Sample records for diode led structure

  1. Enhanced light extraction from a GaN-based green light-emitting diode with hemicylindrical linear grating structure.

    PubMed

    Jin, Yuanhao; Yang, Fenglei; Li, Qunqing; Zhu, Zhendong; Zhu, Jun; Fan, Shoushan

    2012-07-02

    Significant enhancement in the light output from GaN-based green light-emitting diodes (LEDs) was achieved with a hemicylindrical grating structure on the top layer of the diodes. The grating structure was first optimized by the finite-difference time-domain (FDTD) method, which showed that the profile of the grating structure was critical for light extraction efficiency. It was found that the transmission efficiency of the 530 nm light emitted from the inside of the GaN LED increased for incidence angles between 23.58° and 60°. Such a structure was fabricated by electron-beam lithography and an etching method. The light output power from the LED was increased approximately 4.7 times compared with that from a conventional LED. The structure optimization is the key to the great increase in transmission efficiency. Furthermore, the light emitted from the edge of the LED units could be collected and extracted by the grating structures in adjacent LED units, thus enhancing the performance of the whole LED chip.

  2. Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes.

    PubMed

    Chen, Jiun-Ting; Lai, Wei-Chih; Kao, Yu-Jui; Yang, Ya-Yu; Sheu, Jinn-Kong

    2012-02-27

    The laser-induced periodic surface structure technique was used to form simultaneously dual-scale rough structures (DSRS) with spiral-shaped nanoscale structure inside semi-spherical microscale holes on p-GaN surface to improve the light-extraction efficiency of light-emitting diodes (LEDs). The light output power of DSRS-LEDs was 30% higher than that of conventional LEDs at an injection current of 20 mA. The enhancement in the light output power could be attributed to the increase in the probability of photons to escape from the increased surface area of textured p-GaN surface.

  3. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOEpatents

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  4. Emission enhancement of light-emitting diode by localized surface plasmon induced by Ag/p-GaN double grating

    NASA Astrophysics Data System (ADS)

    Xie, Ruijie; Li, Zhiquan; Li, Xin; Gu, Erdan; Niu, Liyong; Sha, Xiaopeng

    2018-07-01

    In this paper, a new type of light-emitting diodes (LEDs) structure is designed to enhance the light emission efficiency of GaN-based LEDs. The structure mainly includes Ag grating, ITO layer and p-GaN grating. The principle of stimulating the localized surface plasmon to improve the luminous characteristics of the LED by using this structure is discussed. Based on the COMSOL software, the finite element method is used to simulate the LED structure. The normalized radiated powers, the normalized absorbed powers under different wavelength and geometric parameters, and the distribution of the electric field with the particular geometric parameters are obtained. The simulation results show that with a local ITO thickness of 32 nm, an etching depth of 29 nm, a grating period of 510 nm and a duty ratio of 0.5, the emission intensity of the designed GaN-based LED structure has increased by nearly 55 times than the ordinary LED providing a reliable foundation for the development of high-performance GaN-based LEDs.

  5. Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.

    PubMed

    Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A

    2007-09-03

    We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.

  6. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures.

    PubMed

    Ryu, Han-Youl

    2014-02-04

    Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS: 41.20.Jb; 42.72.Bj; 85.60.Jb.

  7. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures

    PubMed Central

    2014-01-01

    Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS 41.20.Jb; 42.72.Bj; 85.60.Jb PMID:24495598

  8. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    NASA Astrophysics Data System (ADS)

    Shervin, Shahab; Oh, Seung Kyu; Park, Hyun Jung; Lee, Keon-Hwa; Asadirad, Mojtaba; Kim, Seung-Hwan; Kim, Jeomoh; Pouladi, Sara; Lee, Sung-Nam; Li, Xiaohang; Kwak, Joon Seop; Ryou, Jae-Hyun

    2018-03-01

    We report a new route to improve quantum efficiencies of AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency is enhanced higher than three times, when the DUV LEDs are moderately bent with concave curvatures. Furthermore, an efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  9. Numerical analysis of light extraction enhancement of GaN-based thin-film flip-chip light-emitting diodes with high-refractive-index buckling nanostructures

    NASA Astrophysics Data System (ADS)

    Yue, Qing-Yang; Yang, Yang; Cheng, Zhen-Jia; Guo, Cheng-Shan

    2018-06-01

    In this work, the light extraction efficiency enhancement of GaN-based thin-film flip-chip (TFFC) light-emitting diodes (LEDs) with high-refractive-index (TiO2) buckling nanostructures was studied using the three-dimensional finite difference time domain method. Compared with 2-D photonic crystals, the buckling structures have the advantages of a random directionality and a broad distribution in periodicity, which can effectively extract the guided light propagating in all azimuthal directions over a wide spectrum. Numerical studies revealed that the light extraction efficiency of buckling-structured LEDs reaches 1.1 times that of triangular lattice photonic crystals. The effects of the buckling structure feature sizes and the thickness of the N-GaN layer on the light extraction efficiency for TFFC LEDs were also investigated systematically. With optimized structural parameters, a significant light extraction enhancement of about 2.6 times was achieved for TiO2 buckling-structured TFFC LEDs compared with planar LEDs.

  10. Flexible inorganic light emitting diodes based on semiconductor nanowires

    PubMed Central

    Guan, Nan; Dai, Xing; Babichev, Andrey V.; Julien, François H.

    2017-01-01

    The fabrication technologies and the performance of flexible nanowire light emitting diodes (LEDs) are reviewed. We first introduce the existing approaches for flexible LED fabrication, which are dominated by organic technologies, and we briefly discuss the increasing research effort on flexible inorganic LEDs achieved by micro-structuring and transfer of conventional thin films. Then, flexible nanowire-based LEDs are presented and two main fabrication technologies are discussed: direct growth on a flexible substrate and nanowire membrane formation and transfer. The performance of blue, green, white and bi-color flexible LEDs fabricated following the transfer approach is discussed in more detail. PMID:29568439

  11. Study on the structural, optical, and electrical properties of the yellow light-emitting diode grown on free-standing (0001) GaN substrate

    NASA Astrophysics Data System (ADS)

    Deng, Gaoqiang; Zhang, Yuantao; Yu, Ye; Yan, Long; Li, Pengchong; Han, Xu; Chen, Liang; Zhao, Degang; Du, Guotong

    2018-04-01

    In this paper, GaN-based yellow light-emitting diodes (LEDs) were homoepitaxially grown on free-standing (0001) GaN substrates by metal-organic chemical vapor deposition. X-ray diffraction (XRD), photoluminescence (PL), and electroluminescence (EL) measurements were conducted to investigate the structural, optical, and electrical properties of the yellow LED. The XRD measurement results showed that the InGaN/GaN multiple quantum wells (MQWs) in the LED structure have good periodicity because the distinct MQWs related higher order satellite peaks can be clearly observed from the profile of 2θ-ω XRD scan. The low temperature (10 K) and room temperature PL measurement results yield an internal quantum efficiency of 16% for the yellow LED. The EL spectra of the yellow LED present well Gaussian distribution with relatively low linewidth (47-55 nm), indicating the homogeneous In-content in the InGaN quantum well layers in the yellow LED structure. It is believed that this work will aid in the future development of GaN on GaN LEDs with long emission wavelength.

  12. Influence of photo-generated carriers on current spreading in double diode structures for electroluminescent cooling

    NASA Astrophysics Data System (ADS)

    Radevici, Ivan; Tiira, Jonna; Sadi, Toufik; Oksanen, Jani

    2018-05-01

    Current crowding close to electrical contacts is a common challenge in all optoelectronic devices containing thin current spreading layers (CSLs). We analyze the effects of current spreading on the operation of the so-called double diode structure (DDS), consisting of a light emitting diode (LED) and a photodiode (PD) fabricated within the same epitaxial growth process, and providing an attractive platform for studying electroluminescent (EL) cooling under high bias conditions. We show that current spreading in the common n-type layer between the LED and the PD can be dramatically improved by the strong optical coupling between the diodes, as the coupling enables a photo-generated current through the PD. This reduces the current in the DDS CSL and enables the study of EL cooling using structures that are not limited by the conventional light extraction challenges encountered in normal LEDs. The current spreading in the structures is studied using optical imaging techniques, electrical measurements, simulations, as well as simple equivalent circuit models developed for this purpose. The improved current spreading leads further to a mutual dependence with the coupling efficiency, which is expected to facilitate the process of optimizing the DDS. We also report a new improved value of 63% for the DDS coupling quantum efficiency.

  13. Flip-chip light emitting diode with resonant optical microcavity

    DOEpatents

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  14. Improved light extraction efficiency of InGaN-based multi-quantum well light emitting diodes by using a single die growth.

    PubMed

    Park, Min Joo; Kwon, K W; Kim, Y H; Park, S H; Kwak, Joon Seop

    2011-05-01

    We have demonstrated that the light extraction efficiency of the InGaN based multi-quantum well light-emitting diodes (LEDs) can be improved by using a single die growth (SDG) method. The SDG was performed by patterning the n-GaN and sapphire substrate with a size of single chip (600 x 250 microm2) by using a laser scriber, followed by the regrowth of the n-GaN and LED structures on the laser patterned n-GaN. We fabricated lateral LED chips having the SDG structures (SDG-LEDs), in which the thickness of the regrown n-GaN was varied from 2 to 6 microm. For comparison, we also fabricated conventional LED chips without the SDG structures. The SDG-LEDs showed lower operating voltage when compared to the conventional LEDs. In addition, the output power of the SDG-LEDs was significantly higher than that of the conventional LEDs. From optical ray tracing simulations, the increase in the thickness and sidewall angle of the regrown n-GaN and LED structures may enhance photon escapes from the tilted facets of the regrown n-GaN, followed by the increase in light output power and extraction efficiency of the SDG-LEDs.

  15. Detection and modeling of leakage current in AlGaN-based deep ultraviolet light-emitting diodes

    DOE PAGES

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...

    2015-03-01

    Current-voltage (IV) characteristics of two AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with differing densities of open-core threading dislocations (nanopipes) are analyzed. A three-diode circuit is simulated to emulate the IV characteristics of the DUV-LEDs, but is only able to accurately model the lower leakage current, lower nanopipe density DUV-LED. It was found that current leakage through the nanopipes in these structures is rectifying, despite nanopipes being previously established as inherently n-type. Using defect-sensitive etching, the nanopipes are revealed to terminate within the p-type GaN capping layer of the DUV-LEDs. The circuit model is modified to account for another p-nmore » junction between the n-type nanopipes and the p-type GaN, and an excellent fit to the IV characteristics of the leaky DUV-LED is achieved.« less

  16. GaN-based photon-recycling green light-emitting diodes with vertical-conduction structure.

    PubMed

    Sheu, Jinn-Kong; Chen, Fu-Bang; Yen, Wei-Yu; Wang, Yen-Chin; Liu, Chun-Nan; Yeh, Yu-Hsiang; Lee, Ming-Lun

    2015-04-06

    A p-i-n structure with near-UV(n-UV) emitting InGaN/GaN multiple quantum well(MQW) structure stacked on a green unipolar InGaN/GaN MQW was epitaxially grown at the same sapphire substrate. Photon recycling green light-emitting diodes(LEDs) with vertical-conduction feature on silicon substrates were then fabricated by wafer bonding and laser lift-off techniques. The green InGaN/GaN QWs were pumped with n-UV light to reemit low-energy photons when the LEDs were electrically driven with a forward current. Efficiency droop is potentially insignificant compared with the direct green LEDs due to the increase of effective volume of active layer in the optically pumped green LEDs, i.e., light emitting no longer limited in the QWs nearest to the p-type region to cause severe Auger recombination and carrier overflow losses.

  17. Structural and optical properties of semi-polar (11-22) InGaN/GaN green light-emitting diode structure

    NASA Astrophysics Data System (ADS)

    Zhao, Guijuan; Wang, Lianshan; Li, Huijie; Meng, Yulin; Li, Fangzheng; Yang, Shaoyan; Wang, Zhanguo

    2018-01-01

    Semi-polar (11-22) InGaN multiple quantum well (MQW) green light-emitting diode (LED) structures have been realized by metal-organic chemical vapor deposition on an m-plane sapphire substrate. By introducing double GaN buffer layers, we improve the crystal quality of semi-polar (11-22) GaN significantly. The vertical alignment of the diffraction peaks in the (11-22) X-ray reciprocal space mapping indicates the fully strained MQW on the GaN layer. The photoluminescence spectra of the LED structure show stronger emission intensity along the [1-100] InGaN/GaN direction. The electroluminescence emission of the LED structure is very broad with peaks around 550 nm and 510 nm at the 100 mA current injection for samples A and B, respectively, and exhibits a significant blue-shift with increasing drive current.

  18. Colloidal quantum dot active layers for light emitting diodes

    NASA Astrophysics Data System (ADS)

    Pagan, Jennifer G.; Stokes, Edward B.; Patel, Kinnari; Burkhart, Casey C.; Ahrens, Michael T.; Barletta, Philip T.; O'Steen, Mark

    2006-07-01

    In this paper the preliminary results of incorporating a novel active layer into a GaN light emitting diode (LED) are discussed. Integration of colloidal CdSe quantum dots into a GaN LED active layer is demonstrated. Properties of p-type Mg doped overgrowth GaN are examined via circular transmission line method (CTLM). Effects on surface roughness due to the active layer incorporation are examined using atomic force microscopy (AFM). Electroluminescence of LED test structures is reported, and an ideality factor of n = 1.6 is demonstrated.

  19. Enhancement of light output power of GaN-based light-emitting diodes with photonic quasi-crystal patterned on p-GaN surface and n-side sidewall roughing.

    PubMed

    Lai, Fang-I; Yang, Jui-Fu

    2013-05-17

    In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography.

  20. Green perovskite light emitting diodes based on the ITO/Al2O3/CsPbBr3 heterojunction structure

    NASA Astrophysics Data System (ADS)

    Zhuang, Shiwei; Ma, Xue; Hu, Daqiang; Dong, Xin; Zhang, Yuantao; Zhang, Baolin

    2018-03-01

    Perovskite light emitting diodes (PeLEDs) now emerge as a promising new optoelectronic application field for these amazing semiconductors. For the purpose of investigating the device structures and light emission mechanisms of PeLEDs, we have fabricated green PeLEDs based on the ITO/Al2O3/CsPbBr3 heterojunction structure. The emission layer inorganic perovskite CsPbBr3 film with small grain sizes (∼28.9 nm) was prepared using a two-step method. The device exhibits a typical rectification behavior with turn-on voltage of ∼6 V. The EL emission band is narrow with the FWHM of ∼25 nm. The peak EQE of the device was ∼0.09%. The working mechanism of the device is also discussed. The result of the present work provides a feasible innovation idea of PeLEDs fabrication and great potentials for the development of perovskite based LEDs.

  1. Stolephorus sp Behavior in Different LED (Light Emitting Diode) Color and Light Intensities

    NASA Astrophysics Data System (ADS)

    Fitri Aristi, D. P.; Ramadanita, I. A.; Hapsari, T. D.; Susanto, A.

    2018-02-01

    This research aims to observe anchovy (Stolephorus sp) behavior under different LED light intensities that affect eye physiology (cell cone structure). The materials used were Stolephorus sp taken from the waters off Jepara and 13 and 10 watt light emitting diode (LED). The research method was an experiment conducted from March through August 2015 in the waters off Jepara. Data analysis of visual histology and fish respond was carried out at the fishing gear material laboratory, anatomy and cultivate. Cone cell structure (mosaic cone) of Stolephorus sp forms a connected regular square pattern with every single cone surrounded by four double cones, which indicate that anchovies are sensitive to light. The 13 watt LED (628 lux) has faster response than the 10 watt LED (531 lux) as it has wider and higher emitting intensity, which also attracts fish to gather quicker.

  2. Micro-light-emitting diodes with III-nitride tunnel junction contacts grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hwang, David; Mughal, Asad J.; Wong, Matthew S.; Alhassan, Abdullah I.; Nakamura, Shuji; DenBaars, Steven P.

    2018-01-01

    Micro-light-emitting diodes (µLEDs) with tunnel junction (TJ) contacts were grown entirely by metalorganic chemical vapor deposition. A LED structure was grown, treated with UV ozone and hydrofluoric acid, and reloaded into the reactor for TJ regrowth. The silicon doping level of the n++-GaN TJ was varied to examine its effect on voltage. µLEDs from 2.5 × 10-5 to 0.01 mm2 in area were processed, and the voltage penalty of the TJ for the smallest µLED at 20 A/cm2 was 0.60 V relative to that for a standard LED with indium tin oxide. The peak external quantum efficiency of the TJ LED was 34%.

  3. Spatial emission distribution of InGaN/GaN light-emitting diodes depending on the pattern structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kwanjae; Lee, Hyunjung; Lee, Cheul-Ro

    2014-10-15

    Highlights: • We study carrier lifetimes of InGaN/GaN LEDs fabricated on different PSS. • Spatial EL distribution was investigated depending on the pattern structure. • The carrier lifetime of the LEDs was compared with the spatial EL distribution. - Abstract: We investigated the emission characteristics of InGaN/GaN light-emitting diodes (LEDs) fabricated on lens-shaped (LS) patterned-sapphire substrates (PSS) by using time-resolved photoluminescence (TRPL) and confocal-scanning-electroluminescence microscopy (CSEM). The carrier lifetimes evaluated from the TRPL spectra for the LEDs on the LS-PSS (LS-LEDs) at 10 K were relatively shorter than those of the LEDs on a conventional planar substrate (C-LED). However, themore » carrier lifetimes for the LS-LEDs were relatively long compared to that of the C-LED at room temperature. In the CSEM images of the LS-LEDs, the emission beam around the center region of the LS pattern was relatively weaker than that of the edge region. In addition, the beam profile for the LS-LEDs showed different shapes according to the pattern structures. The emission beam around the boundary region of the LS pattern showed periodic fluctuation with the peak-to-peak distance of 814 nm.« less

  4. Efficiency improvement of green light-emitting diodes by employing all-quaternary active region and electron-blocking layer

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Saba, Kiran; Han, Dong-Pyo; Muhammad, Nazeer

    2018-01-01

    High efficiency of green GaAlInN-based light-emitting diode (LED) has been proposed with peak emission wavelength of ∼510 nm. By introducing quaternary quantum well (QW) along with the quaternary barrier (QB) and quaternary electron blocking layer (EBL) in a single structure, an efficiency droop reduction of up to 29% has been achieved in comparison to the conventional GaN-based LED. The proposed structure has significantly reduced electrostatic field in the active region. As a result, carrier leakage has been minimized and spontaneous emission rate has been doubled.

  5. Direct correlations of structural and optical properties of three-dimensional GaN/InGaN core/shell micro-light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas

    2016-05-01

    Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).

  6. A Strategy for Architecture Design of Crystalline Perovskite Light-Emitting Diodes with High Performance.

    PubMed

    Shi, Yifei; Wu, Wen; Dong, Hua; Li, Guangru; Xi, Kai; Divitini, Giorgio; Ran, Chenxin; Yuan, Fang; Zhang, Min; Jiao, Bo; Hou, Xun; Wu, Zhaoxin

    2018-06-01

    All present designs of perovskite light-emitting diodes (PeLEDs) stem from polymer light-emitting diodes (PLEDs) or perovskite solar cells. The optimal structure of PeLEDs can be predicted to differ from PLEDs due to the different fluorescence dynamics and crystallization between perovskite and polymer. Herein, a new design strategy and conception is introduced, "insulator-perovskite-insulator" (IPI) architecture tailored to PeLEDs. As examples of FAPbBr 3 and MAPbBr 3 , it is experimentally shown that the IPI structure effectively induces charge carriers into perovskite crystals, blocks leakage currents via pinholes in the perovskite film, and avoids exciton quenching simultaneously. Consequently, as for FAPbBr 3 , a 30-fold enhancement in the current efficiency of IPI-structured PeLEDs compared to a control device with poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) as hole-injection layer is achieved-from 0.64 to 20.3 cd A -1 -while the external quantum efficiency is increased from 0.174% to 5.53%. As the example of CsPbBr 3 , compared with the control device, both current efficiency and lifetime of IPI-structured PeLEDs are improved from 1.42 and 4 h to 9.86 cd A -1 and 96 h. This IPI architecture represents a novel strategy for the design of light-emitting didoes based on various perovskites with high efficiencies and stabilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High-quality vertical light emitting diodes fabrication by mechanical lift-off technique

    NASA Astrophysics Data System (ADS)

    Tu, Po-Min; Hsu, Shih-Chieh; Chang, Chun-Yen

    2011-10-01

    We report the fabrication of mechanical lift-off high quality thin GaN with Hexagonal Inversed Pyramid (HIP) structures for vertical light emitting diodes (V-LEDs). The HIP structures were formed at the GaN/sapphire substrate interface under high temperature during KOH wet etching process. The average threading dislocation density (TDD) was estimated by transmission electron microscopy (TEM) and found the reduction from 2×109 to 1×108 cm-2. Raman spectroscopy analysis revealed that the compressive stress of GaN epilayer was effectively relieved in the thin-GaN LED with HIP structures. Finally, the mechanical lift-off process is claimed to be successful by using the HIP structures as a sacrificial layer during wafer bonding process.

  8. A study of GaN-based LED structure etching using inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Cao, Bin; Gan, Zhiyin; Liu, Sheng

    2011-02-01

    GaN as a wide band gap semiconductor has been employed to fabricate optoelectronic devices such as light-emitting diodes (LEDs) and laser diodes (LDs). Recently several different dry etching techniques for GaN-based materials have been developed. ICP etching is attractive because of its superior plasma uniformity and strong controllability. Most previous reports emphasized on the ICP etching characteristics of single GaN film. In this study dry etching of GaN-based LED structure was performed by inductively coupled plasmas (ICP) etching with Cl2 as the base gas and BCl3 as the additive gas. The effects of the key process parameters such as etching gases flow rate, ICP power, RF power and chamber pressure on the etching properties of GaN-based LED structure including etching rate, selectivity, etched surface morphology and sidewall was investigated. Etch depths were measured using a depth profilometer and used to calculate the etch rates. The etch profiles were observed with a scanning electron microscope (SEM).

  9. Heterojunction light emitting diodes fabricated with different n-layer oxide structures on p-GaN layers by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kong, Bo Hyun; Han, Won Suk; Kim, Young Yi; Cho, Hyung Koun; Kim, Jae Hyun

    2010-06-01

    We grew heterojunction light emitting diode (LED) structures with various n-type semiconducting layers by magnetron sputtering on p-type GaN at high temperature. Because the undoped ZnO used as an active layer was grown under oxygen rich atmosphere, all LED devices showed the EL characteristics corresponding to orange-red wavelength due to high density of oxygen interstitial, which was coincident with the deep level photoluminescence emission of undoped ZnO. The use of the Ga doped layers as a top layer provided the sufficient electron carriers to active region and resulted in the intense EL emission. The LED sample with small quantity of Mg incorporated in MgZnO as an n-type top layer showed more intense emission than the LED with ZnO, in spite of the deteriorated electrical and structural properties of the MgZnO film. This might be due to the improvement of output extraction efficiency induced by rough surface.

  10. Enhanced Output Power of Near-Ultraviolet Light-Emitting Diodes by p-GaN Micro-Rods

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Sheng; Zhang, Ke-Xiong; Liang, Hong-Wei; Song, Shi-Wei; Yang, De-Chao; Shen, Ren-Sheng; Liu, Yang; Xia, Xiao-Chuan; Luo, Ying-Min; Du, Guo-Tong

    2014-02-01

    Near-ultraviolet (UV) InGaN/AlGaN light-emitting diodes (LEDs) are grown by low-pressure metal-organic chemical vapor deposition. The scanning electronic microscope image shows that the p-GaN micro-rods are formed above the interface of p-AlGaN/p-GaN due to the rapid growth rate of p-GaN in the vertical direction. The p-GaN micro-rods greatly increase the escape probability of photons inside the LED structure. Electroluminescence intensities of the 372 nm UV LED lamps with p-GaN micro rods are 88% higher than those of the flat surface LED samples.

  11. Enhanced performance of photonic crystal GaN light-emitting diodes with graphene transparent electrodes

    NASA Astrophysics Data System (ADS)

    Ge, Hai-Liang; Xu, Chen; Xu, Kun; Xun, Meng; Wang, Jun; Liu, Jie

    2015-03-01

    The two-dimensional (2D) triangle lattice air hole photonic crystal (PC) GaN-based light-emitting diodes (LED) with double-layer graphene transparent electrodes (DGTE) have been produced. The current spreading effect of the double-layer graphene (GR) on the surface of the PC structure of the LED has been researched. Specially, we found that the part of the graphene suspending over the air hole of the PC structure was of much higher conductivity, which reduced the average sheet resistance of the graphene transparent conducting electrode and improved the current spreading of the PC LED. Therefore, the work voltage of the DGTE-PC LED was obviously decreased, and the output power was greatly enhanced. The COMSOL software was used to simulate the current density distribution of the samples. The results show that the etching of PC structure results in the degradation of the current spreading and that the graphene transparent conducting electrode can offer an uniform current spreading in the DGTE-PC LED. PACS: 85.60.Jb; 68.65.Pq; 42.70.Qs

  12. Enhancement of light output power of GaN-based light-emitting diodes with photonic quasi-crystal patterned on p-GaN surface and n-side sidewall roughing

    PubMed Central

    2013-01-01

    In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography. PMID:23683526

  13. Nearly Efficiency-Droop-Free AlGaN-Based Ultraviolet Light-Emitting Diodes with a Specifically Designed Superlattice p-Type Electron Blocking Layer for High Mg Doping Efficiency.

    PubMed

    Zhang, Zi-Hui; Huang Chen, Sung-Wen; Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Bi, Wengang; Kuo, Hao-Chung

    2018-04-24

    This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.

  14. Molecular Engineering of UV/Vis Light-Emitting Diode (LED)-Sensitive Donor-π-Acceptor-Type Sulfonium Salt Photoacid Generators: Design, Synthesis, and Study of Photochemical and Photophysical Properties.

    PubMed

    Wu, Xingyu; Jin, Ming; Xie, Jianchao; Malval, Jean-Pierre; Wan, Decheng

    2017-11-07

    A series of donor-π-acceptor-type sulfonium salt photoacid generators (PAGs) were designed and synthesized by systematically changing electron-donating groups, π-conjugated systems, electron-withdrawing groups, and the number of branches through molecular engineering. These PAGs can effectively decompose under UV/Vis irradiation from a light-emitting diode (LED) light source because of the matching absorption and emitting spectra of the LEDs. The absorption and acid-generation properties of these sulfonium salts were elucidated by UV/Vis spectroscopy and so forth. Results indicated that the PAG performance benefited from the introduction of strong electron-donating groups, specific π-conjugated structures, certain electron-withdrawing groups, or two-branched structures. Most sulfonium salts showed potential as photoinitiators under irradiation by a wide variety of UV and visible LEDs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nearly Efficiency-Droop-Free AlGaN-Based Ultraviolet Light-Emitting Diodes with a Specifically Designed Superlattice p-Type Electron Blocking Layer for High Mg Doping Efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-Hui; Huang Chen, Sung-Wen; Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Bi, Wengang; Kuo, Hao-Chung

    2018-04-01

    This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.

  16. Intracavity double diode structures with GaInP barrier layers for thermophotonic cooling

    NASA Astrophysics Data System (ADS)

    Tiira, Jonna; Radevici, Ivan; Haggren, Tuomas; Hakkarainen, Teemu; Kivisaari, Pyry; Lyytikäinen, Jari; Aho, Arto; Tukiainen, Antti; Guina, Mircea; Oksanen, Jani

    2017-02-01

    Optical cooling of semiconductors has recently been demonstrated both for optically pumped CdS nanobelts and for electrically injected GaInAsSb LEDs at very low powers. To enable cooling at larger power and to understand and overcome the main obstacles in optical cooling of conventional semiconductor structures, we study thermophotonic (TPX) heat transport in cavity coupled light emitters. Our structures consist of a double heterojunction (DHJ) LED with a GaAs active layer and a corresponding DHJ or a p-n-homojunction photodiode, enclosed within a single semiconductor cavity to eliminate the light extraction challenges. Our presently studied double diode structures (DDS) use GaInP barriers around the GaAs active layer instead of the AlGaAs barriers used in our previous structures. We characterize our updated double diode structures by four point probe IV- measurements and measure how the material modifications affect the recombination parameters and coupling quantum efficiencies in the structures. The coupling quantum efficiency of the new devices with InGaP barrier layers is found to be approximately 10 % larger than for the structures with AlGaAs barriers at the point of maximum efficiency.

  17. Improved photoluminescence efficiency in UV nanopillar light emitting diode structures by recovery of dry etching damage.

    PubMed

    Jeon, Dae-Woo; Jang, Lee-Woon; Jeon, Ju-Won; Park, Jae-Woo; Song, Young Ho; Jeon, Seong-Ran; Ju, Jin-Woo; Baek, Jong Hyeob; Lee, In-Hwan

    2013-05-01

    In this study, we have fabricated 375-nm-wavelength InGaN/AlInGaN nanopillar light emitting diodes (LED) structures on c-plane sapphire. A uniform and highly vertical nanopillar structure was fabricated using self-organized Ni/SiO2 nano-size mask by dry etching method. To minimize the dry etching damage, the samples were subjected to high temperature annealing with subsequent chemical passivation in KOH solution. Prior to annealing and passivation the UV nanopillar LEDs showed the photoluminescence (PL) efficiency about 2.5 times higher than conventional UV LED structures which is attributed to better light extraction efficiency and possibly some improvement of internal quantum efficiency due to partially relieved strain. Annealing alone further increased the PL efficiency by about 4.5 times compared to the conventional UV LEDs, while KOH passivation led to the overall PL efficiency improvement by more than 7 times. Combined results of Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) suggest that annealing decreases the number of lattice defects and relieves the strain in the surface region of the nanopillars whereas KOH treatment removes the surface oxide from nanopillar surface.

  18. Surface photonic crystal structures for LED emission modification

    NASA Astrophysics Data System (ADS)

    Uherek, Frantisek; Škriniarová, Jaroslava; Kuzma, Anton; Šušlik, Łuboš; Lettrichova, Ivana; Wang, Dong; Schaaf, Peter

    2017-12-01

    Application of photonic crystal structures (PhC) can be attractive for overall and local enhancement of light from patterned areas of the light emitting diode (LED) surface. We used interference and near-field scanning optical microscope lithography for patterning of the surface of GaAs/AlGaAs based LEDs emitted at 840 nm. Also new approach with patterned polydimethylsiloxane (PDMS) membrane applied directly on the surface of red emitting LED was investigated. The overall emission properties of prepared LED with patterned structure show enhanced light extraction efficiency, what was documented from near- and far-field measurements.

  19. 276 nm Substrate-Free Flip-Chip AlGaN Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Hwang, Seongmo; Morgan, Daniel; Kesler, Amanda; Lachab, Mohamed; Zhang, Bin; Heidari, Ahmad; Nazir, Haseeb; Ahmad, Iftikhar; Dion, Joe; Fareed, Qhalid; Adivarahan, Vinod; Islam, Monirul; Khan, Asif

    2011-03-01

    Lateral-conduction, substrate-free flip-chip (SFFC) light-emitting diodes (LEDs) with peak emission at 276 nm are demonstrated for the first time. The AlGaN multiple quantum well LED structures were grown by metal-organic chemical vapor deposition (MOCVD) on thick-AlN laterally overgrown on sapphire substrates. To fabricate the SFFC LEDs, a newly-developed laser-assisted ablation process was employed to separate the substrate from the LED chips. The chips had physical dimensions of 1100×900 µm2, and were comprised of four devices each with a 100×100 µm2 junction area. Electrical and optical characterization of the devices revealed no noticeable degradation to their performance due to the laser-lift-off process.

  20. Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhaojun; Ma, Jun; Huang, Tongde

    2014-03-03

    In this Letter, we report selective epitaxial growth of monolithically integrated GaN-based light emitting diodes (LEDs) with AlGaN/GaN high-electron-mobility transistor (HEMT) drivers. A comparison of two integration schemes, selective epitaxial removal (SER), and selective epitaxial growth (SEG) was made. We found the SER resulted in serious degradation of the underlying LEDs in a HEMT-on-LED structure due to damage of the p-GaN surface. The problem was circumvented using the SEG that avoided plasma etching and minimized device degradation. The integrated HEMT-LEDs by SEG exhibited comparable characteristics as unintegrated devices and emitted modulated blue light by gate biasing.

  1. Direct periodic patterning of GaN-based light-emitting diodes by three-beam interference laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch

    2014-04-07

    We report on the direct patterning of two-dimensional periodic structures in GaN-based light-emitting diodes (LEDs) through laser interference ablation for the fast and reliable fabrication of periodic micro- and nano-structures aimed at enhancing light output. Holes arranged in a two-dimensional hexagonal lattice array having an opening size of 500 nm, depth of 50 nm, and a periodicity of 1 μm were directly formed by three-beam laser interference without photolithography or electron-beam lithography processes. The laser-patterned LEDs exhibit an enhancement in light output power of 20% compared to conventional LEDs having a flat top surface without degradation of electrical and optical properties of themore » top p-GaN layer and the active region, respectively.« less

  2. InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors.

    PubMed

    Shiu, Guo-Yi; Chen, Kuei-Ting; Fan, Feng-Hsu; Huang, Kun-Pin; Hsu, Wei-Ju; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng

    2016-07-01

    InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n(+)-GaN) in the 12-period n(+)-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process. The central wavelength of the nanoporous DBR structure was located at 442.3 nm with a 57 nm linewidth and a 97.1% peak reflectivity. The effective cavity length (6.0λ), the effective penetration depth (278 nm) in the nanoporous DBR structure, and InGaN active layer matching to Fabry-Pérot mode order 12 were observed in the far-field photoluminescence radiative spectra. High electroluminescence emission intensity and line-width narrowing effect were measured in the DBR-LED compared with the non-treated LED structure. Non-linear emission intensity and line-width reducing effect, from 11.8 nm to 0.73 nm, were observed by increasing the laser excited power. Resonant cavity effect was observed in the InGaN LED with bottom nanoporous-DBR and top GaN/air interface.

  3. InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors

    PubMed Central

    Shiu, Guo-Yi; Chen, Kuei-Ting; Fan, Feng-Hsu; Huang, Kun-Pin; Hsu, Wei-Ju; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng

    2016-01-01

    InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n+-GaN) in the 12-period n+-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process. The central wavelength of the nanoporous DBR structure was located at 442.3 nm with a 57 nm linewidth and a 97.1% peak reflectivity. The effective cavity length (6.0λ), the effective penetration depth (278 nm) in the nanoporous DBR structure, and InGaN active layer matching to Fabry-Pérot mode order 12 were observed in the far-field photoluminescence radiative spectra. High electroluminescence emission intensity and line-width narrowing effect were measured in the DBR-LED compared with the non-treated LED structure. Non-linear emission intensity and line-width reducing effect, from 11.8 nm to 0.73 nm, were observed by increasing the laser excited power. Resonant cavity effect was observed in the InGaN LED with bottom nanoporous-DBR and top GaN/air interface. PMID:27363290

  4. Broadband light-emitting diode

    DOEpatents

    Fritz, Ian J.; Klem, John F.; Hafich, Michael J.

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  5. Broadband light-emitting diode

    DOEpatents

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  6. Improving the performance of AlGaN-based deep-ultraviolet light-emitting diodes using electron blocking layer with a heart-shaped graded Al composition

    NASA Astrophysics Data System (ADS)

    Kwon, M. R.; Park, T. H.; Lee, T. H.; Lee, B. R.; Kim, T. G.

    2018-04-01

    We propose a design for highly efficient AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) using a heart-shaped graded Al composition electron-blocking layer (EBL). This novel structure reduced downward band bending at the interface between the last quantum barrier and the EBL and flattened the electrostatic field in the interlayer between the barriers of the multi-quantum barrier EBL. Consequently, electron leakage was significantly suppressed and hole injection efficiency was found to have improved. The parameter values of simulation were extracted from the experimental data of the reference DUV LEDs. Using the SimuLED, we compared the electrical and optical properties of three structures with different Al compositions in the active region and the EBL. The internal quantum efficiency of the proposed structure was shown to exceed those of the reference DUV LEDs by a factor of 1.9. Additionally, the output power at 20 mA was found to increase by a factor of 2.1.

  7. Carrier-injection studies in GaN-based light-emitting-diodes

    NASA Astrophysics Data System (ADS)

    Nguyen, Dinh Chuong; Vaufrey, David; Leroux, Mathieu

    2015-09-01

    Although p-type GaN has been achieved by Mg doping, the low hole-mobility still remains a difficulty for GaN-based light-emitting diodes (LEDs). Due to the lack of field-dependent-velocity model for holes, in GaN-based LED simulations, the hole mobility is usually supposed to remain constant. However, as the p-GaN-layer conductivity is lower than the n-GaN-layer conductivity, a strong electric-field exists in the p-side of an LED when the applied voltage exceeds the LED's built-in voltage. Under the influence of this field, the mobilities of electrons and holes are expected to decrease. Based on a field-dependent-velocity model that is usually used for narrow-bandgap materials, an LED structure is modelled with three arbitrarily chosen hole saturation-velocities. The results show that a hole saturation-velocity lower than 4x106 cm/s can negatively affect the LED's behaviors.

  8. Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors.

    PubMed

    Lee, Ya-Ju; Yang, Zu-Po; Chen, Pin-Guang; Hsieh, Yung-An; Yao, Yung-Chi; Liao, Ming-Han; Lee, Min-Hung; Wang, Mei-Tan; Hwang, Jung-Min

    2014-10-20

    In this study, we report a novel monolithically integrated GaN-based light-emitting diode (LED) with metal-oxide-semiconductor field-effect transistor (MOSFET). Without additionally introducing complicated epitaxial structures for transistors, the MOSFET is directly fabricated on the exposed n-type GaN layer of the LED after dry etching, and serially connected to the LED through standard semiconductor-manufacturing technologies. Such monolithically integrated LED/MOSFET device is able to circumvent undesirable issues that might be faced by other kinds of integration schemes by growing a transistor on an LED or vice versa. For the performances of resulting device, our monolithically integrated LED/MOSFET device exhibits good characteristics in the modulation of gate voltage and good capability of driving injected current, which are essential for the important applications such as smart lighting, interconnection, and optical communication.

  9. Properties of a CdZnO/ZnO multiple quantum-well light-emitting diode

    NASA Astrophysics Data System (ADS)

    Liu, Zhan-Hui; Zhang, Li-Li; Li, Qing-Fang; Zhang, Rong; Xie, Zi-Li; Xiu, Xiang-Qian; Liu, Bin

    2016-10-01

    A CdZnO/ZnO multiple quantum-well light-emitting diode (LED) structure was successfully grown by using plasma-assisted molecular beam epitaxy on a p-GaN template that had been grown by using metal-organic chemical-vapor deposition on a c-sapphire substrate. The properties of the sample were characterized by using high-resolution X-ray diffraction, transmission electron microscopy, and temperature-dependent photoluminescence measurements. The light output performance of the CdZnO/ZnO QW LED device was also investigated in detail by using I-V and electroluminescence spectral measurements. The characterization showed that our CdZnO/ZnO QW LED structure had good crystalline quality and weaker carrier localization. Owing to the heterojunction structure, the I-V curve indicated that the LED device had a higher turn-on voltage and series resistance. The EL measurement demonstrated that for our LED device's optoelectronic characteristic, the carrier-screening effect played the dominant role in the emission-energy blue-shift mechanism, and the broadening of the emission energy width was mainly ascribed to the band-filling effect. Without a special heat sinking, the L-I curve exhibited slight efficiency droop after 30 mA.

  10. Light-emitting diodes based on colloidal silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Zhao, Shuangyi; Liu, Xiangkai; Pi, Xiaodong; Yang, Deren

    2018-06-01

    Colloidal silicon quantum dots (Si QDs) hold great promise for the development of printed Si electronics. Given their novel electronic and optical properties, colloidal Si QDs have been intensively investigated for optoelectronic applications. Among all kinds of optoelectronic devices based on colloidal Si QDs, QD light-emitting diodes (LEDs) play an important role. It is encouraging that the performance of LEDs based on colloidal Si QDs has been significantly increasing in the past decade. In this review, we discuss the effects of the QD size, QD surface and device structure on the performance of colloidal Si-QD LEDs. The outlook on the further optimization of the device performance is presented at the end.

  11. Electroluminescence of ordered ZnO nanorod array/p-GaN light-emitting diodes with graphene current spreading layer

    PubMed Central

    2014-01-01

    Ordered ZnO nanorod array/p-GaN heterojunction light-emitting diodes (LEDs) have been fabricated by introducing graphene as the current spreading layer, which exhibit improved electroluminescence performance by comparison to the LED using a conventional structure (indium-tin-oxide as the current spreading layer). In addition, by adjusting the diameter of ZnO nanorod array in use, the light emission of the ZnO nanorod array/p-GaN heterojunction LEDs was enhanced further. This work has great potential applications in solid-state lighting, high performance optoelectronic devices, and so on. PACS 78.60.Fi; 85.60.Jb; 78.67.Lt; 81.10.Dn PMID:25489284

  12. Electroluminescence of ordered ZnO nanorod array/p-GaN light-emitting diodes with graphene current spreading layer.

    PubMed

    Dong, Jing-Jing; Hao, Hui-Ying; Xing, Jie; Fan, Zhen-Jun; Zhang, Zi-Li

    2014-01-01

    Ordered ZnO nanorod array/p-GaN heterojunction light-emitting diodes (LEDs) have been fabricated by introducing graphene as the current spreading layer, which exhibit improved electroluminescence performance by comparison to the LED using a conventional structure (indium-tin-oxide as the current spreading layer). In addition, by adjusting the diameter of ZnO nanorod array in use, the light emission of the ZnO nanorod array/p-GaN heterojunction LEDs was enhanced further. This work has great potential applications in solid-state lighting, high performance optoelectronic devices, and so on. 78.60.Fi; 85.60.Jb; 78.67.Lt; 81.10.Dn.

  13. Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting at U.S. Department of Labor Headquarters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzey, Bruce R.; Myer, Michael

    2013-03-01

    This report documents a solid-state lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL) Headquarters in Washington, DC, in which light-emitting diode (LED) luminaires were substituted for the incumbent high-pressure sodium (HPS) luminaires and evaluated for relative light quantity and performance. The demonstration results show energy savings of 52% from the initial conversion of HPS to the LED product. These savings were increased to 88% by using occupancy sensor controls that were ultimately set to reduce power to 10% of high state operation after a time delay of 2.5 minutes. Because of the relativelymore » high cost of the LED luminaires at their time of purchase for this project (2010), the simple payback periods were 6.5 years and 4.9 years for retrofit and new construction scenarios, respectively. Staff at DOL Headquarters reported high satisfaction with the operation of the LED product.« less

  14. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  15. Analysis of light emitting diode array lighting system based on human vision: normal and abnormal uniformity condition.

    PubMed

    Qin, Zong; Ji, Chuangang; Wang, Kai; Liu, Sheng

    2012-10-08

    In this paper, condition for uniform lighting generated by light emitting diode (LED) array was systematically studied. To take human vision effect into consideration, contrast sensitivity function (CSF) was novelly adopted as critical criterion for uniform lighting instead of conventionally used Sparrow's Criterion (SC). Through CSF method, design parameters including system thickness, LED pitch, LED's spatial radiation distribution and viewing condition can be analytically combined. In a specific LED array lighting system (LALS) with foursquare LED arrangement, different types of LEDs (Lambertian and Batwing type) and given viewing condition, optimum system thicknesses and LED pitches were calculated and compared with those got through SC method. Results show that CSF method can achieve more appropriate optimum parameters than SC method. Additionally, an abnormal phenomenon that uniformity varies with structural parameters non-monotonically in LALS with non-Lambertian LEDs was found and analyzed. Based on the analysis, a design method of LALS that can bring about better practicability, lower cost and more attractive appearance was summarized.

  16. Enhanced wall-plug efficiency in AlGaN-based deep-ultraviolet light-emitting diodes with uniform current spreading p-electrode structures

    NASA Astrophysics Data System (ADS)

    Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro

    2016-06-01

    The current crowding is an especially severe issue in AlGaN-based deep-ultraviolet (DUV) light-emitting diodes (LEDs) because of the low conductivity of the n-AlGaN cladding layer that has a high Al fraction. We theoretically investigated the improvement in internal quantum efficiency and total resistances in DUV-LEDs with an emission wavelength of 265 nm by a well-designed p-electrode geometry to produce uniform current spreading. As a result, the wall-plug efficiency was enhanced by a factor of 60% at an injection current of 350 mA in the designed uniform-current-spreading p-electrode LED when compared with an LED with a conventional cross-bar p-electrode pattern.

  17. InGaN/GaN dot-in-nanowire monolithic LEDs and lasers on (001) silicon

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Hazari, A.; Jahangir, S.

    2017-02-01

    GaN-based nanowire arrays have been grown on (001)Si substrate by plasma-assisted molecular beam epitaxy and their structural and optical properties have been determined. InxGa1-xN disks inserted in the nanowires behave as quantum dots with emission ranging from visible to near-infrared. We have exploited these nanowire heterostructure arrays to realize light-emitting diodes and diode lasers in which the quantum dots form the active light emitting media. The fabrication and characteristics of 630nm light-emitting diodes and 1.3μm edge-emitting diode lasers are described.

  18. Fully porous GaN p-n junction diodes fabricated by chemical vapor deposition.

    PubMed

    Bilousov, Oleksandr V; Carvajal, Joan J; Geaney, Hugh; Zubialevich, Vitaly Z; Parbrook, Peter J; Martínez, Oscar; Jiménez, Juan; Díaz, Francesc; Aguiló, Magdalena; O'Dwyer, Colm

    2014-10-22

    Porous GaN based LEDs produced by corrosion etching techniques demonstrated enhanced light extraction efficiency in the past. However, these fabrication techniques require further postgrown processing steps, which increases the price of the final system. Also, the penetration depth of these etching techniques is limited, and affects not only the semiconductor but also the other elements constituting the LED when applied to the final device. In this paper, we present the fabrication of fully porous GaN p-n junctions directly during growth, using a sequential chemical vapor deposition (CVD) process to produce the different layers that form the p-n junction. We characterized their diode behavior from room temperature to 673 K and demonstrated their ability as current rectifiers, thus proving the potential of these fully porous p-n junctions for diode and LEDs applications. The electrical and luminescence characterization confirm that high electronic quality porous structures can be obtained by this method, and we believe this investigation can be extended to other III-N materials for the development of white light LEDs, or to reduce reflection losses and narrowing the output light cone for improved LED external quantum efficiencies.

  19. Light interaction in sapphire/MgF2/Al triple-layer omnidirectional reflectors in AlGaN-based near ultraviolet light-emitting diodes

    PubMed Central

    Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop

    2015-01-01

    This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode. PMID:26010378

  20. Light interaction in sapphire/MgF2/Al triple-layer omnidirectional reflectors in AlGaN-based near ultraviolet light-emitting diodes.

    PubMed

    Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop

    2015-05-26

    This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode.

  1. Deep centers in AlGaN-based light emitting diode structures

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Mil'vidskii, M. G.; Usikov, A. S.; Pushnyi, B. V.; Lundin, W. V.

    1999-10-01

    Deep traps were studied in GaN homojunction and AlGaN/GaN heterojunction light emitting diode (LED) p-i-n structures by means of deep levels transient spectroscopy (DLTS), admittance and electroluminescence (EL) spectra measurements. It is shown that, in homojunction LED structures, the EL spectra comes from recombination involving Mg acceptors in-diffusing into the active i-layer. This Mg in-diffusion is strongly suppressed in heterostructures with the upper p-type layer containing about 5% of Al. As a result the main peak in the EL spectra of heterostructures is shifted toward higher energy compared to homojunctions. Joint doping of the i-layer with Zn and Si allows to shift the main EL peak to longer wavelength. The dominant electron traps observed in the studied LED structures had ionization energies of 0.55 and 0.85 eV. The dominant hole traps had apparent ionization energies of 0.85 and 0.4 eV. The latter traps were shown to be metastable and it is argued that they could be at least in part responsible for the persistent photoconductivity observed in p-GaN.

  2. Full down-conversion of amber-emitting phosphor-converted light-emitting diodes with powder phosphors and a long-wave pass filter.

    PubMed

    Oh, Jeong Rok; Cho, Sang-Hwan; Park, Hoo Keun; Oh, Ji Hye; Lee, Yong-Hee; Do, Young Rag

    2010-05-24

    This paper reports the possibility of a facile optical structure to realize a highly efficient monochromatic amber-emitting light-emitting diode (LED) using a powder-based phosphor-converted LED combined with a long-wave pass filter (LWPF). The capping of a blue-reflecting and amber-passing LWPF enhances both the amber emission from the silicate amber phosphor layer and the color purity due to the blocking and recycling of the pumping blue light from the InGaN LED. The enhancement of the luminous efficacy of the amber pc-LED with a LWPF (phosphor concentration 20 wt%, 39.4 lm/W) is 34% over that of an amber pc-LED without a LWPF (phosphor concentration 55 wt%, 29.4 lm/W) at 100 mA and a high color purity (>96%) with Commission International d'Eclairage (CIE) color coordinates of x=0.57 and y=0.42.

  3. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  4. Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer.

    PubMed

    Lin, Bing-Chen; Chen, Kuo-Ju; Wang, Chao-Hsun; Chiu, Ching-Hsueh; Lan, Yu-Pin; Lin, Chien-Chung; Lee, Po-Tsung; Shih, Min-Hsiung; Kuo, Yen-Kuang; Kuo, Hao-Chung

    2014-01-13

    A tapered AlGaN electron blocking layer with step-graded aluminum composition is analyzed in nitride-based blue light-emitting diode (LED) numerically and experimentally. The energy band diagrams, electrostatic fields, carrier concentration, electron current density profiles, and hole transmitting probability are investigated. The simulation results demonstrated that such tapered structure can effectively enhance the hole injection efficiency as well as the electron confinement. Consequently, the LED with a tapered EBL grown by metal-organic chemical vapor deposition exhibits reduced efficiency droop behavior of 29% as compared with 44% for original LED, which reflects the improvement in hole injection and electron overflow in our design.

  5. Nitrogen-polar core-shell GaN light-emitting diodes grown by selective area metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Li, Shunfeng; Wang, Xue; Fündling, Sönke; Erenburg, Milena; Ledig, Johannes; Wei, Jiandong; Wehmann, Hergo H.; Waag, Andreas; Bergbauer, Werner; Mandl, Martin; Strassburg, Martin; Trampert, Achim; Jahn, Uwe; Riechert, Henning; Jönen, Holger; Hangleiter, Andreas

    2012-07-01

    Homogeneous nitrogen-polar GaN core-shell light emitting diode (LED) arrays were fabricated by selective area growth on patterned substrates. Transmission electron microscopy measurements prove the core-shell structure of the rod LEDs. Depending on the growth facets, the InGaN/GaN multi-quantum wells (MQWs) show different dimensions and morphology. Cathodoluminescence (CL) measurements reveal a MQWs emission centered at about 415 nm on sidewalls and another emission at 460 nm from top surfaces. CL line scans on cleaved rod also indicate the core-shell morphology. Finally, an internal quantum efficiency of about 28% at room temperature was determined by an all-optical method on a LED array.

  6. Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via Al-composition graded quantum wells

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Zhang, Yu; Xu, Fujun; Ding, Gege; Liu, Yuhang

    2018-06-01

    Characteristics of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) with step-like and Al-composition graded quantum wells have been investigated. The simulation results show that compared to DUV-LEDs with the conventional AlGaN multiple quantum wells (MQWs) structure, the light output power (LOP) and efficiency droop of DUV-LEDs with the Al-composition graded wells were remarkably improved. The key factor accounting for the improved performance is ascribed to the better modulation of carrier distribution in the quantum wells to increase the overlap between electron and hole wavefunctions, which contributes to more efficient recombination of electrons and holes, and thereby a significant enhancement in the LOP.

  7. Size-controllable nanopyramids photonic crystal selectively grown on p-GaN for enhanced light-extraction of light-emitting diodes.

    PubMed

    Du, Chengxiao; Wei, Tongbo; Zheng, Haiyang; Wang, Liancheng; Geng, Chong; Yan, Qingfeng; Wang, Junxi; Li, Jinmin

    2013-10-21

    Size-controllable p-GaN hexagonal nanopyramids (HnPs)-photonic crystal (PhC) structures were selectively grown on flat p-GaN layer for the elimination of total internal reflection of light-emitting diodes (LEDs). The LEDs with HnPs-PhC of 46.3% bottom fill factor (PhC lattice constant is 730 nm) showed an improved light output power by 99.9% at forward current of 350 mA compared to the reference LEDs with flat p-GaN layer. We confirmed the effect of HnPs-PhC with different bottom fill factors and the effect of nanopyramid-shaped and nanocolumn-shaped PhC on the light-extraction of LEDs was also investigated by using three-dimensional finite-difference time-domain simulations.

  8. Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect.

    PubMed

    Li, Jia-Sheng; Tang, Yong; Li, Zong-Tao; Cao, Kai; Yan, Cai-Man; Ding, Xin-Rui

    2018-07-20

    Quantum dots (QDs) have attracted significant attention in light-emitting diode (LED) illumination and display applications, owing to their high quantum yield and unique spectral properties. However, an effective optical model of quantum-dot-converted elements (QDCEs) for (LEDs) that entirely considers the reabsorption and reemission effect is lacking. This suppresses the design of QDCE structures and further investigation of light-extraction/conversion mechanisms in QDCEs. In this paper, we proposed a full spectral optical modeling method for QDCEs packaged in LEDs, entirely considering the reabsorption and reemission effect, and its results are compared with traditional models without reabsorption or reemission. The comparisons indicate that the QDCE absorption loss of QD emission light is a major factor decreasing the radiant efficacy of LEDs, which should be considered when designing QDCE structures. According to the measurements of fabricated LEDs, only calculation results that entirely consider reabsorption and reemission show good agreement with experimental radiant efficacy, spectra, and peak wavelength at the same down-conversion efficiency. Consequently, it is highly expected that QDCE will be modeled considering the reabsorption and reemission events. This study provides a simple and effective modeling method for QDCEs, which shows great potential for their structure designs and fundamental investigations.

  9. Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect

    NASA Astrophysics Data System (ADS)

    Li, Jia-Sheng; Tang, Yong; Li, Zong-Tao; Cao, Kai; Yan, Cai-Man; Ding, Xin-Rui

    2018-07-01

    Quantum dots (QDs) have attracted significant attention in light-emitting diode (LED) illumination and display applications, owing to their high quantum yield and unique spectral properties. However, an effective optical model of quantum-dot-converted elements (QDCEs) for (LEDs) that entirely considers the reabsorption and reemission effect is lacking. This suppresses the design of QDCE structures and further investigation of light-extraction/conversion mechanisms in QDCEs. In this paper, we proposed a full spectral optical modeling method for QDCEs packaged in LEDs, entirely considering the reabsorption and reemission effect, and its results are compared with traditional models without reabsorption or reemission. The comparisons indicate that the QDCE absorption loss of QD emission light is a major factor decreasing the radiant efficacy of LEDs, which should be considered when designing QDCE structures. According to the measurements of fabricated LEDs, only calculation results that entirely consider reabsorption and reemission show good agreement with experimental radiant efficacy, spectra, and peak wavelength at the same down-conversion efficiency. Consequently, it is highly expected that QDCE will be modeled considering the reabsorption and reemission events. This study provides a simple and effective modeling method for QDCEs, which shows great potential for their structure designs and fundamental investigations.

  10. Superior characteristics of microscale light emitting diodes through tightly lateral oxide-confined scheme

    NASA Astrophysics Data System (ADS)

    Huang, Shen-Che; Li, Heng; Zhang, Zhe-Han; Chen, Hsiang; Wang, Shing-Chung; Lu, Tien-Chang

    2017-01-01

    We report on the design of the geometry and chip size-controlled structures of microscale light-emitting diodes (micro-LEDs) with a shallow-etched oxide-refilled current aperture and their performance. The proposed structure, which combines an indium-tin-oxide layer and an oxide-confined aperture, exhibited not only uniform current distribution but also remarkably tight current confinement. An extremely high injection level of more than 90 kA/cm2 was achieved in the micro-LED with a 5-μm aperture. Current spreading and the droop mechanism in the investigated devices were characterized through electroluminescence measurements, optical microscopy, and beam-view imaging. Furthermore, we utilized the β-model and S-model to elucidate current crowding and the efficiency droop phenomenon in the investigated micro-LEDs. The luminescence results evidenced the highly favorable performance of the fabricated micro-LEDs, which is a result of their more uniform current spreading and lower junction temperature relative to conventional LEDs. Moreover, the maximum endured current density could be further increased by reducing the aperture size of the micro-LEDs. The proposed design, which is expected to be beneficial for the development of high-performance array-based micro-LEDs, is practicable through current state-of-the-art processing techniques.

  11. Research at Lincoln Laboratory leading up to the development of the injection laser in 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rediker, R.H.

    1987-06-01

    In 1958 the semiconductor device group at Lincoln Laboratory began to concentrate its efforts on exploiting GaAs. These efforts, in addition to yielding diodes with ns switching speeds, led to the development in early 1962 of diodes which emitted near-bandgap radiation with very high efficiency, and to the development in October 1962 of the diode laser. The theory of the semiconductor laser developed at Lincoln Laboratory in the mid-to-late 1950's provided the foundation necessary for the design of the diode laser structure after the highly efficient production of near-bandgap radiation was demonstrated.

