Diode pumped solid-state laser oscillators for spectroscopic applications
NASA Technical Reports Server (NTRS)
Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.
1987-01-01
The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.
Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.
2005-01-01
Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.
High power diode and solid state lasers
NASA Astrophysics Data System (ADS)
Eichler, H. J.; Fritsche, H.; Lux, O.; Strohmaier, S. G.
2017-01-01
Diode lasers are now basic pump sources of crystal, glass fiber and other solid state lasers. Progress in the performance of all these lasers is related. Examples of recently developed diode pumped lasers and Raman frequency converters are described for applications in materials processing, Lidar and medical surgery.
Frequency stabilization of diode-laser-pumped solid state lasers
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1988-01-01
The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.
Single-frequency Ince-Gaussian mode operations of laser-diode-pumped microchip solid-state lasers.
Ohtomo, Takayuki; Kamikariya, Koji; Otsuka, Kenju; Chu, Shu-Chun
2007-08-20
Various single-frequency Ince-Gaussian mode oscillations have been achieved in laser-diode-pumped microchip solid-state lasers, including LiNdP(4)O(12) (LNP) and Nd:GdVO(4), by adjusting the azimuthal symmetry of the short laser resonator. Ince-Gaussian modes formed by astigmatic pumping have been reproduced by numerical simulation.
The HALNA project: Diode-pumped solid-state laser for inertial fusion energy
NASA Astrophysics Data System (ADS)
Kawashima, T.; Ikegawa, T.; Kawanaka, J.; Miyanaga, N.; Nakatsuka, M.; Izawa, Y.; Matsumoto, O.; Yasuhara, R.; Kurita, T.; Sekine, T.; Miyamoto, M.; Kan, H.; Furukawa, H.; Motokoshi, S.; Kanabe, T.
2006-06-01
High-enery, rep.-rated, diode-pumped solid-state laser (DPSSL) is one of leading candidates for inertial fusion energy driver (IFE) and related laser-driven high-field applications. The project for the development of IFE laser driver in Japan, HALNA (High Average-power Laser for Nuclear Fusion Application) at ILE, Osaka University, aims to demonstrate 100-J pulse energy at 10 Hz rep. rate with 5 times diffraction limited beam quality. In this article, the advanced solid-state laser technologies for one half scale of HALNA (50 J, 10 Hz) are presented including thermally managed slab amplifier of Nd:phosphate glass and zig-zag optical geometry, and uniform, large-area diode-pumping.
Diode-pumped solid state green laser for ophthalmologic application
NASA Astrophysics Data System (ADS)
Eno, Taizo; Goto, Yoshiaki; Momiuchi, Masayuki
2002-10-01
We have developed diode pumped solid state green laser suitable for ophthalmologic applications. Beam parameters were designed by considering the coagulation system. We have lowered the beam quality to multi transverse and longitudinal mode on purpose to improve the speckle noise of the slit lamp output beam. The beam profile shows homogeneous intensity and it is very useful for ophthalmologic application. End pumping and short cavity configuration made it possible.
NASA Astrophysics Data System (ADS)
Hamza, Mostafa; El-Ahl, Mohammad H. S.; Hamza, Ahmad M.
2001-01-01
The authors introduce the design of a blue-green diode- pumped solid-state laser system for transcutaneous measurement of serum bilirubin level in jaundiced new born infant. The system follows the principles of optical bilirubinometry. The choice of wavelengths provides correction for the presence of hemoglobin. The new design is more compact and less expensive.
Ultracold Fermions in the P-Orbital Band of an Optical Lattice
2015-07-27
introduces (1) a new degree of freedom due to orbital degeneracy and (2) a tunneling anisotropy which depends on the orientation of the orbital wavefunction...demonstrated this new technique with a diode -pumped solid-state laser operating at 1342 nm that could be frequency doubled to provide 671 nm light for laser...Figure 3: Self-injection locked, diode -pumped solid-state laser for laser cooling of Li atoms. The solid-state Nd:YVO4 laser at the top consists of a
Novel diode laser-based sensors for gas sensing applications
NASA Technical Reports Server (NTRS)
Tittel, F. K.; Lancaster, D. G.; Richter, D.
2000-01-01
The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.
Large-area high-power VCSEL pump arrays optimized for high-energy lasers
NASA Astrophysics Data System (ADS)
Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel
2012-06-01
Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.
High power diode lasers for solid-state laser pumps
NASA Technical Reports Server (NTRS)
Linden, Kurt J.; Mcdonnell, Patrick N.
1994-01-01
The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.
Otsuka, Kenju; Chu, Shu-Chun
2013-05-01
We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken. Experimental results have been well reproduced by numerical simulations.
UV diode-pumped solid state laser for medical applications
NASA Astrophysics Data System (ADS)
Apollonov, Victor V.; Konstantinov, K. V.; Sirotkin, A. A.
1999-07-01
A compact, solid-state, high-efficiency, and safe UV laser medical system with optical fiber output was created for treatment of destructive forms of pulmonary tuberculosis. A frequency-quadruped quasi-CW Nd:YVO4 laser system pumped by laser-diode array is investigated with various resonator configurations. A longitudinal end-pumping scheme was used in a compact acousto-optical Q-switched laser for producing stable pulses of UV radiation at the repetition frequency 10-20 kHz and the duration 7-10 ns with the fiber-guide output power exceeding 10 mW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honea, E.C., LLNL
We derive approximate expressions for transient output power and wavelength chirp of high- peak-power laser-diode bars assuming one-dimensional heat flow and linear temperature dependences for chirp and efficiency. The model is derived for pulse durations, 10 < {tau} < 1000 ps, typically used for diode-pumped solid-state lasers and is in good agreement with experimental data for Si heatsink mounted 940 nm laser-diode bars operating at 100 W/cm. The analytic expressions are more flexible and easily used than the results of operating point dependent numerical modeling. In addition, the analytic expressions used here can be integrated to describe the energy permore » unit wavelength for a given pulse duration, initial emission bandwidth and heatsink material. We find that the figure-of-merit for a heatsink material in this application is ({rho}C{sub p}K) where {rho}C{sub p} is the volumetric heat capacity and K is the thermal conductivity. As an example of the utility of the derived expressions, we determine an effective absorption coefficient as a function of pump pulse duration for a diode-pumped solid-state laser utilizing Yb:Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) as the gain medium.« less
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1987-01-01
Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.
High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel
2003-01-01
Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.
Generation of high powers from diode pumped chromium-3+ doped colquiriites
NASA Astrophysics Data System (ADS)
Eichenholz, Jason Matthew
1998-12-01
There is considerable interest in the area of laser diode pumped solid-state lasers. Diode pumped solid-state lasers (DPSSL) operating at high average power levels are attractive light sources for various applications such as materials processing, laser radar, and fundamental physics experiments. These laser systems have become more commonplace because of their efficiency, reliability, compactness, low relative cost, and long operational lifetimes. Induced thermal effects in the solid-state laser medium hinder the scaling of DPSSL's to higher average power levels. Therefore a deep insight into the thermo-mechanical properties of the solid state laser is crucial in order to ensure a laser design which is optimized for high average power operation. A comprehensive study of the factors that contribute to thermal loading of the colquiriites was performed. A three-dimensional thermal model has been created to determine the temperature rise inside the laser crystal. This new model calculates the temperature distribution by considering quantum defect, upconversion, and upper-state lifetime quenching as heating sources. The thermally induced lensing in end pumped Cr3+ doped LiSrAlF6, LiSrGaF6, LiSrCaAlF6, and LiCaAlF6 were experimentally measured. Several diode pumped colquiriite laser systems were assembled to quantitatively observe and identify thermally induced effects. Significant differences in each of the colquiriite materials were observed. These differences are explained by the differences in the thermo-mechanical and thermo-optical properties of the material and are explained by the theoretical thermal model.
Four-Pass Coupler for Laser-Diode-Pumped Solid-State Laser
NASA Technical Reports Server (NTRS)
Coyle, Donald B.
2008-01-01
A four-pass optical coupler affords increased (in comparison with related prior two-pass optical couplers) utilization of light generated by a laser diode in side pumping of a solid-state laser slab. The original application for which this coupler was conceived involves a neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal slab, which, when pumped by a row of laser diodes at a wavelength of 809 nm, lases at a wavelength of 1,064 nm. Heretofore, typically, a thin laser slab has been pumped in two passes, the second pass occurring by virtue of reflection of pump light from a highly reflective thin film on the side opposite the side through which the pump light enters. In two-pass pumping, a Nd:YAG slab having a thickness of 2 mm (which is typical) absorbs about 84 percent of the 809-nm pump light power, leaving about 16 percent of the pump light power to travel back toward the laser diodes. This unused power can cause localized heating of the laser diodes, thereby reducing their lifetimes. Moreover, if the slab is thinner than 2 mm, then even more unused power travels back toward the laser diodes. The four-pass optical coupler captures most of this unused pump light and sends it back to the laser slab for two more passes. As a result, the slab absorbs more pump light, as though it were twice as thick. The gain and laser cavity beam quality of a smaller laser slab in conjunction with this optical coupler can thus be made comparable to those of a larger two-pass-pumped laser slab.
NASA Astrophysics Data System (ADS)
Hemenway, M.; Chen, Z.; Urbanek, W.; Dawson, D.; Bao, L.; Kanskar, M.; DeVito, M.; Martinsen, R.
2018-02-01
Both the fibber laser and diode-pumped solid-state laser market continue to drive advances in pump diode module brightness. We report on the continued progress by nLIGHT to develop and deliver the highest brightness diode-laser pumps using single-emitter technology. Continued advances in multimode laser diode technology [13] and fiber-coupling techniques have enabled higher emitter counts in the element packages, enabling us to demonstrate 305 W into 105 μm - 0.16 NA. This brightness improvement is achieved by leveraging our prior-reported package re-optimization, allowing an increase in the emitter count from two rows of nine emitters to two rows of twelve emitters. Leveraging the two rows off twelve emitter architecture,, product development has commenced on a 400 W into 200 μm - 00.16 NA package. Additionally, the advances in pump technology intended for CW Yb-doped fiber laser pumping has been leveraged to develop the highest brightness 793 nm pump modules for 2 μm Thulium fiber laser pumping, generating 150 W into 200 μm - 0.18 NA and 100 W into 105 μm - 0.15 NA. Lastly, renewed interest in direct diode materials processing led us to experiment with wavelength multiplexing our existing state of the art 200 W, 105 μm - 00.15 NA package into a combined output of 395 WW into 105 μm - 0.16 NA.
Compact, diode-pumped, solid-state lasers for next generation defence and security sensors
NASA Astrophysics Data System (ADS)
Silver, M.; Lee, S. T.; Borthwick, A.; McRae, I.; Jackson, D.; Alexander, W.
