Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units.
Asmussen, Erik; Peutzfeldt, Anne
2005-02-01
Because of the risk of thermal damage to the pulp, the temperature rise induced by light-curing units should not be too high. LED (light emitting diode) curing units have the main part of their irradiation in the blue range and have been reported to generate less heat than QTH (quartz-tungsten-halogen) curing units. This study had two aims: first, to measure the temperature rise induced by ten LED and three QTH curing units; and, second, to relate the measured temperature rise to the power density of the curing units. The light-induced temperature rise was measured by means of a thermocouple embedded in a small cylinder of resin composite. The power density was measured by using a dental radiometer. For LED units, the temperature rise increased with increasing power density, in a statistically significant manner. Two of the three QTH curing units investigated resulted in a higher temperature rise than LED curing units of the same power density. Previous findings, that LED curing units induce less temperature rise than QTH units, does not hold true in general.
Oberholzer, T G; Makofane, M E; du Preez, I C; George, R
2012-06-01
Pulpal temperature changes induced by modern high powered light emitting diodes (LEDs) are of concern when used to cure composite resins. This study showed an increase in pulp chamber temperature with an increase in power density for all light cure units (LCU) when used to bulk cure composite resin. Amongst the three LEDs tested, the Elipar Freelight-2 recorded the highest temperature changes. Bulk curing recorded a significantly larger rise in pulp chamber temperature change than incrementally cured resin for all light types except for the Smartligh PS. Both the high powered LED and the conventional curing units can generate heat. Though this temperature rise may not be sufficient to cause irreversible pulpal damage, it would be safer to incrementally cure resins.
Gupta, Sanjay Prasad; Shrestha, Basanta Kumar
2018-01-01
Purpose To determine and compare the shear bond strength (SBS) of bracket-bonding system cured with light-emitting diode (LED) and halogen-based light-curing unit at various polymerization times. Materials and methods Ninety six human maxillary premolar teeth extracted for orthodontic purpose were divided into four groups, according to the light-curing unit and exposure times used. In the halogen group, the specimens were light cured for 20 and 40 seconds. In the LED group, the specimens were light cured for 5 and 10 seconds. Stainless steel brackets were bonded with Enlight bonding system, stored in distilled water at 37°C for 24 hours and then submitted to SBS testing in a universal testing machine at a crosshead speed of 0.5 mm/minute. Adhesive remnant index (ARI) was used to evaluate the amount of adhesive remaining on the teeth determined by stereomicroscope at 10× magnification. Results The highest mean SBS was obtained with the halogen 40 seconds (18.27 MPa) followed by halogen 20 seconds (15.36 MPa), LED 10 seconds (14.60 MPa) and least with LED 5 seconds (12.49 MPa) group. According to analysis of variance (ANOVA) and Tukey’s multiple-comparison test, SBS of halogen 20 seconds group was not significantly different from halogen 40 seconds group, LED 5 seconds group and LED 10 seconds group, whereas halogen 40 seconds group was significantly different from LED 5 seconds and LED 10 seconds group. The method of light curing did not influence the ARI, with score 2 being predominant. Conclusion Polymerization with both halogen and LED resulted in SBS values that were clinically acceptable for orthodontic treatment in all groups. Hence, for bonding orthodontic brackets, photoactivation with halogen for 20 seconds and LED for 5 seconds is suggested. PMID:29692633
Fornaini, C; Lagori, G; Merigo, E; Rocca, J-P; Chiusano, M; Cucinotta, A
2015-12-30
A 405 nm diode laser is indicated for composite materials polymerizing, thanks to the recent evolution in their compositions, absorbing in blue part of the spectrum. The purpose of this research was to evaluate its performance on two different kinds of composite resins. Two different composites were polymerized with a traditional halogen lamp, a LED device and a 405 nm diode laser. The depth of the cure, the volumetric shrinkage, and the degree of the conversion (DC%) of the double bond during the curing process were measured. One-way ANOVA test, Kruskal-Wallis tests, and Dunn comparison tests were used for statistic analysis. Regarding the depth of polymerization, the laser had the worst performance on one composite while on the other, no significant difference with the other devices was observed. The volumetric shrinkage showed that laser produced the lowest change in both of the composites. The DC% measure confirmed these findings. Based on the results of this preliminary study, it is not possible to recommend the 405 nm diode laser for the polymerization of dental composites.
Dionysopoulos, Dimitrios; Tolidis, Kosmas; Strakas, Dimitrios; Gerasimou, Paris; Sfeikos, Thrasyvoulos; Gutknecht, Norbert
2017-04-01
The aim of this in vitro study was to evaluate the effect of radiant heat on surface hardness of three conventional glass ionomer cements (GICs) by using a blue diode laser system (445 nm) and a light-emitting diode (LED) unit. Additionally, the safety of the laser treatment was evaluated. Thirty disk-shaped specimens were prepared of each tested GIC (Equia Fil, Ketac Universal Aplicap and Riva Self Cure). The experimental groups (n = 10) of the study were as follows: group 1 was the control group of the study; in group 2, the specimens were irradiated for 60 s at the top surface using a LED light-curing unit; and in group 3, the specimens were irradiated for 60 s at the top surface using a blue light diode laser system (445 nm). Statistical analysis was performed using one-way ANOVA and Tukey post-hoc tests at a level of significance of a = 0.05. Radiant heat treatments, with both laser and LED devices, increased surface hardness (p < 0.05) but in different extent. Blue diode laser treatment was seemed to be more effective compared to LED treatment. There were no alterations in surface morphology or chemical composition after laser treatment. The tested radiant heat treatment with a blue diode laser may be advantageous for the longevity of GIC restorations. The safety of the use of blue diode laser for this application was confirmed.
A brief history of LED photopolymerization.
Jandt, Klaus D; Mills, Robin W
2013-06-01
The majority of modern resin-based oral restorative biomaterials are cured via photopolymerization processes. A variety of light sources are available for this light curing of dental materials, such as composites or fissure sealants. Quartz-tungsten-halogen (QTH) light curing units (LCUs) have dominated light curing of dental materials for decades and are now almost entirely replaced by modern light emitting diode light curing units (LED LCUs). Exactly 50 years ago, visible LEDs were invented. Nevertheless, it was not before the 1990s that LEDs were seriously considered by scientists or manufactures of commercial LCUs as light sources to photopolymerize dental composites and other dental materials. The objective of this review paper is to give an overview of the scientific development and state-of-the-art of LED photopolymerization of oral biomaterials. The materials science of LED LCU devices and dental materials photopolymerized with LED LCU, as well as advantages and limits of LED photopolymerization of oral biomaterials, are discussed. This is mainly based on a review of the most frequently cited scientific papers in international peer reviewed journals. The developments of commercial LED LCUs as well as aspects of their clinical use are considered in this review. The development of LED LCUs has progressed in steps and was made possible by (i) the invention of visible light emitting diodes 50 years ago; (ii) the introduction of high brightness blue light emitting GaN LEDs in 1994; and (iii) the creation of the first blue LED LCUs for the photopolymerization of oral biomaterials. The proof of concept of LED LCUs had to be demonstrated by the satisfactory performance of resin based restorative dental materials photopolymerized by these devices, before LED photopolymerization was generally accepted. Hallmarks of LED LCUs include a unique light emission spectrum, high curing efficiency, long life, low energy consumption and compact device form factor. By understanding the physical principles of LEDs, the development of LED LCUs, their strengths and limitations and the specific benefits of LED photopolymerization will be better appreciated. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Tongtaksin, A; Leevailoj, C
This study investigated the influence of battery charge levels on the stability of light-emitting diode (LED) curing-light intensity by measuring the intensity from fully charged through fully discharged batteries. The microhardness of resin composites polymerized by the light-curing units at various battery charge levels was measured. The light intensities of seven fully charged battery LED light-curing units-1) LY-A180, 2) Bluephase, 3) Woodpecker, 4) Demi Plus, 5) Saab II, 6) Elipar S10, and 7) MiniLED-were measured with a radiometer (Kerr) after every 10 uses (20 seconds per use) until the battery was discharged. Ten 2-mm-thick cylindrical specimens of A3 shade nanofilled resin composite (PREMISE, Kerr) were prepared per LED light-curing unit group. Each specimen was irradiated by the fully charged light-curing unit for 20 seconds. The LED light-curing units were then used until the battery charge fell to 50%. Specimens were prepared again as described above. This was repeated again when the light-curing units' battery charge fell to 25% and when the light intensity had decreased to 400 mW/cm 2 . The top/bottom surface Knoop hardness ratios of the specimens were determined. The microhardness data were analyzed by one-way analysis of variance with Tukey test at a significance level of 0.05. The Pearson correlation coefficient was used to determine significant correlations between surface hardness and light intensity. We found that the light intensities of the Bluephase, Demi Plus, and Elipar S10 units were stable. The intensity of the MiniLED unit decreased slightly; however, it remained above 400 mW/cm 2 . In contrast, the intensities of the LY-A180, Woodpecker, and Saab II units decreased below 400 mW/cm 2 . There was also a significant decrease in the surface microhardnesses of the resin composite specimens treated with MiniLED, LY-A180, Woodpecker, and Saab II. In conclusion, the light intensity of several LED light-curing units decreased as the battery was discharged, with a coincident reduction in the units' ability to polymerize resin composite. Therefore, the intensity of an LED light-curing unit should be evaluated during the life of its battery charge to ensure that sufficient light intensity is being generated.
NASA Astrophysics Data System (ADS)
Dionysopoulos, Dimitrios; Tolidis, Kosmas; Strakas, Dimitrios; Gerasimou, Paris; Sfeikos, Thrasyvoulos; Gutknecht, Norbert
2018-02-01
The purpose of this in vitro study was to evaluate the effect of two radiant heat treatments on water sorption, solubility and surface roughness of three conventional glass ionomer cements by using a blue diode laser (445 nm) and a light emitting diode (LED) unit (430-480 nm). Thirty disk-shaped specimens were prepared for each tested GIC (Equia Fil, Ketac Universal Aplicap and Riva Self Cure). The experimental groups (n = 10) of the study were as follows: Group 1 was the control group, in Group 2 the specimens were irradiated for 60 s at the top surface using a LED light-curing unit and in Group 3 the specimens were irradiated for 60 s at the top surface using a blue light diode laser. Statistical analysis was performed using one-way ANOVA and Tukey post hoc tests at a level of significance of a = 0.05. Radiant heat treatments with both laser and LED devices significantly decreased water sorption and solubility (p < 0.05) of most of the tested GICs. Blue diode laser treatment was seemed to be more effective compared to LED treatment for some of the tested materials. There were no changes in surface roughness of the GICs after the treatments (p > 0.05). Among the tested materials there were differences in water sorption and solubility (p < 0.05) but not in surface roughness (p > 0.05). The use of the blue diode laser for this radiant heat treatment was harmless for the surface of the tested GICs and may be advantageous for the longevity of their restorations.
Son, Sung-Ae; Park, Jeong-Kil; Jung, Kyoung-Hwa; Ko, Ching-Chang; Jeong, Chang-Mo; Kwon, Yong Hoon
2015-01-01
The purpose of the present study was to test the usefulness of 457 nm diode-pumped solid state (DPSS) laser as a light source to cure composite resins. Five different composite resins were light cured using three different light-curing units (LCUs): a DPSS 457 nm laser (LAS), a light-emitting diode (LED), and quartz-tungsten-halogen (QTH) units. The light intensity of LAS was 560 mW/cm(2), whereas LED and QTH LCUs was ∼900 mW/cm(2). The degree of polymerization was tested by evaluating microhardness, cross-link density, and polymerization shrinkage. Before water immersion, the microhardness of laser-treated specimens ranged from 40.8 to 84.7 HV and from 31.7 to 79.0 HV on the top and bottom surfaces, respectively, and these values were 3.3-23.2% and 2.9-31.1% lower than the highest microhardness obtained using LED or QTH LCUs. Also, laser-treated specimens had lower top and bottom microhardnesses than the other LCUs treated specimens by 2.4-19.4% and 1.4-27.8%, respectively. After ethanol immersion for 24 h, the microhardness of laser-treated specimens ranged from 20.3 to 63.2 HV on top and bottom surfaces, but from 24.9 to 71.5 HV when specimens were cured using the other LCUs. Polymerization shrinkage was 9.8-14.7 μm for laser-treated specimens, and these were significantly similar or lower (10.2-16.0 μm) than those obtained using the other LCUs. The results may suggest that the 457 nm DPSS laser can be used as a light source for light-curing dental resin composites.
Clinical effect of reducing curing times with high-intensity LED lights
Ward, Justin D.; Wolf, Bethany J.; Leite, Luis P.; Zhou, Jing
2016-01-01
Objective To evaluate the clinical performance of brackets cured with a high-intensity, light-emitting diode (LED) with a shorter curing time. Materials and Methods Thirty-four patients and a total of 680 brackets were examined using a randomized split-mouth design. The maxillary right and mandibular left quadrants were cured for 6 seconds with a high-intensity LED light (3200 mW/cm2) and the maxillary left and mandibular right quadrants were cured for 20 seconds with a standard-intensity LED light (1200 mW/cm2). Alternating patients had the quadrants inverted for the curing protocol. The number and date of each first-time bracket failure was recorded from 199 to 585 days posttreatment. Results The bracket failure rate was 1.18% for both curing methods. The proportion of bracket failure was not significantly different between curing methods (P = 1.000), genders (P = 1.000), jaws (P = .725), sides (P = .725), or quadrants (P = .547). Posterior teeth exhibited a greater proportion of failures (2.21%) relative to anterior teeth (0.49%), although the difference was not statistically significant (P = .065). Conclusions No difference was found in bond failure rates between the two curing methods. Both methods showed bond failure rates low enough to be considered clinically sufficient. The high-intensity LED light used with a shorter curing time may be considered an advantage due to the reduced chair time. PMID:25760887
Halogen and LED light curing of composite: temperature increase and Knoop hardness.
Schneider, L F; Consani, S; Correr-Sobrinho, L; Correr, A B; Sinhoreti, M A
2006-03-01
This study assessed the Knoop hardness and temperature increase provided by three light curing units when using (1) the manufacturers' recommended times of photo-activation and (2) standardizing total energy density. One halogen--XL2500 (3M/ESPE)--and two light-emitting diode (LED) curing units--Freelight (3M/ESPE) and Ultrablue IS (DMC)--were used. A type-K thermocouple registered the temperature change produced by the composite photo-activation in a mold. Twenty-four hours after the photo-activation procedures, the composite specimens were submitted to a hardness test. Both temperature increase and hardness data were submitted to ANOVA and Tukey's test (5% significance). Using the first set of photo-activation conditions, the halogen unit produced a statistically higher temperature increase than did both LED units, and the Freelight LED resulted in a lower hardness than did the other curing units. When applying the second set of photo-activation conditions, the two LED units produced statistically greater temperature increase than did the halogen unit, whereas there were no statistical differences in hardness among the curing units.
Al Shaafi, Mm; Maawadh, Am; Al Qahtani, Mq
2011-01-01
The purpose of this study was to evaluate the light intensity output of quartz-tungsten-halogen (QTH) and light emitting diode (LED) curing devices located at governmental health institutions in Riyadh, Saudi Arabia.Eight governmental institutions were involved in the study. The total number of evaluated curing devices was 210 (120 were QTH and 90 were LED). The reading of the light intensity output for each curing unit was achieved using a digital spectrometer; (Model USB4000 Spectrometer, Ocean Optics Inc, Dunedin, FL, USA). The reading procedure was performed by a single investigator; any recording of light intensity below 300 mW/cm2 was considered unsatisfactory.The result found that the recorded mean values of light intensity output for QTH and LED devices were 260 mW/cm2 and 598 mW/cm2, respectively. The percentage of QTH devices and LED devices considered unsatisfactory was 67.5% and 15.6%, respectively. Overall, the regular assessment of light curing devices using light meters is recommended to assure adequate output for clinical use.
2014-01-01
Background The aim of this study is to compare the microleakage of Class II dental composite resin restorations which have been cured by three different LED (light emitting diode) light curing modes compared to control samples cured by QTH (quartz tungsten halogen) light curing units (LCUs), to determine the most effective light curing unit and mode of curing. Results In this experimental study, class II cavities were prepared on 100 sound human premolars which have been extracted for orthodontic treatment. The teeth were randomly divided into four groups; three experimental and one control group of 25 teeth each. Experimental groups were cured by either conventional, pulse-delay, or ramped curing modes of LED. The control group was cured for 20 seconds by QTH. The restorations were thermocycled (1000 times, between 5 and 55°C, for 5 seconds dwell time), dyed, sectioned mesio-distally and viewed under stereo-microscope (40×) magnification. Teeth were then scored on a 0 to 4 scale based on the amount of microleakage. The data were analyzed by Chi-square test. No significant difference was demonstrated between the different LCUs (light curing units), or modes of curing, at the enamel side (p > 0.05). At the dentin side, all modes of LED curing could significantly reduce microleakage (p < 0.05). The results suggest that slow start curing improves marginal integrity and seal. High intense curing endangers those aims. Conclusions Comparison between the three LED mode cured composite resin restorations and QTH curing showed LED curing in all modes is more effective than QTH for reducing microleakage. Both LED and QTH almost completely eliminate the microleakage on the enamel side, however none of them absolutely eliminated microleakage on the dentin side. PMID:24990296
Dental composite polymerization: a three different sources comparison
NASA Astrophysics Data System (ADS)
Sozzi, Michele; Fornaini, Carlo; Lagori, Giuseppe; Merigo, Elisabetta; Cucinotta, Annamaria; Vescovi, Paolo; Selleri, Stefano
2015-02-01
The introduction of photo-activators, with absorption spectra in the violet region, in composite resins raised interest in the use of 405 nm diode lasers for polymerization. The purpose of this research is the evaluation of the resins polymerization by means of violet diode laser compared to traditional lamps. Two different resins have been used for the experiments: Filtek Supreme XT flow (3M ESPE, USA) and Tetric Evo flow (Ivoclar, Vivadent). The photo-activator used is Camphoroquinone, alone, or in combination with Lucirin TPO. The resins have been cured with an halogen lamp (Heliolux DXL, Vivadent Ivoclar, Austria), a broadband LED curing light (Valo Ultradent, USA) and a 405 nm laser (Euphoton, Italy). The measure of cure depth, of the volumetric shrinkage, and the conversion degree (DC%) of the double bond during the curing process have been evaluated. A composite layer of 3 mm was cured in Filtek Supreme resin (Camphoroquinone activator), lower if compared to the use of the other two light sources. Tests on Tetric Evo (Camphoroquinone + Lucirin) didn't show any improvement of the use of laser compared to the halogen lamp and the broadband LED. By measuring the volumetric shrinkage the laser induced the lower change with both the composites. In terms of DC% the lower performance was obtained with the laser. Considering that the polymerization process strongly depends on the kind of composite used the effectiveness of 405 nm laser proved to be lower than halogen lamps and broadband LEDs.
Comparison of hardness of three temporary filling materials cured by two light-curing devices.
Bodrumlu, E; Koçak, M M; Hazar Bodrumlu, E; Ozcan, S; Koçak, S
2014-01-01
Polymerization ability of light-curing devices can affect the light-cured material hardness. The purpose of the present study was to evaluate and compare the hardness of three temporary filling materials that had been light-cured by either a light emitting diode (LED) or a halogen light-curing unit. The temporary filling materials, First Fill, Voco Clip and Bioplic, were placed in wells in a Teflon plate. The 24 specimens of each material were divided into two groups (N.=12/group) for photo-activation by either of the two light-curing units. The LED or halogen device was applied for 40s to the top surface of each specimen. A Knoop hardness test was performed on the top and bottom surface of each specimen, with five measurements per specimen. The highest hardness values for both the LED and halogen treated groups were observed for First Fill and the lowest values were for Voco Clip in top and bottom surfaces. The hardness obtained for the three materials with the halogen unit were significantly higher than the values obtained with the LED unit in both surfaces (P<0.05). First Fill light-cured temporary material exhibited the highest hardness values on the top and bottom surfaces than Voco Clip and Bioplic temporary materials. The hardness of light-cured temporary filling materials can be affected by the type of light-curing unit.
Botsali, Murat Selim; Kuşgöz, Adem; Altintaş, Subutay Han; Ülker, Hayriye Esra; Kiliç, Serdar; Başak, Feridun; Ülker, Mustafa
2014-01-01
The purpose of this study was first to evaluate the elution of 2-hydroxyethyl methacrylate (HEMA) and triethylene glycol dimethacrylate (TEGDMA) monomers from resin-modified glass ionomer cement (RMGIC) and compomers cured with halogen and light-emitting diode (LED) light-curing units (LCUs). The effect of cured materials on the viability of L929 fibroblast cells was also evaluated. One RMGIC (Ketac N100) and two compomers (Dyract Extra and Twinkystar) were tested. Materials were prepared in teflon disks and light-cured with LED or halogen LCUs. The residual monomers of resin materials in solution were identified using high-performance liquid chromatography. The fibroblast cells' viability was analyzed using MTT assay. The type of LCU did not have a significant effect on the elution of HEMA and TEGDMA. A greater amount of HEMA than TEGMDA was eluted. The amount of TEGDMA eluted from Twinkystar was greater than Dyract Extra (P < 0.05) when cured with a halogen LCU. All material-LCU combinations decreased the fibroblast cells' viability more than the control group (P < 0.01), except for Dyract Extra cured with a halogen LCU (P > 0.05). Curing with the LED LCU decreased the cells' viability more than curing with the halogen LCU for compomers. For Ketac N100, the halogen LCU decreased the cells' viability more than the LED LCU. PMID:24592149
Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser
De Santis, Roberto; Gloria, Antonio; Maietta, Saverio; Martorelli, Massimo; De Luca, Alessandro; Spagnuolo, Gianrico; Riccitiello, Francesco; Rengo, Sandro
2018-01-01
Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED) curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design)/CAM (computer-aided manufacturing) assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance. PMID:29584683
Gaglianone, Lívia Aguilera; Lima, Adriano Fonseca; Gonçalves, Luciano Souza; Cavalcanti, Andrea Nóbrega; Aguiar, Flávio Henrique Baggio; Marchi, Giselle Maria
2012-08-01
The aim of the present study was to evaluate the degree of conversion (DC), elastic modulus (E), and flexural strength (FS) of five adhesive systems (only the bonding component of both Scotchbond MP-SBMP and Clearfil Protect Bond-CP; Single Bond 2-SB2; One-up Bond F Plus-OUP; and P90 System Adhesive: primer-P90P and bond-P90B) cured with a quartz tungsten halogen (QTH) lamp and a light-emitting diode (LED). Two groups per adhesive were formed (n=5), according to the light source (quartz tungsten halogen-QTH: Demetron LC; and light-emitting diode-LED: UltraLume 5). Bar-shaped specimens were evaluated using three-point bending. The DC was obtained by Fourier transform infrared spectroscopy (FTIR). SB2 and P90P exhibited better DC values for QTH curing. However, SB2 and P90P presented the worst results overall. The light source was statistically significant for all adhesives, except for P90B and OUP. Non-solvated adhesives presented the best E and FS values. It could be concluded that the DC and E values can be influenced by the light source; however, this interference is material dependent. Copyright © 2012 Elsevier Ltd. All rights reserved.
Comparison of halogen, plasma and LED curing units.
Nomoto, Rie; McCabe, John F; Hirano, Susumu
2004-01-01
This study evaluated the characteristics of two kinds of recently developed light-curing unit; plasma arc and blue light emitting diodes (LED), in comparison with a conventional tungsten-halogen light-curing unit. The light intensity and spectral distribution of light from these light-curing units, the temperature rise of the bovine enamel surface and the depth of cure of composites exposed to each unit were investigated. The light intensity and depth of cure were determined according to ISO standards. The spectral distributions of emitted light were measured using a spectro-radiometer. The temperature increase induced by irradiation was measured by using a thermocouple. Generally, light intensities in the range 400-515 nm emitted from the plasma arc were greater than those from other types. Light in the UV-A region was emitted from some plasma arc units. The required irradiation times were six to nine seconds for the plasma arc units and 40 to 60 seconds for the LED units to create a depth of cure equal to that produced by the tungsten-halogen light with 20 seconds of irradiation. The temperature increased by increasing the irradiation time for every light-curing unit. The temperature increases were 15 degrees C to 60 degrees C for plasma arc units, around 15 degrees C for a conventional halogen unit and under 10 degrees C for LED units. Both the plasma arc and LED units required longer irradiation times than those recommended by their respective manufacturers. Clinicians should be aware of potential thermal rise and UV-A hazard when using plasma arc units.
Degree of conversion of two lingual retainer adhesives cured with different light sources.
Usümez, Serdar; Büyükyilmaz, Tamer; Karaman, Ali Ihya; Gündüz, Beniz
2005-04-01
The aim of this study was to evaluate the degree of conversion (DC) of two lingual retainer adhesives, Transbond Lingual Retainer (TLR) and Light Cure Retainer (LCR), cured with a fast halogen light, a plasma arc light and a light-emitting diode (LED) at various curing times. A conventional halogen light served as the control. One hundred adhesive samples (five per group) were cured for 5, 10 or 15 seconds with an Optilux 501 (fast halogen light), for 3, 6 or 9 seconds with a Power Pac (plasma arc light), or for 10, 20 or 40 seconds with an Elipar Freelight (LED). Samples cured for 40 seconds with the conventional halogen lamp were used as the controls. Absorbance peaks were recorded using Fourier transform infrared (FT-IR) spectroscopy. DC values were calculated. Data were analysed using Kruskal-Wallis and Mann-Whitney U-tests. For the TLR, the highest DC values were achieved in 6 and 9 seconds with the plasma arc light. Curing with the fast halogen light for 15 seconds and with the LED for 40 seconds produced statistically similar DC values, but these were lower than those with the plasma arc light. All of these light exposures yielded a statistically significantly higher DC than 40 seconds of conventional halogen light curing. The highest DC value for the LCR was achieved in 15 seconds with the fast halogen light, then the plasma arc light curing for 6 seconds. These two combinations produced a statistically significantly higher DC when compared with the 40 seconds of conventional halogen light curing. The lowest DC for the LCR was achieved with 10 seconds of LED curing. The overall DC of the LCR was significantly higher than that of the TLR. The results suggest that a similar or higher DC than the control values could be achieved in 6-9 seconds by plasma arc curing, in 10-15 seconds by fast halogen curing or in 20 seconds by LED curing.
Watanabe, H; Kazama, Re; Asai, T; Kanaya, F; Ishizaki, H; Fukushima, M; Okiji, T
2015-01-01
This study aimed to evaluate the ability of high-intensity light-emitting diode (LED) and other curing units to cure dual-cured resin cement through ceramic material. A halogen curing unit (Jetlite 3000, Morita), a second-generation LED curing unit (Demi, Kerr), and two high-intensity LED curing units (PenCure 2000, Morita; Valo, Ultradent) were tested. Feldspathic ceramic plates (VITABLOCS Mark II, A3; Vita Zahnfabrik) with thicknesses of 1.0, 2.0, and 3.0 mm were prepared. Dual-cured resin cement samples (Clearfil Esthetic Cement, Kuraray Noritake Dental) were irradiated directly or through one of the ceramic plates for different periods (5, 10, 15, or 20 seconds for the high-intensity LED units and 20, 40, 60, or 80 seconds for the others). The Knoop hardness test was used to determine the level of photopolymerization that had been induced in the resin cement. Data were analyzed by one-way analysis of variance and Dunnett's post-hoc test to identify test-control (maximum irradiation without a ceramic plate) differences for each curing unit (p<0.05). For all curing units, the curing conditions had a statistically significant effect on the Knoop hardness numbers (KHNs) of the irradiated cement samples (p<0.001). In general, the KHN decreased with increasing plate thickness and increased as the irradiation period was extended. Jetlite 3000 achieved control-level KHN values only when the plate thickness was 1.0 mm. At a plate thickness ≥2.0 mm, the LED units (except for PenCure 2000 at 3.0 mm) were able to achieve control-level KHN values when the irradiation time was extended. At a plate thickness of 3.0 mm, irradiation for 20 seconds with the Valo or for 80 seconds with the Demi were the only methods that produced KHN values equivalent to those produced by direct irradiation. Regardless of the type of curing unit used, indirect irradiation of dual-cured resin cement through a ceramic plate resulted in decreased KHN values compared with direct irradiation. When the irradiation period was extended, only the LED units were able to achieve similar KHN values to those observed under direct irradiation in the presence of plates ≥2.0-mm thick. High-intensity LED units require a shorter irradiation period than halogen and second-generation LED curing units to obtain KHN values similar to those observed during direct irradiation.
Roy, Konda Karthik; Kumar, Kanumuru Pavan; John, Gijo; Sooraparaju, Sujatha Gopal; Nujella, Surya Kumari; Sowmya, Kyatham
2018-01-01
Aim: The aim of this study is to compare and to evaluate effect of curing light and curing modes on the nanohybrid composite resins with conventional Bis-GMA and novel tricyclodecane (TCD) monomers. Methodology: Two nanohybrid composites, IPS empress direct and charisma diamond were used in this study. Light-emitting diode (LED)-curing unit and quartz-tungsten-halogen (QTH)-curing unit which were operated into two different modes: continuous and soft start. Based on the composite resin, curing lights, and mode of curing used, the samples were divided into 8 groups. After polymerization, the samples were stored for 48 h in complete darkness at 37°C and 100% humidity. The Vickers hardness (VK) of the surface was determined with Vickers indenter by the application of 200 g for 15 s. Three VK readings were recorded for each sample surface both on top and bottom surfaces. For all the specimens, the three hardness values for each surface were averaged and reported as a single value. The mean VK and hardness ratio were calculated. The depth of cure was assessed based on the hardness ratio. Results: Comparison of mean hardness values and hardness ratios was done using ANOVA with post hoc Tukey's test. Conclusion: Both QTH- and LED-curing units had shown the adequate depth of cure. Soft-start-curing mode in both QTH- and LED-curing lights had effectively increased microhardness than the continuous mode of curing. TCD monomer had shown higher hardness values compared with conventional Bis-GMA-containing resin. PMID:29628651
Deep ultraviolet light-emitting and laser diodes
NASA Astrophysics Data System (ADS)
Khan, Asif; Asif, Fatima; Muhtadi, Sakib
2016-02-01
Nearly all the air-water purification/polymer curing systems and bio-medical instruments require 250-300 nm wavelength ultraviolet light for which mercury lamps are primarily used. As a potential replacement for these hazardous mercury lamps, several global research teams are developing AlGaN based Deep Ultraviolet (DUV) light emitting diodes (LEDs) and DUV LED Lamps and Laser Diodes over Sapphire and AlN substrates. In this paper, we review the current research focus and the latest device results. In addition to the current results we also discuss a new quasipseudomorphic device design approach. This approach which is much easier to integrate in a commercial production setting was successfully used to demonstrate UVC devices on Sapphire substrates with performance levels equal to or better than the conventional relaxed device designs.
Meeting Future C3I (Command-Control-Communications-Intelligence) Needs with Fiber Optics,
1985-05-01
Frequency dependence of the sensitivity of fibers with hard coatings is relatively small. Nylon gives the weakest dependence, while the soft UV -cured...elastomer gives the strongest. Maximum sensitivity is obtained with Teflon TFE, while the minimum is achieved with the soft UV coating. With the latter...fiber-optics systems: the LED (Light Emitting Diode) and ILD (Injection Laser Diode). These devices emit light when an electric current is applied. The
Characterization of curing behavior of UV-curable LSR for LED embedded injection mold
NASA Astrophysics Data System (ADS)
Tae, Joon-Sung; Yim, Kyung-Gyu; Rhee, Byung-Ohk; Kwak, Jae B.
2016-11-01
For many applications, liquid silicone rubber (LSR) injection molding is widely used for their great design flexibility and high productivity. In particular, a sealing part for a mobile device such as smartphone and watch has been produced by injection molding. While thermally curable LSR causes deformation problem due to a high mold temperature, UV-curable LSR can be molded at room temperature, which has advantages for over-molding with inserts of temperature-sensitive materials. Ultraviolet light-emitting diodes (UV LEDs) have advantages such as a longer service life, a lower heat dissipation, and smaller size to equip into the mold than conventional halogen or mercury UV lamps. In this work, rheological behavior of UV-curable LSR during curing process was analyzed by UV LEDs available in the market. UV-LEDs of various wave lengths and intensities were tested. The steady shear test was applied to find the starting time of curing and the SAOS was applied to find the ending time of curing to estimate processing time. In addition, the hardness change with irradiation energy was compared with the rheological data to confirm the reliability of the rheological test.
Effect of light energy density on conversion degree and hardness of dual-cured resin cement.
Komori, Paula Carolina de Paiva; de Paula, Andréia Bolzan; Martin, Airton Abrāo; Tango, Rubens Nisie; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço
2010-01-01
This study evaluated the effect of different light energy densities on conversion degree (CD) and Knoop hardness number (KHN) of RelyX ARC (RLX) resin cement. After manipulation according to the manufacturer's instructions, RLX was inserted into a rubber mold (0.8 mm x 5 mm) and covered with a Mylar strip. The tip of the light-curing unit (LCU) was positioned in contact with the Mylar surface. Quartz-tungsten-halogen (QTH) and light-emitting diode (LED) LCUs with light densities of 10, 20 and 30 J/cm2 were used to light-cure the specimens. After light curing, the specimens were stored dry in lightproof containers at 37 degrees C. After 24 hours, the CD was analyzed by FT-Raman and, after an additional 24-hours, samples were submitted to Knoop hardness testing. The data of the CD (%) and KHN were submitted to two-way ANOVA and the Tukey's test (alpha = 0.05). QTH and LED were effective light curing units. For QTH, there were no differences among the light energy densities for CD or KHN. For LED, there was a significant reduction in CD with the light energy density set at 10 J/cm2. KHN was not influenced by the light-curing unit and by its light energy density.
Light emitting diode package element with internal meniscus for bubble free lens placement
Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen
2010-09-28
A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.
Flury, Simon; Lussi, Adrian; Hickel, Reinhard; Ilie, Nicoleta
2014-04-01
The aim of this study was to investigate micromechanical properties of five dual-curing resin cements after different curing modes including light curing through glass ceramic materials. Vickers hardness (VH) and indentation modulus (Y HU) of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA were measured after 1 week of storage (37 °C, 100 % humidity). The resin cements were tested following self-curing or light curing with the second-generation light-emitting diode (LED) curing unit Elipar FreeLight 2 in Standard Mode (1,545 mW/cm(2)) or with the third-generation LED curing unit VALO in High Power Mode (1,869 mW/cm(2)) or in XtraPower Mode (3,505 mW/cm(2)). Light curing was performed directly or through glass ceramic discs of 1.5 or 3 mm thickness of IPS Empress CAD or IPS e.max CAD. VH and Y HU were analysed with Kruskal-Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). RelyX Unicem 2 Automix resulted in the highest VH and Y HU followed by BeautiCem SA, BisCem, SpeedCEM, and finally Panavia F2.0. Self-curing of RelyX Unicem 2 Automix and SpeedCEM lowered VH and Y HU compared to light curing whereas self-curing of Panavia F2.0, BisCem, and BeautiCem SA led to similar or significantly higher VH and Y HU compared to light curing. Generally, direct light curing resulted in similar or lower VH and Y HU compared to light curing through 1.5-mm-thick ceramic discs. Light curing through 3-mm-thick discs of IPS e.max CAD generally reduced VH and Y HU for all resin cements except SpeedCEM, which was the least affected by light curing through ceramic discs. The resin cements responded heterogeneously to changes in curing mode. The applied irradiances and light curing times adequately cured the resin cements even through 1.5-mm-thick ceramic discs. When light curing resin cements through thick glass ceramic restorations, clinicians should consider to prolong the light curing times even with LED curing units providing high irradiances.
Mortier, Eric; Simon, Yorick; Dahoun, Abdelsellam; Gerdolle, David
2009-01-01
The purpose of this study was to evaluate the influence of photopolymerization mode with a light emitting diode (LED) lamp on the curing contraction kinetics and degree of conversion of 3 resin-based restorative materials. The curing contraction kinetics of Admira (ADM), Filtek P60 (P60), and Filtek Flow (FLO) were measured by the glass slide method. The materials were exposed to light from a 1,000 mW/cm-(2) power LED lamp (Elipar Freelight 2) in 3 modes: 2 continuous modes of 20 and 40 seconds (C20 and C40), and 1 exponential mode (E20; 5 seconds of exponential power increase followed by 15 seconds of maximum intensity). The degree of conversion (DC) was measured for each of the materials, and each of the modes by Fourier transformed infra-red spectrometry. P60 had the significantly lowest final contraction and FLO the highest among all light exposure modes. The C20 and C40 modes did not produce any difference in contraction or degree of conversion. The E20 mode led to a significant slowing of contraction speed combined with greater final contraction. Use of a LED lamp (1,000 mW/cm2) in continuous mode reduces the exposure time by half for identical curing shrinkage and degree of conversion.
ATR technique, an appropriate method for determining the degree of conversion in dental giomers
NASA Astrophysics Data System (ADS)
Prejmerean, Cristina; Prodan, Doina; Vlassa, Mihaela; Streza, Mihaela; Buruiana, Tinca; Colceriu, Loredana; Prejmerean, Vasile; Cuc, Stanca; Moldovan, Marioara
2016-12-01
Dental light-curing giomers were developed to combine the favourable properties of diacrylic resin composites (DRCs) and glass-ionomer cements (GICs) in a single material and to eliminate their inherent drawbacks. Giomers are characterized by their aesthetic appearance, high mechanical properties, adhesion to dental tissues as well as fluoride release and recharge abilities. The qualities of the giomers are greatly influenced by the level of conversion of the component resins. Infrared spectroscopy is one of the most largely used techniques for the determination of the degree of conversion in resin-based dental materials. However different results were obtained due to the performances of the used methods. The present work presents the determination of conversion degree in a series of dental copolymers and their corresponding giomers using transmission Fourier transform infrared spectroscopy (FTIR) and an attenuated total reflection technique (ATR) technique, respectively, the main aim being the study of the influence of the materials composition and of the light curing modes upon the achieved conversion in the cured giomers. Beautifil II commercial giomer was used as a control. A halogen lamp and a diode-blue LED lamp were used for the curing of the materials. The results showed that the composition of the resins greatly influenced the conversion. The highest conversions (up to 79%) were obtained in the case of the experimental giomers which contained the experimental Bis-GMA urethane analogue, followed by the Beautifil II giomer (61%) and experimental giomers based on commercial Bis-GMA (up to 50%), respectively. The resins light-cured by using the diode-blue LED lamp presented slightly higher conversions than the resins cured by halogen lamp. The study demonstrates the possibility to evaluate easily and reproducibly the conversion in light-curing composite materials with complex chemical composition and structure, particularly in the case of giomers by using the ATR technique.
Cure width potential for MOD resin composite molar restorations.
Palin, William M; Senyilmaz, Dilek P; Marquis, Peter M; Shortall, Adrian C
2008-08-01
To investigate the capability of modern light-curing units exhibiting differences in emission spectra and light source exit window dimensions, for "one-shot" full-width curing of extensive (molar MOD) resin composite restorations. Specimens of Tetric (TT), Tetric Ceram HB (TC), Tetric Evoceram (TE) and Tetric Ceram Bleach (TB) resin composites containing varying ratios of Lucirin (TPO) and/or camphorquinone (CQ) photoinitiators were packed into a bar-shaped mould (12 mm length x 2 mm width x 2 mm thickness). Each product was irradiated using a halogen (Optilux 401; QTH), a conventional LED (LEDemetron; LED) and two so-called "third generation" oval-footprint LED light-curing units (LCUs) of the same model. The latter featured bimodal emission spectra (blue and ultraviolet diodes) with either high (unmodified output) and approximately 50% (modified output) blue light intensity (UltraLume-5; ULs, ULm, respectively). Vickers hardness number was obtained across the lateral extent of the bar at 1mm increments from the centre point on both upper and lower surfaces of the specimens. Significant linear relationships (R(2)=0.71-0.98) for each distance from the central position of all LCUs were identified between measured light intensity and corresponding upper and lower surface hardness values for each product (P<0.05). No significant differences (P>0.05) were recorded in total upper surface hardness of TC or TE cured with LED (68.7+/-3.2 and 70.5+/-2.5) or ULm (56.8+/-2.0 and 57.7+/-2.0). However, upper surface hardness of TT (CQ only) cured with ULm was significantly decreased (P<0.05) compared with other LCUs. When the ratio of hardness at the edge to central positions of the bar-shaped specimens for either surface was calculated, no significant difference (P>0.05) was identified for TB (containing TPO and decreased CQ) cured with either ULs or ULm (P>0.05) and was significantly increased (P<0.05) when cured with ULs compared with LED and QTH. Variability in light intensity across the curing-tip face, spectral output of dental light-curing units and differences in product photoinitiator chemistry all influence curing efficiency significantly across the width of extensive resin composite geometries.
Heravi, Farzin; Moazzami, Saied Mostafa; Ghaffari, Negin; Jalayer, Javad; Bozorgnia, Yasaman
2013-11-21
Although using light-cured composites for bonding orthodontic brackets has become increasingly popular, curing light cannot penetrate the metallic bulk of brackets and polymerization of composites is limited to the edges. Limited access and poor direct sight may be a problem in the posterior teeth. Meanwhile, effectiveness of the trans-illumination technique is questionable due to increased bucco-lingual thickness of the posterior teeth. Light-emitting diode (LED) light-curing units cause less temperature rise and lower risk to the pulpal tissue. The purpose of this study was to evaluate the clinical effectiveness of trans-illumination technique in bonding metallic brackets to premolars, using different light intensities and curing times of an LED light-curing unit. Sixty premolars were randomly divided into six groups. Bonding of brackets was done with 40- and 80-s light curing from the buccal or lingual aspect with different intensities. Shear bond strengths of brackets were measured using a universal testing machine. Data were analyzed by one-way analysis of variance test and Duncan's post hoc test. The highest shear bond belonged to group 2 (high intensity, 40 s, buccal) and the lowest belonged to group 3 (low intensity, 40 s, lingual). Bond strength means in control groups were significantly higher than those in experimental groups. In all experimental groups except group 6 (80 s, high intensity, lingual), shear bond strength was below the clinically accepted values. In clinical limitations where light curing from the same side of the bracket is not possible, doubling the curing time and increasing the light intensity during trans-illumination are recommended for achieving acceptable bond strengths.
Comparison of the heat generation of light curing units.
Bagis, Bora; Bagis, Yildirim; Ertas, Ertan; Ustaomer, Seda
2008-02-01
The aim of this study was to evaluate the heat generation of three different types of light curing units. Temperature increases were recorded from a distance of 1 mm from a thermocouple to the tip of three different types of light curing units including one quartz-tungsten halogen (QTH), one plasma arc (PAC), and one light emitting diode (LED) unit. An experimental model was designed to fix the 1 mm distance between the tip of the light curing units and the thermocouple wire. Temperature changes were recorded in 10 second intervals up to 40 seconds. (10, 20, 30, and 40 seconds). Temperature measurements were repeated three times for every light curing unit after a one hour standby period. Statistical analysis of the results was performed using the analysis of variance (ANOVA) and the Bonferroni Test. The highest temperature rises (54.4+/-1.65 degrees C) occurred during activation of a PAC light curing unit for every test period (p<.05). The least temperature increase (11.8+/-1.3 degrees C) occurred with a LED curing unit for each tested period except for the measurement of the temperature rise using the QTH curing unit at the tenth second interval (p<.05). These results indicate the choice of light activation unit and curing time is important when polymerizing light activated resin based restorations to avoid any thermal damage to the pulp.
Effect of light-curing units, post-cured time and shade of resin cement on knoop hardness.
Reges, Rogério Vieira; Costa, Ana Rosa; Correr, Américo Bortolazzo; Piva, Evandro; Puppin-Rontani, Regina Maria; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço
2009-01-01
The aim of this study was to evaluate the Knoop hardness after 15 min and 24 h of different shades of a dual-cured resin-based cement after indirect photoactivation (ceramic restoration) with 2 light-curing units (LCUs). The resin cement Variolink II (Ivoclar Vivadent) shade XL, A2, A3 and opaque were mixed with the catalyst paste and inserted into a black Teflon mold (5 mm diameter x 1 mm high). A transparent strip was placed over the mold and a ceramic disc (Duceram Plus, shade A3) was positioned over the resin cement. Light-activation was performed through the ceramic for 40 s using quartz-tungsten-halogen (QTH) (XL 2500; 3M ESPE) or light-emitting diode (LED) (Ultrablue Is, DMC) LCUs with power density of 615 and 610 mW/cm(2), respectively. The Koop hardness was measured using a microhardness tester HMV 2 (Shimadzu) after 15 min or 24 h. Four indentations were made in each specimen. Data were subjected to ANOVA and Tukey's test (alpha=0.05). The QTH LCU provided significantly higher (p<0.05) KHN values than the LED LCU. When the post-cure times were compared for the same shade, QTH and LED at 24 h provided significantly higher (p<0.05) KHN values than at 15 min. It may be concluded that the Knoop hardness was generally dependent on the LCU and post-cure time. The opaque shade of the resin cement showed lower Knoop hardness than the other shades for both LCUs and post-cure times.
Durey, Kathryn; Santini, Ario; Miletic, Vesna
2008-01-01
The purpose of the present study was to measure the intrapulpal temperature rise occurring during polymerisation of different shades of resin-based composites (RBCs), and two light-emitting diode (LED) units. Seventy non-carious permanent molars, that had been extracted for orthodontic purposes and stored in 2% thymol for not more than four months, were selected. Patient age range was 11-18 years. Standard cavity preparation with standardised remaining dentine thickness and placement of thermocouples (TCs) was prepared using a novel split-tooth technique. Cavities were filled with one of two shades of RBC (A2 and C4, Filtek Z250, 3M ESPE, Seefeld, Germany), and cured with two LED high-intensity units (Elipar Freelight2, 3M ESPE, Seefeld, Germany; Bluephase, Ivoclar Vivadent, Schaan, Liechtenstein) and a conventional halogen light-curing unit (LCU) (Prismetics Lite 2, Dentsply, Weybridge, Surrey, UK) as a control. Pulp temperature rises during bonding [A2 results: H;2.67/0.48:E;5.24/1.32;B;5.99/1.61] were always greater than during RBC curing [A2 results: 2.44/0.63;E3.34/0.70;B3.38/0.60], and these were significant for both LED lights but not for the halogen control, irrespective of shade (Mann-Whitney test: 95% confidence limits). Temperature rises were at times in excess of the values normally quoted as causing irreversible pulp damage. Pulp temperature rises during bonding were higher with the LED lights than with the halogen control. There was no significant difference in temperature rise between the two LED lights when bonding but there was a significant difference between the two LED lights and the halogen control LCUs (Kruskal-Wallis Test: 95% confidence limits). The results support the view that there is a potential risk for heat-induced pulpal injury when light-curing RBCs. The risk is greater during bonding and with high energy, as compared to low-energy output systems. As the extent of tolerable thermal trauma by the pulp tissues is unknown, care and consideration should be given to the choice of LCU and the exposure time when curing RBCs, and especially during bonding.
Flury, Simon; Lussi, Adrian; Hickel, Reinhard; Ilie, Nicoleta
2013-12-01
The aim of this study was to measure the degree of conversion (DC) of five dual-curing resin cements after different curing modes with a second- and a third-generation light-emitting diode (LED) curing unit. Additionally, irradiance of both light curing units was measured at increasing distances and through discs of two glass ceramics for computer-aided design/manufacturing (CAD/CAM). Irradiance and spectra of the Elipar FreeLight 2 (Standard Mode (SM)) and of the VALO light curing unit (High Power Mode (HPM) and Xtra Power Mode (XPM)) were measured with a MARC radiometer. Irradiance was measured at increasing distances (control) and through discs (1.5 to 6 mm thickness) of IPS Empress CAD and IPS e.max CAD. DC of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA was measured with an attenuated total reflectance-Fourier transform infrared spectrometer when self-cured (negative control) or light cured in SM for 40 s, HPM for 32 s, or XPM for 18 s. Light curing was performed directly (positive control) or through discs of either 1.5- or 3-mm thickness of IPS Empress CAD or IPS e.max CAD. DC was analysed with Kruskal-Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). Maximum irradiances were 1,545 mW/cm(2) (SM), 2,179 mW/cm(2) (HPM), and 4,156 mW/cm(2) (XPM), and all irradiances decreased by >80 % through discs of 1.5 mm, ≥95 % through 3 mm, and up to >99 % through 6 mm. Generally, self-curing resulted in the lowest DC. For some cements, direct light curing did not result in higher DC compared to when light cured through ceramic discs. For other cements, light curing through ceramic discs of 3 mm generally reduced DC. Light curing was favourable for dual-curing cements. Some cements were more susceptible to variations in curing mode than others. When light curing a given cement, the higher irradiances of the third-generation LED curing unit resulted in similar DC compared to the second-generation one, though at shorter light curing times.
Kim, Tae-Wan; Lee, Jang-Hoon; Jeong, Seung-Hwa; Ko, Ching-Chang; Kim, Hyung-Il; Kwon, Yong Hoon
2015-04-01
The purpose of the present study was to investigate the usefulness of 457 and 473 nm lasers for the curing of composite resins during the restoration of damaged tooth cavity. Monochromaticity and coherence are attractive features of laser compared with most other light sources. Better polymerization of composite resins can be expected. Eight composite resins were light cured using these two lasers and a light-emitting diode (LED) light-curing unit (LCU). To evaluate the degrees of polymerization achieved, polymerization shrinkage and flexural and compressive properties were measured and compared. Polymerization shrinkage values by 457 and 473 nm laser, and LED ranged from 10.9 to 26.8, from 13.2 to 26.1, and from 11.5 to 26.3 μm, respectively. The values by 457 nm laser was significantly different from those by 473 and LED LCU (p<0.05). However, there was no statistical difference between values by 473 and LED LCU. Before immersion in distilled water, flexural strength (FS) and compressive modulus (CM) of the specimens were inconsistently influenced by LCUs. On the other hand, flexural modulus (FM) and compressive strength (CS) were not significantly different for the three LCUs (p>0.05). For the tested LCUs, no specific LCU could consistently achieve highest strength and modulus from the specimens tested. Two lasers (457 and 473 nm) can polymerize composite resins to the level that LED LCU can achieve despite inconsistent trends of polymerization shrinkage and flexural and compressive properties of the tested specimens.
da Silva, Marcos Aurélio Bomfim; de Oliveira, Guilherme José Pimentel Lopes; Tonholo, Josealdo; Júnior, José Ginaldo da Silva; Santos, Lucineide de Melo; Dos Reis, José Ivo Limeira
2010-12-01
This in vitro study evaluated the marginal gap at the composite tooth/resin interface in class V cavities under the influence of two insertion techniques and a curing system by means of atomic force microscopy (AFM). Forty enamel and dentin cavities were prepared on the buccal surface in bovine teeth with quadratic forms measuring 2 mm × 2 mm and depth of 1.5 mm. The teeth were then divided into four groups: group A, 10 cavities were restored in one increment, light cured by halogen light; group B, 10 cavities filled with bulk filling, light cured by the light emitting diodes (LED); group C, 10 cavities were restored by the incremental technique, light cured by halogen light; group D, 10 cavities were restored by the incremental technique, light cured by the LED. The teeth underwent the polishing procedure and were analyzed by AFM for tooth/restoration interface evaluation. The data were compared between groups using the nonparametric Kruskall-Wallis and Mann-Whitney tests (p < 0.05). The results showed a statistically significant difference between groups A and B and groups A and C. It was concluded that no insertion and polymerization technique was able to completely seal the cavity.
A PREP Panel, Practice-Based, Evaluation of the Handling of the Kerr Demi-Ultra Light Curing Unit.
Burke, F J Trevor; Crisp, Russell J
2015-09-01
This paper describes the handling evaluation (by a group of practice-based researchers, the PREP Panel) of a recently introduced Light Curing Unit (LCU), the Kerr Demi-Ultra, which possesses a number of novel features such as its ultracapacitor power source, and the Light Emitting Diodes (LEDs) which provide the light output being placed close to the tip of the light guide. CPD/CLINICAL RELEVANCE: Testing of new devices and materials with respect to their handling is of importance, given that an easy to handle device should produce better clinical results than one which is difficult to use.
Keogh, Pauraic; Ray, Noel J; Lynch, Christopher D; Burke, Francis M; Hannigan, Ailish
2004-12-01
This investigation determined the minimum exposure times consistent with optimised surface microhardness parameters for a commercial resin composite cured using a "first-generation" light-emitting diode activation lamp. Disk specimens were exposed and surface microhardness numbers measured at the top and bottom surfaces for elapsed times of 1 hour and 24 hours. Bottom/top microhardness number ratios were also calculated. Most microhardness data increased significantly over the elapsed time interval but microhardness ratios (bottom/top) were dependent on exposure time only. A minimum exposure of 40 secs is appropriate to optimise microhardness parameters for the combination of resin composite and lamp investigated.