  12. Research at Lincoln Laboratory leading up to the development of the injection laser in 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rediker, R.H.

    1987-06-01

    In 1958 the Semiconductor Device Group at Lincoln Laboratory began to concentrate its efforts on exploiting GaAs. these efforts, in addition to yielding diodes which ns switching speeds, led to the development in early 1962 of diodes that emitted near-bandgap radiation with very high efficiency, and to the development in October 1962 of the diode laser. The theory of the semiconductor laser developed at Lincoln Laboratory in the mid-to-late 1950's provided the foundation necessary for the design of the diode laser structure after the highly efficient production of near-bandgap radiation was demonstrated.

  13. Preparing nano-hole arrays by using porous anodic aluminum oxide nano-structural masks for the enhanced emission from InGaN/GaN blue light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoang-Duy; Nguyen, Hieu Pham Trung; Lee, Jae-jin; Mho, Sun-Il

    2012-12-01

    We report on the achievement of the enhanced cathodoluminescence (CL) from InGaN/GaN light-emitting diodes (LEDs) by using roughening surface. Nanoporous anodic aluminum oxide (AAO) mask was utilized to form nano-hole arrays on the surface of InGaN/GaN LEDs. AAO membranes with ordered hexagonal structures were fabricated from aluminum foils by a two-step anodization method. The average pore densities of ˜1.0 × 1010 cm-2 and 3.0 × 1010 cm-2 were fabricated with the constant anodization voltages of 25 and 40 V, respectively. Anodic porous alumina film with a thickness of ˜600 nm has been used as a mask for the induced couple plasma etching process to fabricate nano-hole arrays on the LED surface. Diameter and depth of nano-holes can be controlled by varying the etching duration and/or the diameter of AAO membranes. Due to the reduction of total internal reflection obtained in the patterned samples, we have observed that the cathodoluminescence intensity of LEDs with nanoporous structures is increased up to eight times compared to that of samples without using nanoporous structure.

  14. Highly pure yellow light emission of perovskite CsPb(BrxI1-x)3 quantum dots and their application for yellow light-emitting diodes

    NASA Astrophysics Data System (ADS)

    He, Yuandan; Gong, Jinhui; Zhu, Yiyuan; Feng, Xingcan; Peng, Hong; Wang, Wei; He, Haiyang; Liu, Hu; Wang, Li

    2018-06-01

    High-quality all-inorganic perovskite CsPb(BrxI1-x)3 quantum dots (QDs) with quantum yield of 50% were systematically studied as yellow light convertor for light emitting diodes (LEDs). A novel heat insulation structure was designed for the QD-converted yellow LEDs. In this structure, a silicone layer was set on top of the GaN LED chip to prevent directly heating of the QDs by the LED chip. Then the CsPb(BrxI1-x)3 QDs were filled in the bowl-shaped silicone layer after ultrasonic dispersion treatment. Finally, an Al2O3 passivation layer was grown on the QDs layer by Atomic Layer Disposition at 40 °C. When x = 0.55, highly pure yellow LEDs with an emission peak at ∼570 nm and a full width at half maximum of 25 nm were achieved. The chromaticity coordinates of the QD-converted yellow LEDs (0.4920 ± 0.0017, 0.4988 ± 0.0053) showed almost no variation under driving current from 5 mA to 150 mA. During an operation period of 60 min, the emission wavelength of the yellow LEDs showed no distinct shift. Moreover, the luminous efficiency of the QD-converted yellow LEDs achieved 13.51 l m/W at 6 mA. These results demonstrated that CsPb(BrxI1-x)3 QDs and the heat insulation structure are promising candidate for high purity yellow LEDs.

  15. All metalorganic chemical vapor phase epitaxy of p/n-GaN tunnel junction for blue light emitting diode applications

    NASA Astrophysics Data System (ADS)

    Neugebauer, S.; Hoffmann, M. P.; Witte, H.; Bläsing, J.; Dadgar, A.; Strittmatter, A.; Niermann, T.; Narodovitch, M.; Lehmann, M.

    2017-03-01

    We report on III-Nitride blue light emitting diodes (LEDs) comprising a GaN-based tunnel junction (TJ) all realized by metalorganic vapor phase epitaxy in a single growth process. The TJ grown atop the LED structures consists of a Mg-doped GaN layer and subsequently grown highly Ge-doped GaN. Long thermal annealing of 60 min at 800 °C is important to reduce the series resistance of the LEDs due to blockage of acceptor-passivating hydrogen diffusion through the n-type doped top layer. Secondary ion mass spectroscopy measurements reveal Mg-incorporation into the topmost GaN:Ge layer, implying a non-abrupt p-n tunnel junction and increased depletion width. Still, significantly improved lateral current spreading as compared to conventional semi-transparent Ni/Au p-contact metallization and consequently a more homogeneous electroluminescence distribution across 1 × 1 mm2 LED structures is achieved. Direct estimation of the depletion width is obtained from electron holography experiments, which allows for a discussion of the possible tunneling mechanism.

  16. Transparent conductive oxide films embedded with plasmonic nanostructure for light-emitting diode applications.

    PubMed

    Chuang, Shih-Hao; Tsung, Cheng-Sheng; Chen, Ching-Ho; Ou, Sin-Liang; Horng, Ray-Hua; Lin, Cheng-Yi; Wuu, Dong-Sing

    2015-02-04

    In this study, a spin coating process in which the grating structure comprises an Ag nanoparticle layer coated on a p-GaN top layer of InGaN/GaN light-emitting diode (LED) was developed. Various sizes of plasmonic nanoparticles embedded in a transparent conductive layer were clearly observed after the deposition of indium tin oxide (ITO). The plasmonic nanostructure enhanced the light extraction efficiency of blue LED. Output power was 1.8 times the magnitude of that of conventional LEDs operating at 350 mA, but retained nearly the same current-voltage characteristic. Unlike in previous research on surface-plasmon-enhanced LEDs, the metallic nanoparticles were consistently deposited over the surface area. However, according to microstructural observation, ITO layer mixed with Ag-based nanoparticles was distributed at a distance of approximately 150 nm from the interface of ITO/p-GaN. Device performance can be improved substantially by using the three-dimensional distribution of Ag-based nanoparticles in the transparent conductive layer, which scatters the propagating light randomly and is coupled between the localized surface plasmon and incident light internally trapped in the LED structure through total internal reflection.

  17. A charge inverter for III-nitride light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zi-Hui, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn; Zhang, Yonghui; Bi, Wengang, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn

    In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO{sub 2} insulator layer on the p{sup +}-GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p{sup +}-GaN and SiO{sub 2} insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constantmore » of the thin SiO{sub 2} layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p{sup +}-GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm{sup 2} LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.« less

  18. Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes

    ERIC Educational Resources Information Center

    Wagner, Eugene P., II

    2016-01-01

    A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…

  19. Light-extraction enhancement for light-emitting diodes: a firefly-inspired structure refined by the genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bay, Annick; Mayer, Alexandre

    2014-09-01

    The efficiency of light-emitting diodes (LED) has increased significantly over the past few years, but the overall efficiency is still limited by total internal reflections due to the high dielectric-constant contrast between the incident and emergent media. The bioluminescent organ of fireflies gave incentive for light-extraction enhance-ment studies. A specific factory-roof shaped structure was shown, by means of light-propagation simulations and measurements, to enhance light extraction significantly. In order to achieve a similar effect for light-emitting diodes, the structure needs to be adapted to the specific set-up of LEDs. In this context simulations were carried out to determine the best geometrical parameters. In the present work, the search for a geometry that maximizes the extraction of light has been conducted by using a genetic algorithm. The idealized structure considered previously was generalized to a broader variety of shapes. The genetic algorithm makes it possible to search simultaneously over a wider range of parameters. It is also significantly less time-consuming than the previous approach that was based on a systematic scan on parameters. The results of the genetic algorithm show that (1) the calculations can be performed in a smaller amount of time and (2) the light extraction can be enhanced even more significantly by using optimal parameters determined by the genetic algorithm for the generalized structure. The combination of the genetic algorithm with the Rigorous Coupled Waves Analysis method constitutes a strong simulation tool, which provides us with adapted designs for enhancing light extraction from light-emitting diodes.

  20. Photoluminescence Mapping and Angle-Resolved Photoluminescence of MBE-Grown InGaAs/GaAs RC LED and VCSEL Structures

    DTIC Science & Technology

    2002-06-03

    resonant-cavity light-emitting diodes (RC LEDs) and vertical-cavity surface-emitting lasers ( VCSELs )] fabricated from molecular beam epitaxy (MBE)-grown...grown 8470-631. by molecular beam epitaxy (MBE) using a Riber 32P E-mail address: muszal@ite.waw.pl (0. Muszalski). reactor. Details of the growth can be... molecular beams hit the center of a rotating sion features of RC LED and VCSEL structures, as well sample. However, due to the transversal distribution of as

  1. Two-color light-emitting diodes with polarization-sensitive high extraction efficiency based on graphene

    NASA Astrophysics Data System (ADS)

    H, Sattarian; S, Shojaei; E, Darabi

    2016-05-01

    In the present study, graphene photonic crystals are employed to enhance the light extraction efficiency (LEE) of two-color, red and blue, light-emitting diode (LED). The transmission characteristics of one-dimensional (1D) Fibonacci graphene photonic crystal LED (FGPC-LED) are investigated by using the transfer matrix method and the scaling study is presented. We analyzed the influence of period, thickness, and permittivity in the structure to enhance the LEE. The transmission spectrum of 1D FGPC has been optimized in detail. In addition, the effects of the angle of incidence and the state of polarization are investigated. As the main result, we found the optimum values of relevant parameters to enhance the extraction of red and blue light from an LED as well as provide perfect omnidirectional and high peak transmission filters for the TE and TM modes.

  2. Alternating InGaN barriers with GaN barriers for enhancing optical performance in InGaN light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yujue; Zeng, Yiping, E-mail: ypzeng@semi.ac.cn

    2015-01-21

    InGaN-based light-emitting diodes (LEDs) with some specific designs on the quantum barrier layers by alternating InGaN barriers with GaN barriers are proposed and studied numerically. In the proposed structure, simulation results show that the carriers are widely dispersed in the multi-quantum well active region, and the radiative recombination rate is efficiently improved and the electron leakage is suppressed accordingly, due to the appropriate band engineering. The internal quantum efficiency and light-output power are thus markedly enhanced and the efficiency droop is smaller, compared to the original structures with GaN barriers or InGaN barriers. Moreover, the gradually decrease of indium compositionmore » in the alternating quantum barriers can further promote the LED performance because of the more uniform carrier distribution, which provides us a simple but highly effective approach for high-performance LED applications.« less

  3. Single-Layer Halide Perovskite Light-Emitting Diodes with Sub-Band Gap Turn-On Voltage and High Brightness.

    PubMed

    Li, Junqiang; Shan, Xin; Bade, Sri Ganesh R; Geske, Thomas; Jiang, Qinglong; Yang, Xin; Yu, Zhibin

    2016-10-03

    Charge-carrier injection into an emissive semiconductor thin film can result in electroluminescence and is generally achieved by using a multilayer device structure, which requires an electron-injection layer (EIL) between the cathode and the emissive layer and a hole-injection layer (HIL) between the anode and the emissive layer. The recent advancement of halide perovskite semiconductors opens up a new path to electroluminescent devices with a greatly simplified device structure. We report cesium lead tribromide light-emitting diodes (LEDs) without the aid of an EIL or HIL. These so-called single-layer LEDs have exhibited a sub-band gap turn-on voltage. The devices obtained a brightness of 591 197 cd m -2 at 4.8 V, with an external quantum efficiency of 5.7% and a power efficiency of 14.1 lm W -1 . Such an advancement demonstrates that very high efficiency of electron and hole injection can be obtained in perovskite LEDs even without using an EIL or HIL.

  4. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrownmore » n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.« less

  5. Dual-Wavelength InGaAsSb/AlGaAsSb Quantum-Well Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien Dai; Hwang, Jehwan; Kim, Yeongho; Kim, Eui-Tae; Kim, Jun Oh; Lee, Sang Jun

    2018-05-01

    We have investigated the structural characteristics and the device performance of three-stack InGaAsSb/AlGaAsSb quantum-well (QW) light-emitting diodes (LEDs) grown by using molecular beam epitaxy. The QW LED structure with an 8-nm well thickness had a single peak emission wavelength of 2.06 μm at an injection current of 0.3 A at room temperature. However, the QWLEDs with three different well thicknesses of 5-, 10-, and 15-nm had double peak emission wavelengths of 1.97 and 2.1 μm at an injection current of 1.1 A, which were associated with the radiative recombination in the QW with a 5-nm well thickness and the overlapped emission from the QWs with 10- and 15-nm well thicknesses, respectively.

  6. Organic-Inorganic Hybrid Ruddlesden-Popper Perovskites: An Emerging Paradigm for High-Performance Light-Emitting Diodes.

    PubMed

    Liu, Xiao-Ke; Gao, Feng

    2018-05-03

    Recently, lead halide perovskite materials have attracted extensive interest, in particular, in the research field of solar cells. These materials are fascinating "soft" materials with semiconducting properties comparable to the best inorganic semiconductors like silicon and gallium arsenide. As one of the most promising perovskite family members, organic-inorganic hybrid Ruddlesden-Popper perovskites (HRPPs) offer rich chemical and structural flexibility for exploring excellent properties for optoelectronic devices, such as solar cells and light-emitting diodes (LEDs). In this Perspective, we present an overview of HRPPs on their structural characteristics, synthesis of pure HRPP compounds and thin films, control of their preferential orientations, and investigations of heterogeneous HRPP thin films. Based on these recent advances, future directions and prospects have been proposed. HRPPs are promising to open up a new paradigm for high-performance LEDs.

  7. Effects of two-step Mg doping in p-GaN on efficiency characteristics of InGaN blue light-emitting diodes without AlGaN electron-blocking layers

    NASA Astrophysics Data System (ADS)

    Ryu, Han-Youl; Lee, Jong-Moo

    2013-05-01

    A light-emitting diode (LED) structure containing p-type GaN layers with two-step Mg doping profiles is proposed to achieve high-efficiency performance in InGaN-based blue LEDs without any AlGaN electron-blocking-layer structures. Photoluminescence and electroluminescence (EL) measurement results show that, as the hole concentration in the p-GaN interlayer between active region and the p-GaN layer increases, defect-related nonradiative recombination increases, while the electron current leakage decreases. Under a certain hole-concentration condition in the p-GaN interlayer, the electron leakage and active region degradation are optimized so that high EL efficiency can be achieved. The measured efficiency characteristics are analyzed and interpreted using numerical simulations.

  8. Nanospherical-lens lithographical Ag nanodisk arrays embedded in p-GaN for localized surface plasmon-enhanced blue light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Wu, Kui; Sun, Bo

    2014-06-15

    Large-scale Ag nanodisks (NDs) arrays fabricated using nanospherical-lens lithography (NLL) are embedded in p-GaN layer of an InGaN/GaN light-emitting diode (LED) for generating localized surface plasmon (LSP) coupling with the radiating dipoles in the quantum-well (QWs). Based on the Ag NDs with the controlled surface coverage, LSP leads to the improved crystalline quality of regrowth p-GaN, increased photoluminescence (PL) intensity, reduced PL decay time, and enhanced output power of LED. Compared with the LED without Ag NDs, the optical output power at a current of 350 mA of the LSP-enhanced LEDs with Ag NDs having a distance of 20 andmore » 35 nm to QWs is increased by 26.7% and 31.1%, respectively. The electrical characteristics and optical properties of LEDs with embedded Ag NPs are dependent on the distance of between Ag NPs and QWs region. The LED with Ag NDs array structure is also found to exhibit reduced emission divergence, compared to that without Ag NDs.« less

  9. Dual-Color Emission in Hybrid III-Nitride/ZnO Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Trybus, Elaissa; Cheung, Maurice C.; Doolittle, W. Alan; Cartwright, Alexander N.; Ferguson, Ian; Seong, Tae-Yeon; Nause, Jeff

    2010-02-01

    We report dual-color production of the blue and green regions using hybrid nitride/ZnO light emitting diode (LED) structures grown on ZnO substrates. The blue emission is ascribed to the near-band edge transition in InGaN while green emission is related to Zn-related defect levels formed by the unintentional interdiffusion of Zn into the InGaN active layer from the ZnO substrates.

  10. Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes.

    PubMed

    de Sanctis, Daniele; Zubieta, Chloe; Felisaz, Franck; Caserotto, Hugo; Nanao, Max H

    2016-03-01

    Exposure to X-rays, high-intensity visible light or ultraviolet radiation results in alterations to protein structure such as the breakage of disulfide bonds, the loss of electron density at electron-rich centres and the movement of side chains. These specific changes can be exploited in order to obtain phase information. Here, a case study using insulin to illustrate each step of the radiation-damage-induced phasing (RIP) method is presented. Unlike a traditional X-ray-induced damage step, specific damage is introduced via ultraviolet light-emitting diodes (UV-LEDs). In contrast to UV lasers, UV-LEDs have the advantages of small size, low cost and relative ease of use.

  11. AlGaN-based ultraviolet light-emitting diodes on sputter-deposited AlN templates with epitaxial AlN/AlGaN superlattices

    NASA Astrophysics Data System (ADS)

    Zhao, Lu; Zhang, Shuo; Zhang, Yun; Yan, Jianchang; Zhang, Lian; Ai, Yujie; Guo, Yanan; Ni, Ruxue; Wang, Junxi; Li, Jinmin

    2018-01-01

    We demonstrate AlGaN-based ultraviolet light-emitting diodes (UV-LEDs) grown by metalorganic chemical vapor deposition (MOCVD) on sputter-deposited AlN templates upon sapphire substrates. An AlN/AlGaN superlattices structure is inserted as a dislocation filter between the LED structure and the AlN template. The full width at half maximum values for (0002) and (10 1 bar 2) X-ray rocking curves of the n-type Al0.56Ga0.44N layer are 513 and 1205 arcsec, respectively, with the surface roughness of 0.52 nm. The electron concentration and mobility measured by Hall measurement are 9.3 × 1017cm-3 and 54 cm2/V·s at room temperature, respectively. The light output power of a 282-nm LED reaches 0.28 mW at 20 mA with an external quantum efficiency of 0.32%. And the values of leakage current and forward voltage of the LEDs are ∼3 nA at -10 V and 6.9 V at 20 mA, respectively, showing good electrical performance. It is expected that the cost of the UV-LED can be reduced by using sputter-deposited AlN template.

  12. Effect of the fabrication conditions of SiGe LEDs on their luminescence and electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyadin, A. E.; Sobolev, N. A., E-mail: nick@sobolev.ioffe.rssi.ru; Strel’chuk, A. M.

    2016-02-15

    SiGe-based n{sup +}–p–p{sup +} light-emitting diodes (LEDs) with heavily doped layers fabricated by the diffusion (of boron and phosphorus) and CVD (chemical-vapor deposition of polycrystalline silicon layers doped with boron and phosphorus) techniques are studied. The electroluminescence spectra of both kinds of LEDs are identical, but the emission intensity of CVD diodes is ∼20 times lower. The reverse and forward currents in the CVD diodes are substantially higher than those in diffusion-grown diodes. The poorer luminescence and electrical properties of the CVD diodes are due to the formation of defects at the interface between the emitter and base layers.

  13. Enhanced Electron Injection and Exciton Confinement for Pure Blue Quantum-Dot Light-Emitting Diodes by Introducing Partially Oxidized Aluminum Cathode.

    PubMed

    Wang, Zhibin; Cheng, Tai; Wang, Fuzhi; Bai, Yiming; Bian, Xingming; Zhang, Bing; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2018-05-31

    Stable and efficient red (R), green (G), and blue (B) light sources based on solution-processed quantum dots (QDs) play important roles in next-generation displays and solid-state lighting technologies. The brightness and efficiency of blue QDs-based light-emitting diodes (LEDs) remain inferior to their red and green counterparts, due to the inherently unfavorable energy levels of different colors of light. To solve these problems, a device structure should be designed to balance the injection holes and electrons into the emissive QD layer. Herein, through a simple autoxidation strategy, pure blue QD-LEDs which are highly bright and efficient are demonstrated, with a structure of ITO/PEDOT:PSS/Poly-TPD/QDs/Al:Al2O3. The autoxidized Al:Al2O3 cathode can effectively balance the injected charges and enhance radiative recombination without introducing an additional electron transport layer (ETL). As a result, high color-saturated blue QD-LEDs are achieved with a maximum luminance over 13,000 cd m -2 , and a maximum current efficiency of 1.15 cd A -1 . The easily controlled autoxidation procedure paves the way for achieving high-performance blue QD-LEDs.

  14. Investigating and Optimizing Carrier Transport, Carrier Distribution, and Efficiency Droop in GaN-based Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Zhu, Di

    2011-12-01

    The recent tremendous boost in the number and diversity of applications for light-emitting diodes (LEDs) indicates the emergence of the next-generation lighting and illumination technology. The rapidly improving LED technology is becoming increasingly viable especially for high-power applications. However, the greatest roadblock before finally breaching the main defensive position of conventional fluorescent and incandescent lamps still remains: GaN-based LEDs encounter a significant decrease in efficiency as the drive current increases, and this phenomenon is known as the efficiency droop. This dissertation focuses on uncovering the physical cause of efficiency droop in GaN-based LEDs and looks for solutions to it. GaN-based multiple-quantum-well (MQW) LEDs usually have abnormally high diode-ideality factors. Investigating the origin of the high diode-ideality factors could help to better understand the carrier transport in the LED MQW active region. We investigate the ideality factors of GaInN LEDs with different numbers of doped quantum barriers (QBs). Consistent with the theory, a decrease of the ideality factor as well as a reduction in forward voltage is found with increasing number of doped QBs. Experimental and simulation results indicate that the band profiles of QBs in the active region have a significant impact on the carrier transport mechanism, and the unipolar heterojunctions inside the active region play an important role in determining the diode-ideality factor. This dissertation will discuss several mechanisms leading to electron leakage which could be responsible for the efficiency droop. We show that the inefficient electron capture, the electron-attracting properties of polarized EBL, the inherent asymmetry in electron and hole transport and the inefficient EBL p-doping at high Al contents severely limit the ability to confine electrons to the MQWs. We demonstrate GaInN LEDs employing tailored Si doping in the QBs with strongly enhanced high-current efficiency and reduced efficiency droop. Compared with 4-QB-doped LEDs, 1-QB-doped LEDs show a 37.5% increase in light-output power at high currents. Consistent with the measurements, simulation shows a shift of radiative recombination among the MQWs and a reduced electron leakage current into the p-type GaN when fewer QBs are doped. The results can be attributed to a more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop. In this dissertation, artificial evolution is introduced to the LED optimization process which combines a genetic algorithm (GA) and device-simulation software. We show that this approach is capable of generating novel concepts in designing and optimizing LED devices. Application of the GA to the QB-doping in the MQWs yields optimized structures which is consistent with the tailored QB doping experiments. Application of the GA to the EBL region suggests a novel structure with an inverted sheet charge at the spacer-EBL interface. The resulting repulsion of electrons can significantly reduce electron leakage and enhance the efficiency. Finally, dual-wavelength LEDs, which have two types of quantum wells (QWs) emitting at two different wavelengths, are experimentally characterized and compared with numerical simulations. These dual-wavelength LEDs allow us to determine which QW emits most of the light. An experimental observation and a quantitative analysis of the radiative recombination shift within the MQW active region are obtained. In addition, an injection-current dependence of the radiative recombination shift is predicted by numerical simulations and indeed observed in dual-wavelength LEDs. This injection-current dependence of the radiative recombination distribution can be explained very well by incorporating quantum-mechanical tunneling of carriers into and through the QBs into to the classical drift-diffusion model. In summary, using the LEDs with tailored QB doping and dual-wavelength LEDs, we investigate the origin of the high diode-ideality factor of LEDs and gain insight on the control of carrier transport, carrier distribution, and radiative recombination in the LED MQW active region. Our results provide solid evidence on the effectiveness of the GA in the LED device optimization process. In addition, the innovative EBL structure optimized by the GA sheds light on further paths for the optimization of LED design. Our results are the starting point of applying artificial evolution to practical semiconductor devices, opening new perspectives for complex semiconductor device optimization and enabling breakthroughs in high-performance LED design.

  15. Structural Investigation of Cesium Lead Halide Perovskites for High-Efficiency Quantum Dot Light-Emitting Diodes.

    PubMed

    Le, Quyet Van; Kim, Jong Beom; Kim, Soo Young; Lee, Byeongdu; Lee, Dong Ryeol

    2017-09-07

    We have investigated the effect of reaction temperature of hot-injection method on the structural properties of CsPbX 3 (X: Br, I, Cl) perovskite nanocrystals (NCs) using small- and wide-angle X-ray scattering. It is confirmed that the size of the NCs decreased as the reaction temperature decreased, resulting in stronger quantum confinement. The cubic-phase perovskite NCs formed despite the fact that the reaction temperatures increased from 140 to 180 °C; however, monodispersive NC cubes that are required for densely packing self-assembly film were formed only at lower temperatures. From the X-ray scattering measurements, the spin-coated film from more monodispersive perovskite nanocubes synthesized at lower temperatures resulted in more preferred orientation. This dense-packing perovskite film with preferred orientation yielded efficient light-emitting diode (LED) performance. Thus the dense-packing structure of NC assemblies formed after spin-coating should be considered for high-efficient LEDs based on perovskite quantum dots in addition to quantum confinement effect of the quantum dots.

  16. Bluish-green color emitting Ba2Si3O8:Eu2+ ceramic phosphors for white light-emitting diodes.

    PubMed

    Xiao, F; Xue, Y N; Zhang, Q Y

    2009-10-15

    This paper reports on the structural and optical properties of Eu(2+) activated Ba(2)Si(3)O(8) ceramic phosphors synthesized by a sol-gel method. The ceramic phosphors have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and fluorescence measurements. The structural characterization results suggest that the as-prepared phosphors are of single phase monoclinic Ba(2)Si(3)O(8) with rod-like morphology. A broad excitation band ranging from 300 to 410 nm matches well with the ultraviolet (UV) radiation of light-emitting diodes (LEDs). Upon 380 nm UV light excitation, these phosphors emit bluish-green emission centered at 500 nm with color coordination (x=0.25, y=0.40). All the obtained results indicate that the Ba(2)Si(3)O(8):Eu(2+) ceramic phosphors are promising bluish-green candidates for the phosphor-converted white LEDs.

  17. Surface morphological, structural, electrical and optical properties of GaN-based light-emitting diodes using submicron-scaled Ag islands and ITO thin films

    NASA Astrophysics Data System (ADS)

    Lee, Young-Woong; Reddy, M. Siva Pratap; Kim, Bo-Myung; Park, Chinho

    2018-07-01

    An ITO-Ag islands complex as a new transparent conducting electrode (TCE) structure (on the 5 nm-thick p-InGaN/90 nm-thick p-GaN) for achieving high-performance and more reliable GaN-based LEDs were fabricated. A normal LED with a conventional ITO TCE was also compared. The surface morphological, structural, electrical and optical properties of fabricated GaN-based light-emitting diodes using a complex electrode of submicron-scaled Ag islands and ITO thin films are explored by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), current-voltage (I-V) and output power-current (L-I) techniques. Surface morphology investigations revealed Ag islands formed uniformly on the p-InGaN/p-GaN surface during rapid thermal annealing at 400 °C for 1 min in N2 ambient. The ohmic properties and overall device-performance of the suggested contact and device structures were superior to those in the conventional ITO contact and normal ITO LED structures. Based on the results of XRD and XPS measurements, the formation of the intermetallic gallide phases (AgGa) is responsible for better performance characteristics of the ITO-Ag islands device. The significant improvements are described in terms of the conducting bridge influence, highly effective micro-mirror effect, and wider photon window via the roughened structure.

  18. Fabrication and evaluation of plasmonic light-emitting diodes with thin p-type layer and localized Ag particles embedded by ITO

    NASA Astrophysics Data System (ADS)

    Okada, N.; Morishita, N.; Mori, A.; Tsukada, T.; Tateishi, K.; Okamoto, K.; Tadatomo, K.

    2017-04-01

    Light-emitting diodes (LEDs) have been demonstrated with a thin p-type layer using the plasmonic effect. Optimal LED device operation was found when using a 20-nm-thick p+-GaN layer. Ag of different thicknesses was deposited on the thin p-type layer and annealed to form the localized Ag particles. The localized Ag particles were embedded by indium tin oxide to form a p-type electrode in the LED structure. By optimization of the plasmonic LED, the significant electroluminescence enhancement was observed when the thickness of Ag was 9.5 nm. Both upward and downward electroluminescence intensities were improved, and the external quantum efficiency was approximately double that of LEDs without the localized Ag particles. The time-resolved photoluminescence (PL) decay time for the LED with the localized Ag particles was shorter than that without the localized Ag particles. The faster PL decay time should cause the increase in internal quantum efficiency by adopting the localized Ag particles. To validate the localized surface plasmon resonance coupling effect, the absorption of the LEDs was investigated experimentally and using simulations.

  19. Thermophotonics for ultra-high efficiency visible LEDs

    NASA Astrophysics Data System (ADS)

    Ram, Rajeev J.

    2017-02-01

    The wall-plug efficiency of modern light-emitting diodes (LEDs) has far surpassed all other forms of lighting and is expected to improve further as the lifetime cost of a luminaire is today dominated by the cost of energy. The drive towards higher efficiency inevitably opens the question about the limits of future enhancement. Here, we investigate thermoelectric pumping as a means for improving efficiency in wide-bandgap GaN based LEDs. A forward biased diode can work as a heat pump, which pumps lattice heat into the electrons injected into the active region via the Peltier effect. We experimentally demonstrate a thermally enhanced 450 nm GaN LED, in which nearly fourfold light output power is achieved at 615 K (compared to 295 K room temperature operation), with virtually no reduction in the wall-plug efficiency at bias V < ℏω/q. This result suggests the possibility of removing bulky heat sinks in high power LED products. A review of recent high-efficiency GaN LEDs suggests that Peltier thermal pumping plays a more important role in a wide range of modern LED structures that previously thought - opening a path to even higher efficiencies and lower lifetime costs for future lighting.

  20. Effect of 3C-SiC intermediate layer in GaN—based light emitting diodes grown on Si(111) substrate

    NASA Astrophysics Data System (ADS)

    Zhu, Youhua; Wang, Meiyu; Li, Yi; Tan, Shuxin; Deng, Honghai; Guo, Xinglong; Yin, Haihong; Egawa, Takashi

    2017-03-01

    GaN-based light emitting diodes (LEDs) have been grown by metalorganic chemical vapor deposition on Si(111) substrate with and without 3C-SiC intermediate layer (IL). Structural property has been characterized by means of atomic force microscope, X-ray diffraction, and transmission electron microscope measurements. It has been revealed that a significant improvement in crystalline quality of GaN and superlattice epitaxial layers can be achieved by using 3C-SiC as IL. Regarding of electrical and optical characteristics, it is clearly observed that the LEDs with its IL have a smaller leakage current and higher light output power comparing with the LEDs without IL. The better performance of LEDs using 3C-SiC IL can be contributed to both of the improvements in epitaxial layers quality and light extraction efficiency. As a consequence, in terms of optical property, a double enhancement of the light output power and external quantum efficiency has been realized.

  1. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Li, Yufeng; Wang, Shuai

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ∼20% and the luminance intensity has improved by 128%.more » Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.« less

  2. Developing a new supplemental lighting device with ultra-bright white LED for vegetables

    NASA Astrophysics Data System (ADS)

    Hu, Yongguang; Li, Pingping; Jiang, Jianghai

    2007-02-01

    It has been proved that monochromatic or compound light-emitting diode (LED) or laser diode (LD) can promote the photosynthesis of horticultural crops, but the promotion of polychromatic light like white LED is unclear. A new type of ultra-bright white LED (LUW56843, InGaN, \

  3. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp

    NASA Astrophysics Data System (ADS)

    Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru

    2014-06-01

    Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs.

  4. Chip-scale white flip-chip light-emitting diode containing indium phosphide/zinc selenide quantum dots

    NASA Astrophysics Data System (ADS)

    Fan, Bingfeng; Yan, Linchao; Lao, Yuqin; Ma, Yanfei; Chen, Zimin; Ma, Xuejin; Zhuo, Yi; Pei, Yanli; Wang, Gang

    2017-08-01

    A method for preparing a quantum dot (QD)-white light-emitting diode (WLED) is reported. Holes were etched in the SiO2 layer deposited on the sapphire substrate of the flip-chip LED by inductively coupled plasma, and these holes were then filled with QDs. An ultraviolet-curable resin was then spin-coated on top of the QD-containing SiO2 layer, and the resin was cured to act as a protecting layer. The reflective sidewall structure minimized sidelight leakage. The fabrication of the QD-WLED is simple in preparation and compatible with traditional LED processes, which was the minimum size of the WLED chip-scale integrated package. InP/ZnS core-shell QDs were used as the converter in the WLED. A blue light-emitting diode with a flip-chip structure was used as the excitation source. The QD-WLED exhibited color temperatures from 5900 to 6400 K and Commission Internationale De L'Elcairage color coordinates from (0.315, 0.325) to (0.325, 0.317), under drive currents from 100 to 400 mA. The QD-WLED exhibited stable optoelectronic properties.

  5. Opposite Behavior of Multilayer Graphene/ Indium-Tin-Oxide p-Electrode for Gallium Nitride Based-Light Emitting Diodes Depending on Thickness of Indium-Tin-Oxide Layer.

    PubMed

    Kim, Tae Kyoung; Yoon, Yeo Jin; Oh, Seung Kyu; Cha, Yu-Jung; Hong, In Yeol; Cho, Moon Uk; Hong, Chan-Hwa; Choi, Hong Kyw; Kwak, Joon Seop

    2018-09-01

    In order to improve EQE, we have investigated on the role of multilayer graphene (MLG) on the electrical and optical properties of GaN based light-emitting diodes (LEDs) with ultrathin ITO (5 nm or 10 nm)/p-GaN contacts. The MLG was transferred on the ITO/p-GaN to decrease sheet resistance of thin ITO p-electrode and improve the current spreading of LEDs. The LEDs with the ITO 5 nm and MLG/ITO 5 nm structures showed 3.25 and 3.06 V at 20 mA, and 11.69 and 13.02 mW/sr at 400 mA, respectively. After forming MLG on ITO 5 nm, the electro-optical properties were enhanced. Furthermore, the GaN based-LEDs applied to the ITO 10 nm, and MLG/ITO (10 nm) structures showed 2.95 and 3.06 V at 20 mA, and 20.28 and 16.74 mW/sr at 400 mA, respectively. The sheet resistance of the MLG transferred to ITO 5 nm was decreased approximately four fold compared to ITO 5 nm. On the other hand, the ITO 10 nm and MLG/ITO 10 nm showed a similar sheet resistance; the transmittance of the LEDs with ITO 10 nm decreased to 16% due to MLG formation on ITO. This suggests that the relationship between the sheet resistance and transmittance according to the ITO film thickness affected the electro-optical properties of the LEDs with a transparent p-electrode with the MLG/ITO dual structure.

  6. Instense red phosphors for UV light emitting diode devices.

    PubMed

    Cao, Fa-Bin; Tian, Yan-Wen; Chen, Yong-Jie; Xiao, Lin-Jiu; Liu, Yun-Yi

    2010-03-01

    Ca(x)Sr1-x-1.5y-0.5zMoO4:yEu3+ zNa+ red phosphors were prepared by solid-state reaction using Na+ as charge supply for LEDs (light emitting diodes). The content of charge compensator, Ca2+ concentration, synthesis temperature, reaction time, and Eu3+ concentration were the keys to improving the properties of luminescence and crystal structure of red phosphors. The photoluminescence spectra shows the red phosphors are effectively excited at 616 nm by 311 nm, 395 nm, and 465 nm light. The wavelengths of 395 and 465 nm nicely match the widely applied emission wavelengths of ultraviolet or blue LED chips. Its chromaticity coordinates (CIE) are calculated to be x = 0.65, y = 0.32. Bright red light can be observed by the naked eye from the LED-based Ca0.60Sr0.25MoO4:0.08Eu3+ 0.06Na+.

  7. Zinc Sulphide Overlayer Two-Dimensional Photonic Crystal for Enhanced Extraction of Light from a Micro Cavity Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Mastro, Michael A.; Kim, Chul Soo; Kim, Mijin; Caldwell, Josh; Holm, Ron T.; Vurgaftman, Igor; Kim, Jihyun; Eddy, Charles R., Jr.; Meyer, Jerry R.

    2008-10-01

    A two-dimensional (2D) ZnS photonic crystal was deposited on the surface of a one-dimensional (1D) III-nitride micro cavity light-emitting diode (LED), to intermix the light extraction features of both structures (1D+2D). The deposition of an ideal micro-cavity optical thickness of ≈λ/2 is impractical for III-nitride LEDs, and in realistic multi-mode devices a large fraction of the light is lost to internal refraction as guided light. Therefore, a 2D photonic crystal on the surface of the LED was used to diffract and thus redirect this guided light out of the semiconductor over several hundred microns. Additionally, the employment of a post-epitaxy ZnS 2D photonic crystal avoided the typical etching into the GaN:Mg contact layer, a procedure which can cause damage to the near surface.

  8. Insertion of two-dimensional photonic crystal pattern on p-GaN layer of GaN-based light-emitting diodes using bi-layer nanoimprint lithography.

    PubMed

    Byeon, Kyeong-Jae; Hwang, Seon-Yong; Hong, Chang-Hee; Baek, Jong Hyeob; Lee, Heon

    2008-10-01

    Nanoimprint lithography (NIL) was adapted to fabricate two-dimensional (2-D) photonic crystal (PC) pattern on the p-GaN layer of InGaN/GaN multi quantum well light-emitting diodes (LEDs) structure to improve the light extraction efficiency. For the uniform transfer of the PC pattern, a bi-layer imprinting method with liquid phase resin was used. The p-GaN layer was patterned with a periodic array of holes by an inductively coupled plasma etching process, based on SiCl4/Ar plasmas. As a result, 2-D photonic crystal patterns with 144 nm, 200 nm and 347 nm diameter holes were uniformly formed on the p-GaN layer and the photoluminescence (PL) intensity of each patterned LED samples was increased by more than 2.6 times, as compared to that of the un-patterned LED sample.

  9. Solution processable inverted structure ZnO-organic hybrid heterojuction white LEDs

    NASA Astrophysics Data System (ADS)

    Bano, N.; Hussain, I.; Soomro, M. Y.; EL-Naggar, A. M.; Albassam, A. A.

    2018-05-01

    Improving luminance efficiency and colour purity are the most important challenges for zinc oxide (ZnO)-organic hybrid heterojunction light emitting diodes (LEDs), affecting their large area applications. If ZnO-organic hybrid heterojunction white LEDs are fabricated by a hydrothermal method, it is difficult to obtain pure and stable blue emission from PFO due to the presence of an undesirable green emission. In this paper, we present an inverted-structure ZnO-organic hybrid heterojunction LED to avoid green emission from PFO, which mainly originates during device processing. With this configuration, each ZnO nanorod (NR) forms a discrete p-n junction; therefore, large-area white LEDs can be designed without compromising the junction area. The configuration used for this novel structure is glass/ZnO NRs/PFO/PEDOT:PSS/L-ITO, which enables the development of efficient, large-area and low-cost hybrid heterojunction LEDs. Inverted-structure ZnO-organic hybrid heterojunction white LEDs offer several improvements in terms of brightness, size, colour, external quantum efficiency and a wider applicability as compared to normal architecture LEDs.

  10. Coumarin-Based Oxime Esters: Photobleachable and Versatile Unimolecular Initiators for Acrylate and Thiol-Based Click Photopolymerization under Visible Light-Emitting Diode Light Irradiation.

    PubMed

    Li, Zhiquan; Zou, Xiucheng; Zhu, Guigang; Liu, Xiaoya; Liu, Ren

    2018-05-09

    Developing efficient unimolecular visible light-emitting diode (LED) light photoinitiators (PIs) with photobleaching capability, which are essential for various biomedical applications and photopolymerization of thick materials, remains a great challenge. Herein, we demonstrate the synthesis of a series of novel PIs, containing coumarin moieties as chromophores and oxime ester groups as initiation functionalities and explore their structure-activity relationship. The investigated oxime esters can effectively induce acrylates and thiol-based click photopolymerization under 450 nm visible LED light irradiation. The initiator O-3 exhibited excellent photobleaching capability and enabled photopolymerization of thick materials (∼4.8 mm). The efficient unimolecular photobleachable initiators show great potential in dental materials and 3D printings.

  11. Super-Lattice Light Emitting Diodes (SLEDS) on GaAs

    DTIC Science & Technology

    2016-03-31

    Super-Lattice Light Emitting Diodes (SLEDS) on GaAs Kassem Nabha1, Russel Ricker2, Rodney McGee1, Nick Waite1, John Prineas2, Sydney Provence2...infrared light emitting diodes (LEDs). Typically, the LED arrays are mated with CMOS read-in integrated circuit (RIIC) chips using flip-chip bonding. In...circuit (RIIC) chips using flip-chip bonding. This established technology is called Hybrid-super-lattice light emitting diodes (Hybrid- SLEDS). In

  12. Investigation of Light-Emitting Diode (LED) Point Light Source Color Visibility against Complex Multicolored Backgrounds

    DTIC Science & Technology

    2017-11-01

    sent from light-emitting diodes (LEDs) of 5 colors ( green , red, white, amber, and blue). Experiment 1 involved controlled laboratory measurements of...A-4 Red LED calibration curves and quadratic curve fits with R2 values . 37 Fig. A-5 Green LED calibration curves and quadratic curve fits with R2...36 Table A-4 Red LED calibration measurements ................................................... 36 Table A-5 Green LED

  13. Fabrication and characteristics of excellent current spreading GaN-based LED by using transparent electrode-insulator-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Qi, Chenglin; Huang, Yang; Zhan, Teng; Wang, Qinjin; Yi, Xiaoyan; Liu, Zhiqiang

    2017-08-01

    GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (EIS) structure was proposed. The EIS structure was achieved by an insulator layer (20-nm Ta2O5) deposited between the p-GaN and the ITO layer. This kind of EIS structure works through a defect-assisted tunneling mechanism to realize current injection and obtains a uniform current distribution on the chip surface, thus greatly improving the current spreading ability of LEDs. The appearance of this novel current injection pattern of V-LEDs will subvert the impression of the conventional LEDs structure, including simplifying the chip manufacture technology and reducing the chip cost. Under a current density of 2, 5, 10, and 25 A/cm2, the luminous uniformity was better than conventional structure LEDs. The standard deviation of power density distribution in light distribution was 0.028, which was much smaller than that of conventional structure LEDs and illustrated a huge advantage on the current spreading ability of EIS-LEDs. Project supported by the Natural Science Foundation of China (Nos. 61306051, 61306050) and the National High Technology Program of China (No. 2014AA032606).

  14. InGaN light-emitting diodes with highly transparent ZnO:Ga electrodes

    NASA Astrophysics Data System (ADS)

    Liu, H. Y.; Li, X.; Ni, X.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H.

    2010-03-01

    InGaN light-emitting diodes (LEDs) utilizing ZnO layers heavily doped with Ga (GZO) as transparent p-electrodes were fabricated and their characteristics were demonstrated to be superior to those of LEDs with metal Ni/Au electrodes. Highly conductive and highly transparent GZO films were grown on p-GaN contact layers of the LED structures by plasma-assisted molecular beam epitaxy under metal-rich conditions. The c and a lattice constants of GZO were found to be close to the bulk values, indicating small lattice distortion of GZO. The as-grown GZO films showed resistivities as low as 2.2-2.9×10-4 Ω cm. Upon rapid thermal annealing at the optimum temperature of 675 °C, the resistivity decreased reaching a value of ~1.9×10-4 Ω cm. Unlike the LEDs with Ni/Au contacts, the LEDs with GZO electrodes showed no filamentation and very uniform light emission at high current densities. The peak value of the relative external quantum efficiency for the LEDs with GZO contacts has substantial improvement compared with that for the LEDs with Ni/Au contacts. Under pulsed excitation mode, GZO-LEDs withstood current densities up to 5000 A/cm2.

  15. Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs.

    PubMed

    Kumar, Baskaran Ganesh; Sadeghi, Sadra; Melikov, Rustamzhon; Aria, Mohammad Mohammadi; Jalali, Houman Bahmani; Ow-Yang, Cleva W; Nizamoglu, Sedat

    2018-08-24

    Herein, we demonstrate that the structural and optical control of InP-based quantum dots (QDs) can lead to high-performance light-emitting diodes (LEDs). Zinc sulphide (ZnS) shells passivate the InP QD core and increase the quantum yield in green-emitting QDs by 13-fold and red-emitting QDs by 8-fold. The optimised QDs are integrated in the liquid state to eliminate aggregation-induced emission quenching and we fabricated white LEDs with a warm, neutral and cool-white appearance by the down-conversion mechanism. The QD-functionalized white LEDs achieve luminous efficiency (LE) up to 14.7 lm W -1 and colour-rendering index up to 80. The structural and optical control of InP/ZnS core/shell QDs enable 23-fold enhancement in LE of white LEDs compared to ones containing only QDs of InP core.

  16. Diode Lasers and Light Emitting Diodes Operating at Room Temperature with Wavelengths Above 3 Micrometers

    DTIC Science & Technology

    2011-11-29

    as an active region of mid - infrared LEDs. It should be noted that active region based on interband transition is equally useful for both laser and...IR LED technology for infrared scene projectors”, Dr. E. Golden, Air Force Research Laboratory, Eglin Air Force Base .  “A stable mid -IR, GaSb...multimode lasers. Single spatial mode 3-3.2 J.lm diode lasers were developed. LEDs operate at wavelength above 4 J.lm at RT. Dual color mid - infrared

  17. Improved breakdown characteristics of monolithically integrated III-nitride HEMT-LED devices using carbon doping

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Liu, Zhaojun; Huang, Tongde; Ma, Jun; May Lau, Kei

    2015-03-01

    We report selective growth of AlGaN/GaN high electron mobility transistors (HEMTs) on InGaN/GaN light emitting diodes (LEDs) for monolithic integration of III-nitride HEMT and LED devices (HEMT-LED). To improve the breakdown characteristics of the integrated HEMT-LED devices, carbon doping was introduced in the HEMT buffer by controlling the growth pressure and V/III ratio. The breakdown voltage of the fabricated HEMTs grown on LEDs was enhanced, without degradation of the HEMT DC performance. The improved breakdown characteristics can be attributed to better isolation of the HEMT from the underlying conductive p-GaN layer of the LED structure.

  18. A method used to overcome polarization effects in semi-polar structures of nitride light-emitting diodes emitting green radiation

    NASA Astrophysics Data System (ADS)

    Morawiec, Seweryn; Sarzała, Robert P.; Nakwaski, Włodzimierz

    2013-11-01

    Polarization effects are studied within nitride light-emitting diodes (LEDs) manufactured on standard polar and semipolar substrates. A new theoretical approach, somewhat different than standard ones, is proposed to this end. It is well known that when regular polar GaN substrates are used, strong piezoelectric and spontaneous polarizations create built-in electric fields leading to the quantum-confined Stark effects (QCSEs). These effects may be completely avoided in nonpolar crystallographic orientations, but then there are problems with manufacturing InGaN layers of relatively high Indium contents necessary for the green emission. Hence, a procedure leading to partly overcoming these polarization problems in semi-polar LEDs emitting green radiation is proposed. The (11 22) crystallographic substrate orientation (inclination angle of 58∘ to c plane) seems to be the most promising because it is characterized by low Miller-Bravais indices leading to high-quality and high Indium content smooth growth planes. Besides, it makes possible an increased Indium incorporation efficiency and it is efficient in suppressing QCSE. The In0.3Ga0.7N/GaN QW LED grown on the semipolar (11 22) substrate has been found as currently the optimal LED structure emitting green radiation.

  19. GaN-based light-emitting diodes on various substrates: a critical review.

    PubMed

    Li, Guoqiang; Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Wang, Haiyan; Lin, Zhiting; Zhou, Shizhong

    2016-05-01

    GaN and related III-nitrides have attracted considerable attention as promising materials for application in optoelectronic devices, in particular, light-emitting diodes (LEDs). At present, sapphire is still the most popular commercial substrate for epitaxial growth of GaN-based LEDs. However, due to its relatively large lattice mismatch with GaN and low thermal conductivity, sapphire is not the most ideal substrate for GaN-based LEDs. Therefore, in order to obtain high-performance and high-power LEDs with relatively low cost, unconventional substrates, which are of low lattice mismatch with GaN, high thermal conductivity and low cost, have been tried as substitutes for sapphire. As a matter of fact, it is not easy to obtain high-quality III-nitride films on those substrates for various reasons. However, by developing a variety of techniques, distincts progress has been made during the past decade, with high-performance LEDs being successfully achieved on these unconventional substrates. This review focuses on state-of-the-art high-performance GaN-based LED materials and devices on unconventional substrates. The issues involved in the growth of GaN-based LED structures on each type of unconventional substrate are outlined, and the fundamental physics behind these issues is detailed. The corresponding solutions for III-nitride growth, defect control, and chip processing for each type of unconventional substrate are discussed in depth, together with a brief introduction to some newly developed techniques in order to realize LED structures on unconventional substrates. This is very useful for understanding the progress in this field of physics. In this review, we also speculate on the prospects for LEDs on unconventional substrates.

  20. GaN-based light emitting diodes using p-type trench structure for improving internal quantum efficiency

    NASA Astrophysics Data System (ADS)

    Kim, Garam; Sun, Min-Chul; Kim, Jang Hyun; Park, Euyhwan; Park, Byung-Gook

    2017-01-01

    In order to improve the internal quantum efficiency of GaN-based LEDs, a LED structure featuring a p-type trench in the multi-quantum well (MQW) is proposed. This structure has effects on spreading holes into the MQW and reducing the quantum-confined stark effect (QCSE). In addition, two simple fabrication methods using electron-beam (e-beam) lithography or selective wet etching for manufacturing the p-type structure are also proposed. From the measurement results of the manufactured GaN-based LEDs, it is confirmed that the proposed structure using e-beam lithography or selective wet etching shows improved light output power compared to the conventional structure because of more uniform hole distribution. It is also confirmed that the proposed structure formed by e-beam lithography has a significant effect on strain relaxation and reduction in the QCSE from the electro-luminescence measurement.

  1. Tunnel-injected sub-260 nm ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; Bajaj, Sanyam; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Rajan, Siddharth

    2017-05-01

    We report on tunnel-injected deep ultraviolet light emitting diodes (UV LEDs) configured with a polarization engineered Al0.75Ga0.25 N/In0.2Ga0.8 N tunnel junction structure. Tunnel-injected UV LED structure enables n-type contacts for both bottom and top contact layers. However, achieving Ohmic contact to wide bandgap n-AlGaN layers is challenging and typically requires high temperature contact metal annealing. In this work, we adopted a compositionally graded top contact layer for non-alloyed metal contact and obtained a low contact resistance of ρc = 4.8 × 10-5 Ω cm2 on n-Al0.75Ga0.25 N. We also observed a significant reduction in the forward operation voltage from 30.9 V to 19.2 V at 1 kA/cm2 by increasing the Mg doping concentration from 6.2 × 1018 cm-3 to 1.5 × 1019 cm-3. Non-equilibrium hole injection into wide bandgap Al0.75Ga0.25 N with Eg>5.2 eV was confirmed by light emission at 257 nm. This work demonstrates the feasibility of tunneling hole injection into deep UV LEDs and provides a structural design towards high power deep-UV emitters.

  2. Engineering Strain for Improved III-Nitride Optoelectronic Device Performance

    NASA Astrophysics Data System (ADS)

    Van Den Broeck, Dennis Marnix

    Due to growing environmental and economic concerns, renewable energy generation and high-efficiency lighting are becoming even more important in the scientific community. III-Nitride devices have been essential in production of high-brightness light-emitting diodes (LEDs) and are now entering the photovoltaic (PV) realm as the technology advances. InGaN/GaN multiple quantum well LEDs emitting in the blue/green region have emerged as promising candidates for next-generation lighting technologies. Due to the large lattice mismatch between InN and GaN, large electric fields exist within the quantum well layers and result in low rates of radiative recombination, especially for the green spectral region. This is commonly referred to as the "green gap" and results in poor external quantum efficiencies for light-emitting diodes and laser diodes. In order to mitigate the compressive stress of InGaN QWs, a novel growth technique is developed in order to grown thick, strain-relaxed In yGa1-yN templates for 0.08 < y < 0.11. By inserting 2 nm GaN interlayers into the growing InyGa1-yN film, and subsequently annealing the structure, "semibulk" InGaN templates were achieved with vastly superior crystal and optical properties than bulk InGaN films. These semibulk InGaN templates were then utilized as new templates for multiple quantum well active layers, effectively reducing the compressive strain in the InGaN wells due to the larger lattice constant of the InGaN template with respect to a GaN template. A zero-stress balance method was used in order to realize a strain-balanced multiple quantum well structure, which again showed improved optical characteristics when compared to fully-strain active regions. The semibulk InGaN template was then implemented into "strain-compensated" LED structures, where light emission was achieved with very little leakage current. Discussion of these strain-compensated devices compared to conventional LEDs is detailed.

  3. Effect of ring-shaped SiO2 current blocking layer thickness on the external quantum efficiency of high power light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Shengjun; Liu, Mengling; Hu, Hongpo; Gao, Yilin; Liu, Xingtong

    2017-12-01

    A ring-shaped SiO2 CBL underneath the p-electrode was employed to enhance current spreading of GaN-based light-emitting diodes (LEDs). Effects of ring-shaped SiO2 current blocking layer (CBL) thickness on optical and electrical characteristics of high power LEDs were investigated. A 190-nm-thick ring-shaped SiO2 CBL with inclined sidewalls was obtained using a combination of a thermally reflowed photoresist technique and an inductively coupled plasma (ICP) etching process, allowing for the deposition of conformal indium tin oxide (ITO) transparent conductive layer on sidewalls of ring-shaped SiO2 CBL. It was indicated that the external quantum efficiency (EQE) of high power LEDs increased with increasing thickness of ring-shaped SiO2 CBL. The EQE of high power LED with 190-nm-thick ring-shaped SiO2 CBL was 12.7% higher than that of high power LED without SiO2 CBL. Simulations performed with commercial SimuLED software package showed that the ring-shaped SiO2 CBL could significantly alleviate current crowding around p-electrode, resulting in enhanced current spreading over the entire high power LED structure.

  4. Phosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology

    PubMed Central

    Li, Ying-Chang; Chang, Liann-Be; Chen, Hou-Jen; Yen, Chia-Yi; Pan, Ke-Wei; Huang, Bohr-Ran; Kuo, Wen-Yu; Chow, Lee; Zhou, Dan; Popko, Ewa

    2017-01-01

    Monolithic phosphor-free two-color gallium nitride (GaN)-based white light emitting diodes (LED) have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN)/GaN quantum dot and reported LED’s color rendering index (CRI) are still problematic. Here, we use flip-chip technology to fabricate an upside down monolithic two-color phosphor-free LED with four grown layers of high indium quantum dots on top of the three grown layers of lower indium quantum wells separated by a GaN tunneling barrier layer. The photoluminescence (PL) and electroluminescence (EL) spectra of this white LED reveal a broad spectrum ranging from 475 to 675 nm which is close to an ideal white-light source. The corresponding color temperature and color rendering index (CRI) of the fabricated white LED, operated at 350, 500, and 750 mA, are comparable to that of the conventional phosphor-based LEDs. Insights of the epitaxial structure and the transport mechanism were revealed through the TEM and temperature dependent PL and EL measurements. Our results show true potential in the Epi-ready GaN white LEDs for future solid state lighting applications. PMID:28772792

  5. ZnO-based ultra-violet light emitting diodes and nanostructures fabricated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Chen, Miin-Jang; Yang, Jer-Ren; Shiojiri, Makoto

    2012-07-01

    We have investigated ZnO-based light-emitting diodes (LEDs) fabricated by atomic layer deposition (ALD), demonstrating that ALD is one of the noteworthy techniques to prepare high-quality ZnO required for ultraviolet (UV) photonic devices. Here, we review our recent investigations on different ZnO-based heterojunction LEDs such as n-ZnO/p-GaN LEDS, n-ZnO:Al/ZnO nanodots-SiO2 composite/p-GaN LEDS, n-ZnO/ZnO nanodots-SiO2 composite/p-AlGaN LEDs, n-ZnO:Al/i-ZnO/p-SiC(4H) LEDs, and also on ZnO-based nanostructures including ZnO quantum dots embedded in SiO2 nanoparticle layer, ZnO nanopillars on sapphire substrates, Al-doped ZnO films on sapphire substrate and highly (0 0 0 1)-oriented ZnO films on amorphous glass substrate. The latest investigation also demonstrated p-type ZnO:P films prepared on amorphous silica substrates, which allow us to fabricate ZnO-based homojunction LEDs. These devices and structures were studied by x-ray diffraction and various analytical electron microscopy observations as well as electric and electro-optical measurements.

