the sample back and forth. After each path the ablation depth was measured and the focal plane was tracked to the actual bottom of the groove. Finally, the cuts were analyzed by light microcopy regarding the ablation quality and geometry, and thermal effects. In summary, the results show that with carefully adapted irradiation parameters narrow and deep cuts (ablation depth > 6mm, aspect ratio approx. 20) are possible without carbonization. In conclusion, these in vitro investigations demonstrate that high efficient bone cutting is possible with the diode pumped Er:YAG laser system using appropriate treatment set-up and parameters.

  11. Means for phase locking the outputs of a surface emitting laser diode array

    NASA Technical Reports Server (NTRS)

    Lesh, James R. (Inventor)

    1987-01-01

    An array of diode lasers, either a two-dimensional array of surface emitting lasers, or a linear array of stripe lasers, is phase locked by a diode laser through a hologram which focuses the output of the diode laser into a set of distinct, spatially separated beams, each one focused onto the back facet of a separate diode laser of the array. The outputs of the diode lasers thus form an emitted coherent beam out of the front of the array.

  12. Femtosecond diode-pumped mode-locked neodymium lasers

    NASA Astrophysics Data System (ADS)

    Kubeček, Václav; Jelínek, Michal; Čech, Miroslav; Vyhlídal, David; Su, Liangbi; Jiang, Dapeng; Ma, Fengkai; Qian, Xiaobo; Wang, Jingya; Xu, Jun

    2016-12-01

    Fluoride-type crystals (CaF2, SrF2) doped with neodymium Nd3+ and codoped with buffer ions for breaking clusters of active ions and increasing fluorescence efficiency, present interesting alternative as laser active media for the diode-pumped mode-locked lasers. In comparison with widely used materials as Nd:YAG or Nd:YVO4, they have broad emission spectra as well as longer fluorescence lifetime, in comparison with Nd:glass, SrF2 and CaF2 have better thermal conductivity. In spite of the fact, that this thermal conductivity decreases with Nd3+ doping concentration, these crystals are alternative for the Nd:glass in subpicosecond mode-locked laser systems. In this paper we review the basic results reported recently on these active materials and in the second part we present our results achieved in low power diode pumped passively mode locked lasers with Nd,La:CaF2 and Nd,Y:SrF2 crystals. The pulses as short as 258 fs at wavelength of 1057 nm were obtained in the first case, while 5 ps long pulses at 1065 nm were generated from the second laser system.

  13. New diode wavelengths for pumping solid-state lasers

    SciTech Connect

    Skidmore, J.A.; Emanuel, M.A.; Beach, R.J.

    1995-01-01

    High-power laser-diode arrays have been demonstrated to be viable pump sources for solid-state lasers. The diode bars (fill factor of 0.7) were bonded to silicon microchannel heatsinks for high-average-power operation. Over 12 W of CW output power was achieved from a one cm AlGaInP tensile-strained single-quantum-well laser diode bar. At 690 nm, a compressively-strained single-quantum-well laser-diode array produced 360 W/cm{sup 2} per emitting aperture under CW operation, and 2.85 kW of pulsed power from a 3.8 cm{sup 2} emitting-aperture array. InGaAs strained single-quantum-well laser diodes emitting at 900 nm produced 2.8 kW pulsed power from a 4.4 cm{sup 2} emitting-aperture array.

  14. A low-temperature external cavity diode laser for broad wavelength tuning

    NASA Astrophysics Data System (ADS)

    Tobias, William G.; Rosenberg, Jason S.; Hutzler, Nicholas R.; Ni, Kang-Kuen

    2016-11-01

    We report on the design and characterization of a low-temperature external cavity diode laser (ECDL) system for broad wavelength tuning. The performance achieved with multiple diode models addresses the scarcity of commercial red laser diodes below 633 nm, which is a wavelength range relevant to the spectroscopy of many molecules and ions. Using a combination of multiple-stage thermoelectric cooling and water cooling, the operating temperature of a laser diode is lowered to -64 °C, more than 85 °C below the ambient temperature. The laser system integrates temperature and diffraction grating feedback tunability for coarse and fine wavelength adjustments, respectively. For two different diode models, single-mode operation is achieved with 38 mW output power at 616.8 nm and 69 mW at 622.6 nm, more than 15 nm below their ambient temperature free-running wavelengths. The ECDL design can be used for diodes of any available wavelength, allowing individual diodes to be tuned continuously over tens of nanometers and extending the wavelength coverage of commercial laser diodes.

  15. Comparison between sequentional treatment with diode and alexandrite lasers versus alexandrite laser alone in the treatment of hirsutism.

    PubMed

    Nilforoushzadeh, Mohammad Ali; Naieni, Farahnaz Fatemi; Siadat, Amir Hossein; Rad, Leila

    2011-11-01

    Laser systems that are commonly used for the treatment of hirsutism include the ruby laser (694 nm), the diode laser (800 nm), the alexandrite laser (755 nm) and the Nd:YAG laser (1084 nm). The diode laser and alexandrite laser are considered effective in treatment of hirsutism in dark-skinned patients. The response of hairs to these laser systems is variable and not complete. In this study, we compared the efficacy of these two laser systems for permanent hair removal. This was a randomized, controlled clinical trial that was performed with women of the age range 15-45 years old. After obtaining informed consent, the samples were randomized into two groups using random allocation software. The first group was treated with alexandrite laser alone (four sessions, two months apart). The second group was treated sequentially with diode laser for the first two sessions and alexandrite laser for the next two sessions. Overall, 111 patients (57 patients in the alexandrite laser group and 54 patients in the sequential diode-alexandrite laser group) were evaluated. There was no significant difference regarding mean of hair reduction between the two groups during the courses of treatment. Except for the first session, there was no significant difference regarding percent of patient satisfaction between the two groups (P value >0.05). Comparison between the two groups showed no significant difference one month, three months and six months after the last treatment (P value >0.05). Regarding the results of our study, there is no significant difference between sequential treatment with diode and alexandrite lasers versus alexandrite laser alone in the treatment of hirsutism. We suggest that in further studies, the efficacy of sequential treatment with other laser systems is evaluated against single treatment methods.

  16. Design and optimization of the combination film in 10kW diode laser cladding source

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-bo; Lin, Xing-chen; Hao, Ming-ming; Zhang, Jin-sheng; Ning, Yong-qiang

    2015-08-01

    According to the special requirements of combination film in 10kW diode laser cladding source, the polarization combination film at 915nm was designed and grew. Film system is designed at different film materials based on the design theory. The non-QWOT film is optimized using the needle optimization and double sided coating by Optilayer software. The film was used in the 10kW diode laser source after high temperature aging testing. The film formed by Ta2O5 is very stable under IBAD, which can meet the reliability of 10kW diode laser cladding source in industry

  17. Method and system for powering and cooling semiconductor lasers

    SciTech Connect

    Telford, Steven J; Ladran, Anthony S

    2014-02-25

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  18. Photoluminescence excitation measurements using pressure-tuned laser diodes

    SciTech Connect

    Bercha, Artem; Ivonyak, Yurii; Mędryk, Radosław; Trzeciakowski, Witold A. Dybała, Filip; Piechal, Bernard

    2015-06-15

    Pressure-tuned laser diodes in external cavity were used as tunable sources for photoluminescence excitation (PLE) spectroscopy. The method was demonstrated in the 720 nm-1070 nm spectral range using a few commercial laser diodes. The samples for PLE measurements were quantum-well structures grown on GaAs and on InP. The method is superior to standard PLE measurements using titanium sapphire laser because it can be extended to any spectral range where anti-reflection coated laser diodes are available.

  19. Theoretical model for frequency locking a diode laser with a Faraday cell

    NASA Technical Reports Server (NTRS)

    Wanninger, P.; Shay, T. M.

    1992-01-01

    A new method was developed for frequency locking a diode lasers, called 'the Faraday anomalous dispersion optical transmitter (FADOT) laser locking', which is much simpler than other known locking schemes. The FADOT laser locking method uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. The FADOT method is vibration insensitive and exhibits minimal thermal expansion effects. The system has a frequency pull in the range of 443.2 GHz (9 A). The method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters.

  20. Tunable, diode side-pumped Er: YAG laser

    DOEpatents

    Hamilton, Charles E.; Furu, Laurence H.

    1997-01-01

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 .mu.m, and is tunable over a 6 nm range near about 2.936 .mu.m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 .mu.m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 .mu.m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems.

  1. Tunable, diode side-pumped Er:YAG laser

    DOEpatents

    Hamilton, C.E.; Furu, L.H.

    1997-04-22

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.

  2. Computer-Assisted Experiments with a Laser Diode

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2011-01-01

    A laser diode from an inexpensive laser pen (laser pointer) is used in simple experiments. The radiant output power and efficiency of the laser are measured, and polarization of the light beam is shown. The "h/e" ratio is available from the threshold of spontaneous emission. The lasing threshold is found using several methods. With a…

  3. Laser diode ignition characteristics of Zirconium Potassium Perchlorate (ZPP)

    NASA Technical Reports Server (NTRS)

    Callaghan, Jerry D.; Tindol, Scot

    1993-01-01

    Hi-Shear Technology, Corp., (HSTC) has designed and built a Laser equivalent NASA Standard Initiator (LNSI). Langlie tests with a laser diode output initiating ZPP were conducted as a part of this effort. The test parameters include time to first pressure, laser power density requirements, and ignition time. The data from these laser tests on ZPP are presented.

  4. High power laser diodes for the NASA direct detection laser transceiver experiment

    NASA Technical Reports Server (NTRS)

    Seery, Bernard D.; Holcomb, Terry L.

    1988-01-01

    High-power semiconductor laser diodes selected for use in the NASA space laser communications experiments are discussed. The diode selection rationale is reviewed, and the laser structure is shown. The theory and design of the third mirror lasers used in the experiments are addressed.

  5. Diode-pumped continuous-wave Nd:glass laser

    NASA Technical Reports Server (NTRS)

    Kozlovsky, W. J.; Fan, T. Y.; Byer, R. L.

    1986-01-01

    The paper reports on diode-laser pumping of monolithic Nd:glass laser oscillators. End pumping with a single-stripe diode laser, a threshold of 2.2 mW, and a slope efficiency of 42 percent were observed on a 2-mm-long oscillator with a mode radius of 35 microns. The oscillator generated 2.5 mW of single-ended output power in many axial modes.

  6. Innovative Facet Passivation for High-Brightness Laser Diodes

    DTIC Science & Technology

    2016-02-05

    Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 high-power laser diodes, catastrophic optical damage, high energy lasers REPORT...factor bar) desired for military high energy lasers (HELs). COD of the front facet (laser mirror) is the main failure mechanism that constrains scaling... energy lasers (HELs). COD of the front facet (laser mirror) is the main failure mechanism that constrains scaling LD power by 10X over the SOA to 600 W

  7. A compact multi-wavelength optoacoustic system based on high-power diode lasers for characterization of double-walled carbon nanotubes (DWCNTs) for biomedical applications

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; de Varona, Omar; Escudero, Pedro; Carpintero del Barrio, Guillermo; Osiński, Marek; Lamela Rivera, Horacio

    2015-06-01

    During the last decade, Optoacoustic Imaging (OAI), or Optoacoustic Tomography (OAT), has evolved as a novel imaging technique based on the generation of ultrasound waves with laser light. OAI may become a valid alternative to techniques currently used for the detection of diseases at their early stages. It has been shown that OAI combines the high contrast of optical imaging techniques with high spatial resolution of ultrasound systems in deep tissues. In this way, the use of nontoxic biodegradable contrast agents that mark the presence of diseases in near-infrared (NIR) wavelengths range (0.75-1.4 um) has been considered. The presence of carcinomas and harmful microorganisms can be revealed by means of the fluorescence effect exhibited by biopolymer nanoparticles. A different approach is to use carbon nanotubes (CNTs) which are a contrast agent in NIR range due to their absorption characteristics in the range between 800 to 1200 nm. We report a multi-wavelength (870 and 905 nm) laser diode-based optoacoustic (OA) system generating ultrasound signals from a double-walled carbon nanotubes (DWCNTs) solution arranged inside a tissue-like phantom, mimicking the scattering of a biological soft tissue. Optoacoustic signals obtained with DWCNTs inclusions within a tissue-like phantom are compared with the case of ink-filled inclusions, with the aim to assess their absorption. These measurements are done at both 870 and 905 nm, by using high power laser diodes as light sources. The results show that the absorption is relatively high when the inclusion is filled with ink and appreciable with DWCNTs.

  8. Microlens frames for laser diode arrays

    DOEpatents

    Skidmore, Jay A.; Freitas, Barry L.

    1999-01-01

    Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter.

  9. Microlens frames for laser diode arrays

    DOEpatents

    Skidmore, J.A.; Freitas, B.L.

    1999-07-13

    Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter. 12 figs.

  10. Active stabilization of a diode laser injection lock.

    PubMed

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  11. Active stabilization of a diode laser injection lock

    NASA Astrophysics Data System (ADS)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  12. Linewidth-tunable laser diode array for rubidium laser pumping

    SciTech Connect

    Li Zhiyong; Tan Rongqing; Xu Cheng; Li Lin

    2013-02-28

    To optimise the pump source for a high-power diodepumped rubidium vapour laser, we have designed a laser diode array (LDA) with a narrowed and tunable linewidth and an external cavity formed by two volume Bragg gratings (VBGs). Through controlling the temperature differences between the two VBGs, the LDA linewidth, which was 1.8 nm before mounting the two VBGs, was tunable from 100 pm to 0.2 nm, while the output power changed by no more than 4 %. By changing simultaneously the temperature in both VBGs, the centre wavelength in air of the linewidth-tunable LDA was tunable from 779.40 nm to 780.05 nm. (control of laser radiation parameters)

  13. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  14. New class of compact diode pumped sub 10-fs lasers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Le, T.; Müller, A.; Sumpf, B.; Jensen, O. B.; Hansen, A. K.; Andersen, P. E.

    2016-03-01

    Diode-pumping Ti:sapphire lasers promises a new approach to low-cost femtosecond light sources. Thus in recent years much effort has been taken just to overcome the quite low power and low beam qualities of available green diodes to obtain output powers of several hundred milliwatts from a fs-laser. In this work we present an alternative method by deploying frequency-doubled IR diodes with good beam qualities to pump fs-lasers. The revolutionary approach allows choosing any pump wavelengths in the green region and avoids complicated relay optics for the diodes. For the first time we show results of a diode-pumped 10 fs-laser and how a single diode setup can be integrated into a 30 x 30 cm2 fs-laser system generating sub 20 fs laser pulses with output power towards half a Watt. This technology paves the way for a new class of very compact and cost-efficient fs-lasers for life science and industrial applications.

  15. Deep ultraviolet light-emitting and laser diodes

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Asif, Fatima; Muhtadi, Sakib

    2016-02-01

    Nearly all the air-water purification/polymer curing systems and bio-medical instruments require 250-300 nm wavelength ultraviolet light for which mercury lamps are primarily used. As a potential replacement for these hazardous mercury lamps, several global research teams are developing AlGaN based Deep Ultraviolet (DUV) light emitting diodes (LEDs) and DUV LED Lamps and Laser Diodes over Sapphire and AlN substrates. In this paper, we review the current research focus and the latest device results. In addition to the current results we also discuss a new quasipseudomorphic device design approach. This approach which is much easier to integrate in a commercial production setting was successfully used to demonstrate UVC devices on Sapphire substrates with performance levels equal to or better than the conventional relaxed device designs.

  16. Short range laser obstacle detector. [for surface vehicles using laser diode array

    NASA Technical Reports Server (NTRS)

    Kuriger, W. L. (Inventor)

    1973-01-01

    A short range obstacle detector for surface vehicles is described which utilizes an array of laser diodes. The diodes operate one at a time, with one diode for each adjacent azimuth sector. A vibrating mirror a short distance above the surface provides continuous scanning in elevation for all azimuth sectors. A diode laser is synchronized with the vibrating mirror to enable one diode laser to be fired, by pulses from a clock pulse source, a number of times during each elevation scan cycle. The time for a given pulse of light to be reflected from an obstacle and received is detected as a measure of range to the obstacle.

  17. Beam shaping design for coupling high power diode laser stack to fiber.

    PubMed

    Ghasemi, Seyed Hamed; Hantehzadeh, Mohammad-Reza; Sabbaghzadeh, Jamshid; Dorranian, Davoud; Lafooti, Majid; Vatani, Vahid; Rezaei-Nasirabad, Reza; Hemmati, Atefeh; Amidian, Ali Asghar; Alavian, Seyed Ali

    2011-06-20

    A beam shaping technique that rearranges the beam for improving the beam symmetry and power density of a ten-bar high power diode laser stack is simulated considering a stripe mirror plate and a V-Stack mirror in the beam shaping system. In this technique, the beam of a high power diode laser stack is effectively coupled into a standard 550 μm core diameter and a NA=0.22 fiber. By this technique, compactness, higher efficiency, and lower cost production of the diode are possible.

  18. 100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm.

    PubMed

    Heidt, A M; Li, Z; Sahu, J; Shardlow, P C; Becker, M; Rothhardt, M; Ibsen, M; Phelan, R; Kelly, B; Alam, S U; Richardson, D J

    2013-05-15

    We report on the generation of picosecond pulses at 2 μm directly from a gain-switched discrete-mode diode laser and their amplification in a multistage thulium-doped fiber amplifier chain. The system is capable of operating at repetition rates in the range of 2 MHz-1.5 GHz without change of configuration, delivering high-quality 33 ps pulses with up to 3.5 μJ energy and 100 kW peak power, as well as up to 18 W of average power. These results represent a major technological advance and a 1 order of magnitude increase in peak power and pulse energy compared to existing picosecond sources at 2 μm.

  19. Stable diode lasers for hydrogen precision spectroscopy

    NASA Astrophysics Data System (ADS)

    Alnis, J.; Matveev, A.; Kolachevsky, N.; Wilken, T.; Holzwarth, R.; Hänsch, T. W.

    2008-10-01

    We report on an external cavity diode laser at 972 nmstabilized to a mid-plane mounted Fabry-Perot (FP) resonator with afinesse of 400000. The 0.5 Hz optical beat note line width betweentwo similar lasers (Allan deviation 2 × 10-15) is limitedby thermal noise properties of two independent FP resonators. Thelong term drift of the FP resonator and mirror substrates made fromUltra-Low-Expansion glass (ULE) is small and can be well predictedon time intervals up to many hours if the resonator is stabilized atthe zero thermal expansion temperature Tc. Using a Peltierelement in a vacuum chamber for temperature stabilization allowsstabilization of the FP cavity to Tc which is usually below theroom temperature. Beat note measurements with a femtosecond opticalfrequency comb referenced to a H-maser during 15 hours have shown awell defined linear drift of the FP resonance frequency of about 60 mHz/s with residual frequency excursions of less than ±20 Hz.

  20. Advances in AlGaInN laser diode technology for defence, security and sensing applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Boćkowski, M.; Leszczyński, M.; Wisnieski, P.; Czernecki, R.; Targowski, G.

    2016-10-01

    Laser diodes fabricated from the AlGaInN material system is an emerging technology for defence, security and sensing applications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., 380nm, to the visible 530nm, by tuning the indium content of the laser GaInN quantum well, giving rise to new and novel applications including displays and imaging systems, free-space and underwater telecommunications and the latest quantum technologies such as optical atomic clocks and atom interferometry.

  1. Fault protection of broad-area laser diodes

    NASA Astrophysics Data System (ADS)

    Jacob, J. H.; Petr, R.; Jaspan, M. A.; Swartz, S. D.; Knapczyk, M. T.; Flusberg, A. M.; Chin, A. K.; Smilanski, I.

    2009-02-01

    Detailed reliability studies of high-power, CW, broad-area, GaAs-based laser- diodes were performed. Optical and electrical transients occurring prior to device failure by catastrophic optical-damage (COD) were observed. These transients were correlated with COD formation as observed in laser diodes with an optical window in the n-side electrode. In addition, custom electronics were designed to fault-protect the laser diodes during aging tests, i.e. each time a transient (fault) was detected, the operating current was temporarily cut off within 4μs of fault detection. The lifetime of fault-protected 808-nm laser-diode bars operated at a constant current of 120A (~130W) and 35°C exceeded similar unprotected devices by factors of 2.

  2. Early fire sensing using near-IR diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Bomse, David S.; Hovde, D. Christian; Chen, Shin-Juh; Silver, Joel A.

    2002-09-01

    We describe research leading to a trace gas detection system based on optical absorption using near-IR diode lasers that is intended to provide early warning of incipient fires. Applications include "high loss" structures such as office buildings, hospitals, hotels and shopping malls as well as airplanes and manned spacecraft where convention smoke detectors generate unacceptably high false alarm rates. Simultaneous or near-simultaneous detection of several gases (typically carbon dioxide, carbon monoxide, acetylene and hydrogen cyanide) provides high sensitivity while reducing the chance of false alarms. Continuous measurement of carbon dioxide concentrations also provides an internal check of instrument performance because ambient levels will not drop below ~350 ppm.

  3. High-power 2-μm diode-pumped Tm:YAG laser

    NASA Astrophysics Data System (ADS)

    Beach, Raymond J.; Sutton, Steven B.; Honea, Eric C.; Skidmore, Jay A.; Emanuel, Mark A.

    1996-03-01

    Using a scalable diode end-pumping technology developed at Lawrence Livermore National Laboratory we have demonstrated a compact Tm:YAG laser capable of generating greater than 50 W of cw 2 micrometer laser output power. The design and operational characteristics of this laser, which was built originally for use in assessing laser surgical techniques, are discussed. The 2 micrometer radiation produced by the 3F4 - 3H6 transition of Tm3+ has many practical applications because it is strongly absorbed by water and also because it is an 'eye-safe' wavelength. The strong absorption of 2 micrometer radiation by water makes this transition a very attractive candidate for performing laser surgical procedures as most tissue types are predominately composed of liquid water. The fact that 2 micrometer radiation is considered 'eye-safe' makes this transition attractive for laser range finding and remote sensing applications where other laser wavelengths could pose a safety hazard. At sufficiently high doping densities, Tm3+ exhibits a beneficial two-for-one quantum pump efficiency enabling well developed AlGaAs laser diode arrays to be used as efficient excitation sources. Many applications requiring 2 micrometer laser radiation such as remote sensing, laser radar, anti sensor, sensor spoofing, and OPO pumping have driven the development of diode pumped all solid state TM3+ laser systems because of their potential for efficiency, compactness, and ruggedness. Here we focus on Tm3+:YAG and the scalable diode end-pumping technology developed at LLNL which enables higher average power operation of diode pumped Tm3+ laser systems than has previously been possible. To date we have demonstrated cw operation of this laser to power levels of 51 W. The end-pumping technology used is the same as was previously used to demonstrate a 100 mJ Q-switched Nd:YLF laser. (Truncated.)

  4. Homogenization of high power diode laser beams for pumping and direct applications

    NASA Astrophysics Data System (ADS)

    Traub, Martin; Hoffmann, Hans-Dieter; Plum, Heinz-Dieter; Wieching, Kristin; Loosen, Peter; Poprawe, Reinhart

    2006-02-01

    High power diode lasers have become an established source for numerous direct applications like metal hardening and polymer welding due to their high efficiency, small size, low cost and high reliability. These laser sources are also used for efficient pumping of solid state lasers as Nd:YAG lasers. To increase the output power of diode lasers up to several kilowatts, the emitters are scaled laterally by forming a diode laser bar and vertically by forming a diode laser stack. For most applications like hardening and illumination, though, the undefined far field distribution of most commercially available high power diode laser stacks states a major drawback of these devices. As single emitters and bars can fail during their lifetime, the near field distribution does not remain constant. To overcome these problems, the intensity distribution can be homogenized by a waveguide or by microoptic devices. The waveguide segments the far field distribution by several total internal reflections, and these segments are overlaid at the waveguide's exit surface. By the microoptic device, the near field is divided into beamlets which are overlaid by a field lens. Both approaches are presented, and realized systems are described.

  5. Athermal diode-pumped laser designator modules for targeting application

    NASA Astrophysics Data System (ADS)

    Crepy, B.; Closse, G.; Da Cruz, J.; Sabourdy, D.; Montagne, J.; Nguyen, L.