2015-06-01
Low-cost semiconductor laser diode pump sources have made a dramatic impact in sectors such as advanced manufacturing. They are now disrupting other sectors, such as defence and security (D&S), where Thales UK is a manufacturer of sensor systems for application on land, sea, air and man portable. In this talk, we will first give an overview of the market trends and challenges in the D&S sector. Then we will illustrate how low cost pump diodes are enabling new directions in D&S sensors, by describing two diode pumped, solid- state laser products currently under development at Thales UK. The first is a new generation of Laser Target Designators (LTD) that are used to identify targets for the secure guiding of munitions. Current systems are bulky, expensive and require large battery packs to operate. The advent of low cost diode technology, merged with our novel solid-state laser design, has created a designator that will be the smallest, lowest cost, STANAG compatible laser designator on the market. The LTD delivers greater that 50mJ per pulse up to 20Hz, and has compact dimensions of 125×70×55mm. Secondly, we describe an ultra-compact, eye-safe, solid-state laser rangefinder (LRF) with reduced size, weight and power consumption compared to existing products. The LRF measures 100×55×34mm, weighs 200g, and can range to greater than 10km with a single laser shot and at a reprate of 1Hz. This also leverages off advances in laser pump diodes, but also utilises low cost, high reliability, packaging technology commonly found in the telecoms sector. As is common in the D&S sector, the products are designed to work in extreme environments, such as wide temperature range (-40 to +71°C) and high levels of shock and vibration. These disruptive products enable next- generation laser sensors such as rangefinders, target designators and active illuminated imagers.
Coherent Doppler lidar for automated space vehicle, rendezvous, station-keeping and capture
NASA Technical Reports Server (NTRS)
Dunkin, James A.
1991-01-01
Recent advances in eye-safe, short wavelength solid-state lasers offer real potential for the development of compact, reliable, light-weight, efficient coherent lidar. Laser diode pumping of these devices has been demonstrated, thereby eliminating the need for flash lamp pumping, which has been a major drawback to the use of these lasers in space based applications. Also these lasers now have the frequency stability required to make them useful in coherent lidar, which offers all of the advantages of non-coherent lidar, but with the additional advantage that direct determination of target velocity is possible by measurement of the Doppler shift. By combining the Doppler velocity measurement capability with the inherent high angular resolution and range accuracy of lidar it is possible to construct Doppler images of targets for target motion assessment. A coherent lidar based on a Tm,Ho:YAG 2-micrometer wavelength laser was constructed and successfully field tested on atmospheric targets in 1990. This lidar incorporated an all solid state (laser diode pumped) master oscillator, in conjunction with a flash lamp pumped slave oscillator. Solid-state laser technology is rapidly advancing, and with the advent of high efficiency, high power, semiconductor laser diodes as pump sources, all-solid-state, coherent lidars are a real possibility in the near future. MSFC currently has a feasibility demonstration effort under way which will involve component testing, and preliminary design of an all-solid-state, coherent lidar for automatic rendezvous, and capture. This two year effort, funded by the Director's Discretionary Fund is due for completion in 1992.
Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.
2004-01-01
Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, S.A.; Beach, R.J.; Bibeau, C.
We discuss how solid-state laser technology can serve in the interests of fusion energy beyond the goals of the National Ignition Facility (NIF), which is now being constructed to ignite a deuterium-tritium target to fusion conditions in the laboratory for the first time. We think that advanced solid-state laser technology can offer the repetition-rate and efficiency needed to drive a fusion power plant, in contrast to the single-shot character of NIF. As discuss below, we propose that a gas-cooled, diode-pumped Yb:S-FAP laser can provide a new paradigm for fusion laser technology leading into the next century.
Concepts and performance of solid state RGB laser sources for large-frame laser projection displays
NASA Astrophysics Data System (ADS)
Nebel, Achim; Wallenstein, Richard E.
2000-04-01
We report on concepts and the performance of diode pumped solid state laser systems which generate simultaneously red (R), green (G) and blue (B) laser light with output powers of up to 7.1 W at 629 nm, 6.9 W at 532 nm and 5.0 W at 446 nm. The superposition of this RGB radiation provides white light with a power of 19 W. In respect to the diode pump power of 110 W the RGB output corresponds to an optical efficiency of 17%.
Design modeling of the 100-J diode-pumped solid-state laser for Project Mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orth, C., LLNL
We present the energy, propagation, and thermal modeling for a diode-pumped solid-state laser called Mercury being designed and built at LLNL using Yb:S-FAP [i.e., Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F crystals] for the gain medium. This laser is intended to produce 100 J pulses at 1 to 10 ns at 10 Hz with an electrical efficiency of {approximately}10%. Our modeling indicates that the laser will be able to meet its performance goals.
Diode-pumped solid-state laser driver experiments for inertial fusion energy applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C.D.; Payne, S.A.; Emanuel, M.E.
Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) amplifier.more » Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0{times}10{sup {minus}20} cm{sup 2}. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6{times}6{times}44 mm{sup 3} Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to {approximately}0.5 J per 1 ms pulse from a 3{times}3{times}30 mm{sup 3} rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 {mu}s pulses.« less
Update on diode-pumped solid-state laser experiments for inertial fusion energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C.; Smith, L.; Payne, S.
The authors have completed the initial phase of the diode-pumped solid-state laser (DPSSL) experimental program to validate the expected pumping dynamics and extraction cross-sections of Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) crystals. Yb:S-FAP crystals up to 25 x 25 x 175 mm in size have been grown for this purpose which have acceptable loss characteristics (<1 %/cm) and laser damage thresholds ({approximately}20 J/cm{sup 2}). The saturation fluence for pumping has been measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gainmore » under saturated pumping conditions was measured. These measurements imply an emission cross section of 6.0 x 10{sup {minus}20} cm{sup 2} that falls within error bars of the previously reported value of 7.3 x 10{sup {minus}20} cm{sup 2}, obtained from purely spectroscopic techniques. The effects of radiation trapping on the emission lifetime have been quantified. The long lifetime of Yb:S-FAP has beneficial effects for diode-pumped amplifier designs, relative to materials with equivalent cross sections but shorter lifetimes, in that less peak pump intensity is required (thus lower diode costs) and that lower spontaneous emission rates lead to a reduction in amplified spontaneous emission. Consequently, up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6x6x44 mm Yb:S-FAP amplifier rod; this stored energy density is large relative to typical flashlamp-pumped Nd:glass values of 0.3 to 0.5 J/cm{sup 3}. A 2.4 kW peak power InGaAs diode array has been fabricated by Beach, Emanuel, and co-workers which meets the central wavelength, bandwidth, and energy specifications for the author`s immediate experiments. These results further increase their optimism of being able to produce a {approximately} 10% efficient diode-pumped solid state laser for inertial fusion energy.« less
Free-flying experiment to measure the Schawlow-Townes linewidth limit of a 300 THz laser oscillator
NASA Technical Reports Server (NTRS)
Byer, R. L.; Byvik, C. E.
1988-01-01
Recent advances in laser diode-pumped solid state laser sources permit the design and testing of laser sources with linewidths that approach the Schawlow-Townes limit of 1 Hz/mW of output power. Laser diode pumped solid state ring oscillators have been operated with CW output power levels of 25 mW at electrical efficiencies that exceed 6 percent. These oscillators are expected to operate for lifetimes that approach those of the laser diode sources which is now approaching 20,000 hours. The efficiency and lifetime of these narrow linewidth laser sources will enable space measurements of gravity waves, remote sensing applications (including local range rate and measurements), and laser sources for frequency and time standards. A free-flight experiment, 'SUNLITE', is being designed to measure the linewidth of this all-solid-state laser system.
Robust modeling and performance analysis of high-power diode side-pumped solid-state laser systems.
Kashef, Tamer; Ghoniemy, Samy; Mokhtar, Ayman
2015-12-20
In this paper, we present an enhanced high-power extrinsic diode side-pumped solid-state laser (DPSSL) model to accurately predict the dynamic operations and pump distribution under different practical conditions. We introduce a new implementation technique for the proposed model that provides a compelling incentive for the performance assessment and enhancement of high-power diode side-pumped Nd:YAG lasers using cooperative agents and by relying on the MATLAB, GLAD, and Zemax ray tracing software packages. A large-signal laser model that includes thermal effects and a modified laser gain formulation and incorporates the geometrical pump distribution for three radially arranged arrays of laser diodes is presented. The design of a customized prototype diode side-pumped high-power laser head fabricated for the purpose of testing is discussed. A detailed comparative experimental and simulation study of the dynamic operation and the beam characteristics that are used to verify the accuracy of the proposed model for analyzing the performance of high-power DPSSLs under different conditions are discussed. The simulated and measured results of power, pump distribution, beam shape, and slope efficiency are shown under different conditions and for a specific case, where the targeted output power is 140 W, while the input pumping power is 400 W. The 95% output coupler reflectivity showed good agreement with the slope efficiency, which is approximately 35%; this assures the robustness of the proposed model to accurately predict the design parameters of practical, high-power DPSSLs.
Laser interferometric studies of thermal effects of diode-pumped solid state lasing medium
NASA Astrophysics Data System (ADS)
Peng, Xiaoyuan; Asundi, Anand K.; Xu, Lei; Chen, Yihong; Xiong, Zhengjun; Lim, Gnian Cher
2000-04-01
Thermal effects dramatically influence the laser performance of diode-pumped solid state lasers (DPSSL). There are three factors accounting for thermal effects in diode-pumped laser medium: the change of the refractive index due to temperature gradient, the change of the refractive index due to thermal stress, and the change of the physical length due to thermal expansion (end effect), in which the first two effects can be called as thermal parts. A laser interferometer is proposed to measure both the bulk and physical messages of solid-state lasing medium. There are two advantages of the laser interferometry to determine the thermal lensing effect. One is that it allows separating the average thermal lens into thermal parts and end effect. Another is that the laser interferometry provides a non- invasive, full field, high-resolution means of diagnosing such effects by measuring the optical path difference induced by thermal loading in a lasing crystal reliable without disturbing the normal working conditions of the DPSS laser. Relevant measurement results are presented in this paper.
1989-08-30
nm to produce blue light at 455 nm (Figure 1). A 20 Hz doubled Nd:YAG pump laser emitting up to 150 mJ at 532 nm 147 WA4-2 was used to resonantly...pumped by a diode laser, then in addition to the processes of Fig. 1, excited state absorption of the pump light from both 4I13,/z and 4I3112 may be...are visible and UV systems pumped at wavelengths that are available from semiconductor diode lasers and infrared emitting systems having high slope
Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael
2011-06-20
For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.