  6. Thermal-structural modeling of polymer Bragg grating waveguides illuminated by a light emitting diode.

    PubMed

    Joon Kim, Kyoung; Bar-Cohen, Avram; Han, Bongtae

    2012-02-20

    This study reports both analytical and numerical thermal-structural models of polymer Bragg grating (PBG) waveguides illuminated by a light emitting diode (LED). A polymethyl methacrylate (PMMA) Bragg grating (BG) waveguide is chosen as an analysis vehicle to explore parametric effects of incident optical powers and substrate materials on the thermal-structural behavior of the BG. Analytical models are verified by comparing analytically predicted average excess temperatures, and thermally induced axial strains and stresses with numerical predictions. A parametric study demonstrates that the PMMA substrate induces more adverse effects, such as higher excess temperatures, complex axial temperature profiles, and greater and more complicated thermally induced strains in the BG compared with the Si substrate. © 2012 Optical Society of America

  7. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myer, Michael; Goettel, Russell T.; Kinzey, Bruce R.

    2012-09-30

    A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide post-top luminaire. This report reviews the energy savings potential and lighting delivered by the LED post-top luminaires.

  8. A Simple, Small-Scale Lego Colorimeter with a Light-Emitting Diode (LED) Used as Detector

    ERIC Educational Resources Information Center

    Asheim, Jonas; Kvittingen, Eivind V.; Kvittingen, Lise; Verley, Richard

    2014-01-01

    This article describes how to construct a simple, inexpensive, and robust colorimeter from a few Lego bricks, in which one light-emitting diode (LED) is used as a light source and a second LED as a light detector. The colorimeter is suited to various grades and curricula.

  9. Ag-Decorated Localized Surface Plasmon-Enhanced Ultraviolet Electroluminescence from ZnO Quantum Dot-Based/GaN Heterojunction Diodes by Optimizing MgO Interlayer Thickness.

    PubMed

    Chen, Cheng; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhang, Wei; Liang, Renli; Dai, Jiangnan; Chen, Changqing

    2016-12-01

    We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness. The EL origination was investigated qualitatively in terms of photoluminescence (PL) results. Through analysis of the energy band structure of device and carrier transport mechanisms, it suggests that the EL enhancement is attributed to the increased rate of spontaneous emission and improved internal quantum efficiency induced by exciton-LSP coupling.

  10. High-power AlGaN-based near-ultraviolet light-emitting diodes grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Li, Zengcheng; Liu, Legong; Huang, Yingnan; Sun, Qian; Feng, Meixin; Zhou, Yu; Zhao, Hanmin; Yang, Hui

    2017-07-01

    High-power AlGaN-based 385 nm near-ultraviolet light-emitting diodes (UVA-LEDs) grown on Si(111) substrates are reported. The threading dislocation (TD) density of AlGaN was reduced by employing an Al-composition step-graded AlN/AlGaN multilayer buffer. V-shaped pits were intentionally incorporated into the active region to screen the carriers from the nonradiative recombination centers (NRCs) around the TDs and to facilitate hole injection. The light extraction efficiency was enhanced by the surface roughening of a thin-film (TF) vertical chip structure. The as-fabricated TF-UVA-LED exhibited a light output power of 960 mW at 500 mA, corresponding to an external quantum efficiency of 59.7%.

  11. Ag-Decorated Localized Surface Plasmon-Enhanced Ultraviolet Electroluminescence from ZnO Quantum Dot-Based/GaN Heterojunction Diodes by Optimizing MgO Interlayer Thickness

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhang, Wei; Liang, Renli; Dai, Jiangnan; Chen, Changqing

    2016-10-01

    We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness. The EL origination was investigated qualitatively in terms of photoluminescence (PL) results. Through analysis of the energy band structure of device and carrier transport mechanisms, it suggests that the EL enhancement is attributed to the increased rate of spontaneous emission and improved internal quantum efficiency induced by exciton-LSP coupling.

  12. Clinical comparison between the bleaching efficacy of light-emitting diode and diode laser with sodium perborate.

    PubMed

    Koçak, Sibel; Koçak, Mustafa Murat; Sağlam, Baran Can

    2014-04-01

    The aim of this clinical study was to test the efficacy of a light-emitting diode (LED) light and a diode laser, when bleaching with sodium perborate. Thirty volunteers were selected to participate in the study. The patients were randomly divided into two groups. The initial colour of each tooth to be bleached was quantified with a spectrophotometer. In group A, sodium perborate and distilled water were mixed and placed into the pulp chamber, and the LED light was source applied. In group B, the same mixture was used, and the 810 nm diode laser was applied. The final colour of each tooth was quantified with the same spectrophotometer. Initial and final spectrophotometer values were recorded. Mann-Whitney U-test and Wicoxon tests were used to test differences between both groups. Both devices successfully whitened the teeth. No statistical difference was found between the efficacy of the LED light and the diode laser. © 2013 The Authors. Australian Endodontic Journal © 2013 Australian Society of Endodontology.

  13. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function

    PubMed Central

    Jiang, Xiaocheng; Tian, Bozhi; Xiang, Jie; Qian, Fang; Zheng, Gengfeng; Wang, Hongtao; Mai, Liqiang; Lieber, Charles M.

    2011-01-01

    Branched nanostructures represent unique, 3D building blocks for the “bottom-up” paradigm of nanoscale science and technology. Here, we report a rational, multistep approach toward the general synthesis of 3D branched nanowire (NW) heterostructures. Single-crystalline semiconductor, including groups IV, III–V, and II–VI, and metal branches have been selectively grown on core or core/shell NW backbones, with the composition, morphology, and doping of core (core/shell) NWs and branch NWs well controlled during synthesis. Measurements made on the different composition branched NW structures demonstrate encoding of functional p-type/n-type diodes and light-emitting diodes (LEDs) as well as field effect transistors with device function localized at the branch/backbone NW junctions. In addition, multibranch/backbone NW structures were synthesized and used to demonstrate capability to create addressable nanoscale LED arrays, logic circuits, and biological sensors. Our work demonstrates a previously undescribed level of structural and functional complexity in NW materials, and more generally, highlights the potential of bottom-up synthesis to yield increasingly complex functional systems in the future. PMID:21730174

  14. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes

    PubMed Central

    Bae, Wan Ki; Park, Young-Shin; Lim, Jaehoon; Lee, Donggu; Padilha, Lazaro A.; McDaniel, Hunter; Robel, Istvan; Lee, Changhee; Pietryga, Jeffrey M.; Klimov, Victor I.

    2013-01-01

    Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as non-radiative recombination at surface defects, versus intrinsic processes, such as multicarrier Auger recombination or electron-hole separation due to applied electric field. Here we address this problem with studies that correlate the excited state dynamics of structurally engineered quantum dots with their emissive performance within LEDs. We find that because of significant charging of quantum dots with extra electrons, Auger recombination greatly impacts both LED efficiency and the onset of efficiency roll-off at high currents. Further, we demonstrate two specific approaches for mitigating this problem using heterostructured quantum dots, either by suppressing Auger decay through the introduction of an intermediate alloyed layer, or by using an additional shell that impedes electron transfer into the quantum dot to help balance electron and hole injection. PMID:24157692

  15. Optical investigation of microscopic defect distribution in semi-polar (1-101 and 11-22) InGaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan; Andrade, Nicolas; Monavarian, Morteza; Izyumskaya, Natalia; Das, Saikat; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2016-02-01

    Near-field scanning optical microscopy was applied to investigate the spatial variations of extended defects and their effects on the optical quality for semi-polar (1-101) and (11-22) InGaN light emitting diodes (LEDs). (1-101) and (11-22) oriented InGaN LEDs emitting at 450-470 nm were grown on patterned Si (001) 7° offcut substrates and m-sapphire substrates by means of nano-epitaxial lateral overgrowth (ELO), respectively. For (1-101) structures, the photoluminescence (PL) at 85 K from the near surface c+ wings was found to be relatively uniform and strong across the sample. However, emission from the c- wings was substantially weaker due to the presence of high density of threading dislocations (TDs) and basal plane stacking faults (BSFs) as revealed from the local PL spectra. In case of (11-22) LED structures, near-field PL intensity correlated with the surface features and the striations along the direction parallel to the c-axis projection exposed facets where the Indium content was higher as deduced from shift in the PL peak energy.

  16. Separation of effects of InGaN/GaN superlattice on performance of light-emitting diodes using mid-temperature-grown GaN layer

    NASA Astrophysics Data System (ADS)

    Sugimoto, Kohei; Okada, Narihito; Kurai, Satoshi; Yamada, Yoichi; Tadatomo, Kazuyuki

    2018-06-01

    We evaluated the electrical properties of InGaN-based light-emitting diodes (LEDs) with a superlattice (SL) layer or a mid-temperature-grown GaN (MT-GaN) layer just beneath the multiple quantum wells (MQWs). Both the SL layer and the MT-GaN layer were effective in improving the electroluminescence (EL) intensity. However, the SL layer had a more pronounced effect on the EL intensity than did the MT-GaN layer. Based on a comparison with devices with an MT-GaN layer, the overall effects of the SL could be separated into the effect of the V-pits and the structural or compositional effect of the SL. It was observed that the V-pits formed account for 30% of the improvement in the LED performance while the remaining 70% can be attributed to the structural or compositional effect of the SL.

  17. Estimation of carrier leakage in InGaN light emitting diodes from photocurrent measurements

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan; Zhang, Fan; Monavarian, Morteza; Okur, Serdal; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2014-02-01

    Carrier transport in double heterostructure (DH) InGaN light emitting diodes (LEDs) was investigated using photocurrent measurements performed under CW HeCd laser (325 nm wavelength) excitation. The effect of electron injector thicknesses was investigated by monitoring the excitation density and applied bias dependent escape of photogenerated carriers from the active region and through energy band structure and carrier transport simulations using Silvaco Atlas. For quad (4x) 3-nm DH LED structures incorporating staircase electron injectors (SEIs), photocurrent increased with SEI thickness due to reduced effective barrier opposing carrier escape from the active region as confirmed by simulations. The carrier leakage percentile at -3V bias and 280 Wcm-2 optical excitation density increased from 24 % to 55 % when In 0.04Ga0.96N + In0.08Ga0.92N SEI thickness was increased from 4 nm + 4 nm to 30 nm + 30 nm. The increased leakage with thicker SEI correlates with increased carrier overflow under forward bias.

  18. Response of adult mosquitoes to light-emitting diodes placed in resting boxes and in the field.

    PubMed

    Bentley, Michael T; Kaufman, Phillip E; Kline, Daniel L; Hogsette, Jerome A

    2009-09-01

    The response of adult mosquitoes to 4 light-emitting diode (LED) wavelengths was evaluated using diode-equipped sticky cards (DESCs) and diode-equipped resting boxes at 2 sites in north central Florida. Wavelengths evaluated were blue (470 nm), green (502 nm), red (660 nm), and infrared (IR) (860 nm). When trapping with DESCs, 15 mosquito species from 7 genera (Aedes, Anopheles, Coquillettidia, Culex, Mansonia, Psorophora, and Uranotaenia) were captured. Overall, approximately 43.8% of all mosquitoes were trapped on DESCs fitted with green LEDs. Significantly more females of Aedes infirmatus, Aedes vexans, and Culex nigripalpus were captured on DESCs fitted with blue LEDs compared with red or IR LEDs. DESCs with blue LEDs captured significantly more Culex erraticus females than those with IR LEDs. Using resting boxes, 12 species from 5 genera (Anopheles, Coquillettidia, Culex, Mansonia, and Uranotaenia) were collected. Resting boxes without LEDs captured 1,585 mosquitoes (22.2% of total). The fewest number of mosquitoes (16.7%) were collected from boxes affixed with the blue LEDs. Significantly more Anopheles quadrimaculatus females were aspirated from resting boxes fitted with red and IR LEDs than from those with blue or green LEDs, or from the unlit control. Blood-fed mosquitoes were recovered in highest numbers from unlit resting boxes, followed by resting boxes fitted with green, IR, and blue LEDs. Culex erraticus accounted for the majority of blood-fed mosquitoes followed by Coquillettidia perturbans. No blood-fed mosquitoes were recovered from resting boxes fitted with red LEDs.

  19. Hybrid Tunnel Junction-Graphene Transparent Conductive Electrodes for Nitride Lateral Light Emitting Diodes.

    PubMed

    Wang, Liancheng; Cheng, Yan; Liu, Zhiqiang; Yi, Xiaoyan; Zhu, Hongwei; Wang, Guohong

    2016-01-20

    Graphene transparent conductive electrode (TCE) applications in nitride light emitting diodes (LEDs) are still limited by the large contact resistance and interface barrier between graphene and p-GaN. We propose a hybrid tunnel junction (TJ)-graphene TCE approach for nitride lateral LEDs theoretically and experimentally. Through simulation using commercial advanced physical models of semiconductor devices (APSYS), we found that low tunnel resistance can be achieved in the n(+)-GaN/u-InGaN/p(+)-GaN TJ, which has a lower tunneling barrier and an enhanced electric field due to the polarization effect. Graphene TCEs and hybrid graphene-TJ TCEs are then modeled. The designed hybrid TJ-graphene TCEs show sufficient current diffusion length (Ls), low introduced series resistance, and high transmittance. The assembled TJ LED with the triple-layer graphene (TLG) TCEs show comparable optoelectrical performance (3.99 V@20 mA, LOP = 10.8 mW) with the reference LED with ITO TCEs (3.36 V@20 mA, LOP = 12.6 mW). The experimental results further prove that the TJ-graphene structure can be successfully incorporated as TCEs for lateral nitride LEDs.

  20. Improvement of carrier injection symmetry and quantum efficiency in InGaN light-emitting diodes with Mg delta-doped barriers

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Can, N.; Hafiz, S.; Monavarian, M.; Das, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-05-01

    The effect of δ-doping of In0.06Ga0.94N barriers with Mg on the quantum efficiency of blue light-emitting-diodes (LEDs) with active regions composed of 6 (hex) 3-nm In0.15Ga0.85N is investigated. Compared to the reference sample, δ-doping of the first barrier on the n-side of the LED structure improves the peak external quantum efficiency (EQE) by 20%, owing to the increased hole concentration in the wells adjacent to the n-side, as confirmed by numerical simulations of carrier distributions across the active region. Doping the second barrier, in addition to the first one, did not further enhance the EQE, which likely indicates compensation of improved hole injection by degradation of the active region quality due to Mg doping. Both LEDs with Mg δ-doped barriers effectively suppress the drop of efficiency at high injection when compared to the reference sample, and the onset of EQE peak roll-off shifts from ˜80 A/cm2 in the reference LED to ˜120 A/cm2 in the LEDs with Mg δ-doped barriers.

  1. Light emitting diodes (LED): applications in forest and native plant nurseries

    Treesearch

    Thomas D. Landis; Jeremiah R. Pinto; R. Kasten Dumroese

    2013-01-01

    It was quotes like this that made us want to learn more about light emitting diodes (LED). Other than knowing that LEDs were the latest innovation in artificial lighting, we knew that we had a lot to learn. So we started by reviewing some of the basics. The following review is a brief synopsis of how light affects plants and some discussion about LED lighting. If you...

  2. Fabrication of white light-emitting diodes based on UV light-emitting diodes with conjugated polymers-(CdSe/ZnS) quantum dots as hybrid phosphors.

    PubMed

    Jung, Hyunchul; Chung, Wonkeun; Lee, Chang Hun; Kim, Sung Hyun

    2012-07-01

    White light-emitting diodes (LEDs) were fabricated using GaN-based 380-nm UV LEDs precoated with the composite of blue-emitting polymer (poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy)-1 ,4-phenylene)]), yellow green-emitting polymer (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)]), and 605-nm red-emitting quantum dots (QDs). CdSe cores were obtained by solvothermal route using CdO, Se precursors and ZnS shells were synthesized by using diethylzinc, and hexamethyldisilathiane precursors. The optical properties of CdSe/ZnS QDs were characterized by UV-visible and photoluminescence (PL) spectra. The structural data and composition of the QDs were transmission electron microscopy (TEM), and EDX technique. The quantum yield and size of the QDs were 58.7% and about 6.7 nm, respectively. Three-band white light was generated by hybridizing blue (430 nm), green (535 nm), and red (605 nm) emission. The color-rendering index (CRI) of the device was extremely improved by introducing the QDs. The CIE-1931 chromaticity coordinate, color temperature, and CRI of a white LED at 20 mA were (0.379, 0.368), 3969 K, and 90, respectively.

  3. High extraction efficiency GaN-based light-emitting diodes on embedded SiO2 nanorod array and nanoscale patterned sapphire substrate

    NASA Astrophysics Data System (ADS)

    Huang, Hung-Wen; Huang, Jhi-Kai; Kuo, Shou-Yi; Lee, Kang-Yuan; Kuo, Hao-Chung

    2010-06-01

    In this paper, GaN-based LEDs with a nanoscale patterned sapphire substrate (NPSS) and a SiO2 photonic quasicrystal (PQC) structure on an n-GaN layer using nanoimprint lithography are fabricated and investigated. The light output power of LED with a NPSS and a SiO2 PQC structure on an n-GaN layer was 48% greater than that of conventional LED. Strong enhancement in output power is attributed to better epitaxial quality and higher reflectance resulted from NPSS and PQC structures. Transmission electron microscopy images reveal that threading dislocations are blocked or bended in the vicinities of NPSS layer. These results provide promising potential to increase output power for commercial light emitting devices.

  4. Efficiency enhancement of blue light emitting diodes by eliminating V-defects from InGaN/GaN multiple quantum well structures through GaN capping layer control

    NASA Astrophysics Data System (ADS)

    Tsai, Sheng-Chieh; Li, Ming-Jui; Fang, Hsin-Chiao; Tu, Chia-Hao; Liu, Chuan-Pu

    2018-05-01

    A facile method for fabricating blue light-emitting diodes (B-LEDs) with small embedded quantum dots (QDs) and enhanced light emission is demonstrated by tuning the temperature of the growing GaN capping layer to eliminate V-defects. As the growth temperature increases from 770 °C to 840 °C, not only does the density of the V-defects reduce from 4.12 ∗ 108 #/cm2 nm to zero on a smooth surface, but the QDs also get smaller. Therefore, the growth mechanism of smaller QDs assisted by elimination of V-defects is discussed. Photoluminescence and electroluminescence results show that smaller embedded QDs can improve recombination efficiency, and thus achieve higher peak intensity with smaller peak broadening. Accordingly, the external quantum efficiency of the B-LEDs with smaller QDs is enhanced, leading to a 6.8% increase in light output power in lamp-form package LEDs.

  5. Red Light-Emitting Diode Based on Blue InGaN Chip with CdTe x S(1 - x) Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Rongfang; Wei, Xingming; Qin, Liqin; Luo, Zhihui; Liang, Chunjie; Tan, Guohang

    2017-01-01

    Thioglycolic acid-capped CdTe x S(1 - x) quantum dots (QDs) were synthesized through a one-step approach in an aqueous medium. The CdTe x S(1 - x) QDs played the role of a color conversion center. The structural and luminescent properties of the obtained CdTe x S(1 - x) QDs were investigated. The fabricated red light-emitting hybrid device with the CdTe x S(1 - x) QDs as the phosphor and a blue InGaN chip as the excitation source showed a good luminance. The Commission Internationale de L'Eclairage coordinates of the light-emitting diode (LED) at (0.66, 0.29) demonstrated a red LED. Results showed that CdTe x S(1 - x) QDs can be excited by blue or near-UV regions. This feature presents CdTe x S(1 - x) QDs with an advantage over wavelength converters for LEDs.

  6. Electroluminescence from InGaN/GaN multi-quantum-wells nanorods light-emitting diodes positioned by non-uniform electric fields.

    PubMed

    Park, Hyunik; Kim, Byung-Jae; Kim, Jihyun

    2012-11-05

    We report that the nanorod light-emitting diodes (LEDs) with InGaN/GaN multi-quantum-wells (MQWs) emitted bright electroluminescence (EL) after they were positioned and aligned by non-uniform electric fields. Firstly, thin film LED structures with MQWs on sapphire substrate were coated with SiO(2) nanospheres, followed by inductively-coupled plasma etch to create nanorod-shapes with MQWs, which were transferred to the pre-patterned SiO(2)/Si wafer. This method allowed us to obtain nanorod LEDs with uniform length, diameter and qualities. Dielectrophoretic force created by non-uniform electric field was very effective at positioning the processed nanorods on the pre-patterned contacts. After aligned by non-uniform electric field, we observed bright EL from many nanorods, which had both cases (p-GaN/MQWs/n-GaN or n-GaN/MQWs/p-GaN). Therefore, bright ELs at different locations were observed under the various bias conditions.

  7. ZnO nanowire-based light-emitting diodes with tunable emission from near-UV to blue

    NASA Astrophysics Data System (ADS)

    Pauporté, Thierry; Lupan, Oleg; Viana, Bruno; le Bahers, T.

    2013-03-01

    Nanowires (NWs)-based light emitting diodes (LEDs) have drawn large interest due to many advantages compared to thin film based devices. We have successfully prepared epitaxial n-ZnO(NW)/p-GaN heterojunctions using low temperature soft electrochemical techniques. The structures have been used in LED devices and exhibited highly interesting performances. Moreover, the bandgap of ZnO has been tuned by Cu or Cd doping at controlled atomic concentration. A result was the controlled shift of the LED emission in the visible spectral wavelength region. Using DFT computing calculations, we have also shown that the bandgap narrowing has two different origins for Zn1-xCdxO (ZnO:Cd) and ZnO:Cu. In the first case, it is due to the crystal lattice expansion, whereas in the second case Cu-3d donor and Cu-3d combined to O-2p acceptor bands appear in the bandgap which broadnesses increase with the dopant concentration. This leads to the bandgap reduction.

  8. Morphologies and optical and electrical properties of InGaN/GaN micro-square array light-emitting diode chips.

    PubMed

    Han, Dan; Ma, Shufang; Jia, Zhigang; Liu, Peizhi; Jia, Wei; Shang, Lin; Zhai, Guangmei; Xu, Bingshe

    2018-04-10

    InGaN/GaN micro-square array light-emitting diode (LED) chips (micro-chips) have been prepared via the focused ion beam (FIB) etching technique, which can not only reduce ohmic contact degradation but also control the aspect ratio precisely in three-dimensional (3D) structure LED (3D-LED) device fabrication. The effects of FIB beam current and micro-square array depth on morphologies and optical and electrical properties of the micro-chips have been studied. Our results show that sidewall surface morphology and optical and electrical properties of the micro-chips degrade with increased beam current. After potassium hydroxide etching with different times, an optimal current-voltage and luminescence performance can be obtained. Combining the results of cathodoluminescence mappings and light output-current characteristics, the light extraction efficiency of the micro-chips is reduced as FIB etch depth increases. The mechanisms of micro-square depth on light extraction have been revealed by 3D finite difference time domain.

  9. Development of Mid-infrared GeSn Light Emitting Diodes on a Silicon Substrate

    DTIC Science & Technology

    2015-04-22

    Materials, Heterostrucuture Semiconductor, Light Emitting Devices, Molecular Beam Epitaxy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...LED) structure. Optimization of traditional and hetero- P-i-N structures designed and grown on Ge-buffer Si (001) wafers using molecular beam epitaxy ...designed structures were grown on Ge-buffer Si (001) wafers using molecular beam epitaxy (MBE) with the low-temperature growth technique. (The Ge-buffer

  10. Integrated parabolic nanolenses on MicroLED color pixels

    NASA Astrophysics Data System (ADS)

    Demory, Brandon; Chung, Kunook; Katcher, Adam; Sui, Jingyang; Deng, Hui; Ku, Pei-Cheng

    2018-04-01

    A parabolic nanolens array coupled to the emission of a nanopillar micro-light emitting diode (LED) color pixel is shown to reduce the far field divergence. For a blue wavelength LED, the total emission is 95% collimated within a 0.5 numerical aperture zone, a 3.5x improvement over the same LED without a lens structure. This corresponds to a half-width at half-maximum (HWHM) line width reduction of 2.85 times. Using a resist reflow and etchback procedure, the nanolens array dimensions and parabolic shape are formed. Experimental measurement of the far field emission shows a HWHM linewidth reduction by a factor of 2x, reducing the divergence over the original LED.

  11. Integrated parabolic nanolenses on MicroLED color pixels.

    PubMed

    Demory, Brandon; Chung, Kunook; Katcher, Adam; Sui, Jingyang; Deng, Hui; Ku, Pei-Cheng

    2018-04-20

    A parabolic nanolens array coupled to the emission of a nanopillar micro-light emitting diode (LED) color pixel is shown to reduce the far field divergence. For a blue wavelength LED, the total emission is 95% collimated within a 0.5 numerical aperture zone, a 3.5x improvement over the same LED without a lens structure. This corresponds to a half-width at half-maximum (HWHM) line width reduction of 2.85 times. Using a resist reflow and etchback procedure, the nanolens array dimensions and parabolic shape are formed. Experimental measurement of the far field emission shows a HWHM linewidth reduction by a factor of 2x, reducing the divergence over the original LED.

  12. Optical characterization of magnesium incorporation in p-GaN layers for core–shell nanorod light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gîrgel, I.; Šatka, A.; Priesol, J.; Coulon, P.-M.; Le Boulbar, E. D.; Batten, T.; Allsopp, D. W. E.; Shields, P. A.

    2018-04-01

    III-nitride nanostructures are of interest for a new generation of light-emitting diodes (LEDs). However, the characterization of doping incorporation in nanorod (NR) structures, which is essential for creating the p-n junction diodes, is extremely challenging. This is because the established electrical measurement techniques (such as capacitance–voltage or Hall-effect methods) require a simple sample geometry and reliable ohmic contacts, both of which are difficult to achieve in nanoscale devices. The need for homogenous, conformal n-type or p-type layers in core–shell nanostructures magnifies these challenges. Consequently, we demonstrate how a combination of non-contact methods (micro-photoluminescence, micro-Raman and cathodoluminescence), as well as electron-beam-induced-current, can be used to analyze the uniformity of magnesium incorporation in core–shell NRs and make a first estimate of doping levels by the evolution of band transitions, strain and current mapping. These techniques have been used to optimize the growth of core–shell nanostructures for electrical carrier injection, a significant milestone for their use in LEDs.

  13. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    ERIC Educational Resources Information Center

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  14. Advantages of III-nitride laser diodes in solid-state lighting: Advantages of III-nitride laser diodes in solid-state lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierer, Jonathan J.; Tsao, Jeffrey Y.

    2015-01-14

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from color mixed emitters is equally challenging formore » both LEDs and LDs, with neither source having a direct advantage. Fourth, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. Finally, the smaller area and higher current density operation of LDs provides them with a potential cost advantage over LEDs. These advantages make LDs a compelling source for future SSL.« less

  15. Electroformed silicon nitride based light emitting memory device

    NASA Astrophysics Data System (ADS)

    Anutgan, Tamila; Anutgan, Mustafa; Atilgan, Ismail; Katircioglu, Bayram

    2017-07-01

    The resistive memory switching effect of an electroformed nanocrystal silicon nitride thin film light emitting diode (LED) is demonstrated. For this purpose, current-voltage (I-V) characteristics of the diode were systematically scanned, paying particular attention to the sequence of the measurements. It was found that when the voltage polarity was changed from reverse to forward, the previously measured reverse I-V behavior was remembered until some critical forward bias voltage. Beyond this critical voltage, the I-V curve returns to its original state instantaneously, and light emission switches from the OFF state to the ON state. The kinetics of this switching mechanism was studied for different forward bias stresses by measuring the corresponding time at which the switching occurs. Finally, the switching of resistance and light emission states was discussed via energy band structure of the electroformed LED.

  16. Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound

    PubMed Central

    Yuan, Guangqian; Alqasemi, Umar; Chen, Aaron; Yang, Yi; Zhu, Quing

    2014-01-01

    Abstract. Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions. PMID:25473884

  17. Effect of high current density to defect generation of blue LED and its characterization with transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Gunawan, R.; Sugiarti, E.; Isnaeni; Purawiardi, R. I.; Widodo, H.; Muslimin, A. N.; Yuliasari; Ronaldus, C. E.; Prastomo, N.; Hastuty, S.

    2018-03-01

    The optical, electrical and structural characteristics of InGaN-based blue light-emitting diodes (LEDs) were investigated to identify the degradation of LED before and after current injection. The sample was injected by high current of 200 A/cm2 for 5 and 20 minutes. It was observed that injection of current shifts light intensity and wavelength characteristics that indicated defect generation. Transmission Electron Microscopy (TEM) characterization was carried out in order to clarify the structure degradation caused by defect in active layer which consisted of 14 quantum well with thickness of about 5 nm and confined with barrier layer with thickness of about 12 nm. TEM results showed pre-existing defect in LED before injection with high current. Furthermore, discontinue and edge defect was found in dark spot region of LED after injection with high current.

  18. Safety Evaluation of Converting Traffic Signals From Incandescent to Light-emitting Diodes : Summary Report

    DOT National Transportation Integrated Search

    2013-08-01

    Across the Nation, many agencies have been replacing conventional incandescent light bulbs in traffic signals with light-emitting diodes (LED) (see figure 1 and figure 2). LEDs are primarily installed to reduce energy consumption and decrease mainten...

  19. Investigation of structure in the modular light pipe component for LED automotive lamp

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Zhou, Yang; Huang, Chien-Sheng; Jhong, Wan-Ling; Cheng, Bo-Wei; Jhang, Jhe-Ming

    2014-09-01

    Light-Emitting Diodes (LEDs) have the advantages of small length, long lifetime, fast response time (μs), low voltage, good mechanical properties and environmental protection. Furthermore, LEDs could replace the halogen lamps to avoid the mercury pollution and economize the use of energy. Therefore, the LEDs could instead of the traditional lamp in the future and became an important light source. The proposal of this study was to investigate the effects of the structure and length of the reflector component for a LED automotive lamp. The novel LED automotive lamp was assembled by several different modularization columnar. The optimized design of the different structure and the length to the reflector was simulated by software TracePro. The design result must met the vehicle regulation of United Nations Economic Commission for Europe (UNECE) such as ECE-R19 etc. The structure of the light pipe could be designed by two steps structure. Then constitute the proper structure and choose different power LED to meet the luminous intensity of the vehicle regulation. The simulation result shows the proper structure and length has the best total luminous flux and a high luminous efficiency for the system. Also, the stray light could meet the vehicle regulation of ECE R19. Finally, the experimental result of the selected structure and length of the light pipe could match the simulation result above 80%.

  20. Combatant Eye Protection: An Introduction to the Blue Light Hazard

    DTIC Science & Technology

    2015-12-01

    visible solar radiation (i.e., blue light ), as well as from light - emitting diode (LED)-generated radiant energy remains a questionable factor under...Garcia, M., Picaud, S., Attia D. 2011. Light - emitting diodes (LED) for domestic lighting : Any risks for the eye?. Progress in retinal and eye research...C., Sliney, D. H., Rollag, M., D., Hanifin, J. P., and Brainard, G. C. 2011. Blue light from light - emitting diodes elicits a dose-dependent

  1. Effect of radiant heat on conventional glass ionomer cements during setting by using a blue light diode laser system (445 nm).

    PubMed

    Dionysopoulos, Dimitrios; Tolidis, Kosmas; Strakas, Dimitrios; Gerasimou, Paris; Sfeikos, Thrasyvoulos; Gutknecht, Norbert

    2017-04-01

    The aim of this in vitro study was to evaluate the effect of radiant heat on surface hardness of three conventional glass ionomer cements (GICs) by using a blue diode laser system (445 nm) and a light-emitting diode (LED) unit. Additionally, the safety of the laser treatment was evaluated. Thirty disk-shaped specimens were prepared of each tested GIC (Equia Fil, Ketac Universal Aplicap and Riva Self Cure). The experimental groups (n = 10) of the study were as follows: group 1 was the control group of the study; in group 2, the specimens were irradiated for 60 s at the top surface using a LED light-curing unit; and in group 3, the specimens were irradiated for 60 s at the top surface using a blue light diode laser system (445 nm). Statistical analysis was performed using one-way ANOVA and Tukey post-hoc tests at a level of significance of a = 0.05. Radiant heat treatments, with both laser and LED devices, increased surface hardness (p < 0.05) but in different extent. Blue diode laser treatment was seemed to be more effective compared to LED treatment. There were no alterations in surface morphology or chemical composition after laser treatment. The tested radiant heat treatment with a blue diode laser may be advantageous for the longevity of GIC restorations. The safety of the use of blue diode laser for this application was confirmed.

  2. Packaging and Mounting of In-Fibre Bragg Grating Arrays for Structural Health Monitoring of Large Structures

    DTIC Science & Technology

    2010-10-01

    33 Abbreviations CFRP Carbon Fibre Reinforced Polymer FBG Fibre Bragg Grating FGI Fiberglass International FO... Fibre Optic FOS Fibre Optic Sensor GFRP Glass Fibre Reinforced Polymer HDPE High Density Polyethylene LED Light Emitting Diode MHC Mine Hunter...subsequent paragraphs. An operational loads monitoring system for wind turbine blades was demonstrated [7] using FBGs surface-mounted onto glass fibre

  3. Multicolor white light-emitting diodes for illumination applications

    NASA Astrophysics Data System (ADS)

    Chi, Solomon W. S.; Chen, Tzer-Perng; Tu, Chuan-Cheng; Chang, Chih-Sung; Tsai, Tzong-Liang; Hsieh, Mario C. C.

    2004-01-01

    Semiconductor light emitting diode (LED) has become a promising device for general-purpose illumination applications. LED has the features of excellent durability, long operation life, low power consumption, no mercury containing and potentially high efficiency. Several white LED technologies appear capable of meeting the technical requirements of illumination. In this paper we present a new multi-color white (MCW) LED as a high luminous efficacy, high color rendering index and low cost white illuminator. The device consists of two LED chips, one is AlInGaN LED for emitting shorter visible spectra, another is AlInGaP LED for emitting longer visible spectra. At least one chip in the MCW-LED has two or more transition energy levels used for emitting two or more colored lights. The multiple colored lights generated from the MCW-LED can be mixed into a full-spectral white light. Besides, there is no phosphors conversion layer used in the MCW-LED structure. Therefore, its color rendering property and illumination efficiency are excellent. The Correlated Color Temperature (CCT) of the MCW-LED may range from 2,500 K to over 10,000 K. The theoretical General Color Rendering Index (Ra) could be as high as 94, which is close to the incandescent and halogen sources, while the Ra of binary complementary white (BCW) LED is about 30 ~ 45. Moreover, compared to the expensive ternary RGB (Red AlInGaP + Green AlInGaN + Blue AlInGaN) white LED sources, the MCW-LED uses only one AlInGaN chip in combination with one cheap AlInGaP chip, to form a low cost, high luminous performance white light source. The MCW-LED is an ideal light source for general-purpose illumination applications.

  4. Best practices : bus signage for persons with visual impairments : light-emitting diode (LED) signs

    DOT National Transportation Integrated Search

    2004-01-01

    This best-practices report provides key information regarding the use of Light-Emitting Diode (LED) sign technologies to present destination and route information on transit vehicles. It will assist managers and engineers in the acquisition and use o...

  5. Experimental effective intensity of steady and flashing light emitting diodes for aircraft anti-collision lighting.

    DOT National Transportation Integrated Search

    2013-08-01

    Research was conducted to determine the effective intensity of flashing lights that incorporate light-emitting diodes (LEDs). LEDs require less power and have the ability to flash without the addition of moving parts. Compared with incandescent bulbs...

  6. The potential of ill-nitride laser diodes for solid-state lighting [Advantages of III-Nitride Laser Diodes in Solid-State Lighting

    DOE PAGES

    Wierer, Jonathan; Tsao, Jeffrey Y.

    2014-09-01

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Yunzi; Nishio, Kazuyuki; Saitow, Ken-ichi, E-mail: saitow@hiroshima-u.ac.jp

    A silicon (Si) quantum dot (QD)-based hybrid inorganic/organic light-emitting diode (LED) was fabricated via solution processing. This device exhibited white-blue electroluminescence at a low applied voltage of 6 V, with 78% of the effective emission obtained from the Si QDs. This hybrid LED produced current and optical power densities 280 and 350 times greater than those previously reported for such device. The superior performance of this hybrid device was obtained by both the prepared Si QDs and the optimized layer structure and thereby improving carrier migration through the hybrid LED and carrier recombination in the homogeneous Si QD layer.

  8. A comparison of commercial light-emitting diode baited suction traps for surveillance of Culicoides in northern Europe.

    PubMed

    Hope, Andrew; Gubbins, Simon; Sanders, Christopher; Denison, Eric; Barber, James; Stubbins, Francesca; Baylis, Matthew; Carpenter, Simon

    2015-04-22

    The response of Culicoides biting midges (Diptera: Ceratopogonidae) to artificial light sources has led to the use of light-suction traps in surveillance programmes. Recent integration of light emitting diodes (LED) in traps improves flexibility in trapping through reduced power requirements and also allows the wavelength of light used for trapping to be customized. This study investigates the responses of Culicoides to LED light-suction traps emitting different wavelengths of light to make recommendations for use in surveillance. The abundance and diversity of Culicoides collected using commercially available traps fitted with Light Emitting Diode (LED) platforms emitting ultraviolet (UV) (390 nm wavelength), blue (430 nm), green (570 nm), yellow (590 nm), red (660 nm) or white light (425 nm - 750 nm with peaks at 450 nm and 580 nm) were compared. A Centre for Disease Control (CDC) UV light-suction trap was also included within the experimental design which was fitted with a 4 watt UV tube (320-420 nm). Generalised linear models with negative binomial error structure and log-link function were used to compare trap abundance according to LED colour, meteorological conditions and seasonality. The experiment was conducted over 49 nights with 42,766 Culicoides caught in 329 collections. Culicoides obsoletus Meigen and Culicoides scoticus Downes and Kettle responded indiscriminately to all wavelengths of LED used with the exception of red which was significantly less attractive. In contrast, Culicoides dewulfi Goetghebuer and Culicoides pulicaris Linnaeus were found in significantly greater numbers in the green LED trap than in the UV LED trap. The LED traps collected significantly fewer Culicoides than the standard CDC UV light-suction trap. Catches of Culicoides were reduced in LED traps when compared to the standard CDC UV trap, however, their reduced power requirement and small size fulfils a requirement for trapping in logistically challenging areas or where many traps are deployed at a single site. Future work should combine light wavelengths to improve trapping sensitivity and potentially enable direct comparisons with collections from hosts, although this may ultimately require different forms of baits to be developed.

  9. Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    NASA Technical Reports Server (NTRS)

    Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Lowenthal, Mark D. (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor); Shotton, Neil O. (Inventor); Ray, William Johnstone (Inventor)

    2016-01-01

    The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.

  10. Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    NASA Technical Reports Server (NTRS)

    Shotton, Neil O. (Inventor); Lewandowski, Mark Allan (Inventor); Lowenthal, Mark D. (Inventor); Ray, William Johnstone (Inventor); Blanchard, Richard A. (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2018-01-01

    The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.

  11. Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    NASA Technical Reports Server (NTRS)

    Ray, William Johnstone (Inventor); Shotton, Neil O. (Inventor); Lewandowski, Mark Allan (Inventor); Lowenthal, Mark D. (Inventor); Blanchard, Richard A. (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2016-01-01

    The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of substantially spherical or optically resonant diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of substantially spherical lenses suspended in a polymer attached or deposited over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.

  12. Light emitting, photovoltaic or other electronic apparatus and system

    NASA Technical Reports Server (NTRS)

    Ray, William Johnstone (Inventor); Lowenthal, Mark D. (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2013-01-01

    The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.

  13. Light emitting, photovoltaic or other electronic apparatus and system

    NASA Technical Reports Server (NTRS)

    Lowenthal, Mark D. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Frazier, Donald Odell (Inventor); Shotton, Neil O. (Inventor); Ray, William Johnstone (Inventor); Fuller, Kirk A. (Inventor)

    2013-01-01

    The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of substantially spherical or optically resonant diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of substantially spherical lenses suspended in a polymer attached or deposited over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.

  14. High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers.

    PubMed

    Castelli, Andrea; Meinardi, Francesco; Pasini, Mariacecilia; Galeotti, Francesco; Pinchetti, Valerio; Lorenzon, Monica; Manna, Liberato; Moreels, Iwan; Giovanella, Umberto; Brovelli, Sergio

    2015-08-12

    Colloidal quantum dots (QDs) are emerging as true candidates for light-emitting diodes with ultrasaturated colors. Here, we combine CdSe/CdS dot-in-rod heterostructures and polar/polyelectrolytic conjugated polymers to demonstrate the first example of fully solution-based quantum dot light-emitting diodes (QD-LEDs) incorporating all-organic injection/transport layers with high brightness, very limited roll-off and external quantum efficiency as high as 6.1%, which is 20 times higher than the record QD-LEDs with all-solution-processed organic interlayers and exceeds by over 200% QD-LEDs embedding vacuum-deposited organic molecules.

  15. Usability of light-emitting diodes in precision approach path indicator systems by individuals with marginal color vision.

    DOT National Transportation Integrated Search

    2014-05-01

    To save energy, the FAA is planning to convert from incandescent lights to light-emitting diodes (LEDs) in : precision approach path indicator (PAPI) systems. Preliminary work on the usability of LEDs by color vision-waivered pilots (Bullough, Skinne...

  16. LED's in Physics Demos: A Handful of Examples.

    ERIC Educational Resources Information Center

    Lottis, Dan; Jaeger, Herbert

    1996-01-01

    Describes the use of light-emitting diodes (LED) instead of incandescent bulbs in experiments that generally use battery and bulbs to enable students to explore and understand fundamental electrical phenomena. Presents the following examples: Faraday's Law demonstration, conductors and insulators, and rectifying action of a diode. (JRH)

  17. Reshaping Light-Emitting Diodes To Increase External Efficiency

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert; Egalon, Claudio

    1995-01-01

    Light-emitting diodes (LEDs) reshaped, according to proposal, increasing amount of light emitted by decreasing fraction of light trapped via total internal reflection. Results in greater luminous output power for same electrical input power; greater external efficiency. Furthermore, light emitted by reshaped LEDs more nearly collimated (less diffuse). Concept potentially advantageous for conventional red-emitting LEDs. More advantageous for new "blue" LEDs, because luminous outputs and efficiencies of these devices very low. Another advantage, proposed conical shapes achieved relatively easily by chemical etching of semiconductor surfaces.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yang; Liu, Zhiqiang, E-mail: lzq@semi.ac.cn, E-mail: spring@semi.ac.cn; Yi, Xiaoyan, E-mail: lzq@semi.ac.cn, E-mail: spring@semi.ac.cn

    To evaluate electron leakage in InGaN/GaN multiple quantum well (MQW) light emitting diodes (LEDs), analytic models of ballistic and quasi-ballistic transport are developed. With this model, the impact of critical variables effecting electron leakage, including the electron blocking layer (EBL), structure of multiple quantum wells (MQWs), polarization field, and temperature are explored. The simulated results based on this model shed light on previously reported experimental observations and provide basic criteria for suppressing electron leakage, advancing the design of InGaN/GaN LEDs.

  19. Temperature issues with white laser diodes, calculation and approach for new packages

    NASA Astrophysics Data System (ADS)

    Lachmayer, Roland; Kloppenburg, Gerolf; Stephan, Serge

    2015-01-01

    Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class systems mainly use HID or LED light sources. As a further step laser diode based systems offer a high luminance, efficiency and allow the realization of new dynamic and adaptive light functions and styling concepts. The use of white laser diode systems in automotive applications is still limited to laboratories and prototypes even though announcements of laser based front lighting systems have been made. But the environment conditions for vehicles and other industry sectors differ from laboratory conditions. Therefor a model of the system's thermal behavior is set up. The power loss of a laser diode is transported as thermal flux from the junction layer to the diode's case and on to the environment. Therefor its optical power is limited by the maximum junction temperature (for blue diodes typically 125 - 150 °C), the environment temperature and the diode's packaging with its thermal resistances. In a car's headlamp the environment temperature can reach up to 80 °C. While the difference between allowed case temperature and environment temperature is getting small or negative the relevant heat flux also becomes small or negative. In early stages of LED development similar challenges had to be solved. Adapting LED packages to the conditions in a vehicle environment lead to today's efficient and bright headlights. In this paper the need to transfer these results to laser diodes is shown by calculating the diodes lifetimes based on the presented model.

  20. Design analysis of phosphor-free monolithic white light-emitting-diodes with InGaN/ InGaN multiple quantum wells on ternary InGaN substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ooi, Yu Kee, E-mail: Yu.Kee.Ooi@rit.edu; Zhang, Jing, E-mail: Jing.Zhang@rit.edu

    2015-05-15

    Phosphor-free monolithic white light emitting diodes (LEDs) based on InGaN/ InGaN multiple quantum wells (MQWs) on ternary InGaN substrates are proposed and analyzed in this study. Simulation studies show that LED devices composed of multi-color-emitting InGaN/ InGaN quantum wells (QWs) employing ternary InGaN substrate with engineered active region exhibit stable white color illumination with large output power (∼ 170 mW) and high external quantum efficiency (EQE) (∼ 50%). The chromaticity coordinate for the investigated monolithic white LED devices are located at (0.30, 0.28) with correlated color temperature (CCT) of ∼ 8200 K at J = 50 A/cm{sup 2}. A referencemore » LED device without any nanostructure engineering exhibits green color emission shows that proper engineered structure is essential to achieve white color illumination. This proof-of-concept study demonstrates that high-efficiency and cost-effective phosphor-free monolithic white LED is feasible by the use of InGaN/ InGaN MQWs on ternary InGaN substrate combined with nanostructure engineering, which would be of great impact for solid state lighting.« less

  1. Improving hole injection and carrier distribution in InGaN light-emitting diodes by removing the electron blocking layer and including a unique last quantum barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Liwen, E-mail: lwcheng@yzu.edu.cn; Chen, Haitao; Wu, Shudong

    2015-08-28

    The effects of removing the AlGaN electron blocking layer (EBL), and using a last quantum barrier (LQB) with a unique design in conventional blue InGaN light-emitting diodes (LEDs), were investigated through simulations. Compared with the conventional LED design that contained a GaN LQB and an AlGaN EBL, the LED that contained an AlGaN LQB with a graded-composition and no EBL exhibited enhanced optical performance and less efficiency droop. This effect was caused by an enhanced electron confinement and hole injection efficiency. Furthermore, when the AlGaN LQB was replaced with a triangular graded-composition, the performance improved further and the efficiency droopmore » was lowered. The simulation results indicated that the enhanced hole injection efficiency and uniform distribution of carriers observed in the quantum wells were caused by the smoothing and thinning of the potential barrier for the holes. This allowed a greater number of holes to tunnel into the quantum wells from the p-type regions in the proposed LED structure.« less

  2. Collimating lens for light-emitting-diode light source based on non-imaging optics.

    PubMed

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Zhang, Gongjian

    2012-04-10

    A collimating lens for a light-emitting-diode (LED) light source is an essential device widely used in lighting engineering. Lens surfaces are calculated by geometrical optics and nonimaging optics. This design progress does not rely on any software optimization and any complex iterative process. This method can be used for any type of light source not only Lambertian. The theoretical model is based on point source. But the practical LED source has a certain size. So in the simulation, an LED chip whose size is 1 mm*1 mm is used to verify the feasibility of the model. The mean results show that the lenses have a very compact structure and good collimating performance. Efficiency is defined as the ratio of the flux in the illuminated plane to the flux from LED source without considering the lens material transmission. Just investigating the loss in the designed lens surfaces, the two types of lenses have high efficiencies of more than 90% and 99%, respectively. Most lighting area (possessing 80% flux) radii are no more than 5 m when the illuminated plane is 200 m away from the light source.

  3. Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Xiong, Zhuo

    2014-07-07

    The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6° through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCsmore » is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350 mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.« less

  4. Structural, electrical and optical characterization of high brightness phosphor-free white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Omiya, Hiromasa

    Much interest currently exists in GaN and related materials for applications such as light-emitting devices operating in the amber to ultraviolet range. Solid-state lighting (SSL) using these materials is widely being investigated worldwide, especially due to their high-energy efficiency and its impact on environmental issues. A new approach for solid-state lighting uses phosphor-free white light emitting diodes (LEDs) that consist of blue, green, and red quantum wells (QW), all in a single device. This approach leads to improved color rendering, and directionality, compared to the conventional white LEDs that use yellow phosphor on blue or ultraviolet emitters. Improving the brightness of these phosphor-free white LEDs should enhance and accelerate the development of SSL technology. The main objective of the research reported in this dissertation is to provide a comprehensive understanding of the nature of the multiple quantum wells used in phosphor-free white LEDs. This dissertation starts with an introduction to lighting history, the fundamental concepts of nitride semiconductors, and the evolution of LED technology. Two important challenges in LED technology today are metal-semiconductor contacts and internal piezoelectric fields present in quantum well structures. Thus, the main portion of this dissertation consists of three parts dealing with metal-semiconductor interfaces, single quantum well structures, and multiple quantum well devices. Gold-nickel alloys are widely used as contacts to the p-region of LEDs. We have performed a detailed study for its evolution under standard annealing steps. The atomic arrangement of gold at its interface with GaN gives a clear explanation for the improved ohmic contact performance. We next focus on the nature of InGaN QWs. The dynamic response of the QWs was studied with electron holography and time-resolved cathodoluminescence. Establishing the correlation between energy band structure and the light emission spectra elucidated the nature of light emission. Finally, we studied a more complex device, consisting of two red, one green, and two blue emitting quantum wells. A correlation between structural, electrical and optical measurements allows us to understand the dynamic performance of this device. The collective results of this dissertation lead to an improved understanding of the performance of high-brightness, phosphor-free, white LEDs.

  5. Long Persistent Light Emitting Diode Indicators

    ERIC Educational Resources Information Center

    Jia, Dongdong; Ma, Yiwei; Hunter, D. N.

    2007-01-01

    An undergraduate laboratory was designed for undergraduate students to make long persistent light emitting diode (LED) indicators using phosphors. Blue LEDs, which emit at 465 nm, were characterized and used as an excitation source. Long persistent phosphors, SrAl[subscript 2]O[subscript 4]:Eu[superscript 2+],Dy[superscript 3+] (green) and…

  6. Comparative clinical study using laser and LED-therapy for orofacial pain relief: dentin hypersensitivity and cervicogenic headache

    NASA Astrophysics Data System (ADS)

    Lizarelli, Rosane F. Z.; Pizzo, Renata C. A.; Florez, Fernando L. E.; Grecco, Clovis; Speciali, Jose G.; Bagnato, Vanderlei S.

    2015-06-01

    Considering several clinical situations, low intensity laser therapy has been widely applied in pain relief or analgesia mechanism. With the advent of new LED-based (light emitting diode) light sources, the need of further clinical experiments aiming to compare the effectiveness among them is paramount. The LED system therapeutic use can be denominated as LEDT - Light Emitting Diode Therapy. This study proposed two clinical evaluations of pain relief effect: to dentin hypersensitivity and to cervicogenic headache using different sources of lasers (low and high intensity) and light emitting diodes (LEDs), one emitting at the spectral band of red (630+/- 5nm) and the other one at infrared band (880+/- 5nm). Two different clinical studies were performed and presented interesting results. Considering dentin hypersensitivity, red and infrared led were so effective than the control group (high intensity laser system); by the other side, considering cervicogenic headache, control group (infrared laser) was the best treatment in comparison to red and infrared led system.

  7. Electroluminescence properties of LEDs based on electron-irradiated p-Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, N. A., E-mail: nick@sobolev.ioffe.rssi.ru; Shtel’makh, K. F.; Kalyadin, A. E.

    2016-02-15

    The electroluminescence (EL) in n{sup +}–p–p{sup +} light-emitting-diode (LED) structures based on Si irradiated with electrons and annealed at high temperature is studied. The LEDs are fabricated by the chemical- vapor deposition of polycrystalline silicon layers doped with high concentrations of boron and phosphorus. Transformation of the EL spectra with current in the LEDs is well described by six Gaussian curves. The peak positions of these curves are current-independent and equal to 1233, 1308, 1363, 1425, 1479, and 1520 nm. The dependences of the integrated EL intensity and of the full-width at half-maximum (FWHM) of the lines on current aremore » examined.« less

  8. Build Your Own Photometer: A Guided-Inquiry Experiment to Introduce Analytical Instrumentation

    ERIC Educational Resources Information Center

    Wang, Jessie J.; Nun´ez, Jose´ R. Rodríguez; Maxwell, E. Jane; Algar, W. Russ

    2016-01-01

    A guided-inquiry project designed to teach students the basics of spectrophotometric instrumentation at the second year level is presented. Students design, build, program, and test their own single-wavelength, submersible photometer using low-cost light-emitting diodes (LEDs) and inexpensive household items. A series of structured prelaboratory…

  9. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes

    PubMed Central

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E.; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F.

    2018-01-01

    This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty cycle was positively correlated with the first-order rate constants (k) for both chemicals but, interestingly, negatively correlated with the normalized first-order rate constants (k/duty cycle). Synergistic effects of both hydraulic mixing and LED duty cycle were manifested as novel oscillations in the effluent contaminant concentration. Further, LED output and efficiency were dependent upon duty cycle and less efficient over time perhaps due to heating effects on semiconductor performance. PMID:28236826

  10. Transport properties of doped AlP for the development of conductive AlP/GaP distributed Bragg reflectors and their integration into light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hestroffer, Karine; Sperlich, Dennis; Dadgostar, Shabnam; Golz, Christian; Krumland, Jannis; Masselink, William Ted; Hatami, Fariba

    2018-05-01

    The transport properties of n- and p-doped AlP layers grown by gas-source molecular beam epitaxy are investigated. n- and p-types of conductivities are achieved using Si and Be with peak room-temperature mobilities of 59.6 cm2/Vs and 65.0 cm2/Vs for electrons and holes, respectively. Si-doping results are then used for the design of n-doped AlP/GaP distributed Bragg reflectors (DBRs) with an ohmic resistance of about 7.5 ± 0.1 Ω. The DBRs are integrated as bottom mirrors in GaP-based light-emitting diodes (LEDs) containing InGaP/GaP quantum dots. The functionality of the LED structure and the influence of the DBRs on the InGaP/GaP electroluminescence spectra are demonstrated.

  11. Vertical pillar-superlattice array and graphene hybrid light emitting diodes.

    PubMed

    Lee, Jung Min; Choung, Jae Woong; Yi, Jaeseok; Lee, Dong Hyun; Samal, Monica; Yi, Dong Kee; Lee, Chul-Ho; Yi, Gyu-Chul; Paik, Ungyu; Rogers, John A; Park, Won Il

    2010-08-11

    We report a type of device that combines vertical arrays of one-dimensional (1D) pillar-superlattice (PSL) structures with 2D graphene sheets to yield a class of light emitting diode (LED) with interesting mechanical, optical, and electrical characteristics. In this application, graphene sheets coated with very thin metal layers exhibit good mechanical and electrical properties and an ability to mount, in a freely suspended configuration, on the PSL arrays as a top window electrode. Optical characterization demonstrates that graphene exhibits excellent optical transparency even after deposition of the thin metal films. Thermal annealing of the graphene/metal (Gr/M) contact to the GaAs decreases the contact resistance, to provide enhanced carrier injection. The resulting PSL-Gr/M LEDs exhibit bright light emission over large areas. The result suggests the utility of graphene-based materials as electrodes in devices with unusual, nonplanar 3D architectures.

  12. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers.

    PubMed

    Lv, Wenbin; Wang, Lai; Wang, Jiaxing; Hao, Zhibiao; Luo, Yi

    2012-11-07

    InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm.

  13. Suppression of electron overflow in 370-nm InGaN/AlGaN ultraviolet light emitting diodes with different insertion layer thicknesses

    NASA Astrophysics Data System (ADS)

    Wang, C. K.; Wang, Y. W.; Chiou, Y. Z.; Chang, S. H.; Jheng, J. S.; Chang, S. P.; Chang, S. J.

    2017-06-01

    In this study, the properties of 370-nm InGaN/AlGaN ultraviolet light emitting diodes (UV LEDs) with different thicknesses of un-doped Al0.3Ga0.7N insertion layer (IL) between the last quantum barrier and electron blocking layer (EBL) have been numerically simulated by Advance Physical Model of Semiconductor Devices (APSYS). The results show that the LEDs using the high Al composition IL can effectively improve the efficiency droop, light output power, and internal quantum efficiency (IQE) compared to the original structure. The improvements of the optical properties are mainly attributed to the energy band discontinuity and offset created by IL, which increase the potential barrier height of conduction band to suppress the electron overflow from the active region to the p-side layer.

  14. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes.

    PubMed

    Nishizawa, Nozomi; Nishibayashi, Kazuhiro; Munekata, Hiro

    2017-02-21

    We report the room-temperature electroluminescence (EL) with nearly pure circular polarization (CP) from GaAs-based spin-polarized light-emitting diodes (spin-LEDs). External magnetic fields are not used during device operation. There are two small schemes in the tested spin-LEDs: first, the stripe-laser-like structure that helps intensify the EL light at the cleaved side walls below the spin injector Fe slab, and second, the crystalline AlO x spin-tunnel barrier that ensures electrically stable device operation. The purity of CP is depressively low in the low current density ( J ) region, whereas it increases steeply and reaches close to the pure CP when J > 100 A/cm 2 There, either right- or left-handed CP component is significantly suppressed depending on the direction of magnetization of the spin injector. Spin-dependent reabsorption, spin-induced birefringence, and optical spin-axis conversion are suggested to account for the observed experimental results.