Tiwari, Anil; Shyagali, Tarulatha; Kohli, Sarvraj; Joshi, Rishi; Gupta, Abhishek; Tiwari, Rana
2016-01-01
Aim: The aim of this in vitro study was to evaluate the influence of the Dental chair light on the bond strength of light cured composite resin. Materials and Methods: Sixty therapeutically extracted human premolar teeth were randomly allocated to two groups of 30 specimens each. In both groups light cured composite resin (Transbond XT) and MBT premolar metal brackets (3M Unitek) was used to bond brackets. In group I and II light curing was done using Light-emitting diode light curing units without and with the dental chair light respectively. After bonding, all samples were stored in distilled water at room temperature for 24 hours and subsequently tested for shear bond strength and Adhesive Remnant Index (ARI) scores. Data was subjected to Mann Whitney U statistical test. Results: Results indicated that there was significantly higher shear bond strength (7.71 ± 1.90) for the Group II (composite cured with LED and dental chair light) compared with Group I (composite cured with LED LCU only) (5.74 ± 1.13).the obtained difference was statistically significant. There was no statistical significant difference between ARI scores in between the groups. Conclusions: light cure bonding with dental chair light switched on will produce greater bond strength than the conventional bonding. However, the ARI score were similar to both the groups. It is advised that the inexperienced orthodontist should always switch off the dental chair light while bonding for enough working time during the bracket placement. PMID:28077886
Effect of reduced exposure times on the cytotoxicity of resin luting cements cured by high-power led
ERGUN, Gulfem; EGILMEZ, Ferhan; YILMAZ, Sukran
2011-01-01
Objective Applications of resin luting agents and high-power light-emitting diodes (LED) light-curing units (LCUs) have increased considerably over the last few years. However, it is not clear whether the effect of reduced exposure time on cytotoxicity of such products have adequate biocompatibility to meet clinical success. This study aimed at assessing the effect of reduced curing time of five resin luting cements (RLCs) polymerized by high-power LED curing unit on the viability of a cell of L-929 fibroblast cells. Material and Methods Disc-shaped samples were prepared in polytetrafluoroethylene moulds with cylindrical cavities. The samples were irradiated from the top through the ceramic discs and acetate strips using LED LCU for 20 s (50% of the manufacturer's recommended exposure time) and 40 s (100% exposure time). After curing, the samples were transferred into a culture medium for 24 h. The eluates were obtained and pipetted onto L-929 fibroblast cultures (3x104 per well) and incubated for evaluating after 24 h. Measurements were performed by dimethylthiazol diphenyltetrazolium assay. Statistical significance was determined by two-way ANOVA and two independent samples were compared by t-test. Results Results showed that eluates of most of the materials polymerized for 20 s (except Rely X Unicem and Illusion) reduced to a higher extent cell viability compared to samples of the same materials polymerized for 40 s. Illusion exhibited the least cytotoxicity for 20 s exposure time compared to the control (culture without samples) followed by Rely X Unicem and Rely X ARC (90.81%, 88.90%, and 83.11%, respectively). For Rely X ARC, Duolink and Lute-It 40 s exposure time was better (t=-1.262 p=0,276; t=-9.399 p=0.001; and t=-20.418 p<0.001, respectively). Conclusion The results of this study suggest that reduction of curing time significantly enhances the cytotoxicity of the studied resin cement materials, therefore compromising their clinical performance. PMID:21625748
In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites.
Baroudi, Kusai; Silikas, Nick; Watts, David C
2009-01-01
The aim of this study was to investigate the pulpal temperature rise induced during the polymerization of flowable and non-flowable composites using light-emitting diode (LED) and halogen (quartz-tungsten-halogen) light-curing units (LCUs). Five flowable and three non-flowable composites were examined. Pulpal temperature changes were recorded over 10 min in a sample primary tooth by a thermocouple. A conventional quartz-tungsten-halogen source and two LEDs, one of which was programmable, were used for light curing the resin composites. Three repetitions per material were made for each LCU. There was a wide range of temperature rises among the materials (P < 0.05). Temperature rises ranged between 1.3 degrees C for Filtek Supreme irradiated by low-power LED and 4.5 degrees C for Grandio Flow irradiated by high-power LED. The highest temperature rises were observed with both the LED high-power and soft-start LCUs. The time to reach the exothermic peak varied significantly between the materials (P < 0.05). Pulpal temperature rise is related to both the radiant energy output from LCUs and the polymerization exotherm of resin composites. A greater potential risk for heat-induced pulp damage might be associated with high-power LED sources. Flowable composites exhibited higher temperature rises than non-flowable materials, because of higher resin contents.
NASA Astrophysics Data System (ADS)
Fan, Bingfeng; Yan, Linchao; Lao, Yuqin; Ma, Yanfei; Chen, Zimin; Ma, Xuejin; Zhuo, Yi; Pei, Yanli; Wang, Gang
2017-08-01
A method for preparing a quantum dot (QD)-white light-emitting diode (WLED) is reported. Holes were etched in the SiO2 layer deposited on the sapphire substrate of the flip-chip LED by inductively coupled plasma, and these holes were then filled with QDs. An ultraviolet-curable resin was then spin-coated on top of the QD-containing SiO2 layer, and the resin was cured to act as a protecting layer. The reflective sidewall structure minimized sidelight leakage. The fabrication of the QD-WLED is simple in preparation and compatible with traditional LED processes, which was the minimum size of the WLED chip-scale integrated package. InP/ZnS core-shell QDs were used as the converter in the WLED. A blue light-emitting diode with a flip-chip structure was used as the excitation source. The QD-WLED exhibited color temperatures from 5900 to 6400 K and Commission Internationale De L'Elcairage color coordinates from (0.315, 0.325) to (0.325, 0.317), under drive currents from 100 to 400 mA. The QD-WLED exhibited stable optoelectronic properties.
Poggio, C; Lombardini, M; Gaviati, S; Chiesa, M
2012-07-01
The current in vitro study evaluated Vickers hardness (VK) and depth of cure (hardness ratio) of six resin composites, polymerized with a light-emitting diode (LED) curing unit by different polymerization modes: Standard 20 s, Standard 40 s, Soft-start 40 s. SIX RESIN COMPOSITES WERE SELECTED FOR THE PRESENT STUDY: three microhybrid (Esthet.X HD, Amaris, Filtek Silorane), two nanohybrid (Grandio, Ceram.X mono) and one nanofilled (Filtek Supreme XT). The VK of the surface was determined with a microhardness tester using a Vickers diamond indenter and a 200 g load applied for 15 seconds. The mean VK and hardness ratio of the specimens were calculated using the formula: hardness ratio = VK of bottom surface / VK of top surface. For all the materials tested and with all the polymerization modes, hardness ratio was higher than the minimum value indicated in literature in order to consider the bottom surface as adequately cured (0.80). Curing time did not affect hardness ratio values for Filtek Silorane, Grandio and Filtek Supreme XT. The effectiveness of cure at the top and bottom surface was not affected by Soft-start polymerization mode.
Effect of light dispersion of LED curing lights on resin composite polymerization.
Vandewalle, Kraig S; Roberts, Howard W; Andrus, Jeffrey L; Dunn, William J
2005-01-01
This study evaluated the effect of light dispersion of halogen and LED curing lights on resin composite polymerization. One halogen (Optilux 501, SDS/Kerr, Orange, CA, USA) and five light-emitting diode (LED) curing lights (SmartLite iQ, Dentsply Caulk, Milford, DE, USA; LEDemetron 1, SDS/Kerr; FLASHlite 1001, Discus Dental, Culver City, CA, USA; UltraLume LED 5, Ultradent Products, South Jordan, UT, USA; Allegro, Den-Mat, Santa Maria, CA, USA) were used in this study. Specimens (8 mm diameter by 2 mm thick) were made in polytetrafluoroethylene molds using hybrid (Z100, 3M ESPE, St. Paul, MN, USA) and microfill (A110, 3M ESPE) composite resins. The top surface was polymerized for 5 seconds with the curing light guide tip positioned at a distance of 1 and 5 mm. Degree of conversion (DC) of the composite specimens was analyzed on the bottom surface using micro-Fourier Transform Infrared (FTIR) spectroscopy (Perkin-Elmer FTIR Spectrometer, Wellesley, PA, USA) 10 minutes after light activation. DC at the bottom of the 2 mm specimen was expressed as a percentage of the mean maximum DC. Five specimens were created per curing light and composite type (n=5). Percent mean DC ratios and SDs were calculated for each light under each testing condition. Data were analyzed by analysis of variance (ANOVA)/Tukey's test (alpha = .05). A beam analyzer (LBA-700, Spiricon, Logan, UT, USA) was used to record the emitted light from the curing lights at 0 and 5 mm distances (n=5). A Top Hat factor was used to compare the quality of the emitted beam profile (LBA/PC, Spiricon). The divergence angle from vertical was also determined in the x- and y-axes (LBA/PC). Mean values and SDs were calculated for each light under each testing condition (0 and 5 mm, x- and y-axes) and analyzed by a two-way ANOVA/Tukey's test (alpha = .05). For DC ratios, significant differences were found based on curing light and curing distance (p < .05). At 1 mm, Optilux 501 and FLASHlite 1001 produced significantly higher DC ratios with the hybrid resin composite. No differences were found among lights with the microfill at 1 mm. At 5 mm, SmartLite iQ, FLASHlite 1001, LEDemetron 1, and UltraLume LED 5 produced significantly higher DC ratios with the hybrid resin composite, whereas LEDemetron 1 and SmartLite iQ produced significantly higher DC ratios with the microfill resin composite. The UltraLume LED 5, Allegro, and Optilux 501 had significant reductions in mean DC ratios at curing distances of 1 and 5 mm with both resin composite types. For dispersion of light, significant differences were found in Top Hat factor and divergence angle (p < .001). SmartLite iQ had overall the highest Top Hat factor and lowest divergence angle of tested lights. A linear regression analysis relating pooled DC with pooled Top Hat factors and divergence angles found a very good correlation (r2 = .86) between dispersion of light over distance and the ability to polymerize resin composite. The latest generation of LED curing lights provides DC ratios similar to or better than the halogen curing light at a curing distance of 5 mm. Dispersion of light plays a significant role in the DC of resin composite. To maximize curing effectiveness, light guides should be maintained in close proximity to the surface of the light-activated restorative material.
Monomer Release from Resin Based Dental Materials Cured With LED and Halogen Lights
Ak, Asli Topaloglu; Alpoz, A. Riza; Bayraktar, Oguz; Ertugrul, Fahinur
2010-01-01
Objectives: To measure the release of TEGDMA and BisGMA from two commercially available composite resins; Filtek Z 250 (3M ESPE, Germany), Leaddent (Leaddent, Germany) and two fissure sealants; Helioseal F (3M ESPE, Germany) Enamel Loc (Premiere Rev, USA) over 1, 3 and 7 days after polymerization with standard quartz-tungsten halogen Coltolux II (QHL) (Coltene Switzerland) and a standard blue light emitting diode Elipar Freelight 2 (3M ESPE, Germany). Methods: 9 samples of each material were placed in disc shaped specimens in 1 mm of thickness and 10 mm in diameter (n=36). Each material was polymerized using LED for 20 s (n=12), 40 s (n=12) and halogen for 40 s (n=12), respectively. High Performance Liquid Chromatography (HPLC) was used to measure the amount of monomers released over 1, 3 and 7 days. Data was analyzed using one way ANOVA and Bonferroni test for multiple comparisons with a significance level of .05. Results: LED 20 sec group showed the highest release of monomers at 1, 3 and 7 days in sealant groups. Halogen 40 sec group resulted highest release of monomers for Leaddent at all time intervals (P<.05) Conclusions: Efficiency of the curing unit and applying the recommended curing time of the light activated resin based dental materials is very important to protect the patient from potential hazards of residual monomers. PMID:20046478
Temperature rise during polymerization of different cavity liners and composite resins
Karatas, Ozcan; Turel, Verda; Bayindir, Yusuf Ziya
2015-01-01
Objective: The purpose of this study was to evaluate the thermal insulating properties of different light curing cavity liners and composite resins during light emitting diode (LED) curing. Materials and Methods: Sixty-four dentin discs, 1 mm thick and 8 mm in diameter, were prepared. Specimens were divided into four groups. Calcium hydroxide (Ca[OH]2), resin-modified glass ionomer cement, flowable composite and adhesive systems were applied to dentin discs according to the manufacturers’ instructions. The rise in temperature during polymerization with a LED curing unit (LCU) was measured using a K-type thermocouple connected to a data logger. Subsequently, all specimens were randomly divided into one of two groups. A silorane-based composite resin and a methacrylate-based composite resin were applied to the specimens. Temperature rise during polymerization of composite resins with LCU were then measured again. Data were analyzed using one-way ANOVA and post hoc Tukey analyses. Results: There were significant differences in temperature rise among the liners, adhesives, and composite resins (P < 0.05). Silorane-based composite resin exhibited significantly greater temperature rises than methacrylate-based resin (P < 0.05). The smallest temperature rises were observed in Ca(OH)2 specimens. Conclusion: Thermal insulating properties of different restorative materials are important factors in pulp health. Bonding agents alone are not sufficient to protect pulp from thermal stimuli throughout curing. PMID:26751112
Influence of light curing and sample thickness on microhardness of a composite resin
Aguiar, Flávio HB; Andrade, Kelly RM; Leite Lima, Débora AN; Ambrosano, Gláucia MB; Lovadino, José R
2009-01-01
The aim of this in vitro study was to evaluate the influence of light-curing units and different sample thicknesses on the microhardness of a composite resin. Composite resin specimens were randomly prepared and assigned to nine experimental groups (n = 5): considering three light-curing units (conventional quartz tungsten halogen [QTH]: 550 mW/cm2 – 20 s; high irradiance QTH: 1160 mW/cm2 – 10 s; and light-emitting diode [LED]: 360 mW/cm2 – 40 s) and three sample thicknesses (0.5 mm, 1 mm, and 2 mm). All samples were polymerized with the light tip 8 mm away from the specimen. Knoop microhardness was then measured on the top and bottom surfaces of each sample. The top surfaces, with some exceptions, were almost similar; however, in relation to the bottom surfaces, statistical differences were found between curing units and thicknesses. In all experimental groups, the 0.5-mm-thick increments showed microhardness values statistically higher than those observed for 1- and -2-mm increments. The conventional and LED units showed higher hardness mean values and were statistically different from the high irradiance unit. In all experimental groups, microhardness mean values obtained for the top surface were higher than those observed for the bottom surface. In conclusion, higher levels of irradiance or thinner increments would help improve hybrid composite resin polymerization. PMID:23674901
NASA Astrophysics Data System (ADS)
Jiang, Tongtong; Shen, Mohan; Dai, Peng; Wu, Mingzai; Yu, Xinxin; Li, Guang; Xu, Xiaoliang; Zeng, Haibo
2017-10-01
The work reports the fabrication of Cu doped Zn-In-S (CZIS) alloy quantum dots (QDs) using dodecanethiol and oleic acid as stabilizing ligands. With the increase of doped Cu element, the photoluminescence (PL) peak is monotonically red shifted. After coating ZnS shell, the PL quantum yield of CZIS QDs can reach 78%. Using reverse micelle microemulsion method, CZIS/ZnS QDs@SiO2 multi-core nanospheres were synthesized to improve the colloidal stability and avoid the aggregation of QDs. The obtained multi-core nanospheres were dispersed in curing adhesive, and applied as a color conversion layer in down converted light-emitting diodes. After encapsulation in curing adhesive, the newly designed LEDs show artifically regulated color coordinates with varying the weight ratio of green QDs and red QDs, and the concentrations of these two types of QDs. Moreover, natural white and warm white LEDs with correlated color temperature of 5287, 6732, 2731, and 3309 K can be achieved, which indicates that CZIS/ZnS QDs@SiO2 nanostructures are promising color conversion layer material for solid-state lighting application.
Conversion degrees of resin composites using different light sources.
Ozturk, Bora; Cobanoglu, Nevin; Cetin, Ali Rıza; Gunduz, Beniz
2013-01-01
The objective of this study was to compare the conversion degree of six different composite materials (Filtek Z 250, Filtek P60, Spectrum TPH, Pertac II, Clearfil AP-X, and Clearfil Photo Posterior) using three different light sources (blue light-emitting diode [LED], plasma arc curing [PAC], and conventional halogen lamp [QTH]). Composites were placed in a 2 mm thick and 5 mm diameter Teflon molds and light cured from the top using three methods: LED for 40 s, PAC for 10 s, and QTH for 40 s. A Fourier Transform Infrared Spectroscopy (FTIR) was used to evaluate the degree of conversion (DC) (n=5). The results were analyzed with two-way analysis of variance and Tukey HSD test. DC was significantly influenced by two variables, light source and composite (P<.05). QTH revealed significantly higher DC values than LED (P<.05). However, there were no significant differences between DC values of QTH and PAC or between DC values of LED and PAC (P>.05). The highest DC was observed in the Z 250 composite specimens following photopolymerization with QTH (70%). The lowest DC was observed in Clearfil Photo Posterior composite specimens following photo-polymerization with LED (43%). The DC was found to be changing according to both light sources and composite materials used. Conventional light halogen (QTH) from light sources and Filtek Z 250 and Filtek P 60 among composite materials showed the most DC performance.
Piva, Evandro; Correr-Sobrinho, Lourenço; Sinhoreti, Mario Alexandre Coelho; Consani, Simonides; Demarco, Flávio Fernando; Powers, John Michael
2008-01-01
The purpose of this study was to evaluate the Knoop hardness of a dual-cured resin-based luting cement irradiated with different light sources as well energy density through a ceramic sample. Three light-curing unit (LCUs) were tested: tungsten halogen light (HAL), light-emitting diode (LED) and xenon plasma-arc (PAC) lamp. Disc-shaped specimens were fabricated from a resin-based cement (Enforce). Three energy doses were used by modifying the irradiance (I) of each LCU and the irradiation time (T): 24 Jcm(-2) (I/2x2T), 24 Jcm(-2) (IxT) and 48 Jcm(-2) (Ix2T). Energy doses were applied through a 2.0-mm-thick ceramic sample (Duceram Plus). Three groups underwent direct irradiation over the resin cement with the different LCUs and a chemically-activated group served as a control. Thirteen groups were tested (n=10). Knoop hardness number (KHN) means were obtained from cross-sectional areas. Two-way ANOVA and the Holm-Sidak method were used for statistical comparisons of activation mode and energy doses (alpha=5%). Application of 48 J.cm(-2) energy dose through the ceramic using LED (50.5+/-2.8) and HAL (50.9+/-3.7) produced significantly higher KHN means (p<0.05) than the control (44.7+/-3.8). LED showed statistically similar performance to HAL. Only HAL showed a relationship between the increase of LCU energy dose and hardness increase.
NASA Astrophysics Data System (ADS)
Jasenak, Brian
2017-02-01
Ultraviolet light-emitting diode (UV LED) adoption is accelerating; they are being used in new applications such as UV curing, germicidal irradiation, nondestructive testing, and forensic analysis. In many of these applications, it is critically important to produce a uniform light distribution and consistent surface irradiance. Flat panes of fused quartz, silica, or glass are commonly used to cover and protect UV LED arrays. However, they don't offer the advantages of an optical lens design. An investigation was conducted to determine the effect of a secondary glass optic on the uniformity of the light distribution and irradiance. Glass optics capable of transmitting UV-A, UV-B, and UV-C wavelengths can improve light distribution, uniformity, and intensity. In this work, two simulation studies were created to illustrate distinct irradiance patterns desirable for potential real world applications. The first study investigates the use of a multi-UV LED array and optic to create a uniform irradiance pattern on the flat two dimensional (2D) target surface. The uniformity was improved by designing both the LED array and molded optic to produce a homogenous pattern. The second study investigated the use of an LED light source and molded optic to improve the light uniformity on the inside of a canister. The case study illustrates the requirements for careful selection of LED based on light distribution and subsequent design of optics. The optic utilizes total internal reflection to create optimized light distribution. The combination of the LED and molded optic showed significant improvement in uniformity on the inner surface of the canister. The simulations illustrate how the application of optics can significantly improve UV light distribution which can be critical in applications such as UV curing and sterilization.
Design of a detection system of highlight LED arrays' effect on the human organization
NASA Astrophysics Data System (ADS)
Chen, Shuwang; Shi, Guiju; Xue, Tongze; Liu, Yanming
2009-05-01
LED (Light Emitting Diode) has many advantages in the intensity, wavelength, practicality and price, so it is feasible to apply in biomedicine engineering. A system for the research on the effect of highlight LED arrays to human organization is designed. The temperature of skin surface can rise if skin and organization are in irradiation by highlight LED arrays. The metabolism and blood circulation of corresponding position will be quicker than those not in the shine, so the surface temperature will vary in different position of skin. The structure of LED source arrays system is presented and a measure system for studying LED's influence on human organization is designed. The temperature values of shining point are detected by infrared temperature detector. Temperature change is different according to LED parameters, such as the number, irradiation time and luminous intensity of LED. Experimental device is designed as an LED arrays pen. The LED arrays device is used to shine the points of human body, then it may effect on personal organization as well as the acupuncture. The system is applied in curing a certain skin disease, such as age pigment, skin cancer and fleck.
Egilmez, Ferhan; Ergun, Gulfem
2012-01-01
PURPOSE The objective of this study was to compare the light transmittance of zirconia in different thicknesses using various light curing units. MATERIALS AND METHODS A total of 21 disc-shaped zirconia specimens (5 mm in diameter) in different thicknesses (0.3, 0.5 and 0.8 mm) were prepared. The light transmittance of the specimens under three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc) was compared by using a hand-held radiometer. Statistical significance was determined using two-way ANOVA (α=.05). RESULTS ANOVA revealed that thickness of zirconia and light curing unit had significant effects on light transmittance (P<.001). CONCLUSION Greater thickness of zirconia results in lower light transmittance. Light-emitting diodes light-curing units might be considered as effective as Plasma arc light-curing units or more effective than Quartz-tungsten-halogen light-curing units for polymerization of the resin-based materials. PMID:22737314
Sm, Mousavinasab; M, Atai; N, Salehi; A, Salehi
2016-12-01
The degree of conversion depends on the material composition, light source properties, distance from light source, light intensity, curing time, and other factors such as shade and translucency. In the present study, we evaluated the effects of different light-curing modes and shades of methacrylate and silorane-based resin composites on the degree of conversion of resin composites (DC). The methacrylate-based (Filtek Z250, 3M, ESPE) and low-shrinkage silorane-based (Filtek P90, 3M, ESPE) resin composites were used in three groups as follows: group 1-Filtek Z250 (shade A3), group 2-Filtek Z250 (shade B2), and group 3-Filtek P90 (shade A3). We used a light-emitting diode (LED) curing unit for photopolymerization. 10 samples were prepared in each group to evaluate the degree of conversion; 5 samples were cured using soft-start curing mode, and the other 5 were cured using standard curing mode. The DC of the resin composites was measured using Fourier Transform Infrared Spectroscopy (FTIR). The data were analyzed using Kruskal Wallis and one-way ANOVA statistical tests. The degree of conversion of silorane-based resin composite was 70 - 75.8% and that of methacrylate-based resin composites was 60.2 - 68.2% (p = 0.009). The degree of conversion of the composite with brighter colour (B2) was statistically more than the darker composite (A3). Higher degree of conversion was achieved applying the standard curing mode. The results of the study showed that the colour and type of the resin composite and also the curing mode influence the degree of conversion of resin composites.
Kopperud, Hilde M; Johnsen, Gaute F; Lamolle, Sébastien; Kleven, Inger S; Wellendorf, Hanne; Haugen, Håvard J
2013-08-01
The latest LED dental curing devices claim sufficient curing of restorative materials with short curing times. This study evaluates mechanical and chemical properties as a function of curing time of two commercial composite filling materials cured with three different LED lamps. The composites were Filtek Z250 (3M ESPE) and Tetric EvoCeram (Ivoclar Vivadent) and the LED curing devices were bluephase 16i (Ivoclar Vivadent), L.E.Demetron II (Kerr) and Mini L.E.D. (Satelec). Control samples were cured with a QTH-lamp (VCL 400, Kerr). The wear resistance after simulated tooth brushing, degree of conversion, curing depth, and amounts of residual monomers were measured after different curing times. The results of this study show that short curing time with high-intensity LEDs may influence the bulk properties of the materials, resulting in lower curing depth and increased residual monomer content. The measured surface properties of the materials, degree of conversion and wear resistance, were not affected by short curing times to the same extent. This study demonstrates that reduced exposure time with high intensity LEDs can result in composite restorations with inferior curing depth and increased leaching of monomers. Dentists are recommended to use sufficient curing times even with high intensity LEDs to ensure adequate curing and minimize the risk of monomer leaching. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Effect of two lasers on the polymerization of composite resins: single vs combination.
Ro, Jung-Hoon; Son, Sung-Ae; Park, Jeong-kil; Jeon, Gye-Rok; Ko, Ching-Chang; Kwon, Yong Hoon
2015-07-01
The selection of a light-curing unit for the curing composite resins is important to achieve best outcomes. The purpose of the present study was to test lasers of 457 and 473 nm alone or in combination under different light conditions with respect to the cure of composite resins. Four different composite resins were light cured using five different laser combinations (530 mW/cm(2) 457 nm only, 530 mW/cm(2) 473 nm only, 177 mW/cm(2) 457 + 177 mW/cm(2) 473 nm, 265 mW/cm(2) 457 + 265 mW/cm(2) 473 nm, and 354 mW/cm(2) 457 + 354 mW/cm(2) 473 nm). Microhardness and polymerization shrinkage were evaluated. A light-emitting diode (LED) unit was used for comparison purposes. On top surfaces, after aging for 24 h, microhardness achieved using the LED unit and the lasers with different conditions ranged 42.4-65.5 and 38.9-67.7 Hv, respectively, and on bottom surfaces, corresponding ranges were 25.2-56.1 and 18.5-55.7 Hv, respectively. Of the conditions used, 354 mW/cm(2) 457 nm + 354 mW/cm(2) 473 nm produced the highest bottom microhardness (33.8-55.6 Hv). On top and bottom surfaces, microhardness by the lowest total light intensity, 354 (177 × 2) mW/cm(2), ranged 39.0-60.5 and 18.5-52.8 Hv, respectively. Generally, 530 mW/cm(2) at 457 nm produced the lowest polymerization shrinkage. However, shrinkage values obtained using all five laser conditions were similar. The study shows the lasers of 457 and 473 nm are useful for curing composite resins alone or in combination at much lower light intensities than the LED unit.
Polymerization of a dual-cured cement through ceramic: LED curing light vs halogen lamp.
Lopes, Lawrence Gonzaga; Franco, Eduardo Batista; Name Neto, Abrão; Herrera, Francyle S; Kurachi, Cristina; Castañeda-Espinosa, Juan C; Lauris, José Roberto Pereira
2004-12-01
The aim of this study was to investigate the influence of light source, LED unit and halogen lamp (HL), on the effectiveness of Enforce dual-cured cement cured under a ceramic disc. Three exposure times (60, 80 and 120 s) were also evaluated. Two experimental groups, in which the polymerization of the dual-cured cement was performed through a ceramic disc, and two control groups, in which the polymerization of the dual-cured cement was performed directly without presence of ceramic disc were subdivided into three subgroups (three different exposure times), with five specimens each: G1A- HL 60s; G1B- HL 80s; G1C- HL 120s; G2A- LED 60s; G2B- LED 80s; G2C- LED 120s; and control groups: G3A- HL 60s; G3B- HL 80s; G3C- HL 120s; G4A- LED 60s; G4B- LED 80s and G4C- LED 120s. Cement was applied in a steel matrix (4mm diameter, 1.2mm thickness). In the experimental groups, a ceramic disc was placed on top. The cement was light-cured through the ceramic by a HL and LED, however, the control groups were cured without the ceramic disc. The specimens were stored in a light-proof container at 37ºC for 24 hours, then Vickers hardness was determined. A four-way ANOVA and Tukey test (p£ 0.05) were performed. All specimens cured by LED for 60s showed inferior values compared with the halogen groups. In general, light-curing by LED for 80s and 120s was comparable to halogen groups (60s and 80s) and their control groups. LED technology can be viable for light-curing through conventional ceramic indirect restorations, when curing time is increased in relation to HL curing time.
LED and Halogen Light Transmission through a CAD/CAM Lithium Disilicate Glass-Ceramic.
Pereira, Carolina Nemesio de Barros; De Magalhães, Cláudia Silami; Daleprane, Bruno; Peixoto, Rogéli Tibúrcio Ribeiro da Cunha; Ferreira, Raquel da Conceição; Cury, Luiz Alberto; Moreira, Allyson Nogueira
2015-01-01
The effect of thickness, shade and translucency of CAD/CAM lithium disilicate glass-ceramic on light transmission of light-emitting diode (LED) and quartz-tungsten-halogen units (QTH) were evaluated. Ceramic IPS e.max CAD shades A1, A2, A3, A3.5, high (HT) and low (LT) translucency were cut (1, 2, 3, 4 and 5 mm). Light sources emission spectra were determined. Light intensity incident and transmitted through each ceramic sample was measured to determine light transmission percentage (TP). Statistical analysis used a linear regression model. There was significant interaction between light source and ceramic translucency (p=0.008) and strong negative correlation (R=-0.845, p<0.001) between ceramic thickness and TP. Increasing one unit in thickness led to 3.17 reduction in TP. There was no significant difference in TP (p=0.124) between shades A1 (ß1=0) and A2 (ß1=-0.45) but significant reduction occurred for A3 (ß1=-0.83) and A3.5 (ß1=-2.18). The interaction QTH/HT provided higher TP (ß1=0) than LED/HT (ß1=-2.92), QTH/LT (ß1=-3.75) and LED/LT (ß1=-5.58). Light transmission was more effective using halogen source and high-translucency ceramics, decreased as the ceramic thickness increased and was higher for the lighter shades, A1 and A2. From the regression model (R2=0.85), an equation was obtained to estimate TP value using each variable ß1 found. A maximum TP of 25% for QTH and 20% for LED was found, suggesting that ceramic light attenuation could compromise light cured and dual cure resin cements polymerization.
Effect of different photo-initiators and light curing units on degree of conversion of composites.
Brandt, William Cunha; Schneider, Luis Felipe Jochims; Frollini, Elisabete; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho
2010-01-01
The aim of this study was to evaluate: (i) the absorption of photo-initiators and emission spectra of light curing units (LCUs); and (ii) the degree of conversion (DC) of experimental composites formulated with different photo-initiators when activated by different LCUs. Blends of BisGMA, UDMA, BisEMA and TEGDMA with camphorquinone (CQ) and/ or 1-phenyl-1,2-propanedione (PPD) were prepared. Dimethylaminoethyl methacrylate (DMAEMA) was used as co-initiator. Each mixture was loaded with 65 wt% of silanated filler particles. One quartz-tungsten-halogen - QTH (XL 2500, 3M/ESPE) and two lightemitting diode (LED) LCUs (UltraBlue IS, DMC and UltraLume LED 5, Ultradent) were used for activation procedures. Irradiance (mW/cm²) was calculated by the ratio of the output power by the area of the tip, and spectral distribution with a spectrometer (USB 2000). The absorption curve of each photo-initiator was determined using a spectrophotometer (Varian Cary 5G). DC was assessed by Fourier transformed infrared spectroscopy. Data were submitted to two-way ANOVA and Tukey's test (5%). No significant difference was found for DC values when using LED LCUs regardless of the photo-initiator type. However, PPD showed significantly lower DC values than composites with CQ when irradiated with QTH. PPD produced DC values similar to those of CQ, but it was dependent on the LCU type.
Yilmaz, Y; Keles, S; Mete, A
2013-06-01
To compare changes in pulpal chamber temperature during the visible-light curing of direct pulp capping compounds and various modes of diode laser irradiation without prior placement of a pulp capping compound and the resultant seals. Pulp exposure holes were made in 100 extracted human primary first molars, which were randomly assigned to ten equal groups. The holes were sealed by (a= Group 1, 2, 3, 4, 5, 6 and 7) different pulp capping compounds which were cured using various types of visible-light curing units or (b=Group 8, 9 and 10) diode laser irradiation without prior application of a pulp capping compound. Pulpal chamber temperatures were recorded during the procedure, and the resultant seals were examined under a scanning electron microscope. Visible-light curing of the pulp capping compounds and diode laser irradiation at a 0.7 W output power can cause non-injurious temperature rises in the pulpal chamber. At higher output powers of the diode laser, the temperature rises are sufficient to cause thermal injury. The seals were complete when pulp capping compounds were used for direct pulp capping, but were incomplete when laser irradiation without prior placement of a pulp capping compound was used for the identical purpose. The visible-light curing of pulp capping compounds is not harmful to vital pulp, and provides an effective seal of the pulp exposure hole. Laser irradiation is not an effective sealant, and can cause thermal injury to vital pulp at high output powers.
NASA Astrophysics Data System (ADS)
Kim, Jong Kyu; Lee, Jong Won; Kim, Dong-Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Kim, Yong-Il
2016-09-01
AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) are being developed for their numerous applications such as purification of air and water, sterilization in food processing, UV curing, medical-, and defense-related light sources. However, external quantum efficiency (EQE) of AlGaN-based DUV LEDs is very poor (<5% for 250nm) particularly due to low hole concentration and light extraction efficiency (LEE). Conventional LEE-enhancing techniques used for GaInN-based visible LEDs turned out to be ineffective for DUV LEDs due to difference in intrinsic material property between GaInN and AlGaN (Al< 30%). Unlike GaInN visible LEDs, DUV light from a high Al-content AlGaN active region is strongly transverse-magnetic (TM) polarized, that is, the electric field vector is parallel to the (0001) c-axis and shows strong sidewall emission through m- or a-plane due to crystal-field split-off hole band being top most valence band. Therefore, a new LEE-enhancing approach addressing the unique intrinsic property of AlGaN DUV LEDs is strongly desired. In this study, an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells is presented. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage simultaneously. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes to maximize the power conversion efficiency.
Fabrication of 3D nano-structures using reverse imprint lithography
NASA Astrophysics Data System (ADS)
Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon
2013-02-01
In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.
Fabrication of 3D nano-structures using reverse imprint lithography.
Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-Woo; Lee, Heon
2013-02-01
In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures.UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.
Mousavinasab, Sayed Mostafa; Meyers, Ian
2011-07-01
To compare curing performance of a second generation LED curing light with a high power tungsten quartz halogen (QTH). A hybrid composite resin (Filtek Z 250, 3M, USA) was used as test material and cured using a second generation LED light (Translux Power Blue™, Heraus Kulzer ,Germany) or a very high power QTH light unit (EMS, Switzerland). A two split aluminum mold was used to prepare ten samples with LED light source cured for forty seconds and ten samples prepared using high power QTH light unit, cured for four or six seconds recommended exposure time. Hardness, depth of cure (DOC) and thermal rise during exposure time by these light sources were measured. The data submitted to analysis of variance (ANOVA), Tukey's and student's t tests at 5% significance level. Significant differences were found in hardness, DOC of samples cured by above mentioned light sources and also in thermal rises during exposure time. The curing performance of the tested QTH was not as well as the LED light. TPB light source produced the maximum hardness (81.25, 73.29, 65.49,55.83 and 24.53 for 0 mm, 1 mm, 2 mm, 3 mm and 4 mm intervals) and DOC (2.64 mm) values with forty seconds irradiation time and the high power (QTH) the least hardness (73.27, 61.51 and 31.59 for 0 mm, 1 mm and 2 mm, respectively) and DOC (2 mm) values with four seconds irradiation time. Thermal rises during 4 s and 6 s curing time using high power QTH and tested LED were 1.88°C, 3°C and 1.87°C, respectively. The used high power LED light produced greater hardness and depth of cure during forty seconds exposure time compared to high power QTH light with four or six seconds curing time. Thermal rise during 6 s curing time with QTH was greater compared to thermal changes occurred during 40 s curing time with tested LED light source. There was no difference seen in thermal changes caused by LED light with 40 s and QTH light with 4 s exposure time.
Laterally injected light-emitting diode and laser diode
Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.
2015-06-16
A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.
Heat transfer properties and thermal cure of glass-ionomer dental cements.
Gavic, Lidia; Gorseta, Kristina; Glavina, Domagoj; Czarnecka, Beata; Nicholson, John W
2015-10-01
Under clinical conditions, conventional glass-ionomer dental cements can be cured by application of heat from dental cure lamps, which causes acceleration in the setting. In order for this to be successful, such heat must be able to spread sufficiently through the cement to enhance cure, but not transmit heat so effectively that the underlying dental pulp of the tooth is damaged. The current study was aimed at measuring heat transfer properties of modern restorative glass-ionomers to determine the extent to which they meet these twin requirements. Three commercial glass ionomer cements (Ionofil Molar, Ketac Molar and Equia™ Fill) were used in association with three different light emitting diode cure lamps designed for clinical use. In addition, for each cement, one set of specimens was allowed to cure without application of a lamp. Temperature changes were measured at three different depths (2, 3 and 4 mm) after cure times of 20, 40 and 60 s. The difference among the tested groups was evaluated by ANOVA (P < 0.05) and post hoc Newman-Keuls test. All brands of glass-ionomer showed a small inherent setting exotherm in the absence of heat irradiation, but much greater temperature increases when exposed to the cure lamp. However, temperature rises did not exceed 12.9 °C. Application of the cure lamp led to the establishment of a temperature gradient throughout each specimen. Differences were typically significant (P < 0.05) and did not reflect the nominal power of the lamps, because those lamps have variable cooling systems, and are designed to optimize light output, not heating effect. Because the thermal conductivity of glass-ionomers is low, temperature rises at 4 mm depths were much lower than at 2 mm. At no time did the temperature rise sufficiently to cause concern about potential damage to the pulp.
Bortolotto, Tissiana; Betancourt, Francisco; Krejci, Ivo
2016-12-01
This study evaluated the influence of curing devices on marginal adaptation of cavities restored with self-etching adhesive containing CQ and PPD initiators and hybrid composite. Twenty-four class V (3 groups, n=8) with margins located on enamel and dentin were restored with Clearfil S3 Bond and Clearfil APX PLT, light-cured with a monowave LED, multiwave LED and halogen light-curing unit (LCU). Marginal adaptation was evaluated with SEM before/after thermo-mechanical loading (TML). On enamel, significantly lower % continuous margins (74.5±12.6) were found in group cured by multiwave LED when compared to monowave LED (87.6±9.5) and halogen LCU (94.4±9.1). The presence of enamel and composite fractures was significantly higher in the group light-cured with multiwave LED, probably due to an increased materials' friability resulted from an improved degree of cure. The clinician should aware that due to a distinct activation of both initiators, marginal quality may be influenced on the long-term.
Ranjbar Omrani, Ladan; Khoshamad, Sara; Tabatabaei Ghomshe, Elham; Chiniforush, Nasim; Hashemi Kamangar, Sedighe Sadat
2017-01-01
Introduction: This study sought to assess the effect of bleaching combined with irradiation of 810 nm and 980 nm diode laser on microhardness of 2 commonly used self-cure and light-cure glass ionomer cements (GICs) in comparison with conventional bleaching (without laser). Methods: In this in vitro, experimental study, 60 samples were fabricated of A2 shade of Fuji IX and Fuji II LC GICs (n=30) and each group was divided into 3 subgroups (n=10). The first subgroups were subjected to bleaching with Opalescence Xtra Boost plus 980 nm diode laser irradiation. The second subgroups were subjected to bleaching with Opalescence Boost plus 810 nm diode laser irradiation and the third subgroups were subjected to bleaching with Opalescence Xtra Boost without laser. Microhardness was measured at baseline and after the intervention using Vickers hardness tester. The data were analyzed using two-way analysis of variance (ANOVA) ( P <0.05). Results: Microhardness decreased in all subgroups after the intervention (P<0.001) irrespective of the type of GIC ( P =0.201) or surface treatment ( P =0.570). The baseline microhardness of the three subgroups within each group of GIC was not significantly different ( P =0.456), but the baseline microhardness of conventional GIC was significantly higher than that of resin modified GIC ( P =0.004). Conclusion: Bleaching with/without laser irradiation decreases the microhardness of GICs. The baseline microhardness of conventional GIC is higher than that of resin modified GIC.
Ribeiro, Benicia Carolina Iaskieviscz; Boaventura, Juliana Maria Capelozza; Brito-Gonçalves, Joel de; Rastelli, Alessandra Nara de Souza; Bagnato, Vanderlei Salvador; Saad, José Roberto Cury
2012-01-01
This study aimed at evaluating the degree of conversion (DC) of four composite resins, being one nanofilled and 3 microhybrid resins, photo-activated with second- and third-generation light-emitting diodes (LEDs). Filtek™ Z350 nanofilled composite resins and Amelogen® Plus, Vit-l-escence™ and Opallis microhybrid resins were photo-activated with two second-generation LEDs (Radii-cal and Elipar Free Light™ 2) and one third-generation LED (Ultra-Lume LED 5) by continuous light mode, and a quartz halogen-tungsten bulb (QHT, control). After 24 h of storage, the samples were pulverized into fine powder and 5 mg of each material were mixed with 100 mg of potassium bromide (KBr). After homogenization, they were pressed, which resulted in a pellet that was evaluated using an infrared spectromer (Nexus 470, Thermo Nicolet) equipped with TGS detector using diffuse reflectance (32 scans, resolution of 4 cm(-1)) coupled to a computer. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). The ANOVA showed a significant effect on the interaction between the light-curing units (LCUs) and the composite resins (p<0.001). The Tukeys test showed that the nanofilled resin (Filtek™ Z350) and Opallis when photo-activated by the halogen lamp (QTH) had the lowest DC compared with the other microhybrid composite resins. The DC of the nanofilled resin (Filtek™ Z350) was also lower using LEDs. The highest degrees of conversion were obtained using the third-generation LED and one of second-generation LEDs (Elipar Free Light™ 2). The nanofilled resin showed the lowest DC, and the Vit-l-escence™ microhybrid composite resin showed the highest DC. Among the LCUs, it was not possible to establish an order, even though the second-generation LED Radii-cal provided the lowest DC.
RIBEIRO, Benicia Carolina Iaskieviscz; BOAVENTURA, Juliana Maria Capelozza; de BRITO-GONÇALVES, Joel; RASTELLI, Alessandra Nara de Souza; BAGNATO, Vanderlei Salvador; SAAD, José Roberto Cury
2012-01-01
Objective This study aimed at evaluating the degree of conversion (DC) of four composite resins, being one nanofilled and 3 microhybrid resins, photo-activated with second- and third-generation light-emitting diodes (LEDs). Material and methods FiltekTM Z350 nanofilled composite resins and Amelogen® Plus, Vit-l-escenceTM and Opallis microhybrid resins were photo-activated with two second-generation LEDs (Radii-cal and Elipar Free LightTM 2) and one third-generation LED (Ultra-Lume LED 5) by continuous light mode, and a quartz halogen-tungsten bulb (QHT, control). After 24 h of storage, the samples were pulverized into fine powder and 5 mg of each material were mixed with 100 mg of potassium bromide (KBr). After homogenization, they were pressed, which resulted in a pellet that was evaluated using an infrared spectromer (Nexus 470, Thermo Nicolet) equipped with TGS detector using diffuse reflectance (32 scans, resolution of 4 cm-1) coupled to a computer. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). Results The ANOVA showed a significant effect on the interaction between the light-curing units (LCUs) and the composite resins (p<0.001). The Tukey's test showed that the nanofilled resin (FiltekTM Z350) and Opallis when photo-activated by the halogen lamp (QTH) had the lowest DC compared with the other microhybrid composite resins. The DC of the nanofilled resin (FiltekTM Z350) was also lower using LEDs. The highest degrees of conversion were obtained using the third-generation LED and one of second-generation LEDs (Elipar Free LightTM 2). Conclusions The nanofilled resin showed the lowest DC, and the Vit-l-escenceTM microhybrid composite resin showed the highest DC. Among the LCUs, it was not possible to establish an order, even though the second-generation LED Radii-cal provided the lowest DC. PMID:22666839
Zorba, Yahya Orcun; Erdemir, Ali; Ahmetoglu, Fuat; Yoldas, Oguz
2011-06-01
The aim of this study was to evaluate the degree of conversion (DC) of composite resin at different depths of simulated immature root canals using light-transmitting plastic post (LTPP) and three different light sources. Composite resin was packed into 60 black plastic cylinders 12mm in length with 4mm internal diameters to simulate immature root canals. LTPPs were inserted into half of the simulated canals and the other half acted as controls. Both the simulated canals with LTPPs and the controls were divided into three groups of 10, and each group was cured using either a quartz-tungsten-halogen (QTH), light-emitting diode (LED), or plasma arc (PAC) curing unit. Specimens were sectioned in three horizontally 24h after curing to represent cervical, middle, and apical levels. DC for each section of composite resin was measured using a Fourier transform infrared spectrophotometer, and data were analyzed using three-way anova and Tukey tests. At the cervical level, no significant differences were found between specimens cured using different light sources or between specimens with and without LTPPs (P>0.05). However, DC was significantly higher in specimens with LTPPs than in those without LTPPs at both the middle and apical levels (P<0.05). The mean DC of all specimens with LTPPs was significantly higher than that of specimens without LTPPs (P<0.05). PAC unit showed lower DC than QTH and LED units at both the middle and apical levels; however, the differences were not statistically significant (P > 0.05). The results of this study suggest that the use of a LTPP increased the DC of composite resin at the middle and apical levels of simulated immature root canals, but that DC was independent of type of light source. © 2011 John Wiley & Sons A/S.
Schroeder, Walter F; Cook, Wayne D; Vallo, Claudia I
2008-05-01
The present study was carried out in order to assess the suitability of N,N-dimethylaminobenzyl alcohol (DMOH) as co-initiator of camphorquinone (CQ) and 1-phenyl-1,2-propanedione (PPD) in light-cured dental resins. DMOH was synthesized and used as co-initiator for the photopolymerization of a model resin based on {2,2-bis[4-(2-hydroxy-3-methacryloxyprop-1-oxy)phenyl]propane} (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA). Experimental formulations containing CQ or PPD in combination with DMOH at different concentrations were studied. The photopolymerization was carried out by means of a commercial light-emitting diode (LED) curing unit. The evolution of double bonds consumption versus irradiation time was followed by near-infrared spectroscopy (NIR). The photon absorption efficiency (PAE) of the photopolymerization process was calculated from the spectral distribution of the LED unit and the molar absorption coefficient distributions of PPD and CQ. DMOH is an efficient photoreducer of CQ and PPD resulting in higher polymerization rate and higher double bond conversion compared with dimethylaminoethylmethacrylate. The PAE for PPD was higher than that for CQ. However, the polymerization initiated by PPD progressed at a lower rate and exhibited lower values of final conversion compared with the resins containing CQ. This observation indicates that the lower polymerization rate of the PPD/amine system should be explained in terms of the mechanism of generating primary radicals by PPD, which is less efficient compared with CQ. The DMOH/benzoyl peroxide redox system, has recently been proposed as a more biocompatible accelerator for the polymerization of bone cements based on poly(methyl methacrylate), because cytotoxity tests have demonstrated that DMOH possesses better biocompatibility properties compared with traditional tertiary amines. The results obtained in the present study reveal the suitability of the CQ/DMOH initiator system for the polymerization of light-cured dental composites.
Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes
ERIC Educational Resources Information Center
Wagner, Eugene P., II
2016-01-01
A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…
Cekic-Nagas, Isil; Egilmez, Ferhan; Ergun, Gulfem
2010-01-01
Objectives: The aim of this study was to compare the microhardness of five different resin composites at different irradiation distances (2 mm and 9 mm) by using three light curing units (quartz tungsten halogen, light emitting diodes and plasma arc). Methods: A total of 210 disc-shaped samples (2 mm height and 6 mm diameter) were prepared from different resin composites (Simile, Aelite Aesthetic Enamel, Clearfil AP-X, Grandio caps and Filtek Z250). Photoactivation was performed by using quartz tungsten halogen, light emitting diode and plasma arc curing units at two irradiation distances (2 mm and 9 mm). Then the samples (n=7/per group) were stored dry in dark at 37°C for 24 h. The Vickers hardness test was performed on the resin composite layer with a microhardness tester (Shimadzu HMV). Data were statistically analyzed using nonparametric Kruskal Wallis and Mann-Whitney U tests. Results: Statistical analysis revealed that the resin composite groups, the type of the light curing units and the irradiation distances have significant effects on the microhardness values (P<.05). Conclusions: Light curing unit and irradiation distance are important factors to be considered for obtaining adequate microhardness of different resin composite groups. PMID:20922164
Effect of the fabrication conditions of SiGe LEDs on their luminescence and electrical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalyadin, A. E.; Sobolev, N. A., E-mail: nick@sobolev.ioffe.rssi.ru; Strel’chuk, A. M.
2016-02-15
SiGe-based n{sup +}–p–p{sup +} light-emitting diodes (LEDs) with heavily doped layers fabricated by the diffusion (of boron and phosphorus) and CVD (chemical-vapor deposition of polycrystalline silicon layers doped with boron and phosphorus) techniques are studied. The electroluminescence spectra of both kinds of LEDs are identical, but the emission intensity of CVD diodes is ∼20 times lower. The reverse and forward currents in the CVD diodes are substantially higher than those in diffusion-grown diodes. The poorer luminescence and electrical properties of the CVD diodes are due to the formation of defects at the interface between the emitter and base layers.
Time dependence of composite shrinkage using halogen and LED light curing.
Uhl, Alexander; Mills, Robin W; Rzanny, Angelika E; Jandt, Klaus D
2005-03-01
The polymerization shrinkage of light cured dental composites presents the major drawback for these aesthetically adaptable restorative materials. LED based light curing technology has recently become commercially available. Therefore, the aim of the present study was to investigate if there was a statistically significant difference in linear and volumetric composite shrinkage strain if a LED LCU is used for the light curing process rather than a conventional halogen LCU. The volumetric shrinkage strain was determined using the Archimedes buoyancy principle after 5, 10, 20, 40 s of light curing and after 120 s following the 40 s light curing time period. The linear shrinkage strain was determined with a dynamic mechanical analyzer for the composites Z100, Spectrum, Solitaire2 and Definite polymerized with the LCUs Trilight (halogen), Freelight I (LED) and LED63 (LED LCU prototype). The changes in irradiance and spectra of the LCUs were measured after 0, 312 and 360 min of duty time. In general there was no considerable difference in shrinkage of the composites Z100, Spectrum or Solitaire2 when the LED63 was used instead of the Trilight. There was, however, a statistically significant difference in shrinkage strain when the composite Definite was polymerized with the LED63 instead of the Trilight. The spectrum of the Trilight changed during the experiment considerably whereas the LED63 showed an almost constant light output. The Freelight I dropped considerably in irradiance and had to be withdrawn from the study because of technical problems. The composites containing only the photoinitiator camphorquinone showed similar shrinkage strain behaviour when a LED or halogen LCU is used for the polymerization. The irradiance of some LED LCUs can also decrease over time and should therefore be checked on a regular basis.
Shortall, Adrian C; Palin, Will M; Jacquot, Bruno; Pelissier, Bruno
2012-01-01
The first part of this series of two described the history of light curing in dentistry and developments in LED lights since their introduction over 20 years ago. Current second- and third-generation LED light units have progressively replaced their halogen lamp predecessors because of their inherent advantages. The background to this, together with the clinical issues relating to light curing and the possible solutions, are outlined in the second part of this article. Finally, the innovative features of what may be seen as the first of a new fourth-generation of LED lights are described and guidance is given for the practitioner on what factors to consider when seeking to purchase a new LED light activation unit. Adequate curing in depth is fundamental to clinical success with any light-activated restoration. To achieve this goal predictably, an appropriate light source needs to be combined with materials knowledge, requisite clinical skills and attention to detail throughout the entire restoration process. As dentists increasingly use light-cured direct composites to restore large posterior restorations they need to appreciate the issues central to effective and efficient light curing and to know what to look for when seeking to purchase a new light-curing unit.
Garapati, Surendra Nath; Priyadarshini; Raturi, Piyush; Shetty, Dinesh; Srikanth, K Venkata
2013-01-01
Composites always remained the target of discussion due to lot of controversies around it. Mechanical properties are one of them. With the introduction of new technology and emergence of various composites which combine superior strength and polish retention, nanocomposites have led to a new spark in the dentistry. A recent curing unit LED with various curing modes claims to produce higher degree of conversion. The aim of this study was to evaluate the diametral tensile strength and flexural strength of nanocomposite, hybrid and minifill composites cured with different light sources (QTH vs LED). Seventy-two samples were prepared using different specially fabricated teflon molds, 24 samples of each composite were prepared for the diametral tensile strength (ADA specification no. 27) and the flexural strength (ISO 4049) of the 12 samples, six were cured with LED (Soft Start curing profile) and other six with QTH curing light and tested on a universal testing machine. The nanocomposite had highest diametral tensile strength and flexural strength which were equivalent to the hybrid composite and superior than the minifill composite. With the combination of superior esthetics and other optimized physical properties, this novel nanocomposite system would be useful for all posterior and anterior applications.
Does laser diode irradiation improve the degree of conversion of simplified dentin bonding systems?
Brianezzi, Leticia Ferreira de Freitas; Maenosono, Rafael Massunari; Bim, Odair; Zabeu, Giovanna Speranza; Palma-Dibb, Regina Guenka; Ishikiriama, Sérgio Kiyoshi
2017-01-01
This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC), water sorption (WS), and water solubility (WSB) of these bonding systems in an attempt to improve their physico-mechanical resistance. Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB)] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU)]. Square-shaped specimens were prepared and assigned into 4 groups (n=5): SB and SU (control groups - no laser irradiation) and SB-L and SU-L [SB and SU laser (L) - irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5) of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10) were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm), irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2). Laser irradiation immediately before photopolymerization increased the DC (%) of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3), only the dentin bonding system (DBS) was a significant factor (p<0.05): SB>SU. Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility.
Jun, Shinae; Lee, Junho; Jang, Eunjoo
2013-02-26
A highly luminescent and photostable quantum dot-silica monolith (QD-SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol-gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol-gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD-SM maintained its initial luminescence after high-power UV radiation (∼1 W) for 200 h and through the 150 °C LED encapsulant curing process. Green and red light-emitting QD-SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD-SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported.