    2012-10-01

    We report on the development and characteristics of athermal diode-pumped designator modules as Original Equipment Manufacturer (OEM) for targeting application. These modules are designed with the latest diode-pumped technology minimizing volume and power consumption. The core technology allows to address multi-platforms requirements such as land or airborne. Products are composed of a Laser Transmitter Unit (LTU) and Laser Electronic Unit (LEU) for modular approach.

  6. Diffraction Limited 3.15 Microns Cascade Diode Lasers

    DTIC Science & Technology

    2014-06-01

    carriers recycling by the cascade pumping . The narrow ridge 6- m-wide waveguides were defined by inductively coupled plasma (ICP) reactive ion etching...diffraction limited, diode lasers, cascade pumping REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S...of GaSb-based type-I QW diode lasers by utilizing cascade pumping scheme4. The carriers were recycled with 100% efficiency between two gain stages

  7. Optical monitoring of high power direct diode laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Farahmand, Parisa; Kovacevic, Radovan

    2014-12-01

    Laser cladding is one of the most advanced surface modification techniques which can be used to build and repair high-value components. High power direct diode laser (HPDDL) offers unique quality and cost advantages over other lasers (CO2, Nd:YAG). Especially its rectangular laser beam with top-hat intensity distribution makes HPDDL an ideal tool for large area cladding. In order to utilize this technique successfully, the development of on-line monitoring and process control is necessary. In this study, an optical monitoring system consisting of a high-speed CCD camera, a pyrometer, and an infrared camera was used to analyze the mass- and heat-transfer in the cladding process. The particle transport in flight was viewed by a high-speed CCD camera; the interaction between powder flow and laser beam was observed by an infrared camera; and the thermal behavior of the molten pool was recorded by the pyrometer and the infrared camera. The effects of the processing parameters on the laser attenuation, particle heating and clad properties were investigated based on the obtained signals. The optical monitoring method improved the understanding about mutual interrelated phenomena in the cladding process.

  8. Beam shaping for kilowatt fiber-coupled diode lasers by using one-step beam cutting-rotating of prisms.

    PubMed

    Wu, Yulong; Dong, Zhiyong; Chen, Yongqi; Qi, Yaoyao; Yuan, Xiandan; Qi, Yunfei; Xu, Li; Lin, Xuechun; Zou, Yonggang; Zhao, Pengfei

    2016-12-01

    The beam quality mismatch of laser diode stacks in both axes limits many direct applications for fiber or solid laser pumping and material processing. In this paper, a one-step cutting-rotating beam shaping system has been designed to homogenize the beam quality of two polarization-multiplexing laser diode stacks. Coupling laser diode stacks consisting of eight bars into a standard fiber with a core diameter of 600 μm and an NA of 0.22 is achieved. The simulative result shows that the system will have an output power over 1056 W. By using the technique, the production of compact and high brightness fiber-coupling diode lasers can be directly used for laser cladding and laser surface hardening processes.

  9. Diode-pumped Alexandrite ring laser for lidar applications

    NASA Astrophysics Data System (ADS)

    Munk, A.; Jungbluth, B.; Strotkamp, M.; Hoffmann, H.-D.; Poprawe, R.; Höffner, J.

    2016-03-01

    We present design and performance data of a diode-pumped Q-switched Alexandrite ring laser in the millijoule regime, which is longitudinally pumped by laser diode bar modules in the red spectral range. As a first step, a linear resonator was designed and characterized in qcw operation as well as in Q-switched operation. Based on these investigations, two separate linear cavities were set up, each with one Alexandrite crystal longitudinally pumped by one diode module. The two cavities are fused together and form a ring cavity which yields up to 6 mJ pulse burst energy in the qcw regime at 770 nm.

  10. A near-infrared acetylene detection system based on a 1.534 μm tunable diode laser and a miniature gas chamber

    NASA Astrophysics Data System (ADS)

    He, Qixin; Zheng, Chuantao; Liu, Huifang; Li, Bin; Wang, Yiding; Tittel, Frank K.

    2016-03-01

    A near-infrared (NIR) dual-channel differential acetylene (C2H2) detection system was experimentally demonstrated based on tunable diode laser absorption spectroscopy (TDLAS) technique and wavelength modulation spectroscopy (WMS) technique. A distributed feedback (DFB) laser modulated by a self-developed driver around 1.534 μm is used as light source. A miniature gas chamber with 15 cm path length is adopted as absorption pool, and an orthogonal lock-in amplifier is developed to extract the second harmonic (2f) signal. Sufficient standard C2H2 samples with different concentrations were prepared, and detailed measurements were carried out to study the detection performance. A good linear relationship is observed between the amplitude of the 2f signal and C2H2 concentration within the range of 200-10,000 ppm, and the relative measurement error is less than 5% within the whole range. A long-term monitoring lasting for 20 h on a 1000 ppm C2H2 sample was carried out, and the maximum concentration fluctuation is less than 2%. Due to the capability of using long-distance and low-loss optical fiber, the gas-cell can be placed in the filed for remote monitoring, which enables the system to have good prospects in industrial field.

  11. High performance diode lasers emitting at 780-820 nm

    NASA Astrophysics Data System (ADS)

    Bao, L.; DeVito, M.; Grimshaw, M.; Leisher, P.; Zhou, H.; Dong, W.; Guan, X.; Zhang, S.; Martinsen, R.; Haden, J.

    2012-03-01

    High power 780-820 nm diode lasers have been developed for pumping and material processing systems. This paper presents recent progress in the development of such devices for use in high performance industrial applications. A newly released laser design in this wavelength range demonstrates thermally limited >25W CW power without catastrophic optical mirror damage (COMD), with peak wallplug efficiency ~65%. Ongoing accelerated lifetesting projects a time to 5% failure of ~10 years at 5 and 8 W operating powers for 95 and 200 μm emitter widths, respectively. Preliminary results indicate the presence and competition of a random and wear-out failure mode. Fiber-coupled modules based on arrays of these devices support >100W reliable operation, with a high 56% peak efficiency (ex-fiber) and improved brightness/reliability.

  12. Multiple Isotope Magneto Optical Trap from a single diode laser

    NASA Astrophysics Data System (ADS)

    Gomez, Eduardo; Valenzuela, Victor; Hamzeloui, Saeed; Gutierrez, Monica

    2013-05-01

    We present a simple design for a Dual Isotope Magneto Optical Trap. The system requires a single diode laser, a fiber modulator and a tapered amplifier to trap and completely control both 85Rb and 87Rb. We generate all the frequencies needed for trapping both species using the fiber intensity modulator. All the frequencies are amplified simultaneously with the tapered amplifier. The position and power of each frequency is now controlled independently on the RF rather than on the optical side. This introduces an enormous simplification for laser cooling that often requires an acousto-optic modulator for each frequency. The range of frequency changes is much bigger than what is available with acousto-optic modulators since in our case is determined by the modulator bandwidth (10 GHz). Additional isotopes can be simply added by including additional RF frequencies to the modulator and extra beams for other uses can be produced the same way. Support from CONACYT, PROMEP and UASLP.

  13. Portable multiwavelength laser diode source for handheld photoacoustic devices

    NASA Astrophysics Data System (ADS)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2016-04-01

    The ageing population faces today an increase of chronic diseases such as rheumatism/arthritis, cancer and cardio vascular diseases for which appropriate treatments based on a diagnosis at an early-stage of the disease are required. Some imaging techniques are already available in order to get structural information. Within the non-invasive group, ultrasound images are common in these fields of medicine. However, there is a need for a point-of-care device for imaging smaller structures such as blood vessels that cannot be observed with purely ultrasound based devices. Photoacoustics proved to be an attractive candidate. This novel imaging technique combines pulsed laser light for excitation of tissues and an ultrasound transducer as a receptor. Introduction of this technique into the clinic requires to drastically shrink the size and cost of the expensive and bulky nanosecond lasers generally used for light emission. In that context, demonstration of ultra-short pulse emission with highly efficient laser diodes in the near-infrared range has been performed by Quantel, France. A multi-wavelength laser source as small as a hand emitted more than 1 mJ per wavelength with four different wavelengths available in pulses of about 90 ns. Such a laser source can be integrated into high sensitivity photoacoustic handheld systems due to their outstanding electrical-to-optical efficiency of about 25 %. Further work continues to decrease the pulse length as low as 40 ns while increasing the pulse energy to 2 mJ.

  14. Bistable optical devices with laser diodes coupled to absorbers of narrow spectral bandwidth.

    PubMed

    Maeda, Y

    1994-06-20

    An optical signal inverter was demonstrated with a combination of the following two effects: One is the decrease of the transmission of an Er-doped YAG crystal with increasing red shift of a laser diode resulting from an increase in the injection current, and the other is a negative nonlinear absorption in which the transmission decreases inversely with increasing laser intensity. Because a hysteresis characteristic exists in the relationship between the wavelength and the injection current of the laser diode, an optical bistability was observed in this system.

  15. Diode-Pumped, Q-Switched, Frequency-Doubling Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James R.

    1993-01-01

    Experimental Q-switched, diode-pumped, intracavity-frequency-doubling laser generates pulses of radiation at wavelength of 532 nm from excitation at 810 nm. Principal innovative feature distinguishing laser from others of its type: pulsed operation of laser at pulse-repetition frequencies higher than reported previously. Folded resonator keeps most of second-harmonic radiation away from Q-switcher, laser crystal, and laser diodes. Folding mirror highly reflective at fundamental laser wavelength and highly transmissive at second-harmonic laser wavelength. By virtue of difference of about 0.6 percent between reflectivities in two polarizations at fundamental wavelength, folding mirror favors polarized oscillation at fundamental wavelength. This characteristic desirable for doubling of frequency in some intracavity crystals.

  16. High-power diode lasers for optical communications applications

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Channin, D. J.

    1985-01-01

    High-power, single-mode, double-heterojunction AlGaAs diode lasers are being developed to meet source requirements for both fiber optic local area network and free space communications systems. An individual device, based on the channeled-substrate-planar (CSP) structure, has yielded single spatial and longitudinal mode outputs of up to 90 mW CW, and has maintained a single spatial mode to 150 mW CW. Phase-locked arrays of closely spaced index-guided lasers have been designed and fabricated with the aim of multiplying the outputs of the individual devices to even higher power levels in a stable, single-lobe, anastigmatic beam. The optical modes of the lasers in such arrays can couple together in such a way that they appear to be emanating from a single source, and can therefore be efficiently coupled into optical communications systems. This paper will review the state of high-power laser technology and discuss the communication system implications of these devices.

  17. Respiratory complications after diode-laser-assisted tonsillotomy.

    PubMed

    Fischer, Miloš; Horn, Iris-Susanne; Quante, Mirja; Merkenschlager, Andreas; Schnoor, Jörg; Kaisers, Udo X; Dietz, Andreas; Kluba, Karsten

    2014-08-01

    Children with certain risk factors, such as comorbidities or severe obstructive sleep apnea syndrome (OSAS) are known to require extended postoperative monitoring after adenotonsillectomy. However, there are no recommendations available for diode-laser-assisted tonsillotomy. A retrospective chart review of 96 children who underwent diode-laser-assisted tonsillotomy (07/2011-06/2013) was performed. Data for general and sleep apnea history, power of the applied diode-laser (λ = 940 nm), anesthesia parameters, the presence of postoperative respiratory complications and postoperative healing were evaluated. After initially uncomplicated diode-laser-assisted tonsillotomy, an adjustment of post-anesthesia care was necessary in 16 of 96 patients due to respiratory failure. Respiratory complications were more frequent in younger children (3.1 vs. 4.0 years, p = 0.049, 95 % CI -1.7952 to -0.0048) and in children who suffered from nocturnal apneas (OR = 5.00, p < 0.01, 95 % CI 1.4780-16.9152) or who suffered from relevant comorbidities (OR = 4.84, p < 0.01, 95 % CI 1.5202-15.4091). Moreover, a diode-laser power higher than 13 W could be identified as a risk factor for the occurrence of a postoperative oropharyngeal edema (OR = 3.45, p < 0.01, 95 % CI 1.3924-8.5602). Postoperative respiratory complications should not be underestimated in children with sleep-disordered breathing (SDB). Therefore, children with SDB, children with comorbidities or children younger than 3 years should be considered "at risk" and children with confirmed moderate to severe OSAS should be referred to a PICU following diode-laser-assisted tonsillotomy. We recommend a reduced diode-laser power (<13 W) to reduce oropharyngeal edema.

  18. Diode laser operating on an atomic transition limited by an isotope ⁸⁷Rb Faraday filter at 780 nm.

    PubMed

    Tao, Zhiming; Hong, Yelong; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2015-09-15

    We demonstrate an extended cavity Faraday laser system using an antireflection-coated laser diode as the gain medium and the isotope (87)Rb Faraday anomalous dispersion optical filter (FADOF) as the frequency selective device. Using this method, the laser wavelength works stably at the highest transmission peak of the isotope (87)Rb FADOF over the laser diode current from 55 to 140 mA and the temperature from 15°C to 35°C. Neither the current nor the temperature of the laser diode has significant influence on the output frequency. Compared with previous extended cavity laser systems operating at frequencies irrelevant to spectacular atomic transition lines, the laser system realized here provides a stable laser source with the frequency operating on atomic transitions for many practical applications.

  19. Catastrophic Optical Damage in High-Power, Broad-Area Laser Diodes

    NASA Astrophysics Data System (ADS)

    Chin, Aland K.; Bertaska, Rick K.

    Catastrophic optical damage (COD) is semiconductor material within the optical cavity of laser diodes that is thermally damaged by the laser light. COD results in the failure of laser diodes. The phenomena of COD in high-power, broad-area laser diodes are described along with methods to eliminate it.

  20. Temperature Gradients In Diode-pumped Alkali Lasers

    DTIC Science & Technology

    2012-01-18

    radiation from bars or stacks of diode lasers is absorbed by atomic potassium, rubidium , or cesium. Collision-induced energy transfer populates the upper...laser level, and lasing is achieved in the near-IR on the D1 (pump) line. A rubidium laser pumped by a 1.28kW diode stack with a 0.35nm spectral band...negligible, offering the potential for low waste heat loads. However, cycling of atoms by the pump beam can be >109photons/ atom -s. The energy of the spin

  1. Diode-pumped solid state laser for inertial fusion energy

    SciTech Connect

    Payne, S.A.; Krupke, W.F.; Orth, C.D.

    1994-11-01

    The authors evaluate the prospect for development of a diode-pumped solid-state-laser driver in an inertial fusion energy power plant. Using a computer code, they predict that their 1 GWe design will offer electricity at 8.6 cents/kW {center_dot} hr with the laser operating at 8.6% efficiency and the recycled power level at 31%. The results of their initial subscale experimental testbed of a diode-pumped solid state laser are encouraging, demonstrating good efficiencies and robustness.

  2. Computer Processing Of Tunable-Diode-Laser Spectra

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1991-01-01

    Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.

  3. Frequency narrowing of a 25 W broad area diode laser

    NASA Astrophysics Data System (ADS)

    Sell, J. F.; Miller, W.; Wright, D.; Zhdanov, B. V.; Knize, R. J.

    2009-02-01

    We report on the spectral narrowing of a high powered (25 W) broad area diode laser using an external cavity with a holographic diffraction grating. In a Littman-Metcalf configuration, the external cavity is able to reduce the linewidth of the diode laser to primarily a single longitudinal mode (1.8 MHz) for output powers of ≤10 W at 852 nm. Many physics applications could benefit from such high powered, narrow linewidth lasers; however both the frequency stability and the spatial profile of the output beam show room for improvement.

  4. Novel diode laser-based sensors for gas sensing applications

    NASA Technical Reports Server (NTRS)

    Tittel, F. K.; Lancaster, D. G.; Richter, D.

    2000-01-01

    The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.

  5. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H{sub 2}O mole fraction

    SciTech Connect

    Xu, Lijun Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-15

    To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  6. Photoporation and cell transfection using a violet diode laser

    NASA Astrophysics Data System (ADS)

    Paterson, L.; Agate, B.; Comrie, M.; Ferguson, R.; Lake, T. K.; Morris, J. E.; Carruthers, A. E.; Brown, C. T. A.; Sibbett, W.; Bryant, P. E.; Gunn-Moore, F.; Riches, A. C.; Dholakia, Kishan

    2005-01-01

    The introduction and subsequent expression of foreign DNA inside living mammalian cells (transfection) is achieved by photoporation with a violet diode laser. We direct a compact 405 nm laser diode source into an inverted optical microscope configuration and expose cells to 0.3 mW for 40 ms. The localized optical power density of ~1200 MW/m2 is six orders of magnitude lower than that used in femtosecond photoporation (~104 TW/m2). The beam perforates the cell plasma membrane to allow uptake of plasmid DNA containing an antibiotic resistant gene as well as the green fluorescent protein (GFP) gene. Successfully transfected cells then expand into clonal groups which are used to create stable cell lines. The use of the violet diode laser offers a new and simple poration technique compatible with standard microscopes and is the simplest method of laser-assisted cell poration reported to date.

  7. Thermally widely tunable laser diodes with distributed feedback

    SciTech Connect

    Todt, R.; Jacke, T.; Meyer, R.; Amann, M.-C.

    2005-07-11

    A thermally widely tunable buried heterostructure laser diode with distributed feedback (DFB) is demonstrated. This device requires only two tuning currents for wide quasicontinuous wavelength tuning, thereby facilitating easy and fast device calibration and control. Furthermore, being based on regular DFB laser fabrication technology, it is readily manufacturable. By using window structures instead of cleaved facets plus antireflection coatings, a regular tuning behavior has been achieved for a DFB-like widely tunable laser diode with only two tuning currents. The laser diode covers the wavelength range between 1552 and 1602 nm. Requiring side-mode suppression ratio and output power above 30 dB and 10 mW, respectively, a wavelength range of 43 nm is accessible.

  8. Thermally widely tunable laser diodes with distributed feedback

    NASA Astrophysics Data System (ADS)

    Todt, R.; Jacke, T.; Meyer, R.; Amann, M.-C.

    2005-07-01

    A thermally widely tunable buried heterostructure laser diode with distributed feedback (DFB) is demonstrated. This device requires only two tuning currents for wide quasicontinuous wavelength tuning, thereby facilitating easy and fast device calibration and control. Furthermore, being based on regular DFB laser fabrication technology, it is readily manufacturable. By using window structures instead of cleaved facets plus antireflection coatings, a regular tuning behavior has been achieved for a DFB-like widely tunable laser diode with only two tuning currents. The laser diode covers the wavelength range between 1552 and 1602 nm. Requiring side-mode suppression ratio and output power above 30 dB and 10 mW, respectively, a wavelength range of 43 nm is accessible.

  9. Feasibility of supersonic diode pumped alkali lasers: Model calculations

    SciTech Connect

    Barmashenko, B. D.; Rosenwaks, S.

    2013-04-08

    The feasibility of supersonic operation of diode pumped alkali lasers (DPALs) is studied for Cs and K atoms applying model calculations, based on a semi-analytical model previously used for studying static and subsonic flow DPALs. The operation of supersonic lasers is compared with that measured and modeled in subsonic lasers. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.

  10. High average power diode pumped solid state laser

    NASA Astrophysics Data System (ADS)

    Gao, Yue; Wang, Yanjie; Chan, Amy; Dawson, Murray; Greene, Ben

    2017-03-01

    A new generation of high average power pulsed multi-joule solid state laser system has been developed at EOS Space Systems for various space related tracking applications. It is a completely diode pumped, fully automated multi-stage system consisting of a pulsed single longitudinal mode oscillator, three stages of pre-amplifiers, two stages of power amplifiers, completely sealed phase conjugate mirror or stimulated Brillouin scattering (SBS) cell and imaging relay optics with spatial filters in vacuum cells. It is capable of generating pulse energy up to 4.7 J, a beam quality M 2 ~ 3, pulse width between 10–20 ns, and a pulse repetition rate between 100–200 Hz. The system has been in service for more than two years with excellent performance and reliability.

  11. Triggering GaAs lock-on switches with laser diode arrays

    SciTech Connect

    Loubriel, G.M.; Buttram, M.T.; Helgeson, W.D.; McLaughlin, D.L.; O'Malley, M.W.; Zutavern, F.J. ); Rosen, A.; Stabile, P.J. )

    1990-01-01

    Laser diode arrays have been used to trigger GaAs Photoconducting Semiconductor Switches (PCSS) charged to voltages of up to 60 kV and conducting currents of 580 A. The driving forces behind the use of laser diode arrays are compactness, elimination of complicated optics, and the ability to run at high repetition rates. Laser diode arrays are compactness, elimination of complicated optics, and the ability to run at high repetition rates. Laser diode arrays can trigger GaAs at high fields as the result of a new switching mode (lock-on) with very high carrier number gain. We have achieved switching of up to 10 MW in a 60 {Omega} system, with a pulse rise time of 500 ps. At 1.2 MW we have achieved repetition rates of 1 kHz with switch rise time of 500 ps for 10{sup 5} shots. The laser diode array used for these experiments delivers a 166 W pulse. In a single shot mode we have switched 4 kA with a flash lamp pumped laser and 600 A with the 166 W array. 7 refs., 5 figs.

  12. Near-IR diode laser absorption for measurement of tropospheric HO2

    NASA Technical Reports Server (NTRS)

    Stanton, Alan C.

    1994-01-01

    The possibility of using tunable lead salt diode lasers in the infrared for measurement of tropospheric HO2 has been frequently considered. Although the sensitivity of diode laser absorption has been improved through the use of high frequency detection techniques, nature has been unkind in that the HO2 absorption cross sections are weak. Even using the most optimistic assumptions about attainable path length and detectable absorbance, measurement of tropospheric HO2 by diode laser absorption in the mid-IR appears marginal. A possible alternative method for measuring HO2 is by absorption at near-infrared wavelengths. Several absorption bands of HO2 occur in the wavelength region between 1.2 and 1.6 micron due to electronic transitions and overtones of the fundamental vibrational modes. InGaAsP diode lasers operate in this wavelength region and can be used for high resolution spectroscopy in a manner analogous to the lead salt lasers. A diode laser system in the near-IR offers some advantages.

  13. Pseudo-Random Modulation of a Laser Diode for Generating Ultrasonic Longitudinal Waves

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anatasi, Robert F.

    2004-01-01

    Laser generated ultrasound systems have historically been more complicated and expensive than conventional piezoelectric based systems, and this fact has relegated the acceptance of laser based systems to niche applications for which piezoelectric based systems are less suitable. Lowering system costs, while improving throughput, increasing ultrasound signal levels, and improving signal-to-noise are goals which will help increase the general acceptance of laser based ultrasound. One current limitation with conventional laser generated ultrasound is a material s damage threshold limit. Increasing the optical power to generate more signal eventually damages the material being tested due to rapid, high heating. Generation limitations for laser based ultrasound suggests the use of pulse modulation techniques as an alternate generation method. Pulse modulation techniques can spread the laser energy over time or space, thus reducing laser power densities and minimizing damage. Previous experiments by various organizations using spatial or temporal pulse modulation have been shown to generate detectable surface, plate, and bulk ultrasonic waves with narrow frequency bandwidths . Using narrow frequency bandwidths improved signal detectability, but required the use of expensive and powerful lasers and opto-electronic systems. The use of a laser diode to generate ultrasound is attractive because of its low cost, small size, light weight, simple optics and modulation capability. The use of pulse compression techniques should allow certain types of laser diodes to produce usable ultrasonic signals. The method also does not need to be limited to narrow frequency bandwidths. The method demonstrated here uses a low power laser diode (approximately 150 mW) that is modulated by controlling the diode s drive current and the resulting signal is recovered by cross correlation. A potential application for this system which is briefly demonstrated is in detecting signals in thick

  14. Construction of an Extended Cavity Tunable Diode Laser

    NASA Astrophysics Data System (ADS)

    Deveney, Edward; Metcalf, Harold; Noe, John

    2001-03-01

    A diverse and vast amount of experiments at the forefront of experimental physics typically use diode lasers as an integral part of their arrangement. However, researchers who use unmodified commercially available diode lasers run into several complications. The laser diode that is purchased is often not of the same wavelength as is advertised; thus the researcher’s desired wavelength is not met. Because the semiconductor has such a short external cavity, it is very sensitive to the injection current, changes in room temperature, and has a large linewidth making it harder to tune. To obtain a finely tuned diode laser, temperature and current controlling of the diode laser are used in conjunction with an extended semiconductor cavity. This is achieved by mounting the hermetically sealed assembly atop a thermoelectric cooler, which uses the Peltier effect. Furthermore, the variation of the injection current may be used as an additional control for the wavelength output of the diode. The power range of 70 mW as controlled by the injection current adjusts the wavelength by a span of only 4 nanometers. The extended cavity consists of a diffraction grating adhered to a mirror mount and is used for grating feedback. That in turn is used to reduce the linewidth sufficiently enough in order to provide much better tunability. In the next three weeks, the tunable diode laser will be specifically applied to research in the areas of Second Harmonic Generation in a PPLN Crystal and Saturated Rubidium Spectroscopy. This study was supported in part by NSF grant PHY99-12312.