Volume Bragg grating improves characteristic of resonantly diode-pumped Er:YAG, 1.65-μm DPSSL
NASA Astrophysics Data System (ADS)
Kudryashov, Igor; Garbuzov, Dmitri; Dubinskii, Mark
2007-02-01
Significant performance improvement of the Er(0.5%):YAG diode pumped solid state laser (DPSSL) has been achieved by pump diode spectral narrowing via implementation of external volumetric Bragg grating (VBG). Without spectral narrowing, with a pump path length of 15 mm, only 37% of 1532 nm pump was absorbed. After the VBG spectral narrowing, the absorption of the pumping radiation increased to 62%. As a result, the incident power threshold was reduced by a factor of 2.5; the efficiency increased by a factor of 1.7, resulting in a slope efficiency of ~23%. A maximum of 51 W of CW power was obtained versus 31 W without the pump spectrum narrowing.
Face pumping of thin, solid-state slab lasers with laser diodes.
Faulstich, A; Baker, H J; Hall, D R
1996-04-15
A new technique for face pumping of slab lasers uses transfer of light from 10 quasi-cw laser diode bars through a slotted mirror into a rectangular, highly ref lective pump chamber, giving efficient multipass pumping of a thin Nd:glass slab laser. A slope efficiency of 28% and a maximum pulse energy of 65 mJ have been obtained, and gain and loss measurements with thickness t = 0.45-1.04 mm have confirmed the 1/t scaling of gain in thin slabs and the high efficiency of pump light transfer.
ARPA solid state laser and nonlinear materials program
NASA Astrophysics Data System (ADS)
Moulton, Peter F.
1994-06-01
The Research Division of Schwartz Electro-Optics, as part of the ARPA Solid State Laser and Nonlinear Materials Program, conducted a three-year study 'Erbium-Laser-Based Infrared Sources.' The aim of the study was to improve the understanding of semiconductor-laser-pumped, infrared (IR) solid state lasers based on the trivalent rare-earth ion erbium (Er) doped into a variety of host crystals. The initial program plan emphasized operation of erbium-doped materials on the 2.8-3.0 micrometers laser transition. Pulsed, Q-switched sources using that transition, when employed as a pump source for parametric oscillators, can provide tunable mid-IR energy. The dynamics of erbium lasers are more complex than conventional neodymium (Nd)-doped lasers and we intended to use pump-probe techniques to measure the level and temporal behavior of gain in various materials. To do so we constructed a number of different cw Er-doped lasers as probe sources and employed the Cr:LiSAF(LiSrAlF6) laser as a pulsed pump source that would simulate pulsed diode arrays. We identified the 970-nm wavelength pump band of Er as the most efficient and were able to make use of recently developed cw and pulsed InGaAs strained-quantum-well diode lasers in the effort. At the conclusion of the program we demonstrated the first pulsed diode bar pumping of the most promising materials for pulsed operation, the oxide garnets YSGG and GGG and the fluoride BaY2F8.
Resonantly diode laser pumped 1.6-μm Er:YAG laser
NASA Astrophysics Data System (ADS)
Garbuzov, Dmitri; Kudryashov, Igor; Dubinskii, Mark
2005-06-01
We report what is believed to be the first demonstration of direct resonant diode pumping of a 1.6-mm Er3+-doped bulk solid-state laser (DPSSL). The most of the results is obtained with pumping Er:YAG by the single mode diode laser packaged in fibered modules. The fibered modules, emitting at 1470 nm and 1530 nm wavelength with and without fiber grating (FBG) stabilization, have been used in pumping experiments. The very first results on high power DPSSL operation achieved with diode array pumping also will be presented. The highest absorbed photon conversion efficiency of 26% has been obtained for Er:YAG DPSSL using the 1470-nm single-mode module. Analysis of the DPSSL input-output characteristics suggests that the obtained slope efficiency can be increased at least up to 40% through the reduction of intracavity losses and pumping efficiency improvement. Diode pumped SSL (DPSSL) operates at a wavelength of 1617 nm and 1645 nm.
Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers
NASA Astrophysics Data System (ADS)
Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.
2016-03-01
We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.
NASA Astrophysics Data System (ADS)
Bell, T.; Hasnaoui, A.; Ait-Ameur, K.; Ngcobo, S.
2017-10-01
In this paper we experimentally demonstrate selective excitation of high-radial-order Laguerre-Gaussian (LG p or LG{}p,0) modes with radial order p = 1-4 and azimuthal order l = 0 using a diode-pump solid-state laser (DPSSL) that is digitally controlled by a spatial light modulator (SLM). We encoded an amplitude mask containing p-absorbing rings, of various incompleteness (segmented) on grey-scale computer-generated digital holograms, and displayed them on an SLM which acted as an end mirror of the diode-pumped solid-state digital laser. The various incomplete (α) p-absorbing rings were digitally encoded to match the zero-intensity nulls of the desired LG p mode. We show that the creation of LG p , for p = 1 to p = 4, only requires an incomplete circular p-absorbing ring that has a completeness of ≈37.5%, giving the DPSSL resonator a lower pump threshold power while maintaining the same laser characteristics (such as beam propagation properties).
Diode-pumped solid state lasers (DPSSLs) for Inertial Fusion Energy (IFE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krupke, W.F.
The status of diode-pumped, transverse-gas-flow cooled, Yb-S-FAP slab lasers is reviewed. Recently acquired experimental performance data are combined with a cost/performance IFE driver design code to define a cost-effective development path for IFE DPSSL drivers. Specific design parameters are described for the Mercury 100J/10 Hz, 1 kW system (first in the development scenario).
1 Hz fast-heating fusion driver HAMA pumped by a 10 J green diode-pumped solid-state laser
NASA Astrophysics Data System (ADS)
Mori, Y.; Sekine, T.; Komeda, O.; Nakayama, S.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Satoh, N.; Kurita, T.; Kawashima, T.; Kan, H.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Hioki, T.; Kakeno, M.; Motohiro, T.; Nishimura, Y.; Sunahara, A.; Sentoku, Y.; Kitagawa, Y.
2013-07-01
A Ti : sapphire laser HAMA pumped by a diode-pumped solid-state laser (DPSSL) is developed to enable a high-repetitive inertial confinement fusion (ICF) experiment to be conducted. To demonstrate a counter-irradiation fast-heating fusion scheme, a 3.8 J, 0.4 ns amplified chirped pulse is divided into four beams: two counter-irradiate a target with intensities of 6 × 1013 W cm-2, and the remaining two are pulse-compressed to 110 fs for heating the imploded target with intensities of 2 × 1017 W cm-2. HAMA contributed to the first demonstration by showing that a 10 J class DPSSL is adaptable to ICF experiments and succeeded in DD neutron generation in the repetition mode. Based on HAMA, we can design and develop an integrated repetitive ICF experiment machine by including target injection and tracking.
Polarization methods for diode laser excitation of solid state lasers
Holtom, Gary R.
2008-11-25
A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.
Cladding For Transversely-Pumped Laser Rod
NASA Technical Reports Server (NTRS)
Byer, Robert L.; Fan, Tso Yee
1989-01-01
Combination of suitable dimensioning and cladding of neodymium:yttrium aluminum garnet of similar solid-state laser provides for more efficient utilization of transversely-incident pump light from diode lasers. New design overcomes some of limitations of longitudinal- and older transverse-pumping concepts and promotes operation at higher output powers in TEM00 mode.
Koshel, R J; Walmsley, I A
1993-03-20
We investigate the absorption distribution in a cylindrical gain medium that is pumped by a source of distributed laser diodes by means of a pump cavity developed from the edge-ray principle of nonimaging optics. The performance of this pumping arrangement is studied by using a nonsequential, numerical, three-dimensional ray-tracing scheme. A figure of merit is defined for the pump cavities that takes into account the coupling efficiency and uniformity of the absorption distribution. It is found that the nonimaging pump cavity maintains a high coupling efficiency with extended two-dimensional diode arrays and obtains a fairly uniform absorption distribution. The nonimaging cavity is compared with two other designs: a close-coupled side-pumped cavity and an imaging design in the form of a elliptical cavity. The nonimaging cavity has a better figure of merit per diode than these two designs. It also permits the use of an extended, sparse, two-dimensional diode array, which reduces thermal loading of the source and eliminates all cavity optics other than the main reflector.
Wavelength switchable high-power diode-side-pumped rod Tm:YAG Laser around 2µm.
Wang, Caili; Du, Shifeng; Niu, Yanxiong; Wang, Zhichao; Zhang, Chao; Bian, Qi; Guo, Chuan; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Lei, Wenqiang; Xu, Zuyan
2013-03-25
We report a high-power diode-side-pumped rod Tm:YAG laser operated at either 2.07 or 2.02 µm depending on the transmission of pumped output coupler. The laser yields 115W of continuous-wave output power at 2.07 µm with 5% output coupling, which is the highest output power for all solid-state 2.07 μm cw rod Tm:YAG laser reported so far. With an output coupler of 10% transmission, the center wavelength of the laser is switched to 2.02 μm with an output power of 77.1 W. This is the first observation of high-power wavelength switchable diode-side-pumped rod Tm:YAG laser around 2 µm.
New laser materials for laser diode pumping
NASA Technical Reports Server (NTRS)
Jenssen, H. P.
1990-01-01
The potential advantages of laser diode pumped solid state lasers are many with high overall efficiency being the most important. In order to realize these advantages, the solid state laser material needs to be optimized for diode laser pumping and for the particular application. In the case of the Nd laser, materials with a longer upper level radiative lifetime are desirable. This is because the laser diode is fundamentally a cw source, and to obtain high energy storage, a long integration time is necessary. Fluoride crystals are investigated as host materials for the Nd laser and also for IR laser transitions in other rare earths, such as the 2 micron Ho laser and the 3 micron Er laser. The approach is to investigate both known crystals, such as BaY2F8, as well as new crystals such as NaYF8. Emphasis is on the growth and spectroscopy of BaY2F8. These two efforts are parallel efforts. The growth effort is aimed at establishing conditions for obtaining large, high quality boules for laser samples. This requires numerous experimental growth runs; however, from these runs, samples suitable for spectroscopy become available.
NASA Technical Reports Server (NTRS)
Byer, R. L. (Editor); Trebino, R. (Editor); Gustafson, E. K. (Editor)
1985-01-01
Papers are presented on solid-state lasers for remote sensing, diode-pumped Nd:YAG lasers, and tunable solid-state-laser systems. Topics discussed include titanium-sapphire tunable laser systems, the performance of slab geometry, and the development of slab lasers. Consideration is given to garnet host solid-state lasers, the growth of lasers and nonlinear materials, and nonlinear frequency conversion and tunable sources.