Tielemans, M; Compere, Ph; Geerts, S O; Lamy, M; Limme, M; De Moor, R J G; Delmé, K I M; Bertrand, M F; Rompen, E; Nammour, S
2009-01-01
In this study, we compared the microleakage of composite fillings cured with halogen bulb, LED and argon ion laser (488 nm). Twenty-four extracted human molars were divided randomly in three groups. Six cavities were prepared on the coronal part of each tooth. Standard cavities (1.7 x 2 mm) were prepared. Cavities were acid etched, sealed with Scotch Bond 1 and filled by a hybrid composite. Cavities were exposed to one light source, thermocycled and immersed in a 2% methylene blue dye solution. Dye penetration in the leakage of cavities was recorded using a digital optical microscope. Mean values of percentage of dye penetrations in microleakages of cavities were 49.303 +/- 5.178% for cavities cured with LED, 44.486 +/- 6.075% with halogen bulb and 36.647 +/- 5.936% for those cured by argon laser. Statistically significant difference exists between cavities cured by halogen vs LED (P < 0.01), halogen vs laser (P < 0.001) and LED vs laser (P < 0.001). The lowest microleakage was observed in the cavities and composites cured with argon ion laser.
Developing a new supplemental lighting device with ultra-bright white LED for vegetables
NASA Astrophysics Data System (ADS)
Hu, Yongguang; Li, Pingping; Jiang, Jianghai
2007-02-01
It has been proved that monochromatic or compound light-emitting diode (LED) or laser diode (LD) can promote the photosynthesis of horticultural crops, but the promotion of polychromatic light like white LED is unclear. A new type of ultra-bright white LED (LUW56843, InGaN, \
Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp
NASA Astrophysics Data System (ADS)
Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru
2014-06-01
Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs.
Super-Lattice Light Emitting Diodes (SLEDS) on GaAs
2016-03-31
Super-Lattice Light Emitting Diodes (SLEDS) on GaAs Kassem Nabha1, Russel Ricker2, Rodney McGee1, Nick Waite1, John Prineas2, Sydney Provence2...infrared light emitting diodes (LEDs). Typically, the LED arrays are mated with CMOS read-in integrated circuit (RIIC) chips using flip-chip bonding. In...circuit (RIIC) chips using flip-chip bonding. This established technology is called Hybrid-super-lattice light emitting diodes (Hybrid- SLEDS). In
2017-11-01
sent from light-emitting diodes (LEDs) of 5 colors ( green , red, white, amber, and blue). Experiment 1 involved controlled laboratory measurements of...A-4 Red LED calibration curves and quadratic curve fits with R2 values . 37 Fig. A-5 Green LED calibration curves and quadratic curve fits with R2...36 Table A-4 Red LED calibration measurements ................................................... 36 Table A-5 Green LED
IN VITRO STUDY OF THE PULP CHAMBER TEMPERATURE RISE DURING LIGHT-ACTIVATED BLEACHING
Carrasco, Thaise Graciele; Carrasco-Guerisoli, Laise Daniela; Fröner, Izabel Cristina
2008-01-01
This study evaluated in vitro the pulp chamber temperature rise induced by the light-activated dental bleaching technique using different light sources. The root portions of 78 extracted sound human mandibular incisors were sectioned approximately 2 mm below the cementoenamel junction. The root cavities of the crowns were enlarged to facilitate the correct placing of the sensor into the pulp chamber. Half of specimens (n=39) was assigned to receive a 35% hydrogen peroxide gel on the buccal surface and the other halt (n=39) not to receive the bleaching agent. Three groups (n=13) were formed for each condition (bleach or no bleach) according to the use of 3 light sources recommended for dental bleaching: a light-emitting diode (LED)-laser system, a LED unit and a conventional halogen light. The light sources were positioned perpendicular to the buccal surface at a distance of 5 mm and activated during 30 s. The differences between the initial and the highest temperature readings for each specimen were obtained, and, from the temperature changes, the means for each specimen and each group were calculated. The values of temperature rise were compared using Kruskal-Wallis test at 1% significance level. Temperature rise varied significantly depending on the light-curing unit, with statistically significant differences (p<0.01) among the groups. When the bleaching agent was not applied, the halogen light induced the highest temperature rise (2.38±0.66°C). The LED unit produced the lowest temperature increase (0.29±0.13°C); but there was no significant difference between LED unit and LED-laser system (0.35±0.15°C) (p>0.01). When the bleaching agent was applied, there were significant differences among groups (p<0.01): halogen light induced the highest temperature rise (1.41±0.64°C), and LED-laser system the lowest (0.33±0.12°C); however, there was no difference between LED-laser system and LED unit (0.44±0.11°C). LED and LED-laser system did not differ significantly from each other regardless the temperature rise occurred with or without bleaching agent application. It may be concluded that during light-activated tooth bleaching, with or without the bleaching agent, halogen light promoted higher pulp chamber temperature rise than LED unit and LED-laser system. The tested light-curing units provided increases in the pulp chamber temperature that were compatible with pulpal health. PMID:19089234
2011-11-29
as an active region of mid - infrared LEDs. It should be noted that active region based on interband transition is equally useful for both laser and...IR LED technology for infrared scene projectors”, Dr. E. Golden, Air Force Research Laboratory, Eglin Air Force Base . “A stable mid -IR, GaSb...multimode lasers. Single spatial mode 3-3.2 J.lm diode lasers were developed. LEDs operate at wavelength above 4 J.lm at RT. Dual color mid - infrared
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myer, Michael; Goettel, Russell T.; Kinzey, Bruce R.
2012-09-30
A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide post-top luminaire. This report reviews the energy savings potential and lighting delivered by the LED post-top luminaires.
A Simple, Small-Scale Lego Colorimeter with a Light-Emitting Diode (LED) Used as Detector
ERIC Educational Resources Information Center
Asheim, Jonas; Kvittingen, Eivind V.; Kvittingen, Lise; Verley, Richard
2014-01-01
This article describes how to construct a simple, inexpensive, and robust colorimeter from a few Lego bricks, in which one light-emitting diode (LED) is used as a light source and a second LED as a light detector. The colorimeter is suited to various grades and curricula.
Does laser diode irradiation improve the degree of conversion of simplified dentin bonding systems?
BRIANEZZI, Leticia Ferreira de Freitas; MAENOSONO, Rafael Massunari; BIM, Odair; ZABEU, Giovanna Speranza; PALMA-DIBB, Regina Guenka; ISHIKIRIAMA, Sérgio Kiyoshi
2017-01-01
Abstract Simplified dentin-bonding systems are clinically employed for most adhesive procedures, and they are prone to hydrolytic degradation. Objective This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC), water sorption (WS), and water solubility (WSB) of these bonding systems in an attempt to improve their physico-mechanical resistance. Material and Methods Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB)] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU)]. Square-shaped specimens were prepared and assigned into 4 groups (n=5): SB and SU (control groups – no laser irradiation) and SB-L and SU-L [SB and SU laser (L) – irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5) of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10) were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm), irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2). Results Laser irradiation immediately before photopolymerization increased the DC (%) of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3), only the dentin bonding system (DBS) was a significant factor (p<0.05): SB>SU. Conclusion Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility. PMID:28877276
Koçak, Sibel; Koçak, Mustafa Murat; Sağlam, Baran Can
2014-04-01
The aim of this clinical study was to test the efficacy of a light-emitting diode (LED) light and a diode laser, when bleaching with sodium perborate. Thirty volunteers were selected to participate in the study. The patients were randomly divided into two groups. The initial colour of each tooth to be bleached was quantified with a spectrophotometer. In group A, sodium perborate and distilled water were mixed and placed into the pulp chamber, and the LED light was source applied. In group B, the same mixture was used, and the 810 nm diode laser was applied. The final colour of each tooth was quantified with the same spectrophotometer. Initial and final spectrophotometer values were recorded. Mann-Whitney U-test and Wicoxon tests were used to test differences between both groups. Both devices successfully whitened the teeth. No statistical difference was found between the efficacy of the LED light and the diode laser. © 2013 The Authors. Australian Endodontic Journal © 2013 Australian Society of Endodontology.
Response of adult mosquitoes to light-emitting diodes placed in resting boxes and in the field.
Bentley, Michael T; Kaufman, Phillip E; Kline, Daniel L; Hogsette, Jerome A
2009-09-01
The response of adult mosquitoes to 4 light-emitting diode (LED) wavelengths was evaluated using diode-equipped sticky cards (DESCs) and diode-equipped resting boxes at 2 sites in north central Florida. Wavelengths evaluated were blue (470 nm), green (502 nm), red (660 nm), and infrared (IR) (860 nm). When trapping with DESCs, 15 mosquito species from 7 genera (Aedes, Anopheles, Coquillettidia, Culex, Mansonia, Psorophora, and Uranotaenia) were captured. Overall, approximately 43.8% of all mosquitoes were trapped on DESCs fitted with green LEDs. Significantly more females of Aedes infirmatus, Aedes vexans, and Culex nigripalpus were captured on DESCs fitted with blue LEDs compared with red or IR LEDs. DESCs with blue LEDs captured significantly more Culex erraticus females than those with IR LEDs. Using resting boxes, 12 species from 5 genera (Anopheles, Coquillettidia, Culex, Mansonia, and Uranotaenia) were collected. Resting boxes without LEDs captured 1,585 mosquitoes (22.2% of total). The fewest number of mosquitoes (16.7%) were collected from boxes affixed with the blue LEDs. Significantly more Anopheles quadrimaculatus females were aspirated from resting boxes fitted with red and IR LEDs than from those with blue or green LEDs, or from the unlit control. Blood-fed mosquitoes were recovered in highest numbers from unlit resting boxes, followed by resting boxes fitted with green, IR, and blue LEDs. Culex erraticus accounted for the majority of blood-fed mosquitoes followed by Coquillettidia perturbans. No blood-fed mosquitoes were recovered from resting boxes fitted with red LEDs.
Light emitting diodes (LED): applications in forest and native plant nurseries
Thomas D. Landis; Jeremiah R. Pinto; R. Kasten Dumroese
2013-01-01
It was quotes like this that made us want to learn more about light emitting diodes (LED). Other than knowing that LEDs were the latest innovation in artificial lighting, we knew that we had a lot to learn. So we started by reviewing some of the basics. The following review is a brief synopsis of how light affects plants and some discussion about LED lighting. If you...
The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.
ERIC Educational Resources Information Center
Jackson, David L.; And Others
1985-01-01
The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wierer, Jonathan J.; Tsao, Jeffrey Y.
2015-01-14
III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from color mixed emitters is equally challenging formore » both LEDs and LDs, with neither source having a direct advantage. Fourth, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. Finally, the smaller area and higher current density operation of LDs provides them with a potential cost advantage over LEDs. These advantages make LDs a compelling source for future SSL.« less
Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound
Yuan, Guangqian; Alqasemi, Umar; Chen, Aaron; Yang, Yi; Zhu, Quing
2014-01-01
Abstract. Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions. PMID:25473884
DOT National Transportation Integrated Search
2013-08-01
Across the Nation, many agencies have been replacing conventional incandescent light bulbs in traffic signals with light-emitting diodes (LED) (see figure 1 and figure 2). LEDs are primarily installed to reduce energy consumption and decrease mainten...
Combatant Eye Protection: An Introduction to the Blue Light Hazard
2015-12-01
visible solar radiation (i.e., blue light ), as well as from light - emitting diode (LED)-generated radiant energy remains a questionable factor under...Garcia, M., Picaud, S., Attia D. 2011. Light - emitting diodes (LED) for domestic lighting : Any risks for the eye?. Progress in retinal and eye research...C., Sliney, D. H., Rollag, M., D., Hanifin, J. P., and Brainard, G. C. 2011. Blue light from light - emitting diodes elicits a dose-dependent
Best practices : bus signage for persons with visual impairments : light-emitting diode (LED) signs
DOT National Transportation Integrated Search
2004-01-01
This best-practices report provides key information regarding the use of Light-Emitting Diode (LED) sign technologies to present destination and route information on transit vehicles. It will assist managers and engineers in the acquisition and use o...
DOT National Transportation Integrated Search
2013-08-01
Research was conducted to determine the effective intensity of flashing lights that incorporate light-emitting diodes (LEDs). LEDs require less power and have the ability to flash without the addition of moving parts. Compared with incandescent bulbs...
Wierer, Jonathan; Tsao, Jeffrey Y.
2014-09-01
III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less
Light Emitting, Photovoltaic or Other Electronic Apparatus and System
NASA Technical Reports Server (NTRS)
Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Lowenthal, Mark D. (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor); Shotton, Neil O. (Inventor); Ray, William Johnstone (Inventor)
2016-01-01
The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
Light Emitting, Photovoltaic or Other Electronic Apparatus and System
NASA Technical Reports Server (NTRS)
Shotton, Neil O. (Inventor); Lewandowski, Mark Allan (Inventor); Lowenthal, Mark D. (Inventor); Ray, William Johnstone (Inventor); Blanchard, Richard A. (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)
2018-01-01
The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
Light Emitting, Photovoltaic or Other Electronic Apparatus and System
NASA Technical Reports Server (NTRS)
Ray, William Johnstone (Inventor); Shotton, Neil O. (Inventor); Lewandowski, Mark Allan (Inventor); Lowenthal, Mark D. (Inventor); Blanchard, Richard A. (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)
2016-01-01
The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of substantially spherical or optically resonant diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of substantially spherical lenses suspended in a polymer attached or deposited over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
Light emitting, photovoltaic or other electronic apparatus and system
NASA Technical Reports Server (NTRS)
Ray, William Johnstone (Inventor); Lowenthal, Mark D. (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)
2013-01-01
The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
Light emitting, photovoltaic or other electronic apparatus and system
NASA Technical Reports Server (NTRS)
Lowenthal, Mark D. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Frazier, Donald Odell (Inventor); Shotton, Neil O. (Inventor); Ray, William Johnstone (Inventor); Fuller, Kirk A. (Inventor)
2013-01-01
The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of substantially spherical or optically resonant diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of substantially spherical lenses suspended in a polymer attached or deposited over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
Castelli, Andrea; Meinardi, Francesco; Pasini, Mariacecilia; Galeotti, Francesco; Pinchetti, Valerio; Lorenzon, Monica; Manna, Liberato; Moreels, Iwan; Giovanella, Umberto; Brovelli, Sergio
2015-08-12
Colloidal quantum dots (QDs) are emerging as true candidates for light-emitting diodes with ultrasaturated colors. Here, we combine CdSe/CdS dot-in-rod heterostructures and polar/polyelectrolytic conjugated polymers to demonstrate the first example of fully solution-based quantum dot light-emitting diodes (QD-LEDs) incorporating all-organic injection/transport layers with high brightness, very limited roll-off and external quantum efficiency as high as 6.1%, which is 20 times higher than the record QD-LEDs with all-solution-processed organic interlayers and exceeds by over 200% QD-LEDs embedding vacuum-deposited organic molecules.
DOT National Transportation Integrated Search
2014-05-01
To save energy, the FAA is planning to convert from incandescent lights to light-emitting diodes (LEDs) in : precision approach path indicator (PAPI) systems. Preliminary work on the usability of LEDs by color vision-waivered pilots (Bullough, Skinne...
LED's in Physics Demos: A Handful of Examples.
ERIC Educational Resources Information Center
Lottis, Dan; Jaeger, Herbert
1996-01-01
Describes the use of light-emitting diodes (LED) instead of incandescent bulbs in experiments that generally use battery and bulbs to enable students to explore and understand fundamental electrical phenomena. Presents the following examples: Faraday's Law demonstration, conductors and insulators, and rectifying action of a diode. (JRH)
Reshaping Light-Emitting Diodes To Increase External Efficiency
NASA Technical Reports Server (NTRS)
Rogowski, Robert; Egalon, Claudio
1995-01-01
Light-emitting diodes (LEDs) reshaped, according to proposal, increasing amount of light emitted by decreasing fraction of light trapped via total internal reflection. Results in greater luminous output power for same electrical input power; greater external efficiency. Furthermore, light emitted by reshaped LEDs more nearly collimated (less diffuse). Concept potentially advantageous for conventional red-emitting LEDs. More advantageous for new "blue" LEDs, because luminous outputs and efficiencies of these devices very low. Another advantage, proposed conical shapes achieved relatively easily by chemical etching of semiconductor surfaces.
Temperature issues with white laser diodes, calculation and approach for new packages
NASA Astrophysics Data System (ADS)
Lachmayer, Roland; Kloppenburg, Gerolf; Stephan, Serge
2015-01-01
Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class systems mainly use HID or LED light sources. As a further step laser diode based systems offer a high luminance, efficiency and allow the realization of new dynamic and adaptive light functions and styling concepts. The use of white laser diode systems in automotive applications is still limited to laboratories and prototypes even though announcements of laser based front lighting systems have been made. But the environment conditions for vehicles and other industry sectors differ from laboratory conditions. Therefor a model of the system's thermal behavior is set up. The power loss of a laser diode is transported as thermal flux from the junction layer to the diode's case and on to the environment. Therefor its optical power is limited by the maximum junction temperature (for blue diodes typically 125 - 150 °C), the environment temperature and the diode's packaging with its thermal resistances. In a car's headlamp the environment temperature can reach up to 80 °C. While the difference between allowed case temperature and environment temperature is getting small or negative the relevant heat flux also becomes small or negative. In early stages of LED development similar challenges had to be solved. Adapting LED packages to the conditions in a vehicle environment lead to today's efficient and bright headlights. In this paper the need to transfer these results to laser diodes is shown by calculating the diodes lifetimes based on the presented model.
Detection and modeling of leakage current in AlGaN-based deep ultraviolet light-emitting diodes
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2015-03-01
Current-voltage (IV) characteristics of two AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with differing densities of open-core threading dislocations (nanopipes) are analyzed. A three-diode circuit is simulated to emulate the IV characteristics of the DUV-LEDs, but is only able to accurately model the lower leakage current, lower nanopipe density DUV-LED. It was found that current leakage through the nanopipes in these structures is rectifying, despite nanopipes being previously established as inherently n-type. Using defect-sensitive etching, the nanopipes are revealed to terminate within the p-type GaN capping layer of the DUV-LEDs. The circuit model is modified to account for another p-nmore » junction between the n-type nanopipes and the p-type GaN, and an excellent fit to the IV characteristics of the leaky DUV-LED is achieved.« less
Long Persistent Light Emitting Diode Indicators
ERIC Educational Resources Information Center
Jia, Dongdong; Ma, Yiwei; Hunter, D. N.
2007-01-01
An undergraduate laboratory was designed for undergraduate students to make long persistent light emitting diode (LED) indicators using phosphors. Blue LEDs, which emit at 465 nm, were characterized and used as an excitation source. Long persistent phosphors, SrAl[subscript 2]O[subscript 4]:Eu[superscript 2+],Dy[superscript 3+] (green) and…
NASA Astrophysics Data System (ADS)
Lizarelli, Rosane F. Z.; Pizzo, Renata C. A.; Florez, Fernando L. E.; Grecco, Clovis; Speciali, Jose G.; Bagnato, Vanderlei S.
2015-06-01
Considering several clinical situations, low intensity laser therapy has been widely applied in pain relief or analgesia mechanism. With the advent of new LED-based (light emitting diode) light sources, the need of further clinical experiments aiming to compare the effectiveness among them is paramount. The LED system therapeutic use can be denominated as LEDT - Light Emitting Diode Therapy. This study proposed two clinical evaluations of pain relief effect: to dentin hypersensitivity and to cervicogenic headache using different sources of lasers (low and high intensity) and light emitting diodes (LEDs), one emitting at the spectral band of red (630+/- 5nm) and the other one at infrared band (880+/- 5nm). Two different clinical studies were performed and presented interesting results. Considering dentin hypersensitivity, red and infrared led were so effective than the control group (high intensity laser system); by the other side, considering cervicogenic headache, control group (infrared laser) was the best treatment in comparison to red and infrared led system.
A tunable lighting system integrated by inorganic and transparent organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Jing-jing; Zhang, Tao; Jin, Ya-fang; Liu, Shi-shen; Yuan, Shi-dong; Cui, Zhao; Zhang, Li; Wang, Wei-hui
2014-05-01
A tunable surface-emitting integrated lighting system is constructed using a combination of inorganic light-emitting diodes (LEDs) and transparent organic LEDs (OLEDs). An RB two-color LED is used to supply red and blue light emission, and a green organic LED is used to supply green light emission. Currents of the LED and OLED are tuned to produce a white color, showing different Commission Internationale d'Eclairage (CIE) chromaticity coordinates and correlated color temperatures with a wide adjustable range. Such an integration can compensate for the lack of the LED's luminance uniformity and the transparent OLED's luminance intensity.
The effect of the photobiomodulation in the treatment of Bell's palsy: clinical experience
NASA Astrophysics Data System (ADS)
Colombo, Fabio; Marques, Aparecida Maria C.; Carvalho, Carolina M.; Paraguassu, Gardenia M.; de Sousa, José A. C.; Magalhaes, Edival; Cangussu, Maria Cristina T.; de A. Reis, Silvia Regina; Pinheiro, Antonio Luiz B.
2012-03-01
The Bell's palsy (G51) consists of a unilateral face paralysis that sudden begins with unknown cause and can result in complete mimic loss or partial paralysis of the face. Damage to the VII cranial nerve can be found in the pathology, promoting mussel's inactivity. The light Photobiomodulation (LPBM) has presented ability of rush the tissue repair, favoring the regeneration of neural structures. The present study aimed to assess the effectiveness use of the 780nm laser and 850nm LED (light-emitting diode) in the treatment of the face paralysis. Were evaluated 14 patients that suffer of Bell's palsy whom were submitted to the light administration, on the Laser Clinic of the UFBA between 2005 and 2010. The treatment was performed by infrared Laser in 11 patients (78.57%), and by LED in 3 patients (21.42%). At the end of the 12 sections, 11 patients (78.57%) had presented themselves cure or with substantial improvement of the initial picture, however 3 patients (21.42%) dealt with infra-red Laser λ780nm had not evolution. The light presented as an effective method for the treatment of Bell's palsy, but the association with the physiotherapy and medications is important.
Wakefield, Andrew; Stone, Emma L.; Jones, Gareth; Harris, Stephen
2015-01-01
The light-emitting diode (LED) street light market is expanding globally, and it is important to understand how LED lights affect wildlife populations. We compared evasive flight responses of moths to bat echolocation calls experimentally under LED-lit and -unlit conditions. Significantly, fewer moths performed ‘powerdive’ flight manoeuvres in response to bat calls (feeding buzz sequences from Nyctalus spp.) under an LED street light than in the dark. LED street lights reduce the anti-predator behaviour of moths, shifting the balance in favour of their predators, aerial hawking bats. PMID:26361558
Flexible inorganic light emitting diodes based on semiconductor nanowires
Guan, Nan; Dai, Xing; Babichev, Andrey V.; Julien, François H.
2017-01-01
The fabrication technologies and the performance of flexible nanowire light emitting diodes (LEDs) are reviewed. We first introduce the existing approaches for flexible LED fabrication, which are dominated by organic technologies, and we briefly discuss the increasing research effort on flexible inorganic LEDs achieved by micro-structuring and transfer of conventional thin films. Then, flexible nanowire-based LEDs are presented and two main fabrication technologies are discussed: direct growth on a flexible substrate and nanowire membrane formation and transfer. The performance of blue, green, white and bi-color flexible LEDs fabricated following the transfer approach is discussed in more detail. PMID:29568439
Reduced-droop green III-nitride light-emitting diodes utilizing GaN tunnel junction
NASA Astrophysics Data System (ADS)
Alhassan, Abdullah I.; Young, Erin C.; Alyamani, Ahmed Y.; Albadri, Abdulrahman; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.
2018-04-01
We report the fabrication of low-droop high-efficiency green c-plane light-emitting diodes (LEDs) utilizing GaN tunnel junction (TJ) contacts. The LED epitaxial layers with a top p-GaN layer were grown by metal organic chemical vapor deposition and an n++-GaN layer was deposited by molecular beam epitaxy to form a TJ. The TJ LEDs were then compared with equivalent LEDs having a tin-doped indium oxide (ITO) contact. The TJ LEDs exhibited a higher performance and a lower efficiency droop than did the ITO LEDs. At 35 A/cm2, the external quantum efficiencies for the TJ and ITO LEDs were 31.2 and 27%, respectively.
Curing efficacy of a new generation high-power LED lamp.
Yap, Adrian U J; Soh, M S
2005-01-01
This study investigated the curing efficacy of a new generation high-power LED lamp (Elipar Freelight 2 [N] 3M-ESPE). The effectiveness of composite cure with this new lamp was compared to conventional LED/halogen (Elipar Freelight [F], 3M-ESPE; Max [M], Dentsply-Caulk) and high-power halogen (Elipar Trilight [T], 3M-ESPE; Astralis 10 [A], Ivoclar Vivadent) lamps. Standard continuous (NS, FS, TS; MS), turbo (AT) and exponential (NE, FE, TE) curing modes of the various lights were examined. Curing efficacy of the various lights and modes were determined by measuring the top and bottom surface hardness of 2-mm thick composite specimens (Z100, 3M-ESPE) using a digital microhardness tester (n=5; load=500 g; dwell time=15 seconds) one hour after light polymerization. The hardness ratio was computed by dividing HK (Knoops Hardness) of the bottom surface by HK of the top surface. The data was analyzed using one-way ANOVA/Scheffe's test and Independent Samples t-test at significance level 0.05. Results of the statistical analysis were as follows: HK top--E, FE, NE > NS and NE > AT, TS, FS; HK bottom--TE, NE > NS; Hardness ratio--NS > FE and FS, TS > NE. No significant difference in HK bottom and hardness ratio was observed between the two modes of Freelight 2 and Max. Freelight 2 cured composites as effectively as conventional LED/halogen and high-power halogen lamps, even with a 50% reduction in cure time. The exponential modes of Freelight 2, Freelight and Trilight appear to be more effective than their respective standard modes.
Mamalis, Andrew; Jagdeo, Jared
2018-05-24
Skin fibrosis is a significant medical problem with limited available treatment modalities. The key cellular characteristics include increased fibroblast proliferation, collagen production, and transforming growth factor-beta (TGF-B)/SMAD pathway signaling. The authors have previously shown that high-fluence light-emitting diode red light (HF-LED-RL) decreases cellular proliferation and collagen production. Herein, the authors investigate the ability of HF-LED-RL to modulate the TGF-B/SMAD pathway. Normal human dermal fibroblasts were cultured and irradiated with a commercially available hand-held LED array. After irradiation, cell lysates were collected and levels of pSMAD2, TGF-Beta 1, and TGF-Beta I receptor were measured using Western blot. High-fluence light-emitting diode red light decreased TGF-Beta 1 ligand (TGF-B1) levels after irradiation. 320 J/cm HF-LED-RL resulted in 59% TGF-B1 and 640 J/cm HF-LED-RL resulted in 54% TGF-B1, relative to controls. 640 J/cm HF-LED-RL resulted in 62% pSMAD2 0 hours after irradiation, 65% pSMAD2 2 hours after irradiation, and 95% 4 hours after irradiation, compared with matched controls. High-fluence light-emitting diode red light resulted in no significant difference in transforming growth factor-beta receptor I levels compared with matched controls. Skin fibrosis is a significant medical problem with limited available treatment modalities. Light-emitting diode-generated red light is a safe, economic, and noninvasive modality that has a body of in vitro evidence supporting the reduction of key cellular characteristics associated with skin fibrosis.
Jin, Yuanhao; Yang, Fenglei; Li, Qunqing; Zhu, Zhendong; Zhu, Jun; Fan, Shoushan
2012-07-02
Significant enhancement in the light output from GaN-based green light-emitting diodes (LEDs) was achieved with a hemicylindrical grating structure on the top layer of the diodes. The grating structure was first optimized by the finite-difference time-domain (FDTD) method, which showed that the profile of the grating structure was critical for light extraction efficiency. It was found that the transmission efficiency of the 530 nm light emitted from the inside of the GaN LED increased for incidence angles between 23.58° and 60°. Such a structure was fabricated by electron-beam lithography and an etching method. The light output power from the LED was increased approximately 4.7 times compared with that from a conventional LED. The structure optimization is the key to the great increase in transmission efficiency. Furthermore, the light emitted from the edge of the LED units could be collected and extracted by the grating structures in adjacent LED units, thus enhancing the performance of the whole LED chip.
Ultraviolet Light Emitting Diode Use in Advanced Oxidation Processes
2014-03-27
or medium pressure mercury lamps , but UV light emitting diodes ( LEDs ) have the capacity to be used for water disinfection also. Traditional mercury...based upon the phosphors that are selected and used to coat the inside of the glass tube from which these lamps are produced. A UV LED is...Research has demonstrated the ability to use UV LEDs in place of mercury lamps to achieve the same 7 disinfection capacity, and limited research has
Frequency-Domain Optical Mammogram
2002-10-01
have performed the proposed analysis of frequency-domain optical mammograms for a clinical population of about 150 patients. This analysis has led to...model the propagation of light in tissue14-20 have led to new approaches to optical mammography. As The authors are with the Department of Electrical...Modulation Methods, and Signal Detection /406 7.2.1 Lasers and arc lamps / 407’ 7.2.2 Pulsed sources / 407 7.2.3 Laser diodes and light-emitting diodes ( LEDs
Light Converting Inorganic Phosphors for White Light-Emitting Diodes
Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi
2010-01-01
White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.
NASA Astrophysics Data System (ADS)
Takeuchi, T.; Shibata, H.; Otsuka, N.; Uehara, T.; Tsuchiya, K.; Shibagaki, T.; Komanome, H.
2016-10-01
Several kinds of commercially available light emitting diodes (LED) and photo diodes (PD) were irradiated with 60Co gamma ray up to 1 MGy for development of a radiation-resistant in-water wireless transmission system using visible light. The lens parts of the LEDs turned brown by the irradiation and their colors became dark with the absorbed dose. The total luminous fluxes decreased with the absorbed dose and the LED with shorter emission wavelength had the higher decrease rate. Meanwhile, the current-voltage characteristics hardly changed. These results indicate that the decreases of the total luminous flux of the LEDs were mainly caused not by the degradation of the semiconductor parts but by the coloring of the lens parts by the irradiation. On the other hand, the light sensitivities of the PDs decreased with the absorbed dose. The PDs with the window part which turned a darker color had the higher decrease rate. These results indicate that the decreases of light sensitivities of the PDs were also mainly caused by the coloring of the resin parts by the irradiation. If the wireless transmission is performed using the candidate LED and PD between 5 meters in water, using a few LEDs and PDs, the PD's output current generated by the emission light of the LED is estimated to be detectable even considering the effects of the absorption of the light in water and the increased dark current by the irradiation. Therefore, a radiation resistant in-water transmission system can be constructed using commercially available LEDs and PDs in principle.
NASA Astrophysics Data System (ADS)
Cho, Chu-Young; Choe, Minhyeok; Lee, Sang-Jun; Hong, Sang-Hyun; Lee, Takhee; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju
2013-03-01
We report on gold (Au)-doped multi-layer graphene (MLG), which can be used as a transparent conducting layer in near-ultraviolet light-emitting diodes (NUV-LEDs). The optical output power of NUV-LEDs with thermally annealed Au-doped MLG was increased by 34% compared with that of NUV-LEDs with a bare MLG. This result is attributed to the reduced sheet resistance and the enhanced current injection efficiency of NUV-LEDs by the thermally annealed Au-doped MLG film, which shows high transmittance in NUV and UV regions and good adhesion of Au-doped MLG on p-GaN layer of NUV-LEDs.
Poly (p-phenyleneneacetylene) light-emitting diodes
Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei; Barton, Thomas J.; Vardeny, Zeev V.
1994-10-04
Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.
Poly (p-phenyleneacetylene) light-emitting diodes
Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.; Barton, T.J.; Vardeny, Z.V.
1994-10-04
Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.
Fabrication of poly(p-phenyleneacetylene) light-emitting diodes
Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.
1994-08-02
Acetylene-containing poly(p-phenyleneacetylene) (PPA)-based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.
Fabrication of poly(p-phenyleneacetylene) light-emitting diodes
Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei
1994-08-02
Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as A1 or A1/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.
Light-Emitting Diodes: A Hidden Treasure
ERIC Educational Resources Information Center
Planinšic, Gorazd; Etkina, Eugenia
2014-01-01
LEDs, or light-emitting diodes, are cheap, easy to purchase, and thus commonly used in physics instruction as indicators of electric current or as sources of light (Fig. 1). In our opinion LEDs represent a unique piece of equipment that can be used to collect experimental evidence, and construct and test new ideas in almost every unit of a general…
Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara
2016-01-01
Objectives: Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. Materials and Methods: DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). Results: The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Conclusion: Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively. PMID:27843507
Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara
2016-01-01
Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively.
NASA Astrophysics Data System (ADS)
Wang, Min-Shuai; Huang, Xiao-Jing
2013-08-01
We present a new method of making a textured V-pit surface for improving the light extraction efficiency in GaN-based light-emitting diodes and compare it with the usual low-temperature method for p-GaN V-pits. Three types of GaN-based light-emitting diodes (LEDs) with surface V-pits in different densities and regions were grown by metal—organic chemical vapor deposition. We achieved the highest output power and lowest forward voltage values with the p-InGaN V-pit LED. The V-pits enhanced the light output power values by 1.45 times the values of the conventional LED owing to an enhancement of the light scattering probability and an effective reduction of Mg-acceptor activation energy. Moreover, this new technique effectively solved the higher forward voltage problem of the usual V-pit LED.
ERIC Educational Resources Information Center
Guerin, David A.
1978-01-01
Light-emitting diodes (LEDs) are described and three classroom experiments are given, one to prove the, low power requirements and efficiency of LEDs, an LED on-off detector circuit, and the third an LED photoelectric smoke detector. (BB)
Intensity output and effectiveness of light curing units in dental offices.
Omidi, Baharan-Ranjbar; Gosili, Armin; Jaber-Ansari, Mona; Mahdkhah, Ailin
2018-06-01
The aims of the study were measuring the light intensity of light curing units used in Qazvin's dental offices, determining the relationship between the clinical age of these units and their light intensity, and identifying the reasons for repairing them. In this cross-sectional study, the output intensity of 95 light curing devices was evaluated using a radiometer. The average output intensity was divided up into four categories (less than 200, 200-299, 300-500, and more than 500 mW/cm2). In addition, a questionnaire was designed to obtain information mainly about the type, clinical age, and frequency of maintenance of the units and the reasons for fixing them. Data were analyzed using Kolmogorov-Smirnov, chi-squared, and t-tests ( p < 0.05) on SPSS 24. A total of 95 light curing units were examined, with 61 (64.2%) of them being of the LED type and 34 (35.8%) of the QTH type. While average light intensity in LED units was significantly higher than in QTH devices, the two device types were not significantly different regarding desirable light intensity (i.e., ≥ 300 mw/cm2). A negative correlation was observed between clinical age and light intensity. In addition, bulb replacement in QTH devices was over three times as much as in LED units. Also, repairing QTHs was more than twice as much frequent as fixing LEDs. The most common reason for repair was the breakage of the tip of the device. The light intensity of LED units is significantly higher than that of QTH devices, and the frequency of repairing in QTHs was significantly more than in LEDs. Furthermore, light intensity decreases with aging, and dentists should regularly monitor the conditions of light units. Key words: Light curing unit, radiometer, light intensity, dental equipment, dental offices.
Assessing the irradiance delivered from light-curing units in private dental offices in Jordan.
Maghaireh, Ghada A; Alzraikat, Hanan; Taha, Nessrin A
2013-08-01
The authors conducted a study to examine the irradiance from light-curing units (LCUs) used in dental offices in Jordan. Two of the authors visited 295 private dental offices (15 percent) in Jordan and collected the following information about the LCUs: age, type (quartz-tungsten-halogen or light-emitting diode), date of last maintenance, type of maintenance, last date of use, number of times used during the day, availability of a radiometer, exposure time for each resin-based composite increment, size of light-curing tips and presence of resin-based composite on the tips. The authors used a radiometer to measure the irradiance from the LCUs. They used linear regression with stepwise correlation for the statistical analysis. The authors set the minimum acceptable irradiance at 300 milliwatts/square centimeter. The mean irradiance of the 295 LCUs examined was 361 mW/cm(2), and 136 LCUs (46.1 percent) delivered an irradiance of less than 300 mW/cm(2). The unit's age, type and presence of resin-based composite on the light-curing tips had a significant effect on the irradiance (P ≤ .001). Only 37 of the 141 quartz-tungsten-halogen units (26.2 percent) and 122 of the 154 light-emitting diode units (79.2 percent) delivered at least 300 mW/cm(2). Resin contamination on the light-curing tips had a significant effect on the irradiance delivered. The irradiance from the LCUs decreased with use. Practical Implications. The irradiance from many of the units in this study was less than 300 mW/cm(2), which may affect the quality of resin-based composite restorations. Dentists should monitor the performance of the LCUs in their offices weekly.
Seo, Hong-Kyu; Kim, Hobeom; Lee, Jaeho; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Kwon, Sung-Joo; Han, Tae-Hee; Yoo, Seunghyup; Lee, Tae-Woo
2017-03-01
Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
AlGaInP light-emitting diodes with SACNTs as current-spreading layer
2014-01-01
Transparent conductive current-spreading layer is important for quantum efficiency and thermal performance of light-emitting diodes (LEDs). The increasing demand for tin-doped indium oxide (ITO) caused the price to greatly increase. Super-aligned carbon nanotubes (SACNTs) and Au-coated SACNTs as current-spreading layer were applied on AlGaInP LEDs. The LEDs with Au-coated SACNTs showed good current spreading effect. The voltage bias at 20 mA dropped about 0.15 V, and the optical power increased about 10% compared with the LEDs without SACNTs. PMID:24712527
de Oliveira, Dayane Carvalho Ramos Salles; Rocha, Mateus Garcia; Gatti, Alexandre; Correr, Americo Bortolazzo; Ferracane, Jack Liborio; Sinhoret, Mario Alexandre Coelho
2015-12-01
To evaluate the effect of photoinitiators and reducing agents on cure efficiency and color stability of resin-based composites using different LED wavelengths. Model resin-based composites were associated with diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO), phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide (BAPO) or camphorquinone (CQ) associated with 2-(dimethylamino) ethyl methacrylate (DMAEMA), ethyl 4-(dimethyamino) benzoate (EDMAB) or 4-(N,N-dimethylamino) phenethyl alcohol (DMPOH). A narrow (Smartlite, Dentisply) and a broad spectrum (Bluephase G2, Ivoclar Vivadent) LEDs were used for photo-activation (20 J/cm(2)). Fourier transform infrared spectroscopy (FT-IR) was used to evaluate the cure efficiency for each composite, and CIELab parameters to evaluated color stability (ΔE00) after aging. The UV-vis absorption spectrophotometric analysis of each photoinitiator and reducing agent was determined. Data were analyzed using two-way ANOVA and Tukey's test for multiple comparisons (α=0.05). Higher cure efficiency was found for type-I photoinitiators photo-activated with a broad spectrum light, and for CQ-systems with a narrow band spectrum light, except when combined with an aliphatic amine (DMAEMA). Also, when combined with aromatic amines (EDMAB and DMPOH), similar cure efficiency with both wavelength LEDs was found. TPO had no cure efficiency when light-cured exclusively with a blue narrowband spectrum. CQ-systems presented higher color stability than type-I photoinitiators, especially when combined with DMPOH. After aging, CQ-based composites became more yellow and BAPO and TPO lighter and less yellow. However, CQ-systems presented higher color stability than type-I photoinitiators, as BAPO- and TPO-, despite their higher cure efficiency when photo-activated with corresponding wavelength range. Color matching is initially important, but color change over time will be one of the major reasons for replacing esthetic restorations; despite the less yellowing of these alternative photoinitiators, camphorquinone presented higher color stability. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Halim, N. Syafira Abdul; Wahid, M. Halim A.; Hambali, N. Azura M. Ahmad; Rashid, Shanise; Shahimin, Mukhzeer M.
2017-11-01
Light emitting diode (LED) employed a numerous applications such as displaying information, communication, sensing, illumination and lighting. In this paper, InGaN/AlGaN based on one quantum well (1QW) light emitting diode (LED) is modeled and studied numerically by using COMSOL Multiphysics 5.1 version. We have selected In0.06Ga0.94N as the active layer with thickness 50nm sandwiched between 0.15μm thick layers of p and n-type Al0.15Ga0.85N of cladding layers. We investigated an effect of doping concentration on InGaN/AlGaN double heterostructure of light-emitting diode (LED). Thus, energy levels, carrier concentration, electron concentration and forward voltage (IV) are extracted from the simulation results. As the doping concentration is increasing, the performance of threshold voltage, Vth on one quantum well (1QW) is also increases from 2.8V to 3.1V.
NASA Astrophysics Data System (ADS)
Hwang, David; Mughal, Asad J.; Wong, Matthew S.; Alhassan, Abdullah I.; Nakamura, Shuji; DenBaars, Steven P.
2018-01-01
Micro-light-emitting diodes (µLEDs) with tunnel junction (TJ) contacts were grown entirely by metalorganic chemical vapor deposition. A LED structure was grown, treated with UV ozone and hydrofluoric acid, and reloaded into the reactor for TJ regrowth. The silicon doping level of the n++-GaN TJ was varied to examine its effect on voltage. µLEDs from 2.5 × 10-5 to 0.01 mm2 in area were processed, and the voltage penalty of the TJ for the smallest µLED at 20 A/cm2 was 0.60 V relative to that for a standard LED with indium tin oxide. The peak external quantum efficiency of the TJ LED was 34%.
Evaluation of an LED (Light-Emitting Diode) high-mounted signal lamp
NASA Astrophysics Data System (ADS)
Olson, P. L.
1987-02-01
Two studies are described evaluating high-mounted stoplights using light-emitting diodes (LEDs) compared with conventional incandescent units. The first of these studies obtained ratings from subjects who drove one car and followed another car that was equipped with the test lamps. The results indicate that the subjects generally preferred the LEDs to the conventional lamp. The second study was a laboratory evaluation of the attention-getting capabilities of LED and incandescent stoplights. Under all conditions tested subjects responded faster to the LED units. The response time advantage for the LED units increased with more difficult viewing conditions, such as high levels of illumination and long viewing distance. The results of these investigations are discussed in terms of the applicability of the LED technology to high mounted stoplights on motor vehicles.
The Light-Emitting Diode as a Light Detector
ERIC Educational Resources Information Center
Baird, William H.; Hack, W. Nathan; Tran, Kiet; Vira, Zeeshan; Pickett, Matthew
2011-01-01
A light-emitting diode (LED) and operational amplifier can be used as an affordable method to provide a digital output indicating detection of an intense light source such as a laser beam or high-output LED. When coupled with a microcontroller, the combination can be used as a multiple photogate and timer for under $50. A similar circuit is used…
Robertson, J. Brian; Zhang, Yunfei; Johnson, Carl Hirschie
2009-01-01
Summary Light-emitting diodes (LEDs) are becoming more commonly used as light sources for fluorescence microscopy. We describe the adaptation of a commercially available LED flashlight for use as a source for fluorescence excitation. This light source is long-lived, inexpensive, and is effective for excitation in the range of 440–600 nm. PMID:19772530
Angular color uniformity enhancement of white light-emitting diodes integrated with freeform lenses.
Wang, Kai; Wu, Dan; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng
2010-06-01
We demonstrate a freeform lens to enhance the angular color uniformity (ACU) of white light-emitting diodes (LEDs) whose phosphor layers were coated by freely dispersed coating processes. Monte Carlo ray tracing simulation results indicated that the ACU of the modified LED integrated with the freeform lens significantly increased from 0.334 to 0.957, compared with the traditional LED. Enhancement of ACU reached as high as 186.5%. Moreover, the ACU of the modified LED was not only at a high level, but also stable when the shape of the phosphor layer changed. The freeform lens provided an effective way to achieve white LEDs with high ACU at low cost.
Quantum-dot light-emitting diodes utilizing CdSe /ZnS nanocrystals embedded in TiO2 thin film
NASA Astrophysics Data System (ADS)
Kang, Seung-Hee; Kumar, Ch. Kiran; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul; Kim, Eui-Tae
2008-11-01
Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe /ZnS nanocrystals in TiO2 thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO2/QDs /p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO2/QDs /Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.
LED Curing Lights and Temperature Changes in Different Tooth Sites
Armellin, E.; Bovesecchi, G.; Coppa, P.; Pasquantonio, G.; Cerroni, L.
2016-01-01
Objectives. The aim of this in vitro study was to assess thermal changes on tooth tissues during light exposure using two different LED curing units. The hypothesis was that no temperature increase could be detected within the dental pulp during polymerization irrespective of the use of a composite resin or a light-curing unit. Methods. Caries-free human first molars were selected, pulp residues were removed after root resection, and four calibrated type-J thermocouples were positioned. Two LED lamps were tested; temperature measurements were made on intact teeth and on the same tooth during curing of composite restorations. The data was analyzed by one-way analysis of variance (ANOVA), Wilcoxon test, Kruskal-Wallis test, and Pearson's χ 2. After ANOVA, the Bonferroni multiple comparison test was performed. Results. Polymerization data analysis showed that in the pulp chamber temperature increase was higher than that without resin. Starlight PRO, in the same condition of Valo lamp, showed a lower temperature increase in pre- and intrapolymerization. A control group (without composite resin) was evaluated. Significance. Temperature increase during resin curing is a function of the rate of polymerization, due to the exothermic polymerization reaction, the energy from the light unit, and time of exposure. PMID:27195282
LED Curing Lights and Temperature Changes in Different Tooth Sites.
Armellin, E; Bovesecchi, G; Coppa, P; Pasquantonio, G; Cerroni, L
2016-01-01
Objectives. The aim of this in vitro study was to assess thermal changes on tooth tissues during light exposure using two different LED curing units. The hypothesis was that no temperature increase could be detected within the dental pulp during polymerization irrespective of the use of a composite resin or a light-curing unit. Methods. Caries-free human first molars were selected, pulp residues were removed after root resection, and four calibrated type-J thermocouples were positioned. Two LED lamps were tested; temperature measurements were made on intact teeth and on the same tooth during curing of composite restorations. The data was analyzed by one-way analysis of variance (ANOVA), Wilcoxon test, Kruskal-Wallis test, and Pearson's χ (2). After ANOVA, the Bonferroni multiple comparison test was performed. Results. Polymerization data analysis showed that in the pulp chamber temperature increase was higher than that without resin. Starlight PRO, in the same condition of Valo lamp, showed a lower temperature increase in pre- and intrapolymerization. A control group (without composite resin) was evaluated. Significance. Temperature increase during resin curing is a function of the rate of polymerization, due to the exothermic polymerization reaction, the energy from the light unit, and time of exposure.
Method and apparatus for improving the performance of light emitting diodes
Lowery, Christopher H.; McElfresh, David K.; Burchet, Steve; Adolf, Douglas B.; Martin, James
1996-01-01
A method for increasing the resistance of a light emitting diode and other semiconductor devices to extremes of temperature is disclosed. During the manufacture of the light emitting diode, a liquid coating is applied to the light emitting die after the die has been placed in its lead frame. After the liquid coating has been placed on the die and its lead frames, a thermosetting encapsulant material is placed over the coating. The operation that cures the thermosetting material leaves the coating liquid intact. As the die and the encapsulant expand and contract at different rates with respect to changes in temperature, and as in known light emitting diodes the encapsulating material adheres to the die and lead frames, this liquid coating reduces the stresses that these different rates of expansion and contraction normally cause by eliminating the adherence of the encapsulating material to the die and frame.
Demonstrating the Light-Emitting Diode.
ERIC Educational Resources Information Center
Johnson, David A.
1995-01-01
Describes a simple inexpensive circuit which can be used to quickly demonstrate the basic function and versatility of the solid state diode. Can be used to demonstrate the light-emitting diode (LED) as a light emitter, temperature sensor, light detector with both a linear and logarithmic response, and charge storage device. (JRH)
Kent G. Apostol; Kas Dumroese; Jeremy Pinto; Anthony S. Davis
2015-01-01
Light-emitting diode (LED) technology shows promise for supplementing photosynthetically active radiation (PAR) in forest nurseries because of the potential reduction in energy consumption and an ability to supply discrete wavelengths to optimize seedling growth. Our objective was to examine the effects of light spectra supplied by LED and traditional high-pressure...
Hand-Drawn Resistors and a Simple Tester Using a Light-Emitting Diode
ERIC Educational Resources Information Center
Kamata, Masahiro; Abe, Mayumi
2012-01-01
A thick line drawn on a sheet of paper with a 6B pencil is electrically conductive and its resistance can be roughly estimated using a simple tester made of a light-emitting diode (LED) and a lithium coin-type cell. Using this hand-drawn resistor and the LED tester, we developed teaching materials that help students to understand how electrical…
Importance of 'blue' photon levels for lettuce seedlings grown under red-light-emitting diodes
NASA Technical Reports Server (NTRS)
Hoenecke, M. E.; Bula, R. J.; Tibbitts, T. W.
1992-01-01
Light-emitting diodes (LEDs) with high-intensity output are being studied as a photosynthetic light source for plants. High-output LEDs have peak emission at approximately 660 nm concentrated in a waveband of +/- 30 nm. Lettuce (Lactuca sativa Grand Rapids') seedlings developed extended hypocotyls and elongated cotyledons when grown under these LEDs as a sole source of irradiance. This extension and elongation was prevented when the red LED radiation was supplemented with more than 15 micromoles m-2 s-1 of 400- to 500-nm photons from blue fluorescent lamps. Blue radiation effects were independent of the photon level of the red radiation.
LIGHT-EMITTING DIODE TECHNOLOGY IMPROVES INSECT TRAPPING
GILLEN, JONATHON I.; MUNSTERMANN, LEONARD E.
2008-01-01
In a climate of increased funding for vaccines, chemotherapy, and prevention of vector-borne diseases, fewer resources have been directed toward improving disease and vector surveillance. Recently developed light-emitting diode (LED) technology was applied to standard insect-vector traps to produce a more effective lighting system. This approach improved phlebotomine sand fly capture rates by 50%, and simultaneously reduced the energy consumption by 50–60%. The LEDs were incorporated into 2 lighting designs, 1) a LED combination bulb for current light traps and 2) a chip-based LED design for a modified Centers for Disease Control and Prevention light trap. Detailed descriptions of the 2 designs are presented. PMID:18666546
Accuracy Improvement for Light-Emitting-Diode-Based Colorimeter by Iterative Algorithm
NASA Astrophysics Data System (ADS)
Yang, Pao-Keng
2011-09-01
We present a simple algorithm, combining an interpolating method with an iterative calculation, to enhance the resolution of spectral reflectance by removing the spectral broadening effect due to the finite bandwidth of the light-emitting diode (LED) from it. The proposed algorithm can be used to improve the accuracy of a reflective colorimeter using multicolor LEDs as probing light sources and is also applicable to the case when the probing LEDs have different bandwidths in different spectral ranges, to which the powerful deconvolution method cannot be applied.
Chu, Chang-Chi; Jackson, Charles G; Alexander, Patrick J; Karut, Kamil; Henneberry, Thomas J
2003-06-01
Equipping the standard plastic cup trap, also known as the CC trap, with lime-green light-emitting diodes (LED-plastic cup trap) increased its efficacy for catching Bemisia tabaci by 100%. Few Eretmocerus eremicus Rose and Zolnerowich and Encarsia formosa Gahan were caught in LED-plastic cup traps. The LED-plastic cup traps are less expensive than yellow sticky card traps for monitoring adult whiteflies in greenhouse crop production systems and are more compatible with whitefly parasitoids releases for Bemisia nymph control.
Colloidal quantum dot active layers for light emitting diodes
NASA Astrophysics Data System (ADS)
Pagan, Jennifer G.; Stokes, Edward B.; Patel, Kinnari; Burkhart, Casey C.; Ahrens, Michael T.; Barletta, Philip T.; O'Steen, Mark
2006-07-01
In this paper the preliminary results of incorporating a novel active layer into a GaN light emitting diode (LED) are discussed. Integration of colloidal CdSe quantum dots into a GaN LED active layer is demonstrated. Properties of p-type Mg doped overgrowth GaN are examined via circular transmission line method (CTLM). Effects on surface roughness due to the active layer incorporation are examined using atomic force microscopy (AFM). Electroluminescence of LED test structures is reported, and an ideality factor of n = 1.6 is demonstrated.
Hybrid daylight/light-emitting diode illumination system for indoor lighting.
Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei
2014-03-20
A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.
Topcu, Fulya Toksoy; Erdemir, Ugur; Sahinkesen, Gunes; Yildiz, Esra; Uslan, Ibrahim; Acikel, Cengizhan
2010-02-01
The microhardness, surface roughness and wear resistance of different types of resin composites, polymerized by a Quartz Tungsten Halogen (QTH) or Light Emitting Diode (LED) light curing units (LCU) were evaluated in this in vitro study. Cylindrical blocks were prepared from composites (8 mm in diameter, and 2 mm in thickness) and polymerized by a LED or a QTH LCU. Vickers hardness was measured on the top and bottom surfaces of the specimens. Surface roughness was measured with a surface profilometer on the top of the specimens. For the wear test, specimens were tested in a conventional pin-on-disc tribology machine under 15 N loads. The statistical analyses were performed by one-way analysis of variance (ANOVA) and t-tests, including the Bonferroni correction. Nanocomposite material Clearfil Majesty Posterior showed the highest hardness values in all polymerization types at the top and bottom surfaces (p < 0.05). Microhybrid Clearfil APX and hybrid Quixfil composites demonstrated the greatest surface roughness. Wear resistance of Clearfil Majesty Posterior was found to be the highest among the other tested resin composites. The results indicated that Clearfil Majesty Posterior demonstrated higher microhardness, less surface roughness, and higher wear resistance when compared with the other tested materials for both polymerization types.