  15. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers

    PubMed Central

    2012-01-01

    InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm. PMID:23134721

  16. Emission Characteristics of InGaN/GaN Core-Shell Nanorods Embedded in a 3D Light-Emitting Diode.

    PubMed

    Jung, Byung Oh; Bae, Si-Young; Lee, Seunga; Kim, Sang Yun; Lee, Jeong Yong; Honda, Yoshio; Amano, Hiroshi

    2016-12-01

    We report the selective-area growth of a gallium nitride (GaN)-nanorod-based InGaN/GaN multiple-quantum-well (MQW) core-shell structure embedded in a three-dimensional (3D) light-emitting diode (LED) grown by metalorganic chemical vapor deposition (MOCVD) and its optical analysis. High-resolution transmission electron microscopy (HR-TEM) observation revealed the high quality of the GaN nanorods and the position dependence of the structural properties of the InGaN/GaN MQWs on multiple facets. The excitation and temperature dependences of photoluminescence (PL) revealed the m-plane emission behaviors of the InGaN/GaN core-shell nanorods. The electroluminescence (EL) of the InGaN/GaN core-shell-nanorod-embedded 3D LED changed color from green to blue with increasing injection current. This phenomenon was mainly due to the energy gradient and deep localization of the indium in the selectively grown InGaN/GaN core-shell MQWs on the 3D architecture.

  17. The 2-6 semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Gunshor, R. L.; Otsuka, N.

    1992-12-01

    The first operational semiconductor diode lasers were demonstrated in the summer of 1991 independently by two U.S. groups, one at 3M and the other a team effort shared by Purdue and Brown Universities. As a result of the close collaboration between MBE and TEM groups within the grant, the structures for lasing and LED (as well as display device) operation were realized with the lowest defect concentrations ever reported for 2-6 structures grown on GaAs by MBE. The reduction of the dislocation levels resulted from an iterative process where the growth could be modified in response to the TEM analysis. The AFOSR funded interface studies have led to our appreciation of the electrical and microstructural considerations obtaining at 2-6/3-5 heterovalent interfaces. As a result the Purdue/Brown group has had equal success in making laser diodes with substrates of both doping types. The Purdue/Brown collaboration has obtained CW operations at 77 K as well as pulsed operation at room temperature using a Zn(S,Se)-based device configuration emitting in the blue (490 nm at room temperature).

  18. Combined electrical and resonant optical excitation characterization of multi-quantum well InGaN-based light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Presa, S., E-mail: silvino.presa@tyndall.ie; School of Engineering, University College Cork, Cork; Maaskant, P. P.

    We present a comprehensive study of the emission spectra and electrical characteristics of InGaN/GaN multi-quantum well light-emitting diode (LED) structures under resonant optical pumping and varying electrical bias. A 5 quantum well LED with a thin well (1.5 nm) and a relatively thick barrier (6.6 nm) shows strong bias-dependent properties in the emission spectra, poor photovoltaic carrier escape under forward bias and an increase in effective resistance when compared with a 10 quantum well LED with a thin (4 nm) barrier. These properties are due to a strong piezoelectric field in the well and associated reduced field in the thickermore » barrier. We compare the voltage ideality factors for the LEDs under electrical injection, light emission with current, photovoltaic mode (PV) and photoluminescence (PL) emission. The PV and PL methods provide similar values for the ideality which are lower than for the resistance-limited electrical method. Under optical pumping the presence of an n-type InGaN underlayer in a commercial LED sample is shown to act as a second photovoltaic source reducing the photovoltage and the extracted ideality factor to less than 1. The use of photovoltaic measurements together with bias-dependent spectrally resolved luminescence is a powerful method to provide valuable insights into the dynamics of GaN LEDs.« less

  19. Improved Efficiency and Enhanced Color Quality of Light-Emitting Diodes with Quantum Dot and Organic Hybrid Tandem Structure.

    PubMed

    Zhang, Heng; Feng, Yuanxiang; Chen, Shuming

    2016-10-03

    Light-emitting diodes based on organic (OLEDs) and colloidal quantum dot (QLEDs) are widely considered as next-generation display technologies because of their attractive advantages such as self-emitting and flexible form factor. The OLEDs exhibit relatively high efficiency, but their color saturation is quite poor compared with that of QLEDs. In contrast, the QLEDs show very pure color emission, but their efficiency is lower than that of OLEDs currently. To combine the advantages and compensate for the weaknesses of each other, we propose a hybrid tandem structure which integrates both OLED and QLED in a single device architecture. With ZnMgO/Al/HATCN interconnecting layer, hybrid tandem LEDs are successfully fabricated. The demonstrated hybrid tandem devices feature high efficiency and high color saturation simultaneously; for example, the devices exhibit maximum current efficiency and external quantum efficiency of 96.28 cd/A and 25.90%, respectively. Meanwhile, the full width at half-maximum of the emission spectra is remarkably reduced from 68 to 44 nm. With the proposed hybrid tandem structure, the color gamut of the displays can be effectively increased from 81% to 100% NTSC. The results indicate that the advantages of different LED technologies can be combined in a hybrid tandem structure.

  20. A tunable lighting system integrated by inorganic and transparent organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-jing; Zhang, Tao; Jin, Ya-fang; Liu, Shi-shen; Yuan, Shi-dong; Cui, Zhao; Zhang, Li; Wang, Wei-hui

    2014-05-01

    A tunable surface-emitting integrated lighting system is constructed using a combination of inorganic light-emitting diodes (LEDs) and transparent organic LEDs (OLEDs). An RB two-color LED is used to supply red and blue light emission, and a green organic LED is used to supply green light emission. Currents of the LED and OLED are tuned to produce a white color, showing different Commission Internationale d'Eclairage (CIE) chromaticity coordinates and correlated color temperatures with a wide adjustable range. Such an integration can compensate for the lack of the LED's luminance uniformity and the transparent OLED's luminance intensity.

  1. Light-emitting diode street lights reduce last-ditch evasive manoeuvres by moths to bat echolocation calls

    PubMed Central

    Wakefield, Andrew; Stone, Emma L.; Jones, Gareth; Harris, Stephen

    2015-01-01

    The light-emitting diode (LED) street light market is expanding globally, and it is important to understand how LED lights affect wildlife populations. We compared evasive flight responses of moths to bat echolocation calls experimentally under LED-lit and -unlit conditions. Significantly, fewer moths performed ‘powerdive’ flight manoeuvres in response to bat calls (feeding buzz sequences from Nyctalus spp.) under an LED street light than in the dark. LED street lights reduce the anti-predator behaviour of moths, shifting the balance in favour of their predators, aerial hawking bats. PMID:26361558

  2. Reduced-droop green III-nitride light-emitting diodes utilizing GaN tunnel junction

    NASA Astrophysics Data System (ADS)

    Alhassan, Abdullah I.; Young, Erin C.; Alyamani, Ahmed Y.; Albadri, Abdulrahman; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.

    2018-04-01

    We report the fabrication of low-droop high-efficiency green c-plane light-emitting diodes (LEDs) utilizing GaN tunnel junction (TJ) contacts. The LED epitaxial layers with a top p-GaN layer were grown by metal organic chemical vapor deposition and an n++-GaN layer was deposited by molecular beam epitaxy to form a TJ. The TJ LEDs were then compared with equivalent LEDs having a tin-doped indium oxide (ITO) contact. The TJ LEDs exhibited a higher performance and a lower efficiency droop than did the ITO LEDs. At 35 A/cm2, the external quantum efficiencies for the TJ and ITO LEDs were 31.2 and 27%, respectively.

  3. High-Fluence Light-Emitting Diode-Generated Red Light Modulates the Transforming Growth Factor-Beta Pathway in Human Skin Fibroblasts.

    PubMed

    Mamalis, Andrew; Jagdeo, Jared

    2018-05-24

    Skin fibrosis is a significant medical problem with limited available treatment modalities. The key cellular characteristics include increased fibroblast proliferation, collagen production, and transforming growth factor-beta (TGF-B)/SMAD pathway signaling. The authors have previously shown that high-fluence light-emitting diode red light (HF-LED-RL) decreases cellular proliferation and collagen production. Herein, the authors investigate the ability of HF-LED-RL to modulate the TGF-B/SMAD pathway. Normal human dermal fibroblasts were cultured and irradiated with a commercially available hand-held LED array. After irradiation, cell lysates were collected and levels of pSMAD2, TGF-Beta 1, and TGF-Beta I receptor were measured using Western blot. High-fluence light-emitting diode red light decreased TGF-Beta 1 ligand (TGF-B1) levels after irradiation. 320 J/cm HF-LED-RL resulted in 59% TGF-B1 and 640 J/cm HF-LED-RL resulted in 54% TGF-B1, relative to controls. 640 J/cm HF-LED-RL resulted in 62% pSMAD2 0 hours after irradiation, 65% pSMAD2 2 hours after irradiation, and 95% 4 hours after irradiation, compared with matched controls. High-fluence light-emitting diode red light resulted in no significant difference in transforming growth factor-beta receptor I levels compared with matched controls. Skin fibrosis is a significant medical problem with limited available treatment modalities. Light-emitting diode-generated red light is a safe, economic, and noninvasive modality that has a body of in vitro evidence supporting the reduction of key cellular characteristics associated with skin fibrosis.

  4. Implementation of light extraction improvements of GaN-based light-emitting diodes with specific textured sidewalls

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Yen; Chen, Wei-Cheng; Chang, Ching-Hong; Lee, Yu-Lin; Liu, Wen-Chau

    2018-05-01

    Textured-sidewall GaN-based light-emitting diodes (LEDs) with various sidewall angles (15-90°) and convex or concave sidewalls prepared using an inductively-coupled-plasma approach are comprehensively fabricated and studied. The device with 45° sidewalls (Device F) and that with convex sidewalls (Device B) show significant improvements in optical properties. Experiments show that, at an injection current of 350 mA, the light output power, external quantum efficiency, wall-plug efficiency, and luminous flux of Device F (Device B) are greatly improved by 18.3% (18.2%), 18.2% (18.2%), 17.3% (19.8%), and 16.6% (18.4%), respectively, compared to those of a conventional LED with flat sidewalls. In addition, negligible degradation in electrical properties is found. The enhanced optical performance is mainly attributed to increased light extraction in the horizontal direction due to a significant reduction in total internal reflection at the textured sidewalls. Therefore, the reported specific textured-sidewall structures (Devices B and F) are promising for high-power GaN-based LED applications.

  5. Progress in Piezo-Phototronic-Effect-Enhanced Light-Emitting Diodes and Pressure Imaging.

    PubMed

    Pan, Caofeng; Chen, Mengxiao; Yu, Ruomeng; Yang, Qing; Hu, Youfan; Zhang, Yan; Wang, Zhong Lin

    2016-02-24

    Wurtzite materials exhibit both semiconductor and piezoelectric properties under strains due to the non-central symmetric crystal structures. The three-way coupling of semiconductor properties, piezoelectric polarization and optical excitation in ZnO, GaN, CdS and other piezoelectric semiconductors leads to the emerging field of piezo-phototronics. This effect can efficiently manipulate the emission intensity of light-emitting diodes (LEDs) by utilizing the piezo-polarization charges created at the junction upon straining to modulate the energy band diagrams and the optoelectronic processes, such as generation, separation, recombination and/or transport of charge carriers. Starting from fundamental physics principles, recent progress in piezo-phototronic-effect-enhanced LEDs is reviewed; following their development from single-nanowire pressure-sensitive devices to high-resolution array matrices for pressure-distribution mapping applications. The piezo-phototronic effect provides a promising method to enhance the light emission of LEDs based on piezoelectric semiconductors through applying static strains, and may find perspective applications in various optoelectronic devices and integrated systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fabrication of 3D nano-structures using reverse imprint lithography

    NASA Astrophysics Data System (ADS)

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  7. Fabrication of 3D nano-structures using reverse imprint lithography.

    PubMed

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-Woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures.UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  8. Effects of blue diode laser (445 nm) and LED (430-480 nm) radiant heat treatments on dental glass ionomer restoratives

    NASA Astrophysics Data System (ADS)

    Dionysopoulos, Dimitrios; Tolidis, Kosmas; Strakas, Dimitrios; Gerasimou, Paris; Sfeikos, Thrasyvoulos; Gutknecht, Norbert

    2018-02-01

    The purpose of this in vitro study was to evaluate the effect of two radiant heat treatments on water sorption, solubility and surface roughness of three conventional glass ionomer cements by using a blue diode laser (445 nm) and a light emitting diode (LED) unit (430-480 nm). Thirty disk-shaped specimens were prepared for each tested GIC (Equia Fil, Ketac Universal Aplicap and Riva Self Cure). The experimental groups (n = 10) of the study were as follows: Group 1 was the control group, in Group 2 the specimens were irradiated for 60 s at the top surface using a LED light-curing unit and in Group 3 the specimens were irradiated for 60 s at the top surface using a blue light diode laser. Statistical analysis was performed using one-way ANOVA and Tukey post hoc tests at a level of significance of a = 0.05. Radiant heat treatments with both laser and LED devices significantly decreased water sorption and solubility (p < 0.05) of most of the tested GICs. Blue diode laser treatment was seemed to be more effective compared to LED treatment for some of the tested materials. There were no changes in surface roughness of the GICs after the treatments (p > 0.05). Among the tested materials there were differences in water sorption and solubility (p < 0.05) but not in surface roughness (p > 0.05). The use of the blue diode laser for this radiant heat treatment was harmless for the surface of the tested GICs and may be advantageous for the longevity of their restorations.

  9. Beyond conventional c-plane GaN-based light emitting diodes: A systematic exploration of LEDs on semi-polar orientations

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza

    Despite enormous efforts and investments, the efficiency of InGaN-based green and yellow-green light emitters remains relatively low, and that limits progress in developing full color display, laser diodes, and bright light sources for general lighting. The low efficiency of light emitting devices in the green-to-yellow spectral range, also known as the "Green Gap", is considered a global concern in the LED industry. The polar c-plane orientation of GaN, which is the mainstay in the LED industry, suffers from polarization-induced separation of electrons and hole wavefunctions (also known as the "quantum confined Stark effect") and low indium incorporation efficiency that are the two main factors that contribute to the Green Gap phenomenon. One possible approach that holds promise for a new generation of green and yellow light emitting devices with higher efficiency is the deployment of nonpolar and semi-polar crystallographic orientations of GaN to eliminate or mitigate polarization fields. In theory, the use of other GaN planes for light emitters could also enhance the efficiency of indium incorporation compared to c-plane. In this thesis, I present a systematic exploration of the suitable GaN orientation for future lighting technologies. First, in order to lay the groundwork for further studies, it is important to discuss the analysis of processes limiting LED efficiency and some novel designs of active regions to overcome these limitations. Afterwards, the choice of nonpolar orientations as an alternative is discussed. For nonpolar orientation, the (1100)-oriented (mo-plane) structures on patterned Si (112) and freestanding m-GaN are studied. The semi-polar orientations having substantially reduced polarization field are found to be more promising for light-emitting diodes (LEDs) owing to high indium incorporation efficiency predicted by theoretical studies. Thus, the semi-polar orientations are given close attention as alternatives for future LED technology. (Abstract shortened by ProQuest.).

  10. Ultraviolet Light Emitting Diode Use in Advanced Oxidation Processes

    DTIC Science & Technology

    2014-03-27

    or medium pressure mercury lamps , but UV light emitting diodes ( LEDs ) have the capacity to be used for water disinfection also. Traditional mercury...based upon the phosphors that are selected and used to coat the inside of the glass tube from which these lamps are produced. A UV LED is...Research has demonstrated the ability to use UV LEDs in place of mercury lamps to achieve the same 7 disinfection capacity, and limited research has

  11. Frequency-Domain Optical Mammogram

    DTIC Science & Technology

    2002-10-01

    have performed the proposed analysis of frequency-domain optical mammograms for a clinical population of about 150 patients. This analysis has led to...model the propagation of light in tissue14-20 have led to new approaches to optical mammography. As The authors are with the Department of Electrical...Modulation Methods, and Signal Detection /406 7.2.1 Lasers and arc lamps / 407’ 7.2.2 Pulsed sources / 407 7.2.3 Laser diodes and light-emitting diodes ( LEDs

  12. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    PubMed Central

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  13. Investigation on bandgap, diffraction, interference, and refraction effects of photonic crystal structure in GaN/InGaN LEDs for light extraction.

    PubMed

    Patra, Saroj Kanta; Adhikari, Sonachand; Pal, Suchandan

    2014-06-20

    In this paper, we have made a clear differentiation among bandgap, diffraction, interference, and refraction effects in photonic crystal structures (PhCs). For observing bandgap, diffraction, and refraction effects, PhCs are considered on the top p-GaN surface of light emitting diodes (LEDs), whereas for interference effect, hole type PhCs are considered to be embedded within n-GaN layer of LED. From analysis, it is observed that at a particular lattice periodicity, for which bandgap lies within the wavelength of interest shows a significant light extraction due to inhibition of guided mode. Beyond a certain periodicity, diffraction effect starts dominating and light extraction improves further. The interference effect is observed in embedded photonic crystal LEDs, where depth of etching supports constructive interference of outward light waves. We have also shed light on refraction effects exhibited by the PhCs and whether negative refraction properties of PhCs may be useful in case of LED light extraction.

  14. Development of Radiation-Resistant In-Water Wireless Transmission System Using Light Emitting Diodes and Photo Diodes

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Shibata, H.; Otsuka, N.; Uehara, T.; Tsuchiya, K.; Shibagaki, T.; Komanome, H.

    2016-10-01

    Several kinds of commercially available light emitting diodes (LED) and photo diodes (PD) were irradiated with 60Co gamma ray up to 1 MGy for development of a radiation-resistant in-water wireless transmission system using visible light. The lens parts of the LEDs turned brown by the irradiation and their colors became dark with the absorbed dose. The total luminous fluxes decreased with the absorbed dose and the LED with shorter emission wavelength had the higher decrease rate. Meanwhile, the current-voltage characteristics hardly changed. These results indicate that the decreases of the total luminous flux of the LEDs were mainly caused not by the degradation of the semiconductor parts but by the coloring of the lens parts by the irradiation. On the other hand, the light sensitivities of the PDs decreased with the absorbed dose. The PDs with the window part which turned a darker color had the higher decrease rate. These results indicate that the decreases of light sensitivities of the PDs were also mainly caused by the coloring of the resin parts by the irradiation. If the wireless transmission is performed using the candidate LED and PD between 5 meters in water, using a few LEDs and PDs, the PD's output current generated by the emission light of the LED is estimated to be detectable even considering the effects of the absorption of the light in water and the increased dark current by the irradiation. Therefore, a radiation resistant in-water transmission system can be constructed using commercially available LEDs and PDs in principle.

  15. Dominant transverse-electric polarized emission from 298 nm MBE-grown AlN-delta-GaN quantum well ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing

    2017-02-01

    III-nitride based ultraviolet (UV) light emitting diodes (LEDs) are of considerable interest in replacing gas lasers and mercury lamps for numerous applications. Specifically, AlGaN quantum well (QW) based LEDs have been developed extensively but the external quantum efficiencies of which remain less than 10% for wavelengths <300 nm due to high dislocation density, difficult p-type doping and most importantly, the physics and band structure from the three degeneration valence subbands. One solution to address this issue at deep UV wavelengths is by the use of the AlGaN-delta-GaN QW where the insertion of the delta-GaN layer can ensure the dominant conduction band (C) - heavyhole (HH) transition, leading to large transverse-electric (TE) optical output. Here, we proposed and investigated the physics and polarization-dependent optical characterizations of AlN-delta- GaN QW UV LED at 300 nm. The LED structure is grown by Molecular Beam Epitaxy (MBE) where the delta-GaN layer is 3-4 monolayer (QW-like) sandwiched by 2.5-nm AlN sub-QW layers. The physics analysis shows that the use of AlN-delta-GaN QW ensures a larger separation between the top HH subband and lower-energy bands, and strongly localizes the electron and HH wave functions toward the QW center and hence resulting in 30-time enhancement in TEpolarized spontaneous emission rate, compared to that of a conventional Al0.35Ga0.65N QW. The polarization-dependent electroluminescence measurements confirm our theoretical analysis; a dominant TE-polarized emission was obtained at 298 nm with a minimum transverse-magnetic (TM) polarized emission, indicating the feasibility of high-efficiency TEpolarized UV emitters based on our proposed QW structure.

  16. Near-ultraviolet light-emitting diodes with transparent conducting layer of gold-doped multi-layer graphene

    NASA Astrophysics Data System (ADS)

    Cho, Chu-Young; Choe, Minhyeok; Lee, Sang-Jun; Hong, Sang-Hyun; Lee, Takhee; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju

    2013-03-01

    We report on gold (Au)-doped multi-layer graphene (MLG), which can be used as a transparent conducting layer in near-ultraviolet light-emitting diodes (NUV-LEDs). The optical output power of NUV-LEDs with thermally annealed Au-doped MLG was increased by 34% compared with that of NUV-LEDs with a bare MLG. This result is attributed to the reduced sheet resistance and the enhanced current injection efficiency of NUV-LEDs by the thermally annealed Au-doped MLG film, which shows high transmittance in NUV and UV regions and good adhesion of Au-doped MLG on p-GaN layer of NUV-LEDs.

  17. Poly (p-phenyleneneacetylene) light-emitting diodes

    DOEpatents

    Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei; Barton, Thomas J.; Vardeny, Zeev V.

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  18. Poly (p-phenyleneacetylene) light-emitting diodes

    DOEpatents

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.; Barton, T.J.; Vardeny, Z.V.

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  19. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOEpatents

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.

    1994-08-02

    Acetylene-containing poly(p-phenyleneacetylene) (PPA)-based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  20. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOEpatents

    Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei

    1994-08-02

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as A1 or A1/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  1. Engineering future light emitting diodes and photovoltaics with inexpensive materials: Integrating ZnO and Si into GaN-based devices

    NASA Astrophysics Data System (ADS)

    Bayram, C.; Shiu, K. T.; Zhu, Y.; Cheng, C. W.; Sadana, D. K.; Teherani, F. H.; Rogers, D. J.; Sandana, V. E.; Bove, P.; Zhang, Y.; Gautier, S.; Cho, C.-Y.; Cicek, E.; Vashaei, Z.; McClintock, R.; Razeghi, M.

    2013-03-01

    Indium Gallium Nitride (InGaN) based PV have the best fit to the solar spectrum of any alloy system and emerging LED lighting based on InGaN technology and has the potential to reduce energy consumption by nearly one half while enabling significant carbon emission reduction. However, getting the maximum benefit from GaN diode -based PV and LEDs will require wide-scale adoption. A key bottleneck for this is the device cost, which is currently dominated by the substrate (i.e. sapphire) and the epitaxy (i.e. GaN). This work investigates two schemes for reducing such costs. First, we investigated the integration of Zinc Oxide (ZnO) in InGaN-based diodes. (Successful growth of GaN on ZnO template layers (on sapphire) was illustrated. These templates can then be used as sacrificial release layers for chemical lift-off. Such an approach provides an alternative to laser lift-off for the transfer of GaN to substrates with a superior cost-performance profile, plus an added advantage of reclaiming the expensive single-crystal sapphire. It was also illustrated that substitution of low temperature n-type ZnO for n-GaN layers can combat indium leakage from InGaN quantum well active layers in inverted p-n junction structures. The ZnO overlayers can also double as transparent contacts with a nanostructured surface which enhances light in/out coupling. Thus ZnO was confirmed to be an effective GaN substitute which offers added flexibility in device design and can be used in order to simultaneously reduce the epitaxial cost and boost the device performance. Second, we investigated the use of GaN templates on patterned Silicon (100) substrates for reduced substrate cost LED applications. Controlled local metal organic chemical vapor deposition epitaxy of cubic phase GaN with on-axis Si(100) substrates was illustrated. Scanning electron microscopy and transmission electron microscopy techniques were used to investigate uniformity and examine the defect structure in the GaN. Our results suggest that groove structures are very promising for controlled local epitaxy of cubic phase GaN. Overall, it is concluded that there are significant opportunities for cost reduction in novel hybrid diodes based on ZnO-InGaN-Si hybridization.

  2. Characteristics of GaN-based 500 nm light-emitting diodes with embedded hemispherical air-cavity structure

    NASA Astrophysics Data System (ADS)

    Zhang, Minyan; Li, Yufeng; Li, Qiang; Su, Xilin; Wang, Shuai; Feng, Lungang; Tian, Zhenhuan; Guo, Maofeng; Zhang, Guowei; Ding, Wen; Yun, Feng

    2018-03-01

    GaN-based 500 nm light-emitting diodes (LEDs) with an air-cavity formed on a laser-drilled hemispherical patterned sapphire substrate (HPSS) were investigated. The cross-section transmission electron microscopy image of the HPSS-LED epilayer indicated that most of the threading dislocations were bent towards the lateral directions. It was found that in InGaN/GaN multiple quantum wells (MQWs) of HPSS-LEDs, there were fewer V-pits and lower surface roughness than those of conventional LEDs which were grown on flat sapphire substrates (FSSs). The high-resolution x-ray diffraction showed that the LED grown on a HPSS has better crystal quality than that grown on a FSS. Compared to FSS-LEDs, the photoluminescence (PL) intensity, the light output power, and the external quantum efficiency at an injected current of 20 mA for the HPSS-LED were enhanced by 81%, 65%, and 62%, respectively, such enhancements can be attributed to better GaN epitaxial quality and higher light extraction. The slightly peak wavelength blueshift of electroluminescence for the HPSS-LED indicated that the quantum confined Stark effect in the InGaN/GaN MQWs has been reduced. Furthermore, it was found that the far-field radiation patterns of the HPSS-LED have smaller view angles than that of the FSS-LED. In addition, the scanning near field optical microscope results revealed that the area above the air-cavity has a larger PL intensity than that without an air-cavity, and the closer to the middle of the air-cavity the stronger the PL intensity. These nano-light distribution findings were in good agreement with the simulation results obtained by the finite difference time domain method.

  3. Light-Emitting Diodes: A Hidden Treasure

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2014-01-01

    LEDs, or light-emitting diodes, are cheap, easy to purchase, and thus commonly used in physics instruction as indicators of electric current or as sources of light (Fig. 1). In our opinion LEDs represent a unique piece of equipment that can be used to collect experimental evidence, and construct and test new ideas in almost every unit of a general…

  4. Light-extraction efficiency and forward voltage in GaN-based light-emitting diodes with different patterns of V-shaped pits

    NASA Astrophysics Data System (ADS)

    Wang, Min-Shuai; Huang, Xiao-Jing

    2013-08-01

    We present a new method of making a textured V-pit surface for improving the light extraction efficiency in GaN-based light-emitting diodes and compare it with the usual low-temperature method for p-GaN V-pits. Three types of GaN-based light-emitting diodes (LEDs) with surface V-pits in different densities and regions were grown by metal—organic chemical vapor deposition. We achieved the highest output power and lowest forward voltage values with the p-InGaN V-pit LED. The V-pits enhanced the light output power values by 1.45 times the values of the conventional LED owing to an enhancement of the light scattering probability and an effective reduction of Mg-acceptor activation energy. Moreover, this new technique effectively solved the higher forward voltage problem of the usual V-pit LED.

  5. LEDs for Efficient Energy

    ERIC Educational Resources Information Center

    Guerin, David A.

    1978-01-01

    Light-emitting diodes (LEDs) are described and three classroom experiments are given, one to prove the, low power requirements and efficiency of LEDs, an LED on-off detector circuit, and the third an LED photoelectric smoke detector. (BB)

  6. AlN/ITO-Based Hybrid Electrodes with Conducting Filaments: Their Application to Ultraviolet Light-Emitting Diodes.

    PubMed

    Kim, Kyeong Heon; Lee, Tae Ho; Kim, Tae Geun

    2017-07-19

    A hybrid-type transparent conductive electrode (H-TCE) structure comprising an AlN rod array with conducting filaments (CFs) and indium tin oxide (ITO) films is proposed to improve both current injection and distribution as well as optical transmittance in the UV region. These CFs, generated in UV-transparent AlN rod areas using an electric field, can be used as conducting paths for carrier injection from a metal to a semiconductor such as p-(Al)GaN, which allows perfect Ohmic behavior with high transmittance (>95% at 365 nm) to be obtained. In addition, conduction across AlN rods and Ohmic conduction mechanisms are investigated by analyzing AlN rods and AlN rod/p-AlGaN film interfaces. We apply these H-TCEs to three near-UV light-emitting diodes (LEDs) (385 nm LEDs with p-GaN and p-AlGaN terminated surfaces and 365 nm LED with p-AlGaN terminated surface). We confirm that the light power outputs increase by 66%, 79%, and 103%, whereas the forward voltages reduce by 5.6%, 10.2%, and 8.6% for 385 nm p-GaN terminated, 385 nm p-AlGaN terminated, and 365 nm p-AlGaN terminated LEDs with H-TCEs, respectively, compared to LEDs with reference ITOs.

  7. Defect-induced infrared electroluminescence from radial GaInP/AlGaInP quantum well nanowire array light- emitting diodes

    NASA Astrophysics Data System (ADS)

    Hussain, Laiq; Karimi, Mohammad; Berg, Alexander; Jain, Vishal; Borgström, Magnus T.; Gustafsson, Anders; Samuelson, Lars; Pettersson, Håkan

    2017-12-01

    Radial GaInP/AlGaInP nanowire array light-emitting diodes (LEDs) are promising candidates for novel high-efficiency solid state lighting due to their potentially large strain-free active emission volumes compared to planar LEDs. Moreover, by proper tuning of the diameter of the nanowires, the fraction of emitted light extracted can be significantly enhanced compared to that of planar LEDs. Reports so far on radial growth of nanowire LED structures, however, still point to significant challenges related to obtaining defect-free radial heterostructures. In this work, we present evidence of optically active growth-induced defects in a fairly broad energy range in vertically processed radial GaInP/AlGaInP quantum well nanowire array LEDs using a variety of complementary experimental techniques. In particular, we demonstrate strong infrared electroluminescence in a spectral range centred around 1 eV (1.2 μm) in addition to the expected red light emission from the quantum well. Spatially resolved cathodoluminescence studies reveal a patchy red light emission with clear spectral features along the NWs, most likely induced by variations in QW thickness, composition and barriers. Dark areas are attributed to infrared emission generated by competing defect-assisted radiative transitions, or to trapping mechanisms involving non-radiative recombination processes. Possible origins of the defects are discussed.

  8. Carrier transport and emission efficiency in InGaN quantum-dot based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Barettin, Daniele; Auf der Maur, Matthias; di Carlo, Aldo; Pecchia, Alessandro; Tsatsulnikov, Andrei F.; Lundin, Wsevolod V.; Sakharov, Alexei V.; Nikolaev, Andrei E.; Korytov, Maxim; Cherkashin, Nikolay; Hÿtch, Martin J.; Karpov, Sergey Yu

    2017-07-01

    We present a study of blue III-nitride light-emitting diodes (LEDs) with multiple quantum well (MQW) and quantum dot (QD) active regions (ARs), comparing experimental and theoretical results. The LED samples were grown by metalorganic vapor phase epitaxy, utilizing growth interruption in the hydrogen/nitrogen atmosphere and variable reactor pressure to control the AR microstructure. Realistic configuration of the QD AR implied in simulations was directly extracted from HRTEM characterization of the grown QD-based structures. Multi-scale 2D simulations of the carrier transport inside the multiple QD AR have revealed a non-trivial pathway for carrier injection into the dots. Electrons and holes are found to penetrate deep into the multi-layer AR through the gaps between individual QDs and get into the dots via their side edges rather than via top and bottom interfaces. This enables a more homogeneous carrier distribution among the dots situated in different layers than among the laterally uniform quantum well (QWs) in the MQW AR. As a result, a lower turn-on voltage is predicted for QD-based LEDs, as compared to MQW ones. Simulations did not show any remarkable difference in the efficiencies of the MQW and QD-based LEDs, if the same recombination coefficients are utilized, i.e. a similar crystal quality of both types of LED structures is assumed. Measurements of the current-voltage characteristics of LEDs with both kinds of the AR have shown their close similarity, in contrast to theoretical predictions. This implies the conventional assumption of laterally uniform QWs not to be likely an adequate approximation for the carrier transport in MQW LED structures. Optical characterization of MQW and QD-based LEDs has demonstrated that the later ones exhibit a higher efficiency, which could be attributed to better crystal quality of the grown QD-based structures. The difference in the crystal quality explains the recently observed correlation between the growth pressure of LED structures and their efficiency and should be taken into account while further comparing performances of MQW and QD-based LEDs. In contrast to experimental results, our simulations did not reveal any advantages of using QD-based ARs over the MQW ones, if the same recombination constants are assumed for both cases. This fact demonstrates importance of accounting for growth-dependent factors, like crystal quality, which may limit the device performance. Nevertheless, a more uniform carrier injection into multi-layer QD ARs predicted by modeling may serve as the basis for further improvement of LED efficiency by lowering carrier density in individual QDs and, hence, suppressing the Auger recombination losses.

  9. Carrier transport and emission efficiency in InGaN quantum-dot based light-emitting diodes.

    PubMed

    Barettin, Daniele; Auf der Maur, Matthias; di Carlo, Aldo; Pecchia, Alessandro; Tsatsulnikov, Andrei F; Lundin, Wsevolod V; Sakharov, Alexei V; Nikolaev, Andrei E; Korytov, Maxim; Cherkashin, Nikolay; Hÿtch, Martin J; Karpov, Sergey Yu

    2017-07-07

    We present a study of blue III-nitride light-emitting diodes (LEDs) with multiple quantum well (MQW) and quantum dot (QD) active regions (ARs), comparing experimental and theoretical results. The LED samples were grown by metalorganic vapor phase epitaxy, utilizing growth interruption in the hydrogen/nitrogen atmosphere and variable reactor pressure to control the AR microstructure. Realistic configuration of the QD AR implied in simulations was directly extracted from HRTEM characterization of the grown QD-based structures. Multi-scale 2D simulations of the carrier transport inside the multiple QD AR have revealed a non-trivial pathway for carrier injection into the dots. Electrons and holes are found to penetrate deep into the multi-layer AR through the gaps between individual QDs and get into the dots via their side edges rather than via top and bottom interfaces. This enables a more homogeneous carrier distribution among the dots situated in different layers than among the laterally uniform quantum well (QWs) in the MQW AR. As a result, a lower turn-on voltage is predicted for QD-based LEDs, as compared to MQW ones. Simulations did not show any remarkable difference in the efficiencies of the MQW and QD-based LEDs, if the same recombination coefficients are utilized, i.e. a similar crystal quality of both types of LED structures is assumed. Measurements of the current-voltage characteristics of LEDs with both kinds of the AR have shown their close similarity, in contrast to theoretical predictions. This implies the conventional assumption of laterally uniform QWs not to be likely an adequate approximation for the carrier transport in MQW LED structures. Optical characterization of MQW and QD-based LEDs has demonstrated that the later ones exhibit a higher efficiency, which could be attributed to better crystal quality of the grown QD-based structures. The difference in the crystal quality explains the recently observed correlation between the growth pressure of LED structures and their efficiency and should be taken into account while further comparing performances of MQW and QD-based LEDs. In contrast to experimental results, our simulations did not reveal any advantages of using QD-based ARs over the MQW ones, if the same recombination constants are assumed for both cases. This fact demonstrates importance of accounting for growth-dependent factors, like crystal quality, which may limit the device performance. Nevertheless, a more uniform carrier injection into multi-layer QD ARs predicted by modeling may serve as the basis for further improvement of LED efficiency by lowering carrier density in individual QDs and, hence, suppressing the Auger recombination losses.

  10. Efficient Flexible Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes Based on Graphene Anode.

    PubMed

    Seo, Hong-Kyu; Kim, Hobeom; Lee, Jaeho; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Kwon, Sung-Joo; Han, Tae-Hee; Yoo, Seunghyup; Lee, Tae-Woo

    2017-03-01

    Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. AlGaInP light-emitting diodes with SACNTs as current-spreading layer

    PubMed Central

    2014-01-01

    Transparent conductive current-spreading layer is important for quantum efficiency and thermal performance of light-emitting diodes (LEDs). The increasing demand for tin-doped indium oxide (ITO) caused the price to greatly increase. Super-aligned carbon nanotubes (SACNTs) and Au-coated SACNTs as current-spreading layer were applied on AlGaInP LEDs. The LEDs with Au-coated SACNTs showed good current spreading effect. The voltage bias at 20 mA dropped about 0.15 V, and the optical power increased about 10% compared with the LEDs without SACNTs. PMID:24712527

  12. Influence of polymeric electron injection layers on the electrical properties of solution-processed multilayered polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Kurami, Kazuhiko

    2016-02-01

    In this study, we fabricated multilayered polymer-based light-emitting diodes (pLEDs) with various solution-processed electron-injection layers (EILs), and investigated the influence of the EILs on the electrical properties of pLEDs in indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid) (PEDOT:PSS)/poly[(9,9-dioctylfluorene-alt-(1,4-phenylene((4-sec-butylphenyl)amino)-1,4-phenylene))] (TFB) (HTL)/poly(9,9-dioctylfluorene-alt-1,4-benzothiadiazole) (F8BT) (EML)/EIL/Al structures. We have used the quaternized ammonium π-conjugated polyelectrolyte derivative (poly[(9,9-di(3,3‧-N,N‧-trimethylammonium)propylfluorenyl-2,7-diyl)-co-(1,4-phenylene)]diiodide salt) (PF-PDTA), a mixture of PF-PDTA and CS2CO3, and the aliphatic-amine-based polymer poly(ethylene imine) (PEI) as solution-processed EILs, and compared them with LiF as a solvent-free EIL. The EILs enhanced the electron injection and improve the pLED performance. High external quantum efficiencies of nearly 4% were obtained in the pLEDs with the combination of a multilayered structure fabricated by a transfer printing technique and EILs of a PF-PDTA:CS2CO3 mixture and PEI. On the other hand, the device with PF-PDTA exhibited lower efficiency, higher driving voltage, and larger leakage current at lower voltage. The migration of ionic charges was suggested from the abnormal dielectric behaviors, and serious damage on the electrode material occurred when both an acid hole-injection layer (PEDOT:PSS) and PF-PDTA were used. On the other hand, the pLEDs with ultrathin PEI showed high performance and stable device operation in terms of the influence of ionic charges.

  13. Hydrothermally Grown In-doped ZnO Nanorods on p-GaN Films for Color-tunable Heterojunction Light-emitting-diodes

    PubMed Central

    Park, Geun Chul; Hwang, Soo Min; Lee, Seung Muk; Choi, Jun Hyuk; Song, Keun Man; Kim, Hyun You; Kim, Hyun-Suk; Eum, Sung-Jin; Jung, Seung-Boo; Lim, Jun Hyung; Joo, Jinho

    2015-01-01

    The incorporation of doping elements in ZnO nanostructures plays an important role in adjusting the optical and electrical properties in optoelectronic devices. In the present study, we fabricated 1-D ZnO nanorods (NRs) doped with different In contents (0% ~ 5%) on p-GaN films using a facile hydrothermal method, and investigated the effect of the In doping on the morphology and electronic structure of the NRs and the electrical and optical performances of the n-ZnO NRs/p-GaN heterojunction light emitting diodes (LEDs). As the In content increased, the size (diameter and length) of the NRs increased, and the electrical performance of the LEDs improved. From the electroluminescence (EL) spectra, it was found that the broad green-yellow-orange emission band significantly increased with increasing In content due to the increased defect states (oxygen vacancies) in the ZnO NRs, and consequently, the superposition of the emission bands centered at 415 nm and 570 nm led to the generation of white-light. These results suggest that In doping is an effective way to tailor the morphology and the optical, electronic, and electrical properties of ZnO NRs, as well as the EL emission property of heterojunction LEDs. PMID:25988846

  14. Tunnel-injected sub 290 nm ultra-violet light emitting diodes with 2.8% external quantum efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Jamal-Eddine, Zane; Akyol, Fatih; Bajaj, Sanyam; Johnson, Jared M.; Calderon, Gabriel; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Hwang, Jinwoo; Rajan, Siddharth

    2018-02-01

    We report on the high efficiency tunnel-injected ultraviolet light emitting diodes (UV LEDs) emitting at 287 nm. Deep UV LED performance has been limited by the severe internal light absorption in the p-type contact layers and low electrical injection efficiency due to poor p-type conduction. In this work, a polarization engineered Al0.65Ga0.35N/In0.2Ga0.8N tunnel junction layer is adopted for non-equilibrium hole injection to replace the conventionally used direct p-type contact. A reverse-graded AlGaN contact layer is further introduced to realize a low resistance contact to the top n-AlGaN layer. This led to the demonstration of a low tunnel junction resistance of 1.9 × 10-3 Ω cm2 obtained at 1 kA/cm2. Light emission at 287 nm with an on-wafer peak external quantum efficiency of 2.8% and a wall-plug efficiency of 1.1% was achieved. The measured power density at 1 kA/cm2 was 54.4 W/cm2, confirming the efficient hole injection through interband tunneling. With the benefits of the minimized internal absorption and efficient hole injection, a tunnel-injected UV LED structure could enable future high efficiency UV emitters.

  15. Hydrothermally Grown In-doped ZnO Nanorods on p-GaN Films for Color-tunable Heterojunction Light-emitting-diodes.

    PubMed

    Park, Geun Chul; Hwang, Soo Min; Lee, Seung Muk; Choi, Jun Hyuk; Song, Keun Man; Kim, Hyun You; Kim, Hyun-Suk; Eum, Sung-Jin; Jung, Seung-Boo; Lim, Jun Hyung; Joo, Jinho

    2015-05-19

    The incorporation of doping elements in ZnO nanostructures plays an important role in adjusting the optical and electrical properties in optoelectronic devices. In the present study, we fabricated 1-D ZnO nanorods (NRs) doped with different In contents (0% ~ 5%) on p-GaN films using a facile hydrothermal method, and investigated the effect of the In doping on the morphology and electronic structure of the NRs and the electrical and optical performances of the n-ZnO NRs/p-GaN heterojunction light emitting diodes (LEDs). As the In content increased, the size (diameter and length) of the NRs increased, and the electrical performance of the LEDs improved. From the electroluminescence (EL) spectra, it was found that the broad green-yellow-orange emission band significantly increased with increasing In content due to the increased defect states (oxygen vacancies) in the ZnO NRs, and consequently, the superposition of the emission bands centered at 415 nm and 570 nm led to the generation of white-light. These results suggest that In doping is an effective way to tailor the morphology and the optical, electronic, and electrical properties of ZnO NRs, as well as the EL emission property of heterojunction LEDs.

  16. Doping concentration effect on performance of single QW double-heterostructure InGaN/AlGaN light emitting diode

    NASA Astrophysics Data System (ADS)

    Halim, N. Syafira Abdul; Wahid, M. Halim A.; Hambali, N. Azura M. Ahmad; Rashid, Shanise; Shahimin, Mukhzeer M.

    2017-11-01

    Light emitting diode (LED) employed a numerous applications such as displaying information, communication, sensing, illumination and lighting. In this paper, InGaN/AlGaN based on one quantum well (1QW) light emitting diode (LED) is modeled and studied numerically by using COMSOL Multiphysics 5.1 version. We have selected In0.06Ga0.94N as the active layer with thickness 50nm sandwiched between 0.15μm thick layers of p and n-type Al0.15Ga0.85N of cladding layers. We investigated an effect of doping concentration on InGaN/AlGaN double heterostructure of light-emitting diode (LED). Thus, energy levels, carrier concentration, electron concentration and forward voltage (IV) are extracted from the simulation results. As the doping concentration is increasing, the performance of threshold voltage, Vth on one quantum well (1QW) is also increases from 2.8V to 3.1V.

  17. Evaluation of an LED (Light-Emitting Diode) high-mounted signal lamp

    NASA Astrophysics Data System (ADS)

    Olson, P. L.

    1987-02-01

    Two studies are described evaluating high-mounted stoplights using light-emitting diodes (LEDs) compared with conventional incandescent units. The first of these studies obtained ratings from subjects who drove one car and followed another car that was equipped with the test lamps. The results indicate that the subjects generally preferred the LEDs to the conventional lamp. The second study was a laboratory evaluation of the attention-getting capabilities of LED and incandescent stoplights. Under all conditions tested subjects responded faster to the LED units. The response time advantage for the LED units increased with more difficult viewing conditions, such as high levels of illumination and long viewing distance. The results of these investigations are discussed in terms of the applicability of the LED technology to high mounted stoplights on motor vehicles.

  18. The Light-Emitting Diode as a Light Detector

    ERIC Educational Resources Information Center

    Baird, William H.; Hack, W. Nathan; Tran, Kiet; Vira, Zeeshan; Pickett, Matthew

    2011-01-01

    A light-emitting diode (LED) and operational amplifier can be used as an affordable method to provide a digital output indicating detection of an intense light source such as a laser beam or high-output LED. When coupled with a microcontroller, the combination can be used as a multiple photogate and timer for under $50. A similar circuit is used…

  19. Light Emitting Diode Flashlights as Effective and Inexpensive Light Sources for Fluorescence Microscopy

    PubMed Central

    Robertson, J. Brian; Zhang, Yunfei; Johnson, Carl Hirschie

    2009-01-01

    Summary Light-emitting diodes (LEDs) are becoming more commonly used as light sources for fluorescence microscopy. We describe the adaptation of a commercially available LED flashlight for use as a source for fluorescence excitation. This light source is long-lived, inexpensive, and is effective for excitation in the range of 440–600 nm. PMID:19772530

  20. Light emitting diode package element with internal meniscus for bubble free lens placement

    DOEpatents

    Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen

    2010-09-28

    A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.

  1. Angular color uniformity enhancement of white light-emitting diodes integrated with freeform lenses.

    PubMed

    Wang, Kai; Wu, Dan; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng

    2010-06-01

    We demonstrate a freeform lens to enhance the angular color uniformity (ACU) of white light-emitting diodes (LEDs) whose phosphor layers were coated by freely dispersed coating processes. Monte Carlo ray tracing simulation results indicated that the ACU of the modified LED integrated with the freeform lens significantly increased from 0.334 to 0.957, compared with the traditional LED. Enhancement of ACU reached as high as 186.5%. Moreover, the ACU of the modified LED was not only at a high level, but also stable when the shape of the phosphor layer changed. The freeform lens provided an effective way to achieve white LEDs with high ACU at low cost.

  2. Efficient electroluminescent cooling with a light-emitting diode coupled to a photovoltaic cell (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xiao, Tianyao P.; Chen, Kaifeng; Santhanam, Parthiban; Fan, Shanhui; Yablonovitch, Eli

    2017-02-01

    The new breakthrough in photovoltaics, exemplified by the slogan "A great solar cell has to be a great light-emitting diode (LED)", has led to all the major new solar cell records, while also leading to extraordinary LED efficiency. As an LED becomes very efficient in converting its electrical input into light, the device cools as it operates because the photons carry away entropy as well as energy. If these photons are absorbed in a photovoltaic (PV) cell, the generated electricity can be used to provide part of the electrical input that drives the LED. Indeed, the LED/PV cell combination forms a new type of heat engine with light as the working fluid. The electroluminescent refrigerator requires only a small amount of external electricity to provide cooling, leading to a high coefficient of performance. We present the theoretical performance of such a refrigerator, in which the cool side (LED) is radiatively coupled to the hot side (PV) across a vacuum gap. The coefficient of performance is maximized by using a highly luminescent material, such as GaAs, together with device structures that optimize extraction of the luminescence. We consider both a macroscopic vacuum gap and a sub-wavelength gap; the latter allows for evanescent coupling of photons between the devices, potentially providing a further enhancement to the efficiency of light extraction. Using device assumptions based on the current record-efficiency solar cells, we show that electroluminescent cooling can, in certain regimes of cooling power, achieve a higher coefficient of performance than thermoelectric cooling.

  3. Quantum-dot light-emitting diodes utilizing CdSe /ZnS nanocrystals embedded in TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul; Kim, Eui-Tae

    2008-11-01

    Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe /ZnS nanocrystals in TiO2 thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO2/QDs /p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO2/QDs /Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.

  4. Comparative study on luminescence extraction strategies of LED by large-scale fabrication of nanopillar and nanohole structures

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Junmei; Sheikhi, Moheb; Jiang, Jie’an; Yang, Zhenhai; Li, Hongwei; Guo, Shiping; Sheng, Jiang; Sun, Jie; Bo, Baoxue; Ye, Jichun

    2018-06-01

    Light extraction and current injection are two important considerations in the development of high efficiency light-emitting-diodes (LEDs), but usually cannot be satisfied simultaneously in nanostructure patterned devices. In this work, we investigated near-UV LEDs with nanopillar and nanohole patterns to improve light extraction efficiency. Photoluminescence (PL) intensities were enhanced by 8.0 and 4.1 times for nanopillar and nanohole LEDs compared to that of planar LED. Nanopillar LED exhibits higher PL emission than that of the nanohole LED, attributing to a convex shape sidewall for more effective outward light scattering, and reduction of quantum-confined-stark-effect owing to strain relaxation. However, nanopillar LED exhibits lower electroluminescence intensity than the nanohole sample, which calls for further optimization in carrier distributions. Experimental results were further supported by near-field electric field simulations. This work demonstrates the difference in optical and electrical behaviors between the nanopillar and nanohole LEDs, paving the way for detailed understanding on luminescence extraction mechanisms of nanostructure patterned UV emitters.

  5. Emission rate and internal quantum efficiency enhancement in different geometrical shapes of GaN LED

    NASA Astrophysics Data System (ADS)

    Rashid, S.; Wahid, M. H. A.; Hambali, N. A. M. Ahmad; Halim, N. S. A. Abdul; Ramli, M. M.; Shahimin, M. M.

    2017-09-01

    This work is based on the development of light emitting diode (LED) using different geometry of top surface on GaN p-n junction structure. Three types of LED chips are designed with different top surface to differ whether p-type layer or p contact plays an important role in improving its efficiency. The voltage applied ranges from 0V to 4V. Current-voltage characteristic for all three samples are obtained and analyzed. The results show that dome shaped of p-type layer operating at 4V increases the emission rate and internal quantum efficiency up to 70%, which is two times higher than basic cylindrically LED chip. Moreover, this new design effectively solved the higher forward voltage problem of the usual curve surface of p-contact GaN LED.

  6. Modulating dual-wavelength multiple quantum wells in white light emitting diodes to suppress efficiency droop and improve color rendering index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yukun; Wang, Shuai; Zheng, Min

    2015-10-14

    In this paper, gallium nitride (GaN) based white light-emitting diodes (WLEDs) with modulated quantities of blue (In{sub 0.15}Ga{sub 0.85}N) quantum wells (QWs) and cyan QWs (In{sub 0.18}Ga{sub 0.82}N) in multiple QW (MQW) structures have been investigated numerically and experimentally. It is demonstrated that the optical performance of LEDs is sensitive to the quantities of cyan QWs in dual-wavelength MQW structures. Compared to the LEDs with respective 0, 4, and 8 cyan QWs (12 QWs in total), the optical performance of the sample with 6 cyan QWs is the best. The deterioration of the optical performance in the sample with lessmore » (4 pairs) cyan QWs or more (8 pairs) cyan QWs than 6 cyan QWs may be ascribed to weakened reservoir effect or more defects induced. Compared to conventional blue LEDs (12 blue QWs), the sample with 6 cyan QWs could effectively suppress the efficiency droop (the experimental droop ratio decreases from 50.3% to 39.5% at 80 A/cm{sup 2}) and significantly improve the color rendering index (CRI, increases from 66.4 to 77.0) simultaneously. We attribute the droop suppression to the strengthened reservoir effect and carrier confinement of deeper QWs (higher indium composition) incorporated in the dual-wavelength MQW structures, which lead to the better hole spreading and enhanced radiative recombination. Meanwhile, the remarkable experimental CRI improvement may result from the wider full-width at half-maximum of electroluminescence spectra and higher cyan intensity in WLED chips with dual-wavelength MQW structures.« less

  7. Improving lumen maintenance by nanopore array dispersed quantum dots for on-chip light emitting diodes

    NASA Astrophysics Data System (ADS)

    Chen, Quan; Yang, Fan; Wan, Renzhuo; Fang, Dong

    2017-12-01

    The temperature stability of quantum dots (QDs), which is crucial for integrating into high power light-emitting diodes (LEDs) in the on-chip configuration, needs to be further improved. In this letter, we report warm white LEDs, where CdSe/ZnS nanoparticles were incorporated into a porous anodic alumina (PAA) matrix with a chain structure by the self-assembly method. Experiments demonstrate that the QD concentration range in toluene solvent from 1% mg/μl to 1.2% mg/μl in combination with the PAA matrix shows the best luminous property. To verify the reliability of the as-prepared device, a comparison experiment was conducted. It indicates excellent lumen maintenance of the light source and less chromaticity coordinate shift under accelerated life testing conditions. Experiments also prove that optical depreciation was only up to 4.6% of its initial value after the 1500 h aging test at the junction temperature of 76 °C.

  8. Hydrothermal growth and luminescent properties of nonpolar a-plane (11 2 - 0) ZnCdO films for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Baik, Kwang Hyeon; Kim, Jimin; Jang, Soohwan

    2018-03-01

    Nonpolar a-plane ZnCdO films have been obtained on a-plane GaN using a simple low-cost hydrothermal growth method at the low temperature of 80 °C. The morphological, structural, optical, and electrical properties of a-plane ZnCdO films with various Cd contents have been investigated and compared. The photoluminescence peak of the a-plane Zn0.957Cd 0.043O film, was observed to be centered at 429 nm at 25 °C. We demonstrated a heterostructure light-emitting diode (LED) using nonpolar n-type Zn0.957Cd0.043O/p-type GaN films. The rectifying behavior of the current-voltage characteristics was observed with a turn-on voltage of 5 V. The electroluminescence of the LED showed emission peaks including 430 nm, which indicates the near-band-edge emission of a-plane Zn0.957Cd0.043O at 25 °C.

  9. Mesoscopic Perovskite Light-Emitting Diodes.

    PubMed

    Palma, Alessandro Lorenzo; Cinà, Lucio; Busby, Yan; Marsella, Andrea; Agresti, Antonio; Pescetelli, Sara; Pireaux, Jean-Jacques; Di Carlo, Aldo

    2016-10-03

    Solution-processed hybrid bromide perovskite light-emitting-diodes (PLEDs) represent an attractive alternative technology that would allow overcoming the well-known severe efficiency drop in the green spectrum related to conventional LEDs technologies. In this work, we report on the development and characterization of PLEDs fabricated using, for the first time, a mesostructured layout. Stability of PLEDs is a critical issue; remarkably, mesostructured PLEDs devices tested in ambient conditions and without encapsulation showed a lifetime well-above what previously reported with a planar heterojunction layout. Moreover, mesostructured PLEDs measured under full operative conditions showed a remarkably narrow emission spectrum, even lower than what is typically obtained by nitride- or phosphide-based green LEDs. A dynamic analysis has shown fast rise and fall times, demonstrating the suitability of PLEDs for display applications. Combined electrical and advanced structural analyses (Raman, XPS depth profiling, and ToF-SIMS 3D analysis) have been performed to elucidate the degradation mechanism, the results of which are mainly related to the degradation of the hole-transporting material (HTM) and to the perovskite-HTM interface.

  10. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes

    PubMed Central

    Nishibayashi, Kazuhiro

    2017-01-01

    We report the room-temperature electroluminescence (EL) with nearly pure circular polarization (CP) from GaAs-based spin-polarized light-emitting diodes (spin-LEDs). External magnetic fields are not used during device operation. There are two small schemes in the tested spin-LEDs: first, the stripe-laser-like structure that helps intensify the EL light at the cleaved side walls below the spin injector Fe slab, and second, the crystalline AlOx spin-tunnel barrier that ensures electrically stable device operation. The purity of CP is depressively low in the low current density (J) region, whereas it increases steeply and reaches close to the pure CP when J > 100 A/cm2. There, either right- or left-handed CP component is significantly suppressed depending on the direction of magnetization of the spin injector. Spin-dependent reabsorption, spin-induced birefringence, and optical spin-axis conversion are suggested to account for the observed experimental results. PMID:28174272

  11. Optical and electrical properties of GaN-based light emitting diodes grown on micro- and nano-scale patterned Si substrate

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Hsueh; Lin, Chien-Chung; Deng, Dongmei; Kuo, Hao-Chung; Lau, Kei-May

    2011-10-01

    We investigate the optical and electrical characteristics of the GaN-based light emitting diodes (LEDs) grown on Micro and Nano-scale Patterned silicon substrate (MPLEDs and NPLEDs). The transmission electron microscopy (TEM) images reveal the suppression of threading dislocation density in InGaN/GaN structure on nano-pattern substrate due to nanoscale epitaxial lateral overgrowth (NELOG). The plan-view and cross-section cathodoluminescence (CL) mappings show less defective and more homogeneous active quantum well region growth on nano-porous substrates. From temperature dependent photoluminescence (PL) and low temperature time-resolved photoluminescence (TRPL) measurement, NPLEDs has better carrier confinement and higher radiative recombination rate than MPLEDs. In terms of device performance, NPLEDs exhibits smaller electroluminescence (EL) peak wavelength blue shift, lower reverse leakage current and decreases efficiency droop compared with the MPLEDs. These results suggest the feasibility of using NPSi for the growth of high quality and power LEDs on Si substrates.

  12. Demonstrating the Light-Emitting Diode.

    ERIC Educational Resources Information Center

    Johnson, David A.