  15. Linear laser diode arrays for improvement in optical disk recording for space stations

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.

    1990-01-01

    The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated.

  16. The evaluation of a HgCdTe photomixer with a Tunable Diode Laser (TDL) and the evaluation of TDL's as a local oscillator in a heterodyne detection system

    NASA Technical Reports Server (NTRS)

    Harward, C. N.; Kindle, E. C.

    1977-01-01

    Heterodyne systems would be much more versatile if a broadly tunable laser, such as a semiconductor diode laser (TDL), could be used as the local oscillator (LO). Previous studies have shown that while a TDL can be used as an LO, the TDL lack sufficient power to cause the signal-to-noise ratio to be shot noise limited. The heterodyne system with a HgCdTe photodiode as the LO was characterized and the beat frequency response of the heterodyne systems was mapped out.

  17. Degradation mechanism of laser diodes for 880-nm band

    NASA Astrophysics Data System (ADS)

    DÄ browska, E.; Nakielska, M.; Kozłowska, A.; Teodorczyk, M.; KrzyŻak, K.; Sobczak, G.; Kalbarczyk, J.; MalÄ g, A.

    2013-01-01

    The laser diodes (LD) have numerous applications and promise to become key elements for next generation laser technologies. LD are usually operated under conditions of heavy thermal load. As a result, the devices are affected by aging processes leading to changes of the operation parameters, degradation and, eventually, complete failure. Degradation of high power semiconductor lasers remains a serious problem for practical application of these devices. We investigated the effect of mounting induced strain and defects on the performance of high power laser. In this paper measurements of the temperature distribution and the electroluminescence along the cavity of InGaAs quantum well lasers before and after accelerated aging processes are presented. The electro-optical parameters of the high output power laser diodes, such as emission wavelength, output power, threshold current, slope efficiency, and operating lifetime are presented too.

  18. Highly reliable high-power AlGaAs/GaAs 808 nm diode laser bars

    NASA Astrophysics Data System (ADS)

    Hülsewede, R.; Schulze, H.; Sebastian, J.; Schröder, D.; Meusel, J.; Hennig, P.

    2007-02-01

    There are strong demands at the market to increase power and reliability for 808 nm diode laser bars. Responding to this JENOPTIK Diode Lab GmbH developed high performance 808 nm diode laser bars in the AlGaAs/GaAs material system with special emphasis to high power operation and long term stability. Optimization of the epitaxy structure and improvements in the diode laser bar design results in very high slope efficiency of >1.2 W/A, low threshold current and small beam divergence in slow axis direction. Including low serial resistance the overall wall plug efficiency is up to 65% for our 20%, 30% and 50% filling factor 10 mm diode laser bars. With the JENOPTIK Diode Lab cleaving and coating technique the maximum output power is 205 W in CW operation and 377 W in QCW operation (200 μs, 2% duty cycle) for bars with 50% filling factor. These bars mounted on micro channel cooled package are showing a very high reliability of >15.000 h. Mounted on conductive cooled package high power operation at 100 W is demonstrated for more than 5000h.

  19. Welding of aluminum alloy with high power direct diode laser

    NASA Astrophysics Data System (ADS)

    Abe, Nobuyuki; Morikawa, Atsuhito; Tsukamoto, Masahiro; Maeda, Koichi; Namba, Keizo

    2003-06-01

    Characterized by high conversion efficiency, small size, light weight and a long lifetime, high power diode lasers are currently being developed for application to various types of metal fabrication, such as welding. In this report, a 4kW high power direct diode laser was used to weld aluminum alloys, which are the focus of increasing attention from the automobile industry because of their light weight, high formability and easy recyclability. The applicability of a direct diode laser to aluminum alloy bead-on plate, butt and lap-fillet welding was studied under various welding conditions. A sound bead without cracks was successfully obtained when 1 mm thick aluminum alloy was welded by bead-on welding at a speed of 12m/min. Moreover, the bead cross section was heat conduction welding type rather than the keyhole welding type of conventional laser welding. Investigation of the welding phenomena with a high-speed video camera showed no spattering or laser plasma, so there was no problem with laser plasma damaging the focusing lens despite the diode laser's short focusing distance.

  20. Design of diode-pumped solid-state laser applied in laser fuses

    NASA Astrophysics Data System (ADS)

    Deng, FangLin; Zhang, YiFei

    2005-04-01

    The function of laser fuzes which are parts of certain weapon systems is to control the blasting height of warheads. Commonly the battle environment these weapon systems are confronted with is very complicated and the tactical demand for them is very rigor, so laser fuzes equipped for them must fulfill some special technical requirements, such as high repetition rate, long ranging scope, etc. Lasers are one of key components which constitute fuze systems. Whether designed lasers are advanced and reasonable will determine whether laser fuzes can be applied in these weapon systems or not. So we adopt the novel technology of diode-pumped solid-state laser (DPSSL) to design lasers applied in fuzes. Nd:YVO4 crystal is accepted as gain material, which has wide absorption band and large absorption efficient for 808nm pumping laser. As warhead's temperature is usually very high, wider absorption band is beneficial to reduce the influence of temperature fluctuation. Passive Q-switching with Cr4+:YAG is used to reduce the power consumption farthest. Design the end-pumped microchip sandwich-architecture to decrease lasers' size and increase the reliability, further it's advantageous to produce short pulses and increase peak power of lasers. The designed DPSSL features small size and weight, high repetition rate and peak power, robustness, etc. The repetition rate is expected to reach 1 kHz; peak power will exceed 300 kW; pulse width is only 5 ns; and divergence angle of laser beams is less than 5 mrad. So DPSSL is suitable for laser fuzes as an emitter.

  1. High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel

    2003-01-01

    Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.

  2. Diode pumped alkali vapor lasers for high power applications

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.; Komashko, A.

    2008-02-01

    General Atomics has been engaged in the development of diode pumped alkali vapor lasers. We have been examining the design space looking for designs that are both efficient and easily scalable to high powers. Computationally, we have looked at the effect of pump bandwidth on laser performance. We have also looked at different lasing species. We have used an alexandrite laser to study the relative merits of different designs. We report on the results of our experimental and computational studies.

  3. Ultra high brightness laser diode arrays for pumping of compact solid state lasers and direct applications

    NASA Astrophysics Data System (ADS)

    Kohl, Andreas; Fillardet, Thierry; Laugustin, Arnaud; Rabot, Olivier

    2012-10-01

    High Power Laser Diodes (HPLD) are increasingly used in different fields of applications such as Industry, Medicine and Defense. Our significant improvements of performances (especially in power and efficiency) and a reproducible manufacturing process have led to reliable, highly robust components. For defense and security applications these devices are used predominantly for pumping of solid state lasers (ranging, designation, countermeasures, and sensors). Due to the drastically falling price per watt they are more and more replacing flash lamps as pump sources. By collimating the laser beam even with a bar to bar pitch of only 400μm. cutting edge brightness of our stacks.is achieved Due the extremely high brightness and high power density these stacks are an enabling technology for the development of compact highly efficient portable solid state lasers for applications as telemeters and designators on small platforms such as small UAVs and handheld devices. In combination with beam homogenizing optics their compact size and high efficiency makes these devices perfectly suited as illuminators for portable active imaging systems. For gated active imaging systems a very short pulse at high PRF operation is required. For this application we have developed a diode driver board with an efficiency several times higher than that of a standard driver. As a consequence this laser source has very low power consumption and low waste heat dissipation. In combination with its compact size and the integrated beam homogenizing optics it is therefore ideally suited for use in portable gated active imaging systems. The kWatt peak power enables a range of several hundred meters. The devices described in this paper mostly operate at wavelength between 800 nm and 980nm. Results from diodes operating between 1300 nm and 1550 nm are presented as well.

  4. Interference comparator for laser diode wavelength and wavelength instability measurement

    NASA Astrophysics Data System (ADS)

    Dobosz, Marek; KoŻuchowski, Mariusz

    2016-04-01

    Method and construction of a setup, which allows measuring the wavelength and wavelength instability of the light emitted by a laser diode (or a laser light source with a limited time coherence in general), is presented. The system is based on Twyman-Green interferometer configuration. Proportions of phases of the tested and reference laser's interference fringe obtained for a set optical path difference are a measure of the unknown wavelength. Optical path difference in interferometer is stabilized. The interferometric comparison is performed in vacuum chamber. The techniques of accurate fringe phase measurements are proposed. The obtained relative standard uncertainty of wavelength evaluation in the tested setup is about 2.5 ṡ 10-8. Uncertainty of wavelength instability measurement is an order of magnitude better. Measurement range of the current setup is from 500 nm to 650 nm. The proposed technique allows high accuracy wavelength measurement of middle or low coherence sources of light. In case of the enlarged and complex frequency distribution of the laser, the evaluated wavelength can act as the length master in interferometer for displacement measurement.

  5. Interference comparator for laser diode wavelength and wavelength instability measurement.

    PubMed

    Dobosz, Marek; Kożuchowski, Mariusz

    2016-04-01

    Method and construction of a setup, which allows measuring the wavelength and wavelength instability of the light emitted by a laser diode (or a laser light source with a limited time coherence in general), is presented. The system is based on Twyman-Green interferometer configuration. Proportions of phases of the tested and reference laser's interference fringe obtained for a set optical path difference are a measure of the unknown wavelength. Optical path difference in interferometer is stabilized. The interferometric comparison is performed in vacuum chamber. The techniques of accurate fringe phase measurements are proposed. The obtained relative standard uncertainty of wavelength evaluation in the tested setup is about 2.5 ⋅ 10(-8). Uncertainty of wavelength instability measurement is an order of magnitude better. Measurement range of the current setup is from 500 nm to 650 nm. The proposed technique allows high accuracy wavelength measurement of middle or low coherence sources of light. In case of the enlarged and complex frequency distribution of the laser, the evaluated wavelength can act as the length master in interferometer for displacement measurement.

  6. Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design

    NASA Astrophysics Data System (ADS)

    Patterson, Steve; Koenning, Tobias; Köhler, Bernd; Ahlert, Sandra; Bayer, Andreas; Kissel, Heiko; Müntz, Holger; Noeske, Axel; Rotter, Karsten; Segref, Armin; Stoiber, Michael; Unger, Andreas; Wolf, Paul; Biesenbach, Jens

    2012-06-01

    Advances in both diode laser design and packaging technology, particularly thermal management, are needed to enhance the brightness of fiber coupled diode lasers while maintaining the small size and light weight required for defense applications. The principles of design for high efficiency fiber coupling are briefly covered. Examples are provided of fielded and demonstrated 100 and 200 micron diameter fiber coupled packages ranging in output from a few hundred to kW-class units in fibers, to include sub-kg/kW capabilities. The demand for high-power and high-brightness fiber coupled diode laser devices is mainly driven by applications for solid-state and fiber laser pumping. The ongoing power scaling of fiber lasers requires scalable fiber-coupled diode laser devices with increased power and brightness. A modular diode laser concept combining high power, high brightness, wavelength stabilization and low weight, which is considerable concern in the SWaP trades needed to field defense systems, has been developed. In particular the defense technology requires robust but lightweight high-power diode laser sources in combination with high brightness. The heart of the concept is a specially tailored diode laser bar, with the epitaxial and lateral structures designed such that only standard fast- and slow-axis collimator lenses in combination with appropriate focusing optics are required to couple the beam into a fiber with a core diameter of 200 μm and a numerical aperture (NA) of 0.22. The spectral quality, which is an important issue especially for fiber laser pump sources, is ensured by means of Volume Holographic Gratings (VHG) for wavelength stabilization. This paper presents a detailed characterization of different diode laser sources based on the scalable modular concept. The optical output power is scaled from 180 W coupled into a 100 μm NA 0.22 fiber up to 800W coupled into a 400 μm NA 0.22 fiber. In addition we present a lightweight laser unit with an output

  7. Thermal compensator for closed-cycle helium refrigerator. [assuring constant temperature for an infrared laser diode

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Hillman, J. J. (Inventor)

    1979-01-01

    The wave length of an infrared, semiconductor laser diode having an output frequency that is dependent on the diode temperature is maintained substantially constant by maintaining the diode temperature constant. The diode is carried by a cold tip of a closed cycle helium refrigerator. The refrigerator has a tendency to cause the temperature of the cold tip to oscillate. A heater diode and a sensor diode are placed on a thermal heat sink that is the only highly conductive thermal path between the laser diode and the cold tip. The heat sink has a small volume and low thermal capacitance so that the sensing diode is at substantially the same temperature as the heater diode and substantially no thermal lag exists between them. The sensor diode is connected in a negative feedback circuit with the heater diode so that the tendency of the laser diode to thermally oscillate is virtually eliminated.

  8. Optical communication with laser diode arrays

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1984-01-01

    The performance of a direct-detection optical communication system in which the laser transmitter sends short optical pulses of selected nonoverlapping center frequencies is analysed. This modulation format, in which a single light pulse is sent in one of M time slots at one of N optical center frequencies, is referred to as color coded optical pulse position modulation (CCPPM). The optimum energy-efficiency of this system, as measured by the channel capacity in nats per photon, exceeds that of ordinary optical pulse position modulation which uses a pulsed laser of fixed optical frequency. Reliable communication at optimal energy efficiency is easily achieved through the use of modest block length Reed-Solomon codes with the code words represented as CCPPM symbols.

  9. Thermal (Silicon Diode) Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Wright, Ernest; Kegley, Jeff

    2008-01-01

    Marshall Space Flight Center s X-ray Cryogenic Facility (XRCF) has been performing cryogenic testing to 20 Kelvin since 1999. Two configurations for acquiring data from silicon diode temperature sensors have been implemented at the facility. The facility's environment is recorded via a data acquisition system capable of reading up to 60 silicon diodes. Test article temperature is recorded by a second data acquisition system capable of reading 150+ silicon diodes. The specifications and architecture of both systems will be presented.

  10. Thermal (Silicon Diode) Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey

    2008-01-01

    Marshall Space Flight Center's X-ray Calibration Facility (XRCF) has been performing cryogenic testing to 20 Kelvin since 1999. Two configurations for acquiring data from silicon diode temperature sensors have been implemented at the facility. The facility's environment is recorded via a data acquisition system capable of reading up to 60 silicon diodes. Test article temperature is recorded by a second data acquisition system capable of reading 150+ silicon diodes. The specifications and architecture of both systems will be presented.

  11. Monitoring of catalyst performance in CO2 lasers using frequency modulation spectroscopy with diode lasers

    NASA Technical Reports Server (NTRS)

    Wang, Liang-Guo; Sachse, Glen

    1990-01-01

    Closed-cycle CO2 laser operation with removal of O2 and regeneration of CO2 can be achieved by catalytic CO-O2 recombination. Both parametric studies of the optimum catalyst formulation and long-term performance tests require on line monitoring of CO, O2 and CO2 concentrations. There are several existing methods for molecular oxygen detection. These methods are either intrusive (such as electrochemical method or mass spectrometry) or very expensive (such as CARS, UV laser absorption). Researchers demonstrated a high-sensitivity spectroscopic measurement of O2 using the two-tone frequency modulation spectroscopy (FMS) technique with a near infrared GaAlAs diode laser. Besides its inexpensive cost, fast response time, nonintrusive measurements and high sensitivity, this technique may also be used to differentiate between isotopes due to its high spectroscopic resolution. This frequency modulation spectroscopy technique could also be applied for the on-line monitoring of CO and CO2 using InGaAsP diode lasers operation in the 1.55 microns region and H2O in the 1.3 microns region. The existence of single mode optical fibers at the near infrared region makes it possible to combine FMS with optical fiber technology. Optical fiber FMS is particularly suitable for making point-measurements at one or more locations in the CO2 laser/catalyst system.

  12. Hydrazine Detection with a Tunable Diode Laser Spectrometer

    NASA Technical Reports Server (NTRS)

    Houseman, John; Webster, C. R.; May, R. D.; Anderson, M. S.; Margolis, J. S.; Jackson, Julie R.; Brown, Pamela R.

    1999-01-01

    Several instruments have been developed to measure low concentrations of hydrazine but none completely meet the sensitivity requirements while satisfying additional criteria such as quick response, stable calibration, interference free operation, online operation, reasonable cost, etc. A brief review is presented of the current technology including the electrochemical cell, the ion mobility spectrometer, the mass spectrometer, and the gas chromatograph. A review of the advantages and disadvantages of these instruments are presented here. The review also includes commercially unavailable technology such as the electronic nose and the Tunable Diode Laser (TDL) IR Spectrometer. It was found that the TDL could meet the majority of these criteria including fast response, minimum maintenance, portability, and reasonable cost. An experiment was conducted to demonstrate the feasibility of such a system using an existing (non-portable) instrument. A lead-salt tunable diode laser, cooled to 85 degrees Kelvin was used to record direct absorption and second-derivative spectra of Hydrazine at several pressures to study the sensitivity to low levels of Hydrazine. Spectra of NH3 and CO2 were used for wavelength identification of the scanned region. With a pathlength of 80 m, detection sensitivities of about 1 ppb were achieved for hydrazine in dry nitrogen at a cell pressure of 100 mbar. For spectroscopic detection of Hydrazine, spectral regions including strong Ammonia or Carbon Dioxide lines must be avoided. Strong Hydrazine absorption features were identified at 940/cm showing minimal contribution from Ammonia interferences as suitable candidates for Hydrazine gas detection. For the studies reported here, the particular laser diode could only cover the narrow regions near 962/cm and 965/cm where strong Ammonia interferences were expected. However, the high resolution (0.001/cm) of the TDL spectrometer allowed individual lines of Hydrazine to be identified away from

  13. High energy diode-pumped solid-state laser development at the Central Laser Facility

    NASA Astrophysics Data System (ADS)

    Mason, Paul D.; Banerjee, Saumyabrata; Ertel, Klaus; Phillips, P. Jonathan; Butcher, Thomas; Smith, Jodie; De Vido, Mariastefania; Chekhlov, Oleg; Hernandez-Gomez, Cristina; Edwards, Chris; Collier, John

    2016-04-01

    In this paper we review the development of high energy, nanosecond pulsed diode-pumped solid state lasers within the Central Laser Facility (CLF) based on cryogenic gas cooled multi-slab ceramic Yb:YAG amplifier technology. To date two 10J-scale systems, the DiPOLE prototype amplifier and an improved DIPOLE10 system, have been developed, and most recently a larger scale system, DiPOLE100, designed to produce 100 J pulses at up to 10 Hz. These systems have demonstrated amplification of 10 ns duration pulses at 1030 nm to energies in excess of 10 J at 10 Hz pulse repetition rate, and over 100 J at 1 Hz, with optical-to-optical conversion efficiencies of up to 27%. We present an overview of the cryo-amplifier concept and compare the design features of these three systems, including details of the amplifier designs, gain media, diode pump lasers and the cryogenic gas cooling systems. The most recent performance results from the three systems are presented along with future plans for high energy DPSSL development within the CLF.

  14. Reliability of High Power Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Reliability and lifetime of quasi-CW laser diode arrays are greatly influenced by their thermal characteristics. This paper examines the thermal properties of laser diode arrays operating in long pulse duration regime.

  15. Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions.

    PubMed

    Nguyen, A-T; Wang, L-B; Schauer, M M; Torgerson, J R

    2010-05-01

    We describe an ultraviolet (uv) diode laser system for cooling trapped Yb(+) ions. Using four stages of thermoelectric cooling, 10 mW of light at 369.5 nm is obtained by cooling a 373.4-nm uv diode to approximately -20 degrees C. Frequency stabilization is provided by a diffraction grating mounted in the Littrow configuration which allows for a mode-hop free tuning range of approximately 25 GHz. In order to avoid water condensation, the diode laser and associated optics are placed inside an evacuated chamber. Saturated absorption spectroscopy utilizing an Yb hollow cathode lamp is performed. This laser system is currently being used to cool single ions in an experiment whose ultimate goal is to look for modern variation of the fine-structure constant.

  16. Application of pulsed GaAs diode lasers to spectral atmospheric monitoring and remote sensing

    NASA Astrophysics Data System (ADS)

    Pencheva, Vasilka H.; Penchev, S.; Naboko, Vassily N.; Naboko, Sergei V.

    1999-05-01

    We report new aspects of application of pulsed GaAs diode lasers, concerning absorption spectroscopy of water vapor of third oscillatory molecular overtone 8990 - 9012 angstroms, and Mie-scattering lidar signal in the 15 km range. It is accessible by the power characteristics of a system utilizing the powerful `chip-stack' GaAs diode lasers, employing optimal photodetection technique based on an analyzing system with computer operated boxcar. Data on atmospheric aerosol backscatter signal acquired by DL lidar are presented with relevance to the potential of complex atmospheric remote sensing. GaAs diode lasers, with radiation matching water vapor spectrum of absorption- coefficients of 0.5 - 5 km-1 in Beer's law, are shown feasible for DIAL monitoring of atmospheric humidity.

  17. Microchannel heatsinks for high average power laser diode arrays

    SciTech Connect

    Beach, R.; Benett, B.; Freitas, B.; Ciarlo, D.; Sperry, V.; Comaskey, B.; Emanuel, M.; Solarz, R.; Mundinger, D.

    1992-01-01

    Detailed performance results and fabrication techniques for an efficient and low thermal impedance laser diode array heatsink are presented. High duty factor or even CW operation of fully filled laser diode arrays is enabled at high average power. Low thermal impedance is achieved using a liquid coolant and laminar flow through microchannels. The microchannels are fabricated in silicon using a photolithographic pattern definition procedure followed by anisotropic chemical etching. A modular rack-and-stack architecture is adopted for the heatsink design allowing arbitrarily large two-dimensional arrays to be fabricated and easily maintained. The excellent thermal control of the microchannel cooled heatsinks is ideally suited to pump array requirements for high average power crystalline lasers because of the stringent temperature demands that result from coupling the diode light to several nanometers wide absorption features characteristic of leasing ions in crystals.

  18. Microchannel cooled heatsinks for high average power laser diode arrays

    SciTech Connect

    Bennett, W.J.; Freitas, B.L.; Ciarlo, D.; Beach, R.; Sutton, S.; Emanuel, M.; Solarz, R.

    1993-01-15

    Detailed performance results for an efficient and low impedance laser diode array heatsink are presented. High duty factor and even cw operation of fully filled laser diode arrays at high stacking densities are enabled at high average power. Low thermal impedance is achieved using a liquid coolant and laminar flow through microchannels. The microchannels are fabricated in silicon using an anisotropic chemical etching process. A modular rack-and-stack architecture is adopted for heatsink design, allowing arbitrarily large two-dimensional arrays to be fabricated and easily maintained. The excellent thermal control of the microchannel heatsinks is ideally suited to pump army requirements for high average power crystalline laser because of the stringent temperature demands are required to efficiently couple diode light to several-nanometer-wide absorption features characteristic of lasing ions in crystals.

  19. External cavity diode laser setup with two interference filters

    NASA Astrophysics Data System (ADS)

    Martin, Alexander; Baus, Patrick; Birkl, Gerhard

    2016-12-01

    We present an external cavity diode laser setup using two identical, commercially available interference filters operated in the blue wavelength range around 450 nm. The combination of the two filters decreases the transmission width, while increasing the edge steepness without a significant reduction in peak transmittance. Due to the broad spectral transmission of these interference filters compared to the internal mode spacing of blue laser diodes, an additional locking scheme, based on Hänsch-Couillaud locking to a cavity, has been added to improve the stability. The laser is stabilized to a line in the tellurium spectrum via saturation spectroscopy, and single-frequency operation for a duration of two days is demonstrated by monitoring the error signal of the lock and the piezo drive compensating the length change of the external resonator due to air pressure variations. Additionally, transmission curves of the filters and the spectra of a sample of diodes are given.