NASA Astrophysics Data System (ADS)
Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro
2018-01-01
We thoroughly explored the physical origin of the efficiency decrease with increasing injection current and current crowding effect in 280 nm AlGaN-based flip-chip deep-ultraviolet (DUV) light-emitting diodes (LEDs). The current spreading length was experimentally determined to be much smaller in DUV LEDs than that in conventional InGaN-based visible LEDs. The severe self-heating caused by the low power conversion efficiency of DUV LEDs should be mainly responsible for the considerable decrease of efficiency when current crowding is present. The wall-plug efficiency of the DUV LEDs was markedly enhanced by using a well-designed p-electrode pattern to improve the current distribution.
Alpöz, A. Riza; Ertuḡrul, Fahinur; Cogulu, Dilsah; Ak, Asli Topaloḡlu; Tanoḡlu, Metin; Kaya, Elçin
2008-01-01
Objectives The aim of this study was to investigate microhardness and compressive strength of composite resin (Tetric-Ceram, Ivoclar Vivadent), compomer (Compoglass, Ivoclar, Vivadent), and resin modified glass ionomer cement (Fuji II LC, GC Corp) polymerized using halogen light (Optilux 501, Demetron, Kerr) and LED (Bluephase C5, Ivoclar Vivadent) for different curing times. Methods Samples were placed in disc shaped plastic molds with uniform size of 5 mm diameter and 2 mm in thickness for surface microhardness test and placed in a diameter of 4 mm and a length of 2 mm teflon cylinders for compressive strength test. For each subgroup, 20 samples for microhardness (n=180) and 5 samples for compressive strength were prepared (n=45). In group 1, samples were polymerized using halogen light source for 40 seconds; in group 2 and 3 samples were polymerized using LED light source for 20 seconds and 40 seconds respectively. All data were analyzed by two way analysis of ANOVA and Tukey’s post-hoc tests. Results Same exposure time of 40 seconds with a low intensity LED was found similar or more efficient than a high intensity halogen light unit (P>.05), however application of LED for 20 seconds was found less efficient than 40 seconds curing time (P=.03). Conclusions It is important to increase the light curing time and use appropriate light curing devices to polymerize resin composite in deep cavities to maximize the hardness and compressive strength of restorative materials. PMID:19212507
Chen, Qi; Chen, Quan; Luo, Xiaobing
2014-09-01
In recent years, due to the fast development of high power light-emitting diode (LED), its lifetime prediction and assessment have become a crucial issue. Although the in situ measurement has been widely used for reliability testing in laser diode community, it has not been applied commonly in LED community. In this paper, an online testing method for LED life projection under accelerated reliability test was proposed and the prototype was built. The optical parametric data were collected. The systematic error and the measuring uncertainty were calculated to be within 0.2% and within 2%, respectively. With this online testing method, experimental data can be acquired continuously and sufficient amount of data can be gathered. Thus, the projection fitting accuracy can be improved (r(2) = 0.954) and testing duration can be shortened.
NASA Astrophysics Data System (ADS)
Shervin, Shahab; Oh, Seung Kyu; Park, Hyun Jung; Lee, Keon-Hwa; Asadirad, Mojtaba; Kim, Seung-Hwan; Kim, Jeomoh; Pouladi, Sara; Lee, Sung-Nam; Li, Xiaohang; Kwak, Joon Seop; Ryou, Jae-Hyun
2018-03-01
We report a new route to improve quantum efficiencies of AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency is enhanced higher than three times, when the DUV LEDs are moderately bent with concave curvatures. Furthermore, an efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.
Xie, Chen; Li, Xiuyi; Tong, Jianping; Gu, Yangshun; Shen, Ye
2014-01-01
Cataract is the major cause for legal blindness in the world. Oxidative stress on the lens epithelial cells (hLECs) is the most important factor in cataract formation. Cumulative light-exposure from widely used light-emitting diodes (LEDs) may pose a potential oxidative threat to the lens epithelium, due to the high-energy blue light component in the white-light emission from diodes. In the interest of perfecting biosafety standards for LED domestic lighting, this study analyzed the photobiological effect of white LED light with different correlated color temperatures (CCTs) on cultured hLECs. The hLECs were cultured and cumulatively exposed to multichromatic white LED light with CCTs of 2954, 5624, and 7378 K. Cell viability of hLECs was measured by Cell Counting Kit-8 (CCK-8) assay. DNA damage was determined by alkaline comet assay. Intracellular reactive oxygen species (ROS) generation, cell cycle, and apoptosis were quantified by flow cytometry. Compared with 2954 and 5624 K LED light, LED light having a CCT of 7378 K caused overproduction of intracellular ROS and severe DNA damage, which triggered G2 /M arrest and apoptosis. These results indicate that white LEDs with a high CCT could cause significant photobiological damage to hLECs. © 2014 The American Society of Photobiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng Yejun
2011-04-15
Ruby (Al{sub 2}O{sub 3}, with {approx}0.5 wt. % Cr doping) is one of the most widely used manometers at the giga-Pascal scale. Traditionally, its fluorescence is excited with intense laser sources. Here, I present a simple, robust, and portable design that employs light-emitting diodes (LEDs) instead. This LED-based system is safer in comparison with laser-based ones.
de Vargas-Sansalvador, I M Pérez; Fay, C; Phelan, T; Fernández-Ramos, M D; Capitán-Vallvey, L F; Diamond, D; Benito-Lopez, F
2011-08-12
A new system for CO(2) measurement (0-100%) based on a paired emitter-detector diode arrangement as a colorimetric detection system is described. Two different configurations were tested: configuration 1 (an opposite side configuration) where a secondary inner-filter effect accounts for CO(2) sensitivity. This configuration involves the absorption of the phosphorescence emitted from a CO(2)-insensitive luminophore by an acid-base indicator and configuration 2 wherein the membrane containing the luminophore is removed, simplifying the sensing membrane that now only contains the acid-base indicator. In addition, two different instrumental configurations have been studied, using a paired emitter-detector diode system, consisting of two LEDs wherein one is used as the light source (emitter) and the other is used in reverse bias mode as the light detector. The first configuration uses a green LED as emitter and a red LED as detector, whereas in the second case two identical red LEDs are used as emitter and detector. The system was characterised in terms of sensitivity, dynamic response, reproducibility, stability and temperature influence. We found that configuration 2 presented a better CO(2) response in terms of sensitivity. Copyright © 2011 Elsevier B.V. All rights reserved.
Ling, Yichuan; Tian, Yu; Wang, Xi; Wang, Jamie C; Knox, Javon M; Perez-Orive, Fernando; Du, Yijun; Tan, Lei; Hanson, Kenneth; Ma, Biwu; Gao, Hanwei
2016-10-01
Highly bright light-emitting diodes based on solution-processed all-inorganic perovskite thin film are demonstrated. The cesium lead bromide (CsPbBr 3 ) created using a new poly(ethylene oxide)-additive spin-coating method exhibits photoluminescence quantum yield up to 60% and excellent uniformity of electrical current distribution. Using the smooth CsPbBr 3 films as emitting layers, green perovskite-based light-emitting diodes (PeLEDs) exhibit electroluminescent brightness and efficiency above 53 000 cd m -2 and 4%: a new benchmark of device performance for all-inorganic PeLEDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monolithic stacked blue light-emitting diodes with polarization-enhanced tunnel junctions.
Kuo, Yen-Kuang; Shih, Ya-Hsuan; Chang, Jih-Yuan; Lai, Wei-Chih; Liu, Heng; Chen, Fang-Ming; Lee, Ming-Lun; Sheu, Jinn-Kong
2017-08-07
Monolithic stacked InGaN light-emitting diode (LED) connected by a polarization-enhanced GaN/AlN-based tunnel junction is demonstrated experimentally in this study. The typical stacked LEDs exhibit 80% enhancement in output power compared with conventional single LEDs because of the repeated use of electrons and holes for photon generation. The typical operation voltage of stacked LEDs is higher than twice the operation voltage of single LEDs. This high operation voltage can be attributed to the non-optimal tunneling junction in stacked LEDs. In addition to the analyses of experimental results, theoretical analysis of different schemes of tunnel junctions, including diagrams of energy bands, diagrams of electric fields, and current-voltage relation curves, are investigated using numerical simulation. The results shown in this paper demonstrate the feasibility in developing cost-effective and highly efficient tunnel-junction LEDs.
Enhanced Output Power of Near-Ultraviolet Light-Emitting Diodes by p-GaN Micro-Rods
NASA Astrophysics Data System (ADS)
Wang, Dong-Sheng; Zhang, Ke-Xiong; Liang, Hong-Wei; Song, Shi-Wei; Yang, De-Chao; Shen, Ren-Sheng; Liu, Yang; Xia, Xiao-Chuan; Luo, Ying-Min; Du, Guo-Tong
2014-02-01
Near-ultraviolet (UV) InGaN/AlGaN light-emitting diodes (LEDs) are grown by low-pressure metal-organic chemical vapor deposition. The scanning electronic microscope image shows that the p-GaN micro-rods are formed above the interface of p-AlGaN/p-GaN due to the rapid growth rate of p-GaN in the vertical direction. The p-GaN micro-rods greatly increase the escape probability of photons inside the LED structure. Electroluminescence intensities of the 372 nm UV LED lamps with p-GaN micro rods are 88% higher than those of the flat surface LED samples.
Ultraviolet laser ablation as technique for defect repair of GaN-based light-emitting diodes
NASA Astrophysics Data System (ADS)
Passow, Thorsten; Kunzer, Michael; Pfeuffer, Alexander; Binder, Michael; Wagner, Joachim
2018-03-01
Defect repair of GaN-based light-emitting diodes (LEDs) by ultraviolet laser micromachining is reported. Percussion and helical drilling in GaN by laser ablation were investigated using 248 nm nanosecond and 355 nm picosecond pulses. The influence of laser ablation including different laser parameters on electrical and optical properties of GaN-based LED chips was evaluated. The results for LEDs on sapphire with transparent conductive oxide p-type contact on top as well as for thin-film LEDs are reported. A reduction of leakage current by up to six orders in magnitude and homogeneous luminance distribution after proper laser defect treatment were achieved.
NASA sponsored Light Emitting Diode (LED) development helps in cancer treatment
NASA Technical Reports Server (NTRS)
1997-01-01
What started out as an attempt to develop a light which would allow for the growth of plants in space led to a remarkable discovery: The Light Emitting Diode (LED). This device through extensive study and experimentation has developed into a tool used by surgeons in the fight against brain cancer in children. Pictured is a mock-up of brain surgery being performed. By encapsulating the end of the LED with a balloon, light is diffused over a larger area of the brain allowing the surgeon a better view. This is one of many programs that begin as research for the space program, and through extensive study end up benefitting all of mankind.
Single nanowire green InGaN/GaN light emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Guogang; Li, Ziyuan; Yuan, Xiaoming; Wang, Fan; Fu, Lan; Zhuang, Zhe; Ren, Fang-Fang; Liu, Bin; Zhang, Rong; Tan, Hark Hoe; Jagadish, Chennupati
2016-10-01
Single nanowire (NW) green InGaN/GaN light-emitting diodes (LEDs) were fabricated by top-down etching technology. The electroluminescence (EL) peak wavelength remains approximately constant with an increasing injection current in contrast to a standard planar LED, which suggests that the quantum-confined Stark effect is significantly reduced in the single NW device. The strain relaxation mechanism is studied in the single NW LED using Raman scattering analysis. As compared to its planar counterpart, the EL peak of the NW LED shows a redshift, due to electric field redistribution as a result of changes in the cavity mode pattern after metallization. Our method has important implication for single NW optoelectronic device applications.
Jin, Jie; Mi, Chenziyi; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao
2017-01-01
Efficiency droop in GaN-based light emitting diodes (LEDs) under high injection current density perplexes the development of high-power solid-state lighting. Although the relevant study has lasted for about 10 years, its mechanism is still not thoroughly clear, and consequently its solution is also unsatisfactory up to now. Some emerging applications, e.g., high-speed visible light communication, requiring LED working under extremely high current density, makes the influence of efficiency droop become more serious. This paper reviews the experimental measurements on LED to explain the origins of droop in recent years, especially some new results reported after 2013. Particularly, the carrier lifetime of LED is analyzed intensively and its effects on LED droop behaviors are uncovered. Finally, possible solutions to overcome LED droop are discussed. PMID:29072611
Tunnel junction enhanced nanowire ultraviolet light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.
Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junctionmore » within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.« less
Optical design of a light-emitting diode lamp for a maritime lighthouse.
Jafrancesco, D; Mercatelli, L; Sansoni, P; Fontani, D; Sani, E; Coraggia, S; Meucci, M; Francini, F
2015-04-10
Traffic signaling is an emerging field for light-emitting diode (LED) applications. This sustainable power-saving illumination technology can be used in maritime signaling thanks to the recently updated norms, where the possibility to utilize LED sources is explicitly cited, and to the availability of high-power white LEDs that, combined with suitable lenses, permit us to obtain well-collimated beams. This paper describes the optical design of a LED-based lamp that can replace a traditional lamp in an authentic marine lighthouse. This source recombines multiple separated LEDs realizing a quasi-punctual localized source. Advantages can be lower energy consumption, higher efficiency, longer life, fewer faults, slower aging, and minor maintenance costs. The proposed LED source allows us to keep and to utilize the old Fresnel lenses of the lighthouse, which very often have historical value.
NASA Astrophysics Data System (ADS)
Zhou, Weimin; Min, Guoquan; Song, Zhitang; Zhang, Jing; Liu, Yanbo; Zhang, Jianping
2010-05-01
This paper reports a significant enhancement in the extraction efficiency of nano-patterned GaN light emitting diodes (LED) realized by soft UV nanoimprint lithography. The 2 inch soft stamp was fabricated using a replication stamp of anodic alumina oxide (AAO) membrane. The light output power was enhanced by 10.9% compared to that of the LED sample without a nano-patterned surface. Up to 41% enhancement in photoluminescence intensity was obtained from the nano-patterned GaN LED sample. The method is simple, cheap and suitable for mass production.
Light-emitting diode technology status and directions: Opportunities for horticultural lighting
Tsao, Jeffrey Y.; Pattison, P. Morgan; Krames, Michael R.
2016-01-01
Here, light-emitting diode (LED) technology has advanced rapidly over the last decade, primarily driven by display and general illumination applications ("solid-state lighting (SSL) for humans"). These advancements have made LED lighting technically and economically advantageous not only for these applications, but also, as an indirect benefit, for adjacent applications such as horticultural lighting ("SSL for plants"). Moreover, LED technology has much room for continued improvement. In the near-term, these improvements will continue to be driven by SSL for humans (with indirect benefit to SSL for plants), the most important of which can be anticipated.
Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Ban, Seiji
2005-12-01
The purpose of this study was to investigate the effect of radiation light characteristics--of different types of clinical light-curing unit--on polymerization efficiency, as determined by the surface hardness of light-cured paint-on resins. Four shades of paint-on resin for shade modification of restorative resins were used. Materials were cured using one laboratory and three clinical light-curing units with different light sources, namely tungsten-halogen, LED, plasma arc, and xenon flash lamps. Knoop hardness measurements were taken at both the top and bottom surfaces of the specimens to assess the mechanical properties and degree of polymerization. Both LED and plasma arc light units caused significantly poorer surface hardness than the halogen and laboratory xenon lights. In addition, the transparent shade was more sensitive to surface hardness than other chromatic shades. Our results indicated that the polymerization efficiency of paint-on resin was significantly influenced by the radiation light characteristics of clinical light-curing units.
Lopes, Lawrence Gonzaga; Franco, Eduardo Batista; Pereira, José Carlos; Mondelli, Rafael Francisco Lia
2008-01-01
The aim of this study was to evaluate the polymerization shrinkage and shrinkage stress of composites polymerized with a LED and a quartz tungsten halogen (QTH) light sources. The LED was used in a conventional mode (CM) and the QTH was used in both conventional and pulse-delay modes (PD). The composite resins used were Z100, A110, SureFil and Bisfil 2B (chemical-cured). Composite deformation upon polymerization was measured by the strain gauge method. The shrinkage stress was measured by photoelastic analysis. The polymerization shrinkage data were analyzed statistically using two-way ANOVA and Tukey test (p≤0.05), and the stress data were analyzed by one-way ANOVA and Tukey's test (p≤0.05). Shrinkage and stress means of Bisfil 2B were statistically significant lower than those of Z100, A110 and SureFil. In general, the PD mode reduced the contraction and the stress values when compared to CM. LED generated the same stress as QTH in conventional mode. Regardless of the activation mode, SureFil produced lower contraction and stress values than the other light-cured resins. Conversely, Z100 and A110 produced the greatest contraction and stress values. As expected, the chemically cured resin generated lower shrinkage and stress than the light-cured resins. In conclusion, The PD mode effectively decreased contraction stress for Z100 and A110. Development of stress in light-cured resins depended on the shrinkage value. PMID:19089287
Reliability improvements in tunable Pb1-xSnxSe diode lasers
NASA Technical Reports Server (NTRS)
Linden, K. J.; Butler, J. F.; Nill, K. W.; Reeder, R. E.
1980-01-01
Recent developments in the technology of Pb-salt diode lasers which have led to significant improvements in reliability and lifetime, and to improved operation at very long wavelengths are described. A combination of packaging and contacting-metallurgy improvements has led to diode lasers that are stable both in terms of temperature cycling and shelf-storage time. Lasers cycled over 500 times between 77 K and 300 K have exhibited no measurable changes in either electrical contact resistance or threshold current. Utilizing metallurgical contacting process, both lasers and experimental n-type and p-type bulk materials are shown to have electrical contact resistance values that are stable for shelf storage periods well in excess of one year. Problems and experiments which have led to devices with improved performance stability are discussed. Stable device configurations achieved for material compositions yielding lasers which operate continuously at wavelengths as long as 30.3 micrometers are described.
Flip-chip light emitting diode with resonant optical microcavity
Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.
2005-11-29
A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.
Monolithic photonic integrated circuit with a GaN-based bent waveguide
NASA Astrophysics Data System (ADS)
Cai, Wei; Qin, Chuan; Zhang, Shuai; Yuan, Jialei; Zhang, Fenghua; Wang, Yongjin
2018-06-01
Integration of a transmitter, waveguide and receiver into a single chip can generate a multicomponent system with multiple functionalities. Here, we fabricate and characterize a GaN-based photonic integrated circuit (PIC) on a GaN-on-silicon platform. With removal of the silicon and back wafer thinning of the epitaxial film, ultrathin membrane-type devices and highly confined suspended GaN waveguides were formed. Two suspended-membrane InGaN/GaN multiple-quantum-well diodes (MQW-diodes) served as an MQW light-emitting diode (MQW-LED) to emit light and an MQW photodiode (MQW-PD) to sense light. The optical interconnects between the MQW-LED and MQW-PD were achieved using the GaN bent waveguide. The GaN-based PIC consisting of an MQW-LED, waveguides and an MQW-PD forms an in-plane light communication system with a data transmission rate of 70 Mbps.
Operation of AC Adapters Visualized Using Light-Emitting Diodes
ERIC Educational Resources Information Center
Regester, Jeffrey
2016-01-01
A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…
Gioux, Sylvain; Lomnes, Stephen J.; Choi, Hak Soo; Frangioni, John V.
2010-01-01
Fluorescence lifetime imaging (FLi) could potentially improve exogenous near-infrared (NIR) fluorescence imaging, because it offers the capability of discriminating a signal of interest from background, provides real-time monitoring of a chemical environment, and permits the use of several different fluorescent dyes having the same emission wavelength. We present a high-power, LED-based, NIR light source for the clinical translation of wide-field (larger than 5 cm in diameter) FLi at frequencies up to 35 MHz. Lifetime imaging of indocyanine green (ICG), IRDye 800-CW, and 3,3′-diethylthiatricarbocyanine iodide (DTTCI) was performed over a large field of view (10 cm by 7.5 cm) using the LED light source. For comparison, a laser diode light source was employed as a gold standard. Experiments were performed both on the bench by diluting the fluorescent dyes in various chemical environments in Eppendorf tubes, and in vivo by injecting the fluorescent dyes mixed in Matrigel subcutaneously into CD-1 mice. Last, measured fluorescence lifetimes obtained using the LED and the laser diode sources were compared with those obtained using a state-of-the-art time-domain imaging system and with those previously described in the literature. On average, lifetime values obtained using the LED and the laser diode light sources were consistent, exhibiting a mean difference of 3% from the expected values and a coefficient of variation of 12%. Taken together, our study offers an alternative to laser diodes for clinical translation of FLi and explores the use of relatively low frequency modulation for in vivo imaging. PMID:20459250
Improving the Stability of Metal Halide Perovskite Materials and Light-Emitting Diodes.
Cho, Himchan; Kim, Young-Hoon; Wolf, Christoph; Lee, Hyeon-Dong; Lee, Tae-Woo
2018-01-25
Metal halide perovskites (MHPs) have numerous advantages as light emitters such as high photoluminescence quantum efficiency with a direct bandgap, very narrow emission linewidth, high charge-carrier mobility, low energetic disorder, solution processability, simple color tuning, and low material cost. Based on these advantages, MHPs have recently shown unprecedented radical progress (maximum current efficiency from 0.3 to 42.9 cd A -1 ) in the field of light-emitting diodes. However, perovskite light-emitting diodes (PeLEDs) suffer from intrinsic instability of MHP materials and instability arising from the operation of the PeLEDs. Recently, many researchers have devoted efforts to overcome these instabilities. Here, the origins of the instability in PeLEDs are reviewed by categorizing it into two types: instability of (i) the MHP materials and (ii) the constituent layers and interfaces in PeLED devices. Then, the strategies to improve the stability of MHP materials and PeLEDs are critically reviewed, such as A-site cation engineering, Ruddlesden-Popper phase, suppression of ion migration with additives and blocking layers, fabrication of uniform bulk polycrystalline MHP layers, and fabrication of stable MHP nanoparticles. Based on this review of recent advances, future research directions and an outlook of PeLEDs for display applications are suggested. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wacławczyk, Agnieszka; Postek-Stefańska, Lidia; Pietraszewska, Daria; Birkner, Ewa; Zalejska-Fiolka, Jolanta; Wysoczańska-Jankowicz, Iwona
2018-03-20
More than 35 substances released from composite fillings have been identified. Among these, basic monomers and the so-called co-monomers are most often reported. The substances released from polymer-based materials demonstrate allergenic, cytotoxic, genotoxic, mutagenic, embryotoxic, teratogenic, and estrogenic properties. The aim of this study was to measure the amounts of triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA) monomers released from composite dental fillings to citrate-phosphate buffer with the pH of 4, 6, 8 after 24 h and 6 months from the polymerization. Ten samples for each polymerization method had been made from the composite material (Filtek Supreme XT, 3M ESPE, St. Paul, USA), which underwent polymerization using the following lamps: halogen lamp (Translux CL, Heraeus Kulzer, Hanau, Germany) (sample H) and diode lamp (Elipar Freelight 2, 3M ESPE), with soft start function (group DS) and without that function (group DWS). It has been demonstrated that the type of light-curing units has a significant impact on the amount of TEGDMA and UDMA released. The amount of UDMA and TEGDMA monomers released from composite fillings differed significantly depending on the source of polymerization applied, as well as the pH of the solution and sample storage time. Elution of the monomers from composite material polymerized using halogen lamp was significantly greater as compared to curing with diode lamps.
Modeling Ultraviolet (UV) Light Emitting Diode (LED) Energy Propagation in Reactor Vessels
2014-03-27
21 Table 4: UV Mercury Lamps , UV LED Bulbs, and Visible LED Bulb Advantages and Disadvantages...over low pressure mercury lamps include smaller size, minimal start up time, and no hazardous material. Projections show UV LEDs will follow similar
Lee, Han Eol; Choi, JeHyuk; Lee, Seung Hyun; Jeong, Minju; Shin, Jung Ho; Joe, Daniel J; Kim, DoHyun; Kim, Chang Wan; Park, Jung Hwan; Lee, Jae Hee; Kim, Daesoo; Shin, Chan-Soo; Lee, Keon Jae
2018-05-18
Flexible inorganic-based micro light-emitting diodes (µLEDs) are emerging as a significant technology for flexible displays, which is an important area for bilateral visual communication in the upcoming Internet of Things era. Conventional flexible lateral µLEDs have been investigated by several researchers, but still have significant issues of power consumption, thermal stability, lifetime, and light-extraction efficiency on plastics. Here, high-performance flexible vertical GaN light-emitting diodes (LEDs) are demonstrated by silver nanowire networks and monolithic fabrication. Transparent, ultrathin GaN LED arrays adhere to a human fingernail and stably glow without any mechanical deformation. Experimental studies provide outstanding characteristics of the flexible vertical μLEDs (f-VLEDs) with high optical power (30 mW mm -2 ), long lifetime (≈12 years), and good thermal/mechanical stability (100 000 bending/unbending cycles). The wireless light-emitting system on the human skin is successfully realized by transferring the electrical power f-VLED. Finally, the high-density GaN f-VLED arrays are inserted onto a living mouse cortex and operated without significant histological damage of brain. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Random laser illumination: an ideal source for biomedical polarization imaging?
NASA Astrophysics Data System (ADS)
Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.
2016-03-01
Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.
Fully porous GaN p-n junction diodes fabricated by chemical vapor deposition.
Bilousov, Oleksandr V; Carvajal, Joan J; Geaney, Hugh; Zubialevich, Vitaly Z; Parbrook, Peter J; Martínez, Oscar; Jiménez, Juan; Díaz, Francesc; Aguiló, Magdalena; O'Dwyer, Colm
2014-10-22
Porous GaN based LEDs produced by corrosion etching techniques demonstrated enhanced light extraction efficiency in the past. However, these fabrication techniques require further postgrown processing steps, which increases the price of the final system. Also, the penetration depth of these etching techniques is limited, and affects not only the semiconductor but also the other elements constituting the LED when applied to the final device. In this paper, we present the fabrication of fully porous GaN p-n junctions directly during growth, using a sequential chemical vapor deposition (CVD) process to produce the different layers that form the p-n junction. We characterized their diode behavior from room temperature to 673 K and demonstrated their ability as current rectifiers, thus proving the potential of these fully porous p-n junctions for diode and LEDs applications. The electrical and luminescence characterization confirm that high electronic quality porous structures can be obtained by this method, and we believe this investigation can be extended to other III-N materials for the development of white light LEDs, or to reduce reflection losses and narrowing the output light cone for improved LED external quantum efficiencies.
Takahashi, Hidetoshi; Nakajima, Susumu; Ogasawara, Koji; Asano, Ryuji; Nakae, Yoshinori; Sakata, Isao; Iizuka, Hajime
2014-08-01
Photodynamic therapy (PDT) is useful for superficial skin tumors such as actinic keratosis and Bowen disease. Although PDT is non-surgical and easily-performed treatment modality, irradiation apparatus is large and expensive. Using 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-ο-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin papilloma model, we compared the efficacy of TONS501- and ALA-PDT with a LED lamp, a diode laser lamp or a metal-halide lamp on the skin tumor regression. TONS501-PDT using 660 nm LED lamp showed anti-tumor effect at 1 day following the irradiation and the maximal anti-tumor effect was observed at 3 days following the irradiation. There was no significant difference in the anti-tumor effects among TONS501-PDT using LED, TONS501-PDT using diode laser, and 5-aminolevulinic acid hydrochloride (ALA)-PDT using metal-halide lamp. Potent anti-tumor effect on DMBA- and TPA-induced mouse skin papilloma was observed by TONS501-PDT using 660 nm LED, which might be more useful for clinical applications. © 2014 Japanese Dermatological Association.
Lighting theory and luminous characteristics of white light-emitting diodes
NASA Astrophysics Data System (ADS)
Uchida, Yuji; Taguchi, Tsunemasa
2005-12-01
A near-ultraviolet (UV)-based white light-emitting diode (LED) lighting system linked with a semiconductor InGaN LED and compound phosphors for general lighting applications is proposed. We have developed for the first time a novel type of high-color rendering index (Ra) white LED light source, which is composed of near-UV LED and multiphosphor materials showing orange (O), yellow (Y), green (G), and blue (B) emissions. The white LED shows the superior characteristics of luminous efficacy and high Ra to be about 40 lm/W and 93, respectively. Luminous and chromaticity characteristics, and their spectral distribution of the present white LED can be evaluated using the multipoint LED light source theory. It is revealed that the OYGB white LED can provide better irradiance properties than that of conventional white LEDs. Near-UV white LED technologies, in conjunction with phosphor blends, can offer superior color uniformity, high Ra, and excellent light quality. Consequently we are carrying out a "white LEDs for medical applications" program in the second phase of this national project from 2004 to 2009.
Hardness Evaluation of Composite Resins Cured with QTH and LED
Esmaeili, Behnaz; Safarcherati, Hengameh; Vaezi, Assila
2014-01-01
Background and aims. Today light cured composites are widely used. Physical and mechanical properties of composites are related to the degree of conversion. Light curing unit (LCU) is an important factor for composite polymerization. Aim of this study is evaluation of composite resins hardness using halogen and LED light curing units. Materials and methods. In this study, 30 samples of Filtek Z250 and C-Fill composite resins were provided. Samples were light cured with Ultralume2, Valo and Astralis7. Vickers hardness number (VHN) was measured in 0, 1, 2 mm depth. Statistical analysis used: Data were analysed by SPSS software and compared with each other by T-test, one-way and two-way ANOVA and Post-hoc Tukey test. Results. In Filtek Z250, at top surface, VHN of Ultralume2 was higher than VHN of Valo (P = 0.02) and Astralis7 (P =0.04), but in depth of 1, 2 mm, VHN of Ultralume2 and Astralis7 were almost the same and both LCUs were more than Valo which the difference between Ultralume2 and Valo was significant in depth of 1mm (0.05) and 2mm (0.02). In C-Fill composite, at top surface, Astralis7 showed higher VHN, but in depth of 2 mm, performance of all devices were rather simi-lar. Conclusion. In Z250, which contains camphorquinone initiator, light cure LED Ultra-lume2 with narrow wavelength showed higher hardness number than Valo. In C-fill, in top surface, Astralis7 with more exposure time, resulted higher VHN. But In depth of 2 mm, various light curing devices had rather similar hardness number. PMID:25024838
Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light
Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki
2014-01-01
Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm2). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. PMID:24909301
Qin, Zong; Ji, Chuangang; Wang, Kai; Liu, Sheng
2012-10-08
In this paper, condition for uniform lighting generated by light emitting diode (LED) array was systematically studied. To take human vision effect into consideration, contrast sensitivity function (CSF) was novelly adopted as critical criterion for uniform lighting instead of conventionally used Sparrow's Criterion (SC). Through CSF method, design parameters including system thickness, LED pitch, LED's spatial radiation distribution and viewing condition can be analytically combined. In a specific LED array lighting system (LALS) with foursquare LED arrangement, different types of LEDs (Lambertian and Batwing type) and given viewing condition, optimum system thicknesses and LED pitches were calculated and compared with those got through SC method. Results show that CSF method can achieve more appropriate optimum parameters than SC method. Additionally, an abnormal phenomenon that uniformity varies with structural parameters non-monotonically in LALS with non-Lambertian LEDs was found and analyzed. Based on the analysis, a design method of LALS that can bring about better practicability, lower cost and more attractive appearance was summarized.
Enhanced Phycocyanin Production from Spirulina platensis using Light Emitting Diode
NASA Astrophysics Data System (ADS)
Bachchhav, Manisha Bhanudas; Kulkarni, Mohan Vinayak; Ingale, Arun G.
2017-06-01
This work investigates the performance of different cultivation conditions using Light Emitting Diode (LED) as a light source for the production of phycocyanin from Spirulina platensis. With LEDs under autotrophic conditions, red LED produced maximum amount of biomass (8.95 g/l). As compared to autotrophic cultivation with fluorescent lamp (control), cultivations using LEDs under autotrophic and mixotrophic mode significantly enhanced the phycocyanin content. For autotrophic conditions (with LED) phycocyanin content was in the range of 103-242 mg/g of dry biomass, whereas for mixotrophic conditions (0.1% glucose and LED) it was in the range of 254-380 mg/g of dry biomass. Spirulina cultivated with yellow LED under mixotrophic conditions had 5.4-fold more phycocyanin (380 mg/g of dry biomass) than control (70 mg/g of dry biomass). The present study demonstrates that the LEDs under mixotrophic conditions gave sixfold (2497 mg/l) higher yields of phycocyanin as compared to autotrophic condition under white light (415 mg/l).
Saltmarche, Anita; Krengel, Maxine H.; Hamblin, Michael R.; Knight, Jeffrey A.
2011-01-01
Abstract Objective: Two chronic, traumatic brain injury (TBI) cases, where cognition improved following treatment with red and near-infrared light-emitting diodes (LEDs), applied transcranially to forehead and scalp areas, are presented. Background: Significant benefits have been reported following application of transcranial, low-level laser therapy (LLLT) to humans with acute stroke and mice with acute TBI. These are the first case reports documenting improved cognitive function in chronic, TBI patients treated with transcranial LED. Methods: Treatments were applied bilaterally and to midline sagittal areas using LED cluster heads [2.1″ diameter, 61 diodes (9 × 633 nm, 52 × 870 nm); 12–15 mW per diode; total power: 500 mW; 22.2 mW/cm2; 13.3 J/cm2 at scalp (estimated 0.4 J/cm2 to cortex)]. Results: Seven years after closed-head TBI from a motor vehicle accident, Patient 1 began transcranial LED treatments. Pre-LED, her ability for sustained attention (computer work) lasted 20 min. After eight weekly LED treatments, her sustained attention time increased to 3 h. The patient performs nightly home treatments (5 years); if she stops treating for more than 2 weeks, she regresses. Patient 2 had a history of closed-head trauma (sports/military, and recent fall), and magnetic resonance imaging showed frontoparietal atrophy. Pre-LED, she was on medical disability for 5 months. After 4 months of nightly LED treatments at home, medical disability discontinued; she returned to working full-time as an executive consultant with an international technology consulting firm. Neuropsychological testing after 9 months of transcranial LED indicated significant improvement (+1, +2SD) in executive function (inhibition, inhibition accuracy) and memory, as well as reduction in post-traumatic stress disorder. If she stops treating for more than 1 week, she regresses. At the time of this report, both patients are continuing treatment. Conclusions: Transcranial LED may improve cognition, reduce costs in TBI treatment, and be applied at home. Controlled studies are warranted. PMID:21182447
Longitudinal useful life analysis and replacement strategies for LED traffic indicators.
DOT National Transportation Integrated Search
2014-04-01
The application of Light Emitting Diode (LED) lighting systems has experienced significant gro : wth in the transportation : sector over the past : ten : years. LED indication lifespans have significantly greater durations than previous technologies,...
Longitudinal useful life analysis and replacement strategies for LED traffic indicators.
DOT National Transportation Integrated Search
2014-04-01
The application of Light Emitting Diode (LED) lighting systems has experienced significant growth in : the transportation sector over the past 10 years. LED indication lifespans have significantly greater durations than : previous technologies, howev...
Carrier-injection studies in GaN-based light-emitting-diodes
NASA Astrophysics Data System (ADS)
Nguyen, Dinh Chuong; Vaufrey, David; Leroux, Mathieu
2015-09-01
Although p-type GaN has been achieved by Mg doping, the low hole-mobility still remains a difficulty for GaN-based light-emitting diodes (LEDs). Due to the lack of field-dependent-velocity model for holes, in GaN-based LED simulations, the hole mobility is usually supposed to remain constant. However, as the p-GaN-layer conductivity is lower than the n-GaN-layer conductivity, a strong electric-field exists in the p-side of an LED when the applied voltage exceeds the LED's built-in voltage. Under the influence of this field, the mobilities of electrons and holes are expected to decrease. Based on a field-dependent-velocity model that is usually used for narrow-bandgap materials, an LED structure is modelled with three arbitrarily chosen hole saturation-velocities. The results show that a hole saturation-velocity lower than 4x106 cm/s can negatively affect the LED's behaviors.
NASA Astrophysics Data System (ADS)
Zhou, Shengjun; Lv, Jiajiang; Wu, Yini; Zhang, Yuan; Zheng, Chenju; Liu, Sheng
2018-05-01
We investigated the reverse leakage current characteristics of InGaN/GaN multiple quantum well (MQW) near-ultraviolet (NUV)/blue/green light-emitting diodes (LEDs). Experimental results showed that the NUV LED has the smallest reverse leakage current whereas the green LED has the largest. The reason is that the number of defects increases with increasing nominal indium content in InGaN/GaN MQWs. The mechanism of the reverse leakage current was analyzed by temperature-dependent current–voltage measurement and capacitance–voltage measurement. The reverse leakage currents of NUV/blue/green LEDs show similar conduction mechanisms: at low temperatures, the reverse leakage current of these LEDs is attributed to variable-range hopping (VRH) conduction; at high temperatures, the reverse leakage current of these LEDs is attributed to nearest-neighbor hopping (NNH) conduction, which is enhanced by the Poole–Frenkel effect.
Solution-Grown ZnO Films toward Transparent and Smart Dual-Color Light-Emitting Diode.
Huang, Xiaohu; Zhang, Li; Wang, Shijie; Chi, Dongzhi; Chua, Soo Jin
2016-06-22
An individual light-emitting diode (LED) capable of emitting different colors of light under different bias conditions not only allows for compact device integration but also extends the functionality of the LED beyond traditional illumination and display. Herein, we report a color-switchable LED based on solution-grown n-type ZnO on p-GaN/n-GaN heterojunction. The LED emits red light with a peak centered at ∼692 nm and a full width at half-maximum of ∼90 nm under forward bias, while it emits green light under reverse bias. These two lighting colors can be switched repeatedly by reversing the bias polarity. The bias-polarity-switched dual-color LED enables independent control over the lighting color and brightness of each emission with two-terminal operation. The results offer a promising strategy toward transparent, miniaturized, and smart LEDs, which hold great potential in optoelectronics and optical communication.
Lee, Ya-Ju; Yang, Zu-Po; Chen, Pin-Guang; Hsieh, Yung-An; Yao, Yung-Chi; Liao, Ming-Han; Lee, Min-Hung; Wang, Mei-Tan; Hwang, Jung-Min
2014-10-20
In this study, we report a novel monolithically integrated GaN-based light-emitting diode (LED) with metal-oxide-semiconductor field-effect transistor (MOSFET). Without additionally introducing complicated epitaxial structures for transistors, the MOSFET is directly fabricated on the exposed n-type GaN layer of the LED after dry etching, and serially connected to the LED through standard semiconductor-manufacturing technologies. Such monolithically integrated LED/MOSFET device is able to circumvent undesirable issues that might be faced by other kinds of integration schemes by growing a transistor on an LED or vice versa. For the performances of resulting device, our monolithically integrated LED/MOSFET device exhibits good characteristics in the modulation of gate voltage and good capability of driving injected current, which are essential for the important applications such as smart lighting, interconnection, and optical communication.
NASA Astrophysics Data System (ADS)
Wu, Dongxue; Ma, Ping; Liu, Boting; Zhang, Shuo; Wang, Junxi; Li, Jinmin
2016-05-01
GaN-based flip-chip light-emitting diodes (FC-LEDs) grown on nanopatterned sapphire substrates (NPSS) are fabricated using self-assembled SiO2 nanospheres as masks during inductively coupled plasma etching. By controlling the pattern spacing, epitaxial GaN can be grown from the top or bottom of patterns to obtain two different GaN/substrate interfaces. The optoelectronic characteristics of FC-LED chips with different GaN/sapphire interfaces are studied. The FC-LED with an antireflective interface layer consisting of a NPSS with GaN in the pattern spacings demonstrates better optical properties than the FC-LED with an interface embedded with air voids. Our study indicates that the two types of FC-LEDs grown on NPSS show higher crystal quality and improved electrical and optical characteristics compared with those of FC-LEDs grown on conventional planar sapphire substrates.
Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver
NASA Astrophysics Data System (ADS)
Wang, Chao; Yu, Hong-Yi; Zhu, Yi-Jun; Wang, Tao; Ji, Ya-Wei
2018-03-01
In this paper, a multiple light emitting diode (LED) chips parallel transmission (Multi-LED-PT) scheme for underwater visible light communication system with one photon-counting single photon avalanche diode (SPAD) receiver is proposed. As the lamp always consists of multi-LED chips, the data rate could be improved when we drive these multi-LED chips parallel by using the interleaver-division-multiplexing technique. For each chip, the on-off-keying modulation is used to reduce the influence of clipping. Then a serial successive interference cancellation detection algorithm based on ideal Poisson photon-counting channel by the SPAD is proposed. Finally, compared to the SPAD-based direct current-biased optical orthogonal frequency division multiplexing system, the proposed Multi-LED-PT system could improve the error-rate performance and anti-nonlinearity performance significantly under the effects of absorption, scattering and weak turbulence-induced channel fading together.
Evaluation of light-emitting diode beacon light fixtures.
DOT National Transportation Integrated Search
2009-12-01
Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...
Assessment of the performance of light-emitting diode roadway lighting technology.
DOT National Transportation Integrated Search
2015-10-01
This study, championed by the Virginia Department of Transportation (VDOT) Traffic Engineering : Division, involved a thorough investigation of light-emitting diode (LED) roadway lighting technology by : testing six types of roadway luminaires (inclu...
High efficiency III-nitride light-emitting diodes
Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred
2013-05-28
Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.
Amber light-emitting diode comprising a group III-nitride nanowire active region
Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel
2014-07-22
A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.
An aluminium nitride light-emitting diode with a wavelength of 210 nanometres.
Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki
2006-05-18
Compact high-efficiency ultraviolet solid-state light sources--such as light-emitting diodes (LEDs) and laser diodes--are of considerable technological interest as alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. Microelectronic fabrication technologies and the environmental sciences both require light sources with shorter emission wavelengths: the former for improved resolution in photolithography and the latter for sensors that can detect minute hazardous particles. In addition, ultraviolet solid-state light sources are also attracting attention for potential applications in high-density optical data storage, biomedical research, water and air purification, and sterilization. Wide-bandgap materials, such as diamond and III-V nitride semiconductors (GaN, AlGaN and AlN; refs 3-10), are potential materials for ultraviolet LEDs and laser diodes, but suffer from difficulties in controlling electrical conduction. Here we report the successful control of both n-type and p-type doping in aluminium nitride (AlN), which has a very wide direct bandgap of 6 eV. This doping strategy allows us to develop an AlN PIN (p-type/intrinsic/n-type) homojunction LED with an emission wavelength of 210 nm, which is the shortest reported to date for any kind of LED. The emission is attributed to an exciton transition, and represents an important step towards achieving exciton-related light-emitting devices as well as replacing gas light sources with solid-state light sources.
Compact light-emitting-diode sun photometer for atmospheric optical depth measurements.
Acharya, Y B; Jayaraman, A; Ramachandran, S; Subbaraya, B H
1995-03-01
A new compact light-emitting diode (LED) sun photometer, in which a LED is used as a spectrally selective photodetector as well as a nonlinear feedback element in the operational amplifier, has been developed. The output voltage that is proportional to the logarithm of the incident solar intensity permits the direct measurement of atmospheric optical depths in selected spectral bands. Measurements made over Ahmedabad, India, show good agreement, within a few percent, of optical depths derived with a LED as a photodetector in a linear mode and with a LED as both a photodetector and a feedback element in an operational amplifier in log mode. The optical depths are also found to compare well with those obtained simultaneously with a conventional filter photometer.
On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes.
Li, Luping; Zhang, Yonghui; Xu, Shu; Bi, Wengang; Zhang, Zi-Hui; Kuo, Hao-Chung
2017-10-24
The hole injection is one of the bottlenecks that strongly hinder the quantum efficiency and the optical power for deep ultraviolet light-emitting diodes (DUV LEDs) with the emission wavelength smaller than 360 nm. The hole injection efficiency for DUV LEDs is co-affected by the p-type ohmic contact, the p-type hole injection layer, the p-type electron blocking layer and the multiple quantum wells. In this report, we review a large diversity of advances that are currently adopted to increase the hole injection efficiency for DUV LEDs. Moreover, by disclosing the underlying device physics, the design strategies that we can follow have also been suggested to improve the hole injection for DUV LEDs.
276 nm Substrate-Free Flip-Chip AlGaN Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Hwang, Seongmo; Morgan, Daniel; Kesler, Amanda; Lachab, Mohamed; Zhang, Bin; Heidari, Ahmad; Nazir, Haseeb; Ahmad, Iftikhar; Dion, Joe; Fareed, Qhalid; Adivarahan, Vinod; Islam, Monirul; Khan, Asif
2011-03-01
Lateral-conduction, substrate-free flip-chip (SFFC) light-emitting diodes (LEDs) with peak emission at 276 nm are demonstrated for the first time. The AlGaN multiple quantum well LED structures were grown by metal-organic chemical vapor deposition (MOCVD) on thick-AlN laterally overgrown on sapphire substrates. To fabricate the SFFC LEDs, a newly-developed laser-assisted ablation process was employed to separate the substrate from the LED chips. The chips had physical dimensions of 1100×900 µm2, and were comprised of four devices each with a 100×100 µm2 junction area. Electrical and optical characterization of the devices revealed no noticeable degradation to their performance due to the laser-lift-off process.
On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes
Li, Luping; Zhang, Yonghui; Kuo, Hao-Chung
2017-01-01
The hole injection is one of the bottlenecks that strongly hinder the quantum efficiency and the optical power for deep ultraviolet light-emitting diodes (DUV LEDs) with the emission wavelength smaller than 360 nm. The hole injection efficiency for DUV LEDs is co-affected by the p-type ohmic contact, the p-type hole injection layer, the p-type electron blocking layer and the multiple quantum wells. In this report, we review a large diversity of advances that are currently adopted to increase the hole injection efficiency for DUV LEDs. Moreover, by disclosing the underlying device physics, the design strategies that we can follow have also been suggested to improve the hole injection for DUV LEDs. PMID:29073738
GaN-based light-emitting diodes with graphene/indium tin oxide transparent layer.
Lai, Wei-Chih; Lin, Chih-Nan; Lai, Yi-Chun; Yu, Peichen; Chi, Gou Chung; Chang, Shoou-Jinn
2014-03-10
We have demonstrated a gallium nitride (GaN)-based green light-emitting diode (LED) with graphene/indium tin oxide (ITO) transparent contact. The ohmic characteristic of the p-GaN and graphene/ITO contact could be preformed by annealing at 500 °C for 5 min. The specific contact resistance of p-GaN/graphene/ITO (3.72E-3 Ω·cm²) is one order less than that of p-GaN/ITO. In addition, the 20-mA forward voltage of LEDs with graphene/ITO transparent (3.05 V) is 0.09 V lower than that of ITO LEDs (3.14 V). Besides, We have got an output power enhancement of 11% on LEDs with graphene/ITO transparent contact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhaojun; Ma, Jun; Huang, Tongde
2014-03-03
In this Letter, we report selective epitaxial growth of monolithically integrated GaN-based light emitting diodes (LEDs) with AlGaN/GaN high-electron-mobility transistor (HEMT) drivers. A comparison of two integration schemes, selective epitaxial removal (SER), and selective epitaxial growth (SEG) was made. We found the SER resulted in serious degradation of the underlying LEDs in a HEMT-on-LED structure due to damage of the p-GaN surface. The problem was circumvented using the SEG that avoided plasma etching and minimized device degradation. The integrated HEMT-LEDs by SEG exhibited comparable characteristics as unintegrated devices and emitted modulated blue light by gate biasing.
Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate
NASA Astrophysics Data System (ADS)
Chan, Chia-Hua; Hou, Chia-Hung; Tseng, Shao-Ze; Chen, Tsing-Jen; Chien, Hung-Ta; Hsiao, Fu-Li; Lee, Chien-Chieh; Tsai, Yen-Ling; Chen, Chii-Chang
2009-07-01
This letter describes the improved output power of GaN-based light-emitting diodes (LEDs) formed on a nanopatterned sapphire substrate (NPSS) prepared through etching with a self-assembled monolayer of 750-nm-diameter SiO2 nanospheres used as the mask. The output power of NPSS LEDs was 76% greater than that of LEDs on a flat sapphire substrate. Three-dimensional finite-difference time-domain calculation predicted a 40% enhancement in light extraction efficiency of NPSS LEDs. In addition, the reduction of full widths at half maximum in the ω-scan rocking curves for the (0 0 2) and (1 0 2) planes of GaN on NPSS suggested improved crystal quality.
NASA Astrophysics Data System (ADS)
Mori, Tatsuo; Miyachi, Kiyokazu; Kichimi, Tomoaki; Mizutani, Teruyoshi
1994-12-01
The organic electoluminescent diode (LED) with squarylium (Sq) dye-doped Alq3 changes color upon application of voltage (current). The luminescent color from the organic LED changes from red (electroluminescence (EL) of Sq dye) at low voltage to light green (EL of Alq3) at high voltage. We studied the EL efficiency and EL spectrum of organic Sq-doped Alq3 LED with various doping positions in the emission layer. Consequentially, it was clarified that Sq doping near TPD considerably reduced the EL efficiency. The EL mechanism of the organic LED was concluded to be associated with the energy transfer from the excited Alq3 to the guest dye and hole trapping of the guest dye in Alq3.
White Light–Emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model
Shang, Yu-Man; Wang, Gen-Shuh; Sliney, David; Lee, Li-Ling
2013-01-01
Background: Light-emitting diodes (LEDs) deliver higher levels of blue light to the retina than do conventional domestic light sources. Chronic exposure to high-intensity light (2,000–10,000 lux) has previously been found to result in light-induced retinal injury, but chronic exposure to relatively low-intensity (750 lux) light has not been previously assessed with LEDs in a rodent model. Objective: We examined LED-induced retinal neuronal cell damage in the Sprague-Dawley rat using functional, histological, and biochemical measurements. Methods: We used blue LEDs (460 nm) and full-spectrum white LEDs, coupled with matching compact fluorescent lights, for exposures. Pathological examinations included electroretinogram, hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), and transmission electron microscopy (TEM). We also measured free radical production in the retina to determine the oxidative stress level. Results: H&E staining and TEM revealed apoptosis and necrosis of photoreceptors, which indicated blue-light induced photochemical injury of the retina. Free radical production in the retina was increased in LED-exposed groups. IHC staining demonstrated that oxidative stress was associated with retinal injury. Although we found serious retinal light injury in LED groups, the compact fluorescent lamp (CFL) groups showed moderate to mild injury. Conclusion: Our results raise questions about adverse effects on the retina from chronic exposure to LED light compared with other light sources that have less blue light. Thus, we suggest a precautionary approach with regard to the use of blue-rich “white” LEDs for general lighting. Citation: Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. 2014. White light–emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect 122:269–276; http://dx.doi.org/10.1289/ehp.1307294 PMID:24362357
High-Modulation-Speed LEDs Based on III-Nitride
NASA Astrophysics Data System (ADS)
Chen, Hong
III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as rate equations for LEDs/laser diodes (LDs), plasmonic effects, Purcell effects will be briefly introduced. For applications, the modal properties of flip-chip LEDs are solved by implementing finite difference method in order to study the modulation response. The emission properties of highly polarized InGaN LEDs coated by metallic gratings are also investigated by finite difference time domain method.
Frequency-Downconversion Stability of PMMA Coatings in Hybrid White Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Caruso, Fulvio; Mosca, Mauro; Rinella, Salvatore; Macaluso, Roberto; Calì, Claudio; Saiano, Filippo; Feltin, Eric
2016-01-01
We report on the properties of a poly(methyl methacrylate)-based coating used as a host for an organic dye in hybrid white light-emitting diodes. The device is composed by a pump source, which is a standard inorganic GaN/InGaN blue light-emitting diode (LED) emitting at around 450 nm, and a spin-coated conversion layer making use of Lumogen® F Yellow 083. Under prolonged irradiation, the coating exhibits significant bleaching, thus degrading the color rendering performance of the LED. We present experimental results that confirm that the local temperature rise of the operating diode does not affect the conversion layer. It is also proven that, during the test, the photostability of the organic dye is compromised, resulting in a chromatic shift from Commission Internationale de l'Eclairage (CIE) ( x; y) coordinates (0.30;0.39) towards the color of the pump (0.15;0.04). Besides photodegradation of the dye, we address a phenomenon attributed to modification of the polymer matrix activated by the LED's blue light energy as confirmed by ultraviolet-visible and Fourier-transform infrared spectroscopic analyses. Three methods for improving the overall stability of the organic coating are presented.
The High-efficiency LED Driver for Visible Light Communication Applications.
Gong, Cihun-Siyong Alex; Lee, Yu-Chen; Lai, Jyun-Liang; Yu, Chueh-Hao; Huang, Li Ren; Yang, Chia-Yen
2016-08-08
This paper presents a LED driver for VLC. The main purpose is to solve the low data rate problem used to be in switching type LED driver. The GaN power device is proposed to replace the traditional silicon power device of switching LED driver for the purpose of increasing switching frequency of converter, thereby increasing the bandwidth of data transmission. To achieve high efficiency, the diode-connected GaN power transistor is utilized to replace the traditional ultrafast recovery diode used to be in switching type LED driver. This work has been experimentally evaluated on 350-mA output current. The results demonstrate that it supports the data of PWM dimming level encoded in the PPM scheme for VLC application. The experimental results also show that system's efficiency of 80.8% can be achieved at 1-Mb/s data rate.