    1995-01-01

    Describes a simple inexpensive circuit which can be used to quickly demonstrate the basic function and versatility of the solid state diode. Can be used to demonstrate the light-emitting diode (LED) as a light emitter, temperature sensor, light detector with both a linear and logarithmic response, and charge storage device. (JRH)

  13. Influence of AZO stair-like transparent layers on GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liou, Syuan-Hao; Tsai, Jung-Hui; Liu, Wen-Chau; Lin, Pao-Sheng; Chen, Yu-Chi

    2017-10-01

    The GaN-based light-emitting diodes (LEDs) with various height ratios of aluminum-doped zinc oxide (AZO) stair-like transparent layers are fabricated and comparatively investigated. The characteristics of the LEDs with conventional plane AZO transparent layer (device A) and AZO stair-like transparent layers having height ratios of 1:1:1 (device B), 1.5:1:0.5 (device C), and 0.5:1:1.5 (device D) are compared. Attributed that the lower resistance is formed in the thinner AZO film of the stair-like structure, the current crowding effect is improved for extending the whole current-spreading area. Experimentally, the forward turn-on voltages of the LEDs are reduced from 3.68 V to 3.42 V as the plane AZO transparent layer is processed to form the stair-like transparent layers with height ratio of 1:1:1. In addition, the light luminous flux, output power, external quantum efficiency, and wall-plug efficiency of the device B are enhanced by 30.5, 12.1, 22.2, and 20.7%, respectively, as compared to the traditional device with plane AZO transparent layer.

  14. 229 nm UV LEDs on aluminum nitride single crystal substrates using p-type silicon for increased hole injection

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Cho, Sang June; Park, Jeongpil; Seo, Jung-Hun; Dalmau, Rafael; Zhao, Deyin; Kim, Kwangeun; Gong, Jiarui; Kim, Munho; Lee, In-Kyu; Albrecht, John D.; Zhou, Weidong; Moody, Baxter; Ma, Zhenqiang

    2018-02-01

    AlGaN based 229 nm light emitting diodes (LEDs), employing p-type Si to significantly increase hole injection, were fabricated on single crystal bulk aluminum nitride (AlN) substrates. Nitride heterostructures were epitaxially deposited by organometallic vapor phase epitaxy and inherit the low dislocation density of the native substrate. Following epitaxy, a p-Si layer is bonded to the heterostructure. LEDs were characterized both electrically and optically. Owing to the low defect density films, large concentration of holes from p-Si, and efficient hole injection, no efficiency droop was observed up to a current density of 76 A/cm2 under continuous wave operation and without external thermal management. An optical output power of 160 μW was obtained with the corresponding external quantum efficiency of 0.03%. This study demonstrates that by adopting p-type Si nanomembrane contacts as a hole injector, practical levels of hole injection can be realized in UV light-emitting diodes with very high Al composition AlGaN quantum wells, enabling emission wavelengths and power levels that were previously inaccessible using traditional p-i-n structures with poor hole injection efficiency.

  15. Strong enhancement of emission efficiency in GaN light-emitting diodes by plasmon-coupled light amplification of graphene

    NASA Astrophysics Data System (ADS)

    Kim, Jong Min; Kim, Sung; Hwang, Sung Won; Kim, Chang Oh; Shin, Dong Hee; Kim, Ju Hwan; Jang, Chan Wook; Kang, Soo Seok; Hwang, Euyheon; Choi, Suk-Ho; El-Gohary, Sherif H.; Byun, Kyung Min

    2018-02-01

    Recently, we have demonstrated that excitation of plasmon-polaritons in a mechanically-derived graphene sheet on the top of a ZnO semiconductor considerably enhances its light emission efficiency. If this scheme is also applied to device structures, it is then expected that the energy efficiency of light-emitting diodes (LEDs) increases substantially and the commercial potential will be enormous. Here, we report that the plasmon-induced light coupling amplifies emitted light by ˜1.6 times in doped large-area chemical-vapor-deposition-grown graphene, which is useful for practical applications. This coupling behavior also appears in GaN-based LEDs. With AuCl3-doped graphene on Ga-doped ZnO films that is used as transparent conducting electrodes for the LEDs, the average electroluminescence intensity is 1.2-1.7 times enhanced depending on the injection current. The chemical doping of graphene may produce the inhomogeneity in charge densities (i.e., electron/hole puddles) or roughness, which can play a role as grating couplers, resulting in such strong plasmon-enhanced light amplification. Based on theoretical calculations, the plasmon-coupled behavior is rigorously explained and a method of controlling its resonance condition is proposed.

  16. Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors

    NASA Astrophysics Data System (ADS)

    Mayer, Alexandre; Bay, Annick; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier

    2014-09-01

    We present a genetic algorithm (GA) we developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface of a LED can be covered by periodic structures whose geometrical and material parameters must be adjusted in order to maximize the extraction of light. The optimization of these parameters by the GA enabled us to get a light-extraction efficiency η of 11.0% from a GaN LED (for comparison, the flat material has a light-extraction efficiency η of only 3.7%). The solar thermal collector we considered consists of a waffle-shaped Al substrate with NiCrOx and SnO2 conformal coatings. We must in this case maximize the solar absorption α while minimizing the thermal emissivity ɛ in the infrared. A multi-objective genetic algorithm has to be implemented in this case in order to determine optimal geometrical parameters. The parameters we obtained using the multi-objective GA enable α~97.8% and ɛ~4.8%, which improves results achieved previously when considering a flat substrate. These two applications demonstrate the interest of genetic algorithms for addressing complex problems in physics.

  17. On the AlxGa1-xN/AlyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Li, Luping; Bi, Wengang; Zhang, Zi-Hui

    2018-01-01

    This work proposes the [0001] oriented AlGaN-based deep ultraviolet (DUV) light-emitting diode (LED) possessing a specifically designed p-electron blocking layer (p-EBL) to achieve the high internal quantum efficiency. Both electrons and holes can be efficiently injected into the active region by adopting the Al0.60Ga0.40N/Al0.50Ga0.50N/Al0.60Ga0.40N structured p-EBL, in which a p-Al0.50Ga0.50N layer is embedded into the p-EBL. Moreover, the impact of different thicknesses for the p-Al0.50Ga0.50N insertion layer on the hole and electron injections has also been investigated. Compared with the DUV LED with the bulk p-Al0.60Ga0.40N as the EBL, the proposed LED architectures improve the light output power if the thickness of the p-Al0.50Ga0.50N insertion layer is properly designed.

  18. Crystal structure and Temperature-Dependent Luminescence Characteristics of KMg4(PO4)3:Eu2+ phosphor for White Light-emitting diodes

    PubMed Central

    Chen, Jian; Liu, Yangai; Mei, Lefu; Liu, Haikun; Fang, Minghao; Huang, Zhaohui

    2015-01-01

    The KMg4(PO4)3:Eu2+ phosphor was prepared by the conventional high temperature solid-state reaction. The crystal structure, luminescence and reflectance spectra, thermal stability, quantum efficiency and the application for N-UV LED were studied respectively. The phase formation and crystal structure of KMg4(PO4)3:Eu2+ were confirmed from the powder X-ray diffraction and the Rietveld refinement. The concentration quenching of Eu2+ in the KMg4(PO4)3 host was determined to be 1mol% and the quenching mechanism was certified to be the dipole–dipole interaction. The energy transfer critical distance of as-prepared phosphor was calculated to be about 35.84Å. Furthermore, the phosphor exhibited good thermal stability and the corresponding activation energy ΔE was reckoned to be 0.24eV. Upon excitation at 365nm, the internal quantum efficiency of the optimized KMg4(PO4)3:Eu2+ was estimated to be 50.44%. The white N-UV LEDs was fabricated via KMg4(PO4)3:Eu2+, green-emitting (Ba,Sr)2SiO4:Eu2+, and red-emitting CaAlSiN3:Eu2+ phosphors with a near-UV chip. The excellent color rendering index (Ra = 96) at a correlated color temperature (5227.08K) with CIE coordinates of x = 0.34, y = 0.35 of the WLED device indicates that KMg4(PO4)3:Eu2+ is a promising blue-emitting phosphor for white N-UV light emitting diodes (LEDs). PMID:25855866

  19. Crystal structure and temperature-dependent luminescence characteristics of KMg4(PO4)3:Eu(2+) phosphor for white light-emitting diodes.

    PubMed

    Chen, Jian; Liu, Yangai; Mei, Lefu; Liu, Haikun; Fang, Minghao; Huang, Zhaohui

    2015-04-09

    The KMg4(PO4)3:Eu(2+) phosphor was prepared by the conventional high temperature solid-state reaction. The crystal structure, luminescence and reflectance spectra, thermal stability, quantum efficiency and the application for N-UV LED were studied respectively. The phase formation and crystal structure of KMg4(PO4)3:Eu(2+) were confirmed from the powder X-ray diffraction and the Rietveld refinement. The concentration quenching of Eu(2+) in the KMg4(PO4)3 host was determined to be 1 mol% and the quenching mechanism was certified to be the dipole-dipole interaction. The energy transfer critical distance of as-prepared phosphor was calculated to be about 35.84 Å. Furthermore, the phosphor exhibited good thermal stability and the corresponding activation energy ΔE was reckoned to be 0.24 eV. Upon excitation at 365 nm, the internal quantum efficiency of the optimized KMg4(PO4)3:Eu(2+) was estimated to be 50.44%. The white N-UV LEDs was fabricated via KMg4(PO4)3:Eu(2+), green-emitting (Ba,Sr)2SiO4:Eu(2+), and red-emitting CaAlSiN3:Eu(2+) phosphors with a near-UV chip. The excellent color rendering index (Ra = 96) at a correlated color temperature (5227.08 K) with CIE coordinates of x = 0.34, y = 0.35 of the WLED device indicates that KMg4(PO4)3:Eu(2+) is a promising blue-emitting phosphor for white N-UV light emitting diodes (LEDs).

  20. Response of conifer species from three latitudinal populations to light spectra generated by light-emitting diodes and high-pressure sodium lamps

    Treesearch

    Kent G. Apostol; Kas Dumroese; Jeremy Pinto; Anthony S. Davis

    2015-01-01

    Light-emitting diode (LED) technology shows promise for supplementing photosynthetically active radiation (PAR) in forest nurseries because of the potential reduction in energy consumption and an ability to supply discrete wavelengths to optimize seedling growth. Our objective was to examine the effects of light spectra supplied by LED and traditional high-pressure...

  1. Hand-Drawn Resistors and a Simple Tester Using a Light-Emitting Diode

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Abe, Mayumi

    2012-01-01

    A thick line drawn on a sheet of paper with a 6B pencil is electrically conductive and its resistance can be roughly estimated using a simple tester made of a light-emitting diode (LED) and a lithium coin-type cell. Using this hand-drawn resistor and the LED tester, we developed teaching materials that help students to understand how electrical…

  2. Importance of 'blue' photon levels for lettuce seedlings grown under red-light-emitting diodes

    NASA Technical Reports Server (NTRS)

    Hoenecke, M. E.; Bula, R. J.; Tibbitts, T. W.

    1992-01-01

    Light-emitting diodes (LEDs) with high-intensity output are being studied as a photosynthetic light source for plants. High-output LEDs have peak emission at approximately 660 nm concentrated in a waveband of +/- 30 nm. Lettuce (Lactuca sativa Grand Rapids') seedlings developed extended hypocotyls and elongated cotyledons when grown under these LEDs as a sole source of irradiance. This extension and elongation was prevented when the red LED radiation was supplemented with more than 15 micromoles m-2 s-1 of 400- to 500-nm photons from blue fluorescent lamps. Blue radiation effects were independent of the photon level of the red radiation.

  3. LIGHT-EMITTING DIODE TECHNOLOGY IMPROVES INSECT TRAPPING

    PubMed Central

    GILLEN, JONATHON I.; MUNSTERMANN, LEONARD E.

    2008-01-01

    In a climate of increased funding for vaccines, chemotherapy, and prevention of vector-borne diseases, fewer resources have been directed toward improving disease and vector surveillance. Recently developed light-emitting diode (LED) technology was applied to standard insect-vector traps to produce a more effective lighting system. This approach improved phlebotomine sand fly capture rates by 50%, and simultaneously reduced the energy consumption by 50–60%. The LEDs were incorporated into 2 lighting designs, 1) a LED combination bulb for current light traps and 2) a chip-based LED design for a modified Centers for Disease Control and Prevention light trap. Detailed descriptions of the 2 designs are presented. PMID:18666546

  4. Ga/1-x/Al/x/As LED structures grown on GaP substrates.

    NASA Technical Reports Server (NTRS)

    Woodall, J. M.; Potemski, R. M.; Blum, S. E.; Lynch, R.

    1972-01-01

    Ga(1-x)Al(x)As light-emitting diode structures have been grown on GaP substrates by the liquid-phase-epitaxial method. In spite of the large differences in lattice constants and thermal-expansion coefficients, room-temperature efficiencies up to 5.5% in air have been observed for a peak emission of 8500 A. Using undoped GaP substrates, which are transparent to the infrared and red portions of the spectrum, thin structures of Ga(1-x)Al(x)As with large external efficiencies can now be made.

  5. Accuracy Improvement for Light-Emitting-Diode-Based Colorimeter by Iterative Algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Pao-Keng

    2011-09-01

    We present a simple algorithm, combining an interpolating method with an iterative calculation, to enhance the resolution of spectral reflectance by removing the spectral broadening effect due to the finite bandwidth of the light-emitting diode (LED) from it. The proposed algorithm can be used to improve the accuracy of a reflective colorimeter using multicolor LEDs as probing light sources and is also applicable to the case when the probing LEDs have different bandwidths in different spectral ranges, to which the powerful deconvolution method cannot be applied.

  6. Plastic cup traps equipped with light-emitting diodes for monitoring adult Bemisia tabaci (Homoptera: Aleyrodidae).

    PubMed

    Chu, Chang-Chi; Jackson, Charles G; Alexander, Patrick J; Karut, Kamil; Henneberry, Thomas J

    2003-06-01

    Equipping the standard plastic cup trap, also known as the CC trap, with lime-green light-emitting diodes (LED-plastic cup trap) increased its efficacy for catching Bemisia tabaci by 100%. Few Eretmocerus eremicus Rose and Zolnerowich and Encarsia formosa Gahan were caught in LED-plastic cup traps. The LED-plastic cup traps are less expensive than yellow sticky card traps for monitoring adult whiteflies in greenhouse crop production systems and are more compatible with whitefly parasitoids releases for Bemisia nymph control.

  7. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    PubMed

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  8. Light output improvement of GaN-based light-emitting diodes grown on Si (111) by a via-thin-film structure

    NASA Astrophysics Data System (ADS)

    Li, Zengcheng; Feng, Bo; Deng, Biao; Liu, Legong; Huang, Yingnan; Feng, Meixin; Zhou, Yu; Zhao, Hanmin; Sun, Qian; Wang, Huaibing; Yang, Xiaoli; Yang, Hui

    2018-04-01

    This work reports the fabrication of via-thin-film light-emitting diode (via-TF-LED) to improve the light output power (LOP) of blue/white GaN-based LEDs grown on Si (111) substrates. The as-fabricated via-TF-LEDs were featured with a roughened n-GaN surface and the p-GaN surface bonded to a wafer carrier with a silver-based reflective electrode, together with an array of embedded n-type via pillar metal contact from the p-GaN surface etched through the multiple-quantum-wells (MQWs) into the n-GaN layer. When operated at 350 mA, the via-TF-LED gave an enhanced blue LOP by 7.8% and over 3.5 times as compared to the vertical thin-film LED (TF-LED) and the conventional lateral structure LED (LS-LED). After covering with yellow phosphor that converts some blue photons into yellow light, the via-TF-LED emitted an enhanced white luminous flux by 13.5% and over 5 times, as compared with the white TF-LED and the white LS-LED, respectively. The significant LOP improvement of the via-TF-LED was attributed to the elimination of light absorption by the Si (111) epitaxial substrate and the finger-like n-electrodes on the roughened emitting surface. Project supported by the National Key R&D Program (Nos. 2016YFB0400100, 2016YFB0400104), the National Natural Science Foundation of China (Nos. 61534007, 61404156, 61522407, 61604168, 61775230), the Key Frontier Scientific Research Program of the Chinese Academy of Sciences (No. QYZDB-SSW-JSC014), the Science and Technology Service Network Initiative of the Chinese Academy of Sciences, the Key R&D Program of Jiangsu Province (No. BE2017079), the Natural Science Foundation of Jiangsu Province (No. BK20160401), and the China Postdoctoral Science Foundation (No. 2016M591944). This work was also supported by the Open Fund of the State Key Laboratory of Luminescence and Applications (No. SKLA-2016-01), the Open Fund of the State Key Laboratory on Integrated Optoelectronics (Nos. IOSKL2016KF04, IOSKL2016KF07), and the Seed Fund from SINANO, CAS (No. Y5AAQ51001).

  9. Current crowding and self-heating effects in AlGaN-based flip-chip deep-ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro

    2018-01-01

    We thoroughly explored the physical origin of the efficiency decrease with increasing injection current and current crowding effect in 280 nm AlGaN-based flip-chip deep-ultraviolet (DUV) light-emitting diodes (LEDs). The current spreading length was experimentally determined to be much smaller in DUV LEDs than that in conventional InGaN-based visible LEDs. The severe self-heating caused by the low power conversion efficiency of DUV LEDs should be mainly responsible for the considerable decrease of efficiency when current crowding is present. The wall-plug efficiency of the DUV LEDs was markedly enhanced by using a well-designed p-electrode pattern to improve the current distribution.

  10. Note: An online testing method for lifetime projection of high power light-emitting diode under accelerated reliability test.

    PubMed

    Chen, Qi; Chen, Quan; Luo, Xiaobing

    2014-09-01

    In recent years, due to the fast development of high power light-emitting diode (LED), its lifetime prediction and assessment have become a crucial issue. Although the in situ measurement has been widely used for reliability testing in laser diode community, it has not been applied commonly in LED community. In this paper, an online testing method for LED life projection under accelerated reliability test was proposed and the prototype was built. The optical parametric data were collected. The systematic error and the measuring uncertainty were calculated to be within 0.2% and within 2%, respectively. With this online testing method, experimental data can be acquired continuously and sufficient amount of data can be gathered. Thus, the projection fitting accuracy can be improved (r(2) = 0.954) and testing duration can be shortened.

  11. Short-wavelength light beam in situ monitoring growth of InGaN/GaN green LEDs by MOCVD

    PubMed Central

    2012-01-01

    In this paper, five-period InGaN/GaN multiple quantum well green light-emitting diodes (LEDs) were grown by metal organic chemical vapor deposition with 405-nm light beam in situ monitoring system. Based on the signal of 405-nm in situ monitoring system, the related information of growth rate, indium composition and interfacial quality of each InGaN/GaN QW were obtained, and thus, the growth conditions and structural parameters were optimized to grow high-quality InGaN/GaN green LED structure. Finally, a green LED with a wavelength of 509 nm was fabricated under the optimal parameters, which was also proved by ex situ characterization such as high-resolution X-ray diffraction, photoluminescence, and electroluminescence. The results demonstrated that short-wavelength in situ monitoring system was a quick and non-destroyed tool to provide the growth information on InGaN/GaN, which would accelerate the research and development of GaN-based green LEDs. PMID:22650991

  12. Low operation voltage of GaN-based LEDs with Al-doped ZnO upper contact directly on p-type GaN without insert layer

    NASA Astrophysics Data System (ADS)

    Chen, P. H.; Chen, Yu An; Chang, L. C.; Lai, W. C.; Kuo, Cheng Huang

    2015-07-01

    Al-doped ZnO (AZO) film was evaporated on double-side polished sapphire, p-GaN layers, n+-InGaN-GaN short-period superlattice (SPS) structures, and GaN-based light-emitting diodes (LEDs) by e-beam. The AZO film on the p-GaN layer after thermal annealing exhibited an extremely high transparency (98% at 450 nm) and a small specific contact resistance of 2.19 × 10-2 Ω cm2, which was almost the same as that of as-deposited AZO on n+-SPS structure. With 20 mA injection current, the forward voltages were 3.30 and 3.27 V, whereas the output powers were 4.32 and 4.07 mW for the LED with AZO on insert n+-SPS upper contact and the LED with AZO on p-GaN upper contact (without insert layer), respectively. The small specific contact resistance and low operation voltage of LED with AZO on p-GaN upper contact was achieved by rapid thermal annealing (RTA) process.

  13. Effects of white light-emitting diode (LED) light exposure with different correlated color temperatures (CCTs) on human lens epithelial cells in culture.

    PubMed

    Xie, Chen; Li, Xiuyi; Tong, Jianping; Gu, Yangshun; Shen, Ye

    2014-01-01

    Cataract is the major cause for legal blindness in the world. Oxidative stress on the lens epithelial cells (hLECs) is the most important factor in cataract formation. Cumulative light-exposure from widely used light-emitting diodes (LEDs) may pose a potential oxidative threat to the lens epithelium, due to the high-energy blue light component in the white-light emission from diodes. In the interest of perfecting biosafety standards for LED domestic lighting, this study analyzed the photobiological effect of white LED light with different correlated color temperatures (CCTs) on cultured hLECs. The hLECs were cultured and cumulatively exposed to multichromatic white LED light with CCTs of 2954, 5624, and 7378 K. Cell viability of hLECs was measured by Cell Counting Kit-8 (CCK-8) assay. DNA damage was determined by alkaline comet assay. Intracellular reactive oxygen species (ROS) generation, cell cycle, and apoptosis were quantified by flow cytometry. Compared with 2954 and 5624 K LED light, LED light having a CCT of 7378 K caused overproduction of intracellular ROS and severe DNA damage, which triggered G2 /M arrest and apoptosis. These results indicate that white LEDs with a high CCT could cause significant photobiological damage to hLECs. © 2014 The American Society of Photobiology.

  14. Note: A portable, light-emitting diode-based ruby fluorescence spectrometer for high-pressure calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Yejun

    2011-04-15

    Ruby (Al{sub 2}O{sub 3}, with {approx}0.5 wt. % Cr doping) is one of the most widely used manometers at the giga-Pascal scale. Traditionally, its fluorescence is excited with intense laser sources. Here, I present a simple, robust, and portable design that employs light-emitting diodes (LEDs) instead. This LED-based system is safer in comparison with laser-based ones.

  15. A new light emitting diode-light emitting diode portable carbon dioxide gas sensor based on an interchangeable membrane system for industrial applications.

    PubMed

    de Vargas-Sansalvador, I M Pérez; Fay, C; Phelan, T; Fernández-Ramos, M D; Capitán-Vallvey, L F; Diamond, D; Benito-Lopez, F

    2011-08-12

    A new system for CO(2) measurement (0-100%) based on a paired emitter-detector diode arrangement as a colorimetric detection system is described. Two different configurations were tested: configuration 1 (an opposite side configuration) where a secondary inner-filter effect accounts for CO(2) sensitivity. This configuration involves the absorption of the phosphorescence emitted from a CO(2)-insensitive luminophore by an acid-base indicator and configuration 2 wherein the membrane containing the luminophore is removed, simplifying the sensing membrane that now only contains the acid-base indicator. In addition, two different instrumental configurations have been studied, using a paired emitter-detector diode system, consisting of two LEDs wherein one is used as the light source (emitter) and the other is used in reverse bias mode as the light detector. The first configuration uses a green LED as emitter and a red LED as detector, whereas in the second case two identical red LEDs are used as emitter and detector. The system was characterised in terms of sensitivity, dynamic response, reproducibility, stability and temperature influence. We found that configuration 2 presented a better CO(2) response in terms of sensitivity. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Enhanced Optical and Electrical Properties of Polymer-Assisted All-Inorganic Perovskites for Light-Emitting Diodes.

    PubMed

    Ling, Yichuan; Tian, Yu; Wang, Xi; Wang, Jamie C; Knox, Javon M; Perez-Orive, Fernando; Du, Yijun; Tan, Lei; Hanson, Kenneth; Ma, Biwu; Gao, Hanwei

    2016-10-01

    Highly bright light-emitting diodes based on solution-processed all-inorganic perovskite thin film are demonstrated. The cesium lead bromide (CsPbBr 3 ) created using a new poly(ethylene oxide)-additive spin-coating method exhibits photoluminescence quantum yield up to 60% and excellent uniformity of electrical current distribution. Using the smooth CsPbBr 3 films as emitting layers, green perovskite-based light-emitting diodes (PeLEDs) exhibit electroluminescent brightness and efficiency above 53 000 cd m -2 and 4%: a new benchmark of device performance for all-inorganic PeLEDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Internal photoluminescence in ZnSe homoepitaxy and application in blue green orange mixed-color light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wenisch, H.; Fehrer, M.; Klude, M.; Ohkawa, K.; Hommel, D.

    2000-06-01

    We discuss the controllable color-range in ZnSe-based light-emitting diodes (LEDs) realized by ZnSe homoepitaxy and internal photoluminescence. ZnSe-based LED structures were grown by molecular-beam epitaxy (MBE) on mostly conductive ZnSe substrates, which exhibit under short wavelength light excitation at room temperature strong orange emission around 600 nm. This fact is exploited to fabricate integrated mixed-color LED chips, where light from the active layer sandwiched in a p-n-junction acts as internal excitation source. We named this effect recently "Internal Photoluminescence" (Wenisch et al., J. Appl. Phys. 82 (1997) 4690). It leads to electroluminescence spectra with two distinct emission peaks originated from the active layer and from the ZnSe substrate, respectively. In view of color impression, just by varying the Cd xZn 1- xSe quantum-well composition and the radiant recombination rate in the substrate by it's choice, as much as two thirds of the visible color space is covered. Under conditions, when only the substrate emission is present, Commission Internationale d'Eclairage (CIE) chromaticity coordinates for orange color LEDs of (0.54, 0.45, 0.01) for the red, green and blue color, respectively, were determined. 490-nm quantum-well-emitting LEDs were found to be best suited in reaching the technologically important balanced white emission ("White Point") and a value of (0.31, 0.39, 0.30) for the color coordinates close to it was experimentally achieved.

  18. High-Brightness Blue Light-Emitting Diodes Enabled by a Directly Grown Graphene Buffer Layer.

    PubMed

    Chen, Zhaolong; Zhang, Xiang; Dou, Zhipeng; Wei, Tongbo; Liu, Zhiqiang; Qi, Yue; Ci, Haina; Wang, Yunyu; Li, Yang; Chang, Hongliang; Yan, Jianchang; Yang, Shenyuan; Zhang, Yanfeng; Wang, Junxi; Gao, Peng; Li, Jinmin; Liu, Zhongfan

    2018-06-08

    Single-crystalline GaN-based light-emitting diodes (LEDs) with high efficiency and long lifetime are the most promising solid-state lighting source compared with conventional incandescent and fluorescent lamps. However, the lattice and thermal mismatch between GaN and sapphire substrate always induces high stress and high density of dislocations and thus degrades the performance of LEDs. Here, the growth of high-quality GaN with low stress and a low density of dislocations on graphene (Gr) buffered sapphire substrate is reported for high-brightness blue LEDs. Gr films are directly grown on sapphire substrate to avoid the tedious transfer process and GaN is grown by metal-organic chemical vapor deposition (MOCVD). The introduced Gr buffer layer greatly releases biaxial stress and reduces the density of dislocations in GaN film and In x Ga 1- x N/GaN multiple quantum well structures. The as-fabricated LED devices therefore deliver much higher light output power compared to that on a bare sapphire substrate, which even outperforms the mature process derived counterpart. The GaN growth on Gr buffered sapphire only requires one-step growth, which largely shortens the MOCVD growth time. This facile strategy may pave a new way for applications of Gr films and bring several disruptive technologies for epitaxial growth of GaN film and its applications in high-brightness LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes

    NASA Astrophysics Data System (ADS)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Prabaswara, Aditya; Zhao, Chao; Priante, Davide; Min, Jung-Wook; Ng, Tien Khee; Ooi, Boon S.

    2018-03-01

    We study the impact of quantum-confined stark effect (QCSE) on bias dependent micro-photoluminescence emission of the quantum disk (Q-disk) based nanowires light emitting diodes (NWs-LED) exhibiting the amber colored emission. The NWs are found to be nitrogen polar (N-polar) verified using KOH wet chemical etching and valence band spectrum analysis of high-resolution X-ray photoelectron spectroscopy. The crystal structure and quality of the NWs were investigated by high-angle annular dark field - scanning transmission electron microscopy. The LEDs were fabricated to acquire the bias dependent micro-photoluminescence spectra. We observe a redshift and a blueshift of the μPL peak in the forward and reverse bias conditions, respectively, with reference to zero bias, which is in contrast to the metal-polar InGaN well-based LEDs in the literature. Such opposite shifts of μPL peak emission observed for N-polar NWs-LEDs, in our study, are due to the change in the direction of the internal piezoelectric field. The quenching of PL intensity, under the reverse bias conditions, is ascribed to the reduction of electron-hole overlap. Furthermore, the blueshift of μPL emission with increasing excitation power reveals the suppression of QCSE resulting from the photo-generated carriers. Thereby, our study confirms the presence of QCSE for NWs-LEDs from both bias and power dependent μPL measurements. Thus, this study serves to understand the QCSE in N-polar InGaN Q-disk NWs-LEDs and other related wide-bandgap nitride nanowires, in general.

  20. Highly-efficient GaN-based light-emitting diode wafers on La0.3Sr1.7AlTaO6 substrates

    PubMed Central

    Wang, Wenliang; Yang, Weijia; Gao, Fangliang; Lin, Yunhao; Li, Guoqiang

    2015-01-01

    Highly-efficient GaN-based light-emitting diode (LED) wafers have been grown on La0.3Sr1.7AlTaO6 (LSAT) substrates by radio-frequency molecular beam epitaxy (RF-MBE) with optimized growth conditions. The structural properties, surface morphologies, and optoelectronic properties of as-prepared GaN-based LED wafers on LSAT substrates have been characterized in detail. The characterizations have revealed that the full-width at half-maximums (FWHMs) for X-ray rocking curves of GaN(0002) and GaN(10-12) are 190.1 and 210.2 arcsec, respectively, indicating that high crystalline quality GaN films have been obtained. The scanning electron microscopy and atomic force microscopy measurements have shown the very smooth p-GaN surface with the surface root-mean-square (RMS) roughness of 1.3 nm. The measurements of low-temperature and room-temperature photoluminescence help to calculate the internal quantum efficiency of 79.0%. The as-grown GaN-based LED wafers have been made into LED chips with the size of 300 × 300 μm2 by the standard process. The forward voltage, the light output power and the external quantum efficiency for LED chips are 19.6 W, 2.78 V, and 40.2%, respectively, at a current of 20 mA. These results reveal the high optoelectronic properties of GaN-based LEDs on LSAT substrates. This work brings up a broad future application of GaN-based devices. PMID:25799042

  1. Toward blue emission in ZnO based LED

    NASA Astrophysics Data System (ADS)

    Viana, Bruno; Pauporté, Thierry; Lupan, Oleg; Le Bahers, Tangui; Ciofini, Ilaria

    2012-03-01

    The bandgap engineering of ZnO nanowires by doping is of great importance for tunable light emitting diode (LED) applications. We present a combined experimental and computational study of ZnO doping with Cd or Cu atoms in the nanomaterial. Zn1-xTMxO (TM=Cu, Cd) nanowires have been epitaxially grown on magnesium-doped p-GaN by electrochemical deposition. The Zn1-xTMxO/p-GaN heterojunction was integrated in a LED structure. Nanowires act as the light emitters and waveguides. At room temperature, TM-doped ZnO based LEDs exhibit low-threshold emission voltage and electroluminescence emission shifted from ultraviolet to violet-blue spectral region compared to pure ZnO LEDs. The emission wavelength can be tuned by changing the transition metal (TM) content in the ZnO nanomaterial and the shift is discussed, including insights from DFT computational investigations.

  2. Monolithic stacked blue light-emitting diodes with polarization-enhanced tunnel junctions.

    PubMed

    Kuo, Yen-Kuang; Shih, Ya-Hsuan; Chang, Jih-Yuan; Lai, Wei-Chih; Liu, Heng; Chen, Fang-Ming; Lee, Ming-Lun; Sheu, Jinn-Kong

    2017-08-07

    Monolithic stacked InGaN light-emitting diode (LED) connected by a polarization-enhanced GaN/AlN-based tunnel junction is demonstrated experimentally in this study. The typical stacked LEDs exhibit 80% enhancement in output power compared with conventional single LEDs because of the repeated use of electrons and holes for photon generation. The typical operation voltage of stacked LEDs is higher than twice the operation voltage of single LEDs. This high operation voltage can be attributed to the non-optimal tunneling junction in stacked LEDs. In addition to the analyses of experimental results, theoretical analysis of different schemes of tunnel junctions, including diagrams of energy bands, diagrams of electric fields, and current-voltage relation curves, are investigated using numerical simulation. The results shown in this paper demonstrate the feasibility in developing cost-effective and highly efficient tunnel-junction LEDs.

  3. Enhancing the thermal dissipation of a light-converting composite for quantum dot-based white light-emitting diodes through electrospinning nanofibers

    NASA Astrophysics Data System (ADS)

    Zheng, Huai; Lei, Xiang; Cheng, Ting; Liu, Sheng; Zeng, Xiaoliang; Sun, Rong

    2017-06-01

    Quantum dots (QDs) have been developed as one of the most promising light-converting materials for white light-emitting diodes (LEDs). In current QD-based LED packaging structures, composites of QDs and polymers are used as light-converting layers. However, the ultralow thermal conductivity of such composites seriously hinders the dissipation of QD-generating heat. In this paper, we demonstrate a method to enhance the thermal dissipation of QD-polymer composites through electrospinning polymer nanofibers. QD-polymer films embedded by electrospun nanofibers were prepared. Benefitting from aligned polymer chains in the electrospun nanofibers, the through-panel and in-panel thermal conductivities of the proposed QD-polymer film increased by 39.9% and 423.1%, respectively, compared to traditional QD-polymer film. The proposed and traditional QD-polymer films were both packaged on chip on board (CoB) LEDs for experimental comparison. Compared to traditional QD-polymer film, the luminous flux and luminous efficiency of the LEDs were increased by up to 51.8% and 42.9% by the proposed QD-polymer film under a current of 800 mA, respectively. With an increase in the driving current from 20-800 mA, the correlated color temperature (CCT) variation decreased by 72.7%. The maximum temperatures in the QD-polymer films were reduced from 419 K-411 K under a driving current of 200 mA.

  4. Ultraviolet laser ablation as technique for defect repair of GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Passow, Thorsten; Kunzer, Michael; Pfeuffer, Alexander; Binder, Michael; Wagner, Joachim

    2018-03-01

    Defect repair of GaN-based light-emitting diodes (LEDs) by ultraviolet laser micromachining is reported. Percussion and helical drilling in GaN by laser ablation were investigated using 248 nm nanosecond and 355 nm picosecond pulses. The influence of laser ablation including different laser parameters on electrical and optical properties of GaN-based LED chips was evaluated. The results for LEDs on sapphire with transparent conductive oxide p-type contact on top as well as for thin-film LEDs are reported. A reduction of leakage current by up to six orders in magnitude and homogeneous luminance distribution after proper laser defect treatment were achieved.

  5. NASA sponsored Light Emitting Diode (LED) development helps in cancer treatment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    What started out as an attempt to develop a light which would allow for the growth of plants in space led to a remarkable discovery: The Light Emitting Diode (LED). This device through extensive study and experimentation has developed into a tool used by surgeons in the fight against brain cancer in children. Pictured is a mock-up of brain surgery being performed. By encapsulating the end of the LED with a balloon, light is diffused over a larger area of the brain allowing the surgeon a better view. This is one of many programs that begin as research for the space program, and through extensive study end up benefitting all of mankind.

  6. Single nanowire green InGaN/GaN light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Guogang; Li, Ziyuan; Yuan, Xiaoming; Wang, Fan; Fu, Lan; Zhuang, Zhe; Ren, Fang-Fang; Liu, Bin; Zhang, Rong; Tan, Hark Hoe; Jagadish, Chennupati

    2016-10-01

    Single nanowire (NW) green InGaN/GaN light-emitting diodes (LEDs) were fabricated by top-down etching technology. The electroluminescence (EL) peak wavelength remains approximately constant with an increasing injection current in contrast to a standard planar LED, which suggests that the quantum-confined Stark effect is significantly reduced in the single NW device. The strain relaxation mechanism is studied in the single NW LED using Raman scattering analysis. As compared to its planar counterpart, the EL peak of the NW LED shows a redshift, due to electric field redistribution as a result of changes in the cavity mode pattern after metallization. Our method has important implication for single NW optoelectronic device applications.

  7. A Review on Experimental Measurements for Understanding Efficiency Droop in InGaN-Based Light-Emitting Diodes

    PubMed Central

    Jin, Jie; Mi, Chenziyi; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao

    2017-01-01

    Efficiency droop in GaN-based light emitting diodes (LEDs) under high injection current density perplexes the development of high-power solid-state lighting. Although the relevant study has lasted for about 10 years, its mechanism is still not thoroughly clear, and consequently its solution is also unsatisfactory up to now. Some emerging applications, e.g., high-speed visible light communication, requiring LED working under extremely high current density, makes the influence of efficiency droop become more serious. This paper reviews the experimental measurements on LED to explain the origins of droop in recent years, especially some new results reported after 2013. Particularly, the carrier lifetime of LED is analyzed intensively and its effects on LED droop behaviors are uncovered. Finally, possible solutions to overcome LED droop are discussed. PMID:29072611

  8. Tunnel junction enhanced nanowire ultraviolet light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.

    Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junctionmore » within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.« less

  9. Optical design of a light-emitting diode lamp for a maritime lighthouse.

    PubMed

    Jafrancesco, D; Mercatelli, L; Sansoni, P; Fontani, D; Sani, E; Coraggia, S; Meucci, M; Francini, F

    2015-04-10

    Traffic signaling is an emerging field for light-emitting diode (LED) applications. This sustainable power-saving illumination technology can be used in maritime signaling thanks to the recently updated norms, where the possibility to utilize LED sources is explicitly cited, and to the availability of high-power white LEDs that, combined with suitable lenses, permit us to obtain well-collimated beams. This paper describes the optical design of a LED-based lamp that can replace a traditional lamp in an authentic marine lighthouse. This source recombines multiple separated LEDs realizing a quasi-punctual localized source. Advantages can be lower energy consumption, higher efficiency, longer life, fewer faults, slower aging, and minor maintenance costs. The proposed LED source allows us to keep and to utilize the old Fresnel lenses of the lighthouse, which very often have historical value.

  10. The metalorganic chemical vapor deposition of III-V nitrides for optoelectronic device applications

    NASA Astrophysics Data System (ADS)

    Grudowski, Paul Alexander

    Nitride-based light-emitting diodes (LEDs) and laser diodes are important for large-area LED displays, flat-panel displays, traffic signals, and optical data storage, due to their characteristic ultraviolet and visible light emission. However, much of the research and development addressing material related problems is recent. The room-temperature continuous wave (CW) operation of nitride-based laser diodes remains a major milestone because the material quality requirements for these devices are extremely high. This study investigates nitride material development by the metalorganic chemical vapor deposition (MOCVD) and characterization of GaN, AlGaN, and InGaN, and by qualifying these materials with fabricated devices. The ultimate goal was to develop a working laser diode. The nitride epitaxial films were characterized by 300K Hall effect, x-ray diffraction (XRD), photoluminescence (PL), cathodoluminescence (CL), secondary ion mass spectroscopy (SIMS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). GaN grown heteroepitaxially on (0001) sapphire substrates was first optimized. A low-temperature GaN nucleation layer was developed that gave subsequent high-temperature GaN layers with low background carrier concentrations (n < 1×10sp{17}\\ cmsp{-3}). Intentional p-type hole concentrations up to 2× 10sp{18} cmsp{-3} and n-type electron concentrations up to 1× 10sp{19} cmsp{-3} were achieved at 300K with magnesium and silicon, respectively. The ternary alloy Insb{x}Gasb{1-x}N was grown with indium compositions up to x = 0.25. These films exhibited strong and narrow 300K PL bandedge peaks. Multiple-quantum-well structures with Insb{0.13}Gasb{0.87}N wells and Insb{0.03}Gasb{0.97}N barriers were grown and gave enhanced PL intensity compared to single InGaN layers. Modulation-doped MQW's produced enhanced PL intensity compared to uniformly-doped MQW's. 300K photopumping experiments produced stimulated emission from a five-period MQW. Light-emitting device structures comprised of InGaN MQW active regions and p-type and n-type GaN contact layers and AlGaN confinement layers were grown and fabricated. LED's showed bright emission at a wavelength of 400 nm. While optically pumped lasers were demonstrated, no injection lasing action was achieved in these devices. GaN grown by selective area lateral epitaxial overgrowth (SALEO) has reduced dislocation defect density and, therefore, may prove to be a promising substrate for nearly defect-free device structures. Plan-view and cross-sectional CL was used to compare spatial inhomogeneities in the bandedge luminescence.

  11. Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching.

    PubMed

    Chan, Lesley W; Morse, Daniel E; Gordon, Michael J

    2018-05-08

    Near- and sub-wavelength photonic structures are used by numerous organisms (e.g. insects, cephalopods, fish, birds) to create vivid and often dynamically-tunable colors, as well as create, manipulate, or capture light for vision, communication, crypsis, photosynthesis, and defense. This review introduces the physics of moth eye (ME)-like, biomimetic nanostructures and discusses their application to reduce optical losses and improve efficiency of various optoelectronic devices, including photodetectors, photovoltaics, imagers, and light emitting diodes. Light-matter interactions at structured and heterogeneous surfaces over different length scales are discussed, as are the various methods used to create ME-inspired surfaces. Special interest is placed on a simple, scalable, and tunable method, namely colloidal lithography with plasma dry etching, to fabricate ME-inspired nanostructures in a vast suite of materials. Anti-reflective surfaces and coatings for IR devices and enhancing light extraction from visible light emitting diodes are highlighted.

  12. Highly efficient near-infrared light-emitting diodes by using type-II CdTe/CdSe core/shell quantum dots as a phosphor

    NASA Astrophysics Data System (ADS)

    Shen, Huaibin; Zheng, Ying; Wang, Hongzhe; Xu, Weiwei; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Li, Lin Song

    2013-11-01

    In this paper, we present an innovative method for the synthesis of CdTe/CdSe type-II core/shell structure quantum dots (QDs) using ‘greener’ chemicals. The PL of CdTe/CdSe type-II core/shell structure QDs ranges from 600 to 820 nm, and the as-synthesized core/shell structures show narrow size distributions and stable and high quantum yields (50-75%). Highly efficient near-infrared light-emitting diodes (LEDs) have been demonstrated by employing the CdTe/CdSe type-II core/shell QDs as emitters. The devices fabricated based on these type-II core/shell QDs show color-saturated near-infrared emission from the QD layers, a low turn-on voltage of 1.55 V, an external quantum efficiency (EQE) of 1.59%, and a current density and maximum radiant emittance of 2.1 × 103 mA cm-2 and 17.7 mW cm-2 at 8 V it is the first report to use type-II core/shell QDs as near-infrared emitters and these results may offer a practicable platform for the realization of near-infrared QD-based light-emitting diodes, night-vision-readable displays, and friend/foe identification system.

  13. Enhanced efficiency of light emitting diodes with a nano-patterned gallium nitride surface realized by soft UV nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Zhou, Weimin; Min, Guoquan; Song, Zhitang; Zhang, Jing; Liu, Yanbo; Zhang, Jianping

    2010-05-01

    This paper reports a significant enhancement in the extraction efficiency of nano-patterned GaN light emitting diodes (LED) realized by soft UV nanoimprint lithography. The 2 inch soft stamp was fabricated using a replication stamp of anodic alumina oxide (AAO) membrane. The light output power was enhanced by 10.9% compared to that of the LED sample without a nano-patterned surface. Up to 41% enhancement in photoluminescence intensity was obtained from the nano-patterned GaN LED sample. The method is simple, cheap and suitable for mass production.

  14. Light-emitting diode technology status and directions: Opportunities for horticultural lighting

    DOE PAGES

    Tsao, Jeffrey Y.; Pattison, P. Morgan; Krames, Michael R.

    2016-01-01

    Here, light-emitting diode (LED) technology has advanced rapidly over the last decade, primarily driven by display and general illumination applications ("solid-state lighting (SSL) for humans"). These advancements have made LED lighting technically and economically advantageous not only for these applications, but also, as an indirect benefit, for adjacent applications such as horticultural lighting ("SSL for plants"). Moreover, LED technology has much room for continued improvement. In the near-term, these improvements will continue to be driven by SSL for humans (with indirect benefit to SSL for plants), the most important of which can be anticipated.

  15. High-quality uniaxial In(x)Ga(1-x)N/GaN multiple quantum well (MQW) nanowires (NWs) on Si(111) grown by metal-organic chemical vapor deposition (MOCVD) and light-emitting diode (LED) fabrication.

    PubMed

    Ra, Yong-Ho; Navamathavan, R; Park, Ji-Hyeon; Lee, Cheul-Ro

    2013-03-01

    This article describes the growth and device characteristics of vertically aligned high-quality uniaxial p-GaN/InxGa1-xN/GaN multiple quantum wells (MQW)/n-GaN nanowires (NWs) on Si(111) substrates grown by metal-organic chemical vapor deposition (MOCVD) technique. The resultant nanowires (NWs), with a diameter of 200-250 nm, have an average length of 2 μm. The feasibility of growing high-quality NWs with well-controlled indium composition MQW structure is demonstrated. These resultant NWs grown on Si(111) substrates were utilized for fabricating vertical-type light-emitting diodes (LEDs). The steep and intense photoluminescence (PL) and cathodoluminescence (CL) spectra are observed, based on the strain-free NWs on Si(111) substrates. High-resolution transmission electron microscopy (HR-TEM) analysis revealed that the MQW NWs are grown along the c-plane with uniform thickness. The current-voltage (I-V) characteristics of these NWs exhibited typical p-n junction LEDs and showed a sharp onset voltage at 2.75 V in the forward bias. The output power is linearly increased with increasing current. The result indicates that the pulsed MOCVD technique is an effective method to grow uniaxial p-GaN/InxGa1-xN/GaN MQW/n-GaN NWs on Si(111), which is more advantageous than other growth techniques, such as molecular beam epitaxy. These results suggest the uniaxial NWs are promising to allow flat-band quantum structures, which can enhance the efficiency of LEDs.

  16. Reliability improvements in tunable Pb1-xSnxSe diode lasers

    NASA Technical Reports Server (NTRS)

    Linden, K. J.; Butler, J. F.; Nill, K. W.; Reeder, R. E.

    1980-01-01

    Recent developments in the technology of Pb-salt diode lasers which have led to significant improvements in reliability and lifetime, and to improved operation at very long wavelengths are described. A combination of packaging and contacting-metallurgy improvements has led to diode lasers that are stable both in terms of temperature cycling and shelf-storage time. Lasers cycled over 500 times between 77 K and 300 K have exhibited no measurable changes in either electrical contact resistance or threshold current. Utilizing metallurgical contacting process, both lasers and experimental n-type and p-type bulk materials are shown to have electrical contact resistance values that are stable for shelf storage periods well in excess of one year. Problems and experiments which have led to devices with improved performance stability are discussed. Stable device configurations achieved for material compositions yielding lasers which operate continuously at wavelengths as long as 30.3 micrometers are described.

  17. Monolithic photonic integrated circuit with a GaN-based bent waveguide

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Qin, Chuan; Zhang, Shuai; Yuan, Jialei; Zhang, Fenghua; Wang, Yongjin

    2018-06-01

    Integration of a transmitter, waveguide and receiver into a single chip can generate a multicomponent system with multiple functionalities. Here, we fabricate and characterize a GaN-based photonic integrated circuit (PIC) on a GaN-on-silicon platform. With removal of the silicon and back wafer thinning of the epitaxial film, ultrathin membrane-type devices and highly confined suspended GaN waveguides were formed. Two suspended-membrane InGaN/GaN multiple-quantum-well diodes (MQW-diodes) served as an MQW light-emitting diode (MQW-LED) to emit light and an MQW photodiode (MQW-PD) to sense light. The optical interconnects between the MQW-LED and MQW-PD were achieved using the GaN bent waveguide. The GaN-based PIC consisting of an MQW-LED, waveguides and an MQW-PD forms an in-plane light communication system with a data transmission rate of 70 Mbps.

  18. Operation of AC Adapters Visualized Using Light-Emitting Diodes

    ERIC Educational Resources Information Center

    Regester, Jeffrey

    2016-01-01

    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…

  19. Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source

    PubMed Central

    Gioux, Sylvain; Lomnes, Stephen J.; Choi, Hak Soo; Frangioni, John V.

    2010-01-01

    Fluorescence lifetime imaging (FLi) could potentially improve exogenous near-infrared (NIR) fluorescence imaging, because it offers the capability of discriminating a signal of interest from background, provides real-time monitoring of a chemical environment, and permits the use of several different fluorescent dyes having the same emission wavelength. We present a high-power, LED-based, NIR light source for the clinical translation of wide-field (larger than 5 cm in diameter) FLi at frequencies up to 35 MHz. Lifetime imaging of indocyanine green (ICG), IRDye 800-CW, and 3,3′-diethylthiatricarbocyanine iodide (DTTCI) was performed over a large field of view (10 cm by 7.5 cm) using the LED light source. For comparison, a laser diode light source was employed as a gold standard. Experiments were performed both on the bench by diluting the fluorescent dyes in various chemical environments in Eppendorf tubes, and in vivo by injecting the fluorescent dyes mixed in Matrigel subcutaneously into CD-1 mice. Last, measured fluorescence lifetimes obtained using the LED and the laser diode sources were compared with those obtained using a state-of-the-art time-domain imaging system and with those previously described in the literature. On average, lifetime values obtained using the LED and the laser diode light sources were consistent, exhibiting a mean difference of 3% from the expected values and a coefficient of variation of 12%. Taken together, our study offers an alternative to laser diodes for clinical translation of FLi and explores the use of relatively low frequency modulation for in vivo imaging. PMID:20459250

  20. Improving the Stability of Metal Halide Perovskite Materials and Light-Emitting Diodes.

    PubMed

    Cho, Himchan; Kim, Young-Hoon; Wolf, Christoph; Lee, Hyeon-Dong; Lee, Tae-Woo

    2018-01-25

    Metal halide perovskites (MHPs) have numerous advantages as light emitters such as high photoluminescence quantum efficiency with a direct bandgap, very narrow emission linewidth, high charge-carrier mobility, low energetic disorder, solution processability, simple color tuning, and low material cost. Based on these advantages, MHPs have recently shown unprecedented radical progress (maximum current efficiency from 0.3 to 42.9 cd A -1 ) in the field of light-emitting diodes. However, perovskite light-emitting diodes (PeLEDs) suffer from intrinsic instability of MHP materials and instability arising from the operation of the PeLEDs. Recently, many researchers have devoted efforts to overcome these instabilities. Here, the origins of the instability in PeLEDs are reviewed by categorizing it into two types: instability of (i) the MHP materials and (ii) the constituent layers and interfaces in PeLED devices. Then, the strategies to improve the stability of MHP materials and PeLEDs are critically reviewed, such as A-site cation engineering, Ruddlesden-Popper phase, suppression of ion migration with additives and blocking layers, fabrication of uniform bulk polycrystalline MHP layers, and fabrication of stable MHP nanoparticles. Based on this review of recent advances, future research directions and an outlook of PeLEDs for display applications are suggested. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Modeling Ultraviolet (UV) Light Emitting Diode (LED) Energy Propagation in Reactor Vessels

    DTIC Science & Technology

    2014-03-27

    21 Table 4: UV Mercury Lamps , UV LED Bulbs, and Visible LED Bulb Advantages and Disadvantages...over low pressure mercury lamps include smaller size, minimal start up time, and no hazardous material. Projections show UV LEDs will follow similar

  2. Monolithic Flexible Vertical GaN Light-Emitting Diodes for a Transparent Wireless Brain Optical Stimulator.

    PubMed

    Lee, Han Eol; Choi, JeHyuk; Lee, Seung Hyun; Jeong, Minju; Shin, Jung Ho; Joe, Daniel J; Kim, DoHyun; Kim, Chang Wan; Park, Jung Hwan; Lee, Jae Hee; Kim, Daesoo; Shin, Chan-Soo; Lee, Keon Jae

    2018-05-18

    Flexible inorganic-based micro light-emitting diodes (µLEDs) are emerging as a significant technology for flexible displays, which is an important area for bilateral visual communication in the upcoming Internet of Things era. Conventional flexible lateral µLEDs have been investigated by several researchers, but still have significant issues of power consumption, thermal stability, lifetime, and light-extraction efficiency on plastics. Here, high-performance flexible vertical GaN light-emitting diodes (LEDs) are demonstrated by silver nanowire networks and monolithic fabrication. Transparent, ultrathin GaN LED arrays adhere to a human fingernail and stably glow without any mechanical deformation. Experimental studies provide outstanding characteristics of the flexible vertical μLEDs (f-VLEDs) with high optical power (30 mW mm -2 ), long lifetime (≈12 years), and good thermal/mechanical stability (100 000 bending/unbending cycles). The wireless light-emitting system on the human skin is successfully realized by transferring the electrical power f-VLED. Finally, the high-density GaN f-VLED arrays are inserted onto a living mouse cortex and operated without significant histological damage of brain. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Random laser illumination: an ideal source for biomedical polarization imaging?

    NASA Astrophysics Data System (ADS)

    Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.

    2016-03-01

    Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.

  4. Photodynamic therapy using a novel irradiation source, LED lamp, is similarly effective to photodynamic therapy using diode laser or metal-halide lamp on DMBA- and TPA-induced mouse skin papillomas.

    PubMed

    Takahashi, Hidetoshi; Nakajima, Susumu; Ogasawara, Koji; Asano, Ryuji; Nakae, Yoshinori; Sakata, Isao; Iizuka, Hajime

    2014-08-01

    Photodynamic therapy (PDT) is useful for superficial skin tumors such as actinic keratosis and Bowen disease. Although PDT is non-surgical and easily-performed treatment modality, irradiation apparatus is large and expensive. Using 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-ο-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin papilloma model, we compared the efficacy of TONS501- and ALA-PDT with a LED lamp, a diode laser lamp or a metal-halide lamp on the skin tumor regression. TONS501-PDT using 660 nm LED lamp showed anti-tumor effect at 1 day following the irradiation and the maximal anti-tumor effect was observed at 3 days following the irradiation. There was no significant difference in the anti-tumor effects among TONS501-PDT using LED, TONS501-PDT using diode laser, and 5-aminolevulinic acid hydrochloride (ALA)-PDT using metal-halide lamp. Potent anti-tumor effect on DMBA- and TPA-induced mouse skin papilloma was observed by TONS501-PDT using 660 nm LED, which might be more useful for clinical applications. © 2014 Japanese Dermatological Association.

  5. Lighting theory and luminous characteristics of white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Uchida, Yuji; Taguchi, Tsunemasa

    2005-12-01

    A near-ultraviolet (UV)-based white light-emitting diode (LED) lighting system linked with a semiconductor InGaN LED and compound phosphors for general lighting applications is proposed. We have developed for the first time a novel type of high-color rendering index (Ra) white LED light source, which is composed of near-UV LED and multiphosphor materials showing orange (O), yellow (Y), green (G), and blue (B) emissions. The white LED shows the superior characteristics of luminous efficacy and high Ra to be about 40 lm/W and 93, respectively. Luminous and chromaticity characteristics, and their spectral distribution of the present white LED can be evaluated using the multipoint LED light source theory. It is revealed that the OYGB white LED can provide better irradiance properties than that of conventional white LEDs. Near-UV white LED technologies, in conjunction with phosphor blends, can offer superior color uniformity, high Ra, and excellent light quality. Consequently we are carrying out a "white LEDs for medical applications" program in the second phase of this national project from 2004 to 2009.

  6. Strong geometrical effects in submillimeter selective area growth and light extraction of GaN light emitting diodes on sapphire

    DOE PAGES

    Tanaka, Atsunori; Chen, Renjie; Jungjohann, Katherine L.; ...

    2015-11-27

    Advanced semiconductor devices often utilize structural and geometrical effects to tailor their characteristics and improve their performance. Our detailed understanding of such geometrical effects in the epitaxial selective area growth of GaN on sapphire substrates is reported here, and we utilize them to enhance light extraction from GaN light emitting diodes. Systematic size and spacing effects were performed side-by-side on a single 2” sapphire substrate to minimize experimental sampling errors for a set of 144 pattern arrays with circular mask opening windows in SiO 2. We show that the mask opening diameter leads to as much as 4 times increasemore » in the thickness of the grown layers for 20 μm spacings and that spacing effects can lead to as much as 3 times increase in thickness for a 350 μm dot diameter. We also observed that the facet evolution in comparison with extracted Ga adatom diffusion lengths directly influences the vertical and lateral overgrowth rates and can be controlled with pattern geometry. Lastly, such control over the facet development led to 2.5 times stronger electroluminescence characteristics from well-faceted GaN/InGaN multiple quantum well LEDs compared to non-faceted structures.« less

  7. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light

    PubMed Central

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2014-01-01

    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm2). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. PMID:24909301

  8. Enhanced Phycocyanin Production from Spirulina platensis using Light Emitting Diode

    NASA Astrophysics Data System (ADS)

    Bachchhav, Manisha Bhanudas; Kulkarni, Mohan Vinayak; Ingale, Arun G.