2009-03-30
seeded with 15 W of single-frequency laser light at 1064 nm and cladding -pumped of 700 W in the forward direction and 300 W in the opposite direction...57-W single-mode phosphate fiber laser Our early studies of phosphate fiber lasers taught us that adding an air-hole to the inner cladding and... cladding -pumped with a fiber-coupled laser diode at 977 nm through a dichroic beam splitter placed on the OC side. The fiber ends were cooled using the
Ruggedized microchannel-cooled laser diode array with self-aligned microlens
Freitas, Barry L.; Skidmore, Jay A.
2003-11-11
A microchannel-cooled, optically corrected, laser diode array is fabricated by mounting laser diode bars onto Si surfaces. This approach allows for the highest thermal impedance, in a ruggedized, low-cost assembly that includes passive microlens attachment without the need for lens frames. The microlensed laser diode array is usable in all solid-state laser systems that require efficient, directional, narrow bandwidth, high optical power density pump sources.
Thermal Lens Measurement in Diode-Pumped Nd:YAG Zig-Zag Slab
NASA Technical Reports Server (NTRS)
Smoak, M. C.; Kay, R. B.; Coyle, D. B.; Hopf, D.
1998-01-01
A major advantage that solid state zig-zag slab lasers have over conventional rod-based designs is that a much weaker thermal lens is produced in the slab when side-pumped with Quasi-CW laser diode arrays, particularly if the pump radiation is kept well away from the Brewster-cut ends. This paper reports on a rather strong thermal lens produced when diode pump radiation is collimated into a narrow portion of the zig-zag slab. The collimation of multi-bar pump packages to increase brightness and improve overlap is a direct consequence of designs which seek to maximize performance and efficiency. Our slab design employed a 8.1 cm x 2.5 mm x 5 mm slab with opposing Brewster end faces. It was pumped through the 2.5 mm direction by seven laser diode array packages, each housing four 6OW diode bars, 1 cm in width. The pump face, anti-reflection (AR) coated at 809 nm, was 6.8 cm in width and the 8.1 cm opposing side, high-reflection (HR) coated at 809 nm, reflected the unabsorbed pump beam for a second pass through the slab.
High average power diode pumped solid state laser
NASA Astrophysics Data System (ADS)
Gao, Yue; Wang, Yanjie; Chan, Amy; Dawson, Murray; Greene, Ben
2017-03-01
A new generation of high average power pulsed multi-joule solid state laser system has been developed at EOS Space Systems for various space related tracking applications. It is a completely diode pumped, fully automated multi-stage system consisting of a pulsed single longitudinal mode oscillator, three stages of pre-amplifiers, two stages of power amplifiers, completely sealed phase conjugate mirror or stimulated Brillouin scattering (SBS) cell and imaging relay optics with spatial filters in vacuum cells. It is capable of generating pulse energy up to 4.7 J, a beam quality M 2 ~ 3, pulse width between 10-20 ns, and a pulse repetition rate between 100-200 Hz. The system has been in service for more than two years with excellent performance and reliability.
Thermal effect of diode-pumped solid state lasers based on composite crystals
NASA Astrophysics Data System (ADS)
Hao, Ming-ming; Lu, Guo-guang; Zhu, Hong-bo; Huang, Yun; En, Yun-fei
2013-12-01
Thermal effect of diode-pumped solid-state lasers (DPSSL) based on YAP/Tm:YAP composite crystal is studied by using of finite element method (FEM). It is found that the peak temperature in a composite rod decreases to less than 80% of that in a non-composite crystal. Thermal stress of composite rod is obviously reduced to less than 70% comparing with non-composite crystal. It is also demonstrated that length of thermal lens unchanged with increasing of un-doped crystal length, which means that beam quality of composite laser wouldn't be improved by non-composite crystal. Therefore, it is concluded that using composite crystal would benefit for the properties of temperature and heat stress while insignificance for beam quality of DPSSL.
Optimised design for a 1 kJ diode-pumped solid-state laser system
NASA Astrophysics Data System (ADS)
Mason, Paul D.; Ertel, Klaus; Banerjee, Saumyabrata; Phillips, P. Jonathan; Hernandez-Gomez, Cristina; Collier, John L.
2011-06-01
A conceptual design for a kJ-class diode-pumped solid-state laser (DPSSL) system based on cryogenic gas-cooled multislab ceramic Yb:YAG amplifier technology has been developed at the STFC as a building block towards a MJ-class source for inertial fusion energy (IFE) projects such as HiPER. In this paper, we present an overview of an amplifier design optimised for efficient generation of 1 kJ nanosecond pulses at 10 Hz repetition rate. In order to confirm the viability of this technology, a prototype version of this amplifier scaled to deliver 10 J at 10 Hz, DiPOLE, is under development at the Central Laser Facility. A progress update on the status of this system is also presented.
Space Operation of the MOLA Laser
NASA Technical Reports Server (NTRS)
Afzal, Robert S.
2000-01-01
Interest in lasers for space applications such as active remote sensing in Earth orbit, planetary science, and inter-satellite laser communications is growing. These instruments typically use diode-pumped solid state lasers for the laser transmitter. The mission specifications and constraints of space qualification, place strict requirements on the design and operation of the laser. Although a laser can be built in the laboratory to meet performance specifications relatively routinely, tile mission constraints demand unique options and compromises in the materials used, and design to ensure the success of the mission. Presently, the best laser architecture for a light weight, rugged, high peak power and efficient transmitter is a diode laser pumped ND:YAG laser. Diode lasers can often obviate the need for water cooling, reduce the size and weight of the laser, increase the electrical to optical efficiency, system reliability, and lifetime. This paper describes the in-space operation and performance of the Mars Orbiter Laser Altimeter (MOLA) laser transmitter, representing the current state-of-the-art in space-based solid- state lasers.
Mode-locked solid state lasers using diode laser excitation
Holtom, Gary R [Boston, MA
2012-03-06
A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.
High energy diode-pumped solid-state laser development at the Central Laser Facility
NASA Astrophysics Data System (ADS)
Mason, Paul D.; Banerjee, Saumyabrata; Ertel, Klaus; Phillips, P. Jonathan; Butcher, Thomas; Smith, Jodie; De Vido, Mariastefania; Chekhlov, Oleg; Hernandez-Gomez, Cristina; Edwards, Chris; Collier, John
2016-04-01
In this paper we review the development of high energy, nanosecond pulsed diode-pumped solid state lasers within the Central Laser Facility (CLF) based on cryogenic gas cooled multi-slab ceramic Yb:YAG amplifier technology. To date two 10J-scale systems, the DiPOLE prototype amplifier and an improved DIPOLE10 system, have been developed, and most recently a larger scale system, DiPOLE100, designed to produce 100 J pulses at up to 10 Hz. These systems have demonstrated amplification of 10 ns duration pulses at 1030 nm to energies in excess of 10 J at 10 Hz pulse repetition rate, and over 100 J at 1 Hz, with optical-to-optical conversion efficiencies of up to 27%. We present an overview of the cryo-amplifier concept and compare the design features of these three systems, including details of the amplifier designs, gain media, diode pump lasers and the cryogenic gas cooling systems. The most recent performance results from the three systems are presented along with future plans for high energy DPSSL development within the CLF.
AlGaAs diode pumped tunable chromium lasers
Krupke, William F.; Payne, Stephen A.
1992-01-01
An all-solid-state laser system is disclosed wherein the laser is pumped in the longwave wing of the pump absorption band. By utilizing a laser material that will accept unusually high dopant concentrations without deleterious effects on the crystal lattice one is able to compensate for the decreased cross section in the wing of the absorption band, and the number of pump sources which can be used with such a material increases correspondingly. In a particular embodiment a chromium doped colquiriite-structure crystal such as Cr:LiSrAlF.sub.6 is the laser material. The invention avoids the problems associated with using AlGaInP diodes by doping the Cr:LiSrAlF.sub.6 heavily to enable efficient pumping in the longwave wing of the absorption band with more practical AlGaAs diodes.
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Nilsson, Alan C.; Byer, Robert L.
1987-01-01
The frequency stability of laser-diode-pumped, monolithic Nd:YAG solid-state unidirectional nonplanar ring oscillators was studied by heterodyne measurements. CW single-axial- and transverse-mode power of 25 mW at 1064 nm was obtained at a slope efficiency of 19 percent. Two independent oscillators were offset-locked at 17 MHz with frequency fluctuations of less than + or - 40 kHz for periods of 8 min.
Gigahertz frequency comb from a diode-pumped solid-state laser.
Klenner, Alexander; Schilt, Stéphane; Südmeyer, Thomas; Keller, Ursula
2014-12-15
We present the first stabilization of the frequency comb offset from a diode-pumped gigahertz solid-state laser oscillator. No additional external amplification and/or compression of the output pulses is required. The laser is reliably modelocked using a SESAM and is based on a diode-pumped Yb:CALGO gain crystal. It generates 1.7-W average output power and pulse durations as short as 64 fs at a pulse repetition rate of 1 GHz. We generate an octave-spanning supercontinuum in a highly nonlinear fiber and use the standard f-to-2f carrier-envelope offset (CEO) frequency fCEO detection method. As a pump source, we use a reliable and cost-efficient commercial diode laser. Its multi-spatial-mode beam profile leads to a relatively broad frequency comb offset beat signal, which nevertheless can be phase-locked by feedback to its current. Using improved electronics, we reached a feedback-loop-bandwidth of up to 300 kHz. A combination of digital and analog electronics is used to achieve a tight phase-lock of fCEO to an external microwave reference with a low in-loop residual integrated phase-noise of 744 mrad in an integration bandwidth of [1 Hz, 5 MHz]. An analysis of the laser noise and response functions is presented which gives detailed insights into the CEO stabilization of this frequency comb.
Resonantly diode-pumped Er:YAG laser: 1470-nm versus 1530-nm CW pumping case
NASA Astrophysics Data System (ADS)
Kudryashov, Igor; Ter-Gabrielyan, Nikolai; Dubinskii, Mark
2009-05-01
Growing interest to high power lasers in the eye-safe spectral domain initiated a new wave of activity in developing solid-state lasers based on bulk Er3+-doped materials. The resonant pumping of SSL allows for shifting significant part of thermal load from gain medium itself to the pump diodes, thus greatly reducing gain medium thermal distortions deleterious to SSL power scaling with high beam quality. The two major resonant pumping bands in Er:YAG are centered around 1470 and 1532 nm. Pumping into each of these bands has its pros and contras. The best approach to resonant pumping of Er:YAG active media in terms of pump wavelength is yet to be determined. We report the investigation results of high power diode-pumped Er:YAG laser aimed at direct comparison of resonant pumping at 1470 and 1532 nm. Two sources used for pumping were: 1530-nm 10-diode bar stack (>300 W CW) and 1470-nm 10-diode bar stack (>650 W CW). Both pumps were spectrally narrowed by external volume Bragg gratings. The obtained spectral width of less than 1 nm allowed for 'in-line' pumping of Er3+ in either band. The obtained CW power of over 87 W is, to the best of our knowledge, the record high power reported for resonantly pumped Er:YAG DPSSL at room temperature.