ERIC Educational Resources Information Center
Conklin, Aaron R.
1998-01-01
Discusses technology's impact on scoreboard design: the development of the light-emitting diode (LED) display. How the LED system works is explained, as are the advantages and disadvantages of LED compared with incandescent lamp boards. Final comments address deciding on materials for scoreboard casings. (GR)
Mn2- x Y x (MoO4)3 Phosphor Excited by UV GaN-Based Light-Emitting Diode for White Emission
NASA Astrophysics Data System (ADS)
Chen, Lung-Chien; Tseng, Zong-Liang; Hsu, Ting-Chun; Yang, Shengyi; Chen, Yuan-Bin
2017-04-01
One option for low-cost white light-emitting diodes (LEDs) is the combination of a near-ultraviolet (UV) LED chip (382 nm) and a single phosphor. Such Mn2- x Y x (MoO4)3 single phosphors have been fabricated by a simple solid-state reaction route and their emission color tuned by controlling the Mn doping amount. The chromaticity coordinates of the white light emitted by the UV GaN LED with the MnY(MoO4)3 phosphor were x = 0.5204 and y = 0.4050 [correlated color temperature (CCT) = 7958 K].
Yang, Pao-Keng
2012-05-01
We present a noniterative algorithm to reliably reconstruct the spectral reflectance from discrete reflectance values measured by using multicolor light emitting diodes (LEDs) as probing light sources. The proposed algorithm estimates the spectral reflectance by a linear combination of product functions of the detector's responsivity function and the LEDs' line-shape functions. After introducing suitable correction, the resulting spectral reflectance was found to be free from the spectral-broadening effect due to the finite bandwidth of LED. We analyzed the data for a real sample and found that spectral reflectance with enhanced resolution gives a more accurate prediction in the color measurement.
NASA Astrophysics Data System (ADS)
Yang, Pao-Keng
2012-05-01
We present a noniterative algorithm to reliably reconstruct the spectral reflectance from discrete reflectance values measured by using multicolor light emitting diodes (LEDs) as probing light sources. The proposed algorithm estimates the spectral reflectance by a linear combination of product functions of the detector's responsivity function and the LEDs' line-shape functions. After introducing suitable correction, the resulting spectral reflectance was found to be free from the spectral-broadening effect due to the finite bandwidth of LED. We analyzed the data for a real sample and found that spectral reflectance with enhanced resolution gives a more accurate prediction in the color measurement.
Compact light-emitting diode lighting ring for video-assisted thoracic surgery.
Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen
2014-01-01
In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.
Organometal halide perovskite light-emitting diodes with laminated carbon nanotube electrodes
NASA Astrophysics Data System (ADS)
Shan, Xin; Bade, Sri Ganesh R.; Geske, Thomas; Davis, Melissa; Smith, Rachel; Yu, Zhibin
2017-08-01
Organometal halide perovskite light-emitting diodes (LEDs) with laminated carbon nanotube (CNT) electrodes are reported. The LEDs have an indium tin oxide (ITO) bottom electrode, a screen printed methylammonium lead tribromide (MAPbBr3)/polymer composite thin film as the emissive layer, and laminated CNT as the top electrode. The devices can be turned on at 2.2 V, reaching a brightness of 4,960 cd m-2 and a current efficiency of 1.54 cd A-1 at 6.9 V. The greatly simplified fabrication process in this work can potentially lead to the scalable manufacturing of large size and low cost LED panels in the future.
NASA Astrophysics Data System (ADS)
Yun, Jin-Hyeon; Kim, Kyu Cheol; Yu, Yeon Tae; Yang, Jin Kyu; Polyakov, Alexander Y.; Lee, In-Hwan
2017-10-01
Improved performance of blue InGaN/GaN light-emitting diodes (LEDs) is realized as a result of fabricating nanohole patterns in the p-GaN contact layer and embedding the nanoholes with Ag/SiO2 nanoparticles to generate localized surface plasmons (LSPs). Good matching between LSP resonance energy and LED emission energy together with the close proximity between nanoparticles and the active region results in strong coupling between them. Consequently, the photoluminescence and electroluminescence intensities increased to 1.75 and 1.10, respectively, compared with nanohole patterned reference LEDs.
Chen, Jiun-Ting; Lai, Wei-Chih; Kao, Yu-Jui; Yang, Ya-Yu; Sheu, Jinn-Kong
2012-02-27
The laser-induced periodic surface structure technique was used to form simultaneously dual-scale rough structures (DSRS) with spiral-shaped nanoscale structure inside semi-spherical microscale holes on p-GaN surface to improve the light-extraction efficiency of light-emitting diodes (LEDs). The light output power of DSRS-LEDs was 30% higher than that of conventional LEDs at an injection current of 20 mA. The enhancement in the light output power could be attributed to the increase in the probability of photons to escape from the increased surface area of textured p-GaN surface.
Using light emitting diodes in traffic signals : final report.
DOT National Transportation Integrated Search
1998-07-01
In 1993, the Oregon Department of Transportation (ODOT) began testing red light emitting diodes (LED's) as a replacement to the incandescent lamps in vehicular and pedestrian signals. Field performance was found to be reliable and subsequently ODOT b...
Evaluation of light-emitting diode beacon light fixtures : final report.
DOT National Transportation Integrated Search
2009-12-01
Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...
Asnaashari, Mohammad; Mojahedi, Seyed Masoud; Asadi, Zahra; Azari-Marhabi, Saranaz; Maleki, Alireza
2016-03-01
Failure of endodontic treatment is usually due to an inadequate disinfection of the root canal system. Enterococcus faecalis has been widely used as a valuable microbiological marker for in-vitro studies because of its ability to colonize in a biofilm like style in root canals, invading dentinal tubules and resistance to some endodontic treatments. The aim of this study was to investigate the antibacterial effects of two methods of photodynamic therapy using a light emitting diode lamp (LED lamp, 630 nm) and a diode laser (810 nm) on E. faecalis biofilms in anterior extracted human teeth. Fifty six single-rooted extracted teeth were used in this study. After routine root canal cleansing, shaping and sterilization, the teeth were incubated with E. faecalis for a period of two weeks. Teeth were then divided into two experimental groups (nu=23) and two control groups (nu=5). Teeth in one experimental group were exposed to a diode laser (810 nm), and in the other group samples were exposed to a LED lamp (630 nm). Intracanal bacterial sampling was done, and bacterial survival rate was then evaluated for each group. The Colony Forming Unit (CFU) in LED group (log10 CFUs=4.88±0.82) was significantly lower than the laser group (log CFUs=5.49±0.71) (p value=0.021). CFUs in positive control group (Log10 CFUs=10.96±0.44) were significantly higher than the treatment group (p˂0.001). No bacterial colony was found in negative control group. The results of this research show that photodynamic therapy could be an effective supplement in root canal disinfection. PDT using LED lamp was more effective than diode laser 810 nm in reducing CFUs of E. faecalis in human teeth. Copyright © 2015 Elsevier B.V. All rights reserved.
Improving confocal microscopy with solid-state semiconductor excitation sources
NASA Astrophysics Data System (ADS)
Sivers, Nelson L.
To efficiently excite the fluorescent dyes used in imaging biological samples with a confocal microscope, the wavelengths of the exciting laser must be near the fluorochrome absorption peak. However, this causes imaging problems when the fluorochrome absorption and emission spectra overlap significantly, i.e. have small Stokes shifts, which is the case for most fluorochromes that emit in the red to infrared. As a result, the reflected laser excitation cannot be distinguished from the information-containing fluorescence signal. However, cryogenically cooling the exciting laser diode enabled the laser emission wavelengths to be tuned to shorter wavelengths, decreasing the interference between the laser and the fluorochrome's fluorescence. This reduced the amount of reflected laser light in the confocal image. However, the cooled laser diode's shorter wavelength signal resulted in slightly less efficient fluorochrome excitation. Spectrophotometric analysis showed that as the laser diodes were cooled, their output power increased, which more than compensated for the lower fluorochrome excitation and resulted in significantly more intense fluorescence. Thus, by tuning the laser diode emission wavelengths away from the fluorescence signal, less reflected laser light and more fluorescence information reached the detector, creating images with better signal to noise ratios. Additionally, new, high, luminous flux, light-emitting diodes (LEDs) are now powerful enough to create confocal fluorescence signals comparable to those produced by the traditional laser excitation sources in fluorescence confocal microscopes. The broader LED spectral response effectively excited the fluorochrome, yet was spectrally limited enough for standard filter sets to separate the LED excitation from the fluorochrome fluorescence signal. Spectrophotometric analysis of the excitation and fluorescence spectra of several fluorochromes showed that high-powered, LED-induced fluorescence contained the same spectral information and could be more intense than that produced by lasers. An alternative, LED-based, confocal microscope is proposed in this thesis that would be capable of exciting multiple fluorochromes in a single specimen, producing images of several distinct cellular components simultaneously. The inexpensive, LED-based, confocal microscope would require lower peak excitation intensities to produce fluorescence signals equal to those produced by laser excitation, reducing cellular damage and slowing fluorochrome photobleaching.
Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L.; Kobayashi, Hisataka
2016-01-01
Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT. PMID:26885688
Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L; Kobayashi, Hisataka
2016-03-22
Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT.
Recycled Thermal Energy from High Power Light Emitting Diode Light Source.
Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk
2018-09-01
In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gyeong Won; Shim, Jong-In; Shin, Dong-Soo, E-mail: dshin@hanyang.ac.kr
While there have been many discussions on the standard Si pn-diodes, little attention has been paid and confusion still arises on the ideality factor of the radiative recombination current in semiconductor light-emitting diodes (LEDs). In this letter, we theoretically demonstrate and experimentally confirm by using blue and infrared semiconductor LEDs that the ideality factor of the radiative recombination current is unity especially for low-current-density ranges. We utilize the data of internal quantum efficiency measured by the temperature-dependent electroluminescence to separate the radiative current component from the total current.
NASA Astrophysics Data System (ADS)
Naeser, Margaret A.; Saltmarche, Anita; Krengel, Maxine H.; Hamblin, Michael R.; Knight, Jeffrey A.
2010-02-01
Two chronic, traumatic brain injury (TBI) cases are presented, where cognitive function improved following treatment with transcranial light emitting diodes (LEDs). At age 59, P1 had closed-head injury from a motor vehicle accident (MVA) without loss of consciousness and normal MRI, but unable to return to work as development specialist in internet marketing, due to cognitive dysfunction. At 7 years post-MVA, she began transcranial LED treatments with cluster heads (2.1" diameter with 61 diodes each - 9x633nm, 52x870nm; 12-15mW per diode; total power, 500mW; 22.2 mW/cm2) on bilateral frontal, temporal, parietal, occipital and midline sagittal areas (13.3 J/cm2 at scalp, estimated 0.4 J/cm2 to brain cortex per area). Prior to transcranial LED, focused time on computer was 20 minutes. After 2 months of weekly, transcranial LED treatments, increased to 3 hours on computer. Performs nightly home treatments (now, 5 years, age 72); if stops treating >2 weeks, regresses. P2 (age 52F) had history of closed-head injuries related to sports/military training and recent fall. MRI shows fronto-parietal cortical atrophy. Pre-LED, was not able to work for 6 months and scored below average on attention, memory and executive function. Performed nightly transcranial LED treatments at home (9 months) with similar LED device, on frontal and parietal areas. After 4 months of LED treatments, returned to work as executive consultant, international technology consulting firm. Neuropsychological testing (post- 9 months of transcranial LED) showed significant improvement in memory and executive functioning (range, +1 to +2 SD improvement). Case 2 reported reduction in PTSD symptoms.
NASA Technical Reports Server (NTRS)
1997-01-01
A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.
A Novel Approach to Monitoring the Curing of Epoxy in Closed Tools by Use of Ultrasonic Spectroscopy
2017-01-01
The increasing use of composite materials has led to a greater demand for efficient curing cycles to reduce costs and speed up production cycles in manufacturing. One method to achieve this goal is in-line cure monitoring to determine the exact curing time. This article proposes a novel method through which to monitor the curing process inside closed tools by employing ultrasonic spectroscopy. A simple experiment is used to demonstrate the change in the ultrasonic spectrum during the cure cycle of an epoxy. The results clearly reveal a direct correlation between the amplitude and state of cure. The glass transition point is indicated by a global minimum of the reflected amplitude. PMID:29301222
Effect of Dopant Activation on Device Characteristics of InGaN-based Light Emitting Diodes
NASA Astrophysics Data System (ADS)
Lacroce, Nicholas; Liu, Guangyu; Tan, Chee-Keong; Arif, Ronald A.; Lee, Soo Min; Tansu, Nelson
2015-03-01
Achieving high uniformity in growths and device characteristics of InGaN-based light-emitting diodes (LEDs) is important for large scale manufacturing. Dopant activation and maintaining control of variables affecting dopant activation are critical steps in the InGaN-based light emitting diodes (LEDs) fabrication process. In the epitaxy of large scale production LEDs, in-situ post-growth annealing is used for activating the Mg acceptor dopant in the p-AlGaN and p-GaN of the LEDs. However, the annealing temperature varies with respect to position in the reactor chamber, leading to severe uniform dopant activation issue across the devices. Thus, it is important to understand how the temperature gradient and the resulting variance in Mg acceptor activation will alter the device properties. In this work, we examine the effect of varying p-type doping levels in the p-GaN layers and AlGaN electron blocking layer of the GaN LEDs on the optoelectronic properties including the band profile, carrier concentration, current density, output power and quantum efficiency. By understanding the variations and its effect, the identification of the most critical p-type doping layer strategies to address this variation will be clarified.
NASA Astrophysics Data System (ADS)
Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro
2016-06-01
The current crowding is an especially severe issue in AlGaN-based deep-ultraviolet (DUV) light-emitting diodes (LEDs) because of the low conductivity of the n-AlGaN cladding layer that has a high Al fraction. We theoretically investigated the improvement in internal quantum efficiency and total resistances in DUV-LEDs with an emission wavelength of 265 nm by a well-designed p-electrode geometry to produce uniform current spreading. As a result, the wall-plug efficiency was enhanced by a factor of 60% at an injection current of 350 mA in the designed uniform-current-spreading p-electrode LED when compared with an LED with a conventional cross-bar p-electrode pattern.
Effect of hole transport on performance of infrared type-II superlattice light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Youxi; Suchalkin, Sergey; Kipshidze, Gela
2015-04-28
The effect of hole transport on the performance of infrared light emitting diodes (LED) was investigated. The active area of the LEDs comprised two type-II superlattices with different periods and widths connected in series. Electroluminescence spectra of the devices with different positions of long wave and mid wave superlattice sections were mostly contributed by the superlattice closest to the p-contact. The experimental results indicate that due to suppressed vertical hole transport, the recombination of electrically injected electrons and holes in a type II superlattice LED active region takes place within a few superlattice periods near p-barrier. Possible reason for themore » effect is reduction of hole diffusion coefficient in an active area of a superlattice LED under bias.« less
Effect of threading defects on InGaN /GaN multiple quantum well light emitting diodes
NASA Astrophysics Data System (ADS)
Ferdous, M. S.; Wang, X.; Fairchild, M. N.; Hersee, S. D.
2007-12-01
Photoelectrochemical etching was used to measure the threading defect (TD) density in InGaN multiple quantum well light-emitting diodes (LEDs) fabricated from commercial quality epitaxial wafers. The TD density was measured in the LED active region and then correlated with the previously measured characteristics of these LEDs. It was found that the reverse leakage current increased exponentially with TD density. The temperature dependence of this dislocation-related leakage current was consistent with a hopping mechanism at low reverse-bias voltage and Poole-Frenkel emission at higher reverse-bias voltage. The peak intensity and spectral width of the LED electroluminescence were found to be only weakly dependent on TD density for the measured TD range of 1×107-2×108cm-2.
Wu, Bulong; Luo, Xiaobing; Zheng, Huai; Liu, Sheng
2011-11-21
Gold wire bonding is an important packaging process of lighting emitting diode (LED). In this work, we studied the effect of gold wire bonding on the angular uniformity of correlated color temperature (CCT) in white LEDs whose phosphor layers were coated by freely dispersed coating process. Experimental study indicated that different gold wire bonding impacts the geometry of phosphor layer, and it results in different fluctuation trends of angular CCT at different spatial planes in one LED sample. It also results in various fluctuating amplitudes of angular CCT distributions at the same spatial plane for samples with different wire bonding angles. The gold wire bonding process has important impact on angular uniformity of CCT in LED package. © 2011 Optical Society of America
Moon, H-J; Lee, Y-K; Lim, B-S; Kim, C-W
2004-03-01
The purpose of this study was to evaluate the effect of the various light curing units (plasma arc, halogen and light-emitting diodes) and irradiation methods (one-step, two-step and pulse) using different light energy densities on the leachability of unreacted monomers (Bis-GMA and UDMA) and the surface hardness of a composite resin (Z250, 3M). Leachability of the specimens immersed for 7 days in ethanol was analysed by HPLC. Vicker's hardness number (VHN) was measured immediately after curing (IC) and after immersion in ethanol for 7 days. Various irradiation methods with three curing units resulted in differences in the amount of leached monomers and VHN of IC when light energy density was lower than 17.0 J cm(-2) (P = 0.05). However, regardless of curing units and irradiation methods, these results were not different when the time or light energy density increased. When similar light energy density was irradiated (15.6-17.7 J cm(-2)), the efficiency of irradiation methods was different by the following order: one-step > or = two-step > pulse. These results suggest that the amount of leached monomers and VHN were influenced by forming polymer structure in activation and initiation stages of polymerization process with different light source energies and curing times.
Jafarzadeh-Kashi, Tahereh Sadat; Erfan, Mohmmad; Kalbasi, Salmeh; Ghadiri, Malihe; Rakhshan, Vahid
2014-10-01
Polymerization of bonding agents (BA) is a critical factor in determining the success of bonded restorations. We aimed to assess the effects of two light curing units and two temperatures on the extent of polymerization (EP) of a commercial BA and an experimental BA. Forty BA specimens were randomly divided into 8 subgroups of n = 5 to compare the polymerization of two BAs (experimental/Scotchbond) based on the variables: temperature (23/37 °C) and light-curing unit (quartz-tungsten-halogen/light-emitting diode). The EP (%) was measured using differential scanning calorimetry, and analyzed using the t-test, two- and three-way analyses of variance (ANOVA), and the Bonferroni test (α = 0.05). There were significant differences between the EP results between the two BAs (P = 0.012) and due to the different temperatures (P = 0.001), but not between the different light-curing units (P = 0.548). The interaction between BA and temperature was significant (P < 0.001). The other interactions were nonsignificant. The two light-curing units had similar effects on the EP. The EP values were better when curing was performed at human body temperature.
Monolithically Integrated Metal/Semiconductor Tunnel Junction Nanowire Light-Emitting Diodes.
Sadaf, S M; Ra, Y H; Szkopek, T; Mi, Z
2016-02-10
We have demonstrated for the first time an n(++)-GaN/Al/p(++)-GaN backward diode, wherein an epitaxial Al layer serves as the tunnel junction. The resulting p-contact free InGaN/GaN nanowire light-emitting diodes (LEDs) exhibited a low turn-on voltage (∼2.9 V), reduced resistance, and enhanced power, compared to nanowire LEDs without the use of Al tunnel junction or with the incorporation of an n(++)-GaN/p(++)-GaN tunnel junction. This unique Al tunnel junction overcomes some of the critical issues related to conventional GaN-based tunnel junction designs, including stress relaxation, wide depletion region, and light absorption, and holds tremendous promise for realizing low-resistivity, high-brightness III-nitride nanowire LEDs in the visible and deep ultraviolet spectral range. Moreover, the demonstration of monolithic integration of metal and semiconductor nanowire heterojunctions provides a seamless platform for realizing a broad range of multifunctional nanoscale electronic and photonic devices.
NASA Astrophysics Data System (ADS)
Tian, Pengfei; Althumali, Ahmad; Gu, Erdan; Watson, Ian M.; Dawson, Martin D.; Liu, Ran
2016-04-01
The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm-2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.
Light-emitting diodes for analytical chemistry.
Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K
2014-01-01
Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.
Perspective: Toward efficient GaN-based red light emitting diodes using europium doping
NASA Astrophysics Data System (ADS)
Mitchell, Brandon; Dierolf, Volkmar; Gregorkiewicz, Tom; Fujiwara, Yasufumi
2018-04-01
While InGaN/GaN blue and green light-emitting diodes (LEDs) are commercially available, the search for an efficient red LED based on GaN is ongoing. The realization of this LED is crucial for the monolithic integration of the three primary colors and the development of nitride-based full-color high-resolution displays. In this perspective, we will address the challenges of attaining red luminescence from GaN under current injection and the methods that have been developed to circumvent them. While several approaches will be mentioned, a large emphasis will be placed on the recent developments of doping GaN with Eu3+ to achieve an efficient red GaN-based LED. Finally, we will provide an outlook to the future of this material as a candidate for small scale displays such as mobile device screens or micro-LED displays.
Stolephorus sp Behavior in Different LED (Light Emitting Diode) Color and Light Intensities
NASA Astrophysics Data System (ADS)
Fitri Aristi, D. P.; Ramadanita, I. A.; Hapsari, T. D.; Susanto, A.
2018-02-01
This research aims to observe anchovy (Stolephorus sp) behavior under different LED light intensities that affect eye physiology (cell cone structure). The materials used were Stolephorus sp taken from the waters off Jepara and 13 and 10 watt light emitting diode (LED). The research method was an experiment conducted from March through August 2015 in the waters off Jepara. Data analysis of visual histology and fish respond was carried out at the fishing gear material laboratory, anatomy and cultivate. Cone cell structure (mosaic cone) of Stolephorus sp forms a connected regular square pattern with every single cone surrounded by four double cones, which indicate that anchovies are sensitive to light. The 13 watt LED (628 lux) has faster response than the 10 watt LED (531 lux) as it has wider and higher emitting intensity, which also attracts fish to gather quicker.
Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran
2016-01-11
Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.
Oh, Jeong Rok; Cho, Sang-Hwan; Park, Hoo Keun; Oh, Ji Hye; Lee, Yong-Hee; Do, Young Rag
2010-05-24
This paper reports the possibility of a facile optical structure to realize a highly efficient monochromatic amber-emitting light-emitting diode (LED) using a powder-based phosphor-converted LED combined with a long-wave pass filter (LWPF). The capping of a blue-reflecting and amber-passing LWPF enhances both the amber emission from the silicate amber phosphor layer and the color purity due to the blocking and recycling of the pumping blue light from the InGaN LED. The enhancement of the luminous efficacy of the amber pc-LED with a LWPF (phosphor concentration 20 wt%, 39.4 lm/W) is 34% over that of an amber pc-LED without a LWPF (phosphor concentration 55 wt%, 29.4 lm/W) at 100 mA and a high color purity (>96%) with Commission International d'Eclairage (CIE) color coordinates of x=0.57 and y=0.42.
The High-efficiency LED Driver for Visible Light Communication Applications
Gong, Cihun-Siyong Alex; Lee, Yu-Chen; Lai, Jyun-Liang; Yu, Chueh-Hao; Huang, Li Ren; Yang, Chia-Yen
2016-01-01
This paper presents a LED driver for VLC. The main purpose is to solve the low data rate problem used to be in switching type LED driver. The GaN power device is proposed to replace the traditional silicon power device of switching LED driver for the purpose of increasing switching frequency of converter, thereby increasing the bandwidth of data transmission. To achieve high efficiency, the diode-connected GaN power transistor is utilized to replace the traditional ultrafast recovery diode used to be in switching type LED driver. This work has been experimentally evaluated on 350-mA output current. The results demonstrate that it supports the data of PWM dimming level encoded in the PPM scheme for VLC application. The experimental results also show that system’s efficiency of 80.8% can be achieved at 1-Mb/s data rate. PMID:27498921
Compact 2100 nm laser diode module for next-generation DIRCM
NASA Astrophysics Data System (ADS)
Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas
2017-10-01
Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.
Red/near-infrared light-emitting diode therapy for traumatic brain injury
NASA Astrophysics Data System (ADS)
Naeser, Margaret A.; Martin, Paula I.; Ho, Michael D.; Krengel, Maxine H.; Bogdanova, Yelena; Knight, Jeffrey A.; Yee, Megan K.; Zafonte, Ross; Frazier, Judith; Hamblin, Michael R.; Koo, Bang-Bon
2015-05-01
This invited paper reviews our research with scalp application of red/near-infrared (NIR) light-emitting diodes (LED) to improve cognition in chronic, traumatic brain injury 1. Application of red/NIR light improves mitochondrial function (especially hypoxic/compromised cells) promoting increased ATP, important for cellular metabolism. Nitric oxide is released locally, increasing regional cerebral blood flow. Eleven chronic, mTBI participants with closed-head injury and cognitive dysfunction received 18 outpatient treatments (MWF, 6 Wks) starting at 10 Mo. to 8 Yr. post-mTBI (MVA, sports-related, IED blast injury). LED therapy is non-invasive, painless, non-thermal (FDA-cleared, non-significant risk device). Each LED cluster head (2.1" diameter, 500mW, 22.2mW/cm2) was applied 10 min (13J/cm2) to 11 scalp placements: midline, from front-to-back hairline; and bilaterally on dorsolateral prefrontal cortex, temporal, and parietal areas. Testing performed pre- and post-LED (+1 Wk, 1 and 2 Mo post- 18th treatment) showed significant linear trend for LED effect over time, on improved executive function and verbal memory. Fewer PTSD symptoms were reported. New studies at VA Boston include TBI patients treated with transcranial LED (26J/cm2); or treated with only intranasal red, 633nm and NIR, 810nm diodes placed into the nostrils (25 min, 6.5mW, 11.4J/cm2). Intranasal LEDs are hypothesized to deliver photons to hippocampus. Results are similar to Naeser et al. (2014). Actigraphy sleep data show increased sleep time (average, +1 Hr/night) post-18th transcranial or intranasal LED treatment. LED treatments may be self-administered at home (Naeser et al., 2011). A shamcontrolled study with Gulf War Illness Veterans is underway.
NASA Technical Reports Server (NTRS)
Yorio, N. C.; Goins, G. D.; Kagie, H. R.; Wheeler, R. M.; Sager, J. C.
2001-01-01
Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 micromoles m-2 s-1) blue light (400-500 nm) from blue fluorescent (BF) lamps. At 21 days after planting (DAP), leaf photosynthetic rates and stomatal conductance were greater for plants grown under CWF light than for those grown under red LEDs, with or without supplemental blue light. At harvest (21 DAP), total dry-weight accumulation was significantly lower for all species tested when grown under red LEDs alone than when grown under CWF light or red LEDs + 10% BF light. Moreover, total dry weight for radish and spinach was significantly lower under red LEDs + 10% BF than under CWF light, suggesting that addition of blue light to the red LEDs was still insufficient for achieving maximal growth for these crops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mary A.; Tangyunyong, Paiboon; Cole, Edward I.
2016-01-14
Laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes (LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increased leakage ismore » not present in devices without AVM signals. Transmission electron microscopy analysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less
Miller, Mary A.; Tangyunyong, Paiboon; Edward I. Cole, Jr.
2016-01-12
In this study, laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes(LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increasedmore » leakage is not present in devices without AVM signals. Transmission electron microscopyanalysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less
In−Vitro and In−Vivo Noise Analysis for Optical Neural Recording
Foust, Amanda J.; Schei, Jennifer L.; Rojas, Manuel J.; Rector, David M.
2008-01-01
Laser diodes (LD) are commonly used for optical neural recordings in chronically recorded animals and humans, primarily due to their brightness and small size. However, noise introduced by LDs may counteract the benefits of brightness when compared to low−noise light emitting diodes (LEDs). To understand noise sources in optical recordings, we systematically compared instrument and physiological noise profiles in two recording paradigms. A better understanding of noise sources will help improve optical recordings and make them more practical with fewer averages. We stimulated lobster nerves and rat cortex, then compared the root mean square (RMS) noise and signal−to−noise ratios (SNRs) of data obtained with LED, superluminescent diode (SLD) and LD illumination for different numbers of averages. The LED data exhibited significantly higher SNRs in fewer averages than LD data in all recordings. In the absence of tissue, LED noise increased linearly with intensity, while LD noise increased sharply in the transition to lasing and settled to noise levels significantly higher than the LED’s, suggesting that speckle noise contributed to the LD’s higher noise and lower SNRs. Our data recommend low coherence and portable light sources for in−vivo chronic neural recording applications. PMID:19021365
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yong Deok; Oh, Seung Kyu; Park, Min Joo
Highlights: • A nitrogen implanted current-blocking layer was successfully demonstrated. • Light-extraction efficiency and radiant intensity was increased by more than 20%. • Ion implantation was successfully implemented in GaN based light-emitting diodes. - Abstract: GaN-based light emitting diodes (LEDs) with a nitrogen implanted current-blocking layer (CBL) were successfully demonstrated for improving the light extraction efficiency (LEE) and radiant intensity. The LEE and radiant intensity of the LEDs with a shallow implanted CBL with nitrogen was greatly increased by more than 20% compared to that of a conventional LED without the CBL due to an increase in the effective currentmore » path, which reduces light absorption at the thick p-pad electrode. Meanwhile, deep implanted CBL with a nitrogen resulted in deterioration of the LEE and radiant intensity because of formation of crystal damage, followed by absorption of the light generated at the multi-quantum well(MQW). These results clearly suggest that ion implantation method, which is widely applied in the fabrication of Si based devices, can be successfully implemented in the fabrication of GaN based LEDs by optimization of implanted depth.« less
NASA Astrophysics Data System (ADS)
Rubinger, Rero Marques; da Silva, Edna Raimunda; Pinto, Daniel Zaroni; Rubinger, Carla Patrícia Lacerda; Oliveira, Adhimar Flávio; da Costa Bortoni, Edson
2015-01-01
We compared the photometric and radiometric quantities in the visible, ultraviolet, and infrared spectra of white light-emitting diodes (LEDs), incandescent light bulbs and a compact fluorescent lamp used for home illumination. The color-rendering index and efficiency-related quantities were also used as auxiliary tools in this comparison. LEDs have a better performance in all aspects except for the color-rendering index, which is better with an incandescent light bulb. Compact fluorescent lamps presented results that, to our knowledge, do not justify their substitution for the incandescent light bulb. The main contribution of this work is an approach based on fundamental quantities to evaluate LEDs and other light sources.
NASA Astrophysics Data System (ADS)
Zaremba, Krzysztof
2008-06-01
Application of directional-mixed reflectors results in a luminance decrease of the apparent image of light emitting diodes (LEDs), which is advantageous as far as glare reduction is concerned. On the other hand, reflectors have a negative impact on luminous intensity curves of the luminaries. This work analyzes an impact of surfaces with directional-mixed reflection properties in a mirror reflector designed for a luminary equipped with high-power LEDs. We present an algorithm used to determine the shape of the reflector of the surface with small scattering, where the axis twist angle for a parabolic reflector varies in a predefined range and follows a power function.
Low Level Light Therapy with Light-Emitting Diodes for the Aging Face.
Calderhead, R Glen; Vasily, David B
2016-07-01
Low level light therapy (LLLT) with light-emitting diodes (LEDs) is emerging from the mists of black magic as a solid medico-scientific modality, with a substantial buildup of corroborative bodies of evidence for its efficacy and elucidation of the modes of action. Reports are appearing from many different specialties; however, of particular interest to plastic surgeons treating the aging face is the proven action of LED-LLLT on skin cells in both the epidermis and dermis and enhanced blood flow. Thus, LED-LLLT is a safe and effective stand-alone therapy for patients who are prepared to wait until the final effect is perceived. Copyright © 2016 Elsevier Inc. All rights reserved.
Light-emitting diodes based on colloidal silicon quantum dots
NASA Astrophysics Data System (ADS)
Zhao, Shuangyi; Liu, Xiangkai; Pi, Xiaodong; Yang, Deren
2018-06-01
Colloidal silicon quantum dots (Si QDs) hold great promise for the development of printed Si electronics. Given their novel electronic and optical properties, colloidal Si QDs have been intensively investigated for optoelectronic applications. Among all kinds of optoelectronic devices based on colloidal Si QDs, QD light-emitting diodes (LEDs) play an important role. It is encouraging that the performance of LEDs based on colloidal Si QDs has been significantly increasing in the past decade. In this review, we discuss the effects of the QD size, QD surface and device structure on the performance of colloidal Si-QD LEDs. The outlook on the further optimization of the device performance is presented at the end.
Blue light emission from the heterostructured ZnO/InGaN/GaN
2013-01-01
ZnO/InGaN/GaN heterostructured light-emitting diodes (LEDs) were fabricated by molecular beam epitaxy and atomic layer deposition. InGaN films consisted of an Mg-doped InGaN layer, an undoped InGaN layer, and a Si-doped InGaN layer. Current-voltage characteristic of the heterojunction indicated a diode-like rectification behavior. The electroluminescence spectra under forward biases presented a blue emission accompanied by a broad peak centered at 600 nm. With appropriate emission intensity ratio, the heterostructured LEDs had potential application in white LEDs. Moreover, a UV emission and an emission peak centered at 560 nm were observed under reverse bias. PMID:23433236
2014-01-01
Ordered ZnO nanorod array/p-GaN heterojunction light-emitting diodes (LEDs) have been fabricated by introducing graphene as the current spreading layer, which exhibit improved electroluminescence performance by comparison to the LED using a conventional structure (indium-tin-oxide as the current spreading layer). In addition, by adjusting the diameter of ZnO nanorod array in use, the light emission of the ZnO nanorod array/p-GaN heterojunction LEDs was enhanced further. This work has great potential applications in solid-state lighting, high performance optoelectronic devices, and so on. PACS 78.60.Fi; 85.60.Jb; 78.67.Lt; 81.10.Dn PMID:25489284
Dong, Jing-Jing; Hao, Hui-Ying; Xing, Jie; Fan, Zhen-Jun; Zhang, Zi-Li
2014-01-01
Ordered ZnO nanorod array/p-GaN heterojunction light-emitting diodes (LEDs) have been fabricated by introducing graphene as the current spreading layer, which exhibit improved electroluminescence performance by comparison to the LED using a conventional structure (indium-tin-oxide as the current spreading layer). In addition, by adjusting the diameter of ZnO nanorod array in use, the light emission of the ZnO nanorod array/p-GaN heterojunction LEDs was enhanced further. This work has great potential applications in solid-state lighting, high performance optoelectronic devices, and so on. 78.60.Fi; 85.60.Jb; 78.67.Lt; 81.10.Dn.
A lamp light-emitting diode-induced fluorescence detector for capillary electrophoresis.
Xu, Jing; Xiong, Yan; Chen, Shiheng; Guan, Yafeng
2008-07-15
A light-emitting diode-induced fluorescence detector (LED-FD) for capillary electrophoresis was constructed and evaluated. A lamp LED with an enhanced emission spectrum and a band pass filter was used as the excitation light source. Refractive index matching fluid (RIMF) was used in the detection cell to reduce scattering light and the noise level. The limit of detection (LOD) for fluorescein was 1.5 nM (SNR=3). The system exhibited linear responses in the range of 1 x 10(-8) to 5 x 10(-6)M (R=0.999). Application of the lamp LED-FD for the analysis of FITC-labeled ephedra herb extract by capillary electrophoresis was demonstrated.
Emergency Lighting Technology Evolves To Save Lives.
ERIC Educational Resources Information Center
Gregory, Dennis
2001-01-01
Explores the benefits of including high-brightness Light Emitting Diodes (LEDs) for emergency systems and its use in residence halls. LED emergency lighting options and their qualifications are also highlighted.(GR)
LED roadway lighting, volume 2 : field evaluations and software comparisons.
DOT National Transportation Integrated Search
2012-10-01
The use of light-emitting diodes (LEDs) for roadway lighting can potentially save energy costs and reduce the frequency of maintenance. The objective of this study is to explore the current state of the art in LED roadway lighting technology. Three s...
NASA Astrophysics Data System (ADS)
Feng, Shih-Wei; Liao, Po-Hsun; Leung, Benjamin; Han, Jung; Yang, Fann-Wei; Wang, Hsiang-Chen
2015-07-01
Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Shih-Wei, E-mail: swfeng@nuk.edu.tw; Liao, Po-Hsun; Leung, Benjamin
2015-07-28
Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantagesmore » of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.« less
Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform
Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot
2006-01-01
A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1 (+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. A light dependent resistor (LDR) modified with similar sensor membrane was also used as a comparison method. Both the LED sensor and the LDR sensor responded to various pH buffer solutions in a similar way to obtain sigmoidal curves expected of the dye. The pKa value obtained for the sensors was found to agree with the literature value.
Factors affecting marginal integrity of class II bulk-fill composite resin restorations
Savadi Oskoee, Siavash; Bahari, Mahmoud; Jafari Navimipour, Elmira; Ajami, Amir Ahmad; Ghiasvand, Negar; Savadi Oskoee, Ayda
2017-01-01
Background. Bulk-fill composite resins are a new type of resin-based composite resins, claimed to have the capacity to be placed in thick layers, up to 4 mm. This study was carried out to evaluate factors affecting gap formation in Cl II cavities restored using the bulk-fill technique. Methods. A total of 60 third molars were used in this study. Two Cl II cavities were prepared in each tooth, one on the mesial aspect 1 mm coronal to the CEJ and one on the distal aspect 1 mm apical to the CEJ. The teeth were divided into 4 groups: A: The cavities were restored using the bulk-fill technique with Filtek P90 composite resin and its adhesive system and light-cured with quartz tungsten halogen (QTH) light-curing unit. B: The cavities were restored similar to that in group A but light-cured with an LED light-curing unit. C: The cavities were restored using the bulk-fill technique with X-tra Fil composite resin and Clearfil SE Bond adhesive system and light-cured with a QTH curing unit. D: The cavities were restored similar to that in group C but light-cured with an LED light-curing unit. The gaps were examined under a stereomicroscope at ×60. Data were analyzed with General Linear Model test. In cases of statistical significance (P<0.05), post hoc Bonferroni test was used for further analyses. Results. The light-curing unit type had no effect on gap formation. However, the results were significant in relation to the composite resin type and margin location (P<0.001). The cumulative effects of light-curing unit*gingival margin and light-curing unit*composite resin type were not significant; however, the cumulative effect of composite rein type*gingival margin was significant (P=0.04) Conclusion. X-tra Fil composite exhibited smaller gaps compared with Filtek P90 composite with both light-curing units. Both composite resins exhibited smaller gaps at enamel margins. PMID:28748051
Tran, Lien Hong; Jung, Sunyo
2017-03-16
We examined the effects of light quality on growth characteristics and porphyrin biosynthesis of rice seedlings grown under different wavelengths from light emitting diodes (LEDs). After 10 days of exposure to various wavelengths of LEDs, leaf area and shoot biomass were greater in seedlings grown under white and blue LEDs than those of green and red LEDs. Both green and red LED treatments drastically decreased levels of protoporphyrin IX (Proto IX) and Mg-porphyrins compared to those of white LED, while levels of Mg-Proto IX monomethyl ester and protochlorophyllide under blue LED were decreased by 21% and 49%, respectively. Transcript levels of PPO1 were greatly upregulated in seedlings grown under red LED compared to white LED, whereas transcript levels of HO2 and CHLD were upregulated under blue LED. Overall, most porphyrin biosynthetic genes in the Fe-porphyrin branch remained almost constant or upregulated, while most genes in the Mg-porphyrin branch were downregulated. Expression levels of nuclear-encoded photosynthetic genes Lhcb and RbcS noticeably decreased after exposure to blue and red LEDs, compared to white LED. Our study suggests that specific wavelengths of LED greatly influence characteristics of growth in plants partly through altering the metabolic regulation of the porphyrin biosynthetic pathway, and possibly contribute to affect retrograde signaling.
NASA Astrophysics Data System (ADS)
Radevici, Ivan; Tiira, Jonna; Sadi, Toufik; Oksanen, Jani
2018-05-01
Current crowding close to electrical contacts is a common challenge in all optoelectronic devices containing thin current spreading layers (CSLs). We analyze the effects of current spreading on the operation of the so-called double diode structure (DDS), consisting of a light emitting diode (LED) and a photodiode (PD) fabricated within the same epitaxial growth process, and providing an attractive platform for studying electroluminescent (EL) cooling under high bias conditions. We show that current spreading in the common n-type layer between the LED and the PD can be dramatically improved by the strong optical coupling between the diodes, as the coupling enables a photo-generated current through the PD. This reduces the current in the DDS CSL and enables the study of EL cooling using structures that are not limited by the conventional light extraction challenges encountered in normal LEDs. The current spreading in the structures is studied using optical imaging techniques, electrical measurements, simulations, as well as simple equivalent circuit models developed for this purpose. The improved current spreading leads further to a mutual dependence with the coupling efficiency, which is expected to facilitate the process of optimizing the DDS. We also report a new improved value of 63% for the DDS coupling quantum efficiency.
Odontological light-emitting diode light-curing unit beam quality.
de Magalhães Filho, Thales Ribeiro; Weig, Karin de Mello; Werneck, Marcelo Martins; da Costa Neto, Célio Albano; da Costa, Marysilvia Ferreira
2015-05-01
The distribution of light intensity of three light-curing units (LCUs) to cure the resin-based composite for dental fillings was analyzed, and a homogeneity index [flat-top factor (FTF)] was calculated. The index is based on the M2 index, which is used for laser beams. An optical spectrum analyzer was used with an optical fiber to produce an x-y power profile of each LCU light guide. The FTF-calculated values were 0.51 for LCU1 and 0.55 for LCU2, which was the best FTF, although it still differed greatly from the perfect FTF = 1, and 0.27 for LCU3, which was the poorest value and even lower than the Gaussian FTF = 0.5. All LCUs presented notably heterogeneous light distribution, which can lead professionals and researchers to produce samples with irregular polymerization and poor mechanical properties.
Odontological light-emitting diode light-curing unit beam quality
NASA Astrophysics Data System (ADS)
de Magalhães Filho, Thales Ribeiro; Weig, Karin de Mello; Werneck, Marcelo Martins; da Costa Neto, Célio Albano; da Costa, Marysilvia Ferreira
2015-05-01
The distribution of light intensity of three light-curing units (LCUs) to cure the resin-based composite for dental fillings was analyzed, and a homogeneity index [flat-top factor (FTF)] was calculated. The index is based on the M2 index, which is used for laser beams. An optical spectrum analyzer was used with an optical fiber to produce an x-y power profile of each LCU light guide. The FTF-calculated values were 0.51 for LCU1 and 0.55 for LCU2, which was the best FTF, although it still differed greatly from the perfect FTF=1, and 0.27 for LCU3, which was the poorest value and even lower than the Gaussian FTF=0.5. All LCUs presented notably heterogeneous light distribution, which can lead professionals and researchers to produce samples with irregular polymerization and poor mechanical properties.
NASA Astrophysics Data System (ADS)
Pustozerov, A.; Shandarov, V.
2017-12-01
The influence of incoherent background illumination produced by light-emitting diodes (LED's) of different average wavelengths and laser diode emitting in blue region of visible on diffraction characteristics of narrow coherent light beams of He-Ne laser due to refractive index changes of Fe-doped lithium niobate sample are studied. It has been experimentally demonstrated that nonlinear diffraction of red beams with wavelength 633 nm and diameters on full width of half maximum (FWHM) near to 15 μm may be totally compensated using background light with average wavelengths 450 - 465 nm. To provide the necessary intensity of incoherent background, the combinations of spherical and cylindrical concave lenses with blue LED and laser diode module without focusing its beam have been used.
Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.
Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A
2007-09-03
We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.
NASA Astrophysics Data System (ADS)
Bicanic, D.; Skenderović, H.; Marković, K.; Dóka, O.; Pichler, L.; Pichler, G.; Luterotti, S.
2010-03-01
The combined use of a high power light emitting diode (LED) and the compact photoacoustic (PA) detector offers the possibility for a rapid (no extraction needed), accurate (precision 1.5%) and inexpensive quantification of lycopene in different products derived from the thermally processed tomatoes. The concentration of lycopene in selected products ranges from a few mg to several tens mg per 100 g fresh weight. The HPLC was used as the well established reference method.
Light curing in orthodontics; should we be concerned?
McCusker, Neil; Lee, Siu Man; Robinson, Stephen; Patel, Naresh; Sandy, Jonathan R; Ireland, Anthony J
2013-06-01
Light cured materials are increasingly used in orthodontic clinical practice and concurrent with developments in materials have been developments in light curing unit technology. In recent years the irradiances of these units have increased. The aim of this study was to determine the safe exposure times to both direct and reflected light. The weighted irradiance and safe exposure times of 11 dental curing lights (1 plasma arc, 2 halogen and 8 LED lights) were determined at 6 distances (2-60 cm) from the light guide tip using a spectroradiometer. In addition, using the single most powerful light, the same two parameters were determined for reflected light. This was done at a distance of 10 cm from the reflected light, but during simulated bonding of 8 different orthodontic brackets of three material types, namely stainless steel, ceramic and composite. The results indicate that the LED Fusion lamp had the highest weighted irradiance and the shortest safe exposure time. With this light the maximum safe exposure time without additional eye protection for the patient (at 10 cm), the operator (at 30 cm) and the assistant (at 60 cm) ranged from 2.5 min, 22.1 min and 88.8 min respectively. This indicates a relatively low short term risk during normal operation of dental curing lights. For reflected light at a distance of 10 cm the risk was even lower, but was affected by the material and shape of the orthodontic bracket under test. The short term risks associated with the use of dental curing lights, halogen, LED or plasma, appear to be low, particularly if as is the case adequate safety precautions are employed. The same is true for reflected light from orthodontic brackets during bonding. What is still unclear is the potential long term ocular effects of prolonged exposure to the blue light generated from dental curing lights. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Bernstein, Jacob G.; Allen, Brian D.; Guerra, Alexander A.; Boyden, Edward S.
2016-01-01
Optogenetics enables light to be used to control the activity of genetically targeted cells in the living brain. Optical fibers can be used to deliver light to deep targets, and LEDs can be spatially arranged to enable patterned light delivery. In combination, arrays of LED-coupled optical fibers can enable patterned light delivery to deep targets in the brain. Here we describe the process flow for making LED arrays and LED-coupled optical fiber arrays, explaining key optical, electrical, thermal, and mechanical design principles to enable the manufacturing, assembly, and testing of such multi-site targetable optical devices. We also explore accessory strategies such as surgical automation approaches as well as innovations to enable low-noise concurrent electrophysiology. PMID:26798482
Du, Chengxiao; Wei, Tongbo; Zheng, Haiyang; Wang, Liancheng; Geng, Chong; Yan, Qingfeng; Wang, Junxi; Li, Jinmin
2013-10-21
Size-controllable p-GaN hexagonal nanopyramids (HnPs)-photonic crystal (PhC) structures were selectively grown on flat p-GaN layer for the elimination of total internal reflection of light-emitting diodes (LEDs). The LEDs with HnPs-PhC of 46.3% bottom fill factor (PhC lattice constant is 730 nm) showed an improved light output power by 99.9% at forward current of 350 mA compared to the reference LEDs with flat p-GaN layer. We confirmed the effect of HnPs-PhC with different bottom fill factors and the effect of nanopyramid-shaped and nanocolumn-shaped PhC on the light-extraction of LEDs was also investigated by using three-dimensional finite-difference time-domain simulations.
Light-Emitting Diodes: Exploration of Underlying Physics
ERIC Educational Resources Information Center
Etkina, Eugenia; Planinšic, Gorazd
2014-01-01
This paper is the second in the series of LED-dedicated papers that have a goal to systematically investigate the use of LEDs in a general physics course. The first paper, published in the February 2014 issue, provided an overview of the course units where LEDs can be used and suggested three different ways of utilizing LEDs in an introductory…
Rosa, Cristiane Becher; Habib, Fernando Antonio Lima; de Araújo, Telma Martins; Aragão, Juliana Silveira; Gomes, Rafael Soares; Barbosa, Artur Felipe Santos; Silveira, Landulfo; Pinheiro, Antonio L B
2014-05-01
The aim of this study was to analyze the effect of laser or light-emitting diode (LED) phototherapy on the bone formation at the midpalatal suture after rapid maxilla expansion. Twenty young adult male rats were divided into four groups with 8 days of experimental time: group 1, no treatment; group 2, expansion; group 3, expansion and laser irradiation; and group 4, expansion and LED irradiation. In groups 3 and 4, light irradiation was in the first, third, and fifth experimental days. In all groups, the expansion was accomplished with a helicoid 0.020" stainless steel orthodontic spring. A diode laser (λ780 nm, 70 mW, spot of 0.04 cm(2), t = 257 s, spatial average energy fluence (SAEF) of 18 J/cm(2)) or a LED (λ850 nm, 150 mW ± 10 mW, spot of 0.5 cm(2), t = 120 s, SAEF of 18 J/cm(2)) were used. The samples were analyzed by Raman spectroscopy carried out at midpalatal suture and at the cortical area close to the suture. Two Raman shifts were analyzed: ∼ 960 (phosphate hydroxyapatite) and ∼ 1,450 cm(-1) (lipids and protein). Data was submitted to statistical analysis. Significant statistical difference (p ≤ 0.05) was found in the hydroxyapatite (CHA) peaks among the expansion group and the expansion and laser or LED groups. The LED group presented higher mean peak values of CHA. No statistical differences were found between the treated groups as for collagen deposition, although LED also presented higher mean peak values. The results of this study using Raman spectral analysis indicate that laser and LED light irradiation improves deposition of CHA in the midpalatal suture after orthopedic expansion.
NASA Astrophysics Data System (ADS)
Deng, Gaoqiang; Zhang, Yuantao; Yu, Ye; Yan, Long; Li, Pengchong; Han, Xu; Chen, Liang; Zhao, Degang; Du, Guotong
2018-04-01
In this paper, GaN-based yellow light-emitting diodes (LEDs) were homoepitaxially grown on free-standing (0001) GaN substrates by metal-organic chemical vapor deposition. X-ray diffraction (XRD), photoluminescence (PL), and electroluminescence (EL) measurements were conducted to investigate the structural, optical, and electrical properties of the yellow LED. The XRD measurement results showed that the InGaN/GaN multiple quantum wells (MQWs) in the LED structure have good periodicity because the distinct MQWs related higher order satellite peaks can be clearly observed from the profile of 2θ-ω XRD scan. The low temperature (10 K) and room temperature PL measurement results yield an internal quantum efficiency of 16% for the yellow LED. The EL spectra of the yellow LED present well Gaussian distribution with relatively low linewidth (47-55 nm), indicating the homogeneous In-content in the InGaN quantum well layers in the yellow LED structure. It is believed that this work will aid in the future development of GaN on GaN LEDs with long emission wavelength.
NASA Astrophysics Data System (ADS)
Xie, Ruijie; Li, Zhiquan; Li, Xin; Gu, Erdan; Niu, Liyong; Sha, Xiaopeng
2018-07-01
In this paper, a new type of light-emitting diodes (LEDs) structure is designed to enhance the light emission efficiency of GaN-based LEDs. The structure mainly includes Ag grating, ITO layer and p-GaN grating. The principle of stimulating the localized surface plasmon to improve the luminous characteristics of the LED by using this structure is discussed. Based on the COMSOL software, the finite element method is used to simulate the LED structure. The normalized radiated powers, the normalized absorbed powers under different wavelength and geometric parameters, and the distribution of the electric field with the particular geometric parameters are obtained. The simulation results show that with a local ITO thickness of 32 nm, an etching depth of 29 nm, a grating period of 510 nm and a duty ratio of 0.5, the emission intensity of the designed GaN-based LED structure has increased by nearly 55 times than the ordinary LED providing a reliable foundation for the development of high-performance GaN-based LEDs.
DOT National Transportation Integrated Search
2014-01-01
A flashing LED stop sign is essentially a normal octagonal stop sign with light emitted diodes (LED) on the : stop signs corners. A hierarchical Bayes observational before/after study found an estimated reduction of : about 41.5% in right-angle cr...
Spatial emission distribution of InGaN/GaN light-emitting diodes depending on the pattern structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kwanjae; Lee, Hyunjung; Lee, Cheul-Ro
2014-10-15
Highlights: • We study carrier lifetimes of InGaN/GaN LEDs fabricated on different PSS. • Spatial EL distribution was investigated depending on the pattern structure. • The carrier lifetime of the LEDs was compared with the spatial EL distribution. - Abstract: We investigated the emission characteristics of InGaN/GaN light-emitting diodes (LEDs) fabricated on lens-shaped (LS) patterned-sapphire substrates (PSS) by using time-resolved photoluminescence (TRPL) and confocal-scanning-electroluminescence microscopy (CSEM). The carrier lifetimes evaluated from the TRPL spectra for the LEDs on the LS-PSS (LS-LEDs) at 10 K were relatively shorter than those of the LEDs on a conventional planar substrate (C-LED). However, themore » carrier lifetimes for the LS-LEDs were relatively long compared to that of the C-LED at room temperature. In the CSEM images of the LS-LEDs, the emission beam around the center region of the LS pattern was relatively weaker than that of the edge region. In addition, the beam profile for the LS-LEDs showed different shapes according to the pattern structures. The emission beam around the boundary region of the LS pattern showed periodic fluctuation with the peak-to-peak distance of 814 nm.« less
Park, Min Joo; Kwon, K W; Kim, Y H; Park, S H; Kwak, Joon Seop
2011-05-01
We have demonstrated that the light extraction efficiency of the InGaN based multi-quantum well light-emitting diodes (LEDs) can be improved by using a single die growth (SDG) method. The SDG was performed by patterning the n-GaN and sapphire substrate with a size of single chip (600 x 250 microm2) by using a laser scriber, followed by the regrowth of the n-GaN and LED structures on the laser patterned n-GaN. We fabricated lateral LED chips having the SDG structures (SDG-LEDs), in which the thickness of the regrown n-GaN was varied from 2 to 6 microm. For comparison, we also fabricated conventional LED chips without the SDG structures. The SDG-LEDs showed lower operating voltage when compared to the conventional LEDs. In addition, the output power of the SDG-LEDs was significantly higher than that of the conventional LEDs. From optical ray tracing simulations, the increase in the thickness and sidewall angle of the regrown n-GaN and LED structures may enhance photon escapes from the tilted facets of the regrown n-GaN, followed by the increase in light output power and extraction efficiency of the SDG-LEDs.