    2017-06-01

    This work investigates the performance of different cultivation conditions using Light Emitting Diode (LED) as a light source for the production of phycocyanin from Spirulina platensis. With LEDs under autotrophic conditions, red LED produced maximum amount of biomass (8.95 g/l). As compared to autotrophic cultivation with fluorescent lamp (control), cultivations using LEDs under autotrophic and mixotrophic mode significantly enhanced the phycocyanin content. For autotrophic conditions (with LED) phycocyanin content was in the range of 103-242 mg/g of dry biomass, whereas for mixotrophic conditions (0.1% glucose and LED) it was in the range of 254-380 mg/g of dry biomass. Spirulina cultivated with yellow LED under mixotrophic conditions had 5.4-fold more phycocyanin (380 mg/g of dry biomass) than control (70 mg/g of dry biomass). The present study demonstrates that the LEDs under mixotrophic conditions gave sixfold (2497 mg/l) higher yields of phycocyanin as compared to autotrophic condition under white light (415 mg/l).

  9. Improved Cognitive Function After Transcranial, Light-Emitting Diode Treatments in Chronic, Traumatic Brain Injury: Two Case Reports

    PubMed Central

    Saltmarche, Anita; Krengel, Maxine H.; Hamblin, Michael R.; Knight, Jeffrey A.

    2011-01-01

    Abstract Objective: Two chronic, traumatic brain injury (TBI) cases, where cognition improved following treatment with red and near-infrared light-emitting diodes (LEDs), applied transcranially to forehead and scalp areas, are presented. Background: Significant benefits have been reported following application of transcranial, low-level laser therapy (LLLT) to humans with acute stroke and mice with acute TBI. These are the first case reports documenting improved cognitive function in chronic, TBI patients treated with transcranial LED. Methods: Treatments were applied bilaterally and to midline sagittal areas using LED cluster heads [2.1″ diameter, 61 diodes (9 × 633 nm, 52 × 870 nm); 12–15 mW per diode; total power: 500 mW; 22.2 mW/cm2; 13.3 J/cm2 at scalp (estimated 0.4 J/cm2 to cortex)]. Results: Seven years after closed-head TBI from a motor vehicle accident, Patient 1 began transcranial LED treatments. Pre-LED, her ability for sustained attention (computer work) lasted 20 min. After eight weekly LED treatments, her sustained attention time increased to 3 h. The patient performs nightly home treatments (5 years); if she stops treating for more than 2 weeks, she regresses. Patient 2 had a history of closed-head trauma (sports/military, and recent fall), and magnetic resonance imaging showed frontoparietal atrophy. Pre-LED, she was on medical disability for 5 months. After 4 months of nightly LED treatments at home, medical disability discontinued; she returned to working full-time as an executive consultant with an international technology consulting firm. Neuropsychological testing after 9 months of transcranial LED indicated significant improvement (+1, +2SD) in executive function (inhibition, inhibition accuracy) and memory, as well as reduction in post-traumatic stress disorder. If she stops treating for more than 1 week, she regresses. At the time of this report, both patients are continuing treatment. Conclusions: Transcranial LED may improve cognition, reduce costs in TBI treatment, and be applied at home. Controlled studies are warranted. PMID:21182447

  10. Novel organic LED structures based on a highly conductive polymeric photonic crystal electrode.

    PubMed

    Petti, Lucia; Rippa, Massimo; Capasso, Rossella; Nenna, Giuseppe; Del Mauro, Anna De Girolamo; Maglione, Maria Grazia; Minarini, Carla

    2013-08-09

    In this work we demonstrate the possibility to realize a novel unconventional ITO-free organic light emitting diode (OLED) utilizing a photonic polymeric electrode. Combining electron beam lithography and a plasma etching process to partially structure the highly conductive poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) it is possible to realize an embedded photonic crystal (PC) structure. The realized PC-anode drastically reduces the light trapped in the OLED, demonstrating the possibility to eliminate further process stages and making it easier to use this technology even on rollable and flexible substrates.

  11. Novel organic LED structures based on a highly conductive polymeric photonic crystal electrode

    NASA Astrophysics Data System (ADS)

    Petti, Lucia; Rippa, Massimo; Capasso, Rossella; Nenna, Giuseppe; De Girolamo Del Mauro, Anna; Grazia Maglione, Maria; Minarini, Carla

    2013-08-01

    In this work we demonstrate the possibility to realize a novel unconventional ITO-free organic light emitting diode (OLED) utilizing a photonic polymeric electrode. Combining electron beam lithography and a plasma etching process to partially structure the highly conductive poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) it is possible to realize an embedded photonic crystal (PC) structure. The realized PC-anode drastically reduces the light trapped in the OLED, demonstrating the possibility to eliminate further process stages and making it easier to use this technology even on rollable and flexible substrates.

  12. Longitudinal useful life analysis and replacement strategies for LED traffic indicators.

    DOT National Transportation Integrated Search

    2014-04-01

    The application of Light Emitting Diode (LED) lighting systems has experienced significant gro : wth in the transportation : sector over the past : ten : years. LED indication lifespans have significantly greater durations than previous technologies,...

  13. Longitudinal useful life analysis and replacement strategies for LED traffic indicators.

    DOT National Transportation Integrated Search

    2014-04-01

    The application of Light Emitting Diode (LED) lighting systems has experienced significant growth in : the transportation sector over the past 10 years. LED indication lifespans have significantly greater durations than : previous technologies, howev...

  14. Reverse leakage current characteristics of InGaN/GaN multiple quantum well ultraviolet/blue/green light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Shengjun; Lv, Jiajiang; Wu, Yini; Zhang, Yuan; Zheng, Chenju; Liu, Sheng

    2018-05-01

    We investigated the reverse leakage current characteristics of InGaN/GaN multiple quantum well (MQW) near-ultraviolet (NUV)/blue/green light-emitting diodes (LEDs). Experimental results showed that the NUV LED has the smallest reverse leakage current whereas the green LED has the largest. The reason is that the number of defects increases with increasing nominal indium content in InGaN/GaN MQWs. The mechanism of the reverse leakage current was analyzed by temperature-dependent current–voltage measurement and capacitance–voltage measurement. The reverse leakage currents of NUV/blue/green LEDs show similar conduction mechanisms: at low temperatures, the reverse leakage current of these LEDs is attributed to variable-range hopping (VRH) conduction; at high temperatures, the reverse leakage current of these LEDs is attributed to nearest-neighbor hopping (NNH) conduction, which is enhanced by the Poole–Frenkel effect.

  15. Solution-Grown ZnO Films toward Transparent and Smart Dual-Color Light-Emitting Diode.

    PubMed

    Huang, Xiaohu; Zhang, Li; Wang, Shijie; Chi, Dongzhi; Chua, Soo Jin

    2016-06-22

    An individual light-emitting diode (LED) capable of emitting different colors of light under different bias conditions not only allows for compact device integration but also extends the functionality of the LED beyond traditional illumination and display. Herein, we report a color-switchable LED based on solution-grown n-type ZnO on p-GaN/n-GaN heterojunction. The LED emits red light with a peak centered at ∼692 nm and a full width at half-maximum of ∼90 nm under forward bias, while it emits green light under reverse bias. These two lighting colors can be switched repeatedly by reversing the bias polarity. The bias-polarity-switched dual-color LED enables independent control over the lighting color and brightness of each emission with two-terminal operation. The results offer a promising strategy toward transparent, miniaturized, and smart LEDs, which hold great potential in optoelectronics and optical communication.

  16. Improved light extraction efficiency of GaN-based flip-chip light-emitting diodes with an antireflective interface layer

    NASA Astrophysics Data System (ADS)

    Wu, Dongxue; Ma, Ping; Liu, Boting; Zhang, Shuo; Wang, Junxi; Li, Jinmin

    2016-05-01

    GaN-based flip-chip light-emitting diodes (FC-LEDs) grown on nanopatterned sapphire substrates (NPSS) are fabricated using self-assembled SiO2 nanospheres as masks during inductively coupled plasma etching. By controlling the pattern spacing, epitaxial GaN can be grown from the top or bottom of patterns to obtain two different GaN/substrate interfaces. The optoelectronic characteristics of FC-LED chips with different GaN/sapphire interfaces are studied. The FC-LED with an antireflective interface layer consisting of a NPSS with GaN in the pattern spacings demonstrates better optical properties than the FC-LED with an interface embedded with air voids. Our study indicates that the two types of FC-LEDs grown on NPSS show higher crystal quality and improved electrical and optical characteristics compared with those of FC-LEDs grown on conventional planar sapphire substrates.

  17. Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yu, Hong-Yi; Zhu, Yi-Jun; Wang, Tao; Ji, Ya-Wei

    2018-03-01

    In this paper, a multiple light emitting diode (LED) chips parallel transmission (Multi-LED-PT) scheme for underwater visible light communication system with one photon-counting single photon avalanche diode (SPAD) receiver is proposed. As the lamp always consists of multi-LED chips, the data rate could be improved when we drive these multi-LED chips parallel by using the interleaver-division-multiplexing technique. For each chip, the on-off-keying modulation is used to reduce the influence of clipping. Then a serial successive interference cancellation detection algorithm based on ideal Poisson photon-counting channel by the SPAD is proposed. Finally, compared to the SPAD-based direct current-biased optical orthogonal frequency division multiplexing system, the proposed Multi-LED-PT system could improve the error-rate performance and anti-nonlinearity performance significantly under the effects of absorption, scattering and weak turbulence-induced channel fading together.

  18. Evaluation of light-emitting diode beacon light fixtures.

    DOT National Transportation Integrated Search

    2009-12-01

    Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...

  19. Assessment of the performance of light-emitting diode roadway lighting technology.

    DOT National Transportation Integrated Search

    2015-10-01

    This study, championed by the Virginia Department of Transportation (VDOT) Traffic Engineering : Division, involved a thorough investigation of light-emitting diode (LED) roadway lighting technology by : testing six types of roadway luminaires (inclu...

  20. High efficiency III-nitride light-emitting diodes

    DOEpatents

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  1. Characterization of reclaimed GaAs substrates and investigation of reuse for thin film InGaAlP LED epitaxial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Englhard, M.; Klemp, C.; Behringer, M.

    This study reports a method to reuse GaAs substrates with a batch process for thin film light emitting diode (TF-LED) production. The method is based on an epitaxial lift-off technique. With the developed reclaim process, it is possible to get an epi-ready GaAs surface without additional time-consuming and expensive grinding/polishing processes. The reclaim and regrowth process was investigated with a one layer epitaxial test structure. The GaAs surface was characterized by an atomic force microscope directly after the reclaim process. The crystal structure of the regrown In{sub 0.5}(Ga{sub 0.45}Al{sub 0.55}){sub 0.5}P (Q{sub 55}) layer was investigated by high resolution x-raymore » diffraction and scanning transmission electron microscopy. In addition, a complete TF-LED grown on reclaimed GaAs substrates was electro-optically characterized on wafer level. The crystal structure of the epitaxial layers and the performance of the TF-LED grown on reclaimed substrates are not influenced by the developed reclaim process. This process would result in reducing costs for LEDs and reducing much arsenic waste for the benefit of a green semiconductor production.« less

  2. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres.

    PubMed

    Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki

    2006-05-18

    Compact high-efficiency ultraviolet solid-state light sources--such as light-emitting diodes (LEDs) and laser diodes--are of considerable technological interest as alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. Microelectronic fabrication technologies and the environmental sciences both require light sources with shorter emission wavelengths: the former for improved resolution in photolithography and the latter for sensors that can detect minute hazardous particles. In addition, ultraviolet solid-state light sources are also attracting attention for potential applications in high-density optical data storage, biomedical research, water and air purification, and sterilization. Wide-bandgap materials, such as diamond and III-V nitride semiconductors (GaN, AlGaN and AlN; refs 3-10), are potential materials for ultraviolet LEDs and laser diodes, but suffer from difficulties in controlling electrical conduction. Here we report the successful control of both n-type and p-type doping in aluminium nitride (AlN), which has a very wide direct bandgap of 6 eV. This doping strategy allows us to develop an AlN PIN (p-type/intrinsic/n-type) homojunction LED with an emission wavelength of 210 nm, which is the shortest reported to date for any kind of LED. The emission is attributed to an exciton transition, and represents an important step towards achieving exciton-related light-emitting devices as well as replacing gas light sources with solid-state light sources.

  3. The fabrication of white light-emitting diodes using the n-ZnO/NiO/p-GaN heterojunction with enhanced luminescence.

    PubMed

    Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Nur, Omer; Willander, Magnus

    2013-07-13

    Cheap and efficient white light-emitting diodes (LEDs) are of great interest due to the energy crisis all over the world. Herein, we have developed heterojunction LEDs based on the well-aligned ZnO nanorods and nanotubes on the p-type GaN with the insertion of the NiO buffer layer that showed enhancement in the light emission. Scanning electron microscopy have well demonstrated the arrays of the ZnO nanorods and the proper etching into the nanotubes. X-ray diffraction study describes the wurtzite crystal structure array of ZnO nanorods with the involvement of GaN at the (002) peak. The cathodoluminescence spectra represent strong and broad visible emission peaks compared to the UV emission and a weak peak at 425 nm which is originated from GaN. Electroluminescence study has shown highly improved luminescence response for the LEDs fabricated with NiO buffer layer compared to that without NiO layer. Introducing a sandwich-thin layer of NiO between the n-type ZnO and the p-type GaN will possibly block the injection of electrons from the ZnO to the GaN. Moreover, the presence of NiO buffer layer might create the confinement effect.

  4. Solvent-Assisted Surface Engineering for High-Performance All-Inorganic Perovskite Nanocrystal Light-Emitting Diodes.

    PubMed

    Wang, Lin; Liu, Baiquan; Zhao, Xin; Demir, Hilmi Volkan; Gu, Haoshuang; Sun, Handong

    2018-06-13

    All-inorganic cesium halide perovskite nanocrystals have attracted much interest in optoelectronic applications for the sake of the readily adjustable band gaps, high photoluminescence quantum yield, pure color emission, and affordable cost. However, because of the ineluctable utilization of organic surfactants during the synthesis, the structural and optical properties of CsPbBr 3 nanocrystals degrade upon transforming from colloidal solutions to solid thin films, which plagues the device operation. Here, we develop a novel solvent-assisted surface engineering strategy, producing high-quality CsPbBr 3 thin films for device applications. A good solvent is first introduced as an assembly trigger to conduct assembly in a one-dimensional direction, which is then interrupted by adding a nonsolvent. The nonsolvent drives the adjacent nanoparticles connecting in a two-dimensional direction. Assembled CsPbBr 3 nanocrystal thin films are densely packed and very smooth with a surface roughness of ∼4.8 nm, which is highly desirable for carrier transport in a light-emitting diode (LED) device. Meanwhile, the film stability is apparently improved. Benefiting from this facile and reliable strategy, we have achieved remarkably improved performance of CsPbBr 3 nanocrystal-based LEDs. Our results not only enrich the methods of nanocrystal surface engineering but also shed light on developing high-performance LEDs.

  5. Red Emission of SrAl2O4:Mn4+ Phosphor for Warm White Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Chi, N. T. K.; Tuan, N. T.; Lien, N. T. K.; Nguyen, D. H.

    2018-05-01

    In this work, SrAl2O4:Mn4+ phosphor is prepared by co-precipitation. The phase structure, morphology, composition and luminescent performance of the phosphor are investigated in detail with x-ray diffraction, field emission scanning electron microscopy, steady-state photoluminescence (PL) spectra, and temperature-dependent PL measurements. The phosphor shows a strong red emission peak at ˜ 690 nm, which is due to the transition between electronic levels and the electric dipole transition 2Eg to 4A2g of Mn4+ ions located at the sites with D3d local symmetry. The sample doped with 0.04 mol.% Mn4+ exhibits intense red emission with high thermal stability and appropriate International Commission on Illumination (CIE) coordinates (x = 0.6959, y = 0.2737). It is also found that the phosphor absorption in an extended band from 250 nm to 500 nm has three peaks at 320 nm, 405 nm, and 470 nm, which match well with the emission band of ultraviolet (UV) lighting emission diode (LED) or blue LED chips. These results demonstrate that SrAl2O4:Mn4+ phosphor can play the role of activator in narrow red-emitting phosphor, which is potentially useful in UV (˜ 320 nm) or blue (˜ 460 nm) LED.

  6. Thermal management methods for compact high power LED arrays

    NASA Astrophysics Data System (ADS)

    Christensen, Adam; Ha, Minseok; Graham, Samuel

    2007-09-01

    The package and system level temperature distributions of a high power (>1W) light emitting diode (LED) array has been investigated using numerical heat flow models. For this analysis, a thermal resistor network model was combined with a 3D finite element submodel of an LED structure to predict system and die level temperatures. The impact of LED array density, LED power density, and active versus passive cooling methods on device operation were calculated. In order to help understand the role of various thermal resistances in cooling such compact arrays, the thermal resistance network was analyzed in order to estimate the contributions from materials as well as active and passive cooling schemes. An analysis of thermal stresses and residual stresses in the die are also calculated based on power dissipation and convection heat transfer coefficients. Results show that the thermal stress in the GaN layer are compressive which can impact the band gap and performance of the LEDs.

  7. Compact light-emitting-diode sun photometer for atmospheric optical depth measurements.

    PubMed

    Acharya, Y B; Jayaraman, A; Ramachandran, S; Subbaraya, B H

    1995-03-01

    A new compact light-emitting diode (LED) sun photometer, in which a LED is used as a spectrally selective photodetector as well as a nonlinear feedback element in the operational amplifier, has been developed. The output voltage that is proportional to the logarithm of the incident solar intensity permits the direct measurement of atmospheric optical depths in selected spectral bands. Measurements made over Ahmedabad, India, show good agreement, within a few percent, of optical depths derived with a LED as a photodetector in a linear mode and with a LED as both a photodetector and a feedback element in an operational amplifier in log mode. The optical depths are also found to compare well with those obtained simultaneously with a conventional filter photometer.

  8. On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes.

    PubMed

    Li, Luping; Zhang, Yonghui; Xu, Shu; Bi, Wengang; Zhang, Zi-Hui; Kuo, Hao-Chung

    2017-10-24

    The hole injection is one of the bottlenecks that strongly hinder the quantum efficiency and the optical power for deep ultraviolet light-emitting diodes (DUV LEDs) with the emission wavelength smaller than 360 nm. The hole injection efficiency for DUV LEDs is co-affected by the p-type ohmic contact, the p-type hole injection layer, the p-type electron blocking layer and the multiple quantum wells. In this report, we review a large diversity of advances that are currently adopted to increase the hole injection efficiency for DUV LEDs. Moreover, by disclosing the underlying device physics, the design strategies that we can follow have also been suggested to improve the hole injection for DUV LEDs.

  9. On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes

    PubMed Central

    Li, Luping; Zhang, Yonghui; Kuo, Hao-Chung

    2017-01-01

    The hole injection is one of the bottlenecks that strongly hinder the quantum efficiency and the optical power for deep ultraviolet light-emitting diodes (DUV LEDs) with the emission wavelength smaller than 360 nm. The hole injection efficiency for DUV LEDs is co-affected by the p-type ohmic contact, the p-type hole injection layer, the p-type electron blocking layer and the multiple quantum wells. In this report, we review a large diversity of advances that are currently adopted to increase the hole injection efficiency for DUV LEDs. Moreover, by disclosing the underlying device physics, the design strategies that we can follow have also been suggested to improve the hole injection for DUV LEDs. PMID:29073738

  10. GaN-based light-emitting diodes with graphene/indium tin oxide transparent layer.

    PubMed

    Lai, Wei-Chih; Lin, Chih-Nan; Lai, Yi-Chun; Yu, Peichen; Chi, Gou Chung; Chang, Shoou-Jinn

    2014-03-10

    We have demonstrated a gallium nitride (GaN)-based green light-emitting diode (LED) with graphene/indium tin oxide (ITO) transparent contact. The ohmic characteristic of the p-GaN and graphene/ITO contact could be preformed by annealing at 500 °C for 5 min. The specific contact resistance of p-GaN/graphene/ITO (3.72E-3 Ω·cm²) is one order less than that of p-GaN/ITO. In addition, the 20-mA forward voltage of LEDs with graphene/ITO transparent (3.05 V) is 0.09 V lower than that of ITO LEDs (3.14 V). Besides, We have got an output power enhancement of 11% on LEDs with graphene/ITO transparent contact.

  11. Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Hua; Hou, Chia-Hung; Tseng, Shao-Ze; Chen, Tsing-Jen; Chien, Hung-Ta; Hsiao, Fu-Li; Lee, Chien-Chieh; Tsai, Yen-Ling; Chen, Chii-Chang

    2009-07-01

    This letter describes the improved output power of GaN-based light-emitting diodes (LEDs) formed on a nanopatterned sapphire substrate (NPSS) prepared through etching with a self-assembled monolayer of 750-nm-diameter SiO2 nanospheres used as the mask. The output power of NPSS LEDs was 76% greater than that of LEDs on a flat sapphire substrate. Three-dimensional finite-difference time-domain calculation predicted a 40% enhancement in light extraction efficiency of NPSS LEDs. In addition, the reduction of full widths at half maximum in the ω-scan rocking curves for the (0 0 2) and (1 0 2) planes of GaN on NPSS suggested improved crystal quality.

  12. Electrical and Luminescent Properties of Color-Changeable Organic Electroluminescent Diode Using Squarylium Dyes

    NASA Astrophysics Data System (ADS)

    Mori, Tatsuo; Miyachi, Kiyokazu; Kichimi, Tomoaki; Mizutani, Teruyoshi

    1994-12-01

    The organic electoluminescent diode (LED) with squarylium (Sq) dye-doped Alq3 changes color upon application of voltage (current). The luminescent color from the organic LED changes from red (electroluminescence (EL) of Sq dye) at low voltage to light green (EL of Alq3) at high voltage. We studied the EL efficiency and EL spectrum of organic Sq-doped Alq3 LED with various doping positions in the emission layer. Consequentially, it was clarified that Sq doping near TPD considerably reduced the EL efficiency. The EL mechanism of the organic LED was concluded to be associated with the energy transfer from the excited Alq3 to the guest dye and hole trapping of the guest dye in Alq3.

  13. White Light–Emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model

    PubMed Central

    Shang, Yu-Man; Wang, Gen-Shuh; Sliney, David; Lee, Li-Ling

    2013-01-01

    Background: Light-emitting diodes (LEDs) deliver higher levels of blue light to the retina than do conventional domestic light sources. Chronic exposure to high-intensity light (2,000–10,000 lux) has previously been found to result in light-induced retinal injury, but chronic exposure to relatively low-intensity (750 lux) light has not been previously assessed with LEDs in a rodent model. Objective: We examined LED-induced retinal neuronal cell damage in the Sprague-Dawley rat using functional, histological, and biochemical measurements. Methods: We used blue LEDs (460 nm) and full-spectrum white LEDs, coupled with matching compact fluorescent lights, for exposures. Pathological examinations included electroretinogram, hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), and transmission electron microscopy (TEM). We also measured free radical production in the retina to determine the oxidative stress level. Results: H&E staining and TEM revealed apoptosis and necrosis of photoreceptors, which indicated blue-light induced photochemical injury of the retina. Free radical production in the retina was increased in LED-exposed groups. IHC staining demonstrated that oxidative stress was associated with retinal injury. Although we found serious retinal light injury in LED groups, the compact fluorescent lamp (CFL) groups showed moderate to mild injury. Conclusion: Our results raise questions about adverse effects on the retina from chronic exposure to LED light compared with other light sources that have less blue light. Thus, we suggest a precautionary approach with regard to the use of blue-rich “white” LEDs for general lighting. Citation: Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. 2014. White light–emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect 122:269–276; http://dx.doi.org/10.1289/ehp.1307294 PMID:24362357

  14. High-Modulation-Speed LEDs Based on III-Nitride

    NASA Astrophysics Data System (ADS)

    Chen, Hong

    III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as rate equations for LEDs/laser diodes (LDs), plasmonic effects, Purcell effects will be briefly introduced. For applications, the modal properties of flip-chip LEDs are solved by implementing finite difference method in order to study the modulation response. The emission properties of highly polarized InGaN LEDs coated by metallic gratings are also investigated by finite difference time domain method.

  15. Frequency-Downconversion Stability of PMMA Coatings in Hybrid White Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Caruso, Fulvio; Mosca, Mauro; Rinella, Salvatore; Macaluso, Roberto; Calì, Claudio; Saiano, Filippo; Feltin, Eric

    2016-01-01

    We report on the properties of a poly(methyl methacrylate)-based coating used as a host for an organic dye in hybrid white light-emitting diodes. The device is composed by a pump source, which is a standard inorganic GaN/InGaN blue light-emitting diode (LED) emitting at around 450 nm, and a spin-coated conversion layer making use of Lumogen® F Yellow 083. Under prolonged irradiation, the coating exhibits significant bleaching, thus degrading the color rendering performance of the LED. We present experimental results that confirm that the local temperature rise of the operating diode does not affect the conversion layer. It is also proven that, during the test, the photostability of the organic dye is compromised, resulting in a chromatic shift from Commission Internationale de l'Eclairage (CIE) ( x; y) coordinates (0.30;0.39) towards the color of the pump (0.15;0.04). Besides photodegradation of the dye, we address a phenomenon attributed to modification of the polymer matrix activated by the LED's blue light energy as confirmed by ultraviolet-visible and Fourier-transform infrared spectroscopic analyses. Three methods for improving the overall stability of the organic coating are presented.

  16. The High-efficiency LED Driver for Visible Light Communication Applications.

    PubMed

    Gong, Cihun-Siyong Alex; Lee, Yu-Chen; Lai, Jyun-Liang; Yu, Chueh-Hao; Huang, Li Ren; Yang, Chia-Yen

    2016-08-08

    This paper presents a LED driver for VLC. The main purpose is to solve the low data rate problem used to be in switching type LED driver. The GaN power device is proposed to replace the traditional silicon power device of switching LED driver for the purpose of increasing switching frequency of converter, thereby increasing the bandwidth of data transmission. To achieve high efficiency, the diode-connected GaN power transistor is utilized to replace the traditional ultrafast recovery diode used to be in switching type LED driver. This work has been experimentally evaluated on 350-mA output current. The results demonstrate that it supports the data of PWM dimming level encoded in the PPM scheme for VLC application. The experimental results also show that system's efficiency of 80.8% can be achieved at 1-Mb/s data rate.

  17. Optical design and fabrication of palm/fingerprint uniform illumination system with a high-power near-infrared light-emitting diode.

    PubMed

    Jing, Lei; Wang, Yao; Zhao, Huifu; Ke, Hongliang; Wang, Xiaoxun; Gao, Qun

    2017-06-10

    In order to meet the requirements of uniform illumination for optical palm/fingerprint instruments and overcome the shortcomings of the poor uniform illumination on the working plane of the optical palm/fingerprint prism, a novel secondary optical lens with a free-form surface, compact structure, and high uniformity is presented in this paper. The design of the secondary optical lens is based on emission properties of the near-infrared light-emitting diode (LED) and basic principles of non-imaging optics, especially considering the impact of the thickness of the prism in the design. Through the numerical solution of Snell's law in geometric optics, we obtain the profile of the free-form surface of the lens. Using the optical software TracePro, we trace and simulate the illumination system. The results show that the uniformity is 89.8% on the working plane of the prism, and the test results show that the actual uniformity reaches 85.7% in the experiment, which provides an effective way for realizing a highly uniform illumination system with high-power near-infrared LED.

  18. Photon Reabsorption in Mixed CsPbCl3:CsPbI3 Perovskite Nanocrystal Films for Light-Emitting Diodes

    PubMed Central

    2017-01-01

    Cesium lead halide nanocrystals, CsPbX3 (X = Cl, Br, I), exhibit photoluminescence quantum efficiencies approaching 100% without the core–shell structures usually used in conventional semiconductor nanocrystals. These high photoluminescence efficiencies make these crystals ideal candidates for light-emitting diodes (LEDs). However, because of the large surface area to volume ratio, halogen exchange between perovskite nanocrystals of different compositions occurs rapidly, which is one of the limiting factors for white-light applications requiring a mixture of different crystal compositions to achieve a broad emission spectrum. Here, we use mixtures of chloride and iodide CsPbX3 (X = Cl, I) perovskite nanocrystals where anion exchange is significantly reduced. We investigate samples containing mixtures of perovskite nanocrystals with different compositions and study the resulting optical and electrical interactions. We report excitation transfer from CsPbCl3 to CsPbI3 in solution and within a poly(methyl methacrylate) matrix via photon reabsorption, which also occurs in electrically excited crystals in bulk heterojunction LEDs. PMID:28316756

  19. Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based Ultraviolet Light-Emitting Diode by the Piezo-Phototronic Effect.

    PubMed

    Wang, Xingfu; Peng, Wenbo; Yu, Ruomeng; Zou, Haiyang; Dai, Yejing; Zi, Yunlong; Wu, Changsheng; Li, Shuti; Wang, Zhong Lin

    2017-06-14

    Achievement of p-n homojuncted GaN enables the birth of III-nitride light emitters. Owing to the wurtzite-structure of GaN, piezoelectric polarization charges present at the interface can effectively control/tune the optoelectric behaviors of local charge-carriers (i.e., the piezo-phototronic effect). Here, we demonstrate the significantly enhanced light-output efficiency and suppressed efficiency droop in GaN microwire (MW)-based p-n junction ultraviolet light-emitting diode (UV LED) by the piezo-phototronic effect. By applying a -0.12% static compressive strain perpendicular to the p-n junction interface, the relative external quantum efficiency of the LED is enhanced by over 600%. Furthermore, efficiency droop is markedly reduced from 46.6% to 7.5% and corresponding droop onset current density shifts from 10 to 26.7 A cm -2 . Enhanced electrons confinement and improved holes injection efficiency by the piezo-phototronic effect are revealed and theoretically confirmed as the physical mechanisms. This study offers an unconventional path to develop high efficiency, strong brightness and high power III-nitride light sources.

  20. Wired.

    ERIC Educational Resources Information Center

    Conklin, Aaron R.

    1998-01-01

    Discusses technology's impact on scoreboard design: the development of the light-emitting diode (LED) display. How the LED system works is explained, as are the advantages and disadvantages of LED compared with incandescent lamp boards. Final comments address deciding on materials for scoreboard casings. (GR)

  1. Mn2- x Y x (MoO4)3 Phosphor Excited by UV GaN-Based Light-Emitting Diode for White Emission

    NASA Astrophysics Data System (ADS)

    Chen, Lung-Chien; Tseng, Zong-Liang; Hsu, Ting-Chun; Yang, Shengyi; Chen, Yuan-Bin

    2017-04-01

    One option for low-cost white light-emitting diodes (LEDs) is the combination of a near-ultraviolet (UV) LED chip (382 nm) and a single phosphor. Such Mn2- x Y x (MoO4)3 single phosphors have been fabricated by a simple solid-state reaction route and their emission color tuned by controlling the Mn doping amount. The chromaticity coordinates of the white light emitted by the UV GaN LED with the MnY(MoO4)3 phosphor were x = 0.5204 and y = 0.4050 [correlated color temperature (CCT) = 7958 K].

  2. Noniterative algorithm for improving the accuracy of a multicolor-light-emitting-diode-based colorimeter.

    PubMed

    Yang, Pao-Keng

    2012-05-01

    We present a noniterative algorithm to reliably reconstruct the spectral reflectance from discrete reflectance values measured by using multicolor light emitting diodes (LEDs) as probing light sources. The proposed algorithm estimates the spectral reflectance by a linear combination of product functions of the detector's responsivity function and the LEDs' line-shape functions. After introducing suitable correction, the resulting spectral reflectance was found to be free from the spectral-broadening effect due to the finite bandwidth of LED. We analyzed the data for a real sample and found that spectral reflectance with enhanced resolution gives a more accurate prediction in the color measurement.

  3. Noniterative algorithm for improving the accuracy of a multicolor-light-emitting-diode-based colorimeter

    NASA Astrophysics Data System (ADS)

    Yang, Pao-Keng

    2012-05-01

    We present a noniterative algorithm to reliably reconstruct the spectral reflectance from discrete reflectance values measured by using multicolor light emitting diodes (LEDs) as probing light sources. The proposed algorithm estimates the spectral reflectance by a linear combination of product functions of the detector's responsivity function and the LEDs' line-shape functions. After introducing suitable correction, the resulting spectral reflectance was found to be free from the spectral-broadening effect due to the finite bandwidth of LED. We analyzed the data for a real sample and found that spectral reflectance with enhanced resolution gives a more accurate prediction in the color measurement.

  4. Compact light-emitting diode lighting ring for video-assisted thoracic surgery.

    PubMed

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-01-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.

  5. Organometal halide perovskite light-emitting diodes with laminated carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Shan, Xin; Bade, Sri Ganesh R.; Geske, Thomas; Davis, Melissa; Smith, Rachel; Yu, Zhibin

    2017-08-01

    Organometal halide perovskite light-emitting diodes (LEDs) with laminated carbon nanotube (CNT) electrodes are reported. The LEDs have an indium tin oxide (ITO) bottom electrode, a screen printed methylammonium lead tribromide (MAPbBr3)/polymer composite thin film as the emissive layer, and laminated CNT as the top electrode. The devices can be turned on at 2.2 V, reaching a brightness of 4,960 cd m-2 and a current efficiency of 1.54 cd A-1 at 6.9 V. The greatly simplified fabrication process in this work can potentially lead to the scalable manufacturing of large size and low cost LED panels in the future.

  6. Ag/SiO2 nanoparticle-based plasmonic enhancement of light output in nanohole-patterned InGaN/GaN blue light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yun, Jin-Hyeon; Kim, Kyu Cheol; Yu, Yeon Tae; Yang, Jin Kyu; Polyakov, Alexander Y.; Lee, In-Hwan

    2017-10-01

    Improved performance of blue InGaN/GaN light-emitting diodes (LEDs) is realized as a result of fabricating nanohole patterns in the p-GaN contact layer and embedding the nanoholes with Ag/SiO2 nanoparticles to generate localized surface plasmons (LSPs). Good matching between LSP resonance energy and LED emission energy together with the close proximity between nanoparticles and the active region results in strong coupling between them. Consequently, the photoluminescence and electroluminescence intensities increased to 1.75 and 1.10, respectively, compared with nanohole patterned reference LEDs.

  7. Using light emitting diodes in traffic signals : final report.

    DOT National Transportation Integrated Search

    1998-07-01

    In 1993, the Oregon Department of Transportation (ODOT) began testing red light emitting diodes (LED's) as a replacement to the incandescent lamps in vehicular and pedestrian signals. Field performance was found to be reliable and subsequently ODOT b...

  8. Evaluation of light-emitting diode beacon light fixtures : final report.

    DOT National Transportation Integrated Search

    2009-12-01

    Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Peng; State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012; Bai, Xue, E-mail: baix@jlu.edu.cn, E-mail: yuzhang@jlu.edu.cn

    High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow fullmore » width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.« less

  10. A comparison of the antibacterial activity of the two methods of photodynamic therapy (using diode laser 810 nm and LED lamp 630 nm) against Enterococcus faecalis in extracted human anterior teeth.

    PubMed

    Asnaashari, Mohammad; Mojahedi, Seyed Masoud; Asadi, Zahra; Azari-Marhabi, Saranaz; Maleki, Alireza

    2016-03-01

    Failure of endodontic treatment is usually due to an inadequate disinfection of the root canal system. Enterococcus faecalis has been widely used as a valuable microbiological marker for in-vitro studies because of its ability to colonize in a biofilm like style in root canals, invading dentinal tubules and resistance to some endodontic treatments. The aim of this study was to investigate the antibacterial effects of two methods of photodynamic therapy using a light emitting diode lamp (LED lamp, 630 nm) and a diode laser (810 nm) on E. faecalis biofilms in anterior extracted human teeth. Fifty six single-rooted extracted teeth were used in this study. After routine root canal cleansing, shaping and sterilization, the teeth were incubated with E. faecalis for a period of two weeks. Teeth were then divided into two experimental groups (nu=23) and two control groups (nu=5). Teeth in one experimental group were exposed to a diode laser (810 nm), and in the other group samples were exposed to a LED lamp (630 nm). Intracanal bacterial sampling was done, and bacterial survival rate was then evaluated for each group. The Colony Forming Unit (CFU) in LED group (log10 CFUs=4.88±0.82) was significantly lower than the laser group (log CFUs=5.49±0.71) (p value=0.021). CFUs in positive control group (Log10 CFUs=10.96±0.44) were significantly higher than the treatment group (p˂0.001). No bacterial colony was found in negative control group. The results of this research show that photodynamic therapy could be an effective supplement in root canal disinfection. PDT using LED lamp was more effective than diode laser 810 nm in reducing CFUs of E. faecalis in human teeth. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. THE GREEN PHOSPHOR SrAl2O4:Eu2+, R3+ (R=Y, Dy) AND ITS APPLICATION IN ALTERNATING CURRENT LIGHT-EMITTING DIODES

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Yao; Xue, Shaochan; Deng, Xiaorong; Anqi; Luo; Liu, Fayong; Jiang, Yang; Chen, Shifu; Bahader, Ali

    2013-07-01

    The aim of the present investigation was to develop a phosphor to solve the flickering luminescence of alternating current (AC) light-emitting diodes (LED) by compensating the dark duration with appropriately persistent luminescence. The phosphor SrAl2O4:Eu2+ co-doped with Y3+ or Dy3+ was synthesized via solid-state reaction with H3BO3 as flux. The crystal structure and morphology were characterized by using X-ray diffraction (XRD) and Scanning Electron Microscope (SEM), respectively. The photoluminescence spectra were collected with a fluorescence spectrometer. The results demonstrated that appropriate amount of Y3+ or DY3+ doped was beneficial to suppress the by-product of Sr4Al14O25 which easily co-existed with the SrAl2O4 phase brought by the flux of H3BO3. However, too much Y3+ or DY3+ doped resulted in the formation of another impurity phase, i.e., the yttrium aluminum garnet of Y3Al5O12 and Dy3Al5O12. Comparatively, the doped DY3+ was more helpful in prolonging the persistent luminescence, while Y3+ was more efficient in enhancing luminescence intensity. To demonstrate the feasibility of the phosphor applied in AC LEDs, a nearly white AC LED was fabricated by coating the phosphor on a blue AC LED chip. The persistent luminescence was radiated from the AC LED device after turning power off. Moreover, the effect of the phosphor on compensating the AC LED dark duration through persistent luminescence was revealed by using the Keyence VW-9000 High-speed Microscope for the first time.

  12. Elimination of resistive losses in large-area LEDs by new diffusion-driven devices

    NASA Astrophysics Data System (ADS)

    Kivisaari, Pyry; Kim, Iurii; Suihkonen, Sami; Oksanen, Jani

    2017-02-01

    High-power operation of conventional GaN-based light-emitting diodes (LEDs) is severely limited by current crowding, which increases the bias voltage of the LED, concentrates light emission close to the p-type contact edge, and aggravates the efficiency droop. Fabricating LEDs on thick n-GaN substrates alleviates current crowding but requires the use of expensive bulk GaN substrates and fairly large n-contacts, which take away a large part of the active region (AR). In this work, we demonstrate through comparative simulations how the recently introduced diffusion-driven charge transport (DDCT) concept can be used to realize lateral heterojunction (LHJ) structures, which eliminate most of the lateral current crowding. Specifically in this work, we analyze how using a single-side graded AR can both facilitate electron and hole diffusion in DDCT and increase the effective AR thickness. Our simulations show that the increased effective AR thickness allows a substantial reduction in the efficiency droop at large currents, and that unlike conventional 2D LEDs, the LHJ structure shows practically no added efficiency loss or differential resistance due to current crowding. Furthermore, as both electrons and holes enter the AR from the same side without any notable potential barriers in the LHJ structure, the LHJ structure shows an additional wall-plug efficiency gain over the conventional structures under comparison. This injection from the same side is expected to be even more interesting in multiple quantum well structures, where carriers typically need to surpass several potential barriers in conventional LEDs before recombining. In addition to simulations, we also demonstrate selective-area growth of a finger structure suitable for operation as an LHJ device with 2µm distance between n- and p-GaN regions.

  13. Improving confocal microscopy with solid-state semiconductor excitation sources

    NASA Astrophysics Data System (ADS)

    Sivers, Nelson L.

    To efficiently excite the fluorescent dyes used in imaging biological samples with a confocal microscope, the wavelengths of the exciting laser must be near the fluorochrome absorption peak. However, this causes imaging problems when the fluorochrome absorption and emission spectra overlap significantly, i.e. have small Stokes shifts, which is the case for most fluorochromes that emit in the red to infrared. As a result, the reflected laser excitation cannot be distinguished from the information-containing fluorescence signal. However, cryogenically cooling the exciting laser diode enabled the laser emission wavelengths to be tuned to shorter wavelengths, decreasing the interference between the laser and the fluorochrome's fluorescence. This reduced the amount of reflected laser light in the confocal image. However, the cooled laser diode's shorter wavelength signal resulted in slightly less efficient fluorochrome excitation. Spectrophotometric analysis showed that as the laser diodes were cooled, their output power increased, which more than compensated for the lower fluorochrome excitation and resulted in significantly more intense fluorescence. Thus, by tuning the laser diode emission wavelengths away from the fluorescence signal, less reflected laser light and more fluorescence information reached the detector, creating images with better signal to noise ratios. Additionally, new, high, luminous flux, light-emitting diodes (LEDs) are now powerful enough to create confocal fluorescence signals comparable to those produced by the traditional laser excitation sources in fluorescence confocal microscopes. The broader LED spectral response effectively excited the fluorochrome, yet was spectrally limited enough for standard filter sets to separate the LED excitation from the fluorochrome fluorescence signal. Spectrophotometric analysis of the excitation and fluorescence spectra of several fluorochromes showed that high-powered, LED-induced fluorescence contained the same spectral information and could be more intense than that produced by lasers. An alternative, LED-based, confocal microscope is proposed in this thesis that would be capable of exciting multiple fluorochromes in a single specimen, producing images of several distinct cellular components simultaneously. The inexpensive, LED-based, confocal microscope would require lower peak excitation intensities to produce fluorescence signals equal to those produced by laser excitation, reducing cellular damage and slowing fluorochrome photobleaching.

  14. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy

    PubMed Central

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L.; Kobayashi, Hisataka

    2016-01-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT. PMID:26885688

  15. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy.

    PubMed

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L; Kobayashi, Hisataka

    2016-03-22

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT.

  16. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    PubMed

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  17. Role of the inversion layer on the charge injection in silicon nanocrystal multilayered light emitting devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tondini, S.; Dipartimento di Fisica, Informatica e Matematica, Università di Modena e Reggio Emilia, Via Campi 213/a, 41125 Modena; Pucker, G.

    2016-09-07

    The role of the inversion layer on injection and recombination phenomena in light emitting diodes (LEDs) is here studied on a multilayer (ML) structure of silicon nanocrystals (Si-NCs) embedded in SiO{sub 2}. Two Si-NC LEDs, which are similar for the active material but different in the fabrication process, elucidate the role of the non-radiative recombination rates at the ML/substrate interface. By studying current- and capacitance-voltage characteristics as well as electroluminescence spectra and time-resolved electroluminescence under pulsed and alternating bias pumping scheme in both the devices, we are able to ascribe the different experimental results to an efficient or inefficient minoritymore » carrier (electron) supply by the p-type substrate in the metal oxide semiconductor LEDs.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gyeong Won; Shim, Jong-In; Shin, Dong-Soo, E-mail: dshin@hanyang.ac.kr

    While there have been many discussions on the standard Si pn-diodes, little attention has been paid and confusion still arises on the ideality factor of the radiative recombination current in semiconductor light-emitting diodes (LEDs). In this letter, we theoretically demonstrate and experimentally confirm by using blue and infrared semiconductor LEDs that the ideality factor of the radiative recombination current is unity especially for low-current-density ranges. We utilize the data of internal quantum efficiency measured by the temperature-dependent electroluminescence to separate the radiative current component from the total current.

  19. Transcranial LED therapy for cognitive dysfunction in chronic, mild traumatic brain injury: two case reports

    NASA Astrophysics Data System (ADS)

    Naeser, Margaret A.; Saltmarche, Anita; Krengel, Maxine H.; Hamblin, Michael R.; Knight, Jeffrey A.

    2010-02-01

    Two chronic, traumatic brain injury (TBI) cases are presented, where cognitive function improved following treatment with transcranial light emitting diodes (LEDs). At age 59, P1 had closed-head injury from a motor vehicle accident (MVA) without loss of consciousness and normal MRI, but unable to return to work as development specialist in internet marketing, due to cognitive dysfunction. At 7 years post-MVA, she began transcranial LED treatments with cluster heads (2.1" diameter with 61 diodes each - 9x633nm, 52x870nm; 12-15mW per diode; total power, 500mW; 22.2 mW/cm2) on bilateral frontal, temporal, parietal, occipital and midline sagittal areas (13.3 J/cm2 at scalp, estimated 0.4 J/cm2 to brain cortex per area). Prior to transcranial LED, focused time on computer was 20 minutes. After 2 months of weekly, transcranial LED treatments, increased to 3 hours on computer. Performs nightly home treatments (now, 5 years, age 72); if stops treating >2 weeks, regresses. P2 (age 52F) had history of closed-head injuries related to sports/military training and recent fall. MRI shows fronto-parietal cortical atrophy. Pre-LED, was not able to work for 6 months and scored below average on attention, memory and executive function. Performed nightly transcranial LED treatments at home (9 months) with similar LED device, on frontal and parietal areas. After 4 months of LED treatments, returned to work as executive consultant, international technology consulting firm. Neuropsychological testing (post- 9 months of transcranial LED) showed significant improvement in memory and executive functioning (range, +1 to +2 SD improvement). Case 2 reported reduction in PTSD symptoms.

  20. Selective-area nanoheteroepitaxy for light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Wildeson, Isaac H.

    Over 20% of the electricity in the United States is consumed for lighting, and the majority of this energy is wasted as heat during the lighting process. A solid-state (or light emitting diode (LED)-based) light source has the potential of saving the United States billions of dollars in electricity and reducing megatons of global CO2 emissions annually. While white light LEDs are currently on the market with efficiencies that are superior to incandescent and fluorescent light sources, their high up-front cost is inhibiting mass adoption. One reason for the high cost is the inefficiency of green and amber LEDs that can used to make white light. The inefficiency of green and amber LEDs results in more of these chips being required, and thus a higher cost. Improvements in the performance of green and amber LEDs is also required in order to realize the full potential of solid-state lighting. Nanoheteroepitaxy is an interesting route towards achieving efficient green and amber LEDs as it resolves major challenges that are currently plaguing III-nitride LEDs such as high dislocation densities and limited active region critical thicknesses. A method for fabricating III-nitride nanopyramid LEDs is presented that employs conventional processing used in industry. The present document begins with an overview of the current challenges in III-nitride LEDs and the benefits of nanoheteroepitaxy. A process for controlled selective-area growth of nanopyramid LEDs by organometallic vapor phase epitaxy has been developed throughout the course of this work. Dielectric templates used for the selective-area growth are patterned by two methods, namely porous anodic alumina and electron-beam lithography. The dielectric templates serve as efficient dislocation filters; however, planar defects are initiated during lower temperature growth on the nanopyramids. The quantum wells outline six semipolar planes that form each hexagonal pyramid. Quantum wells grown on these semipolar planes generate built-in electric fields with magnitudes that are one-tenth those on the polar c-plane with the same (In,Ga)N composition. The lateral strain relaxation innate in the nanoheterostructures allows greater coherent InN incorporation in the nanopyramids as compared to thin-film heterostructures, as confirmed by electroluminescence and transmission electron microscopy. In addition to applications for light emitting diodes, selective area growth of GaN nanostructures is also important for biological and sensing applications. A process for fabricating porous GaN nanorods is presented that also relies on selective-area organometallic vapor phase epitaxy. The nanopore walls are primarily outlined by nonpolar planes, and the diameter of the nanopore can be controlled by the diameter of the opening in the dielectric template and the growth time. The lining of the nanopore walls is comprised of crystalline GaN, which makes these structures interesting for sensing, electrical and optical applications.

  1. Light Emitting Diode (LED)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  2. Single nanowire light-emitting diodes using uniaxial and coaxial InGaN/GaN multiple quantum wells synthesized by metalorganic chemical vapor deposition.

    PubMed

    Ra, Yong-Ho; Navamathavan, Rangaswamy; Yoo, Hee-Il; Lee, Cheul-Ro

    2014-03-12

    We report the controlled synthesis of InGaN/GaN multiple quantum well (MQW) uniaxial (c-plane) and coaxial (m-plane) nanowire (NW) heterostructures by metalorganic chemical vapor deposition. Two kinds of heterostructure NW light-emitting diodes (LEDs) have been fabricated: (1) 10 pairs of InGaN/GaN MQW layers in the c-plane on the top of n-GaN NWs where Mg-doped p-GaN NW is axially grown (2) p-GaN/10 pairs of InGaN/GaN shell structure were surrounded by n-GaN core. Here, we discuss a comparative analysis based on the m-plane and the c-plane oriented InGaN/GaN MQW NW arrays. High-resolution transmission electron microscopy studies revealed that the barrier and the well structures of MQW were observed to be substantially clear with regular intervals while the interface regions were extremely sharp. The c-plane and m-plane oriented MQW single NW was utilized for the parallel assembly fabrication of the LEDs via a focused ion beam. The polarization induced effects on the c-plane and m-plane oriented MQW NWs were precisely compared via power dependence electroluminescence. The electrical properties of m-plane NWs exhibited superior characteristics than that of c-plane NWs owing to the absence of piezoelectric polarization fields. According to this study, high-quality m-plane coaxial NWs can be utilized for the realization of high-brightness LEDs.

  3. InGaN-Based Light-Emitting Diodes Grown on a Micro/Nanoscale Hybrid Patterned Sapphire Substrate.

    PubMed

    Ke, Wen-Cheng; Lee, Fang-Wei; Chiang, Chih-Yung; Liang, Zhong-Yi; Chen, Wei-Kuo; Seong, Tae-Yeon

    2016-12-21

    A hybrid patterned sapphire substrate (hybrid-PSS) was prepared using an anodic aluminum oxide etching mask to transfer nanopatterns onto a conventional patterned sapphire substrate with microscale patterns (bare-PSS). The threading dislocation (TD) suppression of light-emitting diodes (LEDs) grown on a hybrid-PSS (HP-LED) exhibits a smaller reverse leakage current compared with that of LEDs grown on a bare-PSS (BP-LED). The strain-free GaN buffer layer and fully strained InGaN active layer were evidenced by cross-sectional Raman spectra and reciprocal space mapping of the X-ray diffraction intensity for both samples. The calculated piezoelectric fields for both samples are close, implying that the quantum-confined Stark effect was not a dominant mechanism influencing the electroluminescence (EL) peak wavelength under a high injection current. The bandgap shrinkage effect of the InGaN well layer was considered to explain the large red-shifted EL peak wavelength under high injection currents. The estimated LED chip temperatures rise from room temperature to 150 °C and 75 °C for BP-LED and HP-LED, respectively, at a 600-mA injection current. This smaller temperature rise of the LED chip is attributed to the increased contact area between the sapphire and the LED structural layer because of the embedded nanopattern. Although the chip generates more heat at high injection currents, the accumulated heat can be removed to outside the chip effectively. The high diffuse reflection (DR) rate of hybrid-PSS increases the escape probability of photons, resulting in an increase in the viewing angle of the LEDs from 130° to 145°. The efficiency droop was reduced from 46% to 35%, effects which can be attributed to the elimination of TDs and strain relaxation by embedded nanopatterns. In addition, the light output power of HP-LED at 360-mA injection currents exhibits a ∼ 22.3% enhancement, demonstrating that hybrid-PSSs are beneficial to apply in high-power LEDs.

  4. Deep-levels in gallium arsenide for device applications

    NASA Astrophysics Data System (ADS)

    McManis, Joseph Edward

    Defects in semiconductors have been studied for over 40 years as a diagnostic of the quality of crystal growth. In this thesis, we investigate GaAs deep-levels specifically intended for devices. This thesis summarizes our efforts to characterize the near-infrared photoluminescence from deep-levels, study optical transitions via absorption, and fabricate and characterize deep-level light-emitting diodes (LEDs). This thesis also describes the first tunnel diodes which explicitly make use of GaAs deep-levels. Photoluminescence measurements of GaAs deep-levels showed a broad peak around a wavelength extending from 1.0--1.7 mum, which includes important wavelengths for fiber-optic communications (1.3--1.55 mum). Transmission measurements show the new result that very little of the radiative emission is self-absorbed. We measured the deep-level photoluminescence at several temperatures. We are also the first to report the internal quantum efficiency associated with the deep-level transitions. We have fabricated LEDs that, utilize the optical transitions of GaAs deep-levels. The electroluminescence spectra showed a broad peak from 1.0--1.7 mum at low currents, but the spectrum exhibited a blue-shift as the current was increased. To improve device performance, we designed an AlGaAs layer into the structure of the LEDs. The AlGaAs barrier layer acts as a resistive barrier so that the holes in the p-GaAs layer are swept away from underneath the gold p-contact. The AlGaAs layer also reduces the blue-shift by acting as a potential barrier so that only higher-energy holes are injected. We found that the LEDs with AlGaAs were brighter at long wavelengths, which was a significant improvement. Photoluminescence measurements show that the spectral blue-shift is not due to sample heating. We have developed a new physical model to explain the blue-shift: it is caused by Coloumb charging of the deep-centers. We have achieved the first tunnel diodes with which specifically utilize deep-levels in low-temperature-grown (LTG) GaAs. Our devices show the largest ever peak current density in a GaAs tunnel diode at room temperature. Our devices also show significant room-temperature peak-to-valley current ratios. The shape of the current-voltage characteristic and the properties of the optical emission enable us to determine the peak and valley transport mechanisms.

  5. Effect of Dopant Activation on Device Characteristics of InGaN-based Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Lacroce, Nicholas; Liu, Guangyu; Tan, Chee-Keong; Arif, Ronald A.; Lee, Soo Min; Tansu, Nelson

    2015-03-01

    Achieving high uniformity in growths and device characteristics of InGaN-based light-emitting diodes (LEDs) is important for large scale manufacturing. Dopant activation and maintaining control of variables affecting dopant activation are critical steps in the InGaN-based light emitting diodes (LEDs) fabrication process. In the epitaxy of large scale production LEDs, in-situ post-growth annealing is used for activating the Mg acceptor dopant in the p-AlGaN and p-GaN of the LEDs. However, the annealing temperature varies with respect to position in the reactor chamber, leading to severe uniform dopant activation issue across the devices. Thus, it is important to understand how the temperature gradient and the resulting variance in Mg acceptor activation will alter the device properties. In this work, we examine the effect of varying p-type doping levels in the p-GaN layers and AlGaN electron blocking layer of the GaN LEDs on the optoelectronic properties including the band profile, carrier concentration, current density, output power and quantum efficiency. By understanding the variations and its effect, the identification of the most critical p-type doping layer strategies to address this variation will be clarified.

  6. Influence of the Thermal Conductivity of Thermally Conductive Plastics on the Thermal Distribution of an Light-Emitting Diode Headlight for Vehicles.

    PubMed

    Lee, Dong Kyu; Lee, Jae Min; Cho, Moon Uk; Park, Hyun Jung; Cha, Yu-Jung; Kim, Hyeong Jin; Kwak, Joon Seop

    2018-09-01

    This paper investigates the thermal distribution of an LED headlight for vehicles based on the thermal conductivity of thermally conductive plastics (TCP). In general, heat dissipation structures used for LED headlights are made from metallic materials. However, headlight structures made from TCP have not been investigated. The headlights made from TCP having a various thermal conductivity were fabricated by injection molding with and without a metal plate insert. The temperature characteristics were compared and analyzed using thermal simulations and measurement. The inserted metal in TCP greatly reduced the temperature at solder point, indicating that the fast heat dissipation from the high power LED package to TCP though the inserted metal is essential. The measured temperature at solder points decreased as the thermal conductivity of TCP increased, which is well matched to the simulation results. The measured temperature at the solder point was lower than 150 °C when the thermal conductivity of the TCP was 10 W/mK.

  7. Effect of hole transport on performance of infrared type-II superlattice light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youxi; Suchalkin, Sergey; Kipshidze, Gela

    2015-04-28

    The effect of hole transport on the performance of infrared light emitting diodes (LED) was investigated. The active area of the LEDs comprised two type-II superlattices with different periods and widths connected in series. Electroluminescence spectra of the devices with different positions of long wave and mid wave superlattice sections were mostly contributed by the superlattice closest to the p-contact. The experimental results indicate that due to suppressed vertical hole transport, the recombination of electrically injected electrons and holes in a type II superlattice LED active region takes place within a few superlattice periods near p-barrier. Possible reason for themore » effect is reduction of hole diffusion coefficient in an active area of a superlattice LED under bias.« less

  8. Effect of threading defects on InGaN /GaN multiple quantum well light emitting diodes

    NASA Astrophysics Data System (ADS)

    Ferdous, M. S.; Wang, X.; Fairchild, M. N.; Hersee, S. D.

    2007-12-01

    Photoelectrochemical etching was used to measure the threading defect (TD) density in InGaN multiple quantum well light-emitting diodes (LEDs) fabricated from commercial quality epitaxial wafers. The TD density was measured in the LED active region and then correlated with the previously measured characteristics of these LEDs. It was found that the reverse leakage current increased exponentially with TD density. The temperature dependence of this dislocation-related leakage current was consistent with a hopping mechanism at low reverse-bias voltage and Poole-Frenkel emission at higher reverse-bias voltage. The peak intensity and spectral width of the LED electroluminescence were found to be only weakly dependent on TD density for the measured TD range of 1×107-2×108cm-2.