A Completely Solid-State Tunable Ti:Sapphire Laser System
NASA Technical Reports Server (NTRS)
Guerra, David V.; Coyle, D. Barry; Krebs, Danny J.
1994-01-01
Compact, completely solid-state tunable pulsed laser system passively cooled developed for potential employment in aircraft and sounding-rocket lidar experiments. Ti:sapphire based laser system pumped with frequency-doubled diode-pumped Nd:YAG. Rugged, self-contained system extremely flexible and provides pulsed output at specific frequencies with low input-power requirements. In-situ measurements enables scientists to study upper-atmosphere dynamics. Tuning range easily extended to bands between 650-950 nm in order to study other atmospheric constituents.
High Energy Solid State and Free Electron Laser Systems in Tactical Aviation
2005-06-01
specifically neodymium and ytterbium doped yttrium aluminum garnet (Nd:YAG and Yb:YAG) have been shown to produce pump absorption efficiencies (i.e...Search Radar Dish Aluminum Alloy 2.71 10.0 0.91 321 932 300 22.1 SAM nosecone Ceramic* 3.0 1.0 0.9 1600 3300 250 12.1 T-72 Tank Armor Steel...development at Lawrence Livermore National Laboratory, is the solid-state heat capacity laser, which is an array of diode- pumped neodymium-doped gadolinium
Advances in solid state laser technology for space and medical applications
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Buoncristiani, A. M.
1988-01-01
Recent developments in laser technology and their potential for medical applications are discussed. Gas discharge lasers, dye lasers, excimer lasers, Nd:YAG lasers, HF and DF lasers, and other commonly used lasers are briefly addressed. Emerging laser technology is examined, including diode-pumped lasers and other solid state lasers.
Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.
2007-01-01
Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.
Quasi-CW Laser Diode Bar Life Tests
NASA Technical Reports Server (NTRS)
Stephen, Mark A.; Krainak, Michael A.; Dallas, Joseph L.
1997-01-01
NASA's Goddard Space Flight Center is developing technology for satellite-based, high peak power, LIDAR transmitters requiring 3-5 years of reliable operation. Semi-conductor laser diodes provide high efficiency pumping of solid state lasers with the promise of long-lived, reliable operation. 100-watt quasi- CW laser diode bars have been baselined for the next generation laser altimeters. Multi-billion shot lifetimes are required. The authors have monitored the performance of several diodes for billions of shots and investigated operational modes for improving diode lifetime.
High power multiple wavelength diode laser stack for DPSSL application without temperature control
NASA Astrophysics Data System (ADS)
Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng
2018-02-01
High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.
Small lasers in flow cytometry.
Telford, William G
2004-01-01
Laser technology has made tremendous advances in recent years, particularly in the area of diode and diode-pumped solid state sources. Flow cytometry has been a direct beneficiary of these advances, as these small, low-maintenance, inexpensive lasers with reasonable power outputs are integrated into flow cytometers. In this chapter we review the contribution and potential of solid-state lasers to flow cytometry, and show several examples of these novel sources integrated into production flow cytometers. Technical details and critical parameters for successful application of these lasers for biomedical analysis are reviewed.
Fiber Raman laser and amplifier pumped by Nd3+:YVO4 solid state laser
NASA Astrophysics Data System (ADS)
Liu, Deming; Zhang, Minming; Liu, Shuang; Nie, Mingju; Wang, Ying
2005-04-01
Pumping source is the key technology of fiber Raman amplifiers (FRA) which are important for ultra long haul and high bit rate dense wavelength division multiplexing (DWDM) systems. In this paper the research work of the project, "Fiber Raman Laser and Amplifier pumped by Nd3+:YVO4 Solid State Laser", supported by the National High-tech Program (863-program) of China is introduced, in which a novel 14xx nm pump module with fine characteristics of high efficiency, simplicity, compactness and low cost is researched and developed. A compact 1342 nm Nd3+:YVO4 diode pumped solid state laser (DPSSL) module is developed with the total laser power of 655mW and the slope efficiency of 42.6% pumped by a 2W 808nm laser diode (LD). A special C-lens fiber collimator is designed to couple the 1342nm laser beam into a piece of single mode fiber (SMF) and the coupling efficiency of 80% is reached. The specific 14xx nm output laser is generated from a single stage Raman resonator which includes a pair of fiber Bragg gratings and a piece of Germanic-silicate or Phospho-silicate fiber pumped by such DPSSL module. The slope efficiency for conversion from 1342 to 14xx nm radiation is 75% and the laser power is more than 300mW each. Finally, Raman gain experiments are carried out with 100km SMF. 100 nm bandwidth with 10dB on-off Raman gain and 1.1dB gain flatness is achieved by pumped at 1425, 1438, 1455 and 1490nm.
High temperature semiconductor diode laser pumps for high energy laser applications
NASA Astrophysics Data System (ADS)
Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel
2018-02-01
Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.
Yamazoe, Shogo; Katou, Masaki; Adachi, Takashi; Kasamatsu, Tadashi
2010-03-01
We report a palm-top-size femtosecond diode-pumped mode-locked Yb(+3):KY(WO(4))(2) solid-state laser with a semiconductor saturable absorber mirror utilizing soliton mode locking for shortening the cavity to 50 mm. An average output power of 680 mW and a pulse width of 162 fs were obtained at 1045 nm with a repetition rate of 2.8 GHz, which led to a peak power of 1.5 kW. Average power fluctuations of a modularized laser source were found to be +/-10% for the free-running 3000 h operation and +/-1% for the power-controlled 2000 h operation.
Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing
2010-07-20
We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF.
High power diode pumped solid state (DPSS) laser systems active media robust modeling and analysis
NASA Astrophysics Data System (ADS)
Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.
2018-02-01
Diode side-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency and reliability. This paper summarizes the results of simulation of the most predominant active media that are used in high power diode pumped solid-state (DPSS) laser systems. Nd:YAG, Nd:glass, and Nd:YLF rods laser systems were simulated using the special finite element analysis software program LASCAD. A performance trade off analysis for Nd:YAG, Nd:glass, and Nd:YLF rods was performed in order to predict the system optimized parameters and to investigate thermally induced thermal fracture that may occur due to heat load and mechanical stress. The simulation results showed that at the optimized values Nd:YAG rod achieved the highest output power of 175W with 43% efficiency and heat load of 1.873W/mm3. A negligible changes in laser output power, heat load, stress, and temperature distributions were observed when the Nd:YAG rod length was increased from 72 to 80mm. Simulation of Nd:glass at different rod diameters at the same pumping conditions showed better results for mechanical stress and thermal load than that of Nd:YAG and Nd:YLF which makes it very suitable for high power laser applications especially for large rod diameters. For large rod diameters Nd:YLF is mechanically weaker and softer crystal compared to Nd:YAG and Nd:glass due to its poor thermomechanical properties which limits its usage to only low to medium power systems.
Latest developments in resonantly diode-pumped Er:YAG lasers
NASA Astrophysics Data System (ADS)
Kudryashov, Igor; Garbuzov, Dmitri; Dubinskii, Mark
2007-04-01
Significant performance improvement of the Er(0.5%):YAG diode pumped solid state laser (DPSSL) has been achieved by pump diode spectral narrowing via implementation of an external volumetric Bragg grating (VBG). Without spectral narrowing, with a pump path length of 15 mm, only 37% of 1532 nm pump was absorbed. After the VBG spectral narrowing, the absorption of the pumping radiation increased to 62 - 70%. As a result, the incident power threshold was reduced by a factor of 2.5, and the efficiency increased by a factor of 1.7, resulting in a slope efficiency of ~23 - 30%. A maximum of 51 W of CW power was obtained versus 31 W without the pump spectrum narrowing. More than 180 mJ QCW pulse output energy was obtained in a stable-unstable resonator configuration with a beam quality of M2 = 1.3 in the stable direction and M2 = 1.1 in the unstable direction. The measured slope efficiency was 0.138 J/J with a threshold energy of 0.91 J.
Quasi-CW 110 kW AlGaAs Laser Diode Array Module for Inertial Fusion Energy Laser Driver
NASA Astrophysics Data System (ADS)
Kawashima, Toshiyuki; Kanzaki, Takeshi; Matsui, Ken; Kato, Yoshinori; Matsui, Hiroki; Kanabe, Tadashi; Yamanaka, Masanobu; Nakatsuka, Masahiro; Izawa, Yasukazu; Nakai, Sadao; Miyamoto, Masahiro; Kan, Hirofumi; Hiruma, Teruo
2001-12-01
We have successfully demonstrated a large aperture 803 nm AlGaAs diode laser module as a pump source for a 1053 nm, 10 J output Nd:glass slab laser amplifier for diode-pumped solid-state laser (DPSSL) fusion driver. Detailed performance results of the laser diode module are presented, including bar package and stack configuration, and their thermal design and analysis. A sufficiently low thermal impedance of the stack was realized by combining backplane liquid cooling configuration with modular bar package architecture. Total peak power of 110 kW and electrical to optical conversion efficiency of 46% were obtained from the module consisting of a total of 1000 laser diode bars. A peak intensity of 2.6 kW/cm2 was accomplished across an emitting area of 418 mm× 10 mm. Currently, this laser diode array module with a large two-dimensional aperture is, to our knowledge, the only operational pump source for the high output energy DPSSL.
The LIFE Laser Design in Context: A Comparison to the State-of-the-Art
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deri, R J; Bayramian, A J; Erlandson, A C
2011-03-21
The current point design for the LIFE laser leverages decades of solid-state laser development in order to achieve the performance and attributes required for inertial fusion energy. This document provides a brief comparison of the LIFE laser point design to other state-of-the-art solid-state lasers. Table I compares the attributes of the current LIFE laser point design to other systems. the state-of-the-art for single-shot performance at fusion-relevant beamline energies is exemplified by performance observed on the National Ignition Facility. The state-of-the-art for high average power is exemplified by the Northrup Grumman JHPSSL laser. Several items in Table I deal with themore » laser efficiency; a more detailed discussion of efficiency can be found in reference 5. The electrical-to-optical efficiency of the LIFE design exceeds that of reference 4 due to the availability of higher efficiency laser diode pumps (70% vs. {approx}50% used in reference 4). LIFE diode pumps are discussed in greater detail in reference 6. The 'beam steering' state of the art is represented by the deflection device that will be used in the LIFE laser, not a laser system. Inspection of Table I shows that most LIFE laser attributes have already been experimentally demonstrated. The two cases where the LIFE design is somewhat better than prior experimental work do not involve the development of new concepts: beamline power is increased simply by increasing aperture (as demonstrated by the power/aperture comparison in Table I), and efficiency increases are achieved by employing state-of-the-art diode pumps. In conclusion, the attributes anticipated for the LIFE laser are consistent with the demonstrated performance of existing solid-state lasers.« less
Diode-pumped ytterbium-doped Sr{sub 5}(PO{sub 4}){sub 3}F laser performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C.D.; Smith, L.K.; Beach, R.J.