Evaluation of inorganic and organic light-emitting diode displays for signage application
NASA Astrophysics Data System (ADS)
Sharma, Pratibha; Kwok, Harry
2006-08-01
High-brightness, inorganic light-emitting diodes (LEDs) have been successfully utilized for edge-lighting of large displays for signage. Further interest in solid-state lighting technology has been fueled with the emergence of small molecule and polymer-based organic light-emitting diodes (OLEDs). In this paper, edgelit inorganic LED-based displays and state-of-the-art OLED-based displays are evaluated on the basis of electrical and photometric measurements. The reference size for a signage system is assumed to be 600 mm x 600mm based on the industrial usage. With the availability of high power light-emitting diodes, it is possible to develop edgelit signage systems of the standard size. These displays possess an efficacy of 18 lm/W. Although, these displays are environmentally friendly and efficient, they suffer from some inherent limitations. Homogeneity of displays, which is a prime requirement for illuminated signs, is not accomplished. A standard deviation of 3.12 lux is observed between the illuminance values on the surface of the display. In order to distribute light effectively, reflective gratings are employed. Reflective gratings aid in reducing the problem but fail to eliminate it. In addition, the overall cost of signage is increased by 50% with the use of these additional components. This problem can be overcome by the use of a distributed source of light. Hence, the organic-LEDs are considered as a possible contender. In this paper, we experimentally determine the feasibility of using OLEDs for signage applications and compare their performance with inorganic LEDs. Passive matrix, small-molecule based, commercially available OLEDs is used. Design techniques for implementation of displays using organic LEDs are also discussed. It is determined that tiled displays based on organic LEDs possess better uniformity than the inorganic LED-based displays. However, the currently available OLEDs have lower light-conversion efficiency and higher costs than the conventional, inorganic LEDs. But, signage panels based on OLEDs can be made cheaper by avoiding the use of acrylic sheet and reflective gratings. Moreover, the distributed light output and light weight of OLEDs and the potential to be built inexpensively on flexible substrates can make OLEDs more beneficial for future signage applications than the inorganic LEDs.
Light Emitting Diode (LED) circular traffic signal lifetime management system.
DOT National Transportation Integrated Search
2011-02-01
The objective of this research is to build lifetime curves for red, yellow, and green LED circular traffic signals through 20,000-hr. accelerated stress testing of samples operating under Louisianas environmental conditions.
LED traffic signal management system : final report.
DOT National Transportation Integrated Search
2016-06-01
This research originated from the opportunity to develop a methodology to assess when LED (Light Emitting Diode) traffic signal modules begin to fail to meet the Institute of Transportation Engineers (ITE) performance specification for luminous inten...
Response of adult mosquitoes to light emitting diodes placed in resting boxes and in the field.
USDA-ARS?s Scientific Manuscript database
Resting boxes are passive devices used to attract and capture mosquitoes seeking shelter. Increasing the attractiveness of these devices could improve their effectiveness. Light emitting diodes (LEDs) can be attractive to mosquitoes when used together with other trapping devices. Therefore restin...
Promotion of neural sprouting using low-level green light-emitting diode phototherapy
NASA Astrophysics Data System (ADS)
Alon, Noa; Duadi, Hamootal; Cohen, Ortal; Samet, Tamar; Zilony, Neta; Schori, Hadas; Shefi, Orit; Zalevsky, Zeev
2015-02-01
We irradiated neuroblastoma SH-SY5Y cell line with low-level light-emitting diode (LED) illumination at a visible wavelength of 520 nm (green) and intensity of 100 mW/cm2. We captured and analyzed the cell morphology before LED treatment, immediately after, and 12 and 24 h after treatment. Our study demonstrated that LED illumination increases the amount of sprouting dendrites in comparison to the control untreated cells. This treatment also resulted in more elongated cells after treatment in comparison to the control cells and higher levels of expression of a differentiation related gene. This result is a good indication that the proposed method could serve in phototherapy treatment for increasing sprouting and enhancing neural network formation.
Lin, Bing-Chen; Chen, Kuo-Ju; Wang, Chao-Hsun; Chiu, Ching-Hsueh; Lan, Yu-Pin; Lin, Chien-Chung; Lee, Po-Tsung; Shih, Min-Hsiung; Kuo, Yen-Kuang; Kuo, Hao-Chung
2014-01-13
A tapered AlGaN electron blocking layer with step-graded aluminum composition is analyzed in nitride-based blue light-emitting diode (LED) numerically and experimentally. The energy band diagrams, electrostatic fields, carrier concentration, electron current density profiles, and hole transmitting probability are investigated. The simulation results demonstrated that such tapered structure can effectively enhance the hole injection efficiency as well as the electron confinement. Consequently, the LED with a tapered EBL grown by metal-organic chemical vapor deposition exhibits reduced efficiency droop behavior of 29% as compared with 44% for original LED, which reflects the improvement in hole injection and electron overflow in our design.
A new spatial integration method for luminous flux determination of light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhou, Xiaoli; Zhu, Shaolong; Shen, Haiping; Liu, Muqing
2010-10-01
Spatial integrated measurement using an integrating sphere is usually used for the luminous flux determination of light sources. Devices using an integrating sphere are bulky for use on a production assembly line. This paper proposes an alternative spatial integration method for accurately measuring the total luminous flux of light-emitting diodes (LEDs) having no backward emission. A compound parabolic concentrator is introduced to collect the light from an LED in conjunction with a detector which in turn measures the luminous flux. The study reported here combines both modeling and experiment to show the applicability of this novel method. The uncertainty in the measurements is then evaluated for the total luminous flux measurement from an LED.
NASA Astrophysics Data System (ADS)
Li, Shunfeng; Wang, Xue; Fündling, Sönke; Erenburg, Milena; Ledig, Johannes; Wei, Jiandong; Wehmann, Hergo H.; Waag, Andreas; Bergbauer, Werner; Mandl, Martin; Strassburg, Martin; Trampert, Achim; Jahn, Uwe; Riechert, Henning; Jönen, Holger; Hangleiter, Andreas
2012-07-01
Homogeneous nitrogen-polar GaN core-shell light emitting diode (LED) arrays were fabricated by selective area growth on patterned substrates. Transmission electron microscopy measurements prove the core-shell structure of the rod LEDs. Depending on the growth facets, the InGaN/GaN multi-quantum wells (MQWs) show different dimensions and morphology. Cathodoluminescence (CL) measurements reveal a MQWs emission centered at about 415 nm on sidewalls and another emission at 460 nm from top surfaces. CL line scans on cleaved rod also indicate the core-shell morphology. Finally, an internal quantum efficiency of about 28% at room temperature was determined by an all-optical method on a LED array.
NASA Astrophysics Data System (ADS)
Lin, Yu-Sheng; Yeh, J. Andrew
2011-09-01
High-efficiency GaN-based light-emitting diodes (LEDs) with an emitting wavelength of 438 nm were demonstrated utilizing nanoscale patterned sapphire substrates with void-embedded cortex-like nanostructures (NPSS-VECN). Unlike the previous nanopatterned sapphire substrates, the presented substrate has a new morphology that can not only improve the crystalline quality of GaN epilayers but also generate a void-embedded nanostructural layer to enhance light extraction. Under a driving current of 20 mA, the external quantum efficiency of an LED with NPSS-VECN is enhanced by 2.4-fold compared with that of the conventional LED. Moreover, the output powers of two devices respectively are 33.1 and 13.9 mW.
Controlled electroluminescence of n-ZnMgO/p-GaN light-emitting diodes
NASA Astrophysics Data System (ADS)
Goh, E. S. M.; Yang, H. Y.; Han, Z. J.; Chen, T. P.; Ostrikov, K.
2012-12-01
Effective control of room-temperature electroluminescence of n-ZnMgO/p-GaN light-emitting diodes (LEDs) over both emission intensity and wavelength is demonstrated. With varied Mg concentration, the intensity of LEDs in the near-ultraviolet region is increased due to the effective radiative recombination in the ZnMgO layer. Furthermore, the emission wavelength is shifted to the green/yellow spectral region by employing an indium-tin-oxide thin film as the dopant source, where thermally activated indium diffusion creates extra deep defect levels for carrier recombination. These results clearly demonstrate the effectiveness of controlled metal incorporation in achieving high energy efficiency and spectral tunability of the n-ZnMgO/p-GaN LED devices.
NASA Astrophysics Data System (ADS)
Lu, Lin; Zhang, Yu; Xu, Fujun; Ding, Gege; Liu, Yuhang
2018-06-01
Characteristics of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) with step-like and Al-composition graded quantum wells have been investigated. The simulation results show that compared to DUV-LEDs with the conventional AlGaN multiple quantum wells (MQWs) structure, the light output power (LOP) and efficiency droop of DUV-LEDs with the Al-composition graded wells were remarkably improved. The key factor accounting for the improved performance is ascribed to the better modulation of carrier distribution in the quantum wells to increase the overlap between electron and hole wavefunctions, which contributes to more efficient recombination of electrons and holes, and thereby a significant enhancement in the LOP.
InGaN/GaN dot-in-nanowire monolithic LEDs and lasers on (001) silicon
NASA Astrophysics Data System (ADS)
Bhattacharya, P.; Hazari, A.; Jahangir, S.
2017-02-01
GaN-based nanowire arrays have been grown on (001)Si substrate by plasma-assisted molecular beam epitaxy and their structural and optical properties have been determined. InxGa1-xN disks inserted in the nanowires behave as quantum dots with emission ranging from visible to near-infrared. We have exploited these nanowire heterostructure arrays to realize light-emitting diodes and diode lasers in which the quantum dots form the active light emitting media. The fabrication and characteristics of 630nm light-emitting diodes and 1.3μm edge-emitting diode lasers are described.
Unclassified Publications of Lincoln Laboratory. Volume 5
1975-12-15
10 TN-1974-36 LIGHT - EMITTING DIODES (LED) JA-4295 LIGHT SCATTERING JA-4456 LINCOLN DIGITAL VOICE TERMINAL TN-1975-53, TN-1975-65 LINCOLN...Hinkley J. O. Sample G. Dresselhaus T. C. Harman J. P. McVittie J. Filson p-n Junction PbSi_xSex Photo- J. P. Donnelly diodes Fabricated by Se...Room-Temperature Operation of GalnAsP/lnP Double- Heterostructure Diode Lasers Emitting at 1.1 (im Transparent Heat Mirrors for Solar-Energy
Substrate-Free InGaN/GaN Nanowire Light-Emitting Diodes.
Neplokh, Vladimir; Messanvi, Agnes; Zhang, Hezhi; Julien, Francois H; Babichev, Andrey; Eymery, Joel; Durand, Christophe; Tchernycheva, Maria
2015-12-01
We report on the demonstration of substrate-free nanowire/polydimethylsiloxane (PDMS) membrane light-emitting diodes (LEDs). Metal-organic vapour-phase epitaxy (MOVPE)-grown InGaN/GaN core-shell nanowires were encapsulated into PDMS layer. After metal deposition to p-GaN, a thick PDMS cap layer was spin-coated and the membrane was manually peeled from the sapphire substrate, flipped upside down onto a steel holder, and transparent indium tin oxide (ITO) contact to n-GaN was deposited. The fabricated LEDs demonstrate rectifying diode characteristics. For the electroluminescence (EL) measurements, the samples were manually bonded using silver paint. The EL spectra measured at different applied voltages demonstrate a blue shift with the current increase. This shift is explained by the current injection into the InGaN areas of the active region with different average indium content.
InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamoorthy, Sriram, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu; Akyol, Fatih; Rajan, Siddharth, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu
InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450 nm) light emitting diode. A voltage drop of 5.3 V at 100 mA, forward resistance of 2 × 10{sup −2} Ω cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5 × 10{sup −4} Ω cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. Themore » depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.« less
NASA Astrophysics Data System (ADS)
Ko, Rong-Ming; Wang, Shui-Jinn; Chen, Ching-Yi; Wu, Cheng-Han; Lin, Yan-Ru; Lo, Hsin-Ming
2017-04-01
The hydrothermal growth (HTG) of crystalline n-ZnO films on both the nonpatterned and patterned p-GaN epilayers with a honeycomb array of etched holes is demonstrated, and its application in n-ZnO/p-GaN heterojunction light-emitting diodes (HJ-LEDs) is reported. The results reveal that an HTG n-ZnO film on a patterned p-GaN layer exhibits a high-quality single crystal with FWHMs of 0.463 and 0.983° obtained from a ω-rocking curve and a ϕ-scan pattern, respectively, which are much better than those obtained on a nonpatterned p-GaN layer. In addition, the n-ZnO/patterned p-GaN HJ-LED exhibited a much better rectifying diode behavior owing to having a higher n-ZnO film crystallinity quality and an improved interface with the p-GaN layer. Strong violet and violet-blue lights emitted from the n-ZnO/patterned p-GaN HJ-LED at around 405, 412, and 430 nm were analyzed.
LEDs: DOE Programs Add Credibility to a Developing Technology
ERIC Educational Resources Information Center
Conbere, Susan
2009-01-01
LED (light-emitting diode) technology is moving fast, and with justification, some facility managers have viewed it with a wary eye. Some LEDs on the market do not perform as promised, and the technology is changing rapidly. But new developments from the U.S. Department of Energy (DOE) now make it easier for facility managers to find LEDs that…
Computer-Based Experiment for Determining Planck's Constant Using LEDs
ERIC Educational Resources Information Center
Zhou, Feng; Cloninger, Todd
2008-01-01
Visible light emitting diodes (LEDs) have been widely used as power indicators. However, after the power is switched off, it takes a while for the LED to go off. Many students were fascinated by this simple demonstration. In this paper, by making use of computer-based data acquisition and modeling, we show the voltage across the LED undergoing an…
NASA Astrophysics Data System (ADS)
Liang, Junqing; Guo, Xiaoyang; Song, Li; Lin, Jie; Hu, Yongsheng; Zhang, Nan; Liu, Xingyuan
2017-11-01
Perovskite light-emitting diodes (PeLEDs) have attracted much attention in the past two years due to their high photoluminescence quantum efficiencies and wavelength tuneable characteristics. In this work, transparent PeLEDs (TPeLEDs) have been reported with organic-inorganic multilayer transparent top electrodes that have more convenient control of the organic/electrode interface. By optimizing the thickness of the MoO3 layer in the top electrode, the best average transmittance of 47.21% has been obtained in the TPeLED in the wavelength range of 380-780 nm. In addition, the TPeLED exhibits a maximum luminance of 6380 cd/m2, a maximum current efficiency (CE) of 3.50 cd/A, and a maximum external quantum efficiency (EQE) of 0.85% from the bottom side together with a maximum luminance of 3380 cd/m2, a maximum CE of 1.47 cd/A, and a maximum EQE of 0.36% from the top side. The total EQE of the TPeLED is about 86% of that of the reference device, indicating efficient TPeLED achieved in this work, which could have significant contribution to PeLEDs for see-through displays.
Applications of Light Emitting Diodes in Health Care.
Dong, Jianfei; Xiong, Daxi
2017-11-01
Light emitting diodes (LEDs) have become the main light sources for general lighting, due to their high lumen efficiency and long life time. Moreover, their high bandwidth and the availability of diverse wavelength contents ranging from ultraviolet to infrared empower them with great controllability in tuning brightness, pulse durations and spectra. These parameters are the essential ingredients of the applications in medical imaging and therapies. Despite the fast advances in both LED technologies and their applications, few reviews have been seen to link the controllable emission properties of LEDs to these applications. The objective of this paper is to bridge this gap by reviewing the main control techniques of LEDs that enable creating enhanced lighting patterns for imaging and generating effective photon doses for photobiomodulation. This paper also provides the basic mechanisms behind the effective LED therapies in treating cutaneous and neurological diseases. The emerging field of optogenetics is also discussed with a focus on the application of LEDs. The multidisciplinary topics reviewed in this paper can help the researchers in LEDs, imaging, light therapy and optogenetics better understand the basic principles in each other's field; and hence to stimulate the application of LEDs in health care.
Alternatives to Pyrotechnic Distress Signals; Supplemental Report
2015-08-01
distribution of an incandescent lamp as compared to a specific white LED . ...................... 3 Figure 3. Spectral distribution of a “cool” white LED ...of common lamps2. Figure 2 shows the spectral distribution of an incandescent lamp as compared to a “cool” white LED . Note the LED peak intensity in...project effort that developed a specification for a light-emitting diode ( LED ) signal characteristic as an alternative to pyrotechnic, maritime
Lai, Fang-I; Yang, Jui-Fu
2013-05-17
In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chao; Cai, Yuefei; Liu, Zhaojun
2015-05-04
We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrownmore » n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.« less
Efficiency of True-Green Light Emitting Diodes: Non-Uniformity and Temperature Effects
Titkov, Ilya E.; Karpov, Sergey Yu.; Yadav, Amit; Mamedov, Denis; Zerova, Vera L.
2017-01-01
External quantum efficiency of industrial-grade green InGaN light-emitting diodes (LEDs) has been measured in a wide range of operating currents at various temperatures from 13 K to 300 K. Unlike blue LEDs, the efficiency as a function of current is found to have a multi-peak character, which could not be fitted by a simple ABC-model. This observation correlated with splitting of LED emission spectra into two peaks at certain currents. The characterization data are interpreted in terms of non-uniformity of the LED active region, which is tentatively attributed to extended defects like V-pits. We suggest a new approach to evaluation of temperature-dependent light extraction and internal quantum efficiencies taking into account the active region non-uniformity. As a result, the temperature dependence of light extraction and internal quantum efficiencies have been evaluated in the temperature range mentioned above and compared with those of blue LEDs. PMID:29156543
Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih
Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less
Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes
Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; ...
2016-11-09
Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less
Li, Xiaoyi; Liang, Renrong; Tao, Juan; Peng, Zhengchun; Xu, Qiming; Han, Xun; Wang, Xiandi; Wang, Chunfeng; Zhu, Jing; Pan, Caofeng; Wang, Zhong Lin
2017-04-25
Due to the fragility and the poor optoelectronic performances of Si, it is challenging and exciting to fabricate the Si-based flexible light-emitting diode (LED) array devices. Here, a flexible LED array device made of Si microwires-ZnO nanofilm, with the advantages of flexibility, stability, lightweight, and energy savings, is fabricated and can be used as a strain sensor to demonstrate the two-dimensional pressure distribution. Based on piezo-phototronic effect, the intensity of the flexible LED array can be increased more than 3 times (under 60 MPa compressive strains). Additionally, the device is stable and energy saving. The flexible device can still work well after 1000 bending cycles or 6 months placed in the atmosphere, and the power supplied to the flexible LED array is only 8% of the power of the surface-contact LED. The promising Si-based flexible device has wide range application and may revolutionize the technologies of flexible screens, touchpad technology, and smart skin.
Green perovskite light emitting diodes based on the ITO/Al2O3/CsPbBr3 heterojunction structure
NASA Astrophysics Data System (ADS)
Zhuang, Shiwei; Ma, Xue; Hu, Daqiang; Dong, Xin; Zhang, Yuantao; Zhang, Baolin
2018-03-01
Perovskite light emitting diodes (PeLEDs) now emerge as a promising new optoelectronic application field for these amazing semiconductors. For the purpose of investigating the device structures and light emission mechanisms of PeLEDs, we have fabricated green PeLEDs based on the ITO/Al2O3/CsPbBr3 heterojunction structure. The emission layer inorganic perovskite CsPbBr3 film with small grain sizes (∼28.9 nm) was prepared using a two-step method. The device exhibits a typical rectification behavior with turn-on voltage of ∼6 V. The EL emission band is narrow with the FWHM of ∼25 nm. The peak EQE of the device was ∼0.09%. The working mechanism of the device is also discussed. The result of the present work provides a feasible innovation idea of PeLEDs fabrication and great potentials for the development of perovskite based LEDs.
Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres
Kim, Jonghak; Woo, Heeje; Joo, Kisu; Tae, Sungwon; Park, Jinsub; Moon, Daeyoung; Park, Sung Hyun; Jang, Junghwan; Cho, Yigil; Park, Jucheol; Yuh, Hwankuk; Lee, Gun-Do; Choi, In-Suk; Nanishi, Yasushi; Han, Heung Nam; Char, Kookheon; Yoon, Euijoon
2013-01-01
Light-emitting diodes (LEDs) become an attractive alternative to conventional light sources due to high efficiency and long lifetime. However, different material properties between GaN and sapphire cause several problems such as high defect density in GaN, serious wafer bowing, particularly in large-area wafers, and poor light extraction of GaN-based LEDs. Here, we suggest a new growth strategy for high efficiency LEDs by incorporating silica hollow nanospheres (S-HNS). In this strategy, S-HNSs were introduced as a monolayer on a sapphire substrate and the subsequent growth of GaN by metalorganic chemical vapor deposition results in improved crystal quality due to nano-scale lateral epitaxial overgrowth. Moreover, well-defined voids embedded at the GaN/sapphire interface help scatter lights effectively for improved light extraction, and reduce wafer bowing due to partial alleviation of compressive stress in GaN. The incorporation of S-HNS into LEDs is thus quite advantageous in achieving high efficiency LEDs for solid-state lighting. PMID:24220259
Kim, Yong Seung; Joo, Kisu; Jerng, Sahng-Kyoon; Lee, Jae Hong; Moon, Daeyoung; Kim, Jonghak; Yoon, Euijoon; Chun, Seung-Hyun
2014-03-25
The integration of graphene into devices is a challenging task because the preparation of a graphene-based device usually includes graphene growth on a metal surface at elevated temperatures (∼1000 °C) and a complicated postgrowth transfer process of graphene from the metal catalyst. Here we report a direct integration approach for incorporating polycrystalline graphene into light emitting diodes (LEDs) at low temperature by plasma-assisted metal-catalyst-free synthesis. Thermal degradation of the active layer in LEDs is negligible at our growth temperature, and LEDs could be fabricated without a transfer process. Moreover, in situ ohmic contact formation is observed between DG and p-GaN resulting from carbon diffusion into the p-GaN surface during the growth process. As a result, the contact resistance is reduced and the electrical properties of directly integrated LEDs outperform those of LEDs with transferred graphene electrodes. This relatively simple method of graphene integration will be easily adoptable in the industrialization of graphene-based devices.
Modeling of light-emitting diode wavefronts for the optimization of transmission holograms.
Karthaus, Daniela; Giehl, Markus; Sandfuchs, Oliver; Sinzinger, Stefan
2017-06-20
The objective of applying transmission holograms in automotive headlamp systems requires the adaptation of holograms to divergent and polychromatic light sources like light-emitting diodes (LEDs). In this paper, four different options to describe the scalar light waves emitted by a typical automotive LED are regarded. This includes a new approach to determine the LED's wavefront from interferometric measurements. Computer-generated holograms are designed considering the different LED approximations and recorded into a photopolymer. The holograms are reconstructed with the LED and the resulting images are analyzed to evaluate the quality of the wave descriptions. In this paper, we show that our presented new approach leads to better results in comparison to other wave descriptions. The enhancement is evaluated by the correlation between reconstructed and ideal images. In contrast to the next best approximation, a spherical wave, the correlation coefficient increased by 0.18% at 532 nm, 1.69% at 590 nm, and 0.75% at 620 nm.
NASA Astrophysics Data System (ADS)
Yue, Qing-Yang; Yang, Yang; Cheng, Zhen-Jia; Guo, Cheng-Shan
2018-06-01
In this work, the light extraction efficiency enhancement of GaN-based thin-film flip-chip (TFFC) light-emitting diodes (LEDs) with high-refractive-index (TiO2) buckling nanostructures was studied using the three-dimensional finite difference time domain method. Compared with 2-D photonic crystals, the buckling structures have the advantages of a random directionality and a broad distribution in periodicity, which can effectively extract the guided light propagating in all azimuthal directions over a wide spectrum. Numerical studies revealed that the light extraction efficiency of buckling-structured LEDs reaches 1.1 times that of triangular lattice photonic crystals. The effects of the buckling structure feature sizes and the thickness of the N-GaN layer on the light extraction efficiency for TFFC LEDs were also investigated systematically. With optimized structural parameters, a significant light extraction enhancement of about 2.6 times was achieved for TiO2 buckling-structured TFFC LEDs compared with planar LEDs.
ERIC Educational Resources Information Center
Dahlgren, Sally
2000-01-01
Discusses how advances in light-emitting diode (LED) technology is helping video displays at sporting events get fans closer to the action than ever before. The types of LED displays available are discussed as are their operation and maintenance issues. (GR)
Zhang, Xiaowei; Han, Yanchao; Li, Jing; Zhang, Libing; Jia, Xiaofang; Wang, Erkang
2014-02-04
In this work, a novel and universal ion sensing platform was presented, which enables the visual detection of various ions with high sensitivity and selectivity. Coaxial potential signals (millivolt-scale) of the sample from the self-referencing (SR) ion selective chip can be transferred into the ad620-based amplifier with an output of volt-scale potentials. The amplified voltage is high enough to drive a light emitting diode (LED), which can be used as an amplifier and indicator to report the sample information. With this double amplification device (light emitting diode-based self-referencing-ion selective field-effect transistor, LED-SR-ISFET), a tiny change of the sample concentration can be observed with a distinguishable variation of LED brightness by visual inspection. This LED-based luminescent platform provided a facile, low-cost, and rapid sensing strategy without the need of additional expensive chemiluminescence reagent and instruments. Moreover, the SR mode also endows this device excellent stability and reliability. With this innovative design, sensitive determination of K(+), H(+), and Cl(-) by the naked eye was achieved. It should also be noticed that this sensing strategy can easily be extended to other ions (or molecules) by simply integrating the corresponding ion (or molecule) selective electrode.
Broadband light-emitting diode
Fritz, Ian J.; Klem, John F.; Hafich, Michael J.
1998-01-01
A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.
Broadband light-emitting diode
Fritz, I.J.; Klem, J.F.; Hafich, M.J.
1998-07-14
A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.
Spectral matching technology for light-emitting diode-based jaundice photodynamic therapy device
NASA Astrophysics Data System (ADS)
Gan, Ru-ting; Guo, Zhen-ning; Lin, Jie-ben
2015-02-01
The objective of this paper is to obtain the spectrum of light-emitting diode (LED)-based jaundice photodynamic therapy device (JPTD), the bilirubin absorption spectrum in vivo was regarded as target spectrum. According to the spectral constructing theory, a simple genetic algorithm as the spectral matching algorithm was first proposed in this study. The optimal combination ratios of LEDs were obtained, and the required LEDs number was then calculated. Meanwhile, the algorithm was compared with the existing spectral matching algorithms. The results show that this algorithm runs faster with higher efficiency, the switching time consumed is 2.06 s, and the fitting spectrum is very similar to the target spectrum with 98.15% matching degree. Thus, blue LED-based JPTD can replace traditional blue fluorescent tube, the spectral matching technology that has been put forward can be applied to the light source spectral matching for jaundice photodynamic therapy and other medical phototherapy.
Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shuo-Wei; Epistar Corporation, Hsinchu 300, Taiwan; Li, Heng
The crystal quality, electrical and optical properties of GaN based light emitting diodes (LEDs) with ex-situ sputtered physical vapor deposition (PVD) aluminum nitride (AlN) nucleation layers were investigated. It was found that the crystal quality in terms of defect density and x-ray diffraction linewidth was greatly improved in comparison to LEDs with in-situ low temperature GaN nucleation layer. The light output power was 3.7% increased and the reverse bias voltage of leakage current was twice on LEDs with ex-situ PVD AlN nucleation layers. However, larger compressive strain was discovered in LEDs with ex-situ PVD AlN nucleation layers. The study showsmore » the potential and constrain in applying ex-situ PVD AlN nucleation layers to fabricate high quality GaN crystals in various optoelectronics.« less
Zhang, Zi-Hui; Huang Chen, Sung-Wen; Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Bi, Wengang; Kuo, Hao-Chung
2018-04-24
This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.
Optimization of light quality from color mixing light-emitting diode systems for general lighting
NASA Astrophysics Data System (ADS)
Thorseth, Anders
2012-03-01
Given the problem of metamerisms inherent in color mixing in light-emitting diode (LED) systems with more than three distinct colors, a method for optimizing the spectral output of multicolor LED system with regards to standardized light quality parameters has been developed. The composite spectral power distribution from the LEDs are simulated using spectral radiometric measurements of single commercially available LEDs for varying input power, to account for the efficiency droop and other non-linear effects in electrical power vs. light output. The method uses electrical input powers as input parameters in a randomized steepest decent optimization. The resulting spectral power distributions are evaluated with regard to the light quality using the standard characteristics: CIE color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal boundaries for each system, mapping the capabilities of the simulated lighting systems with regard to the light quality characteristics.
Hu, Xiao-Long; Wang, Hong; Zhang, Xi-Chun
2015-01-01
We fabricated GaN-based light-emitting diodes (LEDs) without pre-activation of p-type GaN. During the fabrication process, a 100-nm-thick indium tin oxide film was served as the p-type contact layer and annealed at 500°C in N2 ambient for 20 min to increase its transparency as well as to activate the p-type GaN. The electrical measurements showed that the LEDs were featured by a lower forward voltage and higher wall-plug efficiency in comparison with LEDs using pre-activation of p-type GaN. We discussed the mechanism of activation of p-type GaN at 500°C in N2 ambient. Furthermore, x-ray photoemission spectroscopy examinations were carried out to study the improved electrical performances of the LEDs without pre-activation of p-type GaN.
GaN-based photon-recycling green light-emitting diodes with vertical-conduction structure.
Sheu, Jinn-Kong; Chen, Fu-Bang; Yen, Wei-Yu; Wang, Yen-Chin; Liu, Chun-Nan; Yeh, Yu-Hsiang; Lee, Ming-Lun
2015-04-06
A p-i-n structure with near-UV(n-UV) emitting InGaN/GaN multiple quantum well(MQW) structure stacked on a green unipolar InGaN/GaN MQW was epitaxially grown at the same sapphire substrate. Photon recycling green light-emitting diodes(LEDs) with vertical-conduction feature on silicon substrates were then fabricated by wafer bonding and laser lift-off techniques. The green InGaN/GaN QWs were pumped with n-UV light to reemit low-energy photons when the LEDs were electrically driven with a forward current. Efficiency droop is potentially insignificant compared with the direct green LEDs due to the increase of effective volume of active layer in the optically pumped green LEDs, i.e., light emitting no longer limited in the QWs nearest to the p-type region to cause severe Auger recombination and carrier overflow losses.
Highly efficient all-nitride phosphor-converted white light emitting diode
NASA Astrophysics Data System (ADS)
Mueller-Mach, Regina; Mueller, Gerd; Krames, Michael R.; Höppe, Henning A.; Stadler, Florian; Schnick, Wolfgang; Juestel, Thomas; Schmidt, Peter
2005-07-01
The development and demonstration of a highly efficient warm-white all-nitride phosphor-converted light emitting diode (pc-LED) is presented utilizing a GaN based quantum well blue LED and two novel nitrogen containing luminescent materials, both of which are doped with Eu2+. For color conversion of the primary blue the nitridosilicates M2Si5N8 (orange-red) and MSi2O2N2 (yellow-green), with M = alkaline earth, were employed, thus achieving a high luminous efficiency (25 lumen/W at 1 W input), excellent color quality (correlated color temperature CCT = 3200 K, general color rendering index Ra > 90) and the highest proven color stability of any pc-LED obtained so far. Thus, these novel all-nitride LEDs are superior to both incandescent and fluorescent lamps and may therefore become the next generation of general lighting sources.
Color design model of high color rendering index white-light LED module.
Ying, Shang-Ping; Fu, Han-Kuei; Hsieh, Hsin-Hsin; Hsieh, Kun-Yang
2017-05-10
The traditional white-light light-emitting diode (LED) is packaged with a single chip and a single phosphor but has a poor color rendering index (CRI). The next-generation package comprises two chips and a single phosphor, has a high CRI, and retains high luminous efficacy. This study employs two chips and two phosphors to improve the diode's color tunability with various proportions of two phosphors and various densities of phosphor in the silicone used. A color design model is established for color fine-tuning of the white-light LED module. The maximum difference between the measured and color-design-model simulated CIE 1931 color coordinates is approximately 0.0063 around a correlated color temperature (CCT) of 2500 K. This study provides a rapid method to obtain the color fine-tuning of a white-light LED module with a high CRI and luminous efficacy.
NASA Astrophysics Data System (ADS)
H, Sattarian; S, Shojaei; E, Darabi
2016-05-01
In the present study, graphene photonic crystals are employed to enhance the light extraction efficiency (LEE) of two-color, red and blue, light-emitting diode (LED). The transmission characteristics of one-dimensional (1D) Fibonacci graphene photonic crystal LED (FGPC-LED) are investigated by using the transfer matrix method and the scaling study is presented. We analyzed the influence of period, thickness, and permittivity in the structure to enhance the LEE. The transmission spectrum of 1D FGPC has been optimized in detail. In addition, the effects of the angle of incidence and the state of polarization are investigated. As the main result, we found the optimum values of relevant parameters to enhance the extraction of red and blue light from an LED as well as provide perfect omnidirectional and high peak transmission filters for the TE and TM modes.
Light Emitting Diodes and Astronomical Environments: Results from in situ Field Measurements
NASA Astrophysics Data System (ADS)
Craine, Brian L.; Craine, Eric R.
2015-05-01
Light emitting diode (LED) light fixtures are rapidly becoming industry standards for outdoor lighting. They are promoted on the strength of long lifetimes (hence economic efficiencies), low power requirements, directability, active brightness controls, and energy efficiency. They also tend to produce spectral shifts that are undesirable in astronomical settings, but which can be moderated by filters. LED lighting for continuous roadway and parking lot lighting is particularly popular, and many communities are in the process of retrofitting Low Pressure Sodium (LPS) and other lights by tens of thousands of new LED fixtures at a time. What is the impact of this process on astronomical observatories and on dark skies upon which amateur astronomers rely? We bypass modeling and predictions to make actual measurements of these lights in the field. We report on original ground, airborne, and satellite observations of LED lights and discuss their light budgets, zenith angle functions, and impacts on observatory environs.
Jiang, Shengxiang; Feng, Yulong; Chen, Zhizhong; Zhang, Lisheng; Jiang, Xianzhe; Jiao, Qianqian; Li, Junze; Chen, Yifan; Li, Dongsan; Liu, Lijian; Yu, Tongjun; Shen, Bo; Zhang, Guoyi
2016-01-01
An anodic aluminum oxide (AAO) patterned sapphire substrate, with the lattice constant of 520 ± 40 nm, pore dimension of 375 ± 50 nm, and height of 450 ± 25 nm was firstly used as a nanoimprint lithography (NIL) stamp and imprinted onto the surface of the green light-emitting diode (LED). A significant light extraction efficiency (LEE) was improved by 116% in comparison to that of the planar LED. A uniform broad protrusion in the central area and some sharp lobes were also obtained in the angular resolution photoluminescence (ARPL) for the AAO patterned LED. The mechanism of the enhancement was correlated to the fluctuations of the lattice constant and domain orientation of the AAO-pattern, which enabled the extraction of more guided modes from the LED device. PMID:26902178
Design and analysis of reflector for uniform light-emitting diode illuminance.
Tsai, Chung-Yu
2013-05-01
A light-emitting diode (LED) projection system is proposed, composed of an LED chip and a variable-focus-parabolic (VFP) reflector, in which the focal length varies as a function of the vertical displacement of the incidence point relative to the horizontal centerline of the LED chip. The light-ray paths within the projection system are analyzed using an exact analytical model and a skew-ray tracing approach. The profile of the proposed VFP reflector and the position of the LED chip are then optimized in such a way as to enhance the uniformity of the illuminance distribution on the target region of the image plane. The validity of the optimized design is demonstrated by means of ZEMAX simulations. It is shown that the optimized VFP projector system yields a significant improvement in illuminance uniformity compared to conventional spherical and parabolic projectors and therefore minimizes the glare effect.
Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors
2016-01-01
We report the first demonstration of flexible white phosphor-converted light emitting diodes (LEDs) based on p–n junction core/shell nitride nanowires. GaN nanowires containing seven radial In0.2Ga0.8N/GaN quantum wells were grown by metal–organic chemical vapor deposition on a sapphire substrate by a catalyst-free approach. To fabricate the flexible LED, the nanowires are embedded into a phosphor-doped polymer matrix, peeled off from the growth substrate, and contacted using a flexible and transparent silver nanowire mesh. The electroluminescence of a flexible device presents a cool-white color with a spectral distribution covering a broad spectral range from 400 to 700 nm. Mechanical bending stress down to a curvature radius of 5 mm does not yield any degradation of the LED performance. The maximal measured external quantum efficiency of the white LED is 9.3%, and the wall plug efficiency is 2.4%. PMID:27331079
Wu, Xingyu; Jin, Ming; Xie, Jianchao; Malval, Jean-Pierre; Wan, Decheng
2017-11-07
A series of donor-π-acceptor-type sulfonium salt photoacid generators (PAGs) were designed and synthesized by systematically changing electron-donating groups, π-conjugated systems, electron-withdrawing groups, and the number of branches through molecular engineering. These PAGs can effectively decompose under UV/Vis irradiation from a light-emitting diode (LED) light source because of the matching absorption and emitting spectra of the LEDs. The absorption and acid-generation properties of these sulfonium salts were elucidated by UV/Vis spectroscopy and so forth. Results indicated that the PAG performance benefited from the introduction of strong electron-donating groups, specific π-conjugated structures, certain electron-withdrawing groups, or two-branched structures. Most sulfonium salts showed potential as photoinitiators under irradiation by a wide variety of UV and visible LEDs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Zi-Hui; Huang Chen, Sung-Wen; Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Bi, Wengang; Kuo, Hao-Chung
2018-04-01
This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.
Evaluation of OLED and edge-lit LED lighting panels
NASA Astrophysics Data System (ADS)
Mou, Xi; Narendran, Nadarajah; Zhu, Yiting; Freyssinier, Jean Paul
2016-09-01
Solid-state lighting (SSL) offers a new technology platform for lighting designers and end-users to illuminate spaces with low energy demand. Two types of SSL sources include organic light-emitting diodes (OLEDs) and light-emitting diodes (LEDs). OLED is an area light source, and its primary competing technology is the edge-lit LED panel. Generally, both of these technologies are considered similar in shape and appearance, but there is little understanding of how people perceive discomfort glare from large area light sources. The objective of this study was to evaluate discomfort glare for the two lighting technologies under similar operating conditions by gathering observers' reactions. The human factors study results showed no statistically significant difference in human response to discomfort glare between OLED and edge-lit LED panels when the two light sources produced the same lighting stimulus. This means both technologies appeared equally glary beyond a certain luminance.
Stretchable Light-Emitting Diodes with Organometal-Halide-Perovskite-Polymer Composite Emitters.
Bade, Sri Ganesh R; Shan, Xin; Hoang, Phong Tran; Li, Junqiang; Geske, Thomas; Cai, Le; Pei, Qibing; Wang, Chuan; Yu, Zhibin
2017-06-01
Intrinsically stretchable light-emitting diodes (LEDs) are demonstrated using organometal-halide-perovskite/polymer composite emitters. The polymer matrix serves as a microscale elastic connector for the rigid and brittle perovskite and induces stretchability to the composite emissive layers. The stretchable LEDs consist of poly(ethylene oxide)-modified poly(3,4-ethylenedioxythiophene) polystyrene sulfonate as a transparent and stretchable anode, a perovskite/polymer composite emissive layer, and eutectic indium-gallium as the cathode. The devices exhibit a turn-on voltage of 2.4 V, and a maximum luminance intensity of 15 960 cd m -2 at 8.5 V. Such performance far exceeds all reported intrinsically stretchable LEDs based on electroluminescent polymers. The stretchable perovskite LEDs are mechanically robust and can be reversibly stretched up to 40% strain for 100 cycles without failure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A thermosyphon heat pipe cooler for high power LEDs cooling
NASA Astrophysics Data System (ADS)
Li, Ji; Tian, Wenkai; Lv, Lucang
2016-08-01
Light emitting diode (LED) cooling is facing the challenge of high heat flux more seriously with the increase of input power and diode density. The proposed unique thermosyphon heat pipe heat sink is particularly suitable for cooling of high power density LED chips and other electronics, which has a heat dissipation potential of up to 280 W within an area of 20 mm × 22 mm (>60 W/cm2) under natural air convection. Meanwhile, a thorough visualization investigation was carried out to explore the two phase flow characteristics in the proposed thermosyphon heat pipe. Implementing this novel thermosyphon heat pipe heat sink in the cooling of a commercial 100 W LED integrated chip, a very low apparent thermal resistance of 0.34 K/W was obtained under natural air convection with the aid of the enhanced boiling heat transfer at the evaporation side and the enhanced natural air convection at the condensation side.
Wei, Tongbo; Kong, Qingfeng; Wang, Junxi; Li, Jing; Zeng, Yiping; Wang, Guohong; Li, Jinmin; Liao, Yuanxun; Yi, Futing
2011-01-17
InGaN-based light emitting diodes (LEDs) with a top nano-roughened p-GaN surface are fabricated using self-assembled CsCl nano-islands as etch masks. Following formation of hemispherical GaN nano-island arrays, electroluminescence (EL) spectra of roughened LEDs display an obvious redshift due to partial compression release in quantum wells through Inductively Coupled Plasma (ICP) etching. At a 350-mA current, the enhancement of light output power of LEDs subjected to ICP treatment with durations of 50, 150 and 250 sec compared with conventional LED have been determined to be 9.2, 70.6, and 42.3%, respectively. Additionally, the extraction enhancement factor can be further improved by increasing the size of CsCl nano-island. The economic and rapid method puts forward great potential for high performance lighting devices.
Sidewall passivation for InGaN/GaN nanopillar light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying
2014-07-07
We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage currentmore » and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.« less
High-speed GaN/GaInN nanowire array light-emitting diode on silicon(111).
Koester, Robert; Sager, Daniel; Quitsch, Wolf-Alexander; Pfingsten, Oliver; Poloczek, Artur; Blumenthal, Sarah; Keller, Gregor; Prost, Werner; Bacher, Gerd; Tegude, Franz-Josef
2015-04-08
The high speed on-off performance of GaN-based light-emitting diodes (LEDs) grown in c-plane direction is limited by long carrier lifetimes caused by spontaneous and piezoelectric polarization. This work demonstrates that this limitation can be overcome by m-planar core-shell InGaN/GaN nanowire LEDs grown on Si(111). Time-resolved electroluminescence studies exhibit 90-10% rise- and fall-times of about 220 ps under GHz electrical excitation. The data underline the potential of these devices for optical data communication in polymer fibers and free space.
A Study of Wavelength Division Multiplexing for Avionics Applications.
1982-08-01
Force system II, an eight-wavelength, codirectional, 300-Mb/s, point-to-point system, was designed using laser diode sources with channel wavelengths...Injection Locking 72 4.2.6 Laser Packaging 77 4.3 System Simulation Results 77 4.3.1 LED Systems 78 4.3.1.1 System I 79 4.3.1.2 System III 82 4.3.2 Laser ...FIGURE TITLE PAGE 1.0-1 WDM Study Organization 4 2.3.1-1 Spectral Emission of an InGaAsP Laser Diode 14 2.3.1-2 Spectral Emission of an LED 16 2.3.1-3
NASA Astrophysics Data System (ADS)
Usman, Muhammad; Saba, Kiran; Han, Dong-Pyo; Muhammad, Nazeer
2018-01-01
High efficiency of green GaAlInN-based light-emitting diode (LED) has been proposed with peak emission wavelength of ∼510 nm. By introducing quaternary quantum well (QW) along with the quaternary barrier (QB) and quaternary electron blocking layer (EBL) in a single structure, an efficiency droop reduction of up to 29% has been achieved in comparison to the conventional GaN-based LED. The proposed structure has significantly reduced electrostatic field in the active region. As a result, carrier leakage has been minimized and spontaneous emission rate has been doubled.
NASA Astrophysics Data System (ADS)
Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas
2016-05-01
Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).
USDA-ARS?s Scientific Manuscript database
Light-emitting diode (LED) lighting is being used in the poultry industry to reduce energy usage in broiler production facilities. However, limited data are available comparing efficacy of different spectral distribution of LED bulbs on blood physiological variables of broilers grown to heavy weight...
Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok
2017-01-01
In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results. PMID:28374856
Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok
2017-04-04
In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results.
Blue laser diode (LD) and light emitting diode (LED) applications
NASA Astrophysics Data System (ADS)
Bergh, Arpad A.
2004-09-01
The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.
Ryu, Han-Youl
2014-02-04
Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS: 41.20.Jb; 42.72.Bj; 85.60.Jb.
2014-01-01
Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS 41.20.Jb; 42.72.Bj; 85.60.Jb PMID:24495598
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Wu, Kui; Sun, Bo
2014-06-15
Large-scale Ag nanodisks (NDs) arrays fabricated using nanospherical-lens lithography (NLL) are embedded in p-GaN layer of an InGaN/GaN light-emitting diode (LED) for generating localized surface plasmon (LSP) coupling with the radiating dipoles in the quantum-well (QWs). Based on the Ag NDs with the controlled surface coverage, LSP leads to the improved crystalline quality of regrowth p-GaN, increased photoluminescence (PL) intensity, reduced PL decay time, and enhanced output power of LED. Compared with the LED without Ag NDs, the optical output power at a current of 350 mA of the LSP-enhanced LEDs with Ag NDs having a distance of 20 andmore » 35 nm to QWs is increased by 26.7% and 31.1%, respectively. The electrical characteristics and optical properties of LEDs with embedded Ag NPs are dependent on the distance of between Ag NPs and QWs region. The LED with Ag NDs array structure is also found to exhibit reduced emission divergence, compared to that without Ag NDs.« less
CdSe white quantum dots-based white light-emitting diodes with high color rendering index
NASA Astrophysics Data System (ADS)
Su, Yu-Sheng; Hsiao, Chih-Chun; Chung, Shu-Ru
2016-09-01
A white light emission CdSe quantum dots (QDs) can be prepared by chemical route under 180°C. An organic oleic acid (OA) is used to react with CdO to form Cd-OA complex. Hexadecylamine (HDA) and 1-Octadecene (ODE) were used as co-surfactants. By controlling the reaction time, a white light emission CdSe QDs can be obtained after reacts for 3 to 10 min. The luminescence spectra compose two obvious emission peaks and entire visible light ranges from 400 to 650 nm. Based on TEM measurement result, spherical morphologies with particle size 2.39+/-0.27 nm can be obtained. The quantum yields (QYs) of white CdSe QD are between 20 and 60 %, which depends on reaction time. A white CdSe QDs were mixed with UV cured gel (OPAS-226) with weight ratios 50.0 wt. %, and putted the mixture into reflective cup (3020, 13 mil) as convert type. The white LEDs have controllable CIE coordinates and correlated color temperature (CCT). The luminous efficacy of the device is less than 3 lm/W, but the color rendering index (CRI) for all devices are higher than 80. Since the luminous efficacy of hybrid devices has a direct dependence on the external QY of the UV-LED as well, the luminous efficacy can be improved by well dispersion of CdSe QDs in UV gel matrix and using optimized LED chips. Therefore, in this study, we provide a new and simple method to prepare high QY of white CdSe QDs and its have a potential to applicate in solid-state lighting.
Whelan, Harry T; Buchmann, Ellen V; Dhokalia, Apsara; Kane, Mary P; Whelan, Noel T; Wong-Riley, Margaret T T; Eells, Janis T; Gould, Lisa J; Hammamieh, Rasha; Das, Rina; Jett, Marti
2003-04-01
The purpose of this study was to assess the changes in gene expression of near-infrared light therapy in a model of impaired wound healing. Light-Emitting Diodes (LED), originally developed for NASA plant growth experiments in space, show promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. In this paper we present the effects of LED treatment on wounds in a genetically diabetic mouse model. Polyvinyl acetal (PVA) sponges were subcutaneously implanted in the dorsum of BKS.Cg-m +/+ Lepr(db) mice. LED treatments were given once daily, and at the sacrifice day, the sponges, incision line and skin over the sponges were harvested and used for RNA extraction. The RNA was subsequently analyzed by cDNA array. Our studies have revealed certain tissue regenerating genes that were significantly upregulated upon LED treatment when compared to the untreated sample. Integrins, laminin, gap junction proteins, and kinesin superfamily motor proteins are some of the genes involved during regeneration process. These are some of the genes that were identified upon gene array experiments with RNA isolated from sponges from the wound site in mouse with LED treatment. We believe that the use of NASA light-emitting diodes (LED) for light therapy will greatly enhance the natural wound healing process, and more quickly return the patient to a preinjury/illness level of activity. This work is supported and managed through the Defense Advanced Research Projects Agency (DARPA) and NASA Marshall Space Flight Center-SBIR Program.
NASA Technical Reports Server (NTRS)
Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.
1996-01-01
To determine the influence of narrow-spectrum red light-emitting diodes (LED's) on plant growth and seed production, wheat (Triticum aestivum L.cv Superdwarf) and Arabidopsis (Arabidopsis thaliana (L.) Heynh, race Columbia) plants were grown under red LED's (peak emission 660 nm) and compared to plants grown under daylight fluorescent (white) light and red LED's supplemented with either 1 percent or 10 percent blue fluorescent (BF) light. Wheat growth under red LED's alone appeared normal, whereas Arabidopsis under red LED's alone developed curled leaf margins and a spiraling growth pattern. Both wheat and Arabidopsis under red LED's alone or red LED's + 1 percent BF light had significantly lower seed yield than plants grown under white light. However, the addition of 10 percent BF light to red LED's partially alleviated the adverse effect of red LED's on yield. Irrespective of the light treatment, viable seeds were produced by wheat(75-92 percent germination rate) and Arabidopsis (85-100 percent germination rate). These results indicate that wheat, and to a lesser extent Arabidopsis, can be successfully grown under red LED's alone, but supplemental blue light is required with red LED's to sufficiently match the growth characteristics and seed yield associated with plants grown under white light.
USDA-ARS?s Scientific Manuscript database
Multi-layer vertical production systems using sole-source (SS) lighting can be used for microgreen production; however, traditional SS lighting can consume large amounts of electrical energy. Light-emitting diodes (LEDs) offer many advantages over conventional light sources including: high photoelec...
Light-Emitting Diodes: Learning New Physics
ERIC Educational Resources Information Center
Planinšic, Gorazd; Etkina, Eugenia
2015-01-01
This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…
Light-Emitting Diodes: Solving Complex Problems
ERIC Educational Resources Information Center
Planinšic, Gorazd; Etkina, Eugenia
2015-01-01
This is the fourth paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide readers with the description of experiments and the pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper provided…
NASA Astrophysics Data System (ADS)
Zhu, Di
2011-12-01
The recent tremendous boost in the number and diversity of applications for light-emitting diodes (LEDs) indicates the emergence of the next-generation lighting and illumination technology. The rapidly improving LED technology is becoming increasingly viable especially for high-power applications. However, the greatest roadblock before finally breaching the main defensive position of conventional fluorescent and incandescent lamps still remains: GaN-based LEDs encounter a significant decrease in efficiency as the drive current increases, and this phenomenon is known as the efficiency droop. This dissertation focuses on uncovering the physical cause of efficiency droop in GaN-based LEDs and looks for solutions to it. GaN-based multiple-quantum-well (MQW) LEDs usually have abnormally high diode-ideality factors. Investigating the origin of the high diode-ideality factors could help to better understand the carrier transport in the LED MQW active region. We investigate the ideality factors of GaInN LEDs with different numbers of doped quantum barriers (QBs). Consistent with the theory, a decrease of the ideality factor as well as a reduction in forward voltage is found with increasing number of doped QBs. Experimental and simulation results indicate that the band profiles of QBs in the active region have a significant impact on the carrier transport mechanism, and the unipolar heterojunctions inside the active region play an important role in determining the diode-ideality factor. This dissertation will discuss several mechanisms leading to electron leakage which could be responsible for the efficiency droop. We show that the inefficient electron capture, the electron-attracting properties of polarized EBL, the inherent asymmetry in electron and hole transport and the inefficient EBL p-doping at high Al contents severely limit the ability to confine electrons to the MQWs. We demonstrate GaInN LEDs employing tailored Si doping in the QBs with strongly enhanced high-current efficiency and reduced efficiency droop. Compared with 4-QB-doped LEDs, 1-QB-doped LEDs show a 37.5% increase in light-output power at high currents. Consistent with the measurements, simulation shows a shift of radiative recombination among the MQWs and a reduced electron leakage current into the p-type GaN when fewer QBs are doped. The results can be attributed to a more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop. In this dissertation, artificial evolution is introduced to the LED optimization process which combines a genetic algorithm (GA) and device-simulation software. We show that this approach is capable of generating novel concepts in designing and optimizing LED devices. Application of the GA to the QB-doping in the MQWs yields optimized structures which is consistent with the tailored QB doping experiments. Application of the GA to the EBL region suggests a novel structure with an inverted sheet charge at the spacer-EBL interface. The resulting repulsion of electrons can significantly reduce electron leakage and enhance the efficiency. Finally, dual-wavelength LEDs, which have two types of quantum wells (QWs) emitting at two different wavelengths, are experimentally characterized and compared with numerical simulations. These dual-wavelength LEDs allow us to determine which QW emits most of the light. An experimental observation and a quantitative analysis of the radiative recombination shift within the MQW active region are obtained. In addition, an injection-current dependence of the radiative recombination shift is predicted by numerical simulations and indeed observed in dual-wavelength LEDs. This injection-current dependence of the radiative recombination distribution can be explained very well by incorporating quantum-mechanical tunneling of carriers into and through the QBs into to the classical drift-diffusion model. In summary, using the LEDs with tailored QB doping and dual-wavelength LEDs, we investigate the origin of the high diode-ideality factor of LEDs and gain insight on the control of carrier transport, carrier distribution, and radiative recombination in the LED MQW active region. Our results provide solid evidence on the effectiveness of the GA in the LED device optimization process. In addition, the innovative EBL structure optimized by the GA sheds light on further paths for the optimization of LED design. Our results are the starting point of applying artificial evolution to practical semiconductor devices, opening new perspectives for complex semiconductor device optimization and enabling breakthroughs in high-performance LED design.