  9. Effect of gold wire bonding process on angular correlated color temperature uniformity of white light-emitting diode.

    PubMed

    Wu, Bulong; Luo, Xiaobing; Zheng, Huai; Liu, Sheng

    2011-11-21

    Gold wire bonding is an important packaging process of lighting emitting diode (LED). In this work, we studied the effect of gold wire bonding on the angular uniformity of correlated color temperature (CCT) in white LEDs whose phosphor layers were coated by freely dispersed coating process. Experimental study indicated that different gold wire bonding impacts the geometry of phosphor layer, and it results in different fluctuation trends of angular CCT at different spatial planes in one LED sample. It also results in various fluctuating amplitudes of angular CCT distributions at the same spatial plane for samples with different wire bonding angles. The gold wire bonding process has important impact on angular uniformity of CCT in LED package. © 2011 Optical Society of America

  10. Monolithically Integrated Metal/Semiconductor Tunnel Junction Nanowire Light-Emitting Diodes.

    PubMed

    Sadaf, S M; Ra, Y H; Szkopek, T; Mi, Z

    2016-02-10

    We have demonstrated for the first time an n(++)-GaN/Al/p(++)-GaN backward diode, wherein an epitaxial Al layer serves as the tunnel junction. The resulting p-contact free InGaN/GaN nanowire light-emitting diodes (LEDs) exhibited a low turn-on voltage (∼2.9 V), reduced resistance, and enhanced power, compared to nanowire LEDs without the use of Al tunnel junction or with the incorporation of an n(++)-GaN/p(++)-GaN tunnel junction. This unique Al tunnel junction overcomes some of the critical issues related to conventional GaN-based tunnel junction designs, including stress relaxation, wide depletion region, and light absorption, and holds tremendous promise for realizing low-resistivity, high-brightness III-nitride nanowire LEDs in the visible and deep ultraviolet spectral range. Moreover, the demonstration of monolithic integration of metal and semiconductor nanowire heterojunctions provides a seamless platform for realizing a broad range of multifunctional nanoscale electronic and photonic devices.

  11. Aging characteristics of blue InGaN micro-light emitting diodes at an extremely high current density of 3.5 kA cm-2

    NASA Astrophysics Data System (ADS)

    Tian, Pengfei; Althumali, Ahmad; Gu, Erdan; Watson, Ian M.; Dawson, Martin D.; Liu, Ran

    2016-04-01

    The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm-2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.

  12. Design of a detection system of highlight LED arrays' effect on the human organization

    NASA Astrophysics Data System (ADS)

    Chen, Shuwang; Shi, Guiju; Xue, Tongze; Liu, Yanming

    2009-05-01

    LED (Light Emitting Diode) has many advantages in the intensity, wavelength, practicality and price, so it is feasible to apply in biomedicine engineering. A system for the research on the effect of highlight LED arrays to human organization is designed. The temperature of skin surface can rise if skin and organization are in irradiation by highlight LED arrays. The metabolism and blood circulation of corresponding position will be quicker than those not in the shine, so the surface temperature will vary in different position of skin. The structure of LED source arrays system is presented and a measure system for studying LED's influence on human organization is designed. The temperature values of shining point are detected by infrared temperature detector. Temperature change is different according to LED parameters, such as the number, irradiation time and luminous intensity of LED. Experimental device is designed as an LED arrays pen. The LED arrays device is used to shine the points of human body, then it may effect on personal organization as well as the acupuncture. The system is applied in curing a certain skin disease, such as age pigment, skin cancer and fleck.

  13. Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications

    NASA Astrophysics Data System (ADS)

    Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.

    2016-02-01

    Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.

  14. Light-emitting diodes for analytical chemistry.

    PubMed

    Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K

    2014-01-01

    Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.

  15. Perspective: Toward efficient GaN-based red light emitting diodes using europium doping

    NASA Astrophysics Data System (ADS)

    Mitchell, Brandon; Dierolf, Volkmar; Gregorkiewicz, Tom; Fujiwara, Yasufumi

    2018-04-01

    While InGaN/GaN blue and green light-emitting diodes (LEDs) are commercially available, the search for an efficient red LED based on GaN is ongoing. The realization of this LED is crucial for the monolithic integration of the three primary colors and the development of nitride-based full-color high-resolution displays. In this perspective, we will address the challenges of attaining red luminescence from GaN under current injection and the methods that have been developed to circumvent them. While several approaches will be mentioned, a large emphasis will be placed on the recent developments of doping GaN with Eu3+ to achieve an efficient red GaN-based LED. Finally, we will provide an outlook to the future of this material as a candidate for small scale displays such as mobile device screens or micro-LED displays.

  16. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays.

    PubMed

    Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran

    2016-01-11

    Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.

  17. The High-efficiency LED Driver for Visible Light Communication Applications

    PubMed Central

    Gong, Cihun-Siyong Alex; Lee, Yu-Chen; Lai, Jyun-Liang; Yu, Chueh-Hao; Huang, Li Ren; Yang, Chia-Yen

    2016-01-01

    This paper presents a LED driver for VLC. The main purpose is to solve the low data rate problem used to be in switching type LED driver. The GaN power device is proposed to replace the traditional silicon power device of switching LED driver for the purpose of increasing switching frequency of converter, thereby increasing the bandwidth of data transmission. To achieve high efficiency, the diode-connected GaN power transistor is utilized to replace the traditional ultrafast recovery diode used to be in switching type LED driver. This work has been experimentally evaluated on 350-mA output current. The results demonstrate that it supports the data of PWM dimming level encoded in the PPM scheme for VLC application. The experimental results also show that system’s efficiency of 80.8% can be achieved at 1-Mb/s data rate. PMID:27498921

  18. Thermal investigation on high power dfb broad area lasers at 975 nm, with 60% efficiency

    NASA Astrophysics Data System (ADS)

    Mostallino, R.; Garcia, M.; Deshayes, Y.; Larrue, A.; Robert, Y.; Vinet, E.; Bechou, L.; Lecomte, M.; Parillaud, O.; Krakowski, M.

    2016-03-01

    The demand of high power diode lasers in the range of 910-980nm is regularly growing. This kind of device for many applications, such as fiber laser pumping [1], material processing [1], solid-state laser pumping [1], defense and medical/dental. The key role of this device lies in the efficiency (𝜂𝐸) of converting input electrical power into output optical power. The high value of 𝜂𝐸 allows high power level and reduces the need in heat dissipation. The requirement of wavelength stabilization with temperature is more obvious in the case of multimode 975nm diode lasers used for pumping Yb, Er and Yb/Er co-doped solid-state lasers, due to the narrow absorption line close to this wavelength. Such spectral width property (<1 nm), combined with wavelength thermal stabilization (0.07 𝑛𝑚 • °𝐶-1), provided by a uniform distributed feedback grating (DFB) introduced by etching and re-growth process techniques, is achievable in high power diode lasers using optical feedback. This paper reports on the development of the diode laser structure and the process techniques required to write the gratings taking into account of the thermal dissipation and optical performances. Performances are particularly determined in terms of experimental electro-optical characterizations. One of the main objectives is to determine the thermal resistance of the complete assembly to ensure the mastering of the diode laser temperature for operating condition. The classical approach to determine junction temperature is based on the infrared thermal camera, the spectral measurement and the pulse electrical method. In our case, we base our measurement on the spectral measurement but this approach is not well adapted to the high power diodes laser studied. We develop a new measurement based on the pulse electrical method and using the T3STERequipment. This method is well known for electronic devices and LEDs but is weakly developed for the high power diodes laser. This crucial measurement compared to spectral one is critical for understand the thermal management of diode laser device and improve the structure based on design for reliability. To have a perfect relation between structure, and their modification, and temperature, FEM simulations are performed using COMSOL software. In this case, we can understand the impact of structure on the isothermal distribution and then reveal the sensitive zones in the diode laser. To validate the simulation, we compare the simulation results to the experimental one and develop an analytical model to determine the different contributions of the thermal heating. This paper reports on the development laser structure and the process techniques required to write the gratings. Performances are particularly characterized in terms of experimental electro-optical characterization and spectral response. The extraction of thermal resistance (Rth) is particularly difficult, because of the implicit low value (Rth ≈ 2𝐾/𝑊) and the multimodal nature of the diode laser. In such a context, thermal resistance has been measured using a dedicated equipment namely T3STER©. The results have been compared with those given by the well-known technique achieved from the spectrum of the diode laser (central wavelength variations vs temperature) that is more difficult to apply for multimodal diodes laser. The last section deals with thermal simulations based on finite elements method (FEM) modeling in order to estimate junction temperature . This study represent a significant part of the general Design for Reliability (DfR) effort carried out on such devices to produce efficient and reliable high power devices at the industrial level.

  19. Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yao; Liang, Meng; Fu, Jiajia

    2015-03-15

    In this work, novel double Electron Blocking Layers for InGaN/GaN multiple quantum wells light-emitting diodes were proposed to mitigate the efficiency droop at high current density. The band diagram and carriers distributions were investigated numerically. The results indicate that due to a newly formed holes stack in the p-GaN near the active region, the hole injection has been improved and an uniform carriers distribution can be achieved. As a result, in our new structure with double Electron Blocking Layers, the efficiency droop has been reduced to 15.5 % in comparison with 57.3 % for the LED with AlGaN EBL atmore » the current density of 100 A/cm{sup 2}.« less

  20. Red/near-infrared light-emitting diode therapy for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Naeser, Margaret A.; Martin, Paula I.; Ho, Michael D.; Krengel, Maxine H.; Bogdanova, Yelena; Knight, Jeffrey A.; Yee, Megan K.; Zafonte, Ross; Frazier, Judith; Hamblin, Michael R.; Koo, Bang-Bon

    2015-05-01

    This invited paper reviews our research with scalp application of red/near-infrared (NIR) light-emitting diodes (LED) to improve cognition in chronic, traumatic brain injury 1. Application of red/NIR light improves mitochondrial function (especially hypoxic/compromised cells) promoting increased ATP, important for cellular metabolism. Nitric oxide is released locally, increasing regional cerebral blood flow. Eleven chronic, mTBI participants with closed-head injury and cognitive dysfunction received 18 outpatient treatments (MWF, 6 Wks) starting at 10 Mo. to 8 Yr. post-mTBI (MVA, sports-related, IED blast injury). LED therapy is non-invasive, painless, non-thermal (FDA-cleared, non-significant risk device). Each LED cluster head (2.1" diameter, 500mW, 22.2mW/cm2) was applied 10 min (13J/cm2) to 11 scalp placements: midline, from front-to-back hairline; and bilaterally on dorsolateral prefrontal cortex, temporal, and parietal areas. Testing performed pre- and post-LED (+1 Wk, 1 and 2 Mo post- 18th treatment) showed significant linear trend for LED effect over time, on improved executive function and verbal memory. Fewer PTSD symptoms were reported. New studies at VA Boston include TBI patients treated with transcranial LED (26J/cm2); or treated with only intranasal red, 633nm and NIR, 810nm diodes placed into the nostrils (25 min, 6.5mW, 11.4J/cm2). Intranasal LEDs are hypothesized to deliver photons to hippocampus. Results are similar to Naeser et al. (2014). Actigraphy sleep data show increased sleep time (average, +1 Hr/night) post-18th transcranial or intranasal LED treatment. LED treatments may be self-administered at home (Naeser et al., 2011). A shamcontrolled study with Gulf War Illness Veterans is underway.

  1. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation

    NASA Technical Reports Server (NTRS)

    Yorio, N. C.; Goins, G. D.; Kagie, H. R.; Wheeler, R. M.; Sager, J. C.

    2001-01-01

    Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 micromoles m-2 s-1) blue light (400-500 nm) from blue fluorescent (BF) lamps. At 21 days after planting (DAP), leaf photosynthetic rates and stomatal conductance were greater for plants grown under CWF light than for those grown under red LEDs, with or without supplemental blue light. At harvest (21 DAP), total dry-weight accumulation was significantly lower for all species tested when grown under red LEDs alone than when grown under CWF light or red LEDs + 10% BF light. Moreover, total dry weight for radish and spinach was significantly lower under red LEDs + 10% BF than under CWF light, suggesting that addition of blue light to the red LEDs was still insufficient for achieving maximal growth for these crops.

  2. Ultraviolet Electroluminescence from ZnS@ZnO Core-Shell Nanowires/p-GaN Introduced by Exciton Localization.

    PubMed

    Fang, Xuan; Wei, Zhipeng; Yang, Yahui; Chen, Rui; Li, Yongfeng; Tang, Jilong; Fang, Dan; Jia, Huimin; Wang, Dengkui; Fan, Jie; Ma, Xiaohui; Yao, Bin; Wang, Xiaohua

    2016-01-27

    We investigate the electroluminescence (EL) from light emitting diodes (LEDs) of ZnO nanowires/p-GaN structure and ZnS@ZnO core-shell nanowires/p-GaN structure. With the increase of forward bias, the emission peak of ZnO nanowires/p-GaN structure heterojunction shows a blue-shift, while the ZnS@ZnO core-shell nanowires/p-GaN structure demonstrates a changing EL emission; the ultraviolet (UV) emission at 378 nm can be observed. This discrepancy is related to the localized states introduced by ZnS particles, which results in a different carrier recombination process near the interfaces of the heterojunction. The localized states capture the carriers in ZnO nanowires and convert them to localized excitons under high forward bias. A strong UV emission due to localized excitons can be observed. Our results indicated that utilizing localized excitons should be a new route toward ZnO-based ultraviolet LEDs with high efficiency.

  3. Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okur, Serdal; Nami, Mohsen; Rishinaramangalam, Ashwin K.

    Here, the internal quantum efficiencies (IQE) and carrier lifetimes of semipolar (more » $$20\\bar{2}$$$\\bar{1}$$) InGaN/GaN LEDs with different active regions are measured using temperature-dependent, carrier-density-dependent, and time-resolved photoluminescence. Three active regions are investigated: one 12-nm-thick single quantum well (SQW), two 6-nm-thick QWs, and three 4-nm-thick QWs. The IQE is highest for the 12-nm-thick SQW and decreases as the well width decreases. The radiative lifetimes are similar for all structures, while the nonradiative lifetimes decrease as the well width decreases. The superior IQE and longer nonradiative lifetime of the SQW structure suggests using thick SQW active regions for high brightness semipolar ($$20\\bar{2}$$$\\bar{1}$$) LEDs.« less

  4. Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN light-emitting diodes

    DOE PAGES

    Okur, Serdal; Nami, Mohsen; Rishinaramangalam, Ashwin K.; ...

    2017-01-26

    Here, the internal quantum efficiencies (IQE) and carrier lifetimes of semipolar (more » $$20\\bar{2}$$$\\bar{1}$$) InGaN/GaN LEDs with different active regions are measured using temperature-dependent, carrier-density-dependent, and time-resolved photoluminescence. Three active regions are investigated: one 12-nm-thick single quantum well (SQW), two 6-nm-thick QWs, and three 4-nm-thick QWs. The IQE is highest for the 12-nm-thick SQW and decreases as the well width decreases. The radiative lifetimes are similar for all structures, while the nonradiative lifetimes decrease as the well width decreases. The superior IQE and longer nonradiative lifetime of the SQW structure suggests using thick SQW active regions for high brightness semipolar ($$20\\bar{2}$$$\\bar{1}$$) LEDs.« less

  5. InGaN stress compensation layers in InGaN/GaN blue LEDs with step graded electron injectors

    NASA Astrophysics Data System (ADS)

    Sheremet, V.; Gheshlaghi, N.; Sözen, M.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2018-04-01

    We investigate the effect of InGaN stress compensation layer on the properties of light emitting diodes based on InGaN/GaN multiple quantum well (MQW) structures with step-graded electron injectors. Insertion of an InGaN stress compensation layer between n-GaN and the step graded electron injector provides, among others, strain reduction in the MQW region and as a result improves epitaxial quality that can be observed by 15-fold decrease of V-pit density. We observed more uniform distribution of In between quantum wells in MQW region from results of electro- and photoluminescence measurement. These structural improvements lead to increasing of radiant intensity by a factor of 1.7-2.0 and enhancement of LED efficiency by 40%.

  6. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mary A.; Tangyunyong, Paiboon; Cole, Edward I.

    2016-01-14

    Laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes (LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increased leakage ismore » not present in devices without AVM signals. Transmission electron microscopy analysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less

  7. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    DOE PAGES

    Miller, Mary A.; Tangyunyong, Paiboon; Edward I. Cole, Jr.

    2016-01-12

    In this study, laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes(LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increasedmore » leakage is not present in devices without AVM signals. Transmission electron microscopyanalysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less

  8. In−Vitro and In−Vivo Noise Analysis for Optical Neural Recording

    PubMed Central

    Foust, Amanda J.; Schei, Jennifer L.; Rojas, Manuel J.; Rector, David M.

    2008-01-01

    Laser diodes (LD) are commonly used for optical neural recordings in chronically recorded animals and humans, primarily due to their brightness and small size. However, noise introduced by LDs may counteract the benefits of brightness when compared to low−noise light emitting diodes (LEDs). To understand noise sources in optical recordings, we systematically compared instrument and physiological noise profiles in two recording paradigms. A better understanding of noise sources will help improve optical recordings and make them more practical with fewer averages. We stimulated lobster nerves and rat cortex, then compared the root mean square (RMS) noise and signal−to−noise ratios (SNRs) of data obtained with LED, superluminescent diode (SLD) and LD illumination for different numbers of averages. The LED data exhibited significantly higher SNRs in fewer averages than LD data in all recordings. In the absence of tissue, LED noise increased linearly with intensity, while LD noise increased sharply in the transition to lasing and settled to noise levels significantly higher than the LED’s, suggesting that speckle noise contributed to the LD’s higher noise and lower SNRs. Our data recommend low coherence and portable light sources for in−vivo chronic neural recording applications. PMID:19021365

  9. Enhanced light extraction efficiency of GaN-based light-emittng diodes by nitrogen implanted current blocking layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong Deok; Oh, Seung Kyu; Park, Min Joo

    Highlights: • A nitrogen implanted current-blocking layer was successfully demonstrated. • Light-extraction efficiency and radiant intensity was increased by more than 20%. • Ion implantation was successfully implemented in GaN based light-emitting diodes. - Abstract: GaN-based light emitting diodes (LEDs) with a nitrogen implanted current-blocking layer (CBL) were successfully demonstrated for improving the light extraction efficiency (LEE) and radiant intensity. The LEE and radiant intensity of the LEDs with a shallow implanted CBL with nitrogen was greatly increased by more than 20% compared to that of a conventional LED without the CBL due to an increase in the effective currentmore » path, which reduces light absorption at the thick p-pad electrode. Meanwhile, deep implanted CBL with a nitrogen resulted in deterioration of the LEE and radiant intensity because of formation of crystal damage, followed by absorption of the light generated at the multi-quantum well(MQW). These results clearly suggest that ion implantation method, which is widely applied in the fabrication of Si based devices, can be successfully implemented in the fabrication of GaN based LEDs by optimization of implanted depth.« less

  10. Comparative and quantitative analysis of white light-emitting diodes and other lamps used for home illumination

    NASA Astrophysics Data System (ADS)

    Rubinger, Rero Marques; da Silva, Edna Raimunda; Pinto, Daniel Zaroni; Rubinger, Carla Patrícia Lacerda; Oliveira, Adhimar Flávio; da Costa Bortoni, Edson

    2015-01-01

    We compared the photometric and radiometric quantities in the visible, ultraviolet, and infrared spectra of white light-emitting diodes (LEDs), incandescent light bulbs and a compact fluorescent lamp used for home illumination. The color-rendering index and efficiency-related quantities were also used as auxiliary tools in this comparison. LEDs have a better performance in all aspects except for the color-rendering index, which is better with an incandescent light bulb. Compact fluorescent lamps presented results that, to our knowledge, do not justify their substitution for the incandescent light bulb. The main contribution of this work is an approach based on fundamental quantities to evaluate LEDs and other light sources.

  11. Reflectors with directional-mixed reflection properties for application in luminaries with high-power LED diodes

    NASA Astrophysics Data System (ADS)

    Zaremba, Krzysztof

    2008-06-01

    Application of directional-mixed reflectors results in a luminance decrease of the apparent image of light emitting diodes (LEDs), which is advantageous as far as glare reduction is concerned. On the other hand, reflectors have a negative impact on luminous intensity curves of the luminaries. This work analyzes an impact of surfaces with directional-mixed reflection properties in a mirror reflector designed for a luminary equipped with high-power LEDs. We present an algorithm used to determine the shape of the reflector of the surface with small scattering, where the axis twist angle for a parabolic reflector varies in a predefined range and follows a power function.

  12. Low Level Light Therapy with Light-Emitting Diodes for the Aging Face.

    PubMed

    Calderhead, R Glen; Vasily, David B

    2016-07-01

    Low level light therapy (LLLT) with light-emitting diodes (LEDs) is emerging from the mists of black magic as a solid medico-scientific modality, with a substantial buildup of corroborative bodies of evidence for its efficacy and elucidation of the modes of action. Reports are appearing from many different specialties; however, of particular interest to plastic surgeons treating the aging face is the proven action of LED-LLLT on skin cells in both the epidermis and dermis and enhanced blood flow. Thus, LED-LLLT is a safe and effective stand-alone therapy for patients who are prepared to wait until the final effect is perceived. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Blue light emission from the heterostructured ZnO/InGaN/GaN

    PubMed Central

    2013-01-01

    ZnO/InGaN/GaN heterostructured light-emitting diodes (LEDs) were fabricated by molecular beam epitaxy and atomic layer deposition. InGaN films consisted of an Mg-doped InGaN layer, an undoped InGaN layer, and a Si-doped InGaN layer. Current-voltage characteristic of the heterojunction indicated a diode-like rectification behavior. The electroluminescence spectra under forward biases presented a blue emission accompanied by a broad peak centered at 600 nm. With appropriate emission intensity ratio, the heterostructured LEDs had potential application in white LEDs. Moreover, a UV emission and an emission peak centered at 560 nm were observed under reverse bias. PMID:23433236

  14. A lamp light-emitting diode-induced fluorescence detector for capillary electrophoresis.

    PubMed

    Xu, Jing; Xiong, Yan; Chen, Shiheng; Guan, Yafeng

    2008-07-15

    A light-emitting diode-induced fluorescence detector (LED-FD) for capillary electrophoresis was constructed and evaluated. A lamp LED with an enhanced emission spectrum and a band pass filter was used as the excitation light source. Refractive index matching fluid (RIMF) was used in the detection cell to reduce scattering light and the noise level. The limit of detection (LOD) for fluorescein was 1.5 nM (SNR=3). The system exhibited linear responses in the range of 1 x 10(-8) to 5 x 10(-6)M (R=0.999). Application of the lamp LED-FD for the analysis of FITC-labeled ephedra herb extract by capillary electrophoresis was demonstrated.

  15. Emergency Lighting Technology Evolves To Save Lives.

    ERIC Educational Resources Information Center

    Gregory, Dennis

    2001-01-01

    Explores the benefits of including high-brightness Light Emitting Diodes (LEDs) for emergency systems and its use in residence halls. LED emergency lighting options and their qualifications are also highlighted.(GR)

  16. LED roadway lighting, volume 2 : field evaluations and software comparisons.

    DOT National Transportation Integrated Search

    2012-10-01

    The use of light-emitting diodes (LEDs) for roadway lighting can potentially save energy costs and reduce the frequency of maintenance. The objective of this study is to explore the current state of the art in LED roadway lighting technology. Three s...

  17. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    NASA Astrophysics Data System (ADS)

    Feng, Shih-Wei; Liao, Po-Hsun; Leung, Benjamin; Han, Jung; Yang, Fann-Wei; Wang, Hsiang-Chen

    2015-07-01

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.

  18. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Shih-Wei, E-mail: swfeng@nuk.edu.tw; Liao, Po-Hsun; Leung, Benjamin

    2015-07-28

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantagesmore » of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.« less

  19. Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform

    PubMed Central

    Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot

    2006-01-01

    A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1 (+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. A light dependent resistor (LDR) modified with similar sensor membrane was also used as a comparison method. Both the LED sensor and the LDR sensor responded to various pH buffer solutions in a similar way to obtain sigmoidal curves expected of the dye. The pKa value obtained for the sensors was found to agree with the literature value.

  20. Atom Probe Tomography Analysis of Gallium-Nitride-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Prosa, Ty J.; Olson, David; Giddings, A. Devin; Clifton, Peter H.; Larson, David J.; Lefebvre, Williams

    2014-03-01

    Thin-film light-emitting diodes (LEDs) composed of GaN/InxGa1-xN/GaN quantum well (QW) structures are integrated into modern optoelectronic devices because of the tunable InGaN band-gap enabling emission of the full visible spectrum. Atom probe tomography (APT) offers unique capabilities for 3D device characterization including compositional mapping of nano-volumes (>106 nm3) , high detection efficiency (>50%), and good sensitivity. In this study, APT is used to understand the distribution of dopants as well as Al and In alloying agents in a GaN device. Measurements using transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have also been made to improve the accuracy of the APT analysis by correlating the information content of these complimentary techniques. APT analysis reveals various QW and other optoelectronic structures including a Mg p-GaN layer, an Al-rich electron blocking layer, an In-rich multi-QW region, and an In-based super-lattice structure. The multi-QW composition shows good quantitative agreement with layer thickness and spacing extracted from a high resolution TEM image intensity analysis.

  1. Effects of Light-Emitting Diode Irradiation on Growth Characteristics and Regulation of Porphyrin Biosynthesis in Rice Seedlings.

    PubMed

    Tran, Lien Hong; Jung, Sunyo

    2017-03-16

    We examined the effects of light quality on growth characteristics and porphyrin biosynthesis of rice seedlings grown under different wavelengths from light emitting diodes (LEDs). After 10 days of exposure to various wavelengths of LEDs, leaf area and shoot biomass were greater in seedlings grown under white and blue LEDs than those of green and red LEDs. Both green and red LED treatments drastically decreased levels of protoporphyrin IX (Proto IX) and Mg-porphyrins compared to those of white LED, while levels of Mg-Proto IX monomethyl ester and protochlorophyllide under blue LED were decreased by 21% and 49%, respectively. Transcript levels of PPO1 were greatly upregulated in seedlings grown under red LED compared to white LED, whereas transcript levels of HO2 and CHLD were upregulated under blue LED. Overall, most porphyrin biosynthetic genes in the Fe-porphyrin branch remained almost constant or upregulated, while most genes in the Mg-porphyrin branch were downregulated. Expression levels of nuclear-encoded photosynthetic genes Lhcb and RbcS noticeably decreased after exposure to blue and red LEDs, compared to white LED. Our study suggests that specific wavelengths of LED greatly influence characteristics of growth in plants partly through altering the metabolic regulation of the porphyrin biosynthetic pathway, and possibly contribute to affect retrograde signaling.

  2. Deep ultraviolet light-emitting and laser diodes

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Asif, Fatima; Muhtadi, Sakib

    2016-02-01

    Nearly all the air-water purification/polymer curing systems and bio-medical instruments require 250-300 nm wavelength ultraviolet light for which mercury lamps are primarily used. As a potential replacement for these hazardous mercury lamps, several global research teams are developing AlGaN based Deep Ultraviolet (DUV) light emitting diodes (LEDs) and DUV LED Lamps and Laser Diodes over Sapphire and AlN substrates. In this paper, we review the current research focus and the latest device results. In addition to the current results we also discuss a new quasipseudomorphic device design approach. This approach which is much easier to integrate in a commercial production setting was successfully used to demonstrate UVC devices on Sapphire substrates with performance levels equal to or better than the conventional relaxed device designs.

  3. Formation of 2D bright spatial solitons in lithium niobate with photovoltaic response and incoherent background

    NASA Astrophysics Data System (ADS)

    Pustozerov, A.; Shandarov, V.

    2017-12-01

    The influence of incoherent background illumination produced by light-emitting diodes (LED's) of different average wavelengths and laser diode emitting in blue region of visible on diffraction characteristics of narrow coherent light beams of He-Ne laser due to refractive index changes of Fe-doped lithium niobate sample are studied. It has been experimentally demonstrated that nonlinear diffraction of red beams with wavelength 633 nm and diameters on full width of half maximum (FWHM) near to 15 μm may be totally compensated using background light with average wavelengths 450 - 465 nm. To provide the necessary intensity of incoherent background, the combinations of spherical and cylindrical concave lenses with blue LED and laser diode module without focusing its beam have been used.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soni, Abhishek Kumar; Rai, Vineet Kumar, E-mail: vineetkrrai@yahoo.co.in

    Erbium ion (Er{sup 3+}) doped BaMoO{sub 4} phosphor has been synthesized via co-precipitation technique. Phase formation of the prepared phosphor has been recognized by powder X-ray diffraction analysis. The photoluminescence emission spectrum has been recorded in 400-800nm wavelength range under 380nm excitation. The observed photoluminescence peaks are explained with the help of energy level structure. The prepared phosphor seems capable to produce efficient blue colour emission which can be useful for making blue light emitting diodes (LEDs).

  5. Fundamental Studies and Development of III-N Visible LEDs for High-Power Solid-State Lighting Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupuis, Russell

    The goal of this program is to understand in a fundamental way the impact of strain, defects, polarization, and Stokes loss in relation to unique device structures upon the internal quantum efficiency (IQE) and efficiency droop (ED) of III-nitride (III-N) light-emitting diodes (LEDs) and to employ this understanding in the design and growth of high-efficiency LEDs capable of highly-reliable, high-current, high-power operation. This knowledge will be the basis for our advanced device epitaxial designs that lead to improved device performance. The primary approach we will employ is to exploit new scientific and engineering knowledge generated through the application of amore » set of unique advanced growth and characterization tools to develop new concepts in strain-, polarization-, and carrier dynamics-engineered and low-defect materials and device designs having reduced dislocations and improved carrier collection followed by efficient photon generation. We studied the effects of crystalline defect, polarizations, hole transport, electron-spillover, electron blocking layer, underlying layer below the multiplequantum- well active region, and developed high-efficiency and efficiency-droop-mitigated blue LEDs with a new LED epitaxial structures. We believe new LEDs developed in this program will make a breakthrough in the development of high-efficiency high-power visible III-N LEDs from violet to green spectral region.« less

  6. Fabrication of a nano-cone array on a p-GaN surface for enhanced light extraction efficiency from GaN-based tunable wavelength LEDs.

    PubMed

    Soh, C B; Wang, B; Chua, S J; Lin, Vivian K X; Tan, Rayson J N; Tripathy, S

    2008-10-08

    We report on the fabrication of a nano-cone structured p-GaN surface for enhanced light extraction from tunable wavelength light emitting diodes (LEDs). Prior to p-contact metallization, self-assembled colloidal particles are deposited and used as a mask for plasma etching to create nano-cone structures on the p-GaN layer of LEDs. A well-defined periodic nano-cone array, with an average cone diameter of 300 nm and height of 150 nm, is generated on the p-GaN surface. The photoluminescence emission intensity recorded from the regions with the nano-cone array is increased by two times as compared to LEDs without surface patterning. The light output power from the LEDs with surface nano-cones shows significantly higher electroluminescence intensity at an injection current of 70 mA. This is due to the internal multiple scattering of light from the nano-cone sidewalls. Furthermore, we have shown that with an incorporation of InGaN nanostructures in the quantum well, the wavelength of these surface-patterned LEDs can be tuned from 517 to 488 nm with an increase in the injection current. This methodology may serve as a practical approach to increase the light extraction efficiency from wavelength tunable LEDs.

  7. Quantification of lycopene in the processed tomato-based products by means of the light-emitting diode (LED) and compact photoacoustic (PA) detector

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Skenderović, H.; Marković, K.; Dóka, O.; Pichler, L.; Pichler, G.; Luterotti, S.

    2010-03-01

    The combined use of a high power light emitting diode (LED) and the compact photoacoustic (PA) detector offers the possibility for a rapid (no extraction needed), accurate (precision 1.5%) and inexpensive quantification of lycopene in different products derived from the thermally processed tomatoes. The concentration of lycopene in selected products ranges from a few mg to several tens mg per 100 g fresh weight. The HPLC was used as the well established reference method.

  8. Processes for design, construction and utilisation of arrays of light-emitting diodes and light-emitting diode-coupled optical fibres for multi-site brain light delivery

    PubMed Central

    Bernstein, Jacob G.; Allen, Brian D.; Guerra, Alexander A.; Boyden, Edward S.

    2016-01-01

    Optogenetics enables light to be used to control the activity of genetically targeted cells in the living brain. Optical fibers can be used to deliver light to deep targets, and LEDs can be spatially arranged to enable patterned light delivery. In combination, arrays of LED-coupled optical fibers can enable patterned light delivery to deep targets in the brain. Here we describe the process flow for making LED arrays and LED-coupled optical fiber arrays, explaining key optical, electrical, thermal, and mechanical design principles to enable the manufacturing, assembly, and testing of such multi-site targetable optical devices. We also explore accessory strategies such as surgical automation approaches as well as innovations to enable low-noise concurrent electrophysiology. PMID:26798482

  9. Aluminum nitride coatings using response surface methodology to optimize the thermal dissipated performance of light-emitting diode modules

    NASA Astrophysics Data System (ADS)

    Jean, Ming-Der; Lei, Peng-Da; Kong, Ling-Hua; Liu, Cheng-Wu

    2018-05-01

    This study optimizes the thermal dissipation ability of aluminum nitride (AlN) ceramics to increase the thermal performance of light-emitting diode (LED) modulus. AlN powders are deposited on heat sink as a heat interface material, using an electrostatic spraying process. The junction temperature of the heat sink is developed by response surface methodology based on Taguchi methods. In addition, the structure and properties of the AlN coating are examined using X-ray photoelectron spectroscopy (XPS). In the XPS analysis, the AlN sub-peaks are observed at 72.79 eV for Al2p and 398.88 eV for N1s, and an N1s sub-peak is assigned to N-O at 398.60eV and Al-N bonding at 395.95eV, which allows good thermal properties. The results have shown that the use of AlN ceramic material on a heat sink can enhance the thermal performance of LED modules. In addition, the percentage error between the predicted and experimental results compared the quadric model with between the linear and he interaction models was found to be within 7.89%, indicating that it was a good predictor. Accordingly, RSM can effectively enhance the thermal performance of an LED, and the beneficial heat dissipation effects for AlN are improved by electrostatic spraying.

  10. Effect of defects on the electrical/optical performance of gallium nitride based junction devices

    NASA Astrophysics Data System (ADS)

    Ferdous, Mohammad Shahriar

    Commercial GaN based electronic and optoelectronic devices possess a high density (107-109 cm-2) of threading dislocations (TDs) because of the large mismatch in the lattice constant and the thermal expansion coefficient between the epitaxial layer structure and the substrate. In spite of these dislocations, high brightness light emitting diodes (LEDs) utilizing InGaN or AlGaN multiple quantum wells (MQWs) and with an external quantum efficiency of more than 40%, have already been achieved. This high external quantum efficiency in the presence of a high density of dislocations has been explained by carrier localization induced by indium fluctuations in the quantum well. TDs have been found to increase the reverse leakage current in InGaN based LEDs and to shorten the operating lifetime of InGaN MQW/GaN/AlGaN laser diodes. Thus it is important that the TD density is further reduced. It remains unclear how the TDs interact with the device to cause the effects mentioned above, hence the careful and precise characterization of threading defects and their effects on the electrical and optical performances of InGaN/GaN MQW LEDs is needed. This investigation will be useful not only from the point of view of device optimization but also to develop a clear understanding of the physical processes associated with TDs and especially with their effect on leakage current. We have employed photoelectrochemical (PEC) etching to accurately measure the dislocation density initially in home-grown GaN-based epitaxial structures and recently in InGaN/GaN MQW LEDs fabricated from commercial grade epitaxial structures that were supplied by our industrial collaborators. Measuring the electrical and electroluminescence (EL) characteristics of these devices has revealed correlations between some aspects of the LED behavior and the TD density, and promises to allow a deeper understanding of the role of threading dislocations to be elucidated. We observed that the LED reverse leakage current increased exponentially, and electroluminescence intensity decreased by 22%, as the TD density in the LEDs increased from 1.7 x 107 cm-2 to 2 x 108 cm-2. Forward voltage remained almost constant with the increase of TD density. A model of carrier conduction via hopping through defect related states, was found to provide an excellent fit to the experimental I-V data and provides a useful basis for understanding carrier conduction in the presence of TDs.

  11. Light-Emitting Diodes: Exploration of Underlying Physics

    ERIC Educational Resources Information Center

    Etkina, Eugenia; Planinšic, Gorazd

    2014-01-01

    This paper is the second in the series of LED-dedicated papers that have a goal to systematically investigate the use of LEDs in a general physics course. The first paper, published in the February 2014 issue, provided an overview of the course units where LEDs can be used and suggested three different ways of utilizing LEDs in an introductory…

  12. Effect of the laser and light-emitting diode (LED) phototherapy on midpalatal suture bone formation after rapid maxilla expansion: a Raman spectroscopy analysis.

    PubMed

    Rosa, Cristiane Becher; Habib, Fernando Antonio Lima; de Araújo, Telma Martins; Aragão, Juliana Silveira; Gomes, Rafael Soares; Barbosa, Artur Felipe Santos; Silveira, Landulfo; Pinheiro, Antonio L B

    2014-05-01

    The aim of this study was to analyze the effect of laser or light-emitting diode (LED) phototherapy on the bone formation at the midpalatal suture after rapid maxilla expansion. Twenty young adult male rats were divided into four groups with 8 days of experimental time: group 1, no treatment; group 2, expansion; group 3, expansion and laser irradiation; and group 4, expansion and LED irradiation. In groups 3 and 4, light irradiation was in the first, third, and fifth experimental days. In all groups, the expansion was accomplished with a helicoid 0.020" stainless steel orthodontic spring. A diode laser (λ780 nm, 70 mW, spot of 0.04 cm(2), t = 257 s, spatial average energy fluence (SAEF) of 18 J/cm(2)) or a LED (λ850 nm, 150 mW ± 10 mW, spot of 0.5 cm(2), t = 120 s, SAEF of 18 J/cm(2)) were used. The samples were analyzed by Raman spectroscopy carried out at midpalatal suture and at the cortical area close to the suture. Two Raman shifts were analyzed: ∼ 960 (phosphate hydroxyapatite) and ∼ 1,450 cm(-1) (lipids and protein). Data was submitted to statistical analysis. Significant statistical difference (p ≤ 0.05) was found in the hydroxyapatite (CHA) peaks among the expansion group and the expansion and laser or LED groups. The LED group presented higher mean peak values of CHA. No statistical differences were found between the treated groups as for collagen deposition, although LED also presented higher mean peak values. The results of this study using Raman spectral analysis indicate that laser and LED light irradiation improves deposition of CHA in the midpalatal suture after orthopedic expansion.

  13. A cost-effective quasi-distributed liquid leakage sensor based on the polymer optical fiber and flexible lamp belt with LEDs.

    PubMed

    Zhang, Yingzi; Hou, Yulong; Zhang, Yanjun; Hu, Yanjun; Zhang, Liang; Gao, Xiaolong; Zhang, Huixin; Liu, Wenyi

    2018-04-16

    A quasi-distributed liquid leakage (QDLL) sensor in local area is proposed and experimentally demonstrated, providing a real-time yet low-cost method than the existing local QDLL sensor. The sensor mainly consists of a flexible lamp belt (FLB) with light-emitting diodes (LEDs) and a polymer optical fiber (POF) processed with side-coupling structures. The side-coupling structures are illuminated by the LEDs one by one, forming a series of sensing probes. The lights are side-coupled into the POF through the side-coupling structure and pulse sequences are obtained from the power meters connected to the both ends of the POF. Each pulse represents a sensing probe, and the intensity of them increase when the coupling medium changes from air to liquid. The location of the leakage incident can be got by the position of each pulse in its output sequence. The influence of different side-coupling structures on side-coupling ratio are investigated. The experiment results validate the detection and localization abilities of the QDLL sensor along a 1 m-long POF with a spatial resolution of 0.1 m, which can be improved by adjusting the side-coupling structure. Furthermore, the temperature dependence is studied and can be compensated.

  14. Estimating the crash reduction and vehicle dynamics effects of flashing LED stop signs : final report.

    DOT National Transportation Integrated Search

    2014-01-01

    A flashing LED stop sign is essentially a normal octagonal stop sign with light emitted diodes (LED) on the : stop signs corners. A hierarchical Bayes observational before/after study found an estimated reduction of : about 41.5% in right-angle cr...

  15. Evaluation of inorganic and organic light-emitting diode displays for signage application

    NASA Astrophysics Data System (ADS)

    Sharma, Pratibha; Kwok, Harry

    2006-08-01

    High-brightness, inorganic light-emitting diodes (LEDs) have been successfully utilized for edge-lighting of large displays for signage. Further interest in solid-state lighting technology has been fueled with the emergence of small molecule and polymer-based organic light-emitting diodes (OLEDs). In this paper, edgelit inorganic LED-based displays and state-of-the-art OLED-based displays are evaluated on the basis of electrical and photometric measurements. The reference size for a signage system is assumed to be 600 mm x 600mm based on the industrial usage. With the availability of high power light-emitting diodes, it is possible to develop edgelit signage systems of the standard size. These displays possess an efficacy of 18 lm/W. Although, these displays are environmentally friendly and efficient, they suffer from some inherent limitations. Homogeneity of displays, which is a prime requirement for illuminated signs, is not accomplished. A standard deviation of 3.12 lux is observed between the illuminance values on the surface of the display. In order to distribute light effectively, reflective gratings are employed. Reflective gratings aid in reducing the problem but fail to eliminate it. In addition, the overall cost of signage is increased by 50% with the use of these additional components. This problem can be overcome by the use of a distributed source of light. Hence, the organic-LEDs are considered as a possible contender. In this paper, we experimentally determine the feasibility of using OLEDs for signage applications and compare their performance with inorganic LEDs. Passive matrix, small-molecule based, commercially available OLEDs is used. Design techniques for implementation of displays using organic LEDs are also discussed. It is determined that tiled displays based on organic LEDs possess better uniformity than the inorganic LED-based displays. However, the currently available OLEDs have lower light-conversion efficiency and higher costs than the conventional, inorganic LEDs. But, signage panels based on OLEDs can be made cheaper by avoiding the use of acrylic sheet and reflective gratings. Moreover, the distributed light output and light weight of OLEDs and the potential to be built inexpensively on flexible substrates can make OLEDs more beneficial for future signage applications than the inorganic LEDs.

  16. Micro and nano-structured green gallium indium nitride/gallium nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Stark, Christoph J. M.

    Light-emitting diodes (LEDs) are commonly designed and studied based on bulk material properties. In this thesis different approaches based on patterns in the nano and micrometer length scale range are used to tackle low efficiency in the green spectral region, which is known as “green gap”. Since light generation and extraction are governed by microscopic processes, it is instructive to study LEDs with lateral mesa sizes scaled to the nanometer range. Besides the well-known case of the quantum size effect along the growth direction, a continuous lateral scaling could reveal the mechanisms behind the purported absence of a green gap in nanowire LEDs and the role of their extraction enhancement. Furthermore the possibility to modulate strain and piezoelectric polarization by post growth patterning is of practical interest, because the internal electric fields in conventional wurtzite GaN LEDs cause performance problems. A possible alternative is cubic phase GaN, which is free of built-in polarization fields. LEDs on cubic GaN could show the link between strong polarization fields and efficiency roll-off at high current densities, also known as droop. An additional problem for all nitride-based LEDs is efficient light extraction. For a planar GaN LED only roughly 8% of the generated light can be extracted. Novel lightextraction structures with extraction-favoring geometry can yield significant increase in light output power. To investigate the effect of scaling the mesa dimension, micro and nano-sized LED arrays of variable structure size were fabricated. The nano-LEDs were patterned by electron beam lithography and dry etching. They contained up to 100 parallel nano-stripe LEDs connected to one common contact area. The mesa width was varied over 1 μm, 200 nm, and 50 nm. These LEDs were characterized electrically and optically, and the peak emission wavelength was found to depend on the lateral structure size. An electroluminescence (EL) wavelength shift of 3 nm towards smaller values was observed when the stripe width was reduced from 1 μm to 50 nm. At the same time a strong fourfold enhancement of the light emission from the patterned region over the unpatterned area was observed. Micro-patterned LEDs showed non-linear scaling of the light output power, and an enhancement of 39 % was achieved for structures with an area fill ratio of 0.5 over an LED with square mesa. Growth of cubic GaN and cubic GaInN/GaN LEDs was shown by M-OVPE in Vshaped grooves formed by the {111} planes of etched silicon. SEM images of the GaN layer in small ( 0.5 μm) regions show a contrast change where the phase boundary between cubic and wurtzite GaN is expected to occur. The growth parameter space is explored for optimal conditions while minimizing the alloying problem for GaN growth on Si. The cubic GaN phase is confirmed by electron back-scatter diffraction (EBSD) in the V-groove center, whereas wurtzite GaN is found near the groove edges. Luminescence of undoped GaN and GaInN/GaN multi-quantum well structures was studied by cathodoluminescence (CL). The undoped cubic GaN structure showed strong band-edge luminescence at 385 nm (3.22 eV) at 78 K, whereas for the MQW device strong emission at 498 nm is observed, even at room temperature. Full cubic LED structures were grown, and wavelength-stable electroluminescence at 489 nm was demonstrated. LEDs with integrated light extraction structures are grown on free-standing GaN substrates with different off-cut angles. The devices with different off-cut show pronounced features at the top surface that also penetrate the active region. For a 2.24° off-cut, these features resemble fish scales, where the feature sizes are in the μm-range. The 2.24° off-cut LED shows a 3.6-fold increased light output power compared to a LED on virtually on-axis substrate with 0.06° off-cut. The enhancement found in the fish scale LEDs is attributed to increased light scattering, effectively reducing the fraction of trapped light. These results show the potential of structures on the micro and nanometer scale for LED device performance and the progress on cubic GaN could open alternative ways to understand the droop problem.

  17. Light Emitting Diode (LED) circular traffic signal lifetime management system.

    DOT National Transportation Integrated Search

    2011-02-01

    The objective of this research is to build lifetime curves for red, yellow, and green LED circular traffic signals through 20,000-hr. accelerated stress testing of samples operating under Louisianas environmental conditions.

  18. LED traffic signal management system : final report.

    DOT National Transportation Integrated Search

    2016-06-01

    This research originated from the opportunity to develop a methodology to assess when LED (Light Emitting Diode) traffic signal modules begin to fail to meet the Institute of Transportation Engineers (ITE) performance specification for luminous inten...

  19. Response of adult mosquitoes to light emitting diodes placed in resting boxes and in the field.

    USDA-ARS?s Scientific Manuscript database

    Resting boxes are passive devices used to attract and capture mosquitoes seeking shelter. Increasing the attractiveness of these devices could improve their effectiveness. Light emitting diodes (LEDs) can be attractive to mosquitoes when used together with other trapping devices. Therefore restin...

  20. Promotion of neural sprouting using low-level green light-emitting diode phototherapy

    NASA Astrophysics Data System (ADS)

    Alon, Noa; Duadi, Hamootal; Cohen, Ortal; Samet, Tamar; Zilony, Neta; Schori, Hadas; Shefi, Orit; Zalevsky, Zeev

    2015-02-01

    We irradiated neuroblastoma SH-SY5Y cell line with low-level light-emitting diode (LED) illumination at a visible wavelength of 520 nm (green) and intensity of 100 mW/cm2. We captured and analyzed the cell morphology before LED treatment, immediately after, and 12 and 24 h after treatment. Our study demonstrated that LED illumination increases the amount of sprouting dendrites in comparison to the control untreated cells. This treatment also resulted in more elongated cells after treatment in comparison to the control cells and higher levels of expression of a differentiation related gene. This result is a good indication that the proposed method could serve in phototherapy treatment for increasing sprouting and enhancing neural network formation.

  1. A new spatial integration method for luminous flux determination of light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoli; Zhu, Shaolong; Shen, Haiping; Liu, Muqing

    2010-10-01

    Spatial integrated measurement using an integrating sphere is usually used for the luminous flux determination of light sources. Devices using an integrating sphere are bulky for use on a production assembly line. This paper proposes an alternative spatial integration method for accurately measuring the total luminous flux of light-emitting diodes (LEDs) having no backward emission. A compound parabolic concentrator is introduced to collect the light from an LED in conjunction with a detector which in turn measures the luminous flux. The study reported here combines both modeling and experiment to show the applicability of this novel method. The uncertainty in the measurements is then evaluated for the total luminous flux measurement from an LED.

  2. GaN-Based Light-Emitting Diodes Grown on Nanoscale Patterned Sapphire Substrates with Void-Embedded Cortex-Like Nanostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Sheng; Yeh, J. Andrew

    2011-09-01

    High-efficiency GaN-based light-emitting diodes (LEDs) with an emitting wavelength of 438 nm were demonstrated utilizing nanoscale patterned sapphire substrates with void-embedded cortex-like nanostructures (NPSS-VECN). Unlike the previous nanopatterned sapphire substrates, the presented substrate has a new morphology that can not only improve the crystalline quality of GaN epilayers but also generate a void-embedded nanostructural layer to enhance light extraction. Under a driving current of 20 mA, the external quantum efficiency of an LED with NPSS-VECN is enhanced by 2.4-fold compared with that of the conventional LED. Moreover, the output powers of two devices respectively are 33.1 and 13.9 mW.

  3. Controlled electroluminescence of n-ZnMgO/p-GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Goh, E. S. M.; Yang, H. Y.; Han, Z. J.; Chen, T. P.; Ostrikov, K.

    2012-12-01

    Effective control of room-temperature electroluminescence of n-ZnMgO/p-GaN light-emitting diodes (LEDs) over both emission intensity and wavelength is demonstrated. With varied Mg concentration, the intensity of LEDs in the near-ultraviolet region is increased due to the effective radiative recombination in the ZnMgO layer. Furthermore, the emission wavelength is shifted to the green/yellow spectral region by employing an indium-tin-oxide thin film as the dopant source, where thermally activated indium diffusion creates extra deep defect levels for carrier recombination. These results clearly demonstrate the effectiveness of controlled metal incorporation in achieving high energy efficiency and spectral tunability of the n-ZnMgO/p-GaN LED devices.

  4. Controlling potential barrier height by changing V-shaped pit size and the effect on optical and electrical properties for InGaN/GaN based light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Narihito, E-mail: nokada@yamaguchi-u.ac.jp; Kashihara, Hiroyuki; Sugimoto, Kohei

    2015-01-14

    The internal quantum efficiency (IQE) of InGaN/GaN multiple quantum wells (MQWs) with blue light emission was improved by inserting an InGaN/GaN superlattice (SL) beneath the MQWs. While the SL technique is useful for improving the light-emitting diode (LED) performance, its effectiveness from a multilateral point of view requires investigation. V-shaped pits (V-pits), which generate a potential barrier and screen the effect of the threading dislocation, are one of the candidates for increasing the light emission efficiency of LEDs exceptionally. In this research, we investigated the relationship between the V-pit and SL and revealed that the V-pit diameter is strongly correlatedmore » with the IQE by changing the number of SL periods. Using scanning near-field optical microscopy and photoluminescence measurements, we demonstrated the distinct presence of the potential barrier formed by the V-pits around the dislocations. The relationship between the V-pit and the number of SL periods resulted in changing the potential barrier height, which is related to the V-pit diameter determined by the number of SL periods. In addition, we made an attempt to insert pit expansion layers (PELs) composed of combination of SL and middle temperature grown GaN layer instead of only SL structure. As a result of the evaluation of LEDs using SL or PEL, the EL intensity was strongly related to pit diameter regardless of the structures to form the V-pits. In addition, it was clear that larger V-pits reduce the efficiency droop, which is considered to be suppression of the carrier loss at high injection current.« less

  5. Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes.

    PubMed

    Yao, Yung-Chi; Yang, Zu-Po; Hwang, Jung-Min; Chuang, Yi-Lun; Lin, Chia-Ching; Haung, Jing-Yu; Chou, Chun-Yang; Sheu, Jinn-Kong; Tsai, Meng-Tsan; Lee, Ya-Ju

    2016-02-28

    ZnO nanorods (NRs) and Ag nanoparticles (NPs) are known to enhance the luminescence of light-emitting diodes (LEDs) through the high directionality of waveguide mode transmission and efficient energy transfer of localized surface plasmon (LSP) resonances, respectively. In this work, we have demonstrated Ag NP-incorporated n-ZnO NRs/p-GaN heterojunctions by facilely hydrothermally growing ZnO NRs on Ag NP-covered GaN, in which the Ag NPs were introduced and randomly distributed on the p-GaN surface to excite the LSP resonances. Compared with the reference LED, the light-output power of the near-band-edge (NBE) emission (ZnO, λ = 380 nm) of our hybridized structure is increased almost 1.5-2 times and can be further modified in a controlled manner by varying the surface morphology of the surrounding medium of the Ag NPs. The improved light-output power is mainly attributed to the LSP resonance between the NBE emission of ZnO NRs and LSPs in Ag NPs. We also observed different behaviors in the electroluminescence (EL) spectra as the injection current increases for the treatment and reference LEDs. This observation might be attributed to the modification of the energy band diagram for introducing Ag NPs at the interface between n-ZnO NRs and p-GaN. Our results pave the way for developing advanced nanostructured LED devices with high luminescence efficiency in the UV emission regime.

  6. White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates.

    PubMed

    Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug

    2017-06-02

    We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.

  7. White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates

    NASA Astrophysics Data System (ADS)

    Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug

    2017-06-01

    We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.

  8. Unclassified Publications of Lincoln Laboratory. Volume 5

    DTIC Science & Technology

    1975-12-15

    10 TN-1974-36 LIGHT - EMITTING DIODES (LED) JA-4295 LIGHT SCATTERING JA-4456 LINCOLN DIGITAL VOICE TERMINAL TN-1975-53, TN-1975-65 LINCOLN...Hinkley J. O. Sample G. Dresselhaus T. C. Harman J. P. McVittie J. Filson p-n Junction PbSi_xSex Photo- J. P. Donnelly diodes Fabricated by Se...Room-Temperature Operation of GalnAsP/lnP Double- Heterostructure Diode Lasers Emitting at 1.1 (im Transparent Heat Mirrors for Solar-Energy

  9. Substrate-Free InGaN/GaN Nanowire Light-Emitting Diodes.

    PubMed

    Neplokh, Vladimir; Messanvi, Agnes; Zhang, Hezhi; Julien, Francois H; Babichev, Andrey; Eymery, Joel; Durand, Christophe; Tchernycheva, Maria

    2015-12-01

    We report on the demonstration of substrate-free nanowire/polydimethylsiloxane (PDMS) membrane light-emitting diodes (LEDs). Metal-organic vapour-phase epitaxy (MOVPE)-grown InGaN/GaN core-shell nanowires were encapsulated into PDMS layer. After metal deposition to p-GaN, a thick PDMS cap layer was spin-coated and the membrane was manually peeled from the sapphire substrate, flipped upside down onto a steel holder, and transparent indium tin oxide (ITO) contact to n-GaN was deposited. The fabricated LEDs demonstrate rectifying diode characteristics. For the electroluminescence (EL) measurements, the samples were manually bonded using silver paint. The EL spectra measured at different applied voltages demonstrate a blue shift with the current increase. This shift is explained by the current injection into the InGaN areas of the active region with different average indium content.

  10. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamoorthy, Sriram, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu; Akyol, Fatih; Rajan, Siddharth, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu

    InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450 nm) light emitting diode. A voltage drop of 5.3 V at 100 mA, forward resistance of 2 × 10{sup −2} Ω cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5 × 10{sup −4} Ω cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. Themore » depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.« less

  11. Hydrothermal growth of n-ZnO films on a patterned p-GaN epilayer and its application in heterojunction light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Ko, Rong-Ming; Wang, Shui-Jinn; Chen, Ching-Yi; Wu, Cheng-Han; Lin, Yan-Ru; Lo, Hsin-Ming

    2017-04-01

    The hydrothermal growth (HTG) of crystalline n-ZnO films on both the nonpatterned and patterned p-GaN epilayers with a honeycomb array of etched holes is demonstrated, and its application in n-ZnO/p-GaN heterojunction light-emitting diodes (HJ-LEDs) is reported. The results reveal that an HTG n-ZnO film on a patterned p-GaN layer exhibits a high-quality single crystal with FWHMs of 0.463 and 0.983° obtained from a ω-rocking curve and a ϕ-scan pattern, respectively, which are much better than those obtained on a nonpatterned p-GaN layer. In addition, the n-ZnO/patterned p-GaN HJ-LED exhibited a much better rectifying diode behavior owing to having a higher n-ZnO film crystallinity quality and an improved interface with the p-GaN layer. Strong violet and violet-blue lights emitted from the n-ZnO/patterned p-GaN HJ-LED at around 405, 412, and 430 nm were analyzed.