The performance of the first diode-pumped Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sup 3}F (Yb:S-FAP) solid-state laser is discussed. An InGaAs diode array has been fabricated that has suitable specifications for pumping a 3 x 3 x 30 mm Yb:S-FAP rod. The saturation fluence for diode pumping was deduced to be 5.5 J/cm{sup 2} for the particular 2.8 kW peak power diode array utilized in the studies. This is 2.5{times} higher than the intrinsic 2.2 J/cm{sup 2} saturation fluence as is attributed to the 6.5 nm bandwidth of the diode pump array. The small signal gain is consistent with the previously measuredmore » emission cross section of 6.0 {times} 10{sup {minus}20} cm{sup 2}, obtained from a narrowband-laser pumped gain experiment. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6 x 6 x 44 mm Yb:S-FAP amplifier rod. In a free running configuration, diode-pumped slope efficiencies up to 43% (laser output energy/absorbed pump energy) were observed with output energies up to {approximately}0.5 J per 1 ms pulse. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 {micro}s pulses.« less
Development of lasers optimized for pumping Ti:Al2O3 lasers
NASA Technical Reports Server (NTRS)
Rines, Glen A.; Schwarz, Richard A.
1994-01-01
Laboratory demonstrations that were completed included: (1) an all-solid-state, broadly tunable, single-frequency, Ti:Al2O3 master oscillator, and (2) a technique for obtaining 'long' (nominally 100- to 200-ns FWHM) laser pulses from a Q-switched, Nd oscillator at energy levels commensurate with straightforward amplification to the joule level. A diode-laser-pumped, Nd:YLF laser with intracavity SHG was designed, constructed, and evaluated. With this laser greater than 0.9 W of CW, output power at 523.5 nm with 10 W of diode-laser pump power delivered to the Nd:YLF crystal was obtained. With this laser as a pump source, for the first time, to our knowledge, an all solid-state, single frequency, Ti:Al203 laser with sufficient output power to injection seed a high-energy oscillator over a 20-nm bandwidth was demonstrated. The pulsed laser work succeeded in demonstrating pulse-stretching in a Q-switched Nd:YAG oscillator. Pulse energies greater than 50-mJ were obtained in pulses with 100- to 200-ns pulsewidths (FWHM).
Beach, Raymond J.
1997-01-01
Wing pumping a Tm.sup.3+ doped, end pumped solid state laser generates 2 .mu.m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm.sup.3+ absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm.sup.3+ because high Tm.sup.3+ concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation.
Beach, R.J.
1997-11-18
Wing pumping a Tm{sup 3+} doped, end pumped solid state laser generates 2 {micro}m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm{sup 3+} absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm{sup 3+} because high Tm{sup 3+} concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation. 7 figs.
1047 nm laser diode master oscillator Nd:YLF power amplifier laser system
NASA Technical Reports Server (NTRS)
Yu, A. W.; Krainak, M. A.; Unger, G. L.
1993-01-01
A master oscillator power amplifier (MOPA) laser transmitter system at 1047 nm wavelength using a semiconductor laser diode and a diode pumped solid state (Nd:YLF) laser (DPSSL) amplifier is described. A small signal gain of 23 dB, a near diffraction limited beam, 1 Gbit/s modulation rates and greater than 0.6 W average power are achieved. This MOPA laser has the advantage of amplifying the modulation signal from the laser diode master oscillator (MO) with no signal degradation.
NASA Astrophysics Data System (ADS)
Orth, C. D.
2001-03-01
This paper reviews our current understanding of the relative advantages of direct drive (DD) and indirect drive (ID) for a 1 GWe inertial fusion energy (IFE) power plant driven by a diode-pumped solid-state laser (DPSSL). This comparison is motivated by a recent study (1) that shows that the projected cost of electricity (COE) for DD is actually about the same as that for ID even though the target gain for DD can be much larger. We can therefore no longer assume that DD is the ultimate targeting scenario for IFE, and must begin a more rigorous comparison of these two drive options. The comparison begun here shows that ID may actually end up being preferred, but the uncertainties are still rather large.
Self-compensation of thermal lens in high-power diode pumped solid-state lasers
NASA Astrophysics Data System (ADS)
Wang, Xiao-Jun
2010-02-01
We present a comprehensive model to describe the optic-thermal coupling in the diode pumped solid-state lasers (DPSSL). The thermal transition of particles at the upper laser level leads the heat-generation of laser crystals to depend on shape of the laser beam, while the laser field is also influenced by the temperature because of the thermal excitation of doped particles among various Stark levels. These effects, together with the usual thermal-optic effect that induces a fluctuation of the refraction index by an inhomogeneous temperature distribution, cause a complicated coupling between the laser field and the temperature field. We show that the optic-thermal coupling plays an important role in high-power DPSSL with larger size beam. That effect may yield a self-compensation for the thermal lens and improve the beam quality.
Meyn, J P; Huber, G
1994-09-15
Neodymium-doped lanthanum scandium borate [Nd:LaSc(3)(BO(3))(4)] is a new material for efficient and compact diode-pumped solid-state lasers. A simple plane-plane 3-mm-long resonator is formed by a coated Nd(10%):LaSc(3)(BO(3))(4) crystal and a coated potassium titanyl phosphate (KTP) crystal. The second-harmonic output power at 531 nm is 522 mW at 2.05-W incident pump power of the diode laser. The corresponding optical efficiency is 25%, and the conversion efficiency from the fundamental to the second harmonic is 55%. The wellknown chaotic power fluctuations of intracavity frequency-doubled lasers (green problem) are avoided by use of a short KTP crystal, between 0.5 and 2 mm in length.
High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array
Freitas, Barry L.
1998-01-01
An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.
Tunable femtosecond lasers with low pump thresholds
NASA Astrophysics Data System (ADS)
Oppo, Karen
The work in this thesis is concerned with the development of tunable, femtosecond laser systems, exhibiting low pump threshold powers. The main motive for this work was the development of a low threshold, self-modelocked Ti:Al2O3 laser in order to replace the conventional large-frame argon-ion pump laser with a more compact and efficient all-solid-state alternative. Results are also presented for an all-solid-state, self-modelocked Cr:LiSAF laser, however most of this work is concerned with self-modelocked Ti:Al2O3 laser systems. In chapter 2, the operation of a regeneratively-initiated, and a hard-aperture self- modelocked Ti:Al2O3 laser, pumped by an argon-ion laser, is discussed. Continuous- wave oscillation thresholds as low as 160mW have been demonstrated, along with self-modelocked threshold powers as low as 500mW. The measurement and suppression of phase noise on modelocked lasers is discussed in chapter 3. This is followed by a comparison of the phase noise characteristics of the regeneratively-initiated, and hard-aperture self-modelocked Ti:Al2O3 lasers. The use of a synchronously-operating, high resolution electron-optical streak camera in the evaluation of timing jitter is also presented. In chapter 4, the construction and self-modelocked operation of an all-solid-state Ti:Al2O3 laser is described. The all-solid-state alternative to the conventional argon-ion pump laser was a continuous-wave, intracavity-frequency doubled, diode-laser pumped Nd:YLF ring laser. At a total diode-laser pump power of 10W, this minilaser was capable of producing a single frequency output of 1W, at 523.5nm in a TEM00 beam. The remainder of this thesis looks at the operation of a self-modelocked Ti:Al2O3 laser generating ultrashort pulses at wavelengths as long as 1053nm. The motive for this work was the development of an all-solid-state, self- modelocked Ti:Al2O3 laser operating at 1053nm, for use as a master oscillator in a Nd:glass power chain.
High-power diode-side-pumped rod Tm:YAG laser at 2.07 μm.
Wang, Caili; Niu, Yanxiong; Du, Shifeng; Zhang, Chao; Wang, Zhichao; Li, Fangqin; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Xu, Zuyan
2013-11-01
We report a high-power diode-laser (LD) side-pumped rod Tm:YAG laser of around 2 μm. The laser was water-cooled at 8°C and yielded a maximum output power of 267 W at 2.07 μm, which is the highest output power for an all solid-state cw 2.07 μm rod Tm:YAG laser reported as far as we know. The corresponding optical-optical conversion efficiency was 20.7%, and the slope efficiency was about 29.8%, respectively.
1047nm 270mJ all solid state diode pumped MOPA at 50 Hz
NASA Astrophysics Data System (ADS)
Ma, Jian; Yang, Qi; Lu, Tingting; Ma, Xiuhua; Zhu, Xiaolei; Chen, Weibiao
2015-02-01
A diode-pumped nanosecond Master Oscillator Power Amplifier (MOPA) system based on Nd:YLF crystal slabs has been demonstrated. The seed pulses with pulse duration of 11 ns were generated in an EO Q-switched Nd:YLF laser, with single pulse energy of 10 mJ. The 1047 nm signal pulses were amplified in a double-pass amplification system. Maximum output pulse energy of 270 mJ at a repetition rate of 50 Hz has been achieved with effective optical-to-optical efficiency of 14.5%.
Acousto-optic modulation in diode pumped solid state lasers
NASA Astrophysics Data System (ADS)
Jabczynski, Jan K.; Zendzian, Waldemar; Kwiatkowski, Jacek
2007-02-01
The main properties of acousto-optic modulators (AOM) applied in laser technology are presented and discussed in the paper. The critical review of application of AOMs in several types of diode pumped solid state lasers (DPSSL) is given. The short description of few DPSSLs developed in our group is presented in the following chapters of the paper. The parameters of a simple AO-Q-switched Nd:YVO 4 laser (peak power up to 60 kW, pulse duration of 5-15 ns, repetition rate in the range 10-100 kHz, with average power above 5 W) are satisfactory for different application as follows: higher harmonic generation, pumping of 'eye-safe' OPOs etc. The achieved brightness of 10 17 W/m2/srd is comparable to the strongest technological Q-switched lasers of kW class of average power. The main aim of paper is to present novel type of lasers with acousto-optic modulation namely: AO-q-switched and mode locked (AO-QML) lasers. We have designed the 3.69-m long Z-type resonator of the frequency matched to the RF frequency of AOM. As a gain medium the Nd:YVO 4 crystal end pumped by 20 W laser diode was applied. The energy of envelope of QML pulse train was up to 130 μJ with sub-nanosecond mode locked pulse of maximum 30-μJ energy.