Cost and energy-efficient (LED, induction and plasma) roadway lighting.
DOT National Transportation Integrated Search
2013-11-01
There is an increasing interest in using new lighting technologies such as light emitting diode (LED), Induction, and Plasma light sources : in roadway lighting. The most commonly claimed benefits of the new lighting systems include increased reliabi...
NASA Astrophysics Data System (ADS)
Avercheva, Olga; Berkovich, Yuliy A.; Smolyanina, Svetlana; Bassarskaya, Elizaveta; Zhigalova, Tatiana; Ptushenko, Vasiliy; Erokhin, Alexei
Light-emitting diodes (LEDs) are a promising lighting source for space agriculture due to their high efficiency, longevity, safety, and other factors. Assemblies based on red and blue LEDs have been recommended in literature, although not all plants show sufficient productivity in such lighting conditions. Adding of green LEDs proposed in some works was aimed at psychological support for the crew, and not at the improvement of plant growth. We studied the growth and the state of the photosynthetic apparatus in Chinese cabbage (Brassica chinensis L.) plants grown under red (650 nm) and blue (470 nm) light-emitting diodes (LEDs). Plants grown under a high-pressure sodium lamp (HPS lamp) were used as a control. The plants were illuminated with two photosynthetic photon flux levels: nearly 400 µE and about 100 µE. Plants grown under LEDs with 400 µE level, as compared to control plants, showed lower fresh weight, edible biomass, growth rate, and sugar content. The difference in fresh weight and edible biomass was even more pronounced in plants grown with 100 µE level; the data indicate that the adaptability of the test plants to insufficient lighting decreased. Under LEDs, we observed the decreasing of root growth and the absence of transition to the flowering stage, which points to a change in the hormonal balance in plants grown in such lighting conditions. We also found differences in the functioning of the photosynthetic apparatus and its reaction to a low lighting level. We have concluded that a lighting assembly with red and blue LEDs only is insufficient for the plant growth and productivity, and can bring about alterations in their adaptive and regulatory mechanisms. Further studies are needed to optimize the lighting spectrum for space agriculture, taking into account the photosynthetic, phototropic and regulatory roles of light. Using white LEDs or adding far-red and green LEDs might be a promising approach.
Expeditionary Lighting Systems for Military Shelters
2009-11-04
Lumiled LED Housing Nonimaging Beamformer Heat Sink Connector Retractable Cable O Transportation Configuration Physical Optics Corporation (POC) LED...New Lighting Technologies: • Technology: Light Emitting Diode (LED) o Physical Optics Corp [SBIR] o Techshot [SBIR] [Congressional Effort o Jameson LED...rugged and durable—no lamp to damage or replace • Custom designed optical diffuser prevents glare and “eye spots” • Operates on universal voltage, 90
Discovery – Methotrexate: Chemotherapy Treatment for Cancer
Prior to the 1950s, treatment for the majority of cancers was limited to either surgery or the use of radiation. The discovery of the use of methotrexate in curing a rare cancer marked the first time a cancer had been cured. This led to the development of many of today’s common cancer treatments.
Garcia-Sucerquia, Jorge
2013-01-01
By engineering the light from a light-emitting diode (LED) the noises present in digital lensless holographic microscopy (DLHM) are reduced. The partially coherent light from an LED is tailored to produce a spherical wavefront with limited coherence time and the spatial coherence needed by DLHM to work. DLHM with this engineered light source is used to image biological samples that cover areas of the order of mm(2). The ratio between the diameter of the area that is almost coherently illuminated to the diameter of the illumination area is utilized as parameter to quantify the performance of the DLHM with the engineered LED light source. Experimental results show that while the noises can be reduced effectively the spatial resolution can be kept in the micrometer range.
Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes.
Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi
2017-01-06
In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.
Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes
NASA Astrophysics Data System (ADS)
Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi
2017-01-01
In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taewoong; Seong, Tae-Yeon; School of Materials Science and Engineering, Korea University, Seoul 136-713
Efficiency droop is a phenomenon in which the efficiency of a light-emitting diode (LED) decreases with the increase in current density. To analyze efficiency droop, direct experimental observations on the energy conversion occurring inside the LED is required. Here, we present the measured voltage profiles on the cross section of an operating LED and analyze them with the cross-sectional temperature profiles obtained in a previous study under the same operation conditions. The measured voltage profiles suggest that with increases in the injection current density, electron depletion shifts from the multi-quantum well through an electron blocking layer to the p-GaN region.more » This is because electron leakage increases with increases in current density.« less
Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes
Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi
2017-01-01
In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments. PMID:28059148
NASA Astrophysics Data System (ADS)
Bekele Fayisa, Gabisa; Lee, Jong Won; Kim, Jungsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu
2017-09-01
An effective approach to overcome inherently poor light extraction efficiency of AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) is presented. We demonstrated the 5 × 5 array micro-ring DUV LED having an inclined sidewall at the outer perimeter and a p-GaN-removed inner circle of the micro-ring, together with MgF2/Al omnidirectional reflectors. The micro-ring array DUV LED shows remarkably higher light output power by 70% than the reference, consistent with the calculated result, as well as comparable turn-on and operational voltages, which are attributed to the effective extraction of strong transverse-magnetic polarized anisotropic emission and the reduction of the absorption loss by the p-GaN contact layer, simultaneously.
Shi, Yifei; Wu, Wen; Dong, Hua; Li, Guangru; Xi, Kai; Divitini, Giorgio; Ran, Chenxin; Yuan, Fang; Zhang, Min; Jiao, Bo; Hou, Xun; Wu, Zhaoxin
2018-06-01
All present designs of perovskite light-emitting diodes (PeLEDs) stem from polymer light-emitting diodes (PLEDs) or perovskite solar cells. The optimal structure of PeLEDs can be predicted to differ from PLEDs due to the different fluorescence dynamics and crystallization between perovskite and polymer. Herein, a new design strategy and conception is introduced, "insulator-perovskite-insulator" (IPI) architecture tailored to PeLEDs. As examples of FAPbBr 3 and MAPbBr 3 , it is experimentally shown that the IPI structure effectively induces charge carriers into perovskite crystals, blocks leakage currents via pinholes in the perovskite film, and avoids exciton quenching simultaneously. Consequently, as for FAPbBr 3 , a 30-fold enhancement in the current efficiency of IPI-structured PeLEDs compared to a control device with poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) as hole-injection layer is achieved-from 0.64 to 20.3 cd A -1 -while the external quantum efficiency is increased from 0.174% to 5.53%. As the example of CsPbBr 3 , compared with the control device, both current efficiency and lifetime of IPI-structured PeLEDs are improved from 1.42 and 4 h to 9.86 cd A -1 and 96 h. This IPI architecture represents a novel strategy for the design of light-emitting didoes based on various perovskites with high efficiencies and stabilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Okada, N.; Morishita, N.; Mori, A.; Tsukada, T.; Tateishi, K.; Okamoto, K.; Tadatomo, K.
2017-04-01
Light-emitting diodes (LEDs) have been demonstrated with a thin p-type layer using the plasmonic effect. Optimal LED device operation was found when using a 20-nm-thick p+-GaN layer. Ag of different thicknesses was deposited on the thin p-type layer and annealed to form the localized Ag particles. The localized Ag particles were embedded by indium tin oxide to form a p-type electrode in the LED structure. By optimization of the plasmonic LED, the significant electroluminescence enhancement was observed when the thickness of Ag was 9.5 nm. Both upward and downward electroluminescence intensities were improved, and the external quantum efficiency was approximately double that of LEDs without the localized Ag particles. The time-resolved photoluminescence (PL) decay time for the LED with the localized Ag particles was shorter than that without the localized Ag particles. The faster PL decay time should cause the increase in internal quantum efficiency by adopting the localized Ag particles. To validate the localized surface plasmon resonance coupling effect, the absorption of the LEDs was investigated experimentally and using simulations.
Thermophotonics for ultra-high efficiency visible LEDs
NASA Astrophysics Data System (ADS)
Ram, Rajeev J.
2017-02-01
The wall-plug efficiency of modern light-emitting diodes (LEDs) has far surpassed all other forms of lighting and is expected to improve further as the lifetime cost of a luminaire is today dominated by the cost of energy. The drive towards higher efficiency inevitably opens the question about the limits of future enhancement. Here, we investigate thermoelectric pumping as a means for improving efficiency in wide-bandgap GaN based LEDs. A forward biased diode can work as a heat pump, which pumps lattice heat into the electrons injected into the active region via the Peltier effect. We experimentally demonstrate a thermally enhanced 450 nm GaN LED, in which nearly fourfold light output power is achieved at 615 K (compared to 295 K room temperature operation), with virtually no reduction in the wall-plug efficiency at bias V < ℏω/q. This result suggests the possibility of removing bulky heat sinks in high power LED products. A review of recent high-efficiency GaN LEDs suggests that Peltier thermal pumping plays a more important role in a wide range of modern LED structures that previously thought - opening a path to even higher efficiencies and lower lifetime costs for future lighting.
Polarization of III-nitride blue and ultraviolet light-emitting diodes
NASA Astrophysics Data System (ADS)
Shakya, J.; Knabe, K.; Kim, K. H.; Li, J.; Lin, J. Y.; Jiang, H. X.
2005-02-01
Polarization-resolved electroluminescence studies of III-nitride blue and ultraviolet (UV) light-emitting diodes (LEDs) were performed. The LEDs were fabricated on nitride materials grown by metalorganic chemical vapor deposition on sapphire substrates (0001). Transverse electric (TE) polarization dominates in the InGaN/GaN quantum-well (QW) blue LEDs (λ'=458nm), whereas transverse magnetic (TM) polarization is dominant in the AlInGaN QW UV LEDs (λ=333nm). For the case of edge emission in blue LEDs, a ratio (r=I⊥/I ‖) of about 1.8:1 was observed between the EL intensities with polarization E ⊥c (TE mode) and E ‖c (TM mode), which corresponds to a degree of polarization ˜0.29. The UV LEDs exhibit a ratio r of about 1:2.3, corresponding to a degree of polarization ˜0.4. This is due to the fact that the degree of polarization of the bandedge emission of the AlxInyGa1-x -yN active layer changes with Al concentration. The low emission efficiency of nitride UV LEDs is partly related to this polarization property. Possible consequences and ways to enhance UV emitter performances related to this unique polarization property are discussed.
Neittaanmäki-Perttu, Noora; Grönroos, Mari; Karppinen, Toni; Snellman, Erna; Rissanen, Pekka
2016-02-01
Daylight-mediated photodynamic therapy (DL-PDT) is considered as effective as conventional PDT using artificial light (light-emitting diode (LED)-PDT) for treatment of actinic keratoses (AK). This randomized prospective non-sponsored study assessed the cost-effectiveness of DL-PDT compared with LED-PDT. Seventy patients with 210 AKs were randomized to DL-PDT or LED-PDT groups. Effectiveness was assessed at 6 months. The costs included societal costs and private costs, including the time patients spent in treatment. Results are presented as incremental cost-effectiveness ratio (ICER). The total costs per patient were significantly lower for DL-PDT (€132) compared with LED-PDT (€170), giving a cost saving of €38 (p = 0.022). The estimated probabilities for patients' complete response were 0.429 for DL-PDT and 0.686 for LED-PDT; a difference in probability of being healed of 0.257. ICER showed a monetary gain of €147 per unit of effectiveness lost. DL-PDT is less costly and less effective than LED-PDT. In terms of cost-effectiveness analysis, DL-PDT provides lower value for money compared with LED-PDT.
Effect of multi-wavelength irradiation on color characterization with light-emitting diodes (LEDs)
NASA Astrophysics Data System (ADS)
Park, Hyeong Ju; Song, Woosub; Lee, Byeong-Il; Kim, Hyejin; Kang, Hyun Wook
2017-06-01
In the current study, a multi-wavelength light-emitting diode (LED)-integrated CMOS imaging device was developed to investigate the effect of various wavelengths on multiple color characterization. Various color pigments (black, red, green, and blue) were applied on both white paper and skin phantom surfaces for quantitative analysis. The artificial skin phantoms were made of polydimethylsiloxane (PDMS) mixed with coffee and TiO2 powder to emulate the optical properties of the human dermis. The customized LED-integrated imaging device acquired images of the applied pigments by sequentially irradiating with the LED lights in the order of white, red, green, and blue. Each color pigment induced a lower contrast during illumination by the light with the equivalent color. However, the illumination by light with the complementary (opposite) color increased the signal-to-noise ratio by up to 11-fold due to the formation of a strong contrast ( i.e., red LED = 1.6 ± 0.3 vs. green LED = 19.0 ± 0.6 for red pigment). Detection of color pigments in conjunction with multi-wavelength LEDs can be a simple and reliable technique to estimate variations in the color pigments quantitatively.
Thermal characterizations analysis of high-power ThinGaN cool-white light-emitting diodes
NASA Astrophysics Data System (ADS)
Raypah, Muna E.; Devarajan, Mutharasu; Ahmed, Anas A.; Sulaiman, Fauziah
2018-03-01
Analysis of thermal properties plays an important role in the thermal management of high-power (HP) lighting-emitting diodes (LEDs). Thermal resistance, thermal capacitance, and thermal time constant are essential parameters for the optimal design of the LED device and system, particularly for dynamic performance study. In this paper, thermal characterization and thermal time constant of ThinGaN HP LEDs are investigated. Three HP cool-white ThinGaN LEDs from different manufacturers are used in this study. A forward-voltage method using thermal transient tester (T3Ster) system is employed to determine the LEDs' thermal parameters at various operating conditions. The junction temperature transient response is described by a multi-exponential function model to extract thermal time constants. The transient response curve is divided into three layers and expressed by three exponential functions. Each layer is associated with a particular thermal time constant, thermal resistance, and thermal capacitance. It is found that the thermal time constant of LED package is on the order of 22 to 100 ms. Comparison between the experimental results is carried out to show the design effects on thermal performance of the LED package.
Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices
Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang
2016-01-01
Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers. PMID:27181337
Manufacturing polymer light emitting diode with high luminance efficiency by solution process
NASA Astrophysics Data System (ADS)
Kim, Miyoung; Jo, SongJin; Yang, Ho Chang; Yoon, Dang Mo; Kwon, Jae-Taek; Lee, Seung-Hyun; Choi, Ju Hwan; Lee, Bum-Joo; Shin, Jin-Koog
2012-06-01
While investigating polymer light emitting diodes (polymer-LEDs) fabricated by solution process, surface roughness influences electro-optical (E-O) characteristics. We expect that E-O characteristics such as luminance and power efficiency related to surface roughness and layer thickness of emitting layer with poly-9-Vinylcarbazole. In this study, we fabricated polymer organic light emitting diodes by solution process which guarantees easy, eco-friendly and low cost manufacturing for flexible display applications. In order to obtain high luminescence efficiency, E-O characteristics of these devices by varying parameters for printing process have been investigated. Therefore, we optimized process condition for polymer-LEDs by adjusting annealing temperatures of emission, thickness of emission layer showing efficiency (10.8 cd/A) at 10 mA/cm2. We also checked wavelength dependent electroluminescence spectrum in order to find the correlation between the variation of efficiency and the thickness of the layer.
Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices.
Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang
2016-05-16
Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers.
NASA Astrophysics Data System (ADS)
Toyama, Toshihiko; Ichihara, Tokuyuki; Yamaguchi, Daisuke; Okamoto, Hiroaki
2007-10-01
Thin-film light emitting devices based on organic materials have been gathering attentions for applying a flat-panel display and a solid-state lighting. Alternatively, inorganic technologies such as Si-based thin-film technology have been growing almost independently. It is then expected that combining the Si-based thin-film technology with the organic light emitting diode (OLED) technology will develop innovative devices. Here, we report syntheses of the hybrid light emitting diode (LED) with a heterostructure consisting of p-type SiC x and tris-(8-hydroxyquinoline) aluminum films and characterization for the hybrid LEDs. We present the energy diagram of the heterostructure, and describe that the use of high dark conductivities of the p-type SiC x as well as inserting wide-gap intrinsic a-SiC x at the p-type SiC x/Alq interface are effective for improving device performance.
Research at Lincoln Laboratory leading up to the development of the injection laser in 1962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rediker, R.H.
1987-06-01
In 1958 the semiconductor device group at Lincoln Laboratory began to concentrate its efforts on exploiting GaAs. These efforts, in addition to yielding diodes with ns switching speeds, led to the development in early 1962 of diodes which emitted near-bandgap radiation with very high efficiency, and to the development in October 1962 of the diode laser. The theory of the semiconductor laser developed at Lincoln Laboratory in the mid-to-late 1950's provided the foundation necessary for the design of the diode laser structure after the highly efficient production of near-bandgap radiation was demonstrated.
Research at Lincoln Laboratory leading up to the development of the injection laser in 1962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rediker, R.H.
1987-06-01
In 1958 the Semiconductor Device Group at Lincoln Laboratory began to concentrate its efforts on exploiting GaAs. these efforts, in addition to yielding diodes which ns switching speeds, led to the development in early 1962 of diodes that emitted near-bandgap radiation with very high efficiency, and to the development in October 1962 of the diode laser. The theory of the semiconductor laser developed at Lincoln Laboratory in the mid-to-late 1950's provided the foundation necessary for the design of the diode laser structure after the highly efficient production of near-bandgap radiation was demonstrated.
Temperature and curing time affect composite sorption and solubility
de CASTRO, Fabrício Luscino Alves; CAMPOS, Bruno Barbosa; BRUNO, Kely Firmino; REGES, Rogério Vieira
2013-01-01
Objective: This study evaluated the effect of temperature and curing time on composite sorption and solubility. Material and Methods: Seventy five specimens (8x2 mm) were prepared using a commercial composite resin (ICE, SDI). Three temperatures (10º C, 25º C and 60º C) and five curing times (5 s, 10 s, 20 s, 40 s and 60 s) were evaluated. The specimens were weighed on an analytical balance three times: A: before storage (M1); B: 7 days after storage (M2); C: 7 days after storage plus 1 day of drying (M3). The storage solution consisted of 75% alcohol/25% water. Sorption and solubility were calculated using these three weights and specimen dimensions. The data were analyzed using the Kruskal-Wallis and Mann-Whitney U Tests (α=5%). Results: The results showed that time, temperature and their interaction influenced the sorption and solubility of the composite (p<0.05). At 60º C, the composite sorption showed an inverse relationship with the curing time (p<0.05). The composite cured for 5 s showed higher sorption for the 40 s or 60 s curing times when compared with all temperatures (p<0.05). Curing times of 20 s and 40 s showed similar sorption data for all temperatures (p>0.05). The 60º C composite temperature led to lower values of sorption for all curing times when compared with the 10º C temperature (p<0.05). The same results were found when comparing 10º C and 25º C (p<0.05), except that the 20 s and 40 s curing times behaved similarly (p>0.05). Solubility was similar at 40 s and 60 s for all temperatures (p>0.05), but was higher at 10º C than at 60º C for all curing times (p<0.05). When the composite was cured at 25º C, similar solubility values were found when comparing the 5 s and 10 s or 20 s and 40 s curing times (p>0.05). Conclusion: In conclusion, higher temperatures or longer curing times led to lower sorption and solubility values for the composite tested; however, this trend was only significant in specific combinations of temperature and curing times. PMID:23739853
Fabián Molina, Gustavo; Cabral, Ricardo Juan; Mazzola, Ignacio; Brain Lascano, Laura; Frencken, Jo E.
2013-01-01
Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS) between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n = 30): without heating (Group 1), heated with LED lamp of 1400 mW/cm2 for 30 s while setting (Group 2), and heated with LED lamp of 1400 mW/cm2 for 60 s while setting (Group 3). Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (α = 0.05). Heating the glass-ionomer cements with an LED curing light of 1400 mW/cm2 during setting for 30 s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30 s and 60 s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times. PMID:23841095
Fabián Molina, Gustavo; Cabral, Ricardo Juan; Mazzola, Ignacio; Brain Lascano, Laura; Frencken, Jo E
2013-01-01
Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS) between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n = 30): without heating (Group 1), heated with LED lamp of 1400 mW/cm(2) for 30 s while setting (Group 2), and heated with LED lamp of 1400 mW/cm(2) for 60 s while setting (Group 3). Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (α = 0.05). Heating the glass-ionomer cements with an LED curing light of 1400 mW/cm(2) during setting for 30 s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30 s and 60 s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times.
LED traffic signal management system : tech summary.
DOT National Transportation Integrated Search
2016-06-01
The light source of a signal module is comprised of an array of multiple individual light emitting diodes (LEDs). : Fading of the array over its operational life is a serious concern of traffic engineers throughout the nation. The : Institute of Tran...
LED firm rejects Nobel laureate's olive branch
NASA Astrophysics Data System (ADS)
Banks, Michael
2014-12-01
Nobel laureate Shuji Nakamura says that he is not going to try and improve relations with his former employer, which he sued in 2001 over his development of the blue light-emitting diode (LED), after receiving a snub from them last month.
Diode pumped solid-state laser oscillators for spectroscopic applications
NASA Technical Reports Server (NTRS)
Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.
1987-01-01
The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.
ERIC Educational Resources Information Center
Chang, S. -H.; Chen, M. -L.; Kuo, Y. -K.; Shen, Y. -C.
2011-01-01
In response to the growing industrial demand for light-emitting diode (LED) design professionals, based on industry-university collaboration in Taiwan, this paper develops a novel instructional approach: a simulation-based learning course with peer assessment to develop students' professional skills in LED design as required by industry as well as…
USDA-ARS?s Scientific Manuscript database
Limited data are available for comparing light-emitting diode (LED) bulbs that are currently available in commercial broiler production facilities. We evaluated the effects of color temperatures (Kelvin) of LED bulbs on growth performance, carcass characteristics, and ocular welfare indices of broil...
Zhang, Lei; Luo, Xiao Ping; Tan, Ren Xiang
2018-05-31
To evaluate the effect of light-cured resin cement application based on etching and silanization on the translucent property of ceramic veneers in different thicknesses, testing the hypothesis that the surface treatment and subsequent resin cement application could influence the translucency of ceramic veneers. The relationship between translucency of ceramic veneers and light transmission irradiated by LED polymerization units was also determined. 40 specimens (10 mm diameter) were fabricated from IPS e.max Press HT A2 ceramic ingots, and polished to 0.3 ± 0.01 mm, 0.5 ± 0.01 mm, 0.7 ± 0.01 mm, 1.0 ± 0.01 mm, and 1.5 ± 0.01 mm thick (n = 8/group). One surface of each disc was etched with HF acid, silanized with Monobond-S, and applied with a light-cured resin cement (Variolink N Transparent Base). Before and after the above procedure, the total luminous transmittance (τ) of all specimens was assessed by a spectrophotometer in a wavelength range of 380-780 nm. A handheld radiometer was used to measure the light intensity irradiated by three LED polymerization units. Light transmission (LT) through ceramic specimens after resin cement application was calculated. Data were statistically analyzed using two-way ANOVA (p = 0.05) and Tukey's test. The correlation between translucency (τ) of ceramic veneers after resin cement application and light transmission (LT) of curing units was statistically evaluated using Spearman correlation test (p = 0.05). With the increase of ceramic thickness, the transmittance decreased significantly (p < 0.05). For the 0.3-mm, 0.5-mm, and 0.7-mm-thick groups, the transmittance of ceramic specimens was statistically significantly lower after resin cement application (p < 0.05). The r value of Bluephase C8 was 0.988, 0.977 for Bluphase, and 0.883 for Bluephase 20i, indicating that the light transmission (LT%) was positively correlated to the translucency of ceramic veneers, regardless of the type of curing units. After the light-cured resin cement application based on etching and silanization, the ceramic veneers (less than 0.7-mm thick) were less translucent, and the translucency decreased when the thickness increased. Because of the lower translucency of ceramic veneers, the light intensity of LED units transmitted to resin layer would decrease when curing. © 2018 by the American College of Prosthodontists.
Optical Experiments Using Mini-Torches with Red, Green and Blue Light Emitting Diodes
ERIC Educational Resources Information Center
Kamata, Masahiro; Matsunaga, Ai
2007-01-01
We have developed two kinds of optical experiments: color mixture and fluorescence, using mini-torches with light emitting diodes (LEDs) that emit three primary colors. Since the tools used in the experiments are simple and inexpensive, students can easily retry and develop the experiments by themselves. As well as giving an introduction to basic…
Tunnel junction multiple wavelength light-emitting diodes
Olson, Jerry M.; Kurtz, Sarah R.
1992-01-01
A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.
ERIC Educational Resources Information Center
Precker, Jurgen W.
2007-01-01
The wavelength of the light emitted by a light-emitting diode (LED) is intimately related to the band-gap energy of the semiconductor from which the LED is made. We experimentally estimate the band-gap energies of several types of LEDs, and compare them with the energies of the emitted light, which ranges from infrared to white. In spite of…
Li, Kun; Li, Zhipeng; Yang, Qichang
2016-01-01
The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting.
Li, Kun; Li, Zhipeng; Yang, Qichang
2016-01-01
The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting. PMID:26904062
InGaN light-emitting diodes with highly transparent ZnO:Ga electrodes
NASA Astrophysics Data System (ADS)
Liu, H. Y.; Li, X.; Ni, X.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H.
2010-03-01
InGaN light-emitting diodes (LEDs) utilizing ZnO layers heavily doped with Ga (GZO) as transparent p-electrodes were fabricated and their characteristics were demonstrated to be superior to those of LEDs with metal Ni/Au electrodes. Highly conductive and highly transparent GZO films were grown on p-GaN contact layers of the LED structures by plasma-assisted molecular beam epitaxy under metal-rich conditions. The c and a lattice constants of GZO were found to be close to the bulk values, indicating small lattice distortion of GZO. The as-grown GZO films showed resistivities as low as 2.2-2.9×10-4 Ω cm. Upon rapid thermal annealing at the optimum temperature of 675 °C, the resistivity decreased reaching a value of ~1.9×10-4 Ω cm. Unlike the LEDs with Ni/Au contacts, the LEDs with GZO electrodes showed no filamentation and very uniform light emission at high current densities. The peak value of the relative external quantum efficiency for the LEDs with GZO contacts has substantial improvement compared with that for the LEDs with Ni/Au contacts. Under pulsed excitation mode, GZO-LEDs withstood current densities up to 5000 A/cm2.
A new integrating sphere design for spectral radiant flux determination of light-emitting diodes
NASA Astrophysics Data System (ADS)
Hanselaer, P.; Keppens, A.; Forment, S.; Ryckaert, W. R.; Deconinck, G.
2009-09-01
Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup.
Preliminary analysis of LED enhanced signs at a passive rural level crossing
DOT National Transportation Integrated Search
2015-03-23
The purpose of this research was to measure motor vehicle speed profiles at a rural level crossing following the replacement of the existing Crossbuck signs and Advance Warning signs (AWSs) with flashing light-emitting diode (LED) versions. Measureme...
Xue, Chenyang; Li, Junyang; Zhang, Qiang; Zhang, Zhibo; Hai, Zhenyin; Gao, Libo; Feng, Ruiting; Tang, Jun; Liu, Jun; Zhang, Wendong; Sun, Dong
2014-01-01
A simple and cost-effective approach was developed to fabricate piezoelectric and triboelectric nanogenerator (P-TENG) with high electrical output. Additionally, pyramid micro structures fabricated atop a polydimethylsiloxane (PDMS) surface were employed to enhance the device performance. Furthermore, piezoelectric barium titanate (BT) nanoparticles and multiwalled carbon nanotube (MWCNT) were mixed in the PDMS film during the forming process. Meanwhile, the composition of the film was optimized to achieve output performance, and favorable toughness was achieved after thermal curing. An arch-shape ITO/PET electrode was attached to the upper side of the polarized composite film and an aluminum film was placed under it as the bottom electrode. With periodic external force at 20 Hz, electrical output of this P-TENG, reached a peak voltage of 22 V and current of 9 μA with a peak current density of 1.13 μA/cm2, which was six times that of the triboelectric generator without BT and MWCNT nanoparticles. The nanogenerator can be directly used to lighten 28 commercial light-emitting diodes (LEDs) without any energy storage unit or rectification circuit under human footfalls. PMID:28346997
Wheat Under LED's (Light Emitting Diodes)
NASA Technical Reports Server (NTRS)
2004-01-01
Astroculture is a suite of technologies used to produce and maintain a closed controlled environment for plant growth. The two most recent missions supported growth of potato, dwarf wheat, and mustard plants, and provided scientists with the first opportunity to conduct true plant research in space. Light emitting diodes have particular usefulness for plant growth lighting because they emit a much smaller amount of radiant heat than do conventional lighting sources and because they have potential of directing a higher percentage of the emitted light onto plants surfaces. Furthermore, the high output LED's have emissions in the 600-700 nm waveband, which is of highest efficiency for photosynthesis by plants.
Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices
O'Toole, Martina; Diamond, Dermot
2008-01-01
The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements. PMID:27879829
GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si.
Tomioka, Katsuhiro; Motohisa, Junichi; Hara, Shinjiroh; Hiruma, Kenji; Fukui, Takashi
2010-05-12
We report on integration of GaAs nanowire-based light-emitting-diodes (NW-LEDs) on Si substrate by selective-area metalorganic vapor phase epitaxy. The vertically aligned GaAs/AlGaAs core-multishell nanowires with radial p-n junction and NW-LED array were directly fabricated on Si. The threshold current for electroluminescence (EL) was 0.5 mA (current density was approximately 0.4 A/cm(2)), and the EL intensity superlinearly increased with increasing current injections indicating superluminescence behavior. The technology described in this letter could help open new possibilities for monolithic- and on-chip integration of III-V NWs on Si.
Integrated ultrasonic particle positioning and low excitation light fluorescence imaging
NASA Astrophysics Data System (ADS)
Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.
2013-12-01
A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup.
Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN.
Cho, Chu-Young; Kwon, Min-Ki; Lee, Sang-Jun; Han, Sang-Heon; Kang, Jang-Won; Kang, Se-Eun; Lee, Dong-Yul; Park, Seong-Ju
2010-05-21
We demonstrate the surface plasmon-enhanced blue light-emitting diodes (LEDs) using Ag nanoparticles embedded in p-GaN. A large increase in optical output power of 38% is achieved at an injection current of 20 mA due to an improved internal quantum efficiency of the LEDs. The enhancement of optical output power is dependent on the density of the Ag nanoparticles. This improvement can be attributed to an increase in the spontaneous emission rate through resonance coupling between the excitons in multiple quantum wells and localized surface plasmons in Ag nanoparticles embedded in p-GaN.
Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices.
O'Toole, Martina; Diamond, Dermot
2008-04-07
The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashiwagi, Y., E-mail: kasiwagi@omtri.or.jp; Yamamoto, M.; Saitoh, M.
2014-12-01
Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.
Kang, Ji Hye; Kim, Hyung Gu; Chandramohan, S; Kim, Hyun Kyu; Kim, Hee Yun; Ryu, Jae Hyoung; Park, Young Jae; Beak, Yun Seon; Lee, Jeong-Sik; Park, Joong Seo; Lysak, Volodymyr V; Hong, Chang-Hee
2012-01-01
The effect of triangular air prism (TAP) arrays with different distance-to-width (d/w) ratios on the enhancement of light extraction efficiency (LEE) of InGaN light-emitting diodes (LEDs) is investigated. The TAP arrays embedded at the sapphire/GaN interface act as light reflectors and refractors, and thereby improve the light output power due to the redirection of light into escape cones on both the front and back sides of the LED. Enhancement in radiometric power as high as 117% and far-field angle as low as 129° are realized with a compact arrangement of TAP arrays compared with that of a conventional LED made without TAP arrays under an injection current of 20 mA. © 2012 Optical Society of America
Sodium bromide additive improved film morphology and performance in perovskite light-emitting diodes
NASA Astrophysics Data System (ADS)
Li, Jinghai; Cai, Feilong; Yang, Liyan; Ye, Fanghao; Zhang, Jinghui; Gurney, Robert S.; Liu, Dan; Wang, Tao
2017-07-01
Organometal halide perovskite is a promising material to fabricate light-emitting diodes (LEDs) via solution processing due to its exceptional optoelectronic properties. However, incomplete precursor conversion and various defect states in the perovskite light-emitting layer lead to low luminance and external quantum efficiency of perovskite LEDs. We show here the addition of an optimum amount of sodium bromide in the methylammonium lead bromide (MAPbBr3) precursor during a one-step perovskite solution casting process can effectively improve the film coverage, enhance the crystallinity, and passivate ionic defects on the surface of MAPbBr3 crystal grains, resulting in LEDs with a reduced turn-on voltage from 2.8 to 2.3 V and an enhanced maximum luminance from 1059 to 6942 Cd/m2 when comparing with the pristine perovskite-based device.
NASA Astrophysics Data System (ADS)
Jia, Chuanyu; Yu, Tongjun; Mu, Sen; Pan, Yaobo; Yang, Zhijian; Chen, Zhizhong; Qin, Zhixin; Zhang, Guoyi
2007-05-01
Polarization-resolved edge-emitting electroluminescence of InGaN /GaN multiple quantum well (MQW) light emitting diodes (LEDs) from 395to455nm was measured. Polarization ratio decreased from 3.2 of near-ultraviolet LEDs (395nm) to 1.9 of blue LEDs (455nm). Based on TE mode dominant emissions in InGaN /GaN MQWs, compressive strain in well region favors TE mode, indium induced quantum-dot-like behavior leads to an increased TM component. As wavelength increased, indium enhanced quantum-dot-like behavior became obvious and E ‖C electroluminescence signal increased thus lower polarization ratio. Electroluminescence spectrum shifts confirmed that quantum dotlike behaviors rather than strain might be dominant in modifying luminescence mode of InGaN /GaN MQWs from near ultraviolet to blue.
Al x Ga1‑ x N-based semipolar deep ultraviolet light-emitting diodes
NASA Astrophysics Data System (ADS)
Akaike, Ryota; Ichikawa, Shuhei; Funato, Mitsuru; Kawakami, Yoichi
2018-06-01
Deep ultraviolet (UV) emission from Al x Ga1‑ x N-based light-emitting diodes (LEDs) fabricated on semipolar (1\\bar{1}02) (r-plane) AlN substrates is presented. The growth conditions are optimized. A high NH3 flow rate during metalorganic vapor phase epitaxy yields atomically flat Al y Ga1‑ y N (y > x) on which Al x Ga1‑ x N/Al y Ga1‑ y N multiple quantum wells with abrupt interfaces and good periodicity are fabricated. The fabricated r-Al x Ga1‑ x N-based LED emits at 270 nm, which is in the germicidal wavelength range. Additionally, the emission line width is narrow, and the peak wavelength is stable against the injection current, so the semipolar LED shows promise as a UV emitter.
White Electroluminescence Using ZnO Nanotubes/GaN Heterostructure Light-Emitting Diode
2010-01-01
We report the fabrication of heterostructure white light–emitting diode (LED) comprised of n-ZnO nanotubes (NTs) aqueous chemically synthesized on p-GaN substrate. Room temperature electroluminescence (EL) of the LED demonstrates strong broadband white emission spectrum consisting of predominating peak centred at 560 nm and relatively weak violet–blue emission peak at 450 nm under forward bias. The broadband EL emission covering the whole visible spectrum has been attributed to the large surface area and high surface states of ZnO NTs produced during the etching process. In addition, comparison of the EL emission colour quality shows that ZnO nanotubes have much better quality than that of the ZnO nanorods. The colour-rendering index of the white light obtained from the nanotubes was 87, while the nanorods-based LED emit yellowish colour. PMID:20672120
NASA Astrophysics Data System (ADS)
Kashiwagi, Y.; Koizumi, A.; Takemura, Y.; Furuta, S.; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Fujiwara, Y.; Murahashi, K.; Ohtsuka, K.; Nakamoto, M.
2014-12-01
Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.
NASA Astrophysics Data System (ADS)
Fu, Yi-Keng; Lu, Yu-Hsuan; Jiang, Ren-Hao; Chen, Bo-Chun; Fang, Yen-Hsiang; Xuan, Rong; Su, Yan-Kuin; Lin, Chia-Feng; Chen, Jebb-Fang
2011-08-01
Near ultraviolet light-emitting diodes (LEDs) with quaternary AlInGaN quantum barriers (QBs) are grown by atmospheric pressure metalorganic vapor phase epitaxy. The indium mole fraction of AlInGaN QB could be enhanced as we increased the TMG flow rate. Both the wavelength shift in EL spectra and forward voltage at 20 mA current injection were reduced by using AlInGaN QB. Under 100 mA current injection, the LED output power with Al 0.089In 0.035Ga 0.876N QB can be enhanced by 15.9%, compared to LED with GaN QB. It should be attributed to a reduction of lattice mismatch induced polarization mismatch in the active layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch
2014-04-07
We report on the direct patterning of two-dimensional periodic structures in GaN-based light-emitting diodes (LEDs) through laser interference ablation for the fast and reliable fabrication of periodic micro- and nano-structures aimed at enhancing light output. Holes arranged in a two-dimensional hexagonal lattice array having an opening size of 500 nm, depth of 50 nm, and a periodicity of 1 μm were directly formed by three-beam laser interference without photolithography or electron-beam lithography processes. The laser-patterned LEDs exhibit an enhancement in light output power of 20% compared to conventional LEDs having a flat top surface without degradation of electrical and optical properties of themore » top p-GaN layer and the active region, respectively.« less
Does the light source affect the repairability of composite resins?
Karaman, Emel; Gönülol, Nihan
2014-01-01
The aim of this study was to examine the effect of the light source on the microshear bond strength of different composite resins repaired with the same substrate. Thirty cylindrical specimens of each composite resin--Filtek Silorane, Filtek Z550 (3M ESPE), Gradia Direct Anterior (GC), and Aelite Posterior (BISCO)--were prepared and light-cured with a QTH light curing unit (LCU). The specimens were aged by thermal cycling and divided into three subgroups according to the light source used--QTH, LED, or PAC (n = 10). They were repaired with the same substrate and a Clearfil Repair Kit (Kuraray). The specimens were light-cured and aged for 1 week in distilled water at 37 °C. The microshear bond strength and failure modes were assessed. There was no significant difference in the microshear bond strength values among the composite resins, except for the Filtek Silorane group that showed significantly lower bond strength values when polymerized with the PAC unit compared to the QTH or LED unit. In conclusion, previously placed dimethacrylate-based composites can be repaired with different light sources; however, if the composite to be repaired is silorane-based, then using a QTH or LED device may be the best option.
NASA Astrophysics Data System (ADS)
Ge, Hai-Liang; Xu, Chen; Xu, Kun; Xun, Meng; Wang, Jun; Liu, Jie
2015-03-01
The two-dimensional (2D) triangle lattice air hole photonic crystal (PC) GaN-based light-emitting diodes (LED) with double-layer graphene transparent electrodes (DGTE) have been produced. The current spreading effect of the double-layer graphene (GR) on the surface of the PC structure of the LED has been researched. Specially, we found that the part of the graphene suspending over the air hole of the PC structure was of much higher conductivity, which reduced the average sheet resistance of the graphene transparent conducting electrode and improved the current spreading of the PC LED. Therefore, the work voltage of the DGTE-PC LED was obviously decreased, and the output power was greatly enhanced. The COMSOL software was used to simulate the current density distribution of the samples. The results show that the etching of PC structure results in the degradation of the current spreading and that the graphene transparent conducting electrode can offer an uniform current spreading in the DGTE-PC LED. PACS: 85.60.Jb; 68.65.Pq; 42.70.Qs
Highly reliable Ag/Zn/Ag ohmic reflector for high-power GaN-based vertical light-emitting diode.
Yum, Woong-Sun; Jeon, Joon-Woo; Sung, Jun-Suk; Seong, Tae-Yeon
2012-08-13
We report the improved performance of InGaN/GaN-based light-emitting diodes (LEDs) through Ag reflectors combined with a Zn middle layer. It is shown that the Zn middle layer (5 nm thick) suppresses the agglomeration of Ag reflectors by forming ZnO and dissolving into Ag. The Ag/Zn/Ag contacts show a specific contact resistance of 6.2 × 10(-5) Ωcm(2) and reflectance of ~83% at a wavelength of 440 nm when annealed at 500 °C, which are much better than those of Ag only contacts. Blue LEDs fabricated with the 500 °C-annealed Ag/Zn/Ag reflectors show a forward voltage of 2.98 V at an injection current of 20 mA, which is lower than that (3.02 V) of LEDs with the annealed Ag only contacts. LEDs with the 500 °C-annealed Ag/Zn/Ag contacts exhibit 34% higher output power (at 20 mA) than LEDs with the annealed Ag only contacts.
Hashimoto, Mitsuhiro; Hata, Akihiro; Miyata, Takaki; Hirase, Hajime
2014-01-01
Abstract. We produced a miniaturized, multicode, multiband, and programmable light-emitting diode (LED) stimulator for wireless control of optogenetic experiments. The LED stimulator is capable of driving three independent LEDs upon reception of an infrared (IR) signal generated by a custom-made IR transmitter. Individual LED photopulse patterns are assigned to different codes of the IR signals (up to 256 codes). The photopulse patterns can be programmed in the on-board microcontroller by specifying the parameters of duration (>1 ms), frequency (<500 Hz), and pulse width (>1 ms). The IR signals were modulated at multiple carrier frequencies to establish multiband IR transmission. Using these devices, we could remotely control the moving direction of a Thy1-ChR2-YFP transgenic mouse by transcranially illuminating the corresponding hemisphere of the primary motor cortex. IR transmitter and LED stimulator will be particularly useful in experiments where free movement or patterned concurrent stimulation is desired, such as testing social communication of rodents. PMID:26157963
The role of ITO resistivity on current spreading and leakage in InGaN/GaN light emitting diodes
NASA Astrophysics Data System (ADS)
Sheremet, V.; Genç, M.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2017-11-01
The effect of a transparent ITO current spreading layer on electrical and light output properties of blue InGaN/GaN light emitting diodes (LEDs) is discussed. When finite conductivity of ITO is taken into account, unlike in previous models, the topology of LED die and contacts are shown to significantly affect current spreading and light output characteristics in top emitting devices. We propose an approach for calculating the current transfer length describing current spreading. We show that an inter-digitated electrode configuration with distance between the contact pad and the edge of p-n junction equal to transfer length in the current spreading ITO layer allows one to increase the optical area of LED chip, as compared to the physical area of the die, light output power, and therefore, the LED efficiency for a given current density. A detailed study of unpassivated LEDs also shows that current transfer lengths longer than the distance between the contact pad and the edge of p-n junction leads to increasing surface leakage that can only be remedied with proper passivation.
Origin of the Electroluminescence from Annealed-ZnO/GaN Heterojunction Light-Emitting Diodes
Hsu, Kai-Chiang; Hsiao, Wei-Hua; Lee, Ching-Ting; Chen, Yan-Ting; Liu, Day-Shan
2015-01-01
This paper addressed the effect of post-annealed treatment on the electroluminescence (EL) of an n-ZnO/p-GaN heterojunction light-emitting diode (LED). The bluish light emitted from the 450 °C-annealed LED became reddish as the LED annealed at a temperature of 800 °C under vacuum atmosphere. The origins of the light emission for these LEDs annealed at various temperatures were studied using measurements of electrical property, photoluminescence, and Auger electron spectroscopy (AES) depth profiles. A blue-violet emission located at 430 nm was associated with intrinsic transitions between the bandgap of n-ZnO and p-GaN, the green-yellow emission at 550 nm mainly originating from the deep-level transitions of native defects in the n-ZnO and p-GaN surfaces, and the red emission at 610 nm emerging from the Ga-O interlayer due to interdiffusion at the n-ZnO/p-GaN interface. The above-mentioned emissions also supported the EL spectra of LEDs annealed at 700 °C under air, nitrogen, and oxygen atmospheres, respectively. PMID:28793675
2013-01-01
In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography. PMID:23683526
Origin of the Electroluminescence from Annealed-ZnO/GaN Heterojunction Light-Emitting Diodes.
Hsu, Kai-Chiang; Hsiao, Wei-Hua; Lee, Ching-Ting; Chen, Yan-Ting; Liu, Day-Shan
2015-11-16
This paper addressed the effect of post-annealed treatment on the electroluminescence (EL) of an n -ZnO/ p -GaN heterojunction light-emitting diode (LED). The bluish light emitted from the 450 °C-annealed LED became reddish as the LED annealed at a temperature of 800 °C under vacuum atmosphere. The origins of the light emission for these LEDs annealed at various temperatures were studied using measurements of electrical property, photoluminescence, and Auger electron spectroscopy (AES) depth profiles. A blue-violet emission located at 430 nm was associated with intrinsic transitions between the bandgap of n -ZnO and p -GaN, the green-yellow emission at 550 nm mainly originating from the deep-level transitions of native defects in the n -ZnO and p -GaN surfaces, and the red emission at 610 nm emerging from the Ga-O interlayer due to interdiffusion at the n -ZnO/ p -GaN interface. The above-mentioned emissions also supported the EL spectra of LEDs annealed at 700 °C under air, nitrogen, and oxygen atmospheres, respectively.
Enhancement of Device Performances in GaN-Based Light-Emitting Diodes Using Nano-Sized Surface Pit.
Yeon, Seunghwan; Son, Taejoon; Shin, Dong Su; Jung, Kyung-Young; Park, Jinsub
2015-07-01
We report the improvement in optical and electrical properties of GaN-based green light-emitting diodes (LEDs) with nano-sized etch pits formed by the surface chemical etching. In order to control the density and sizes of etch pits formed on top surface of green LEDs, H3PO4 solution is used as a etchant with different etching time. When the etching time was increased from 0 min to 20 min, both the etch pit size and density were gradually increased. The improvement of extraction efficiency of LEDs using surface etching method can be attributed to the enlarged escape angle of generated photon by roughened p-GaN surface. The finite-difference time-domain (FDTD) simulation results well agreed with experimentally observed results. Moreover, the LED with etched p-GaN surface for 5 min shows the lowest leakage current value and the further increase of etching time resulting in increase of densities of the large-sized etch pit makes the degradation of electrical properties of LEDs.
Bonding to Different PEEK Compositions: The Impact of Dental Light Curing Units
Lümkemann, Nina; Eichberger, Marlis; Stawarczyk, Bogna
2017-01-01
This study investigated the impact of different light curing units (LCUs) for the polymerization of adhesive system visio.link (VL) on the tensile bond strength (TBS) of different PEEK compositions. For TBS measurements, 216 PEEK specimens with varying amounts of TiO2 (PEEK/0%, PEEK/20%, PEEK/>30%) were embedded, polished, air abraded (Al2O3, 50 µm, 0.4 MPa), conditioned using VL, and polymerized using either a halogen LCU (HAL-LCU) or a LED LCU (LED-LCU) for chairside or labside application, respectively. After thermocycling (5000×, 5/55 °C), TBS was measured, and fracture types were determined. Data was analyzed using a 2-way ANOVA followed by Tukey–HSD, Kruskal–Wallis H and Mann–Whitney U tests as well as a Chi2-test and a Ciba–Geigy table (p < 0.05). Globally, the light curing units, followed by PEEK composition, was shown to have the highest impact on TBS. The HAL-LCUs, compared to the LED-LCUs, resulted in a higher TBS for all PEEK compositions—without significant differences between chairside and labside units. Regarding the different PEEK compositions, PEEK/20%, compared to PEEK/0%, resulted in a higher TBS when both, HAL-LCUs or LED-LCUs were used for labside application. In comparison with PEEK/>30%, PEEK/20% resulted in a higher TBS after using HAL-LCU for labside application. No significant differences were found between PEEK/0% and PEEK/>30%. HAL-LCU with PEEK/20% for labside application showed a higher TBS than HAL-LCU with PEEK/20% for chairside application, whereas LED-LCU with PEEK/>30% for chairside application showed a higher TBS than LED-LCU with PEEK/>30% for labside application. PMID:28772427
Hope, Andrew; Gubbins, Simon; Sanders, Christopher; Denison, Eric; Barber, James; Stubbins, Francesca; Baylis, Matthew; Carpenter, Simon
2015-04-22
The response of Culicoides biting midges (Diptera: Ceratopogonidae) to artificial light sources has led to the use of light-suction traps in surveillance programmes. Recent integration of light emitting diodes (LED) in traps improves flexibility in trapping through reduced power requirements and also allows the wavelength of light used for trapping to be customized. This study investigates the responses of Culicoides to LED light-suction traps emitting different wavelengths of light to make recommendations for use in surveillance. The abundance and diversity of Culicoides collected using commercially available traps fitted with Light Emitting Diode (LED) platforms emitting ultraviolet (UV) (390 nm wavelength), blue (430 nm), green (570 nm), yellow (590 nm), red (660 nm) or white light (425 nm - 750 nm with peaks at 450 nm and 580 nm) were compared. A Centre for Disease Control (CDC) UV light-suction trap was also included within the experimental design which was fitted with a 4 watt UV tube (320-420 nm). Generalised linear models with negative binomial error structure and log-link function were used to compare trap abundance according to LED colour, meteorological conditions and seasonality. The experiment was conducted over 49 nights with 42,766 Culicoides caught in 329 collections. Culicoides obsoletus Meigen and Culicoides scoticus Downes and Kettle responded indiscriminately to all wavelengths of LED used with the exception of red which was significantly less attractive. In contrast, Culicoides dewulfi Goetghebuer and Culicoides pulicaris Linnaeus were found in significantly greater numbers in the green LED trap than in the UV LED trap. The LED traps collected significantly fewer Culicoides than the standard CDC UV light-suction trap. Catches of Culicoides were reduced in LED traps when compared to the standard CDC UV trap, however, their reduced power requirement and small size fulfils a requirement for trapping in logistically challenging areas or where many traps are deployed at a single site. Future work should combine light wavelengths to improve trapping sensitivity and potentially enable direct comparisons with collections from hosts, although this may ultimately require different forms of baits to be developed.
ERIC Educational Resources Information Center
RayChaudhuri, Barun
2011-01-01
This work demonstrates an experiment on the optoelectronic properties of a p-n junction suitable for students of undergraduate physics. It investigates, from an educational point of view, the origin of the wavelength of radiation emitted by a light emitting diode (LED) and determines the emission wavelength of an infrared LED without using…
Hiromoto, Kaho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Tadokoro, Nobuyuki; Kaneko, Nobuyuki; Shimazawa, Masamitsu; Hara, Hideaki
2016-03-01
Blue light-emitting diodes (LEDs) in liquid crystal displays emit high levels of blue light, exposure to which is harmful to the retina. Here, we investigated the protective effects of colored lenses in blue LED light-induced damage to 661W photoreceptor-derived cells. We used eight kinds of colored lenses and one lens that reflects blue light. Moreover, we evaluated the relationship between the protective effects of the lens and the transmittance of lens at 464 nm. Lenses of six colors, except for the SY, PN, and reflective coating lenses, strongly decreased the reduction in cell damage induced by blue LED light exposure. The deep yellow lens showed the most protective effect from all the lenses, but the reflective coating lens and pink lens did not show any effects on photoreceptor-derived cell damage. Moreover, these results were correlated with the lens transmittance of blue LED light (464 nm). These results suggest that lenses of various colors, especially deep yellow lenses, may protect retinal photoreceptor cells from blue LED light in proportion to the transmittance for the wavelength of blue LED and the suppression of reactive oxygen species production and cell damage.
NASA Astrophysics Data System (ADS)
Kuo, Tsung-Rong; Hung, Shih-Ting; Lin, Yen-Ting; Chou, Tzu-Lin; Kuo, Ming-Cheng; Kuo, Ya-Pei; Chen, Chia-Chun
2017-09-01
Quantum dot light-emitting diodes (QD-LEDs) have been considered as potential display technologies with the characterizations of high color purity, flexibility, transparency, and cost efficiency. For the practical applications, the development of heavy-metal-free QD-LEDs from environment-friendly materials is the most important issue to reduce the impacts on human health and environmental pollution. In this work, heavy-metal-free InP/ZnS core/shell QDs with different fluorescence were prepared by green synthesis method with low cost, safe, and environment-friendly precursors. The InP/ZnS core/shell QDs with maximum fluorescence peak at 530 nm, superior fluorescence quantum yield of 60.1%, and full width at half maximum of 55 nm were applied as an emission layer to fabricate multilayered QD-LEDs. The multilayered InP/ZnS core/shell QD-LEDs showed the turn-on voltage at 5 V, the highest luminance (160 cd/m2) at 12 V, and the external quantum efficiency of 0.223% at 6.7 V. Overall, the multilayered InP/ZnS core/shell QD-LEDs reveal potential to be the heavy-metal-free QD-LEDs for future display applications.