  20. High-power diode lasers operating around 1500-nm for eyesafe applications

    NASA Astrophysics Data System (ADS)

    Patterson, Steve; Leisher, Paul; Price, Kirk; Kennedy, Keith; Dong, Weimin; Grimshaw, Mike; Zhang, Shiguo; Patterson, Jason; Das, Suhit; Karlsen, Scott; Martinsen, Rob; Bell, Jake

    2008-04-01

    Er:YAG solid state lasers offer an "eye-safe" alternative to traditional Nd:YAG lasers for use in military and industrial applications such as range-finding, illumination, flash/scanning LADAR, and materials processing. These laser systems are largely based on diode pumped solid state lasers that are subsequently (and inefficiently) frequency-converted using optical parametric oscillators. Direct diode pumping of Er:YAG around 1.5 μm offers the potential for greatly increased system efficiency, reduced system complexity/cost, and further power scalability. Such applications have been driving the development of high-power diode lasers around these wavelengths. For end-pumped rod and fiber applications requiring high brightness, nLIGHT has developed a flexible package format, based on scalable arrays of single-emitter diode lasers and efficiently coupled into a 400 μm core fiber. In this format, a rated power of 25 W is reported for modules operating at 1.47 μm, with a peak electrical to optical conversion efficiency of 38%. In centimeter-bar on copper micro-channel cooler format, maximum continuous wave power in excess of 100 W at room temperature and conversion efficiency of 50% at 6C are reported. Copper heat sink conductively-cooled bars show a peak electrical-to-optical efficiency of 43% with 40 W of maximum continuous wave output power. Also reviewed are recent reliability results at 1907-nm.

  1. Overview on new diode lasers for defense applications

    NASA Astrophysics Data System (ADS)

    Neukum, Joerg

    2012-11-01

    Diode lasers have a broad wavelength range, from the visible to beyond 2.2μm. This allows for various applications in the defense sector, ranging from classic pumping of DPSSL in range finders or target designators, up to pumping directed energy weapons in the 50+ kW range. Also direct diode applications for illumination above 1.55μm, or direct IR countermeasures are of interest. Here an overview is given on some new wavelengths and applications which are recently under discussion. In this overview the following aspects are reviewed: • High Power CW pumps at 808 / 880 / 940nm • Pumps for DPAL - Diode Pumped Alkali Lasers • High Power Diode Lasers in the range < 1.0 μm • Scalable Mini-Bar concept for high brightness fiber coupled modules • The Light Weight Fiber Coupled module based on the Mini-Bar concept Overall, High Power Diode Lasers offer many ways to be used in new applications in the defense market.

  2. A Novel, Free-Space Optical Interconnect Employing Vertical-Cavity Surface Emitting Laser Diodes and InGaAs Metal-Semiconductor-Metal Photodetectors for Gbit/s RF/Microwave Systems

    NASA Technical Reports Server (NTRS)

    Savich, Gregory R.; Simons, Rainee N.

    2006-01-01

    Emerging technologies and continuing progress in vertical-cavity surface emitting laser (VCSEL) diode and metal-semiconductor-metal (MSM) photodetector research are making way for novel, high-speed forms of optical data transfer in communication systems. VCSEL diodes operating at 1550 nm have only recently become commercially available, while MSM photodetectors are pushing the limits of contact lithography with interdigitated electrode widths reaching sub micron levels. We propose a novel, free-space optical interconnect operating at about 1Gbit/s utilizing VCSEL diodes and MSM photodetectors. We report on development, progress, and current work, which are as follows: first, analysis of the divergent behavior of VCSEL diodes for coupling to MSM photodetectors with a 50 by 50 m active area and second, the normalized frequency response of the VCSEL diode as a function of the modulating frequency. Third, the calculated response of MSM photodetectors with varying electrode width and spacing on the order of 1 to 3 m as well as the fabrication and characterization of these devices. The work presented here will lead to the formation and characterization of a fully integrated 1Gbit/s free-space optical interconnect at 1550 nm and demonstrates both chip level and board level functionality for RF/microwave digital systems.

  3. Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets

    NASA Astrophysics Data System (ADS)

    Kohfeldt, Anja; Kürbis, Christian; Luvsandamdin, Erdenetsetseg; Schiemangk, Max; Wicht, Andreas; Peters, Achim; Erbert, Götz; Tränkle, Günther

    2016-04-01

    We have realized a laser platform based on GaAs diode lasers that allows for an operation in mobile exper-imental setups in harsh environments, such as on sounding rockets. The platform comes in two versions: a master-oscillator-power-amplifier and an extended cavity diode laser. Our very robust micro-optical bench has a footprint of 80 x 25 mm2. It strictly omits any movable parts. Master-oscillator-power-amplifier systems based on distributed feedback master oscillators for 767 nm and 780 nm narrow linewidth emission have been implemented by now. A continuous wave optical output power of > 1 W with a power conversion efficiency of > 25% could be achieved. The continuous tuning range of these lasers is on the order of 100 GHz, the linewidth at 10 μs is about 1 MHz. For applications demanding a narrower linewidth we have developed an extended cavity diode laser that achieves a linewidth of 100 kHz at 10 μs. These lasers achieve a continuous spectral tuning range of about 50 GHz and an continuous wave optical power up to 30 mW. The modules have been successfully vibration tested up to 29 gRMS along all three axes and passed 1500 g shocks, again along all 3 axes. Both, master-oscillator-power-amplifiers and extended cavity diode lasers, have been employed in sounding rocket experiments.

  4. Remote sensing of atmospheric trace gases by diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Kan, Ruifeng; He, Yabai; He, Ying; Zhang, Yujun; Xie, Pinhua; liu, Wenqing

    2016-04-01

    Gaseous ammonia is the most abundant alkaline trace gas in the atmosphere. In order to study its role in acid deposition and aerosol formation, as well as its influence on the regional air quality and atmospheric visibility, several instruments has been developed based on TDLAS (Tunable Diode Laser Absorption Spectroscopy) techniques. In this paper, a long open path TDLAS system and a continuous-wave CRDS (Cavity-Ring down Spectroscopy) system are presented. The long open path system has been developed for NH3 in-situ monitoring by combining wavelength modulation with harmonic detection techniques to obtain the necessary detection sensitivity. The prototype instrument has been used to monitor atmospheric NH3 concentration at an urban site near Beijing National Stadium during Beijing Olympics in 2008, and recently used to measure the fluxes of NH3 from farm fields by flux-gradient method. The detection limit for ammonia is proved approximately 3ppb for a total path length of 456m. The continuous-wave, rapidly swept CRDS system has been developed for localized atmospheric sensing of trace gases at remote sites. Passive open-path optical sensor units could be coupled by optical fiber over distances of >1 km to a single transmitter/receiver console incorporating a photodetector and a swept-frequency diode laser tuned to molecule-specific near-infrared wavelengths. A noise-limited minimum detectable mixing ratio of ~11 ppbv is attained for ammonia at atmospheric pressure. The developed instruments are deployable in agricultural, industrial, and natural atmospheric environments.

  5. Comparison of Alexandrite and Diode Lasers for Hair Removal in Dark and Medium Skin: Which is Better?

    PubMed Central

    Mustafa, Farhad Hamad; Jaafar, Mohamad Suhimi; Ismail, Asaad Hamid; Mutter, Kussay Nugamesh

    2014-01-01

    Introduction: To improve laser hair removal (LHR) for dark skin, the fluence rate reaching the hair follicle in LHR is important. This paper presents the results of a comparative study examining the function of wavelength on dark skin types using 755 nm alexandrite and 810 nm diode lasers. Methods: The structure of the skin was created using a realistic skin model by the Advanced Systems Analysis Program. Result: In this study, the alexandrite laser (755 nm) and diode laser (810 nm) beam–skin tissue interactions were simulated. The simulation results for both lasers differed. The transmission ratio of the diode laser to the dark skin dermis was approximately 4% more than that of the alexandrite laser for the same skin type. For the diode laser at skin depth z = 0.67 mm, the average transmission ratios of both samples were 36% and 27.5%, but those for the alexandrite laser at the same skin depth were 32% and 25%. Conclusion: Both lasers were suitable in LHR for dark skin types, but the diode laser was better than the alexandrite laser because the former could penetrate deeper into the dermis layer. PMID:25653820

  6. Making transmission and reflection holograms using 650 nm laser diode from laser pointer

    NASA Astrophysics Data System (ADS)

    Panin, Alexander; Brown, Eric; Martinez, Tracy; Panin, Dmitry

    2003-10-01

    We have made both transmission and reflection holograms using inexpensive set-up with a 5 mW, 650-nm diode InGaAlP laser (similar to lasers used in common red laser pointers and DVD players). The reflection holograms can be viewed both with laser sourses of light and with non-coherent moderately collimated natural sources (like Sun or light bulb). In the transmission holograms viewed with laser both real and virtual images can be seen. Our paper presents the description of experimental set-up of exposure and development techniques, and the discussion of controversial coherence length issue of laser diodes as it applies to holograms.

  7. Tunable continuous wave single-mode dye laser directly pumped by a diode laser

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Suski, M.; Furmann, B.

    2017-04-01

    In this work, a tunable continuous wave single-mode ring dye laser (a modified version of Coherent model CR 699-21), directly optically pumped by an economy-class diode laser, has been set up. The laser was operated on Coumarin 498, and its generation profile covered part of the green spectral region not easily accessible in single-mode operation. The performance of the laser in both broad-band and single-mode operation regimes was studied. It was proved that optical pumping by diode lasers allows one to obtain single-mode operation of dye lasers that is sufficiently stable for high-resolution spectroscopy applications.

  8. Comparison of violet diode laser with CO II laser in surgical performance of soft tissues

    NASA Astrophysics Data System (ADS)

    Hatayama, H.; Kato, J.; Inoue, A.; Akashi, G.; Hirai, Y.

    2007-02-01

    The violet diode laser (405nm) has recently begun to be studied for surgical use and authors reported the soft tissue could be effectively incised by irradiation power of even less than 1W. The wavelength of this laser is highly absorbed by hemoglobin, myoglobin or melanin pigment. Cutting or ablating soft tissues by lower irradiation power might be preferable for wound healing. The CO II laser is known to be preferable for low invasive treatment of soft tissues and widely used. The CO II laser light (10.6μm) is highly absorbed by water and proper for effective ablation of soft tissues. In this paper, we report the comparison of the violet diode laser with the CO II laser in surgical performance of soft tissues. Tuna tissue was used as an experimental sample. In the case of the violet diode laser, extensive vaporization of tissue was observed after the expansion of coagulation. Carbonization of tissue was observed after the explosion. On the other hand, consecutive vaporization and carbonization were observed immediately after irradiation in the case of CO II laser. The violet diode laser could ablate tissue equivalently with the CO II laser and coagulate larger area than the CO II laser. Therefore the violet diode laser might be expectable as a surgical tool which has excellent hemostatis.

  9. Characteristic of laser diode beam propagation through a collimating lens.

    PubMed

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  10. Gummy Smile Correction with Diode Laser: Two Case Reports

    PubMed Central

    Narayanan, Mahesh; Laju, S; Erali, Susil M; Erali, Sunil M; Fathima, Al Zainab; Gopinath, P V

    2015-01-01

    Beautification of smiles is becoming an everyday requirement in dental practice. Apart from teeth, gingiva also plays an important role in smile esthetics. Excessive visualization of gingiva is a common complaint among patients seeking esthetic treatment. A wide variety of procedures are available for correction of excessive gum display based on the cause of the condition. Soft tissue diode laser contouring of gingiva is a common procedure that can be undertaken in a routine dental setting with excellent patient satisfaction and minimal post-operative sequale. Two cases of esthetic crown lengthening with diode laser 810 nm are presented here. PMID:26668491

  11. Arrangement for damping the resonance in a laser diode

    NASA Technical Reports Server (NTRS)

    Katz, J.; Yariv, A.; Margalit, S. (Inventor)

    1985-01-01

    An arrangement for damping the resonance in a laser diode is described. This arrangement includes an additional layer which together with the conventional laser diode form a structure (35) of a bipolar transistor. Therein, the additional layer serves as the collector, the cladding layer next to it as the base, and the active region and the other cladding layer as the emitter. A capacitor is connected across the base and the collector. It is chosen so that at any frequency above a certain selected frequency which is far below the resonance frequency the capacitor impedance is very low, effectively shorting the base to the collector.

  12. Blue laser diode (LD) and light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Bergh, Arpad A.

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.

  13. Diode Pumped Alkali Vapor Lasers - A New Pathway to High Beam Quality at High Average Power

    SciTech Connect

    Page, R H; Boley, C D; Rubenchik, A M; Beach, R J

    2005-05-06

    Resonance-transition alkali-vapor lasers have only recently been demonstrated [1] but are already attracting considerable attention. Alkali-atom-vapor gain media are among the simplest possible systems known, so there is much laboratory data upon which to base performance predictions. Therefore, accurate modeling is possible, as shown by the zero- free-parameter fits [2] to experimental data on alkali-vapor lasers pumped with Ti:sapphire lasers. The practical advantages of two of the alkali systems--Rb and Cs--are enormous, since they are amenable to diode-pumping [3,4]. Even without circulating the gas mixture, these lasers can have adequate cooling built-in owing to the presence of He in their vapor cells. The high predicted (up to 70%) optical-to-optical efficiency of the alkali laser, the superb (potentially 70% or better) wall-plug efficiency of the diode pumps, and the ability to exhaust heat at high temperature (100 C) combine to give a power-scalable architecture that is lightweight. A recent design exercise [5] at LLNL estimated that the system ''weight-to-power ratio'' figure of merit could be on the order of 7 kg/kW, an unprecedented value for a laser of the 100 kW class. Beam quality is expected to be excellent, owing to the small dn/dT value of the gain medium. There is obviously a long way to go, to get from a small laser pumped with a Ti:sapphire or injection-seeded diode system (of near-perfect beam quality, and narrow linewidth) [1, 4] to a large system pumped with broadband, multimode diode- laser arrays. We have a vision for this technology-development program, and have already built diode-array-pumped Rb lasers at the 1 Watt level. A setup for demonstrating Diode-array-Pumped Alkali vapor Lasers (DPALs) is shown in Figure 1. In general, use of a highly-multimode, broadband pump source renders diode-array-based experiments much more difficult than the previous ones done with Ti:sapphire pumping. High-NA optics, short focal distances, and short

  14. Next generation high-brightness diode lasers offer new industrial applications

    NASA Astrophysics Data System (ADS)

    Timmermann, Andre; Meinschien, Jens; Bruns, Peter; Burke, Colin; Bartoschewski, Daniel

    2008-02-01

    So far, diode laser systems could not compete against CO II-lasers or DPSSL in industrial applications like marking or cutting due to their lower brightness. Recent developments in high-brightness diode laser bars and beam forming systems with micro-optics have led to new direct diode laser applications. LIMO presents 400W output from a 200μm core fibre with an NA of 0.22 at one wavelength. This is achieved via the combination of newly designed laser diode bars on passive heat sinks coupled with optimized micro-optical beam shaping. The laser is water cooled with a housing size of 375mm x 265mm x 70mm. The applications for such diode laser modules are mainly in direct marking, cutting and welding of metals and other materials, but improved pumping of fibre lasers and amplifiers is also possible. The small spot size leads to extremely high intensities and therefore high welding speeds in cw operation. For comparison: The M2 of the fibre output is 70, which gives a comparable beam parameter product (22mm*mrad) to that of a CO II laser with a M2 of 7 because of the wavelength difference. Many metals have a good absorption within the wavelength range of the laser diodes (NIR, 808nm to 980nm), which permits the cutting of thin sheets of aluminium or steel with a 200W version of this laser. First welding tests show reduced splatters and pores owing to the optimized process behaviour in cw operation with short wavelengths. The availability of a top-hat profile proves itself to be advantageous compared to the traditional Gaussian beam profiles of fibre, solid-state and gas lasers in that the laser energy is evenly distributed over the working area. For the future, we can announce an increase of the output power up to 1200W out of a 200μm fibre (0.22 NA). This will be achieved by further sophistication and optimisation of the coupling technique and the coupling of three wavelengths. The beam parameter product will then remain at 22mm*mrad with a power density of 3.8 MW

  15. Laser assisted die bending: a new application of high power diode lasers

    NASA Astrophysics Data System (ADS)

    Schuöcker, D.; Schumi, T.; Spitzer, O.; Bammer, F.; Schuöcker, G.; Sperrer, G.

    2015-02-01

    Nowadays high power lasers are mainly used for cutting of sheet metals, for welding, hardening and rapid prototyping. In the forming of sheet metals as bending or deep drawing lasers are not used. Nevertheless a few years ago a new application of high power lasers has been invented, where bending of materials that break at room temperature becomes possible by heating them along the bending edge with high power lasers thus allowing their treatment without cracks and rupture. For this purpose a large number of diode lasers are arranged in the bottom tool of a bending machine (a V-shaped die) which heat up the initially flat sheet metal during the bending process what is performed by pressing it into the die with a knife shaped upper tool where due to the laser heating the material is softened and thus cracks are avoided. For the technical realization of the new process of laser assisted die bending, modules equipped with numerous laser diodes and a total beam power of 2,5 kW are used. The light emitted by these modules enters a tool with a length of 15cm and is deflected towards the workpiece. By using ten of these modules with adjacent dies and by integrating those in a bending press a bending edge of sheet metals with a length of 1500mm can be realized. Such a bending press with laser assistance also needs energization with a power of practically 50kW, a respective water flow, a heat exchanger system and also a control for all functions of this system. Special measures have also been developed to avoid radiating of those tools that are not covered by a workpiece in the case of bending edges shorter than the full length of the bending tools whereas individual short circuiting of diode modules can be performed. Specific measures to ensure a safe operation without any harm to the operational person have been realized. Exploitation of the bending process has been carried out for titanium, where material thicknesses up to 3mm have been bent successfully.

  16. Further development of high-power pump laser diodes

    NASA Astrophysics Data System (ADS)

    Schmidt, Berthold; Lichtenstein, Norbert; Sverdlov, Boris; Matuschek, Nicolai; Mohrdiek, Stefan; Pliska, Tomas; Mueller, Juergen; Pawlik, Susanne; Arlt, Sebastian; Pfeiffer, Hans-Ulrich; Fily, Arnaud; Harder, Christoph

    2003-12-01

    AlGaAs/InGaAs based high power pump laser diodes with wavelength of around 980 nm are key products within erbium doped fiber amplifiers (EDFA) for today's long haul and metro-communication networks, whereas InGaAsP/InP based laser diodes with 14xx nm emission wavelength are relevant for advanced, but not yet widely-used Raman amplifiers. Due to the changing industrial environment cost reduction becomes a crucial factor in the development of new, pump modules. Therefore, pump laser chips were aggressively optimized in terms of power conversion and thermal stability, which allows operation without active cooling at temperatures exceeding 70°C. In addition our submarine-reliable single mode technology was extended to high power multi-mode laser diodes. These light sources can be used in the field of optical amplifiers as well as for medical, printing and industrial applications. Improvements of pump laser diodes in terms of power conversion efficiency, fiber Bragg grating (FBG) locking performance of single mode devices, noise reduction and reliability will be presented.

  17. Using the diode laser in the lower labial frenum removal

    PubMed Central

    GARGARI, M.; AUTILI, N.; PETRONE, A.; PRETE, V.

    2012-01-01

    Summary Using the diode laser in the lower labial frenum removal. Objective The aim of this study is to assess the advantages of the use of diode laser to removal inferior labial frenum. Methods The treatment with the diode laser was proposed to a female patient of 32 years old in good general health having an abnormal inferior labial frenum that causes retracting of the gingival margin. The incision was carried out with diode laser at a wavelength of 940 nm and was removed the frenum mucosa and the deep tissue constitute of connective fiber and muscle fiber. Before the surgery wasn’t used the local anesthetic and after the cutting wasn’t necessary the use of suture. Results The wound had a good healing without scar. The patient didn’t have pain and bleeding during the healing and she didn’t report complications. It wasn’t necessary the use of antibiotic and anti-inflammatory. Conclusions The use of lasers has proved effective in the removal of labial frenum because it offers several advantages for the patient than traditional surgery. PMID:23285407

  18. High brightness laser systems incorporating advanced laser bars

    NASA Astrophysics Data System (ADS)

    Strohmaier, Stephan; Vethake, Thilo; Gottdiener, Mark; Wunderlin, Jens; Negoita, Viorel; Li, Yufeng; Barnowski, Tobias; Gong, Tim; An, Haiyan; Treusch, Georg

    2013-02-01

    The performance of high power and high brightness systems has been developing and is developing fast. In the multi kW regime both very high spatial and spectral brightness systems are emerging. Also diode laser pumped and direct diode lasers are becoming the standard laser sources for many applications. The pump sources for thin Disk Laser systems at TRUMPF Photonics enabled by high power and efficiency laser bars are becoming a well established standard in the industry with over two thousand 8 kW Disk Laser pumps installed in TruDisk systems at the customer site. These systems have proven to be a robust and reliable industrial tool. A further increase in power and efficiency of the bar can be easily used to scale the TruDisk output power without major changes in the pump source design. This publication will highlight advanced laser systems in the multi kW range for both direct application and solid state laser pumping using specifically tailored diode laser bars for high spatial and/or high spectral brightness. Results using wavelength stabilization techniques suitable for high power CW laser system applications will be presented. These high power and high brightness diode laser systems, fiber coupled or in free space configuration, depending on application or customer need, typically operate in the range of 900 to 1070 nm wavelength.

  19. Tunable Diode Laser Applications To Cigarette Smoke Analysis

    NASA Astrophysics Data System (ADS)

    Vilcins, Gunars; Harward, Charles N.; Parrish, Milton E.; Forrest, Gary T.

    1983-11-01

    High resolution infrared tunable diode laser spectroscopy (TDL) has been applied to the study of cigarette smoke for qualitative and quantitative determinations involved in tobacco blend and cigarette filter developments. As examples of the different types of application of this work, several TDL studies are presented. The measurements of smoke components on a puff-by-puff basis in confined sample chambers and flowing streams were used to study the smoke component deliveries and the effects of filter dilution. The study of isotopes generated during combustion of chemically treated tobaccos was another application of the TDL system to complex gas mixtures without prior separation of compo-nents. The application of the TDL to the study of cigarette filters and smoke delivery simultaneously was demonstrated by using two well resolved absorption lines of two different gases which occur on a single TDL wavelength scan.

  20. Diagnostics of an argon arcjet plume with a diode laser.

    PubMed

    Zhang, F Y; Komurasaki, K; Iida, T; Fujiwara, T

    1999-03-20

    The diode-laser absorption technique was applied for simultaneous velocity and temperature measurements of an argon plume exhausted by an arcjet. The Ar I absorption line at 811.531 nm was taken as the center absorption line. The velocity and the temperature were derived from the Doppler shift in the absorption profiles and the full width at half-maximum of the plume absorption profile, respectively. From the measured plume velocity and temperature, the total enthalpy of the exhausted plume, the thrust efficiency, and the thermal efficiency of the arcjet were derived, and the performance of the arcjet was examined. The results are demonstrated to agree with results derived by other methods, and the technique can be applied to the measurement of other arcjet systems without much modification.

  1. Pulsed diode laser-based monitor for singlet molecular oxygen

    PubMed Central

    Lee, Seonkyung; Zhu, Leyun; Minhaj, Ahmed M.; Hinds, Michael F.; Vu, Danthu H.; Rosen, David I.; Davis, Steven J.; Hasan, Tayyaba

    2010-01-01

    Photodynamic therapy (PDT) is a promising cancer treatment. PDT uses the affinity of photosensitizers to be selectively retained in malignant tumors. When tumors, pretreated with the photosensitizer, are irradiated with visible light, a photochemical reaction occurs and tumor cells are destroyed. Oxygen molecules in the metastable singlet delta state O2(1Δ) are believed to be the species that destroys cancerous cells during PDT. Monitoring singlet oxygen produced by PDT may lead to more precise and effective PDT treatments. Our approach uses a pulsed diode laser-based monitor with optical fibers and a fast data acquisition system to monitor singlet oxygen during PDT. We present results of in vitro singlet oxygen detection in solutions and in a rat prostate cancer cell line as well as PDT mechanism modeling. PMID:18601555

  2. Free-space and underwater GHz data transmission using AlGaInN laser diode technology

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Boćkowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.