High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array
Freitas, B.L.
1998-10-27
An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.
Solid-state lasers for coherent communication and remote sensing
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1992-01-01
Semiconductor-diode laser-pumped solid-state lasers have properties that are superior to other lasers for the applications of coherent communication and remote sensing. These properties include efficiency, reliability, stability, and capability to be scaled to higher powers. We have demonstrated that an optical phase-locked loop can be used to lock the frequency of two diode-pumped 1.06 micron Nd:YAG lasers to levels required for coherent communication. Monolithic nonplanar ring oscillators constructed from solid pieces of the laser material provide better than 10 kHz frequency stability over 0.1 sec intervals. We have used active feedback stabilization of the cavity length of these lasers to demonstrate 0.3 Hz frequency stabilization relative to a reference cavity. We have performed experiments and analysis to show that optical parametric oscillators (OPO's) reproduce the frequency stability of the pump laser in outputs that can be tuned to arbitrary wavelengths. Another measurement performed in this program has demonstrated the sub-shot-noise character of correlations of the fluctuations in the twin output of OPO's. Measurements of nonlinear optical coefficients by phase-matched second harmonic generation are helping to resolve inconsistency in these important parameters.
Tunable solid-state lasers - An emerging technology for remote sensing of planetary atmospheres
NASA Technical Reports Server (NTRS)
Barnes, Norman P.; Allario, Frank
1988-01-01
The present development status and prospective (1990s) performance-improvement evaluation of tunable solid-state laser technology notes recent trends toward spectrum coverage over the 0.20-14.0 microns range, in addition to dramatic increases in efficiency, service life, and reliability. It is judged that the Ti:Al2O3 laser and the AgGaSe2 optical parametric oscillator pumped by a Ho:YAG laser could cover the near-IR and mid-IR regions of the spectrum. Laser diodes operating at 0.78 microns should provide an excellent pump for a Ho:YAG laser.
NASA Astrophysics Data System (ADS)
Lim, Daniel J.; Ki, Hyungson; Mazumder, Jyoti
2006-06-01
A fundamental study on the Q-switched diode-pumped solid-state laser interaction with silicon was performed both experimentally and numerically. Single pulse drilling experiments were conducted on N-type silicon wafers by varying the laser intensity from 108-109 W cm-2 to investigate how the mass removal mechanism changes depending on the laser intensity. Hole width and depth were measured and surface morphology was studied using scanning electron microscopy. For the numerical model study, Ki et al's self-consistent continuous-wave laser drilling model (2001 J. Phys. D: Appl. Phys. 34 364-72) was modified to treat the solidification phenomenon between successive laser pulses. The model has the capabilities of simulating major interaction physics, such as melt flow, heat transfer, evaporation, homogeneous boiling, multiple reflections and surface evolution. This study presents some interesting results on how the mass removal mode changes as the laser intensity increases.
Lif and Raman Spectroscopy in Undergraduate Labs Using Green Diode-Pumped Solid-State Lasers
NASA Astrophysics Data System (ADS)
Gray, Jeffrey A.
2015-06-01
Electronic spectroscopy of molecular iodine vapor has long been studied in undergraduate physical chemistry teaching laboratories, but the effectiveness of emission work has typically been limited by availability of instrumentation. This talk shows how to make inexpensive green diode-pumped solid-state (DPSS) lasers easily tunable for efficient, selective excitation of I2. Miniature fiber-optic spectrometers then enable rotationally resolved fluorescence spectroscopy up to v" = 42 near 900 nm with acquisition times of less than one minute. DPSS lasers are also versatile excitation sources for vibrational Raman spectroscopy, which is another common exercise that has been limited by lack of proper instrumentation in the teaching laboratory. This talk shows how to construct a simple accessory for commercial fluorimeters to record vibrational Raman spectra and depolarization ratios for CCl4 and C2Cl4 as part of a lab exercise featuring molecular symmetry.
All-Solid-State UV Transmitter Development for Ozone Sensing Applications
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Armstrong, Darrell Jr.
2009-01-01
In this paper, recent progress made in the development of an all-solid-state UV transmitter suitable for ozone sensing applications from space based platforms is discussed. A nonlinear optics based UV setup based on Rotated Image Singly Resonant Twisted Rectangle (RISTRA) optical parametric oscillator (OPO) module was effectively coupled to a diode pumped, single longitudinal mode, conductively cooled, short-pulsed, high-energy Nd:YAG laser operating at 1064 nm with 50 Hz PRF. An estimated 10 mJ/pulse with 10% conversion efficiency at 320 nm has been demonstrated limited only by the pump pulse spatial profile. The current arrangement has the potential for obtaining greater than 200 mJ/pulse. Previously, using a flash-lamp pumped Nd:YAG laser with round, top-hat profile, up to 24% IR-UV conversion efficiency was achieved with the same UV module. Efforts are underway to increase the IR-UV conversion efficiency of the all solid-state setup by modifying the pump laser spatial profile along with incorporating improved OPO crystals.
NASA Astrophysics Data System (ADS)
Li, B.; Zhao, L.; Zhang, Y. B.; Zheng, Q.; Zhao, Y.; Yao, Y.
2013-03-01
Efficient and compact green-yellow laser output at 543 nm is generated by intracavity frequency doubling of a CW diode-pumped Nd:LuVO4 laser at 1086 nm under the condition of suppressing the higher gain transition near 1064 nm. With 16 W of diode pump power and the frequency-doubling crystal LBO, as high as 2.17 W of CW output power at 543 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 13.6% and the output power stability over 8 hours is better than 2.86%. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by intracavity frequency doubling of a diode pumped Nd:LuVO4 laser at 1086 nm.
Yb:YAG Lasers for Space Based Remote Sensing
NASA Technical Reports Server (NTRS)
Ewing, J.J.; Fan, T. Y.
1998-01-01
Diode pumped solid state lasers will play a prominent role in future remote sensing missions because of their intrinsic high efficiency and low mass. Applications including altimetry, cloud and aerosol measurement, wind velocity measurement by both coherent and incoherent methods, and species measurements, with appropriate frequency converters, all will benefit from a diode pumped primary laser. To date the "gold standard" diode pumped Nd laser has been the laser of choice for most of these concepts. This paper discusses an alternate 1 micron laser, the YB:YAG laser, and its potential relevance for lidar applications. Conceptual design analysis and, to the extent possible at the time of the conference, preliminary experimental data on the performance of a bread board YB:YAG oscillator will be presented. The paper centers on application of YB:YAG for altimetry, but extension to other applications will be discussed.
NASA Technical Reports Server (NTRS)
Chen, Y. C.; Lee, K. K.
1993-01-01
The applications of Q-switched lasers are well known, for example, laser radar, laser remote sensing, satellite orbit determination, Moon orbit and 'moon quake' determination, satellite laser communication, and many nonlinear optics applications. Most of the applications require additional properties of the Q-switched lasers, such as single-axial and/or single-transverse mode, high repetition rate, stable pulse shape and pulse width, or ultra compact and rugged oscillators. Furthermore, space based and airborne lasers for lidar and laser communication applications require efficient, compact, lightweight, long-lived, and stable-pulsed laser sources. Diode-pumped solid-state lasers (DPSSL) have recently shown the potential for satisfying all of these requirements. We will report on the operating characteristics of a diode-pumped, monolithic, self-Q-switched Cr,Nd:YAG laser where the chromium ions act as a saturable absorber for the laser emission at 1064 nm. The pulse duration is 3.5 ns and the output is highly polarized with an extinction ratio of 700:1. It is further shown that the output is single-longitudinal-mode with transform-limited spectral line width without pulse-to-pulse mode competition. Consequently, the pulse-to-pulse intensity fluctuation is less than the instrument resolution of 0.25 percent. This self-stabilization mechanism is because the lasing mode bleaches the distributed absorber and establishes a gain-loss grating similar to that used in the distributed feedback semiconductor lasers. A repetition rate above 5 KHz has also been demonstrated. For higher power, this laser can be used for injection seeding an amplifier (or amplifier chain) or injection locking of a power oscillator pumped by diode lasers. We will discuss some research directions on the master oscillator for higher output energy per pulse as well as how to scale the output power of the diode-pumped amplifier(s) to multi-kilowatt average power.
Solid-state laser pumping with a planar compound parabolic concentrator.
Panteli, D V; Pani, B M; Beli, L Z
1997-10-20
A novel solid-state laser-pumping scheme is proposed that combines a reflective lamp chamber and a compound parabolic concentrator (CPC) as a light guide. The CPC is made of a transparent material of high refractive index, and light is guided by the total internal reflection, with drastically reduced reflection losses. Material is chosen so that the absorption losses are minimized in the pumping wavelength range. The lamp chamber is designed with the principles of nonimaging optics, which ensures that the radiation is efficiently transferred from the lamp to the input aperture of the CPC. The pumping efficiency was first estimated theoretically, which gave us enough justification for the more accurate calculations with ray tracing. Single as well as multiple pumping cavities are discussed. New pumping geometry results in significantly increased pumping efficiency compared with conventional geometries. Also the lamp and the laser rod are separated, leading to reduced thermal load. We found that the proposed pumping method is also applicable to diode-pumped lasers.
CW molecular iodine laser pumped with a low power DPSSL
NASA Astrophysics Data System (ADS)
Luhs, W.; Wellegehausen, B.; Goyal, M.
2017-04-01
Cw oscillation of molecular iodine on many lines in the range of 557-802 nm pumped with a low power common diode pumped and frequency doubled solid state laser DPSSL is reported. The DPSSL is temperature stabilized, operates in single frequency and can be tuned by about 2 nm at 532 nm. Operation conditions of this simple and low cost iodine ring laser will be described and possible applications will be discussed.