NASA Astrophysics Data System (ADS)
Zhang, Jingjing; Guo, Weihong; Xie, Bin; Yu, Xingjian; Luo, Xiaobing; Zhang, Tao; Yu, Zhihua; Wang, Hong; Jin, Xing
2017-09-01
Blue light hazard of white light-emitting diodes (LED) is a hidden risk for human's photobiological safety. Recent spectral optimization methods focus on maximizing luminous efficacy and improving color performances of LEDs, but few of them take blue hazard into account. Therefore, for healthy lighting, it's urgent to propose a spectral optimization method for white LED source to exhibit low blue light hazard, high luminous efficacy of radiation (LER) and high color performances. In this study, a genetic algorithm with penalty functions was proposed for realizing white spectra with low blue hazard, maximal LER and high color rendering index (CRI) values. By simulations, white spectra from LEDs with low blue hazard, high LER (≥297 lm/W) and high CRI (≥90) were achieved at different correlated color temperatures (CCTs) from 2013 K to 7845 K. Thus, the spectral optimization method can be used for guiding the fabrication of LED sources in line with photobiological safety. It is also found that the maximum permissible exposure duration of the optimized spectra increases by 14.9% than that of bichromatic phosphor-converted LEDs with equal CCT.
Lee, Tae Ho; Kim, Kyeong Heon; Lee, Byeong Ryong; Park, Ju Hyun; Schubert, E Fred; Kim, Tae Geun
2016-12-28
Nitride-based ultraviolet light-emitting diodes (UV LEDs) are promising replacements for conventional UV lamps. However, the external quantum efficiency of UV LEDs is much lower than for visible LEDs due to light absorption in the p-GaN contact and electrode layers, along with p-AlGaN growth and doping issues. To minimize such absorption, we should obtain direct ohmic contact to p-AlGaN using UV-transparent ohmic electrodes and not use p-GaN as a contact layer. Here, we propose a glass-based transparent conductive electrode (TCE) produced using electrical breakdown (EBD) of an AlN thin film, and we apply the thin film to four (Al)GaN-based visible and UV LEDs with thin buffer layers for current spreading and damage protection. Compared to LEDs with optimal ITO contacts, our LEDs with AlN TCEs exhibit a lower forward voltage, higher light output power, and brighter light emission for all samples. The ohmic transport mechanism for current injection and spreading from the metal electrode to p-(Al)GaN layer via AlN TCE is also investigated by analyzing the p-(Al)GaN surface before and after EBD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wierer, Jonathan J.; Tsao, Jeffrey Y.; Sizov, Dmitry S.
Solid-state lighting (SSL) is now the most efficient source of high color quality white light ever created. Nevertheless, the blue InGaN light-emitting diodes (LEDs) that are the light engine of SSL still have significant performance limitations. Foremost among these is the decrease in efficiency at high input current densities widely known as “efficiency droop.” Efficiency droop limits input power densities, contrary to the desire to produce more photons per unit LED chip area and to make SSL more affordable. Pending a solution to efficiency droop, an alternative device could be a blue laser diode (LD). LDs, operated in stimulated emission,more » can have high efficiencies at much higher input power densities than LEDs can. In this article, LEDs and LDs for future SSL are explored by comparing: their current state-of-the-art input-power-density-dependent power-conversion efficiencies; potential improvements both in their peak power-conversion efficiencies and in the input power densities at which those efficiencies peak; and their economics for practical SSL.« less
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2014-08-04
Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) lightemitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al0.7Ga0.3N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these opencore threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al0.7Ga0.3N templatesmore » are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinzey, Bruce R.; Myer, Michael
2013-03-01
This report documents a solid-state lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL) Headquarters in Washington, DC, in which light-emitting diode (LED) luminaires were substituted for the incumbent high-pressure sodium (HPS) luminaires and evaluated for relative light quantity and performance. The demonstration results show energy savings of 52% from the initial conversion of HPS to the LED product. These savings were increased to 88% by using occupancy sensor controls that were ultimately set to reduce power to 10% of high state operation after a time delay of 2.5 minutes. Because of the relativelymore » high cost of the LED luminaires at their time of purchase for this project (2010), the simple payback periods were 6.5 years and 4.9 years for retrofit and new construction scenarios, respectively. Staff at DOL Headquarters reported high satisfaction with the operation of the LED product.« less
Effect of 3C-SiC intermediate layer in GaN—based light emitting diodes grown on Si(111) substrate
NASA Astrophysics Data System (ADS)
Zhu, Youhua; Wang, Meiyu; Li, Yi; Tan, Shuxin; Deng, Honghai; Guo, Xinglong; Yin, Haihong; Egawa, Takashi
2017-03-01
GaN-based light emitting diodes (LEDs) have been grown by metalorganic chemical vapor deposition on Si(111) substrate with and without 3C-SiC intermediate layer (IL). Structural property has been characterized by means of atomic force microscope, X-ray diffraction, and transmission electron microscope measurements. It has been revealed that a significant improvement in crystalline quality of GaN and superlattice epitaxial layers can be achieved by using 3C-SiC as IL. Regarding of electrical and optical characteristics, it is clearly observed that the LEDs with its IL have a smaller leakage current and higher light output power comparing with the LEDs without IL. The better performance of LEDs using 3C-SiC IL can be contributed to both of the improvements in epitaxial layers quality and light extraction efficiency. As a consequence, in terms of optical property, a double enhancement of the light output power and external quantum efficiency has been realized.
Controlling surface property of K2SiF6:Mn4+ for improvement of lighting-emitting diode reliability
NASA Astrophysics Data System (ADS)
Kim, Juseong; Jang, Inseok; Song, Gwang Yeom; Kim, Wan-Ho; Jeon, Sie-Wook; Kim, Jae-Pil
2018-05-01
The surface property of moisture-sensitive K2SiF6:Mn4+ (KSF) as a red-emitting phosphor was controlled through dry-type surface modification in order to improve the photo-performance and reliability of lighting-emitting diode (LED). The phosphor surface was modified with silane coupling agents having different carbon chain length by plasma-assisted method. Comparing between as-prepared and modified KSF, water-resistance and photo-emission efficiency were enhanced due to the formation of hydrophobic shell and the elimination of surface quenching sites. Moreover, the dispersibility of phosphor was increased as increasing the carbon chain length of silane because the interfacial affinity between phosphor and encapsulant was improved. After fabricating LED device, the enhancement of photo-performance and long-term reliability could be successfully achieved in LED device with modified phosphor. It is attributed to that the degradation of phosphor efficiency by moisture was suppressed and heat dissipation in LED PKG was improved through the surface modification.
III-nitride quantum dots for ultra-efficient solid-state lighting
Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; ...
2016-05-23
III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less
A study of GaN-based LED structure etching using inductively coupled plasma
NASA Astrophysics Data System (ADS)
Wang, Pei; Cao, Bin; Gan, Zhiyin; Liu, Sheng
2011-02-01
GaN as a wide band gap semiconductor has been employed to fabricate optoelectronic devices such as light-emitting diodes (LEDs) and laser diodes (LDs). Recently several different dry etching techniques for GaN-based materials have been developed. ICP etching is attractive because of its superior plasma uniformity and strong controllability. Most previous reports emphasized on the ICP etching characteristics of single GaN film. In this study dry etching of GaN-based LED structure was performed by inductively coupled plasmas (ICP) etching with Cl2 as the base gas and BCl3 as the additive gas. The effects of the key process parameters such as etching gases flow rate, ICP power, RF power and chamber pressure on the etching properties of GaN-based LED structure including etching rate, selectivity, etched surface morphology and sidewall was investigated. Etch depths were measured using a depth profilometer and used to calculate the etch rates. The etch profiles were observed with a scanning electron microscope (SEM).
Dr. Harry Whelan With the Light Emitting Diode Probe
NASA Technical Reports Server (NTRS)
1999-01-01
The red light from the Light Emitting Diode (LED) probe shines through the fingers of Dr. Harry Whelan, a pediatric neurologist at the Children's Hospital of Wisconsin in Milwaukee. Dr. Whelan uses the long waves of light from the LED surgical probe to activate special drugs that kill brain tumors. Laser light previously has been used for this type of surgery, but the LED light illuminates through all nearby tissues, reaching parts of tumors that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. Also, it can be used for hours at a time while still remaining cool to the touch. The probe was developed for photodynamic cancer therapy under a NASA Small Business Innovative Research Program grant. The program is part of NASA's Technology Transfer Department at the Marshall Space Flight Center.
Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozina, Galia; Ciechonski, Rafal; Bi, Zhaoxia
2015-12-21
Today's energy saving solutions for general illumination rely on efficient white light emitting diodes (LEDs). However, the output efficiency droop experienced in InGaN based LEDs with increasing current injection is a serious limitation factor for future development of bright white LEDs. We show using cathodoluminescence (CL) spatial mapping at different electron beam currents that threading dislocations are active as nonradiative recombination centers only at high injection conditions. At low current, the dislocations are inactive in carrier recombination due to local potentials, but these potentials are screened by carriers at higher injection levels. In CL images, this corresponds to the increasemore » of the dark contrast around dislocations with the injection (excitation) density and can be linked with droop related to the threading dislocations. Our data indicate that reduction of droop in the future efficient white LED can be achieved via a drastic reduction of the dislocation density by using, for example, bulk native substrates.« less
NASA Astrophysics Data System (ADS)
Désières, Yohan; Chen, Ding Yuan; Visser, Dennis; Schippers, Casper; Anand, Srinivasan
2018-06-01
Colloidal TiO2 nanoparticles were used for embossing of composite microcone arrays on III-Nitride vertical-thin-film blue light emitting diodes (LEDs) as well as on silicon, glass, gallium arsenide, and gallium nitride surfaces. Ray tracing simulations were performed to optimize the design of microcones for light extraction and to explain the experimental results. An optical power enhancement of ˜2.08 was measured on III-Nitride blue LEDs embossed with a hexagonal array of TiO2 microcones of ˜1.35 μm in height and ˜2.6 μm in base width, without epoxy encapsulation. A voltage increase in ˜70 mV at an operating current density of ˜35 A/cm2 was measured for the embossed LEDs. The TiO2 microcone arrays were embossed on functioning LEDs, using low pressures (˜100 g/cm2) and temperatures ≤100 °C.
NASA Astrophysics Data System (ADS)
Kong, Bo Hyun; Han, Won Suk; Kim, Young Yi; Cho, Hyung Koun; Kim, Jae Hyun
2010-06-01
We grew heterojunction light emitting diode (LED) structures with various n-type semiconducting layers by magnetron sputtering on p-type GaN at high temperature. Because the undoped ZnO used as an active layer was grown under oxygen rich atmosphere, all LED devices showed the EL characteristics corresponding to orange-red wavelength due to high density of oxygen interstitial, which was coincident with the deep level photoluminescence emission of undoped ZnO. The use of the Ga doped layers as a top layer provided the sufficient electron carriers to active region and resulted in the intense EL emission. The LED sample with small quantity of Mg incorporated in MgZnO as an n-type top layer showed more intense emission than the LED with ZnO, in spite of the deteriorated electrical and structural properties of the MgZnO film. This might be due to the improvement of output extraction efficiency induced by rough surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinzey, B. R.; Davis, R. G.
2014-09-30
On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase II report documents longer-term performance of the LED lighting system that was installed in 2008, and is the first report on the longer-term performance of LED lighting in the field.
Nanoscale current uniformity and injection efficiency of nanowire light emitting diodes
NASA Astrophysics Data System (ADS)
May, Brelon J.; Selcu, Camelia M.; Sarwar, A. T. M. G.; Myers, Roberto C.
2018-02-01
As an alternative to light emitting diodes (LEDs) based on thin films, nanowire based LEDs are the focus of recent development efforts in solid state lighting as they offer distinct photonic advantages and enable direct integration on a variety of different substrates. However, for practical nanowire LEDs to be realized, uniform electrical injection must be achieved through large numbers of nanowire LEDs. Here, we investigate the effect of the integration of a III-Nitride polarization engineered tunnel junction (TJ) in nanowire LEDs on Si on both the overall injection efficiency and nanoscale current uniformity. By using conductive atomic force microscopy (cAFM) and current-voltage (IV) analysis, we explore the link between the nanoscale nonuniformities and the ensemble devices which consist of many diodes wired in parallel. Nanometer resolved current maps reveal that the integration of a TJ on n-Si increases the amount of current a single nanowire can pass at a given applied bias by up to an order of magnitude, with the top 10% of wires passing more than ×3.5 the current of nanowires without a TJ. This manifests at the macroscopic level as a reduction in threshold voltage by more than 3 V and an increase in differential conductance as a direct consequence of the integration of the TJ. These results show the utility of cAFM to quantitatively probe the electrical inhomogeneities in as-grown nanowire ensembles without introducing uncertainty due to additional device processing steps, opening the door to more rapid development of nanowire ensemble based photonics.
2011-08-01
composite (Z350 flowable: 3M ESPE), and a silorane-based composite (P90: 3M ESPE). Scotchbond multipurpose adhesive ( 3M ESPE) was applied prior to...syringe. Composites used for filling the cavities were a methacrylate-based universal hybrid composite (Z250: 3M ESPE, St. Paul, MN, USA), a flowable... adhesive was light cured for 10 s using a LED light curing unit (S10: 3M ESPE), and the light intensity was 1200 mW/cm 2 . An acrylic case with
Interior LED Lighting Technology. Navy Energy Technology Validation (Techval) Program
2015-09-01
usually on most of the time. • Consider replacing existing CFL, high-intensity discharge (HID), or halogen lamp light fixtures/ lamps with LED fixtures... lamps . What is the Technology? An LED is a semiconductor-diode that emits light when power is applied. A driver is used, much as a ballast, to...available in integrated luminaires that can be used to replace existing luminaires. LEDs are also available as direct replacement lamps for many
Tunnel junction multiple wavelength light-emitting diodes
Olson, J.M.; Kurtz, S.R.
1992-11-24
A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.
Jo, Wan-Kuen; Eun, Sung-Soo; Shin, Seung-Ho
2011-01-01
Limited environmental pollutants have only been investigated for the feasibility of light-emitting diodes (LED) uses in photocatalytic decomposition (PD). The present study investigated the applicability of LEDs for annular photocatalytic reactors by comparing PD efficiencies of dimethyl sulfide (DMS), which has not been investigated with any LED-PD system, between photocatalytic systems utilizing conventional and various LED lamps with different wavelengths. A conventional 8 W UV/TiO(2) system exhibited a higher DMS PD efficiency as compared with UV-LED/TiO(2) system. Similarly, a conventional 8 W visible-lamp/N-enhanced TiO(2) (NET) system exhibited a higher PD efficiency as compared with six visible-LED/NET systems. However, the ratios of PD efficiency to the electric power consumption were rather high for the photocatalytic systems using UV- or visible-LED lamps, except for two LED lamps (yellow- and red-LED lamps), compared to the photocatalytic systems using conventional lamps. For the photocatalytic systems using LEDs, lower flow rates and input concentrations and shorter hydraulic diameters exhibited higher DMS PD efficiencies. An Fourier-transformation infrared analysis suggested no significant absorption of byproducts on the catalyst surface. Consequently, it was suggested that LEDs can still be energy-efficiently utilized as alternative light sources for the PD of DMS, under the operational conditions used in this study. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
A perspective perception on the applications of light-emitting diodes.
Nair, Govind B; Dhoble, S J
2015-12-01
Light-emitting diodes (LEDs) continue to penetrate the global market; their pervasiveness clearly being felt in such diverse fields as technological, socio-economic and commercial interests. The multi-billion dollar LED market is shared by various segments, including office and household lighting, street lighting, the automobile industry, traffic signals, backlighting for hand-held devices, indoor and outdoor signs and indicators, medicine, communication systems, crop cultivation using artificial light and many more. The technological development of LEDs has undergone many phases in different parts of the world. From the early discovery of luminescence to the invention of highly efficient organic LEDs, researchers have worked with the prime purpose of improving the performance of luminaires. The need to infuse the market with more efficient and cheaper products has been prevalent from the start. LEDs are a result of this uncontrolled desire of researchers to develop superior products that would displace existing products in the market. To understand what led to the current prominence of LEDs, we give a brief historical overview of the field followed by a thorough discussion of the positive features of LEDs. This work includes the basic requirements, advantages and disadvantages of LEDs in a variety of applications. A brief description of the diverse applications of LED in fields such as lighting, indicators and displays, farming, medicine and communication is given. Considerable importance is placed on discussing the possible difficulties that must be overcome before using LEDs in commercial applications. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Zhou, Shengjun; Liu, Mengling; Hu, Hongpo; Gao, Yilin; Liu, Xingtong
2017-12-01
A ring-shaped SiO2 CBL underneath the p-electrode was employed to enhance current spreading of GaN-based light-emitting diodes (LEDs). Effects of ring-shaped SiO2 current blocking layer (CBL) thickness on optical and electrical characteristics of high power LEDs were investigated. A 190-nm-thick ring-shaped SiO2 CBL with inclined sidewalls was obtained using a combination of a thermally reflowed photoresist technique and an inductively coupled plasma (ICP) etching process, allowing for the deposition of conformal indium tin oxide (ITO) transparent conductive layer on sidewalls of ring-shaped SiO2 CBL. It was indicated that the external quantum efficiency (EQE) of high power LEDs increased with increasing thickness of ring-shaped SiO2 CBL. The EQE of high power LED with 190-nm-thick ring-shaped SiO2 CBL was 12.7% higher than that of high power LED without SiO2 CBL. Simulations performed with commercial SimuLED software package showed that the ring-shaped SiO2 CBL could significantly alleviate current crowding around p-electrode, resulting in enhanced current spreading over the entire high power LED structure.
Phosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology
Li, Ying-Chang; Chang, Liann-Be; Chen, Hou-Jen; Yen, Chia-Yi; Pan, Ke-Wei; Huang, Bohr-Ran; Kuo, Wen-Yu; Chow, Lee; Zhou, Dan; Popko, Ewa
2017-01-01
Monolithic phosphor-free two-color gallium nitride (GaN)-based white light emitting diodes (LED) have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN)/GaN quantum dot and reported LED’s color rendering index (CRI) are still problematic. Here, we use flip-chip technology to fabricate an upside down monolithic two-color phosphor-free LED with four grown layers of high indium quantum dots on top of the three grown layers of lower indium quantum wells separated by a GaN tunneling barrier layer. The photoluminescence (PL) and electroluminescence (EL) spectra of this white LED reveal a broad spectrum ranging from 475 to 675 nm which is close to an ideal white-light source. The corresponding color temperature and color rendering index (CRI) of the fabricated white LED, operated at 350, 500, and 750 mA, are comparable to that of the conventional phosphor-based LEDs. Insights of the epitaxial structure and the transport mechanism were revealed through the TEM and temperature dependent PL and EL measurements. Our results show true potential in the Epi-ready GaN white LEDs for future solid state lighting applications. PMID:28772792
NASA Astrophysics Data System (ADS)
Kakinuma, Koichiro
2006-05-01
The development of light-emitting diode (LED) backlight a wide-color-gamut and mercury-free has become active in liquid crystal display (LCD) industry. Reports on the development of backlights, such as a direct illumination-type back-light and a guided light illumination-type LED backlight were published. The fabrication of an actual commercial product has been progressing under this active development. Sony Corporation launched an LED-backlit LCD television (TV) model, dubbed QUALIA 005, the world’s first home-use television featuring LED backlighting. This product offers a very wide color reproduction range, delivering a color gamut of 150% of that typically achieved by conventional televisions. In this paper, the background of the development of the LED backlight system “TriluminosTM” and the technologies used to realize the wide color gamut are discussed. The main issues to be solved for the commercialization were how to reduce the brightness/color non uniformity of the backlight and how to treat heat generation from the LED. The standardization of wide color space definition xvYCC and LED backlight LCD television combination is expected to result in a more vivid and correct color expression, and a forecast that extends to the market in the future.
NASA Astrophysics Data System (ADS)
Huang, Shen-Che; Li, Heng; Zhang, Zhe-Han; Chen, Hsiang; Wang, Shing-Chung; Lu, Tien-Chang
2017-01-01
We report on the design of the geometry and chip size-controlled structures of microscale light-emitting diodes (micro-LEDs) with a shallow-etched oxide-refilled current aperture and their performance. The proposed structure, which combines an indium-tin-oxide layer and an oxide-confined aperture, exhibited not only uniform current distribution but also remarkably tight current confinement. An extremely high injection level of more than 90 kA/cm2 was achieved in the micro-LED with a 5-μm aperture. Current spreading and the droop mechanism in the investigated devices were characterized through electroluminescence measurements, optical microscopy, and beam-view imaging. Furthermore, we utilized the β-model and S-model to elucidate current crowding and the efficiency droop phenomenon in the investigated micro-LEDs. The luminescence results evidenced the highly favorable performance of the fabricated micro-LEDs, which is a result of their more uniform current spreading and lower junction temperature relative to conventional LEDs. Moreover, the maximum endured current density could be further increased by reducing the aperture size of the micro-LEDs. The proposed design, which is expected to be beneficial for the development of high-performance array-based micro-LEDs, is practicable through current state-of-the-art processing techniques.
The activation of directional stem cell motility by green light-emitting diode irradiation.
Ong, Wei-Kee; Chen, How-Foo; Tsai, Cheng-Ting; Fu, Yun-Ju; Wong, Yi-Shan; Yen, Da-Jen; Chang, Tzu-Hao; Huang, Hsien-Da; Lee, Oscar Kuang-Sheng; Chien, Shu; Ho, Jennifer Hui-Chun
2013-03-01
Light-emitting diode (LED) irradiation is potentially a photostimulator to manipulate cell behavior by opsin-triggered phototransduction and thermal energy supply in living cells. Directional stem cell motility is critical for the efficiency and specificity of stem cells in tissue repair. We explored that green LED (530 nm) irradiation directed the human orbital fat stem cells (OFSCs) to migrate away from the LED light source through activation of extracellular signal-regulated kinases (ERK)/MAP kinase/p38 signaling pathway. ERK inhibitor selectively abrogated light-driven OFSC migration. Phosphorylation of these kinases as well as green LED irradiation-induced cell migration was facilitated by increasing adenosine triphosphate (ATP) production in OFSCs after green LED exposure, and which was thermal stress-independent mechanism. OFSCs, which are multi-potent mesenchymal stem cells isolated from human orbital fat tissue, constitutionally express three opsins, i.e. retinal pigment epithelium-derived rhodopsin homolog (RRH), encephalopsin (OPN3) and short-wave-sensitive opsin 1 (OPN1SW). However, only two non-visual opsins, i.e. RRH and OPN3, served as photoreceptors response to green LED irradiation-induced OFSC migration. In conclusion, stem cells are sensitive to green LED irradiation-induced directional cell migration through activation of ERK signaling pathway via a wavelength-dependent phototransduction. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Miin-Jang; Yang, Jer-Ren; Shiojiri, Makoto
2012-07-01
We have investigated ZnO-based light-emitting diodes (LEDs) fabricated by atomic layer deposition (ALD), demonstrating that ALD is one of the noteworthy techniques to prepare high-quality ZnO required for ultraviolet (UV) photonic devices. Here, we review our recent investigations on different ZnO-based heterojunction LEDs such as n-ZnO/p-GaN LEDS, n-ZnO:Al/ZnO nanodots-SiO2 composite/p-GaN LEDS, n-ZnO/ZnO nanodots-SiO2 composite/p-AlGaN LEDs, n-ZnO:Al/i-ZnO/p-SiC(4H) LEDs, and also on ZnO-based nanostructures including ZnO quantum dots embedded in SiO2 nanoparticle layer, ZnO nanopillars on sapphire substrates, Al-doped ZnO films on sapphire substrate and highly (0 0 0 1)-oriented ZnO films on amorphous glass substrate. The latest investigation also demonstrated p-type ZnO:P films prepared on amorphous silica substrates, which allow us to fabricate ZnO-based homojunction LEDs. These devices and structures were studied by x-ray diffraction and various analytical electron microscopy observations as well as electric and electro-optical measurements.
A Call to Develop Course-Based Undergraduate Research Experiences (CUREs) for Nonmajors Courses
Ballen, Cissy J.; Blum, Jessamina E.; Brownell, Sara; Hebert, Sadie; Hewlett, James; Klein, Joanna R.; McDonald, Erik A.; Monti, Denise L.; Nold, Stephen C.; Slemmons, Krista E.; Soneral, Paula A. G.; Cotner, Sehoya
2017-01-01
Course-based undergraduate research experiences (CUREs) for non–science majors (nonmajors) are potentially distinct from CUREs for developing scientists in their goals, learning objectives, and assessment strategies. While national calls to improve science, technology, engineering, and mathematics education have led to an increase in research revealing the positive effects of CUREs for science majors, less work has specifically examined whether nonmajors are impacted in the same way. To address this gap in our understanding, a working group focused on nonmajors CUREs was convened to discuss the following questions: 1) What are our laboratory-learning goals for nonmajors? 2) What are our research priorities to determine best practices for nonmajors CUREs? 3) How can we collaborate to define and disseminate best practices for nonmajors in CUREs? We defined three broad student outcomes of prime importance to the nonmajors CURE: improvement of scientific literacy skills, proscience attitudes, and evidence-based decision making. We evaluated the state of knowledge of best practices for nonmajors, and identified research priorities for the future. The report that follows is a summary of the conclusions and future directions from our discussion. PMID:28450449
NASA Astrophysics Data System (ADS)
Seipel, S.; Yu, J.; Periyasamy, A. P.; Viková, M.; Vik, M.; Nierstrasz, V. A.
2017-10-01
For the development of niche products like smart textiles and other functional high-end products, resource-saving production processes are needed. Niche products only require small batches, which makes their production with traditional textile production techniques time-consuming and costly. To achieve a profitable production, as well as to further foster innovation, flexible and integrated production techniques are a requirement. Both digital inkjet printing and UV-light curing contribute to a flexible, resource-efficient, energy-saving and therewith economic production of smart textiles. In this article, a smart textile UV-sensor is printed using a piezoelectric drop-on-demand printhead and cured with a UV-LED lamp. The UVcurable ink system is based on free radical polymerization and the integrated UVsensing material is a photochromic dye, Reversacol Ruby Red. The combination of two photoactive compounds, for which UV-light is both the curer and the activator, challenges two processes: polymer crosslinking of the resin and color performance of the photochromic dye. Differential scanning calorimetry (DSC) is used to characterize the curing efficiency of the prints. Color measurements are made to determine the influence of degree of polymer crosslinking on the developed color intensities, as well as coloration and decoloration rates of the photochromic prints. Optimized functionality of the textile UV-sensor is found using different belt speeds and lamp intensities during the curing process.
LIGHTING FOR READING: DESIGNING AN LED LUMINAIRE FOR HOMES AND OFFICES
Energy waste from traditional incandescent light bulbs was reduced by fluorescent lamps, but they pose a threat to the environment due to the mercury in each tube and disposal issues. Light emitting diodes (LEDs) provide superior energy efficiency, longer life, toxin-free comp...
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Connolly, Walter, Ed.
1989-01-01
Describes three activities: "Solar Approach to Ohm's Law," dealing with the Ohm's law and the inverse square law; "Using LED's to Demonstrate Induced Current," showing Faraday's law and Lenz's law by using light emitting diodes (LEDs); and "The Helium-Filled Organ Pipe," discussing a discrepancy between theory and experiment. (YP)
Design and fabrication of metal-insulator-metal diode for high frequency applications
NASA Astrophysics Data System (ADS)
Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias
2017-02-01
Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.
Ji, Hongyun; Wu, Yu; Duan, Zhijuan; Yang, Feng; Yuan, Hongyan; Xiao, Dan
2017-02-01
A new detector, silvering detection window and in-capillary optical fiber light-emitting diode-induced fluorescence detector (SDW-ICOF-LED-IFD), is introduced for capillary electrophoresis (CE). The strategy of the work was that half surface of the detection window was coated with silver mirror, which could reflect the undetected fluorescence to the photomultiplier tube to be detected, consequently enhancing the detection sensitivity. Sulfonamides (SAs) are important antibiotics that achieved great applications in many fields. However, they pose a serious threat on the environment and human health when they enter into the environment. The SDW-ICOF-LED-IFD-CE system was used to determine fluorescein isothiocyanate (FITC)-labeled sulfadoxine (SDM), sulfaguanidine (SGD) and sulfamonomethoxine sodium (SMM-Na) in environmental water. The detection results obtained by the SDW-ICOF-LED-IFD-CE system were compared to those acquired by the CE with in-capillary optical fiber light-emitting diode-induced fluorescence detection (ICOF-LED-IFD-CE). The limits of detection (LODs) of SDW-ICOF-LED-IFD-CE and ICOF-LED-IFD-CE were 1.0-2.0 nM and 2.5-7.7 nM (S/N = 3), respectively. The intraday (n = 6) and interday (n = 6) precision of migration time and corresponding peak area for both types of CE were all less than 0.86% and 3.68%, respectively. The accuracy of the proposed method was judged by employing standard addition method, and recoveries obtained were in the range of 92.5-102.9%. The results indicated that the sensitivity of the SDW-ICOF-LED-IFD-CE system was improved, and that its reproducibility and accuracy were satisfactory. It was successfully applied to analyze SAs in environmental water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chung, Kunook; Sui, Jingyang; Demory, Brandon; Ku, Pei-Cheng
2017-07-01
Additive color mixing across the visible spectrum was demonstrated from an InGaN based light-emitting diode (LED) pixel comprising red, green, and blue subpixels monolithically integrated and enabled by local strain engineering. The device was fabricated using a top-down approach on a metal-organic chemical vapor deposition-grown sample consisting of a typical LED epitaxial stack. The three color subpixels were defined in a single lithographic step. The device was characterized for its electrical properties and emission spectra under an uncooled condition, which is desirable in practical applications. The color mixing was controlled by pulse-width modulation, and the degree of color control was also characterized.
Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes.
de Sanctis, Daniele; Zubieta, Chloe; Felisaz, Franck; Caserotto, Hugo; Nanao, Max H
2016-03-01
Exposure to X-rays, high-intensity visible light or ultraviolet radiation results in alterations to protein structure such as the breakage of disulfide bonds, the loss of electron density at electron-rich centres and the movement of side chains. These specific changes can be exploited in order to obtain phase information. Here, a case study using insulin to illustrate each step of the radiation-damage-induced phasing (RIP) method is presented. Unlike a traditional X-ray-induced damage step, specific damage is introduced via ultraviolet light-emitting diodes (UV-LEDs). In contrast to UV lasers, UV-LEDs have the advantages of small size, low cost and relative ease of use.
Scandium oxide antireflection coatings for superluminescent LEDs
NASA Technical Reports Server (NTRS)
Ladany, I.; Zanzucchi, P. J.; Andrews, J. T.; Kane, J.; Depiano, E.
1986-01-01
For an employment of laser diodes as superluminescent LEDs (SLDs) or amplifiers, the facets of the diodes must be coated with antireflection films. In the work reported, scandium oxide was evaporated from an e-beam source onto Supersil II fused silica substrates. The obtained samples were used for measurements of absorption and reflectivity. Results of index measurements on e-beam evaporated films are presented. It is shown that excellent coatings with reflectivities of 0.00025 can be obtained using these films. Attention is given to the refractive indices for scandium oxide films as a function of wavelength, the power output vs current for laser before coating and after coating with Sc2O3.
Yoo, Seunghwan; Song, Ho Young; Lee, Junghoon; Jang, Cheol-Yong; Jeong, Hakgeun
2012-11-20
In this article, we introduce a simple fabrication method for SiO(2)-based thin diffractive optical elements (DOEs) that uses the conventional processes widely used in the semiconductor industry. Photolithography and an inductively coupled plasma etching technique are easy and cost-effective methods for fabricating subnanometer-scale and thin DOEs with a refractive index of 1.45, based on SiO(2). After fabricating DOEs, we confirmed the shape of the output light emitted from the laser diode light source and applied to a light-emitting diode (LED) module. The results represent a new approach to mass-produce DOEs and realize a high-brightness LED module.
NASA Astrophysics Data System (ADS)
Nishizawa, Nozomi; Aoyama, Masaki; Roca, Ronel C.; Nishibayashi, Kazuhiro; Munekata, Hiro
2018-05-01
We demonstrate arbitrary helicity control of circularly polarized light (CPL) emitted at room temperature from the cleaved side facet of a lateral-type spin-polarized light-emitting diode (spin-LED) with two ferromagnetic electrodes in an antiparallel magnetization configuration. Driving alternate currents through the two electrodes results in polarization switching of CPL with frequencies up to 100 kHz. Furthermore, tuning the current density ratio in the two electrodes enables manipulation of the degree of circular polarization. These results demonstrate arbitrary electrical control of polarization with high speed, which is required for the practical use of lateral-type spin-LEDs as monolithic CPL light sources.
Instense red phosphors for UV light emitting diode devices.
Cao, Fa-Bin; Tian, Yan-Wen; Chen, Yong-Jie; Xiao, Lin-Jiu; Liu, Yun-Yi
2010-03-01
Ca(x)Sr1-x-1.5y-0.5zMoO4:yEu3+ zNa+ red phosphors were prepared by solid-state reaction using Na+ as charge supply for LEDs (light emitting diodes). The content of charge compensator, Ca2+ concentration, synthesis temperature, reaction time, and Eu3+ concentration were the keys to improving the properties of luminescence and crystal structure of red phosphors. The photoluminescence spectra shows the red phosphors are effectively excited at 616 nm by 311 nm, 395 nm, and 465 nm light. The wavelengths of 395 and 465 nm nicely match the widely applied emission wavelengths of ultraviolet or blue LED chips. Its chromaticity coordinates (CIE) are calculated to be x = 0.65, y = 0.32. Bright red light can be observed by the naked eye from the LED-based Ca0.60Sr0.25MoO4:0.08Eu3+ 0.06Na+.
NASA Astrophysics Data System (ADS)
Oleksandrov, Sergiy; Kwon, Jung Ho; Lee, Ki-chang; Sujin-Ku; Paek, Mun Cheol
2014-09-01
This work introduces a novel chip to be used in the future as a simple and cost-effective method for creating DNA arrays using light emission diode (LED) photolithography. The DNA chip platform contains 24 independent reaction sites, which allows for the testing of a corresponding amount of patients' samples in hospital. An array of commercial UV LEDs and lens systems was combined with a microfluidic flow system to provide patterning of 24 individual reaction sites, each with 64 independent probes. Using the LED array instead of conventional laser exposure systems or micro-mirror systems significantly reduces the cost of equipment. The microfluidic system together with microfluidic flow cells drastically reduces the amount of used reagents, which is important due to the high cost of commercial reagents. The DNA synthesis efficiency was verified by fluorescence labeling and conventional hybridization.
NASA Astrophysics Data System (ADS)
Mastro, Michael A.; Kim, Chul Soo; Kim, Mijin; Caldwell, Josh; Holm, Ron T.; Vurgaftman, Igor; Kim, Jihyun; Eddy, Charles R., Jr.; Meyer, Jerry R.
2008-10-01
A two-dimensional (2D) ZnS photonic crystal was deposited on the surface of a one-dimensional (1D) III-nitride micro cavity light-emitting diode (LED), to intermix the light extraction features of both structures (1D+2D). The deposition of an ideal micro-cavity optical thickness of ≈λ/2 is impractical for III-nitride LEDs, and in realistic multi-mode devices a large fraction of the light is lost to internal refraction as guided light. Therefore, a 2D photonic crystal on the surface of the LED was used to diffract and thus redirect this guided light out of the semiconductor over several hundred microns. Additionally, the employment of a post-epitaxy ZnS 2D photonic crystal avoided the typical etching into the GaN:Mg contact layer, a procedure which can cause damage to the near surface.
Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites
NASA Astrophysics Data System (ADS)
Xiao, Zhengguo; Kerner, Ross A.; Zhao, Lianfeng; Tran, Nhu L.; Lee, Kyung Min; Koh, Tae-Wook; Scholes, Gregory D.; Rand, Barry P.
2017-01-01
Organic-inorganic hybrid perovskite materials are emerging as highly attractive semiconductors for use in optoelectronics. In addition to their use in photovoltaics, perovskites are promising for realizing light-emitting diodes (LEDs) due to their high colour purity, low non-radiative recombination rates and tunable bandgap. Here, we report highly efficient perovskite LEDs enabled through the formation of self-assembled, nanometre-sized crystallites. Large-group ammonium halides added to the perovskite precursor solution act as a surfactant that dramatically constrains the growth of 3D perovskite grains during film forming, producing crystallites with dimensions as small as 10 nm and film roughness of less than 1 nm. Coating these nanometre-sized perovskite grains with longer-chain organic cations yields highly efficient emitters, resulting in LEDs that operate with external quantum efficiencies of 10.4% for the methylammonium lead iodide system and 9.3% for the methylammonium lead bromide system, with significantly improved shelf and operational stability.
Byeon, Kyeong-Jae; Hwang, Seon-Yong; Hong, Chang-Hee; Baek, Jong Hyeob; Lee, Heon
2008-10-01
Nanoimprint lithography (NIL) was adapted to fabricate two-dimensional (2-D) photonic crystal (PC) pattern on the p-GaN layer of InGaN/GaN multi quantum well light-emitting diodes (LEDs) structure to improve the light extraction efficiency. For the uniform transfer of the PC pattern, a bi-layer imprinting method with liquid phase resin was used. The p-GaN layer was patterned with a periodic array of holes by an inductively coupled plasma etching process, based on SiCl4/Ar plasmas. As a result, 2-D photonic crystal patterns with 144 nm, 200 nm and 347 nm diameter holes were uniformly formed on the p-GaN layer and the photoluminescence (PL) intensity of each patterned LED samples was increased by more than 2.6 times, as compared to that of the un-patterned LED sample.
Qiao, Yang; Chen, Daoyi; Wen, Diya
2018-06-04
The development of subsea injection water disinfection systems will enable the novel exploration of offshore oilfields. Ultraviolet light emitting diodes (UV-LEDs) with peak wavelengths at 255 nm, 280 nm, 350 nm, and combinations of 255 nm and 350 nm, and 280 nm and 350 nm were investigated in this study to determine their efficiency at disinfecting saprophytic bacteria, iron bacteria, and sulfate reducing bacteria. Results show that UV-LEDs with peak wavelengths at 280 nm were the most practical in this domain because of their high performance in both energy-efficiency and reactivation suppression, although 255 nm UV-LEDs achieved an optimal germicidal effect in dose-based experiments. The use of combined 280 nm and 350 nm wavelengths also induced synergistic bactericidal effects on saprophytic bacteria. Copyright © 2018. Published by Elsevier B.V.
Orange a-plane InGaN/GaN light-emitting diodes grown on r-plane sapphire substrates.
Seo, Yong Gon; Baik, Kwang Hyeon; Song, Hooyoung; Son, Ji-Su; Oh, Kyunghwan; Hwang, Sung-Min
2011-07-04
We report on orange a-plane light-emitting diodes (LEDs) with InGaN single quantum well (SQW) grown on r-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). The peak wavelength and the full-width at half maximum (FWHM) at a drive current of 20mA were 612.2 nm and 72 nm, respectively. The device demonstrated a blue shift in emission wavelength from 614.6 nm at 10 mA to 607.5 nm at 100 mA, representing a net shift of 7.1 nm over a 90 mA range, which is the longest wavelength compared with reported values in nonpolar LEDs. The polarization ratio values obtained from the orange LED varied between 0.36 and 0.44 from 10 to 100mA and a weak dependence of the polarization ratio on the injection current was observed.
Lee, Kwang Jae; Chun, Jaeyi; Kim, Sang-Jo; Oh, Semi; Ha, Chang-Soo; Park, Jung-Won; Lee, Seung-Jae; Song, Jae-Chul; Baek, Jong Hyeob; Park, Seong-Ju
2016-03-07
We report the growth of InGaN/GaN multiple quantum wells blue light-emitting diodes (LEDs) on a silicon (111) substrate with an embedded nanoporous (NP) GaN layer. The NP GaN layer is fabricated by electrochemical etching of n-type GaN on the silicon substrate. The crystalline quality of crack-free GaN grown on the NP GaN layer is remarkably improved and the residual tensile stress is also decreased. The optical output power is increased by 120% at an injection current of 20 mA compared with that of conventional LEDs without a NP GaN layer. The large enhancement of optical output power is attributed to the reduction of threading dislocation, effective scattering of light in the LED, and the suppression of light propagation into the silicon substrate by the NP GaN layer.
NASA Astrophysics Data System (ADS)
Meng, Xiao; Wang, Lai; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao
2016-01-01
Efficiency droop is currently one of the most popular research problems for GaN-based light-emitting diodes (LEDs). In this work, a differential carrier lifetime measurement system is optimized to accurately determine carrier lifetimes (τ) of blue and green LEDs under different injection current (I). By fitting the τ-I curves and the efficiency droop curves of the LEDs according to the ABC carrier rate equation model, the impact of Auger recombination and carrier leakage on efficiency droop can be characterized simultaneously. For the samples used in this work, it is found that the experimental τ-I curves cannot be described by Auger recombination alone. Instead, satisfactory fitting results are obtained by taking both carrier leakage and carriers delocalization into account, which implies carrier leakage plays a more significant role in efficiency droop at high injection level.
NASA Astrophysics Data System (ADS)
Zhao, Guijuan; Wang, Lianshan; Li, Huijie; Meng, Yulin; Li, Fangzheng; Yang, Shaoyan; Wang, Zhanguo
2018-01-01
Semi-polar (11-22) InGaN multiple quantum well (MQW) green light-emitting diode (LED) structures have been realized by metal-organic chemical vapor deposition on an m-plane sapphire substrate. By introducing double GaN buffer layers, we improve the crystal quality of semi-polar (11-22) GaN significantly. The vertical alignment of the diffraction peaks in the (11-22) X-ray reciprocal space mapping indicates the fully strained MQW on the GaN layer. The photoluminescence spectra of the LED structure show stronger emission intensity along the [1-100] InGaN/GaN direction. The electroluminescence emission of the LED structure is very broad with peaks around 550 nm and 510 nm at the 100 mA current injection for samples A and B, respectively, and exhibits a significant blue-shift with increasing drive current.
Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles.
Jin, Yuanhao; Li, Qunqing; Li, Guanhong; Chen, Mo; Liu, Junku; Zou, Yuan; Jiang, Kaili; Fan, Shoushan
2014-01-06
The output power of the light from GaN-based light-emitting diodes (LEDs) was enhanced by fabricating gold (Au) nanoparticles on the surface of p-GaN. Quasi-aligned Au nanoparticle arrays were prepared by depositing Au thin film on an aligned suspended carbon nanotube thin film surface and then putting the Au-CNT system on the surface of p-GaN and thermally annealing the sample. The size and position of the Au nanoparticles were confined by the carbon nanotube framework, and no other additional residual Au was distributed on the surface of the p-GaN substrate. The output power of the light from the LEDs with Au nanoparticles was enhanced by 55.3% for an injected current of 100 mA with the electrical property unchanged compared with the conventional planar LEDs. The enhancement may originate from the surface plasmon effect and scattering effect of the Au nanoparticles.
Cascaded Emission Regions in 2.4 μm GaInAsSb Light Emitting Diode's for Improved Current Efficiency
NASA Astrophysics Data System (ADS)
Prineas, John; Yager, Jeff; Olesberg, Jonathon; Cao, Chuanshun; Reddy, Madhu; Coretsopoulos, Chris
2008-03-01
Infrared optoelectronics play an important role in sensing of molecules through characteristic vibrational resonances that occur at those wavelengths. For molecules in aqueous and at room temperature, where optical transistions tend to be broad, the broadband emission of light emitting diodes (LEDs) are well suited for obtaining molecular absorption spectra. The 2-2.6 μm range is an advantageous range for sensing of glucose. Voltages available in batteries and control electronics are limited to much higher voltages than those required to turn on an infrared LED, and moreover have limited current supply. Here, we demonstrate room temperature operature of 5-stage cascaded emission regions in 2-2.6 μm GaInAsSb LEDs. We report three times higher turn on voltage, and nine times improved current efficiency compared to a single stage device.
Super air stable quasi-2D organic-inorganic hybrid perovskites for visible light-emitting diodes.
Jia, Guo; Shi, Ze-Jiao; Xia, Ying-Dong; Wei, Qi; Chen, Yong-Hua; Xing, Gui-Chuan; Huang, Wei
2018-01-22
Solution processed organic-inorganic hybrid perovskites are emerging as a new generation materials for optoelectronics. However, the electroluminescence is highly limited in light emitting diodes (LED) due to the low exciton binding energy and the great challenge in stability. Here, we demonstrate a super air stable quasi-two dimensional perovskite film employing hydrophobic fluorine-containing organics as barrier layers, which can store in ambient for more than 4 months with no change. The dramatically reduced grain size of the perovskite crystal in contrast to three dimensional (3D) perovskites was achieved. Together with the natural quantum well of quasi-two dimensional perovskite confining the excitons to recombination, the LED exhibited the maximum luminance of 1.2 × 10 3 cd/m 2 and current efficiency up to 0.3 cd/A, which is twenty fold enhancement than that of LED based on 3D analogues under the same condition.
NASA Astrophysics Data System (ADS)
Sheremet, V.; Genç, M.; Gheshlaghi, N.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2018-01-01
Enhancement of InGaN/GaN based light emitting diode performance with step graded electron injectors through a two-step passivation is reported. Perimeter passivation of LED dies with SiO2 immediately following ICP mesa etch in addition to conventional Si3N4 dielectric surface passivation leads to decrease in the reverse bias leakage current by a factor of two as well as a decrease in the shunt current under forward bias by an order of magnitude. Mitigation of the leakage currents owing to the two-step passivation leads to significant increase in the radiant intensity of LEDs by more than a factor of two compared to the conventional single step surface passivation. Further, micro-dome patterned surface of Si3N4 passivation layer allow enhanced light extraction from LEDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Euihan; Hwang, Gwangseok; Chung, Jaehun
2015-01-26
Performance degradation resulting from efficiency droop during high-power operation is a critical problem in the development of high-efficiency light-emitting diodes (LEDs). In order to resolve the efficiency droop and increase the external quantum efficiency of LEDs, the droop's origin should be identified first. To experimentally investigate the cause of efficiency droop, we used null-point scanning thermal microscopy to quantitatively profile the temperature distribution on the cross section of the epi-layers of an operating GaN-based vertical LED with nanoscale spatial resolution at four different current densities. The movement of temperature peak towards the p-GaN side as the current density increases suggestsmore » that more heat is generated by leakage current than by Auger recombination. We therefore suspect that at higher current densities, current leakage becomes the dominant cause of the droop problem.« less
Huang, H W; Lin, C H; Yu, C C; Lee, B D; Chiu, C H; Lai, C F; Kuo, H C; Leung, K M; Lu, T C; Wang, S C
2008-05-07
Enhanced light extraction from a GaN-based power chip (PC) of green light-emitting diodes (LEDs) with a rough p-GaN surface using nanoimprint lithography is presented. At a driving current of 350 mA and with a chip size of 1 mm × 1 mm packaged on transistor outline (TO)-cans, the light output power of the green PC LEDs with nano-rough p-GaN surface is enhanced by 48% when compared with the same device without a rough p-GaN surface. In addition, by examining the radiation patterns, the green PC LED with nano-rough p-GaN surface shows stronger light extraction with a wider view angle. These results offer promising potential to enhance the light output powers of commercial light-emitting devices by using the technique of nanoimprint lithography under suitable nanopattern design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baran, Timothy M., E-mail: timothy.baran@rochester.edu; Mironov, Oleg, E-mail: oleg.mironov@uhn.ca; Sharma, Ashwani K., E-mail: Ashwani-Sharma@URMC.Rochester.edu
PurposeWe describe the design and preliminary characterization of a stent incorporating light-emitting diodes (LEDs) for photodynamic therapy (PDT) of malignant biliary obstruction.MethodsA prototype was constructed with red (640 nm) LEDs embedded in a 14.5 French polyurethane tube. The device was evaluated for optical power and subjected to physical and electrical tests. PDT-induced reactive oxygen species were imaged in a gel phantom.ResultsThe stent functioned at a 2.5-cm bend radius and illuminated for 6 months in saline. No stray currents were detected, and it was cool after 30 minutes of operation. Optical power of 5–15 mW is applicable to PDT. Imaging of a reactivemore » oxygen indicator showed LED-stent activation of photosensitizer.ConclusionsThe results motivate biological testing and design optimization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Daehwan, E-mail: daehwan.jung@yale.edu; Larry Lee, Minjoo; Yu, Lan
We report room-temperature (RT) electroluminescence (EL) from InAs/InAs{sub x}P{sub 1−x} quantum well (QW) light-emitting diodes (LEDs) over a wide wavelength range of 2.50–2.94 μm. We demonstrate the ability to accurately design strained InAs QW emission wavelengths while maintaining low threading dislocation density, coherent QW interfaces, and high EL intensity. Investigation of the optical properties of the LEDs grown on different InAs{sub x}P{sub 1−x} metamorphic buffers showed higher EL intensity and lower thermal quenching for QWs with higher barriers and stronger carrier confinement. Strong RT EL intensity from LEDs with narrow full-width at half-maximum shows future potential for InAs QW mid-infrared lasermore » diodes on InAsP/InP.« less
NASA Astrophysics Data System (ADS)
Kim, Sang-Jo; Lee, Kwang Jae; Park, Seong-Ju
2018-06-01
We numerically investigated the effects of trapezoidal quantum barriers (QBs) on efficiency droop in InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LEDs). Simulations showed that the electrostatic field in QWs of LEDs with trapezoidal barriers is reduced because of the reduced sheet charge density at the QW-QB interface caused by the thin GaN layer in trapezoidal QBs. Additionally, the InGaN grading region in trapezoidal QBs suppresses hot carrier transport and this enhances efficient carrier injection into the QWs. The electroluminescence intensity of an LED with trapezoidal QBs is increased by 10.2% and 6.7% at 245 A cm‑2 when compared with the intensities of LEDs with square-type GaN barriers and multilayer barriers, respectively. The internal quantum efficiency (IQE) droop of an LED with trapezoidal QBs is 16% at 300 A cm‑2, while LEDs with square-type GaN barriers and multilayer barriers have IQE droop of 31% and 24%, respectively. This IQE droop alleviation in LEDs with trapezoidal QBs is attributed to the reduced energy band bending, efficient hole injection, and more uniform hole distribution in the MQWs that results from reduction of the piezoelectric field by the trapezoidal QBs. These results indicate that the trapezoidal QB in MQWs is promising for enhanced efficiency in high-power GaN-based LEDs.
Kothari, Mihir; Kothari, Kedar; Kadam, Sanjay; Mota, Poonam; Chipade, Snehal
2015-01-01
To report the "do it yourself" method of converting an existing wired-halogen indirect ophthalmoscope (IO) to a wireless-light emitting diode (LED) IO and report the preferences of the patients and the ophthalmologists. In this prospective observational study, a conventional IO was converted to wireless-LED IO using easily available, affordable electrical components. Conventional and the converted IO were then used to perform photo-stress test and take the feedback of subjects and the ophthalmologists regarding its handling and illumination characteristics. The cost of conversion to wireless-LED was 815/- rupees. Twenty-nine subjects, mean age 34.3 [formula in text] 10 years with normal eyes were recruited in the study. Between the two illumination systems, there was no statistical difference in the magnitude of the visual acuity loss and the time to recovery of acuity and the bleached vision on photo-stress test, although the visual recovery was clinically faster with LED illumination. The heat sensation was more with halogen illumination than the LED (P = 0.009). The ophthalmologists rated wireless-LED IO higher than wired-halogen IO on the handling, examination comfort, patient's visual comfort and quality of the image. Twenty-two (81%) ophthalmologists wanted to change over to wireless-LED IO. Converting to wireless-LED IO is easy, cost-effective and preferred over a wired-halogen indirect ophthalmoscope.
Neves, Silvana Maria Véras; Nicolau, Renata Amadei; Filho, Antônio Luiz Martins Maia; Mendes, Lianna Martha Soares; Veloso, Ana Maria
2014-01-01
Recent studies have demonstrated the efficacy of coherent light therapy from the red region of the electromagnetic spectrum on the tissue-healing process. This study analysed the effect of non-coherent light therapy (light-emitting diode-LED) with or without silver sulfadiazine (sulpha) on the healing process of third-degree burns. In this study, 72 rats with third-degree burns were randomly divided into six groups (n = 12): Gr1 (control), Gr2 (non-contact LED), Gr3 (contact LED), Gr4 (sulfadiazine), Gr5 (sulfadiazine + non-contact LED) and Gr6 (sulfadiazine + contact LED). The groups treated with LED therapy received treatment every 48 h (λ = 640 ± 20 nm, 110 mW, 16 J/cm(2); 41 s with contact and 680 s without contact). The digital photometric and histomorphometric analyses were conducted after the burn occurred. The combination of sulpha and LED (contact or non-contact) improved the healing of burn wounds. These results demonstrate that the combination of silver sulfadiazine with LED therapy (λ = 640 ± 20 nm, 4 J/cm(2), without contact) improves healing of third-degree burn wounds, significantly reduces the lesion area and increases the granulation tissue, increases the number of fibroblasts, promotes collagen synthesis and prevents burn infections by accelerating recovery.