    2016-05-01

    Laser diodes fabricated from the AlGaInN material system is an emerging technology for defence and security applications; in particular for free space laser communication. Conventional underwater communication is done acoustically with very slow data rates, short reach, and vulnurable for interception. AlGaInN blue-green laser diode technology allows the possibility of both airbourne links and underwater telecom that operate at very fast data rates (GHz), long reach (100's of metres underwater) and can also be quantum encrypted. The latest developments in AlGaInN laser diode technology are reviewed for defence and security applications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with optical powers of <100mW. Visible light communications at high frequency (up to 2.5 Gbit/s) using a directly modulated 422nm Galliumnitride (GaN) blue laser diode is reported in free-space and underwater.

  3. Temperature dependence of a diode-pumped cryogenic Er:YAG laser.

    PubMed

    Ter-Gabrielyan, Nikolay; Dubinskii, Mark; Newburgh, G Alex; Michael, Arockiasamy; Merkle, Larry D

    2009-04-27

    We report the laser performance of resonantly diode-pumped Er:YAG from liquid nitrogen temperature to above room temperature. Relative to incident pump power, the best performance was observed at approximately 160 K. Spectroscopy and modeling show that this is due primarily to the changing efficiency of diode pump absorption as the absorption lines broaden with temperature. However, the physics of the Er:YAG system indicates that even with arbitrarily narrow pump linewidth the most efficient laser performance should occur at a temperature somewhat above 77 K. The causes of the temperature dependence are at least qualitatively understood.

  4. Generation Of 369.4-Nanometers Second Harmonic From A Diode Laser

    NASA Technical Reports Server (NTRS)

    Williams, Angelyn P.; Maleki, Lutfollah

    1995-01-01

    Experimental laser system features polarization feedback scheme maintaining frequency lock. Generates light at wavelength of 369.4 nanometers by second-harmonic generation from 738.8-nanometers laser diode. System prototype of source of 369.4-nanometers radiation used to optically pump 2S1/2 ' 2P1/2 transition in 171Yb+ ions in lightweight, low-power trapped-ion frequency-standard apparatus.

  5. Observation of dynamic wavelength shifts of a four-beam laser diode and study of its adaptability to optical heads.

    PubMed

    Shinoda, M; Kime, K

    1995-04-01

    Dynamic wavelength shifts for a four-beam laser diode were observed with a streak camera system. The wavelength shift does not exceed 2 nm for pulsed laser beam operation at a bottom power of 5 mW and a peak power of 40 mW. For a 5-mW continuous operation laser beam, the induced wavelength shift in the presence of another laser beam under the above pulse condition does not exceed 1 nm. The observed wavelength shifts are small enough for practical use, and this four-beam laser diode can be successfully applied to multibeam optical heads for parallel data processing.

  6. High-power diode laser versus electrocautery surgery on human papillomavirus lesion treatment.

    PubMed

    Baeder, Fernando Martins; Santos, Maria Teresa Botti R; Pelino, Jose Eduardo Pelizon; Duarte, Danilo Antonio; Genovese, Walter Joao

    2012-05-01

    The use of high-power lasers has facilitated and improved human papillomavirus (HPV) treatment protocols and has also become very popular in recent years. This application has been more frequently used in hospitals, especially in gynecology. The present study aimed to evaluate the effects of high-power diode laser to remove oral lesions caused by HPV and the consequent effects on virus load following the wound tissue healing process compared with one of the most conventional surgical techniques involving electrocautery. Surgeries were performed on 5 patients who had 2 distinct lesions caused by HPV. All patients were submitted to both electrocautery and high-power diode laser. Following a 20-day period, when the area was healed, sample material was collected through curettage for virus load quantitative analysis.Observation verified the presence of virus in all the samples; however, surgeries performed with the laser also revealed a significant reduction in virus load per cell compared with those performed with electrocautery. The ease when handling the diode laser, because of the flexibility of its fibers and precision of its energy delivery system, provides high-accuracy surgery, which facilitates the treatment of large and/or multifocal lesions. The use of high-power diode laser is more effective in treatment protocols of lesions caused by HPV.

  7. 3 μm diode-pumped solid state erbium laser for cataract surgery

    NASA Astrophysics Data System (ADS)

    Ernst, Holger; Ertmer, Wolfgang; Lubatschowski, Holger

    2003-06-01

    To improve the efficiency of laser phacoemulsification we developed a compact, high-repetition-rate, high-average-power, diode-pumped, 2.94 μm TIR-cavity Er:YAG laser system. Laser parameters of 19.4% slope efficiency, 5 W of average output power at up to 300 Hz repetition rate and more than 1.5 W at 1 kHz are demonstrated. The special design results in low thermal lenses of 1.9 Dpt/W. This is a good condition for high laser system scalability.

  8. Compact diode laser source for multiphoton biological imaging

    PubMed Central

    Niederriter, Robert D.; Ozbay, Baris N.; Futia, Gregory L.; Gibson, Emily A.; Gopinath, Juliet T.

    2016-01-01

    We demonstrate a compact, pulsed diode laser source suitable for multiphoton microscopy of biological samples. The center wavelength is 976 nm, near the peak of the two-photon cross section of common fluorescent markers such as genetically encoded green and yellow fluorescent proteins. The laser repetition rate is electrically tunable between 66.67 kHz and 10 MHz, with 2.3 ps pulse duration and peak powers >1 kW. The laser components are fiber-coupled and scalable to a compact package. We demonstrate >600 μm depth penetration in brain tissue, limited by laser power. PMID:28101420

  9. Diode laser treatment for osteal and osteoarticular panaritium

    NASA Astrophysics Data System (ADS)

    Privalov, Valery A.; Krochek, Ivan V.; Lappa, Alexander V.; Poltavsky, Andrew N.; Antonov, Andrew A.

    2005-08-01

    Laser osteoperforation method, initially developed for treatment of osteomyelitis, was successfully applied to 66 patients with osteal and osteoarticular panaritium. The procedure consisted in perforation of the affected phalanx with diode laser radiation (wavelength 970nm; average power 10-12W; pulse mode 100/50 ms), delivered through quartz monofiber. Additional laser induced thermotherapy (power 2-3W; continuous mode) was fulfilled for persistent fistulas. In comparison with conventional surgery, laser osteoperforation provided faster pain relieve, edema dissipation, wound and fistula closure; good functional results; decreasing of disability cases number.

  10. Characterizing the divergence properties of the laser diode beams propagation through collimator and aperture ABCD optical system

    NASA Astrophysics Data System (ADS)

    Reza Hedayati Rad, M.; Kashani, F. D.; Eftekhari, M. M.; Reza Mahzoun, M.

    2010-11-01

    The propagation properties of Gaussian laser beams through a complete optical path including free space and the optics of transmitter and receiver containing a collimator, an aperture and a lens is studied. Based on the Collins integral and using the second order moment method, analytical formulas for intensity distribution and Power In Bucket (PIB) along the propagation path are derived. The effects of initial beam divergence, collimator-source separation distance and beam width deviation on laser beams properties are investigated. Obtained results are confirmed and illustrated with numerical examples and resulted graphs.

  11. Effect of parameters in diode laser welding of steel sheets

    NASA Astrophysics Data System (ADS)

    Kujanpaeae, Veli; Maaranen, Petteri; Kostamo, Tapio

    2003-03-01

    Austenitic stainless steel sheets and ordinary cold-rolled carbon steel sheets with variable thickness were welded with 1 kW diode laser. Different weld joints were utilized. The optimal parameters for each case were determined. The joints were examined by metallography and mechanical testing. The results show that diode laser is an optimal tool for sheet metal welding, when a considerable narrow weld is aimed. The edges prepared by mechanical sheering are acceptable as the joint preparation. The tensile strength and ductility of all the joints were acceptable and on the same level or better than that of base metal. The shielding gas seems to play a much higher role than in conventional laser welding (CO2 or Nd:YAG laser welding). When using the non-oxidizing shielding gas (nitrogen or argon), the welding speed to be reached is much slower than when welding without any shielding gas. This is probably due to the increase of absorption by oxygen.

  12. Laser Diode Cooling For High Average Power Applications

    NASA Astrophysics Data System (ADS)

    Mundinger, David C.; Beach, Raymond J.; Benett, William J.; Solarz, Richard W.; Sperry, Verry

    1989-06-01

    Many applications for semiconductor lasers that require high average power are limited by the inability to remove the waste heat generated by the diode lasers. In order to reduce the cost and complexity of these applications a heat sink package has been developed which is based on water cooled silicon microstructures. Thermal resistivities of less than 0.025°C/01/cm2) have been measured which should be adequate for up to CW operation of diode laser arrays. This concept can easily be scaled to large areas and is ideal for high average power solid state laser pumping. Several packages which illustrate the essential features of this design have been fabricated and tested. The theory of operation will be briefly covered, and several conceptual designs will be described. Also the fabrication and assembly procedures and measured levels of performance will be discussed.

  13. High brightness diode-pumped organic solid-state laser

    SciTech Connect

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien

    2015-02-02

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  14. Tm,Ho:YLF laser end-pumped by a semiconductor diode laser array

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid (Inventor)

    1990-01-01

    An Ho:YLF crystal including Tm as sensitizers for the activator Ho, is optically pumped with a semiconductor diode laser array to generate 2.1 micron radiation with a pump power to output power of efficiency as high as 68 percent. The prior-art dual sensitizer system of Er and Tm requires cooling, such as by LN2, but by using Tm alone and decreasing the concentrations of Tm and Ho, and decreasing the length of the laser rod to about 1 cm, it has been demonstrated that laser operation can be obtained from a temperature of 77 K with an efficiency as high as 68 percent up to ambient room temperature with an efficiency at that temperature as high as 9 percent.

  15. Progress in efficiency-optimized high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Pietrzak, A.; Hülsewede, R.; Zorn, M.; Hirsekorn, O.; Sebastian, J.; Meusel, J.; Hennig, P.; Crump, P.; Wenzel, H.; Knigge, S.; Maaßdorf, A.; Bugge, F.; Erbert, G.

    2013-10-01

    High-power diode lasers are highly efficient sources of optical energy for industrial and defense applications, either directly or as pump sources for solid state or fiber lasers. We review here how advances in diode laser design and device technology have enabled the performance to be continuously improved. An overview is presented of recent progress at JENOPTIK in the development of commercial diode lasers optimized for peak performance, robust high-yield manufacture and long lifetimes. These diode lasers are tailored to simultaneously operate with reduced vertical carrier leakage, low thermal and electrical resistance and low optical losses. In this way, the highest electro-optical efficiencies are sustained to high currents. For example, 940-nm bars with high fill factor are shown to deliver continuous wave (CW) output powers of 280 W with conversion efficiency of < 60%. These bars have a vertical far field angle with 95% power content of just 40°. In addition, 955-nm single emitters with 90μm stripe width deliver 12 W CW output with power conversion efficiency at the operating point of 69%. In parallel, the Ferdinand-Braun-Institut (FBH) is working to enable the next generation of high power diode lasers, by determining the key limitations to performance and by pioneering new technologies to address these limits. An overview of recent studies at the FBH will therefore also be presented. Examples will include structures with further reduced far field angles, higher lateral beam quality and increased peak power and efficiency. Prospects for further performance improvement will be discussed.

  16. Polarization/Spatial Combining of Laser-Diode Pump Beams

    NASA Technical Reports Server (NTRS)

    Gelsinger, Paul; Liu, Duncan

    2008-01-01

    A breadboard version of an optical beam combiner is depicted which make it possible to use the outputs of any or all of four multimode laser diodes to pump a non-planar ring oscillator (NPRO) laser. The output of each laser diode has a single-mode profile in the meridional plane containing an axis denoted the 'fast' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis. One of the purposes served by the beam-combining optics is to reduce the fast-axis numerical aperture (NA) of the laser-diode output to match the NA of the optical fiber. Along the slow axis, the unmodified laser-diode NA is already well matched to the fiber optic NA, so no further slow-axis beam shaping is needed. In this beam combiner, the laser-diode outputs are collimated by aspherical lenses, then half-wave plates and polarizing beam splitters are used to combine the four collimated beams into two beams. Spatial combination of the two beams and coupling into the optical fiber is effected by use of anamorphic prisms, mirrors, and a focusing lens. The anamorphic prisms are critical elements in the NA-matching scheme, in that they reduce the fast-axis beam width to 1/6 of its original values. Inasmuch as no slow-axis beam shaping is needed, the collimating and focusing lenses are matched for 1:1 iumaging. Because these lenses are well corrected for infinite conjugates the combiner offers diffraction-limited performance along both the fast and slow axes.

  17. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Degradation phenomena in laser diodes

    NASA Astrophysics Data System (ADS)

    Beister, G.; Krispin, P.; Maege, J.; Richter, G.; Weber, H.; Rechenberg, I.

    1988-11-01

    Accelerated tests on GaAlAs/GaAs double heterostructure laser diodes showed, in agreement with earlier results on light-emitting diodes, that ageing appeared in three distinct forms: initial and slow degradation stages, both obeying a logarithmic time dependence, and a superimposed "gradation" (enhancement of the output power). Measurements made by the method of deep level transient spectroscopy during the accelerated tests on these lasers, operated as light-emitting diodes, revealed the appearance right from the beginning of B levels attributed to the antisite GaAs defects. The B levels appeared again in diodes tested in the lasing mode. In the case of a group of 21 laser diodes the mean time-to-failure was 9000 h at 70°C for 5 mW (in accordance with the Weibull statistics of degradation rates).

  18. Near-ultraviolet laser diodes for brilliant ultraviolet fluorophore excitation.

    PubMed

    Telford, William G

    2015-12-01

    Although multiple lasers are now standard equipment on most modern flow cytometers, ultraviolet (UV) lasers (325-365 nm) remain an uncommon excitation source for cytometry. Nd:YVO4 frequency-tripled diode pumped solid-state lasers emitting at 355 nm are now the primary means of providing UV excitation on multilaser flow cytometers. Although a number of UV excited fluorochromes are available for flow cytometry, the cost of solid-state UV lasers remains prohibitively high, limiting their use to all but the most sophisticated multilaser instruments. The recent introduction of the brilliant ultraviolet (BUV) series of fluorochromes for cell surface marker detection and their importance in increasing the number of simultaneous parameters for high-dimensional analysis has increased the urgency of including UV sources in cytometer designs; however, these lasers remain expensive. Near-UV laser diodes (NUVLDs), a direct diode laser source emitting in the 370-380 nm range, have been previously validated for flow cytometric analysis of most UV-excited probes, including quantum nanocrystals, the Hoechst dyes, and 4',6-diamidino-2-phenylindole. However, they remain a little-used laser source for cytometry, despite their significantly lower cost. In this study, the ability of NUVLDs to excite the BUV dyes was assessed, along with their compatibility with simultaneous brilliant violet (BV) labeling. A NUVLD emitting at 375 nm was found to excite most of the available BUV dyes at least as well as a UV 355 nm source. This slightly longer wavelength did produce some unwanted excitation of BV dyes, but at sufficiently low levels to require minimal additional compensation. NUVLDs are compact, relatively inexpensive lasers that have higher power levels than the newest generation of small 355 nm lasers. They can, therefore, make a useful, cost-effective substitute for traditional UV lasers in multicolor analysis involving the BUV and BV dyes.

  19. Diode laser osteoperforation and its application to osteomyelitis treatment

    NASA Astrophysics Data System (ADS)

    Privalov, Valeriy A.; Krochek, Igor V.; Lappa, Alexander V.

    2001-10-01

    Laser osteoperforation, previously studied in experiment in rabbits at treatment for acute purulent osteomyelitis (Privalov V. et.al., SPIE Proc., v.3565., pp. 72-79), was applied in clinic to 36 patients with chronic purulent osteomyelitis and to 6 patients (children) with acute haematogenic osteomyelitis. Diode lasers of 805 and 980 nm wavelength were used. There was achieved full recovery in all acute cases, and stable remission in chronic cases during all the observation period (1 - 2.5 years).

  20. Electrically injected visible vertical cavity surface emitting laser diodes

    DOEpatents

    Schneider, R.P.; Lott, J.A.

    1994-09-27

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

  1. Modeling of diode pumped metastable rare gas lasers.

    PubMed

    Yang, Zining; Yu, Guangqi; Wang, Hongyan; Lu, Qisheng; Xu, Xiaojun

    2015-06-01

    As a new kind of optically pumped gaseous lasers, diode pumped metastable rare gas lasers (OPRGLs) show potential in high power operation. In this paper, a multi-level rate equation based model of OPRGL is established. A qualitative agreement between simulation and Rawlins et al.'s experimental result shows the validity of the model. The key parameters' influences and energy distribution characteristics are theoretically studied, which is useful for the optimized design of high efficient OPRGLs.

  2. Even Illumination from Fiber-Optic-Coupled Laser Diodes

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2006-01-01

    A method of equipping fiber-optic-coupled laser diodes to evenly illuminate specified fields of view has been proposed. The essence of the method is to shape the tips of the optical fibers into suitably designed diffractive optical elements. One of the main benefits afforded by the method would be more nearly complete utilization of the available light. Diffractive optics is a relatively new field of optics in which laser beams are shaped by use of diffraction instead of refraction.

  3. Fiber Coupled Laser Diodes with Even Illumination Pattern

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor)

    2007-01-01

    An optical fiber for evenly illuminating a target. The optical fiber is coupled to a laser emitting diode and receives laser light. The la ser light travels through the fiber optic and exits at an exit end. T he exit end has a diffractive optical pattern formed thereon via etch ing, molding or cutting, to reduce the Gaussian profile present in co nventional fiber optic cables The reduction of the Gaussian provides an even illumination from the fiber optic cable.

  4. Spectroscopy of {sup 127}I{sub 2} hyperfine structure near 532 mm using frequency - doubled diode - laser - pumped Nd:YAG lasers

    SciTech Connect

    Guellati, S.; Elandaloussi, H.; Fretel, E.

    1994-12-31

    Frequency - doubled diode - laser - pumped Nd : Yag laser can constitute an interesting optical standard around 532 nm. More than ten of {sup 127}I{sub 2} lines can be observed inside the laser spectral range. Two independent systems, stabilized on one {sup 127}I{sub 2} hyperfine component, are used to check the frequency long term stability for metrological purpose.

  5. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-11-01

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.

  6. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode.

    PubMed

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-11-16

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.

  7. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode

    PubMed Central

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-01-01

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging. PMID:26568136

  8. Iris retraction and retroflexion after transscleral contact diode laser photocoagulation.

    PubMed

    Sony, Parul; Sudan, Rajeev; Pangtey, Mayank S; Khokhar, Sudarshan; Kumar, Harsh

    2003-01-01

    A 9-year-old girl with refractory glaucoma with an anterior chamber intraocular lens underwent transscleral contact diode laser cyclophotocoagulation. Slit-lamp examination and ultrasound biomicroscopy revealed iris retraction and retroflexion at 2 weeks of follow-up. The probable cause of this complication is discussed.

  9. Pseudoepitheliomatous hyperplasia after diode laser oral surgery. An experimental study

    PubMed Central

    Seoane, Juan; González-Mosquera, Antonio; García-Martín, José-Manuel; García-Caballero, Lucía; Varela-Centelles, Pablo

    2015-01-01

    Background To examine the process of epithelial reparation in a surgical wound caused by diode laser. Material and Methods An experimental study with 27 Sprage-Dawley rats was undertaken. The animals were randomly allocated to two experimental groups, whose individuals underwent glossectomy by means of a diode laser at different wattages, and a control group treated using a number 15 scalpel blade. The animals were slaughtered at the 2nd, 7th, and 14th day after glossectomy. The specimens were independently studied by two pathologists (blinded for the specimens’ group). Results At the 7th day, re-epithelisation was slightly faster for the control group (conventional scalpel) (p=0.011). At the 14th day, complete re-epithelization was observed for all groups. The experimental groups displayed a pseudoepitheliomatous hyperplasia. Conclusions It is concluded that, considering the limitations of this kind of experimental studies, early re-epithelisation occurs slightly faster when a conventional scalpel is used for incision, although re-epithelisation is completed in two weeks no matter the instrument used. In addition, pseudoepitheliomatous hyperplasia is a potential event after oral mucosa surgery with diode laser. Knowledge about this phenomenon (not previously described) may prevent diagnostic mistakes and inadequate treatment approaches, particularly when dealing with potentially malignant oral lesions. Key words:Diode laser, animal model, oral biopsy, oral cancer, oral precancer, pseudoepitheliomatous hyperplasia. PMID:26116841

  10. Hypertrichosis lanuginosa congenita treated with diode laser epilation during infancy.

    PubMed

    Salas-Alanis, Julio C; Lopez-Cepeda, Larissa D; Elizondo-Rodriguez, Aurora; Morales-Barrera, Maria Enriqueta; Ramos-Garibay, Alberto R

    2014-01-01

    We report the case of a girl with hypertrichosis lanuginosa congenita treated with diode laser depilation since the age of 9 months. The treatment was well tolerated, and neither general nor local anesthesia was needed. A reduction of approximately 80% of facial and body hair was noted, which improved her condition significantly.

  11. Time delays in lead-salt semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Qadeer, A.; Reed, J.; Bryant, F. J.

    1984-03-01

    Time delays of typically 15 17μ have been measured directly for PbS1-xSex, Pb1-xSnxSe and Pb1-xSnxTe diode lasers at injection levels just above threshold in each case. The corresponding minority carrier lifetimes, as determined using the one-carrier injection model, were typically 2 4μ.

  12. High-power laser diodes based on InGaAsP alloys

    NASA Astrophysics Data System (ADS)

    Razeghi, Manijeh

    1994-06-01

    HIGH-POWER, high-coherence solid-state lasers, based on dielectric materials such as ruby or Nd:YAG (yttrium aluminium garnet), have many civilian and military applications. The active media in these lasers are insulating, and must therefore be excited (or `pumped') by optical, rather than electrical, means. Conventional gas-discharge lamps can be used as the pumping source, but semiconductor diode lasers are more efficient, as their wavelength can be tailored to match the absorption properties of the lasing material. Semiconducting AlGaAs alloys are widely used for this purpose1, 2, but oxidation of the aluminium and the spreading of defects during device operation limit the lifetime of the diodes3, and hence the reliability of the system as a whole. Aluminium-free InGaAsP compounds, on the other hand, do not have these lifetime-limiting properties4-8. We report here the fabrication of high-power lasers based on InGaAsP (lattice-matched to GaAs substrates), which operate over the same wavelength range as conventional AlGaAs laser diodes and show significantly improved reliability. The other optical and electrical properties of these diodes are either comparable or superior to those of the AlGaAs system.

  13. 946 nm Diode Pumped Laser Produces 100mJ

    NASA Technical Reports Server (NTRS)

    Axenson, Theresa J.; Barnes, Norman P.; Reichle, Donald J., Jr.

    2000-01-01

    An innovative approach to obtaining high energy at 946 nm has yielded 101 mJ of laser energy with an optical-to-optical slope efficiency of 24.5%. A single gain module resonator was evaluated, yielding a maximum output energy of 50 mJ. In order to obtain higher energy a second gain module was incorporated into the resonator. This innovative approach produced un-surprised output energy of 101 mJ. This is of utmost importance since it demonstrates that the laser output energy scales directly with the number of gain modules. Therefore, higher energies can be realized by simply increasing the number of gain modules within the laser oscillator. The laser resonator incorporates two gain modules into a folded "M-shaped" resonator, allowing a quadruple pass gain within each rod. Each of these modules consists of a diode (stack of 30 microlensed 100 Watt diode array bars, each with its own fiber lens) end-pumping a Nd:YAG laser rod. The diode output is collected by a lens duct, which focuses the energy into a 2 mm diameter flat to flat octagonal pump area of the laser crystal. Special coatings have been developed to mitigate energy storage problems, including parasitic lasing and amplified spontaneous emission (ASE), and encourage the resonator to operate at the lower gain transition at 946 nm.

  14. Diode laser microwave induced plasma cavity ringdown spectrometer: Performance and perspective

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Koirala, Sudip P.; Scherrer, Susan T.; Duan, Yixiang; Winstead, Christopher B.