  12. LEDs: DOE Programs Add Credibility to a Developing Technology

    ERIC Educational Resources Information Center

    Conbere, Susan

    2009-01-01

    LED (light-emitting diode) technology is moving fast, and with justification, some facility managers have viewed it with a wary eye. Some LEDs on the market do not perform as promised, and the technology is changing rapidly. But new developments from the U.S. Department of Energy (DOE) now make it easier for facility managers to find LEDs that…

  13. Computer-Based Experiment for Determining Planck's Constant Using LEDs

    ERIC Educational Resources Information Center

    Zhou, Feng; Cloninger, Todd

    2008-01-01

    Visible light emitting diodes (LEDs) have been widely used as power indicators. However, after the power is switched off, it takes a while for the LED to go off. Many students were fascinated by this simple demonstration. In this paper, by making use of computer-based data acquisition and modeling, we show the voltage across the LED undergoing an…

  14. Transparent perovskite light-emitting diodes by employing organic-inorganic multilayer transparent top electrodes

    NASA Astrophysics Data System (ADS)

    Liang, Junqing; Guo, Xiaoyang; Song, Li; Lin, Jie; Hu, Yongsheng; Zhang, Nan; Liu, Xingyuan

    2017-11-01

    Perovskite light-emitting diodes (PeLEDs) have attracted much attention in the past two years due to their high photoluminescence quantum efficiencies and wavelength tuneable characteristics. In this work, transparent PeLEDs (TPeLEDs) have been reported with organic-inorganic multilayer transparent top electrodes that have more convenient control of the organic/electrode interface. By optimizing the thickness of the MoO3 layer in the top electrode, the best average transmittance of 47.21% has been obtained in the TPeLED in the wavelength range of 380-780 nm. In addition, the TPeLED exhibits a maximum luminance of 6380 cd/m2, a maximum current efficiency (CE) of 3.50 cd/A, and a maximum external quantum efficiency (EQE) of 0.85% from the bottom side together with a maximum luminance of 3380 cd/m2, a maximum CE of 1.47 cd/A, and a maximum EQE of 0.36% from the top side. The total EQE of the TPeLED is about 86% of that of the reference device, indicating efficient TPeLED achieved in this work, which could have significant contribution to PeLEDs for see-through displays.

  15. Applications of Light Emitting Diodes in Health Care.

    PubMed

    Dong, Jianfei; Xiong, Daxi

    2017-11-01

    Light emitting diodes (LEDs) have become the main light sources for general lighting, due to their high lumen efficiency and long life time. Moreover, their high bandwidth and the availability of diverse wavelength contents ranging from ultraviolet to infrared empower them with great controllability in tuning brightness, pulse durations and spectra. These parameters are the essential ingredients of the applications in medical imaging and therapies. Despite the fast advances in both LED technologies and their applications, few reviews have been seen to link the controllable emission properties of LEDs to these applications. The objective of this paper is to bridge this gap by reviewing the main control techniques of LEDs that enable creating enhanced lighting patterns for imaging and generating effective photon doses for photobiomodulation. This paper also provides the basic mechanisms behind the effective LED therapies in treating cutaneous and neurological diseases. The emerging field of optogenetics is also discussed with a focus on the application of LEDs. The multidisciplinary topics reviewed in this paper can help the researchers in LEDs, imaging, light therapy and optogenetics better understand the basic principles in each other's field; and hence to stimulate the application of LEDs in health care.

  16. ZnS-paper based flexible piezoelectric nanogenerator

    NASA Astrophysics Data System (ADS)

    Sultana, Ayesha; Middya, Tapas Ranjan; Mandal, Dipankar

    2018-04-01

    Here, we presented a novel, cost effective approach to fabricate flexible piezoelectric nanogenerator (NG) consisting of ZnS nanowires (NWs) grown upon cellulose. An output voltage of 4 V is generated from the nanocomposite paper (NC-paper) based NG. Subsequently, it has the capability to power Light Emitting Diode (LED) and charging up capacitor. The corresponding energy stored in the capacitor (1 µF) is 16 µJ. Thus, the fabricated NC-paper based NG can be used for smart textile structures, wearable and self-powered nanodevices.

  17. Alternatives to Pyrotechnic Distress Signals; Supplemental Report

    DTIC Science & Technology

    2015-08-01

    distribution of an incandescent lamp as compared to a specific white LED . ...................... 3  Figure 3. Spectral distribution of a “cool” white LED ...of common lamps2. Figure 2 shows the spectral distribution of an incandescent lamp as compared to a “cool” white LED . Note the LED peak intensity in...project effort that developed a specification for a light-emitting diode ( LED ) signal characteristic as an alternative to pyrotechnic, maritime

  18. Efficiency of True-Green Light Emitting Diodes: Non-Uniformity and Temperature Effects

    PubMed Central

    Titkov, Ilya E.; Karpov, Sergey Yu.; Yadav, Amit; Mamedov, Denis; Zerova, Vera L.

    2017-01-01

    External quantum efficiency of industrial-grade green InGaN light-emitting diodes (LEDs) has been measured in a wide range of operating currents at various temperatures from 13 K to 300 K. Unlike blue LEDs, the efficiency as a function of current is found to have a multi-peak character, which could not be fitted by a simple ABC-model. This observation correlated with splitting of LED emission spectra into two peaks at certain currents. The characterization data are interpreted in terms of non-uniformity of the LED active region, which is tentatively attributed to extended defects like V-pits. We suggest a new approach to evaluation of temperature-dependent light extraction and internal quantum efficiencies taking into account the active region non-uniformity. As a result, the temperature dependence of light extraction and internal quantum efficiencies have been evaluated in the temperature range mentioned above and compared with those of blue LEDs. PMID:29156543

  19. Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih

    Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less

  20. Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes

    DOE PAGES

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; ...

    2016-11-09

    Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less

  1. Flexible Light Emission Diode Arrays Made of Transferred Si Microwires-ZnO Nanofilm with Piezo-Phototronic Effect Enhanced Lighting.

    PubMed

    Li, Xiaoyi; Liang, Renrong; Tao, Juan; Peng, Zhengchun; Xu, Qiming; Han, Xun; Wang, Xiandi; Wang, Chunfeng; Zhu, Jing; Pan, Caofeng; Wang, Zhong Lin

    2017-04-25

    Due to the fragility and the poor optoelectronic performances of Si, it is challenging and exciting to fabricate the Si-based flexible light-emitting diode (LED) array devices. Here, a flexible LED array device made of Si microwires-ZnO nanofilm, with the advantages of flexibility, stability, lightweight, and energy savings, is fabricated and can be used as a strain sensor to demonstrate the two-dimensional pressure distribution. Based on piezo-phototronic effect, the intensity of the flexible LED array can be increased more than 3 times (under 60 MPa compressive strains). Additionally, the device is stable and energy saving. The flexible device can still work well after 1000 bending cycles or 6 months placed in the atmosphere, and the power supplied to the flexible LED array is only 8% of the power of the surface-contact LED. The promising Si-based flexible device has wide range application and may revolutionize the technologies of flexible screens, touchpad technology, and smart skin.

  2. Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres

    PubMed Central

    Kim, Jonghak; Woo, Heeje; Joo, Kisu; Tae, Sungwon; Park, Jinsub; Moon, Daeyoung; Park, Sung Hyun; Jang, Junghwan; Cho, Yigil; Park, Jucheol; Yuh, Hwankuk; Lee, Gun-Do; Choi, In-Suk; Nanishi, Yasushi; Han, Heung Nam; Char, Kookheon; Yoon, Euijoon

    2013-01-01

    Light-emitting diodes (LEDs) become an attractive alternative to conventional light sources due to high efficiency and long lifetime. However, different material properties between GaN and sapphire cause several problems such as high defect density in GaN, serious wafer bowing, particularly in large-area wafers, and poor light extraction of GaN-based LEDs. Here, we suggest a new growth strategy for high efficiency LEDs by incorporating silica hollow nanospheres (S-HNS). In this strategy, S-HNSs were introduced as a monolayer on a sapphire substrate and the subsequent growth of GaN by metalorganic chemical vapor deposition results in improved crystal quality due to nano-scale lateral epitaxial overgrowth. Moreover, well-defined voids embedded at the GaN/sapphire interface help scatter lights effectively for improved light extraction, and reduce wafer bowing due to partial alleviation of compressive stress in GaN. The incorporation of S-HNS into LEDs is thus quite advantageous in achieving high efficiency LEDs for solid-state lighting. PMID:24220259

  3. Direct integration of polycrystalline graphene into light emitting diodes by plasma-assisted metal-catalyst-free synthesis.

    PubMed

    Kim, Yong Seung; Joo, Kisu; Jerng, Sahng-Kyoon; Lee, Jae Hong; Moon, Daeyoung; Kim, Jonghak; Yoon, Euijoon; Chun, Seung-Hyun

    2014-03-25

    The integration of graphene into devices is a challenging task because the preparation of a graphene-based device usually includes graphene growth on a metal surface at elevated temperatures (∼1000 °C) and a complicated postgrowth transfer process of graphene from the metal catalyst. Here we report a direct integration approach for incorporating polycrystalline graphene into light emitting diodes (LEDs) at low temperature by plasma-assisted metal-catalyst-free synthesis. Thermal degradation of the active layer in LEDs is negligible at our growth temperature, and LEDs could be fabricated without a transfer process. Moreover, in situ ohmic contact formation is observed between DG and p-GaN resulting from carbon diffusion into the p-GaN surface during the growth process. As a result, the contact resistance is reduced and the electrical properties of directly integrated LEDs outperform those of LEDs with transferred graphene electrodes. This relatively simple method of graphene integration will be easily adoptable in the industrialization of graphene-based devices.

  4. Modeling of light-emitting diode wavefronts for the optimization of transmission holograms.

    PubMed

    Karthaus, Daniela; Giehl, Markus; Sandfuchs, Oliver; Sinzinger, Stefan

    2017-06-20

    The objective of applying transmission holograms in automotive headlamp systems requires the adaptation of holograms to divergent and polychromatic light sources like light-emitting diodes (LEDs). In this paper, four different options to describe the scalar light waves emitted by a typical automotive LED are regarded. This includes a new approach to determine the LED's wavefront from interferometric measurements. Computer-generated holograms are designed considering the different LED approximations and recorded into a photopolymer. The holograms are reconstructed with the LED and the resulting images are analyzed to evaluate the quality of the wave descriptions. In this paper, we show that our presented new approach leads to better results in comparison to other wave descriptions. The enhancement is evaluated by the correlation between reconstructed and ideal images. In contrast to the next best approximation, a spherical wave, the correlation coefficient increased by 0.18% at 532 nm, 1.69% at 590 nm, and 0.75% at 620 nm.

  5. LEDing the Way.

    ERIC Educational Resources Information Center

    Dahlgren, Sally

    2000-01-01

    Discusses how advances in light-emitting diode (LED) technology is helping video displays at sporting events get fans closer to the action than ever before. The types of LED displays available are discussed as are their operation and maintenance issues. (GR)

  6. Portable, universal, and visual ion sensing platform based on the light emitting diode-based self-referencing-ion selective field-effect transistor.

    PubMed

    Zhang, Xiaowei; Han, Yanchao; Li, Jing; Zhang, Libing; Jia, Xiaofang; Wang, Erkang

    2014-02-04

    In this work, a novel and universal ion sensing platform was presented, which enables the visual detection of various ions with high sensitivity and selectivity. Coaxial potential signals (millivolt-scale) of the sample from the self-referencing (SR) ion selective chip can be transferred into the ad620-based amplifier with an output of volt-scale potentials. The amplified voltage is high enough to drive a light emitting diode (LED), which can be used as an amplifier and indicator to report the sample information. With this double amplification device (light emitting diode-based self-referencing-ion selective field-effect transistor, LED-SR-ISFET), a tiny change of the sample concentration can be observed with a distinguishable variation of LED brightness by visual inspection. This LED-based luminescent platform provided a facile, low-cost, and rapid sensing strategy without the need of additional expensive chemiluminescence reagent and instruments. Moreover, the SR mode also endows this device excellent stability and reliability. With this innovative design, sensitive determination of K(+), H(+), and Cl(-) by the naked eye was achieved. It should also be noticed that this sensing strategy can easily be extended to other ions (or molecules) by simply integrating the corresponding ion (or molecule) selective electrode.

  7. Spectral matching technology for light-emitting diode-based jaundice photodynamic therapy device

    NASA Astrophysics Data System (ADS)

    Gan, Ru-ting; Guo, Zhen-ning; Lin, Jie-ben

    2015-02-01

    The objective of this paper is to obtain the spectrum of light-emitting diode (LED)-based jaundice photodynamic therapy device (JPTD), the bilirubin absorption spectrum in vivo was regarded as target spectrum. According to the spectral constructing theory, a simple genetic algorithm as the spectral matching algorithm was first proposed in this study. The optimal combination ratios of LEDs were obtained, and the required LEDs number was then calculated. Meanwhile, the algorithm was compared with the existing spectral matching algorithms. The results show that this algorithm runs faster with higher efficiency, the switching time consumed is 2.06 s, and the fitting spectrum is very similar to the target spectrum with 98.15% matching degree. Thus, blue LED-based JPTD can replace traditional blue fluorescent tube, the spectral matching technology that has been put forward can be applied to the light source spectral matching for jaundice photodynamic therapy and other medical phototherapy.

  8. Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shuo-Wei; Epistar Corporation, Hsinchu 300, Taiwan; Li, Heng

    The crystal quality, electrical and optical properties of GaN based light emitting diodes (LEDs) with ex-situ sputtered physical vapor deposition (PVD) aluminum nitride (AlN) nucleation layers were investigated. It was found that the crystal quality in terms of defect density and x-ray diffraction linewidth was greatly improved in comparison to LEDs with in-situ low temperature GaN nucleation layer. The light output power was 3.7% increased and the reverse bias voltage of leakage current was twice on LEDs with ex-situ PVD AlN nucleation layers. However, larger compressive strain was discovered in LEDs with ex-situ PVD AlN nucleation layers. The study showsmore » the potential and constrain in applying ex-situ PVD AlN nucleation layers to fabricate high quality GaN crystals in various optoelectronics.« less

  9. Optimization of light quality from color mixing light-emitting diode systems for general lighting

    NASA Astrophysics Data System (ADS)

    Thorseth, Anders

    2012-03-01

    Given the problem of metamerisms inherent in color mixing in light-emitting diode (LED) systems with more than three distinct colors, a method for optimizing the spectral output of multicolor LED system with regards to standardized light quality parameters has been developed. The composite spectral power distribution from the LEDs are simulated using spectral radiometric measurements of single commercially available LEDs for varying input power, to account for the efficiency droop and other non-linear effects in electrical power vs. light output. The method uses electrical input powers as input parameters in a randomized steepest decent optimization. The resulting spectral power distributions are evaluated with regard to the light quality using the standard characteristics: CIE color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal boundaries for each system, mapping the capabilities of the simulated lighting systems with regard to the light quality characteristics.

  10. Fabrication and characterization of GaN-based light-emitting diodes without pre-activation of p-type GaN.

    PubMed

    Hu, Xiao-Long; Wang, Hong; Zhang, Xi-Chun

    2015-01-01

    We fabricated GaN-based light-emitting diodes (LEDs) without pre-activation of p-type GaN. During the fabrication process, a 100-nm-thick indium tin oxide film was served as the p-type contact layer and annealed at 500°C in N2 ambient for 20 min to increase its transparency as well as to activate the p-type GaN. The electrical measurements showed that the LEDs were featured by a lower forward voltage and higher wall-plug efficiency in comparison with LEDs using pre-activation of p-type GaN. We discussed the mechanism of activation of p-type GaN at 500°C in N2 ambient. Furthermore, x-ray photoemission spectroscopy examinations were carried out to study the improved electrical performances of the LEDs without pre-activation of p-type GaN.

  11. Highly efficient all-nitride phosphor-converted white light emitting diode

    NASA Astrophysics Data System (ADS)

    Mueller-Mach, Regina; Mueller, Gerd; Krames, Michael R.; Höppe, Henning A.; Stadler, Florian; Schnick, Wolfgang; Juestel, Thomas; Schmidt, Peter

    2005-07-01

    The development and demonstration of a highly efficient warm-white all-nitride phosphor-converted light emitting diode (pc-LED) is presented utilizing a GaN based quantum well blue LED and two novel nitrogen containing luminescent materials, both of which are doped with Eu2+. For color conversion of the primary blue the nitridosilicates M2Si5N8 (orange-red) and MSi2O2N2 (yellow-green), with M = alkaline earth, were employed, thus achieving a high luminous efficiency (25 lumen/W at 1 W input), excellent color quality (correlated color temperature CCT = 3200 K, general color rendering index Ra > 90) and the highest proven color stability of any pc-LED obtained so far. Thus, these novel all-nitride LEDs are superior to both incandescent and fluorescent lamps and may therefore become the next generation of general lighting sources.

  12. Color design model of high color rendering index white-light LED module.

    PubMed

    Ying, Shang-Ping; Fu, Han-Kuei; Hsieh, Hsin-Hsin; Hsieh, Kun-Yang

    2017-05-10

    The traditional white-light light-emitting diode (LED) is packaged with a single chip and a single phosphor but has a poor color rendering index (CRI). The next-generation package comprises two chips and a single phosphor, has a high CRI, and retains high luminous efficacy. This study employs two chips and two phosphors to improve the diode's color tunability with various proportions of two phosphors and various densities of phosphor in the silicone used. A color design model is established for color fine-tuning of the white-light LED module. The maximum difference between the measured and color-design-model simulated CIE 1931 color coordinates is approximately 0.0063 around a correlated color temperature (CCT) of 2500 K. This study provides a rapid method to obtain the color fine-tuning of a white-light LED module with a high CRI and luminous efficacy.

  13. Light Emitting Diodes and Astronomical Environments: Results from in situ Field Measurements

    NASA Astrophysics Data System (ADS)

    Craine, Brian L.; Craine, Eric R.

    2015-05-01

    Light emitting diode (LED) light fixtures are rapidly becoming industry standards for outdoor lighting. They are promoted on the strength of long lifetimes (hence economic efficiencies), low power requirements, directability, active brightness controls, and energy efficiency. They also tend to produce spectral shifts that are undesirable in astronomical settings, but which can be moderated by filters. LED lighting for continuous roadway and parking lot lighting is particularly popular, and many communities are in the process of retrofitting Low Pressure Sodium (LPS) and other lights by tens of thousands of new LED fixtures at a time. What is the impact of this process on astronomical observatories and on dark skies upon which amateur astronomers rely? We bypass modeling and predictions to make actual measurements of these lights in the field. We report on original ground, airborne, and satellite observations of LED lights and discuss their light budgets, zenith angle functions, and impacts on observatory environs.

  14. Study on Light Extraction from GaN-based Green Light-Emitting Diodes Using Anodic Aluminum Oxide Pattern and Nanoimprint Lithography

    PubMed Central

    Jiang, Shengxiang; Feng, Yulong; Chen, Zhizhong; Zhang, Lisheng; Jiang, Xianzhe; Jiao, Qianqian; Li, Junze; Chen, Yifan; Li, Dongsan; Liu, Lijian; Yu, Tongjun; Shen, Bo; Zhang, Guoyi

    2016-01-01

    An anodic aluminum oxide (AAO) patterned sapphire substrate, with the lattice constant of 520 ± 40 nm, pore dimension of 375 ± 50 nm, and height of 450 ± 25 nm was firstly used as a nanoimprint lithography (NIL) stamp and imprinted onto the surface of the green light-emitting diode (LED). A significant light extraction efficiency (LEE) was improved by 116% in comparison to that of the planar LED. A uniform broad protrusion in the central area and some sharp lobes were also obtained in the angular resolution photoluminescence (ARPL) for the AAO patterned LED. The mechanism of the enhancement was correlated to the fluctuations of the lattice constant and domain orientation of the AAO-pattern, which enabled the extraction of more guided modes from the LED device. PMID:26902178

  15. Design and analysis of reflector for uniform light-emitting diode illuminance.

    PubMed

    Tsai, Chung-Yu

    2013-05-01

    A light-emitting diode (LED) projection system is proposed, composed of an LED chip and a variable-focus-parabolic (VFP) reflector, in which the focal length varies as a function of the vertical displacement of the incidence point relative to the horizontal centerline of the LED chip. The light-ray paths within the projection system are analyzed using an exact analytical model and a skew-ray tracing approach. The profile of the proposed VFP reflector and the position of the LED chip are then optimized in such a way as to enhance the uniformity of the illuminance distribution on the target region of the image plane. The validity of the optimized design is demonstrated by means of ZEMAX simulations. It is shown that the optimized VFP projector system yields a significant improvement in illuminance uniformity compared to conventional spherical and parabolic projectors and therefore minimizes the glare effect.

  16. Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors

    PubMed Central

    2016-01-01

    We report the first demonstration of flexible white phosphor-converted light emitting diodes (LEDs) based on p–n junction core/shell nitride nanowires. GaN nanowires containing seven radial In0.2Ga0.8N/GaN quantum wells were grown by metal–organic chemical vapor deposition on a sapphire substrate by a catalyst-free approach. To fabricate the flexible LED, the nanowires are embedded into a phosphor-doped polymer matrix, peeled off from the growth substrate, and contacted using a flexible and transparent silver nanowire mesh. The electroluminescence of a flexible device presents a cool-white color with a spectral distribution covering a broad spectral range from 400 to 700 nm. Mechanical bending stress down to a curvature radius of 5 mm does not yield any degradation of the LED performance. The maximal measured external quantum efficiency of the white LED is 9.3%, and the wall plug efficiency is 2.4%. PMID:27331079

  17. Evaluation of OLED and edge-lit LED lighting panels

    NASA Astrophysics Data System (ADS)

    Mou, Xi; Narendran, Nadarajah; Zhu, Yiting; Freyssinier, Jean Paul

    2016-09-01

    Solid-state lighting (SSL) offers a new technology platform for lighting designers and end-users to illuminate spaces with low energy demand. Two types of SSL sources include organic light-emitting diodes (OLEDs) and light-emitting diodes (LEDs). OLED is an area light source, and its primary competing technology is the edge-lit LED panel. Generally, both of these technologies are considered similar in shape and appearance, but there is little understanding of how people perceive discomfort glare from large area light sources. The objective of this study was to evaluate discomfort glare for the two lighting technologies under similar operating conditions by gathering observers' reactions. The human factors study results showed no statistically significant difference in human response to discomfort glare between OLED and edge-lit LED panels when the two light sources produced the same lighting stimulus. This means both technologies appeared equally glary beyond a certain luminance.

  18. Stretchable Light-Emitting Diodes with Organometal-Halide-Perovskite-Polymer Composite Emitters.

    PubMed

    Bade, Sri Ganesh R; Shan, Xin; Hoang, Phong Tran; Li, Junqiang; Geske, Thomas; Cai, Le; Pei, Qibing; Wang, Chuan; Yu, Zhibin

    2017-06-01

    Intrinsically stretchable light-emitting diodes (LEDs) are demonstrated using organometal-halide-perovskite/polymer composite emitters. The polymer matrix serves as a microscale elastic connector for the rigid and brittle perovskite and induces stretchability to the composite emissive layers. The stretchable LEDs consist of poly(ethylene oxide)-modified poly(3,4-ethylenedioxythiophene) polystyrene sulfonate as a transparent and stretchable anode, a perovskite/polymer composite emissive layer, and eutectic indium-gallium as the cathode. The devices exhibit a turn-on voltage of 2.4 V, and a maximum luminance intensity of 15 960 cd m -2 at 8.5 V. Such performance far exceeds all reported intrinsically stretchable LEDs based on electroluminescent polymers. The stretchable perovskite LEDs are mechanically robust and can be reversibly stretched up to 40% strain for 100 cycles without failure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A thermosyphon heat pipe cooler for high power LEDs cooling

    NASA Astrophysics Data System (ADS)

    Li, Ji; Tian, Wenkai; Lv, Lucang

    2016-08-01

    Light emitting diode (LED) cooling is facing the challenge of high heat flux more seriously with the increase of input power and diode density. The proposed unique thermosyphon heat pipe heat sink is particularly suitable for cooling of high power density LED chips and other electronics, which has a heat dissipation potential of up to 280 W within an area of 20 mm × 22 mm (>60 W/cm2) under natural air convection. Meanwhile, a thorough visualization investigation was carried out to explore the two phase flow characteristics in the proposed thermosyphon heat pipe. Implementing this novel thermosyphon heat pipe heat sink in the cooling of a commercial 100 W LED integrated chip, a very low apparent thermal resistance of 0.34 K/W was obtained under natural air convection with the aid of the enhanced boiling heat transfer at the evaporation side and the enhanced natural air convection at the condensation side.

  20. Improving light extraction of InGaN-based light emitting diodes with a roughened p-GaN surface using CsCl nano-islands.

    PubMed

    Wei, Tongbo; Kong, Qingfeng; Wang, Junxi; Li, Jing; Zeng, Yiping; Wang, Guohong; Li, Jinmin; Liao, Yuanxun; Yi, Futing

    2011-01-17

    InGaN-based light emitting diodes (LEDs) with a top nano-roughened p-GaN surface are fabricated using self-assembled CsCl nano-islands as etch masks. Following formation of hemispherical GaN nano-island arrays, electroluminescence (EL) spectra of roughened LEDs display an obvious redshift due to partial compression release in quantum wells through Inductively Coupled Plasma (ICP) etching. At a 350-mA current, the enhancement of light output power of LEDs subjected to ICP treatment with durations of 50, 150 and 250 sec compared with conventional LED have been determined to be 9.2, 70.6, and 42.3%, respectively. Additionally, the extraction enhancement factor can be further improved by increasing the size of CsCl nano-island. The economic and rapid method puts forward great potential for high performance lighting devices.

  1. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying

    2014-07-07

    We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage currentmore » and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.« less

  2. Complete solid state lighting (SSL) line at CEA LETI

    NASA Astrophysics Data System (ADS)

    Robin, I. C.; Ferret, P.; Dussaigne, A.; Bougerol, C.; Salomon, D.; Chen, X. J.; Charles, M.; Tchoulfian, P.; Gasse, A.; Lagrange, A.; Consonni, M.; Bono, H.; Levy, F.; Desieres, Y.; Aitmani, A.; Makram-Matta, S.; Bialic, E.; Gorrochategui, P.; Mendizabal, L.

    2014-09-01

    With a long experience in optoelectronics, CEA-LETI has focused on Light Emitting Diode (LED) lighting since 2006. Today, all the technical challenges in the implementation of GaN LED based solid state lighting (SSL) are addressed at CEA-LETI who is now an RandD player throughout the entire value chain of LED lighting. The SSL Line at CEA-LETI first deals with the simulation of the active structures and LED devices. Then the growth is addressed in particular 2D growth on 200 mm silicon substrates. Then, technological steps are developed for the fabrication of LED dies with innovative architectures. For instance, Versatile LED Array Devices are currently being developed with a dedicated μLED technology. The objective in this case is to achieve monolithical LED arrays reported and interconnected through a silicon submount. In addition to the required bonding and 3D integration technologies, new solutions for LED chip packaging, thermal management of LED lamps and luminaires are also addressed. LETI is also active in Smart Lighting concepts which offer the possibility of new application fields for SSL technologies. An example is the recent development at CEA LETI of Visible Light Communication Technology also called LiFi. With this technology, we demonstrated a transmission rate up to 10 Mb/s and real time HD-Video transmission.

  3. Influence of electromechanical coupling on optical properties of InGaN quantum-dot based light-emitting diodes.

    PubMed

    Barettin, Daniele; Maur, Matthias Auf der; Carlo, Aldo di; Pecchia, Alessandro; Tsatsulnikov, Andrei F; Sakharov, Alexei V; Lundin, Wsevolod V; Nikolaev, Andrei E; Usov, Sergey O; Cherkashin, Nikolay; Hÿtch, Martin J; Karpov, Sergey Yu

    2017-01-06

    The impact of electromechanical coupling on optical properties of light-emitting diodes (LEDs) with InGaN/GaN quantum-dot (QD) active regions is studied by numerical simulations. The structure, i.e. the shape and the average In content of the QDs, has been directly derived from experimental data on out-of-plane strain distribution obtained from the geometric-phase analysis of a high-resolution transmission electron microscopy image of an LED structure grown by metalorganic vapor-phase epitaxy. Using continuum [Formula: see text] calculations, we have studied first the lateral and full electromechanical coupling between the QDs in the active region and its impact on the emission spectrum of a single QD located in the center of the region. Our simulations demonstrate the spectrum to be weakly affected by the coupling despite the strong common strain field induced in the QD active region. Then we analyzed the effect of vertical coupling between vertically stacked QDs as a function of the interdot distance. We have found that QCSE gives rise to a blue-shift of the overall emission spectrum when the interdot distance becomes small enough. Finally, we compared the theoretical spectrum obtained from simulation of the entire active region with an experimental electroluminescence (EL) spectrum. While the theoretical peak emission wavelength of the selected central QD corresponded well to that of the EL spectrum, the width of the latter one was determined by the scatter in the structures of various QDs located in the active region. Good agreement between the simulations and experiment achieved as a whole validates our model based on realistic structure of the QD active region and demonstrates advantages of the applied approach.

  4. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers.

    PubMed

    Willander, M; Nur, O; Zhao, Q X; Yang, L L; Lorenz, M; Cao, B Q; Zúñiga Pérez, J; Czekalla, C; Zimmermann, G; Grundmann, M; Bakin, A; Behrends, A; Al-Suleiman, M; El-Shaer, A; Che Mofor, A; Postels, B; Waag, A; Boukos, N; Travlos, A; Kwack, H S; Guinard, J; Le Si Dang, D

    2009-08-19

    Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO:P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence characteristics aimed at the development of white LEDs are demonstrated. Although some of the presented LEDs show visible emission for applied biases in excess of 10 V, optimized structures are expected to provide the same emission at much lower voltage. Finally, lasing from ZnO nanorods is briefly reviewed. An example of a recent whispering gallery mode (WGM) lasing from ZnO is demonstrated as a way to enhance the stimulated emission from small size structures.

  5. 2D photonic crystal layer assisted thiosilicate ceramic plate with red-emitting film for high quality w -LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Wubin; Lei, Yifeng; Zhou, Jia

    In this work, we have succeeded in obtaining high quality warm w-light-emitting-diodes (LEDs) by adopting hybrid two-dimensional (2D) structure of SiNx photonic crystal layer (PCL) assisted cyan-emitting ceramic-plate thiosilicate SrLa2Si2S8:Ce3+ with red-emitting film SrLiAl3N4:Eu2+ phosphor on a 430 nm blue LED chip at 350 mA. 2D SiNx PCL was capped with thiosilicate is because it can enhance the luminous efficacy and maintain the low correlated color temperature (CCT) and high color-rendering index (CRI). High luminous efficacy (82.3 lm/W), high special CRI (R9=75) as well as the low CCT (5431 K) of the optimal w-LED was obtained due to the assistancesmore » of 2D SiNx PCL and narrow-band red-emitting phosphor with the doping percentage at 10 wt%. The synthesis processes, structural analysis, optical properties and LED device performances were detailed investigated to find out the relationship between the optimum composition and good optical properties. Based on intriguing luminescence properties by the 2D SiNx PCL and red-emitting film phosphor introducing, we proclaim this method could also have high potential application in other phosphor-converted w-LEDs.« less

  6. High-speed GaN/GaInN nanowire array light-emitting diode on silicon(111).

    PubMed

    Koester, Robert; Sager, Daniel; Quitsch, Wolf-Alexander; Pfingsten, Oliver; Poloczek, Artur; Blumenthal, Sarah; Keller, Gregor; Prost, Werner; Bacher, Gerd; Tegude, Franz-Josef

    2015-04-08

    The high speed on-off performance of GaN-based light-emitting diodes (LEDs) grown in c-plane direction is limited by long carrier lifetimes caused by spontaneous and piezoelectric polarization. This work demonstrates that this limitation can be overcome by m-planar core-shell InGaN/GaN nanowire LEDs grown on Si(111). Time-resolved electroluminescence studies exhibit 90-10% rise- and fall-times of about 220 ps under GHz electrical excitation. The data underline the potential of these devices for optical data communication in polymer fibers and free space.

  7. A Study of Wavelength Division Multiplexing for Avionics Applications.

    DTIC Science & Technology

    1982-08-01

    Force system II, an eight-wavelength, codirectional, 300-Mb/s, point-to-point system, was designed using laser diode sources with channel wavelengths...Injection Locking 72 4.2.6 Laser Packaging 77 4.3 System Simulation Results 77 4.3.1 LED Systems 78 4.3.1.1 System I 79 4.3.1.2 System III 82 4.3.2 Laser ...FIGURE TITLE PAGE 1.0-1 WDM Study Organization 4 2.3.1-1 Spectral Emission of an InGaAsP Laser Diode 14 2.3.1-2 Spectral Emission of an LED 16 2.3.1-3

  8. Effects of color temperatures (kelvin) of led bulbs on blood physiological variables of broilers grown to heavy weights

    USDA-ARS?s Scientific Manuscript database

    Light-emitting diode (LED) lighting is being used in the poultry industry to reduce energy usage in broiler production facilities. However, limited data are available comparing efficacy of different spectral distribution of LED bulbs on blood physiological variables of broilers grown to heavy weight...

  9. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns

    PubMed Central

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-01-01

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results. PMID:28374856

  10. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns.

    PubMed

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-04-04

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results.

  11. Blue laser diode (LD) and light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Bergh, Arpad A.

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.

  12. Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals

    PubMed Central

    Wu, Fan; Stark, Eran; Ku, Pei-Cheng; Wise, Kensall D.; Buzsáki, György; Yoon, Euisik

    2015-01-01

    SUMMARY We report a scalable method to monolithically integrate microscopic light emitting diodes (μLEDs) and recording sites onto silicon neural probes for optogenetic applications in neuroscience. Each μLED and recording site has dimensions similar to a pyramidal neuron soma, providing confined emission and electrophysiological recording of action potentials and local field activity. We fabricated and implanted the four-shank probes, each integrated with 12 μLEDs and 32 recording sites, into the CA1 pyramidal layer of anesthetized and freely moving mice. Spikes were robustly induced by 60 nW light power, and fast population oscillations were induced at the microwatt range. To demonstrate the spatiotemporal precision of parallel stimulation and recording, we achieved independent control of distinct cells ~50 μm apart and of differential somatodendritic compartments of single neurons. The scalability and spatiotemporal resolution of this monolithic optogenetic tool provides versatility and precision for cellular-level circuit analysis in deep structures of intact, freely moving animals. PMID:26627311

  13. Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice.

    PubMed

    Whelan, Harry T; Buchmann, Ellen V; Dhokalia, Apsara; Kane, Mary P; Whelan, Noel T; Wong-Riley, Margaret T T; Eells, Janis T; Gould, Lisa J; Hammamieh, Rasha; Das, Rina; Jett, Marti

    2003-04-01

    The purpose of this study was to assess the changes in gene expression of near-infrared light therapy in a model of impaired wound healing. Light-Emitting Diodes (LED), originally developed for NASA plant growth experiments in space, show promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. In this paper we present the effects of LED treatment on wounds in a genetically diabetic mouse model. Polyvinyl acetal (PVA) sponges were subcutaneously implanted in the dorsum of BKS.Cg-m +/+ Lepr(db) mice. LED treatments were given once daily, and at the sacrifice day, the sponges, incision line and skin over the sponges were harvested and used for RNA extraction. The RNA was subsequently analyzed by cDNA array. Our studies have revealed certain tissue regenerating genes that were significantly upregulated upon LED treatment when compared to the untreated sample. Integrins, laminin, gap junction proteins, and kinesin superfamily motor proteins are some of the genes involved during regeneration process. These are some of the genes that were identified upon gene array experiments with RNA isolated from sponges from the wound site in mouse with LED treatment. We believe that the use of NASA light-emitting diodes (LED) for light therapy will greatly enhance the natural wound healing process, and more quickly return the patient to a preinjury/illness level of activity. This work is supported and managed through the Defense Advanced Research Projects Agency (DARPA) and NASA Marshall Space Flight Center-SBIR Program.

  14. Seed-to-seed growth of superdwarf wheat and arabidopsis using red light-emitting diodes (LED's): A report on baseline tests conducted for NASA's proposed Plant Research Unit (PRU)

    NASA Technical Reports Server (NTRS)

    Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.

    1996-01-01

    To determine the influence of narrow-spectrum red light-emitting diodes (LED's) on plant growth and seed production, wheat (Triticum aestivum L.cv Superdwarf) and Arabidopsis (Arabidopsis thaliana (L.) Heynh, race Columbia) plants were grown under red LED's (peak emission 660 nm) and compared to plants grown under daylight fluorescent (white) light and red LED's supplemented with either 1 percent or 10 percent blue fluorescent (BF) light. Wheat growth under red LED's alone appeared normal, whereas Arabidopsis under red LED's alone developed curled leaf margins and a spiraling growth pattern. Both wheat and Arabidopsis under red LED's alone or red LED's + 1 percent BF light had significantly lower seed yield than plants grown under white light. However, the addition of 10 percent BF light to red LED's partially alleviated the adverse effect of red LED's on yield. Irrespective of the light treatment, viable seeds were produced by wheat(75-92 percent germination rate) and Arabidopsis (85-100 percent germination rate). These results indicate that wheat, and to a lesser extent Arabidopsis, can be successfully grown under red LED's alone, but supplemental blue light is required with red LED's to sufficiently match the growth characteristics and seed yield associated with plants grown under white light.

  15. Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of Brassica microgreens

    USDA-ARS?s Scientific Manuscript database

    Multi-layer vertical production systems using sole-source (SS) lighting can be used for microgreen production; however, traditional SS lighting can consume large amounts of electrical energy. Light-emitting diodes (LEDs) offer many advantages over conventional light sources including: high photoelec...

  16. Light-Emitting Diodes: Learning New Physics

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…

  17. Light-Emitting Diodes: Solving Complex Problems

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the fourth paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide readers with the description of experiments and the pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper provided…

  18. Polar semiconductor heterojunction structure energy band diagram considerations

    NASA Astrophysics Data System (ADS)

    Lin, Shuxun; Wen, Cheng P.; Wang, Maojun; Hao, Yilong

    2016-03-01

    The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.

  19. 405 nm diode laser, halogen lamp and LED device comparison in dental composites cure: an "in vitro" experimental trial.

    PubMed

    Fornaini, C; Lagori, G; Merigo, E; Rocca, J-P; Chiusano, M; Cucinotta, A

    2015-12-30

    A 405 nm diode laser is indicated for composite materials polymerizing, thanks to the recent evolution in their compositions, absorbing in blue part of the spectrum. The purpose of this research was to evaluate its performance on two different kinds of composite resins. Two different composites were polymerized with a traditional halogen lamp, a LED device and a 405 nm diode laser. The depth of the cure, the volumetric shrinkage, and the degree of the conversion (DC%) of the double bond during the curing process were measured. One-way ANOVA test, Kruskal-Wallis tests, and Dunn comparison tests were used for statistic analysis. Regarding the depth of polymerization, the laser had the worst performance on one composite while on the other, no significant difference with the other devices was observed. The volumetric shrinkage showed that laser produced the lowest change in both of the composites. The DC% measure confirmed these findings. Based on the results of this preliminary study, it is not possible to recommend the 405 nm diode laser for the polymerization of dental composites.

  20. Different proportions of C/KCu7S4 hybrid structure for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Dai, Shuge; Xi, Yi; Hu, Chenguo; Yue, Xule; Cheng, Lu; Wang, Guo

    2014-10-01

    KCu7S4 has the channel structure and minor resistance. Its double larger channels ensure that the ions can well exchange with other's, at the same time, can shorten the ionic diffusion path and improve the ionic and electronic transport. So KCu7S4 shows good electrochemical property. The paper reports a novel and high performance supercapacitor based on hybrid carbon particles and KCu7S4 (C/KCu7S4) electrode. For the hybrid structure with different proportions of C and KCu7S4, the C/KCu7S4 (1:10) hybrid supercapacitor shows preferable electrochemical performance and large specific capacitance (469 mF cm-2) at high charge-discharge rate (2 mA), still retaining ∼95% of the capacitance over 5000 cycles by charge-discharge process at a fixed current of 10 mA. Three supercapacitor units in series can light 50 light-emitting diodes (LEDs) for 2.5 min, 10 LEDs for 4 min, one LED for 5.5 min. The much-increased capacity, rate capability, and cycling stability may be attributed to the superionic conductive KCu7S4 nanowires and C/KCu7S4 hybrid structure, which improve ionic and electronic transport, enhance the kinetics of redox reactions through the electrode system.

  1. Study on the Coupling Mechanism of the Orthogonal Dipoles with Surface Plasmon in Green LED by Cathodoluminescence.

    PubMed

    Feng, Yulong; Chen, Zhizhong; Jiang, Shuang; Li, Chengcheng; Chen, Yifan; Zhan, Jinglin; Chen, Yiyong; Nie, Jingxin; Jiao, Fei; Kang, Xiangning; Li, Shunfeng; Yu, Tongjun; Zhang, Guoyi; Shen, Bo

    2018-04-16

    We analyzed the coupling behavior between the localized surface plasmon (LSP) and quantum wells (QWs) using cathodoluminescence (CL) in a green light-emitting diodes (LED) with Ag nanoparticles (NPs) filled in photonic crystal (PhC) holes. Photoluminescence (PL) suppression and CL enhancement were obtained for the same green LED sample with the Ag NP array. Time-resolved PL (TRPL) results indicate strong coupling between the LSP and the QWs. Three-dimensional (3D) finite difference time domain (FDTD) simulation was performed using a three-body model consisting of two orthogonal dipoles and a single Ag NP. The LSP–QWs coupling effect was separated from the electron-beam (e-beam)–LSP–QW system by linear approximation. The energy dissipation was significantly reduced by the z-dipole introduction under the e-beam excitation. In this paper, the coupling mechanism is discussed and a novel emission structure is proposed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Kun; Ikeda, Masao, E-mail: mikeda2013@sinano.ac.cn, E-mail: jpliu2010@sinano.ac.cn; Liu, Jianping, E-mail: mikeda2013@sinano.ac.cn, E-mail: jpliu2010@sinano.ac.cn

    The efficiency droop of InGaN/GaN(InGaN) multiple quantum well (MQW) light emitting diodes (LEDs) with thin quantum barriers (QB) is studied. With thin GaN QB (3 nm–6 nm thickness), the efficiency droop is not improved, which indicates that hole transport cannot be significantly enhanced by the thin GaN QBs. On the contrary, the efficiency droop was remarkably reduced by using a InGaN staircase QB (InGaN SC-QB) MQWs structure where InGaN SC-QBs lower the transport energy barrier of holes. The efficiency droop ratio was as low as 3.3% up to 200 A/cm{sup 2} for the InGaN SC-QB LED. By using monitoring QW with longer wavelengthmore » we observe a much uniform carrier distribution in the InGaN SC-QB LEDs, which reveals the mechanism of improvement in the efficiency droop.« less

  3. Cost and energy-efficient (LED, induction and plasma) roadway lighting.

    DOT National Transportation Integrated Search

    2013-11-01

    There is an increasing interest in using new lighting technologies such as light emitting diode (LED), Induction, and Plasma light sources : in roadway lighting. The most commonly claimed benefits of the new lighting systems include increased reliabi...

  4. III-nitride nanopyramid light emitting diodes grown by organometallic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wildeson, Isaac H.; Colby, Robert; Ewoldt, David A.; Liang, Zhiwen; Zakharov, Dmitri N.; Zaluzec, Nestor J.; García, R. Edwin; Stach, Eric A.; Sands, Timothy D.

    2010-08-01

    Nanopyramid light emitting diodes (LEDs) have been synthesized by selective area organometallic vapor phase epitaxy. Self-organized porous anodic alumina is used to pattern the dielectric growth templates via reactive ion etching, eliminating the need for lithographic processes. (In,Ga)N quantum well growth occurs primarily on the six {11¯01} semipolar facets of each of the nanopyramids, while coherent (In,Ga)N quantum dots with heights of up to ˜20 nm are incorporated at the apex by controlling growth conditions. Transmission electron microscopy (TEM) indicates that the (In,Ga)N active regions of the nanopyramid heterostructures are completely dislocation-free. Temperature-dependent continuous-wave photoluminescence of nanopyramid heterostructures yields a peak emission wavelength of 617 nm and 605 nm at 300 K and 4 K, respectively. The peak emission energy varies with increasing temperature with a double S-shaped profile, which is attributed to either the presence of two types of InN-rich features within the nanopyramids or a contribution from the commonly observed yellow defect luminescence close to 300 K. TEM cross-sections reveal continuous planar defects in the (In,Ga)N quantum wells and GaN cladding layers grown at 650-780 °C, present in 38% of the nanopyramid heterostructures. Plan-view TEM of the planar defects confirms that these defects do not terminate within the nanopyramids. During the growth of p-GaN, the structure of the nanopyramid LEDs changed from pyramidal to a partially coalesced film as the thickness requirements for an undepleted p-GaN layer result in nanopyramid impingement. Continuous-wave electroluminescence of nanopyramid LEDs reveals a 45 nm redshift in comparison to a thin-film LED, suggesting higher InN incorporation in the nanopyramid LEDs. These results strongly encourage future investigations of III-nitride nanoheteroepitaxy as an approach for creating efficient long wavelength LEDs.

  5. A lighting assembly based on red and blue light-emitting diodes as a lighting source for space agriculture

    NASA Astrophysics Data System (ADS)

    Avercheva, Olga; Berkovich, Yuliy A.; Smolyanina, Svetlana; Bassarskaya, Elizaveta; Zhigalova, Tatiana; Ptushenko, Vasiliy; Erokhin, Alexei

    Light-emitting diodes (LEDs) are a promising lighting source for space agriculture due to their high efficiency, longevity, safety, and other factors. Assemblies based on red and blue LEDs have been recommended in literature, although not all plants show sufficient productivity in such lighting conditions. Adding of green LEDs proposed in some works was aimed at psychological support for the crew, and not at the improvement of plant growth. We studied the growth and the state of the photosynthetic apparatus in Chinese cabbage (Brassica chinensis L.) plants grown under red (650 nm) and blue (470 nm) light-emitting diodes (LEDs). Plants grown under a high-pressure sodium lamp (HPS lamp) were used as a control. The plants were illuminated with two photosynthetic photon flux levels: nearly 400 µE and about 100 µE. Plants grown under LEDs with 400 µE level, as compared to control plants, showed lower fresh weight, edible biomass, growth rate, and sugar content. The difference in fresh weight and edible biomass was even more pronounced in plants grown with 100 µE level; the data indicate that the adaptability of the test plants to insufficient lighting decreased. Under LEDs, we observed the decreasing of root growth and the absence of transition to the flowering stage, which points to a change in the hormonal balance in plants grown in such lighting conditions. We also found differences in the functioning of the photosynthetic apparatus and its reaction to a low lighting level. We have concluded that a lighting assembly with red and blue LEDs only is insufficient for the plant growth and productivity, and can bring about alterations in their adaptive and regulatory mechanisms. Further studies are needed to optimize the lighting spectrum for space agriculture, taking into account the photosynthetic, phototropic and regulatory roles of light. Using white LEDs or adding far-red and green LEDs might be a promising approach.

  6. Expeditionary Lighting Systems for Military Shelters

    DTIC Science & Technology

    2009-11-04

    Lumiled LED Housing Nonimaging Beamformer Heat Sink Connector Retractable Cable O Transportation Configuration Physical Optics Corporation (POC) LED...New Lighting Technologies: • Technology: Light Emitting Diode (LED) o Physical Optics Corp [SBIR] o Techshot [SBIR] [Congressional Effort o Jameson LED...rugged and durable—no lamp to damage or replace • Custom designed optical diffuser prevents glare and “eye spots” • Operates on universal voltage, 90

  7. Noise reduction in digital lensless holographic microscopy by engineering the light from a light-emitting diode.

    PubMed

    Garcia-Sucerquia, Jorge

    2013-01-01

    By engineering the light from a light-emitting diode (LED) the noises present in digital lensless holographic microscopy (DLHM) are reduced. The partially coherent light from an LED is tailored to produce a spherical wavefront with limited coherence time and the spatial coherence needed by DLHM to work. DLHM with this engineered light source is used to image biological samples that cover areas of the order of mm(2). The ratio between the diameter of the area that is almost coherently illuminated to the diameter of the illumination area is utilized as parameter to quantify the performance of the DLHM with the engineered LED light source. Experimental results show that while the noises can be reduced effectively the spatial resolution can be kept in the micrometer range.

  8. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes.

    PubMed

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-06

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  9. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  10. Investigating the origin of efficiency droop by profiling the voltage across the multi-quantum well of an operating light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taewoong; Seong, Tae-Yeon; School of Materials Science and Engineering, Korea University, Seoul 136-713

    Efficiency droop is a phenomenon in which the efficiency of a light-emitting diode (LED) decreases with the increase in current density. To analyze efficiency droop, direct experimental observations on the energy conversion occurring inside the LED is required. Here, we present the measured voltage profiles on the cross section of an operating LED and analyze them with the cross-sectional temperature profiles obtained in a previous study under the same operation conditions. The measured voltage profiles suggest that with increases in the injection current density, electron depletion shifts from the multi-quantum well through an electron blocking layer to the p-GaN region.more » This is because electron leakage increases with increases in current density.« less

  11. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    PubMed Central

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments. PMID:28059148

  12. Enhanced light extraction efficiency of micro-ring array AlGaN deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Bekele Fayisa, Gabisa; Lee, Jong Won; Kim, Jungsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2017-09-01

    An effective approach to overcome inherently poor light extraction efficiency of AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) is presented. We demonstrated the 5 × 5 array micro-ring DUV LED having an inclined sidewall at the outer perimeter and a p-GaN-removed inner circle of the micro-ring, together with MgF2/Al omnidirectional reflectors. The micro-ring array DUV LED shows remarkably higher light output power by 70% than the reference, consistent with the calculated result, as well as comparable turn-on and operational voltages, which are attributed to the effective extraction of strong transverse-magnetic polarized anisotropic emission and the reduction of the absorption loss by the p-GaN contact layer, simultaneously.

  13. Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes.

    PubMed

    Sadaf, S M; Ra, Y-H; Nguyen, H P T; Djavid, M; Mi, Z

    2015-10-14

    The current LED lighting technology relies on the use of a driver to convert alternating current (AC) to low-voltage direct current (DC) power, a resistive p-GaN contact layer to inject positive charge carriers (holes) for blue light emission, and rare-earth doped phosphors to down-convert blue photons into green/red light, which have been identified as some of the major factors limiting the device efficiency, light quality, and cost. Here, we show that multiple-active region phosphor-free InGaN nanowire white LEDs connected through a polarization engineered tunnel junction can fundamentally address the afore-described challenges. Such a p-GaN contact-free LED offers the benefit of carrier regeneration, leading to enhanced light intensity and reduced efficiency droop. Moreover, through the monolithic integration of p-GaN up and p-GaN down nanowire LED structures on the same substrate, we have demonstrated, for the first time, AC operated LEDs on a Si platform, which can operate efficiently in both polarities (positive and negative) of applied voltage.

  14. High-power LEDs based on InGaAsP/InP heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakovics, V.; Imenkov, A. N.; Sherstnev, V. V.

    2014-12-15

    High-power light-emitting diodes (LEDs) with mesa diameters of 100, 200, and 300 μm are developed on the basis of InGaAsP/InP heterostructures. The mesas are close in shape to a truncated cone with a generatrix inclination angle of ∼45° in the vicinity of the active region of the LED, with a ring etched around the mesa serving as a reflector. The emission spectra and directivity patterns of these LEDs are studied in a wide range of current densities and it is shown that radiative recombination is dominant to a current density of ∼5000 A/cm{sup 2}, which makes these structures promising formore » the development of high-power LEDs. An emission power of ∼14 mW is obtained in the continuous-wave mode (I = 0.2 A, λ = 1.1 μm), and that of 77 mW, in the pulsed mode (I = 2 A, λ = 1.1 μm), which corresponds to external quantum efficiencies of 6.2 and 3.4%, respectively.« less

  15. Polarization of III-nitride blue and ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shakya, J.; Knabe, K.; Kim, K. H.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2005-02-01

    Polarization-resolved electroluminescence studies of III-nitride blue and ultraviolet (UV) light-emitting diodes (LEDs) were performed. The LEDs were fabricated on nitride materials grown by metalorganic chemical vapor deposition on sapphire substrates (0001). Transverse electric (TE) polarization dominates in the InGaN/GaN quantum-well (QW) blue LEDs (λ'=458nm), whereas transverse magnetic (TM) polarization is dominant in the AlInGaN QW UV LEDs (λ=333nm). For the case of edge emission in blue LEDs, a ratio (r=I⊥/I ‖) of about 1.8:1 was observed between the EL intensities with polarization E ⊥c (TE mode) and E ‖c (TM mode), which corresponds to a degree of polarization ˜0.29. The UV LEDs exhibit a ratio r of about 1:2.3, corresponding to a degree of polarization ˜0.4. This is due to the fact that the degree of polarization of the bandedge emission of the AlxInyGa1-x -yN active layer changes with Al concentration. The low emission efficiency of nitride UV LEDs is partly related to this polarization property. Possible consequences and ways to enhance UV emitter performances related to this unique polarization property are discussed.

  16. Photodynamic Therapy for Actinic Keratoses: A Randomized Prospective Non-sponsored Cost-effectiveness Study of Daylight-mediated Treatment Compared with Light-emitting Diode Treatment.

    PubMed

    Neittaanmäki-Perttu, Noora; Grönroos, Mari; Karppinen, Toni; Snellman, Erna; Rissanen, Pekka

    2016-02-01

    Daylight-mediated photodynamic therapy (DL-PDT) is considered as effective as conventional PDT using artificial light (light-emitting diode (LED)-PDT) for treatment of actinic keratoses (AK). This randomized prospective non-sponsored study assessed the cost-effectiveness of DL-PDT compared with LED-PDT. Seventy patients with 210 AKs were randomized to DL-PDT or LED-PDT groups. Effectiveness was assessed at 6 months. The costs included societal costs and private costs, including the time patients spent in treatment. Results are presented as incremental cost-effectiveness ratio (ICER). The total costs per patient were significantly lower for DL-PDT (€132) compared with LED-PDT (€170), giving a cost saving of €38 (p = 0.022). The estimated probabilities for patients' complete response were 0.429 for DL-PDT and 0.686 for LED-PDT; a difference in probability of being healed of 0.257. ICER showed a monetary gain of €147 per unit of effectiveness lost. DL-PDT is less costly and less effective than LED-PDT. In terms of cost-effectiveness analysis, DL-PDT provides lower value for money compared with LED-PDT.

  17. Effect of multi-wavelength irradiation on color characterization with light-emitting diodes (LEDs)

    NASA Astrophysics Data System (ADS)

    Park, Hyeong Ju; Song, Woosub; Lee, Byeong-Il; Kim, Hyejin; Kang, Hyun Wook

    2017-06-01

    In the current study, a multi-wavelength light-emitting diode (LED)-integrated CMOS imaging device was developed to investigate the effect of various wavelengths on multiple color characterization. Various color pigments (black, red, green, and blue) were applied on both white paper and skin phantom surfaces for quantitative analysis. The artificial skin phantoms were made of polydimethylsiloxane (PDMS) mixed with coffee and TiO2 powder to emulate the optical properties of the human dermis. The customized LED-integrated imaging device acquired images of the applied pigments by sequentially irradiating with the LED lights in the order of white, red, green, and blue. Each color pigment induced a lower contrast during illumination by the light with the equivalent color. However, the illumination by light with the complementary (opposite) color increased the signal-to-noise ratio by up to 11-fold due to the formation of a strong contrast ( i.e., red LED = 1.6 ± 0.3 vs. green LED = 19.0 ± 0.6 for red pigment). Detection of color pigments in conjunction with multi-wavelength LEDs can be a simple and reliable technique to estimate variations in the color pigments quantitatively.

  18. Thermal characterizations analysis of high-power ThinGaN cool-white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Raypah, Muna E.; Devarajan, Mutharasu; Ahmed, Anas A.; Sulaiman, Fauziah

    2018-03-01

    Analysis of thermal properties plays an important role in the thermal management of high-power (HP) lighting-emitting diodes (LEDs). Thermal resistance, thermal capacitance, and thermal time constant are essential parameters for the optimal design of the LED device and system, particularly for dynamic performance study. In this paper, thermal characterization and thermal time constant of ThinGaN HP LEDs are investigated. Three HP cool-white ThinGaN LEDs from different manufacturers are used in this study. A forward-voltage method using thermal transient tester (T3Ster) system is employed to determine the LEDs' thermal parameters at various operating conditions. The junction temperature transient response is described by a multi-exponential function model to extract thermal time constants. The transient response curve is divided into three layers and expressed by three exponential functions. Each layer is associated with a particular thermal time constant, thermal resistance, and thermal capacitance. It is found that the thermal time constant of LED package is on the order of 22 to 100 ms. Comparison between the experimental results is carried out to show the design effects on thermal performance of the LED package.

  19. Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices

    PubMed Central

    Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang

    2016-01-01

    Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers. PMID:27181337

  20. Manufacturing polymer light emitting diode with high luminance efficiency by solution process

    NASA Astrophysics Data System (ADS)

    Kim, Miyoung; Jo, SongJin; Yang, Ho Chang; Yoon, Dang Mo; Kwon, Jae-Taek; Lee, Seung-Hyun; Choi, Ju Hwan; Lee, Bum-Joo; Shin, Jin-Koog

    2012-06-01

    While investigating polymer light emitting diodes (polymer-LEDs) fabricated by solution process, surface roughness influences electro-optical (E-O) characteristics. We expect that E-O characteristics such as luminance and power efficiency related to surface roughness and layer thickness of emitting layer with poly-9-Vinylcarbazole. In this study, we fabricated polymer organic light emitting diodes by solution process which guarantees easy, eco-friendly and low cost manufacturing for flexible display applications. In order to obtain high luminescence efficiency, E-O characteristics of these devices by varying parameters for printing process have been investigated. Therefore, we optimized process condition for polymer-LEDs by adjusting annealing temperatures of emission, thickness of emission layer showing efficiency (10.8 cd/A) at 10 mA/cm2. We also checked wavelength dependent electroluminescence spectrum in order to find the correlation between the variation of efficiency and the thickness of the layer.

Top