    2004-05-01

    Recent studies combining an atmospheric-pressure plasma source (inductively coupled plasma or microwave induced plasma) with cavity ringdown spectroscopy (plasma-CRDS) have indicated significant promise for ultra-sensitive elemental measurements. Initial plasma-CRDS efforts employed an inductively coupled plasma as the atomization source and a pulsed laser system as the light source. In an effort to improve the portability and reduce the cost of the system for application purposes, we have modified our approach to include a compact microwave induced plasma and a continuous wave diode laser. A technique for controlling the coupling of the continuous wave laser to the ringdown cavity has been implemented using a standard power combiner. No acouto-optic modulator or cavity modulation is required. To test the system performance, diluted standard solutions of strontium (Sr) were introduced into the plasma by an in-house fabricated sampling device combined with an ultrasonic nebulizer. SrOH radicals were generated in the plasma and detected using both a pulsed laser system and a diode laser via a narrow band transition near 680 nm. The experimental results obtained using both light sources are compared and used for system characterization. The ringdown baseline noise and the detection limit for Sr are determined for the current experimental configuration. The results indicate that a plasma-CRDS instrument constructed using diode lasers and a compact microwave induced plasma can serve as a small, portable, and sensitive analytical tool.

  15. C. W. GaAs Diode Laser

    DTIC Science & Technology

    1975-12-01

    laser fabrication , assembly, and evaluation. The principal personnel responsible for the BeO materials effort at Rockwell International were Dr...principal areas. The first area was the optimization of the semiconductor growth and laser fabrication techniques to achieve lasers with low

  16. Pilot study: intravenous use of indocyanine green as an enhancer for 808-nm diode laser application in the equine

    NASA Astrophysics Data System (ADS)

    Tate, Lloyd P.; Blikslager, Anthony T.; Papich, Mark G.

    2000-05-01

    The 808-nm diode laser, delivering 20 - 40 watts of power, has been produced for medical applications by several manufacturers over the past 10 years. This laser's power output is less than most Neodymium:yttrium aluminum garnet (Nd:YAG) lasers and other high power cutting lasers that use fiberoptic delivery systems. The 808-nm diode laser has not gained popularity in equine transendoscopic laser surgery. Indocyanine green (ICG) is absorbed at 810-nm of light which when concentrated in tissue should be an excellent absorber for the energy produced by the 808-nm diode laser. This study compares the depths and widths of penetration achieved with the 808-nm diode laser after intravenous injection of ICG in equine respiratory tissue. Indocyanine green was administered at two doses: 1.5 mg/kg and 3 mg/kg. The 808-nm diode laser was set to deliver 200 joules of energy. The depths and widths of penetration were also compared to the Nd:YAG laser applied at the same energy setting.

  17. Development of Optical Pickup for Digital Versatile Disc Using Two-Wavelength-Integrated Laser Diode

    NASA Astrophysics Data System (ADS)

    Uchiyama, Mineharu; Ebihara, Takeshi; Omi, Kunio; Kitano, Hisashi; Hoshino, Isao; Mori, Kazushige

    2000-03-01

    A digital versatile disc (DVD)-and compact disc (CD)-compatible optical pickup using a two-wavelength-integrated laser diode (TWIN-LD) has been developed. The TWIN-LD has two emission points in one chip, one for the red laser beam to read out signals from DVDs and the other for the IR laser beam to read out signals from CDs that are arranged along the active layer. With the application of a TWIN-LD to the optical pickup, the necessity for four optical components, namely, a laser diode, photodetector, holographic optical element and dichroic prism, is avoided in comparison with conventional optical pickups. This paper discusses some key points for designing an optical system using a TWIN-LD, and the results of the experiments appling the optical system to an optical pickup 7.3 mm in height.

  18. Picosecond pulse generation from a synchronously pumped mode-locked semiconductor laser diode

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    A semiconductor laser diode was mode locked in an external cavity when synchronously pumped with 90-ps current pulses. Transform-limited optical pulses with a 10-ps pulse width and a peak power of 160 mW were produced. Operating characteristics of such a system are described.

  19. Index-Guide GaInNAs Laser Diode for Optical Communications

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Shin'ichi; Kondow, Masahiko; Kitatani, Takeshi; Yazawa, Yoshiaki; Okai, Makoto

    1998-03-01

    An AlGaAs/GaAs/GaInNAs single-quantum-well real-index-guide laser diode with a ridged waveguide structure was fabricated. A threshold current of 24 mA under room-temperature continuous-wave operation was attained with this structure. Obtained device parameters show that this device shows promise for application in optical communication system.

  20. Diode laser frequency locking using Zeeman effect and feedback in temperature.

    PubMed

    Martins, Weliton Soares; Grilo, Mayara; Brasileiro, Manoel; di Lorenzo, Orlando; Oriá, Marcos; Chevrollier, Martine

    2010-02-10

    We demonstrate the stabilization of a laser diode frequency, using the circular dichroism of an alkali vapor and feeding back the correction signal to the temperature actuator of the junction. The conditions of operation and the performance of such a system are discussed.

  1. Hard solder 20-kW QCW stack array diode laser

    NASA Astrophysics Data System (ADS)

    Li, Xiaoning; Kang, Lijun; Wang, Jingwei; Zhang, Pu; Xiong, Lingling; Liu, Xingsheng

    2012-03-01

    With the increasing applications of high power semiconductor lasers in industry, advanced manufacturing, aerospace, medical systems, display, entertainment, etc., semiconductor lasers with high power and high performances are required. The performance of semiconductor lasers is greatly affected by packaging structure, packaging process and beam shaping. A novel macro channel cooler (MaCC) for stack array laser with good heat dissipation capacity and high reliability is presented in this work. Based on the MaCC package, a high power stack array diode laser is successfully fabricated. A series of techniques such as spectrum control and beam control are used to achieve narrow spectrum and high beam quality. The performances of the semiconductor laser stack array are characterized. A high power 20kW QCW hard solder packaged stack array laser is fabricated; a narrow spectrum of 3.94 nm and an excellent rectangular beam shape are obtained. The lifetime of the stack array laser is tested as well.

  2. Nd:YAG laser diode-pumped directly into the emitting level at 938 nm.

    PubMed

    Sangla, Damien; Balembois, François; Georges, Patrick

    2009-06-08

    We present the first demonstration of Nd:YAG laser pumped directly in band at 938 nm with a high-brightness fiber-coupled laser diode. Up to 6 W of CW laser emission at 1064 nm have been obtained under an absorbed pump power of 28 W at 938 nm. A comparison between 808 nm and 938 nm pumping, realized by thermal cartography, demonstrates the very low heat generation of in-band pumping. Numerical simulations were also implemented to study and discuss the laser performance of our system.

  3. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  4. Theory of repetitively pulsed operation of diode lasers subject to delayed feedback

    SciTech Connect

    Napartovich, A P; Sukharev, A G

    2015-03-31

    Repetitively pulsed operation of a diode laser with delayed feedback has been studied theoretically at varying feedback parameters and pump power levels. A new approach has been proposed that allows one to reduce the system of Lang–Kobayashi equations for a steady-state repetitively pulsed operation mode to a first-order nonlinear differential equation. We present partial solutions that allow the pulse shape to be predicted. (lasers)

  5. Frequency stability of a tunable diode laser mounted in a compact Stirling cycle cooler

    NASA Technical Reports Server (NTRS)

    Durso, Santo S.; May, R. D.; Tuchscherer, M. A.; Webster, C. R.

    1989-01-01

    A tunable diode laser (TDL) has been operated with a compact lightweight closed-cycle Stirling cooler. The laser linewidth has been measured near 80 K and found to be about half of that when using more massive closed-cycle coolers. Novel applications include balloon-borne and aircraft-adapted instruments, where size, weight, and power requirements place stringent demands on necessary TDL cooling systems.

  6. Improving the efficiency of high-power diode lasers using diamond heat sinks

    SciTech Connect

    Parashchuk, Valentin V; Baranov, V V; Telesh, E V; Mien, Vu Doan; Luc, Vu Van; Truong, Pham Van; Belyaeva, A K

    2010-06-23

    Using multifunctional ion beam and magnetron sputtering systems, we have developed chemical and vacuum techniques for producing metallic coatings firmly adherent to various surfaces, with application to copper and diamond heat sinks for diode lasers. Conditions have been optimised for mounting diode lasers and bars using the proposed metallisation processes, and significant improvements in the output parameters of the devices have been achieved. The power output of cw laser diodes on diamond heat sinks increases by up to a factor of 2, the linear (working) portion of their power-current characteristic becomes markedly broader, and their slope efficiency increases by a factor of 1.5 - 2 relative to that of lasers on copper heat spreaders. The use of diamond heat sinks extends the drive current range of pulsed diode bars by a factor of 2 - 3 and enables them to operate at more than one order of magnitude longer pump pulse durations (up to milliseconds) when the pulse repetition rate is at least 10 Hz. (lasers)

  7. CrLiCaAlF6 Laser Pumped by Visible Laser Diodes

    DTIC Science & Technology

    1991-08-01

    first demonstration of diode pumping was reported the polarization of the orthogonally polarized beams for alexandrite [1]. Recently a new Cr-doped...the fractional power of to perform as well as the more mature alexandrite laser. each that will be reflected by the second polarization beam For...gradually "dialed out" of higher than in alexandrite . These advantages, coupled the pump axis while the laser diode power was simulta- with highly

  8. Measurement of CO2 concentration at high-temperature based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jiuying; Li, Chuanrong; Zhou, Mei; Liu, Jianguo; Kan, Ruifeng; Xu, Zhenyu

    2017-01-01

    A diode laser sensor based on absorption spectroscopy has been developed for sensitive measurement of CO2 concentration at high-temperature. Measurement of CO2 can provide information about the extent of combustion and mix in a combustor that may be used to improve fuel efficiency. Most methods of in-situ combustion measurement of CO2 use the spectroscopic parameters taken from database like HITEMP which is mainly derived from the theoretical calculation and remains a high degree of uncertainty in the spectroscopic parameters. A fiber-coupled diode laser system for measurement of CO2 in combustion environment by use of the high-temperature spectroscopic parameters which are obtained by experiment was proposed. Survey spectra of the R(50) line of CO2 at 5007.787 cm-1 were recorded at high-temperature and various pressures to determine line intensities. The line intensities form the theoretical foundation for future applications of this diode laser sensor system. Survey spectra of four test gas mixtures containing 5.01%CO2, 10.01%CO2, 20.08%CO2, and 49.82%CO2 were measured to verify the accuracy of the diode laser sensor system. The measured results indicate that this sensor can measure CO2 concentration with 2% uncertainty in high temperatures.

  9. Mode control for high performance laser diode sources

    NASA Astrophysics Data System (ADS)

    Leisher, Paul; Price, Kirk; Bashar, Shabbir; Bao, Ling; Huang, Hua; Wang, Jun; Wise, Damian; Zhang, Shiguo; Das, Suhit; DeFranza, Mark; Hodges, Aaron; Trifan, Utsu; Balsley, David; Dong, Weimin; Grimshaw, Mike; DeVito, Mark; Bell, Jake; Martinsen, Robert; Farmer, Jason; Crump, Paul; Patterson, Steve

    2008-04-01

    We report on recent progress in the control of optical modes toward the improvement of commercial high-performance diode laser modules. Control of the transverse mode has allowed scaling of the optical mode volume, increasing the peak output power of diode laser emitters by a factor of two. Commercially-available single emitter diodes operating at 885 nm now exhibit >25 W peak (12 W rated) at >60% conversion efficiency. In microchannel-cooled bar format, these lasers operate >120 W at 62% conversion efficiency. Designs of similar performance operating at 976 nm have shown >37,000 equivalent device hours with no failures. Advances in the control of lateral modes have enabled unprecedented brightness scaling in a fiber-coupled package format. Leveraging scalable arrays of single emitters, the conductively-cooled nLIGHT Pearl TM package now delivers >80 W peak (50 W rated) at >53% conversion efficiency measured from a 200-μm core fiber output and >45 W peak (35 W rated) at >52% conversion efficiency measured from a 100-μm fiber output. nLIGHT has also expanded its product portfolio to include wavelength locking by means of external volume Bragg gratings. By controlling the longitudinal modes of the laser, this technique is demonstrated to produce a narrow, temperature-stabilized spectrum, with minimal performance degradation relative to similar free-running lasers.

  10. In-volume heating using high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Denisenkov, Valentin S.; Kiyko, Vadim V.; Vdovin, Gleb V.

    2015-03-01

    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface heating with different approaches to make the heat distribution more uniform and the process more efficient. High-power lasers can in theory provide in-bulk heating which can sufficiently increase the uniformity of heat distribution thus making the process more efficient. We chose two media (vegetable fat and glucose) for feasibility experiments. First, we checked if the media have necessary absorption coefficients on the wavelengths of commercially available laser diodes (940-980 nm). This was done using spectrophotometer at 700-1100 nm which provided the dependences of transmission from the wavelength. The results indicate that vegetable fat has noticeable transmission dip around 925 nm and glucose has sufficient dip at 990 nm. Then, after the feasibility check, we did numerical simulation of the heat distribution in bulk using finite elements method. Based on the results, optimal laser wavelength and illuminator configuration were selected. Finally, we carried out several pilot experiments with high-power diodes heating the chosen media.

  11. High brightness laser-diode device emitting 160 watts from a 100 μm/NA 0.22 fiber.

    PubMed

    Yu, Junhong; Guo, Linui; Wu, Hualing; Wang, Zhao; Tan, Hao; Gao, Songxin; Wu, Deyong; Zhang, Kai

    2015-11-10

    A practical method of achieving a high-brightness and high-power fiber-coupled laser-diode device is demonstrated both by experiment and ZEMAX software simulation, which is obtained by a beam transformation system, free-space beam combining, and polarization beam combining based on a mini-bar laser-diode chip. Using this method, fiber-coupled laser-diode module output power from the multimode fiber with 100 μm core diameter and 0.22 numerical aperture (NA) could reach 174 W, with equalizing brightness of 14.2  MW/(cm2·sr). By this method, much wider applications of fiber-coupled laser-diodes are anticipated.

  12. Research and development for improved lead-salt diode lasers

    NASA Technical Reports Server (NTRS)

    Butler, J. F.

    1976-01-01

    A substantial increase in output power levels for lead-salt diode lasers, through the development of improved fabrication methods, as demonstrated. The goal of 1 mW of CW, single-mode, single-ended power output, was achieved, with exceptional devices exhibiting values greater than 8 mW. It was found that the current tuning rate could be controlled by adjusting the p-n junction depth, allowing the tuning rate to be optimized for particular applications. An unexpected phenomenon was encountered when crystal composition was observed to be significantly altered by annealing at temperatures as low as 600 C; the composition was changed by transport of material through the vapor phase. This effect caused problems in obtaining diode lasers with the desired operating characteristics. It was discovered that the present packaging method introduces gross damaging effects in the laser crystal through pressure applied by the C-bend.

  13. High-power diode lasers and their direct industrial applications

    NASA Astrophysics Data System (ADS)

    Loosen, Peter; Treusch, Hans-Georg; Haas, C. R.; Gardenier, U.; Weck, Manfred; Sinnhoff, V.; Kasperowski, S.; vor dem Esche, R.

    1995-04-01

    The paper summarizes activities of the two Fraunhofer-Institutes ILT and IPT concerning the development of high-power laser-diode stacks and their direct industrial applications. With microchannel coolers in copper technology and ultra-precision machined micro-optics a stack of 330 - 400 W total power with a maximum intensity of the focused beam of 2 104 W/cm2 has been built and tested in first applications. By further improvements of the lens-fabrication and -alignment technology as well as increase of the number of stacked diodes an output power in the kW-range and intensities up to about 105 W/cm2 shall be achieved in the near future. Applications of such laser sources in surface technology, in the processing of plastics, in laser-assisted machining and in brazing are discussed.

  14. Quantity change in collagen following 830-nm diode laser welding

    NASA Astrophysics Data System (ADS)

    Tang, Jing; O'Callaghan, David; Rouy, Simone; Godlewski, Guilhem; Prudhomme, Michel

    1996-12-01

    The actual mechanism for production of laser welding of tissue is presently unknown, but collagen plays an important role is tissue welded after laser irradiance. The quantity change in collagen extracted from the abdominal aorta of Wistar rats after tissue welding using an 830 nm diode laser was investigated. The collagen contents following repeated pepsin digestion after acetic acid extraction were determined with Sircol collagen assay. Compared with untreated aorta, the collagen content of the treated vessel was obvious decreased immediately after laser irradiation and following an initial increase on day 3, there was a peak at day 10. The results suggest that a part of collagen molecules is denatured by the heat of laser. There is an effect of stimulating collagen synthesis after laser welding with parameters used in this study.

  15. Laser diode feedback interferometer for stabilization and displacement measurements.

    PubMed

    Yoshino, T; Nara, M; Mnatzakanian, S; Lee, B S; Strand, T C

    1987-03-01

    Active laser diode interferometers in which the interference signal is fed back to the diode current are investigated for Twyman-Green and self-coupling interferometers. The Twyman-Green interferometer is stabilized with a stabilization factor of more than 100. By using the feedback signal of either type of interferometer, displacement is measured in a linear scale over a dynamic range of 8-9,microm with a precision of 10-60 nm. The feedback signal vs displacement shows hysteresis and multistable behavior, in accordance with theoretical results.

  16. Infrared laser diode with visible illuminator for biomedical stimulation

    NASA Astrophysics Data System (ADS)

    Strek, Wieslaw; Podbielska, Halina; Szafranski, C.; Kuzmin, Andrei N.; Ges, J. A.; Ryabtsev, Gennadii I.

    1995-02-01

    The special laser diode device (LDD) leasing in the near infrared region (IR) with two wavelengths: (lambda) 1 equals 850 nm and (lambda) 2 equals 1000 nm, designed for laser therapy, is presented. This device is characterized by a unique feature, namely a separate built-in illuminator, operating in 670 nm. The special construction of LDD and the illuminator enables the user to visualize exactly the surface irradiated by IR radiation. The exposure time and the output of laser power are also controlled and can be displayed on the LED monitor at the front panel. This new device, described here, is compact, low cost, and user friendly.

  17. Polarization control in ridge-waveguide-laser diodes

    SciTech Connect

    Amann, M.

    1987-04-20

    The polarization dependence of the gain/current relation and threshold current of quasi-index-guided laser diodes is analyzed for the case of lambda = 1.3 ..mu..m InGaAsP-InP ridge-waveguide lasers. Thereby it is shown that three different regimes for the stripe width and the lateral effective index discontinuity can be distinguished where one modal polarization (TE or TM) predominates. The significance of this finding on laser design and polarization control is discussed, and a comparison is performed on experimental results.

  18. All-electronic line width reduction in a semiconductor diode laser using a crystalline microresonator

    NASA Astrophysics Data System (ADS)

    Rury, Aaron S.; Mansour, Kamjou; Yu, Nan

    2015-07-01

    This study examines the capability to significantly suppress the frequency noise of a semiconductor distributed feedback diode laser using a universally applicable approach: a combination of a high-Q crystalline whispering gallery mode microresonator reference and the Pound-Drever-Hall locking scheme using an all-electronic servo loop. An out-of-loop delayed self-heterodyne measurement system demonstrates the ability of this approach to reduce a test laser's absolute line width by nearly a factor of 100. In addition, in-loop characterization of the laser stabilized using this method demonstrates a 1-kHz residual line width with reference to the resonator frequency. Based on these results, we propose that utilization of an all-electronic loop combined with the use of the wide transparency window of crystalline materials enable this approach to be readily applicable to diode lasers emitting in other regions of the electromagnetic spectrum, especially in the UV and mid-IR.

  19. Two-Pass, Diode-Pumped Nd:YAG Slab Laser Head

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry

    1992-01-01

    Neodymium/yttrium aluminum garnet (Nd:YAG) ring-laser head designed for compactness, simplicity, and increased efficiency for side pumping by diode lasers. Laser head includes two linear arrays of diode lasers, two fused-silica collimating rods, and Nd:YAG slab. Slab mounted on finned copper block, providing good thermal dissipation.

  20. Frequency-comb-referenced tunable diode laser spectroscopy and laser stabilization applied to laser cooling.

    PubMed

    Fordell, Thomas; Wallin, Anders E; Lindvall, Thomas; Vainio, Markku; Merimaa, Mikko

    2014-11-01

    Laser cooling of trapped atoms and ions in optical clocks demands stable light sources with precisely known absolute frequencies. Since a frequency comb is a vital part of any optical clock, the comb lines can be used for stabilizing tunable, user-friendly diode lasers. Here, a light source for laser cooling of trapped strontium ions is described. The megahertz-level stability and absolute frequency required are realized by stabilizing a distributed-feedback semiconductor laser to a frequency comb. Simple electronics is used to lock and scan the laser across the comb lines, and comb mode number ambiguities are resolved by using a separate, saturated absorption cell that exhibits easily distinguishable hyperfine absorption lines with known frequencies. Due to the simplicity, speed, and wide tuning range it offers, the employed technique could find wider use in precision spectroscopy.

  1. Comparison of a Joule effect calibration system using Kanthal wire and a laser diode as heat sources

    NASA Astrophysics Data System (ADS)

    Maldonado, Blas A.; Bárcena-Soto, Maximiliano; Casillas, Norberto; Flores, Jorge L.

    2009-09-01

    Here it is presented a comparison of two calibration techniques applied to a thermistor element used in a surface microcalorimeter which operates under Isoperibol conditions. Usually surface microcalorimeters employ a thermistor as a temperature sensing element, whose heat capacity requires to be evaluated before they can be used. One alternative method to estimate its heat capacity is by supplying a known amount of energy and detecting its temperature changes. Thus, surface heating can be achieved by different techniques; one of them is by supplying energy to the thermistor by passing current through a Ni-Cr coil wined around the glass bulb thermistor. A rather different and more convenient technique consists of directly illuminating a small well-defined thermistor area with an infrared 1550 nm wavelength laser beam, while detecting the thermistor temperature changes. Both procedures are thoroughly compared and the heat capacities obtained by both methods are presented.

  2. Present state of applying diode laser in Toyota Motor Corp.

    NASA Astrophysics Data System (ADS)

    Terada, Masaki; Nakamura, Hideo

    2003-03-01

    Since the mid-1980s, Toyota Motor Corporation has applied CO2 lasers and YAG lasers to machine (welding, piercing, cutting, surface modifying etc.) automobile parts. In recent years diode lasers, which are excellent in terms of cost performance, are now available on the market as a new type of oscillator and are expected to bring about a new age in laser technology. Two current problems with these lasers, however, are the lack of sufficient output and the difficulty in improving the focusing the beam, which is why it has not been easy to apply them to the machining of metal parts in the past. On the other hand, plastics can be joined with low energy because they have a lower melting point than metal and the rate of absorption of the laser is easy to control. Moreover, because the high degree of freedom in molding plastic parts results in many complex shapes that need to be welded, Toyota is looking into the use of diode lasers to weld plastic parts. This article will introduce the problems of plastics welding and the methods to solve them referring to actual examples.

  3. Activation of the Mercury Laser: A Diode-Pumped Solid-State Laser Driver for Inertial Fusion

    SciTech Connect

    Bayramian, A J; Bibeau, C; Beach, R J; Chanteloup, J C; Ebbers, C A; Kanz, K; Nakano, H; Payne, S A; Powell, H T; Schaffers, K I; Seppala, L; Skulina, K; Smith, L K; Sutton, S B; Zapata, L E

    2001-03-07

    Initial measurements are reported for the Mercury laser system, a scalable driver for rep-rated high energy density physics research. The performance goals include 10% electrical efficiency at 10 Hz and 100 J with a 2-10 ns pulse length. This laser is an angularly multiplexed 4-pass gas-cooled amplifier system based on image relaying to minimize wavefront distortion and optical damage risk at the 10 Hz operating point. The efficiency requirements are fulfilled using diode laser pumping of ytterbium doped strontium fluorapatite crystals.

  4. Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products

    NASA Astrophysics Data System (ADS)

    Reinl, S.

    Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.

  5. Single mode operation and extended scanning of anti-reflection coated visible laser diodes in a Littrow cavity

    NASA Astrophysics Data System (ADS)

    Lonsdale, D. J.; Andrews, D. A.; King, T. A.

    2004-05-01

    A method to increase the mode-hop-free tuning range is presented that is suitable for application with visible and short wavelength laser diodes, and relaxes the requirement on high tolerance mechanical components. Depending on the diode and cavity, the theory predicts an improvement of up to eight times the FSR of the extended cavity. In our system, an anti-reflection coated AlGaInP laser diode showed a mode-hop-free scan of 8 GHz, which is characteristic for the wavelength used in the device. Greater scanning ranges are predicted for shorter wavelength sources.

  6. Diode Laser Sensor for Scramjet Inlets

    DTIC Science & Technology

    2011-06-03

    Capacitor SM 0805 (2012) 1 C48, C49, C50 , C52 10p Capacitor SM 0805 (2012) 4 C62, C64, C66 10uF Capacitor TANT B (3528) 3 D1, D2 BAT54 Schottky Diode...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for...with a collection of information if it does not display a currently valid OMB control number. 1 . REPORT DATE 07 JUN 2011 2. REPORT TYPE Final 3

  7. Highly reliable, high-brightness 915nm laser diodes for fiber laser applications

    NASA Astrophysics Data System (ADS)

    Xu, Zuntu; Gao, Wei; Cheng, Lisen; Luo, Kejian; Shen, Kun; Mastrovito, Andre

    2008-02-01

    High brightness, high power, and highly reliable 915nm InAlGaAs laser diodes with optimized design are reported in this paper. The laser diodes exhibit excellent performance, such as, high slope efficiency, low threshold current, low voltage, etc., which make them suitable for high brightness operation. The aging test data shows no failures during aging test and more than 220,000 hours estimated lifetime for 90um emitter laser diodes at 8W CW operation. The aging test with the same emitter size at higher stress conditions showed sudden failure that corresponds to catastrophic optical damage (COD) on the facet. A novel large optical cavity (LOC) epi-structure with flat-top near field intensity distribution was developed. The maximum output power is up to 23W under CW testing condition at 25 °C, which is highest level achieved so far. The output power is limited by thermal roll over and there is no COD occurring. This data shows Axcel's technologies can further increase the brightness to over 110mW per micron for 915nm laser diodes. This type of laser diodes is essential for pumping fiber lasers to replace CO2 lasers for industry applications.

  8. Performance of high-power laser diode arrays for spaceborne lasers.

    PubMed

    Durand, Yannig; Culoma, Alain; Meynart, Roland; Pinsard, Jean-Luc; Volluet, Gerard

    2006-08-01

    The adequacy of commercial quasi-continuous high-power laser diode arrays (HPLDAs) as pump sources for spaceborne lasers has been assessed by endurance tests up to 3 x 10(9) shots under various stress conditions, vacuum operation up to 0.36 x 10(9) shots, and proton radiation tests. Observations of the evolution of the electro-optic parameters and of the near-field patterns of the HPLDAs during endurance tests have revealed that some diode bars could reach the required lifetime of a multibillion shots, suggesting how to build long lifetime HPLDAs by proper selection of the diode bars. The robustness of the HPLDAs against the proton environment experienced in a typical low Earth orbit has been checked. Finally, high-power laser diode arrays have been operated under vacuum, showing a behavior similar to that of HPLDAs operating in atmospheric conditions.

  9. Advances in tunable diode laser technology

    NASA Technical Reports Server (NTRS)

    Lo, W.

    1980-01-01

    The improvement of long-term reliability, the purification of mode properties, and the achievement of higher-temperature operation were examined. In reliability studies a slow increase in contact resistance during room temperature storage for lasers fabricated with In-Au or In-Pt contacts was observed. This increase is actually caused by the diffusion of In into the surface layer of laser crystals. By using a three layered structure of In-Au-Pt or In-Pt-Au, this mode of degradation was reduced. In characterizing the mode properties, it was found that the lasers emit in a highly localized, filamentary manner. For widestripe lasers the emission occurs near the corners of the junction. In order to achieve single-mode operation, stripe widths on the order of 8-10 micrometers are needed. Also, it was found that room temperature electroluminescence is possible near 4.6 micrometers.

  10. New ytterbium-phosphate glass for diode-pumped lasers

    SciTech Connect

    Galagan, B I; Glushchenko, I N; Denker, B I; Sverchkov, S E; Kisel', V E; Kuril'chik, S V; Kuleshov, N V

    2009-10-31

    A new ytterbium laser glass based on an alumoborophosphate composition is developed. It is shown that the chemical and thermal stabilities of this glass are record-high for phosphate glasses and that its spectral and luminescent characteristics compare well with popular laser glasses. A mould of laser-quality glass doped with ytterbium with a concentration of 5x10{sup 20} cm{sup -3} is synthesised. Active laser elements 5x5x2 mm in size are prepared from this glass for longitudinal diode pumping. These elements were used to fabricate a laser, whose output power in the cw regime reached 783 mW and maximum slope efficiency was 28.9%. Pulses with a duration of {approx}150 fs and a peak power of about 5 kW are obtained in the passive mode-locking regime. (active media)

  11. Effective of diode laser on teeth enamel in the teeth whitening treatment

    NASA Astrophysics Data System (ADS)

    Klunboot, U.; Arayathanitkul, K.; Chitaree, R.; Emarat, N.

    2011-12-01

    This research purpose is to investigate the changing of teeth color and to study the surface of teeth after treatment by laser diode at different power densities for tooth whitening treatment. In the experiment, human-extracted teeth samples were divided into 7 groups of 6 teeth each. After that laser diode was irradiated to teeth, which were coated by 38% concentration of hydrogen peroxide, during for 20, 30 and 60 seconds at power densities of 10.9 and 52.1 W/cm2. The results of teeth color change were described by the CIEL*a*b* systems and the damage of teeth surface were investigated by scanning electron microscopy (SEM). The results showed that the power density of the laser diode could affect the whiteness of teeth. The high power density caused more luminous teeth than the low power density did, but on the other hand the high power density also caused damage to the teeth surface. Therefore, the laser diode at the low power densities has high efficiency for tooth whitening treatment and it has a potential for other clinical applications.

  12. Frequency chirped light at large detuning with an injection-locked diode laser

    SciTech Connect

    Teng, K.; Disla, M.; Dellatto, J.; Limani, A.; Kaufman, B.; Wright, M. J.

    2015-04-15

    We have developed a laser system to generate frequency-chirped light at rapid modulation speeds (∼100 MHz) with a large frequency offset. Light from an external cavity diode laser with its frequency locked to an atomic resonance is passed through a lithium niobate electro-optical phase modulator. The phase modulator is driven by a ∼6 GHz signal whose frequency is itself modulated with a RF MHz signal (<200 MHz). A second injection locked diode laser is used to filter out all of the light except the frequency-chirped ±1 order by more than 30 dB. Using this system, it is possible to generate a 1 GHz frequency chirp in 5 ns.

  13. High-precision machining of materials for manufacturing applications using diode-pumped solid state lasers

    NASA Astrophysics Data System (ADS)

    Nikumb, Suwas K.; Islam, M. U.

    2000-02-01

    While developments in the field of diode pumped solid state lasers provide a foundation for precision machining of parts with high accuracy and small feature sizes, this promise can not be realized without considering the interactions of individual processes, systems and material parameters. This paper presents our results on the precision machining of small features in various materials using diode pumped solid state lasers. The machined features are characterized geometrically by using optical inspection techniques and the tolerance data is analyzed statistically. Machining parameters relevant to motion system and tool path compensation are discussed along with their relevance to machined feature geometry. The effect of laser beam polarization on the machined kerf width, kerf surface and feature dimensions is reported.

  14. Polarization competition in quasi-index-guided laser diodes

    SciTech Connect

    Amann, M.; Stegmueller, B.

    1988-03-15

    The mechanism of polarization competition in laser diodes with a lateral quasi-index-guiding (QIG) structure is analyzed generally by way of the effective index approximation using a simplified QIG laser model. The influence of the relevant waveguide parameters on the polarization-dependent threshold current of QIG laser diodes is investigated in detail by example of lambda = 1.3-..mu..m ridge-waveguide lasers. Thereby, it is found that for intermediate values of the effective index step, the TM mode exhibits a higher gain and lower threshold current, whereas for pure gain guiding or strong index guiding, the TE mode prevails. This behavior, which compares excellently to published experimental results, is proven as a basic feature of the two-dimensional waveguiding mechanism in QIG devices. Accordingly, the effect of stress-induced anisotropy of the optical gain has been found to be of minor importance as the origin for TM-polarized QIG lasers made from lattice-matched heterostructures. It is further demonstrated that, for certain device parameters, the QIG lasers with a small effective index step exhibit somewhat higher threshold currents than the purely gain-guided devices of identical geometry.

  15. Diode laser photocoagulation in PHACES syndrome hemangiomas: a case series

    NASA Astrophysics Data System (ADS)

    Romeo, U.; Russo, N.; Polimeni, A.; Favia, G.; Lacaita, M. G.; Limongelli, L.; Franco, S.

    2014-01-01

    PHACES syndrome is a pediatric syndrome with cutaneous and extra-cutaneous manifestations, such as Posterior fossa defects, Hemangiomas, Arterial lesions, Cardiac abnormalities/aortic coarctation, Eye abnormalities and Sternal cleft. Facial hemangiomas affect the 75% of patients and may arise on the oral mucosa or perioral cutaneous regions. In this study we treated 26 Intraoral Haemangiomas (IH) and 15 Perioral Haemangiomas (PH) with diode laser photocoagulation using a laser of 800+/-10nm of wavelength. For IH treatment an optical fiber of 320 μm was used, and the laser power was set ted at 4 W (t-on 200 ms / t-off 400ms; fluence: 995 J/cm2). For PH treatment an optical fiber of 400 μm at the power of 5 W was used (t-on 100 ms / t-off 300 ms; fluence: 398 J/cm2). IH healed after one session (31%), the other (69%) after two sessions of Laser therapy. In each session, only a limited area of the PH was treated, obtaining a progressive improvement of the lesion. Diode laser photocoagulation is an effective option of treatment for IH and PH in patients affected by PHACE because of its minimal invasiveness. Moreover laser photocoagulation doesn't have side effects and can be performed repeatedly without cumulative toxicity. Nevertheless, more studies are required to evaluate the effectiveness of the therapy in mid and long time period.

  16. Optimization of rod diameter in solid state lasers side pumped with multiple laser diode arrays

    NASA Technical Reports Server (NTRS)

    Sims, Newton, Jr.; Chamblee, Christyl M.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1992-01-01

    Results of a study to determine the optimum laser rod diameter for maximum output energy in a solid state neodymium laser transversely pumped with multiple laser diode arrays are reported here. Experiments were performed with 1.0 mm, 1.5 mm and 2.0 mm rod radii of both neodymium doped Y3Al5O12 (Nd:YAG) and La2Be2O5 (Nd:BeL) pumped with laser diode arrays having a maximum combined energy of 10.5 mJ. Equations were derived which predict the optimum rod radius and corresponding output mirror reflectivity for a given laser material and total pump energy. Predictions of the equations agreed well with the experiments for each of the laser materials which possessed significantly different laser properties from one another.

  17. Laser diode self-mixing technique for liquid velocimetry

    NASA Astrophysics Data System (ADS)

    Alexandrova, A.; Welsch, C. P.

    2016-09-01

    Using the self-mixing technique, or optical feedback interferometry, fluid velocity measurements of water seeded with titanium dioxide have been performed using a laser diode to measure the effect of the seeding particle concentration and also the pump speed of the flow. The velocimeter utilises commercially available laser diodes with a built-in photodiode for detection of the self-mixing effect. The device has demonstrated an accuracy better than 10% for liquid flow velocities up to 1.5 m/s with a concentration of scattering particles in the range of 0.8-0.03%. This is an improvement of one order of magnitude compared to previous experiments. The proposed velocimeter is to be developed further for application in gas-jet measurements.

  18. Diode laser based water vapor DIAL using modulated pulse technique

    NASA Astrophysics Data System (ADS)

    Pham, Phong Le Hoai; Abo, Makoto

    2014-11-01

    In this paper, we propose a diode laser based differential absorption lidar (DIAL) for measuring lower-tropospheric water vapor profile using the modulated pulse technique. The transmitter is based on single-mode diode laser and tapered semiconductor optical amplifier with a peak power of 10W around 800nm absorption band, and the receiver telescope diameter is 35cm. The selected wavelengths are compared to referenced wavelengths in terms of random error and systematic errors. The key component of modulated pulse technique, a macropulse, is generated with a repetition rate of 10 kHz, and the modulation within the macropulse is coded according to a pseudorandom sequence with 100ns chip width. As a result, we evaluate both single pulse modulation and pseudorandom coded pulse modulation technique. The water vapor profiles conducted from these modulation techniques are compared to the real observation data in summer in Japan.

  19. High brightness direct diode laser with kW output power

    NASA Astrophysics Data System (ADS)

    Fritsche, Haro; Kruschke, Bastian; Koch, Ralf; Ferrario, Fabio; Kern, Holger; Pahl, Ulrich; Pflueger, Silke; Gries, Wolfgang

    2014-03-01

    High power, high brightness diode lasers are beginning to challenge solid state lasers, i.e. disk and fiber lasers. The core technologies for brightness scaling of diode lasers are optical stacking and dense spectral combining (DSC), as well as improvements of the diode material. Diode lasers will have the lowest cost of ownership, highest efficiency and most compact design among all lasers. In our modular product design tens of single emitters are combined in a compact package and launched into a 200 μm fiber with 0.08 NA. Dense spectral combining enables power scaling from 80 W to kilowatts. Volume Bragg Gratings and dichroic filters yield high optical efficiencies of more than 80% at low cost. Each module emits up to 500 W with a beam quality of 5.5 mm*mrad and less than 20 nm linewidth. High speed switching power supplies are integrated into the module and rise times as short as 6 μs have been demonstrated. Fast control algorithms based on FPGA and embedded microcontroller ensure high wall plug efficiency with a unique control loop time of only 30 μs. Individual modules are spectrally combined to result in direct diode laser systems with kilowatts of output power at identical beam quality. For low loss fiber coupling a 200 μm fiber is used and the NA is limited to 0.08 corresponding to a beam quality of 7.5 mm*mrad. The controller architecture is fully scalable without sacrificing loop time. We leverage automated manufacturing for cost effective, high yield production. A precision robotic system handles and aligns the individual fast axis lenses and tracks all quality relevant data. Similar technologies are also deployed for dense spectral combining aligning the VBG and dichroic filters. Operating at wavelengths between 900 nm and 1100 nm, these systems are mainly used in cutting and welding, but the technology can also be adapted to other wavelength ranges, such as 793 nm and 1530 nm. Around 1.5 μm the diodes are already successfully used for resonant

  20. Coupled Resonator Vertical Cavity Laser Diode

    SciTech Connect

    CHOQUETTE, KENT D.; CHOW, WENG W.; FISCHER, ARTHUR J.; GEIB, KENT M.; HOU, HONG Q.

    1999-09-16

    We report the operation of an electrically injected monolithic coupled resonator vertical cavity laser which consists of an active cavity containing In{sub x}Ga{sub 1{minus}x}As quantum wells optically coupled to a passive GaAs cavity. This device demonstrates novel modulation characteristics arising from dynamic changes in the coupling between the active and passive cavities. A composite mode theory is used to model the output modulation of the coupled resonator vertical cavity laser. It is shown that the laser intensity can be modulated by either forward or reverse biasing the passive cavity. Under forward biasing, the modulation is due to carrier induced changes in the refractive index, while for reverse bias operation the modulation is caused by field dependent cavity enhanced absorption.

  1. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Surface effects in laser diodes

    NASA Astrophysics Data System (ADS)

    Beister, G.; Maege, J.; Richter, G.

    1988-11-01

    Changes in the current-voltage characteristics below the threshold current were observed in gain-guided stripe laser diodes after preliminary lasing. This effect was not fully understood. Similar changes in the laser characteristics appeared as a result of etching in a gaseous medium. The observed changes were attributed tentatively to surface currents.

  2. High power, high efficiency, 2D laser diode arrays for pumping solid state lasers

    SciTech Connect

    Rosenberg, A.; McShea, J.C.; Bogdan, A.R.; Petheram, J.C.; Rosen, A.

    1987-11-01

    This document reports the current performance of 2D laser diode arrays operating at 770 nm and 808 nm for pumping promethium and neodymium solid state lasers, respectively. Typical power densities are in excess of 2kw/cm/sup 2/ with overall efficiencies greater than 30%.

  3. Laser diode pumped 106 mW blue upconversion fiber laser

    NASA Astrophysics Data System (ADS)

    Sanders, S.; Waarts, R. G.; Mehuys, D. G.; Welch, D. F.

    1995-09-01

    A laser diode pumped Tm3+-doped ZBLAN fiber upconversion laser is demonstrated with blue output power levels up to 106 mW. Differential optical-to-optical conversion efficiencies up to 30% are measured with respect to pump power coupled into the upconversion fiber. A single spatial mode blue output beam is demonstrated, with an M2 value of 1.4.

  4. Quasi-cw 808-nm 300-W laser diode arrays

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, V. V.; Kozyrev, A. A.; Kondakova, N. S.; Kondakov, S. A.; Krokhin, O. N.; Mikaelyan, G. T.; Oleshchenko, V. A.; Popov, Yu. M.; Cheshev, E. A.

    2017-02-01

    Samples of 808-nm quasi-cw laser diode arrays (LDAs) with an output power exceeding 300 W, a pulse duration of 200 μs, and a pulse repetition rate of 100 Hz are developed and fabricated. The main output parameters of a set of five LDAs, including light – current characteristics, current – voltage characteristics, and emission spectra are measured. Preliminary life tests show that the LDA power remains stable for 108 pulses.

  5. Computer holography by means of the laser diodes

    NASA Astrophysics Data System (ADS)

    Borodin, Arthur N.; Ilchenko, Volodymyr; Malov, Alexander N.; Sychevskiy, Alexey V.

    2007-02-01

    A computer holography is the optical hologram recording on the CCD-matrix with digital reconstruction of the 2Dimages for the different volume object cross-sections. The possibility to use compact semiconductor laser diodes in the computer holography for 3D-scene registration is experimentally proved in the D. Gabor's scheme. For off axis hologram recording the S. Benton's scheme for holography using is suggested.

  6. Excision of Mucocele Using Diode Laser in Lower Lip

    PubMed Central

    Ramkumar, Subramaniam; Ramkumar, Lakshmi; Malathi, Narasimhan

    2016-01-01

    Mucoceles are nonneoplastic cystic lesions of major and minor salivary glands which result from the accumulation of mucus. These lesions are most commonly seen in children. Though usually these lesions can be treated by local surgical excision, in our case, to avoid intraoperative surgical complications like bleeding and edema and to enable better healing, excision was done using a diode laser in the wavelength of 940 nm. PMID:28097026

  7. Frequency stabilization of a 369 nm diode laser by nonlinear spectroscopy of Ytterbium ions in a discharge

    NASA Astrophysics Data System (ADS)

    Lee, Michael W.; Jarratt, Marie Claire; Marciniak, Christian; Biercuk, Michael J.

    2014-03-01

    We demonstrate stabilisation of an ultraviolet diode laser via Doppler free spectroscopy of Ytterbium ions in a discharge. Our technique employs polarization spectroscopy, which produces a natural dispersive lineshape whose zero-crossing is largely immune to environmental drifts, making this signal an ideal absolute frequency reference for Yb$^+$ ion trapping experiments. We stabilise an external-cavity diode laser near 369 nm for cooling Yb$^+$ ions, using amplitude-modulated polarisation spectroscopy and a commercial PID feedback system. We achieve stable, low-drift locking with a standard deviation of measured laser frequency ~400 kHz over 10 minutes, limited by the instantaneous linewidth of the diode laser. These results and the simplicity of our optical setup makes our approach attractive for stabilization of laser sources in atomic-physics applications.

  8. Four-Pass Coupler for Laser-Diode-Pumped Solid-State Laser

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B.

    2008-01-01

    A four-pass optical coupler affords increased (in comparison with related prior two-pass optical couplers) utilization of light generated by a laser diode in side pumping of a solid-state laser slab. The original application for which this coupler was conceived involves a neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal slab, which, when pumped by a row of laser diodes at a wavelength of 809 nm, lases at a wavelength of 1,064 nm. Heretofore, typically, a thin laser slab has been pumped in two passes, the second pass occurring by virtue of reflection of pump light from a highly reflective thin film on the side opposite the side through which the pump light enters. In two-pass pumping, a Nd:YAG slab having a thickness of 2 mm (which is typical) absorbs about 84 percent of the 809-nm pump light power, leaving about 16 percent of the pump light power to travel back toward the laser diodes. This unused power can cause localized heating of the laser diodes, thereby reducing their lifetimes. Moreover, if the slab is thinner than 2 mm, then even more unused power travels back toward the laser diodes. The four-pass optical coupler captures most of this unused pump light and sends it back to the laser slab for two more passes. As a result, the slab absorbs more pump light, as though it were twice as thick. The gain and laser cavity beam quality of a smaller laser slab in conjunction with this optical coupler can thus be made comparable to those of a larger two-pass-pumped laser slab.

  9. Improving lifetime of quasi-CW laser diode arrays for pumping 2-micron solid state lasers

    NASA Astrophysics Data System (ADS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-04-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  10. Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  11. AlGaInN laser diode technology for free-space and plastic optical fibre telecom applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Bóckowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.; Watson, M. A.; Blanchard, P.; White, H.

    2016-03-01

    Gallium Nitride laser diodes fabricated from the AlGaInN material system is an emerging technology for laser sources from the UV to visible and is a potential key enabler for new system applications such as free-space (underwater & air bourne links) and plastic optical fibre telecommunications. We measure visible light (free-space and underwater) communications at high frequency (up to 2.5 Gbit/s) and in plastic optical fibre (POF) using a directly modulated GaN laser diode.

  12. Broadly tunable, longitudinally diode-pumped Alexandrite laser

    NASA Astrophysics Data System (ADS)

    Strotkamp, M.; Witte, U.; Munk, A.; Hartung, A.; Gausmann, S.; Hengesbach, S.; Traub, M.; Hoffmann, H.-D.; Hoeffner, J.; Jungbluth, B.

    2014-02-01

    We present design and first performance data of a broadly tunable Alexandrite laser longitudinally pumped by a newly developed high brightness single emitter diode laser module with output in the red spectral range. Replacing the flashlamps, which are usually used for pumping Alexandrite, will increase the efficiency and maintenance interval of the laser. The pump module is designed as an optical stack of seven single-emitter laser diodes. We selected an optomechanical concept for the tight overlay of the radiation using a minimal number of optical components for collimation, e.g. a FAC and a SAC lens, and focusing. The module provides optical output power of more than 14 W (peak pulse output in the focus) with a beam quality of M2 = 41 in the fast axis and M2 = 39 in the slow axis. The Alexandrite crystal is pumped from one end at a repetition rate of 35 Hz and 200μs long pump pulses. The temperature of the laser crystal can be tuned to between 30 °C and 190 °C using a thermostat. The diode-pumped Alexandrite laser reaches a maximum optical-optical efficiency of 20 % and a slope efficiency of more than 30 % in fundamental-mode operation (M2 < 1.10). When a Findlay-Clay analysis with four different output couplers is conducted, the round-trip loss of the cavity is determined to be around 1 %. The wavelength is tunable to between 755 and 788 nm via crystal temperature or between 745 and 805 nm via an additional Brewster prism.

  13. Significant increase in wavelength, power, and temperature operating envelopes for semiconductor laser diode bars for solid-state lasers

    NASA Astrophysics Data System (ADS)

    Haden, J.; Plano, B.; Major, J.; Harnagel, G.; Endriz, J.

    Attention is given to the substantial increase in the performance envelope of AlGaAs base semiconductor laser diode array bars (QCW bars) that are available to designers of diode pumped solid-state lasers. Reliable QCW bar performance includes operation to 100 W/cm with greater than 10 exp 9 pulse life, 65 C operation, and 780 to 980 nm wavelength availability (60 W/cm). Consideration is also given to 247-W QCW operation. At Nd:YAG, YLF wavelengths (798-807 nm), significant improvements have been achieved in allowable operating temperature (to 65 C) and operating power (to 100 W). These improvements offer the opportunity for the design of high-efficiency solid-state laser systems that need to operate in relatively severe environments.

  14. [Diode laser surgery in the endoscopic treatment of laryngeal paralysis].

    PubMed

    Ferri, E; García Purriños, F J

    2006-01-01

    Several surgical procedures have been proposed for the treatment of respiratory distress secondary to bilateral vocal cord paralysis. The aim of all surgical techniques used is to restore a glottic lumen sufficient to guarantee adequate breathing through the natural airway, without tracheotomy and preserving an acceptable phonatory quality. In this study we present our experience from 1998 to 2004 concerning the use of the diode contact laser for a modified Dennis-Kashima posterior endoscopic cordectomy (extended to the false homolateral chord in 3 cases and to the homolateral arytenoid vocal process in 6 cases). 18 patients (15 male, 3 female) were treated; the age range was 35-84 years. The etiology of paralysis varied: iatrogenic post-thyroidectomy and post-thoracic surgery in 5 cases (28%), post-traumatic in 2 cases (11%), secondary to a central lesion in 11 (61%). The operation was carried out with a diode contact laser (60W; 810 nm). Follow-up was 20 months. Dyspnea improved in all patients; the 9 tracheostomized patients were decannulated within 2 months after surgery. Final voice quality was subjectively good in 16 patients (88%). None of patients had any complications after surgery. In conclusion, the endoscopic posterior cordectomy performed by contact diode laser is an effective and reliable method for the treatment of dyspnea secondary to bilateral laryngeal paralysis, guaranteing a sufficient airway without impairing swallowing and maintaining acceptable voice quality.

  15. 450 nm diode laser: A new help in oral surgery

    PubMed Central

    Fornaini, Carlo; Rocca, Jean-Paul; Merigo, Elisabetta

    2016-01-01

    AIM To describe the performance of 450 nm diode laser in oral surgery procedures. METHODS The case described consisted of the removal of a lower lip fibroma through a blue diode laser (λ = 450 nm). RESULTS The efficacy of this device, even at very low power (1W, CW), allows us to obtain very high intra and postoperative comfort for the patient, even with just topical anaesthesia and without needing suture. The healing process was completed in one week and, during the follow-up, the patient did not report any problems, pain or discomfort even without the consumption of any kind of drugs, such as painkillers and antibiotics. The histological examination performed by the pathologist showed a large area of fibrous connective tissue with some portions of epithelium-connective detachments and a regular incision with very scanty areas of carbonization. CONCLUSION The 450 nm diode laser proved of being very efficient in the oral soft tissue surgical procedures, with no side effects for the patients. PMID:27672639

  16. Industrial high-power diode lasers: reliability, power, and brightness

    NASA Astrophysics Data System (ADS)

    Strohmaier, Stephan; An, Haiyan; Vethake, Thilo

    2012-03-01

    High power semiconductor lasers, single emitters and bars are developing fast. During the last decade key parameters of diode lasers, such as beam quality, power, spatial and spectral brightness, efficiency as well as reliability have been greatly improved. However, often only individual parameters have been optimized, accepting an adverse effect in the other key parameters. For demanding industrial applications in most cases it is not sufficient to achieve a record value in one of the parameters, on the contrary it is necessary to optimize all the mentioned parameters simultaneously. To be able to achieve this objective it is highly advantageous to have insight in the whole process chain, from epitaxial device structure design and growth, wafer processing, mounting, heat sink design, product development and finally the customer needs your final product has to fulfill. In this publication an overview of recent advances in industrial diode lasers at TRUMPF will be highlighted enabling advanced applications for both high end pump sources as well as highest brightness direct diode.

  17. Master-Oscillator/Power-Amplifier Laser System

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Unger, Glenn L.

    1994-01-01

    Master-oscillator/power-amplifier (MOPA) laser system operates in continuous-wave mode or in amplitude-modulation (e.g., pulse) mode by modulation of oscillator current. Power amplifier is laser-diode-pumped neodymium:yttrium lithium fluoride (Nd:YLF) laser; oscillator is laser diode. Offers relatively high efficiency and power. Because drive current to oscillator modulated, external electro-optical modulator not needed. Potential uses include free-space optical communications, coded laser ranging, and generation of high-power, mode-locked pulses.

  18. Wavemeter uncertainty evaluation for the calibration of external cavity diode lasers

    NASA Astrophysics Data System (ADS)

    Outumuro, I.; Valencia, J. L.; Diz-Bugarin, J.; Blanco, J.; Dorrio, B. V.

    2014-08-01

    The uncertainty of a wavemeter has been evaluated taking into account all contributions. This wavemeter was developed to give traceability to the frequency of external cavity diode lasers. These lasers were stabilized and used as light source in the assembly of a new interferometric system for the gauge block calibration. The wavemeter experimental setup is also presented and is based in a Michelson interferometer, a He-Ne laser used as a reference wavelength and a Vernier counter that allowed us to reduce the uncertainty below 1ppm.

  19. External cavity diode laser with very-low frequency drift

    NASA Astrophysics Data System (ADS)

    Takamizawa, Akifumi; Yanagimachi, Shinya; Ikegami, Takeshi

    2016-03-01

    An external cavity diode laser with significant mechanical robustness was installed in a housing that was sealed from outside for eliminating variations in the refractive index of air. Using the feedback signal for a frequency lock, it was found that the variation in the laser frequency under free running was suppressed to 275 MHz over one month and depended on the room temperature. Moreover, the upper limit of the linear frequency drift rate was evaluated as intrinsically 40 Hz/s. The frequency lock is expected to be sustainable for more than 110 days with temperature-controlled housing.

  20. Ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1991-01-01

    A Planar-Buried-Heterostructure, Graded-Index, Separate-Confinement-Heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding layer 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an ion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  1. Hundred-watt diode laser source by spectral beam combining

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Peng, Hangyu; Liu, Yun; Qin, Li; Cao, Junsheng; Shan, Xiaonan; Zeng, Yugang; Fu, Xihong; Tong, Cunzhu; Ning, Yongqiang; Wang, Lijun

    2014-12-01

    A diode laser source with a continuous wavelength (CW) power of 106 W and the beam quality M2 of 14.6 is demonstrated by spectrum beam combining (SBC) of three 800 nm LDAs. With the help of relay optics, a wavelength interval of 0.21 nm and a whole spectrum span of 13.9 nm are achieved, which is almost 10 times narrower than those of the structure without the relay optics. This presents a method to obtain a high power and high beam quality SBC laser source with a narrow spectrum.

  2. Wave optics simulation of diode pumped alkali laser (DPAL)

    NASA Astrophysics Data System (ADS)

    Endo, Masamori; Nagaoka, Ryuji; Nagaoka, Hiroki; Nagai, Toru; Wani, Fumio

    2016-03-01

    A numerical simulation code for a diode pumped alkali laser (DPAL) was developed. The code employs the Fresnel- Kirchhoff diffraction integral for both laser mode and pump light propagations. A three-dimensional rate equation set was developed to determine the local gain. The spectral divergence of the pump beam was represented by a series of monochromatic beams with different wavelengths. The calculated results showed an excellent agreements with relevant experimental results. It was found that the main channel of the pump power drain is the spontaneous emission from the upper level of the lasing transition.

  3. Diode Laser Sensors for Arc-Jet Characterization

    NASA Technical Reports Server (NTRS)

    Hanson, Ronald K.

    2005-01-01

    The development and application of tunable diode laser (TDL) absorption sensors to monitor the health and operating conditions in the large-scale 60 MW arc-heated- plasma wind-tunnel at NASA Ames Research Center is reported. The interactive heating facility (THF) produces re-entry flow conditions by expanding the gas heated in a constricted plasma arc-heater to flow at high velocity over a model located in a test cabin. This facility provides the conditions needed to test thermal protective systems for spacecraft re-entering the earth s atmosphere. TDL sensors are developed to monitor gas flows in both the high-temperature constricted flow and the supersonic expansion flow into test cabin. These sensors utilize wavelength-tuned diode lasers to measure absorption transitions of atomic oxygen near 777.2 nm, atomic nitrogen near 856.8 nm, and atomic copper near 793.3 nm. The oxygen and nitrogen sensors measure the population density in exited electronic states of these atoms. The measurements combined with the assumption of local thermal and chemical equilibrium yield gas temperature (typically near 7,000K). The nitrogen and oxygen population temperatures are redundant, and their close agreement provides an important test of the local thermal equilibrium assumption. These temperature sensors provide time-resolved monitors of the operating conditions of the arc-heater and can be used to verify and control the test conditions. An additional TDL sensor was developed to monitor the copper concentration in the arc-heater flow yielding values as high as 13 ppm. Measurements of copper in the flow can identify flow conditions with unacceptably rapid electrode erosion, and hence this sensor provides valuable information needed to schedule maintenance to avoid costly arc-heater failure. TDL sensors were also developed for measurements in the test cabin, where absorption measurements of the populations of argon and molecular nitrogen in excited metastable electronic states

  4. Generation of turquoise light by sum frequency mixing of a diode-pumped solid-state laser and a laser diode in periodically poled KTP.

    PubMed

    Johansson, Sandra; Spiekermann, Stefan; Wang, Shunhua; Pasiskevicius, Valdas; Laurell, Fredrik; Ekvall, Katrin

    2004-10-04

    We report a simple and efficient method to achieve visible light by sum-frequency mixing radiation from a diode-pumped solid-state laser and a laser diode in a periodically poled KTiOPO4 crystal. Since high-power laser diodes are available at a wide range of wavelengths, it is thereby possible to obtain essentially any wavelength in the visible spectrum by appropriate choice of lasers. For demonstration we choose to construct a light source in the blue-green region. A turquoise output power of 4.0 mW was achieved.

  5. Generation of turquoise light by sum frequency mixing of a diode-pumped solid-state laser and a laser diode in periodically poled KTP

    NASA Astrophysics Data System (ADS)

    Johansson, Sandra; Spiekermann, Stefan; Wang, Shunhua; Pasiskevicius, Valdas; Laurell, Fredrik; Ekvall, Katrin

    2004-10-01

    We report a simple and efficient method to achieve visible light by sum-frequency mixing radiation from a diode-pumped solid-state laser and a laser diode in a periodically poled KTiOPO4 crystal. Since high-power laser diodes are available at a wide range of wavelengths, it is thereby possible to obtain essentially any wavelength in the visible spectrum by appropriate choice of lasers. For demonstration we choose to construct a light source in the blue-green region. A turquoise output power of 4.0 mW was achieved.

  6. High-power pulsed diode-pumped Er:ZBLAN fiber laser.

    PubMed

    Gorjan, Martin; Petkovšek, Rok; Marinček, Marko; Čopič, Martin

    2011-05-15

    We report on the operation and performance of a gain-switched Er:ZBLAN fiber laser based on an active pulsed diode pump system. The produced laser pulses offer high peak powers while retaining the high average powers and efficiency of the cw regime. The measured pulse duration was about 300 ns and nearly independent of the pump repetition frequency. The maximum obtained 68 W of peak power is the highest reported, to our knowledge, for diode-pumped Er:ZBLAN fiber lasers, and the 2 W of average power at the repetition frequency of 100 kHz is 2 orders of magnitude higher than previously reported average power in a pulsed regime. The obtained slope efficiency was 34%.

  7. Calculation and comparison of thermal effect in laser diode pumped slab lasers with different pumping structures

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Jiang, Nan; Wang, Yuefeng; Dong, Wei; Niu, Yanxiong

    2008-03-01

    Laser diode (LD) pumped slab laser, as an important high average power solid-state laser, is a promising laser source in military and industrial fields. The different laser diode pumping structures lead to different thermal effect in the slab gain medium. The thermal and stress analysis of slab laser with different pumping structure are performed by finite element analysis (FEA) with the software program ANSYS. The calculation results show that the face pumped and cooled laser results in a near one-dimension temperature distribution and eliminates thermal stress induced depolarization. But the structure is low pump efficiency due to the small thickness of slabs and the requirement to cool and pump through the same faces. End-pumped slab laser is high pump efficiency and excellent mode match, but its pumping arrangement is fairly complicated. The edge-pumped face-cooling slab laser's pump efficiency is better than face-pumping, and its pumping structure is simpler than end-pumped laser, but the tensile stress on surfaces may initiate failure of the gain medium so it is important to design so that the stress is well below the stress fracture limit. The comparison of the thermal effects with different pumping structure shows that, the edge-pumped slab laser has engineering advantages in high power slab laser's application. Furthermore, the end-pumped slab laser tends to get the best beam quality, so it is fit for the application which has a special requirement on laser beam quality.

  8. Precision UV laser scribing for cleaving mirror facets of GaN-based laser diodes

    NASA Astrophysics Data System (ADS)

    Krüger, O.; Kang, J.-H.; Spevak, M.; Zeimer, U.; Einfeldt, S.

    2016-04-01

    Laser scribing with a nanosecond-pulsed UV laser operating at 355 nm was used to create precise perforation for die separation of GaN-based laser diodes. Machining depth of single- and multiple-pass scribing was investigated. For pulse energies between 1 and 45 µJ at a pulse repetition frequency of 20 kHz and single scan at 100 mm/min, scribe depths from 15 to 180 µm were obtained. Processing parameters were adjusted to minimize the formation of microcracks due to laser-induced local heating. By using the laser skip-and-scribe technique, the propagation of the cleavage plane could be controlled, irregular breaking could be minimized, and die yield could be improved. Smooth mirror facets with low density of terraces were formed by cleaving. In the vicinity of the laser-treated zone, no detrimental effects on the crystal quality of the multi-quantum wells could be detected by cathodoluminescence. The electro-optical characteristics of broad-area laser diodes fabricated by the laser-assisted process were similar to the ones fabricated using the conventional diamond-tip edge-scribing technique that suffers from low die yield. Our results demonstrate that nanosecond-pulsed UV laser scribing followed by cleaving is a powerful technique for the formation of mirror facets of GaN-based laser diodes.

  9. Acute Suppurative Parotitis Treatment by Diode Laser Combined with ER:YAG Laser

    PubMed Central

    Ke, Jyuhn H.; Wang, Hong Lan

    2012-01-01

    Background and aim: The diode laser combined with Er:YAG laser is a new treatment modality for acute sialadenitis. A 78-year-old woman with acute suppurative parotitis was treated by traditional probe to the duct orifice with oral antibiotics for 2 weeks. The symptoms and signs did not subside after treatment. The Er:YAG laser was used to reduce severe infection and inflammation and low level laser therapy (LLLT) was applied to relieve pain sensation during incision and drainage. Less scar formation and obstruction was observed after the laser treatments. Results: Purulent secretions from the Stensen duct was noted after milking the parotid gland. The symptoms and signs were significantly relieved after combined laser treatments. The patient experienced no pain during the course of treatment. No recurrence of the symptoms and signs was noted after 1-year follow-up, and the prognosis was very good. Conclusion: The hemostatic properties of the diode laser enable better control of the surgical field and faster healing of the wound lesions. The bactericidal effect of Er:YAG lasers has been proved by many researchers, and has been shown to reduce infection and inflammation for better wound healing. The combined laser therapy of diode and Er:YAG lasers is recommended in treating acute sialadenitis. PMID:24610980

  10. Role of electron blocking layer in III-nitride laser diodes and light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kuo, Yen-Kuang; Chang, Jih-Yuan; Chen, Mei-Ling

    2010-02-01

    A high energy bandgap electron blocking layer (EBL) just behind the active region is conventionally used in the nitride-based laser diodes (LDs) and light-emitting diodes (LEDs) to improve the confinement capability of electrons within the quantum wells. Nevertheless, the EBL may also act as a potential barrier for the holes and cause non-uniform distribution of holes among quantum wells. A most recent study by Han et al. (Appl. Phys. Lett. 94, 231123, 2009) reported that, because of the blocking effect for holes, the InGaN LED device without an EBL has slighter efficiency droop and higher light output at high level of current injection when compared with the LED device with an EBL. This result seems to contradict with the original intention of using the EBL. Furthermore, findings from our previous studies (IEEE J. Lightwave Technol. 26, 329, 2008; J. Appl. Phys. 103, 103115, 2008; Appl. Phys. Lett. 91, 201118, 2007) indicated that the utilization of EBL is essential for the InGaN laser diodes. Thus, in this work, the optical properties of the InGaN LDs and LEDs are explored numerically with the LASTIP simulation program and APSYS simulation program, respectively. The analyses focus particularly on the light output power, energy band diagrams, recombination rates, distribution of electrons and holes in the active region, and electron overflow. This study will then conclude with a discussion of the effect of EBL on the optical properties of the InGaN LDs and LEDs.

  11. Characterization of High-power Quasi-cw Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  12. Improve the Performance of Integrated Diode Laser Beam Combining Through Grating Regrowth

    DTIC Science & Technology

    2014-11-30

    SECURITY CLASSIFICATION OF: This project aims to improve the output power and coherence of monolithically combined broad-area diode lasers through...grating regrowth. We have recently demonstrated coherent beam combining in a new, completely integrated approach to edge- emitting semiconductor lasers...2014 Approved for Public Release; Distribution Unlimited Final Report: Improve the Performance of Integrated Diode Laser Beam Combining Through Grating

  13. High brightness diode pumped Er:YAG laser system at 2.94 µm with nearly 1kW peak power

    NASA Astrophysics Data System (ADS)

    Messner, Manuel; Heinrich, Arne; Hagen, Clemens; Unterrainer, Karl

    2016-03-01

    We demonstrated a monolithic high-power diode-pumped Er:YAG laser at 2.94 μm with average output power of up to 50W and pulse energy beyond 300mJ in 400 μs pulses. The high peak power of nearly 1kW is delivered in a high quality beam (M2 < 15), maintained over a large cooling water temperature range of 18-25 °C. The improved resonator configuration allows for stable operation from 0-10% duty-cycle in contrast to prior developments showing saturation. As a first application, fiber-coupling into a 230 μm, 0.2NA GeO2-fiber with standard optics has been shown, reaching 30W average power and 200mJ pulse energy out of the fiber, only limited by the fiber..

  14. High-power diode laser at 980 nm for the treatment of benign prostatic hyperplasia: ex vivo investigations on porcine kidneys and human cadaver prostates.

    PubMed

    Seitz, Michael; Reich, Oliver; Gratzke, Christian; Schlenker, Boris; Karl, Alexander; Bader, Markus; Khoder, Wael; Fischer, Florian; Stief, Christian; Sroka, Ronald

    2009-03-01

    Diode laser systems at 980 nm have been introduced for the treatment of lower-urinary-tract-symptoms (LUTS) suggestive of benign prostatic enlargement (BPE). However, the coagulation and vaporization properties are unknown. We therefore aimed to evaluate these properties in ex vivo models in comparison with the kalium-titanyl-phosphate-(KTP) laser. The diode laser treatment was applied to isolated, blood-perfused porcine kidneys and fresh human cadaver prostates (HCPs) at different generator settings. We performed histological examination to compare the depth of coagulation and vaporization. The diode laser showed larger ablation and coagulation characteristics than the KTP laser did. Ablation of the diode laser was found to be 1.79-times (120 W in porcine kidney, P < 0.0001) and 3.0-5 times (200 W in HCP, P < 0.0005) larger. The diode laser created a nine-times (120 W in porcine kidney, P < 0.0001) and seven-times (200 W in HCP, P < 0.0001) deeper necrosis zone. The diode laser vaporization was highly effective ex vivo. Owing to the laser's deep coagulation zones, in vivo animal experiments are mandatory before the diode laser (980 nm) is applied in a clinical setting, so that damage to underlying structures is prevented.

  15. Compact, passively Q-switched, all-solid-state master oscillator-power amplifier-optical parametric oscillator (MOPA-OPO) system pumped by a fiber-coupled diode laser generating high-brightness, tunable, ultraviolet radiation.

    PubMed

    Peuser, Peter; Platz, Willi; Fix, Andreas; Ehret, Gerhard; Meister, Alexander; Haag, Matthias; Zolichowski, Paul

    2009-07-01

    We report on a compact, tunable ultraviolet laser system that consists of an optical parametric oscillator (OPO) and a longitudinally diode-pumped Nd:YAG master oscillator-power amplifier (MOPA). The pump energy for the whole laser system is supplied via a single delivery fiber. Nanosecond pulses are produced by an oscillator that is passively Q-switched by a Cr(4+):YAG crystal. The OPO is pumped by the second harmonic of the Nd:YAG MOPA. Continuously tunable radiation is generated by an intracavity sum-frequency mixing process within the OPO in the range of 245-260 nm with high beam quality. Maximum pulse energies of 1.2 mJ were achieved, which correspond to an optical efficiency of 3.75%, relating to the pulse energy of the MOPA at 1064 nm.

  16. Rapid prototyping process using linear array of high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Zhu, Linquan; Cheng, Jun; Zhou, Hanchang

    2000-02-01

    Because of the weak points of the SLS spot Scanning process, a new rapid prototyping process -- SLS line scan using linear array of high power laser diodes regarded as energy sources is researched in this paper. A linear array with requisite length is formed by some high power laser diodes that can be derived individually. Beams of the linear array are transferred to the workplace and imaged some short and light lines by the corresponding optical collimators. They are lined up in a linear laser beam without separation whose length is equal to that of the linear array diodes. When sintering powdered material, the linear laser beam scans in one direction along x axis only. Only if the maximum line length is less than the y axial size of the workpiece, it is necessary that linear laser beam is lapped for some times in the y axis. The Scanning mode of x-y simultaneous guideways are used in this new system which differs entirely from the vibrating mirror scan. The scanning trace of the latter is an arc that will influence processing quality. This new process has higher efficiency and better quality than the traditional spot scanning method.

  17. High power diode laser Master Oscillator-Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Andrews, John R.; Mouroulis, P.; Wicks, G.

    1994-01-01

    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  18. Bedside Diode Laser Photocoagulation Under Remifentanil Analgesia for Retinopathy of Prematurity: Early Structural Outcomes

    PubMed Central

    Şekeroğlu, Mehmet Ali; Hekimoğlu, Emre; Özcan, Beyza; Baş, Ahmet Yağmur; Demirel, Nihal; Karakaya, Jale

    2016-01-01

    Objectives: To evaluate one-year structural outcomes of bedside diode laser photocoagulation with remifentanil analgesia for retinopathy of prematurity (ROP) and discuss clinical and demographic characteristics of infants and other possible risk factors that may affect the outcome. Materials and Methods: The medical records of premature infants who were treated with bedside transpupillary diode laser photocoagulation under remifentanil analgesia for ROP were evaluated for clinical and demographic characteristics, accompanying systemic risk factors, laser parameters, complications of treatment, retreatment rate and one-year structural outcomes. Results: One-hundred and ninety-five eyes of 99 infants (59 males, 40 females) were recruited for the study. The mean gestational age and birth weight were 27.4±2.3 weeks (23-34) and 1003.3±297.8 g (570-2250), respectively. Laser therapy was performed for high-risk prethreshold ROP in 66.2% of eyes, aggressive posterior ROP (APROP) in 15.4% and threshold ROP in 18.4%. The mean number of laser spots was 1510.4±842.1 per laser session. No adverse effects of laser photocoagulation were observed except small lens opacities in two eyes and corneal opacity in one eye. Retreatment was needed in only three eyes, and vitreoretinal surgery was needed in six eyes of six patients despite laser treatment. Anatomic outcome was favorable in 189 eyes (96.9%) at the end of a 1-year follow-up. Presence of dilated and tortuous iris vessels (p=0.002) and tunica vasculosa lentis (p=0.009) along with type of ROP (APROP and stage 4a ROP at initial presentation) (p=0.001) were associated with poor anatomical outcome. Conclusion: Accurate and timely bedside transpupillary diode-laser photocoagulation under remifentanil analgesia is an effective and safe treatment modality for ROP, and may prevent vision-threatening retinal detachment and reduce the need for vitreoretinal surgery. PMID:28058162

  19. Dynamic characteristics of far-field radiation of current modulated phase-locked diode laser arrays

    NASA Technical Reports Server (NTRS)

    Elliott, R. A.; Hartnett, K.

    1987-01-01

    A versatile and powerful streak camera/frame grabber system for studying the evolution of the near and far field radiation patterns of diode lasers was assembled and tested. Software needed to analyze and display the data acquired with the steak camera/frame grabber system was written and the total package used to record and perform preliminary analyses on the behavior of two types of laser, a ten emitter gain guided array and a flared waveguide Y-coupled array. Examples of the information which can be gathered with this system are presented.

  20. Laser beam modeling in optical storage systems

    NASA Technical Reports Server (NTRS)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.