Carbon-Nanotube Schottky Diodes
NASA Technical Reports Server (NTRS)
Manohara, Harish; Wong, Eric; Schlecht, Erich; Hunt, Brian; Siegel, Peter
2006-01-01
Schottky diodes based on semiconducting single-walled carbon nanotubes are being developed as essential components of the next generation of submillimeter-wave sensors and sources. Initial performance predictions have shown that the performance characteristics of these devices can exceed those of the state-of-the-art solid-state Schottky diodes that have been the components of choice for room-temperature submillimeter-wave sensors for more than 50 years. For state-of-the-art Schottky diodes used as detectors at frequencies above a few hundred gigahertz, the inherent parasitic capacitances associated with their semiconductor junction areas and the resistances associated with low electron mobilities limit achievable sensitivity. The performance of such a detector falls off approximately exponentially with frequency above 500 GHz. Moreover, when used as frequency multipliers for generating signals, state-of-the-art solid-state Schottky diodes exhibit extremely low efficiencies, generally putting out only micro-watts of power at frequencies up to 1.5 THz. The shortcomings of the state-of-the-art solid-state Schottky diodes can be overcome by exploiting the unique electronic properties of semiconducting carbon nanotubes. A single-walled carbon nanotube can be metallic or semiconducting, depending on its chirality, and exhibits high electron mobility (recently reported to be approx.= 2x10(exp 5)sq cm/V-s) and low parasitic capacitance. Because of the narrowness of nanotubes, Schottky diodes based on carbon nanotubes have ultra-small junction areas (of the order of a few square nanometers) and consequent junction capacitances of the order of 10(exp -18) F, which translates to cutoff frequency >5 THz. Because the turn-on power levels of these devices are very low (of the order of nano-watts), the input power levels needed for pumping local oscillators containing these devices should be lower than those needed for local oscillators containing state-of-the-art solid-state Schottky diodes.
Zhou, Rong; Tang, Pinghua; Chen, Yu; Chen, Shuqing; Zhao, Chujun; Zhang, Han; Wen, Shuangchun
2014-01-10
Nonlinear transmission parameters of monolayer graphene at 1645 nm were obtained. Based on the monolayer graphene saturable absorber, a 1532 nm LD pumped 1645 nm passively Q-switched Er:YAG laser was demonstrated. Under the pump power of 20.8 W, a 1645 nm Q-switched pulse with FWHM of 0.13 nm (without the use of etalon) and energy of 13.5 μJ per pulse can be obtained. To the best of our knowledge, this is the highest pulse energy for graphene-based passively Q-switched Er:YAG laseroperating at 1645 nm, suggesting the potentials of graphene materials for high-energy solid-state laser applications.
Advancements in high-power diode laser stacks for defense applications
NASA Astrophysics Data System (ADS)
Pandey, Rajiv; Merchen, David; Stapleton, Dean; Patterson, Steve; Kissel, Heiko; Fassbender, Wilhlem; Biesenbach, Jens
2012-06-01
This paper reports on the latest advancements in vertical high-power diode laser stacks using micro-channel coolers, which deliver the most compact footprint, power scalability and highest power/bar of any diode laser package. We present electro-optical (E-O) data on water-cooled stacks with wavelengths ranging from 7xx nm to 9xx nm and power levels of up to 5.8kW, delivered @ 200W/bar, CW mode, and a power-conversion efficiency of >60%, with both-axis collimation on a bar-to-bar pitch of 1.78mm. Also, presented is E-O data on a compact, conductively cooled, hardsoldered, stack package based on conventional CuW and AlN materials, with bar-to-bar pitch of 1.8mm, delivering average power/bar >15W operating up to 25% duty cycle, 10ms pulses @ 45C. The water-cooled stacks can be used as pump-sources for diode-pumped alkali lasers (DPALs) or for more traditional diode-pumped solid-state lasers (DPSSL). which are power/brightness scaled for directed energy weapons applications and the conductively-cooled stacks as illuminators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berns, M.W.
These proceedings collect papers on laser biomedicine. Topics include: light distributions on tissue; chemical byproducts of laser/tissue interactions; laser applications in ophthalmology; phododynamic therapy; diode pumped solid state lasers at two and three micrometers; and applications of excimer lasers to peripheral nerve repair.
UV lasers for drilling and marking applications.
Hannon, T
1999-10-01
Lasers emitting ultraviolet (UV) light have unique capabilities for precision micromachining and marking plastic medical devices. This review of the benefits offered by laser technology includes a look at recently developed UV diode-pumped solid-state lasers and their key features.
High-brightness diode pump sources for solid-state and fiber laser pumping across 8xx-9xx nm range
NASA Astrophysics Data System (ADS)
Diamant, Ronen; Berk, Yuri; Cohen, Shalom; Klumel, Genady; Levy, Moshe; Openhaim, Yaki; Peleg, Ophir; Yanson, Dan; Karni, Yoram
2011-06-01
Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scalable QCW pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.
Solid state laser systems for space application
NASA Technical Reports Server (NTRS)
Kay, Richard B.
1994-01-01
Since the last report several things have happened to effect the research effort. In laser metrology, measurements using Michelson type interferometers with an FM modulated diode laser source have been performed. The discrete Fourier transform technique has been implemented. Problems associated with this technique as well as the overall FM scheme were identified. The accuracy of the technique is not at the level we would expect at this point. We are now investigating the effect of various types of noise on the accuracy as well as making changes to the system. One problem can be addressed by modifying the original optical layout. Our research effort was also expanded to include the assembly and testing of a diode pumped\\Nd:YAG laser pumped\\Ti sapphire laser for possible use in sounding rocket applications. At this stage, the diode pumped Nd:YAG laser has been assembled and made operational.
LD-pumped erbium and neodymium lasers with high energy and output beam quality
NASA Astrophysics Data System (ADS)
Kabanov, Vladimir V.; Bezyazychnaya, Tatiana V.; Bogdanovich, Maxim V.; Grigor'ev, Alexandr V.; Lebiadok, Yahor V.; Lepchenkov, Kirill V.; Ryabtsev, Andrew G.; Ryabtsev, Gennadii I.; Shchemelev, Maxim A.
2013-05-01
Physical and fabrication peculiarities which provide the high output energy and beam quality for the diode pumped erbium glass and Nd:YAG lasers are considered. Developed design approach allow to make passively Q-switched erbium glass eye-safe portable laser sources with output energy 8 - 12 mJ (output pulse duration is less than 25 ns, pulse repetition rate up to 5 Hz) and beam quality M2 less than 1.3. To reach these values the erbium laser pump unit parameters were optimized also. Namely, for the powerful laser diode arrays the optimal near-field fill-factor, output mirror reflectivity and heterostructure properties were determined. Construction of advanced diode and solid-state lasers as well as the optical properties of the active element and the pump unit make possible the lasing within a rather wide temperature interval (e.g. from minus forty till plus sixty Celsius degree) without application of water-based chillers. The transversally pumped Nd:YAG laser output beam uniformity was investigated depending on the active element (AE) pump conditions. In particular, to enhance the pump uniformity within AE volume, a special layer which practically doesn't absorb the pump radiation but effectively scatters the pump and lasing beams, was used. Application of such layer results in amplified spontaneous emission suppression and improvement of the laser output beam uniformity. The carried out investigations allow us to fabricate the solid-state Nd:YAG lasers (1064 nm) with the output energy up to 420 mJ at the pulse repetition rate up to 30 Hz and the output energy up to 100 mJ at the pulse repetition rate of of 100 Hz. Also the laser sources with following characteristics: 35 mJ, 30 Hz (266 nm); 60 mJ, 30 Hz (355 nm); 100 mJ, 30 Hz (532 nm) were manufactured on the base of the developed Nd:YAG quantrons.
Low-threshold, CW, all-solid-state Ti:Al2O3 laser
NASA Technical Reports Server (NTRS)
Harrison, James; Finch, Andrew; Rines, David M.; Rines, Glen A.; Moulton, Peter F.
1991-01-01
A CW Ti:Al2O3 ring laser with a threshold power of 119 mW is demonstrated. It provides a tunable source of single-frequency, diffraction-limited radiation that is suitable for injection seeding. The Ti:Al2O3 laser is operated with a diode-laser-pumped, frequency-doubled, Nd:YAG laser as the sole pump source.
Solid state lasers for use in non-contact temperature measurements
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.
1989-01-01
The last decade has seen a series of dramatic developments in solid state laser technology. Prominent among these has been the emergence of high power semiconductor laser diode arrays and a deepening understanding of the dynamics of solid state lasers. Taken in tandem these two developments enable the design of laser diode pumped solid state lasers. Pumping solid state lasers with semiconductor diodes relieves the need for cumbersome and inefficient flashlamps and results in an efficient and stable laser with the compactness and reliability. It provides a laser source that can be reliably used in space. These new coherent sources are incorporated into the non-contact measurement of temperature. The primary focus is the development and characterization of new optical materials for use in active remote sensors of the atmosphere. In the course of this effort several new materials and new concepts were studied which can be used for other sensor applications. The general approach to the problem of new non-contact temperature measurements has had two components. The first component centers on passive sensors using optical fibers; an optical fiber temperature sensor for the drop tube was designed and tested at the Marshall Space Flight Center. Work on this problem has given insight into the use of optical fibers, especially new IR fibers, in thermal metrology. The second component of the effort is to utilize the experience gained in the study of passive sensors to examine new active sensor concepts. By active sensor are defined as a sensing device or mechanism which is interrogated in some way be radiation, usually from a laser. The status of solid state lasers as sources for active non-contact temperature sensors are summarized. Some specific electro-optic techniques are described which are applicable to the sensor problems at hand. Work on some of these ideas is in progress while other concepts are still being worked out.
Diode pumped alkali vapor fiber laser
Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.
2007-10-23
A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.
Diode pumped alkali vapor fiber laser
Payne, Stephen A [Castro Valley, CA; Beach, Raymond J [Livermore, CA; Dawson, Jay W [Livermore, CA; Krupke, William F [Pleasanton, CA
2006-07-26
A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.
NASA Astrophysics Data System (ADS)
Jew, Jamison; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel
2017-02-01
Selective removal of caries lesions with high precision is best accomplished using lasers operating at high pulse repetition rates utilizing small spot sizes. Conventional flash-lamp pumped Er:YAG lasers are poorly suited for this purpose, but new diode-pumped solid-state (DPSS) Er:YAG lasers have become available operating at high pulse repetition rates. Microradiography was used to determine the mineral content of the demineralized dentin of 200-μm thick sections with natural caries lesions prior to laser ablation. The purpose of this study was to explore the use of a DPSS Er:YAG laser for the selective removal of demineralized dentin and natural occlusal lesions on extracted teeth.
Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang
2007-10-15
We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.
Quasi-passive heat sink for high-power laser diodes
NASA Astrophysics Data System (ADS)
Vetrovec, John
2009-02-01
We report on a novel heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink uses a liquid coolant flowing at high speed in a miniature closed and sealed loop. Diode waste heat is received at high flux and transferred to environment, coolant fluid, heat pipe, or structure at a reduced flux. When pumping solid-state or alkali vapor lasers, diode wavelength can be electronically tuned to the absorption features of the laser gain medium. This paper presents the heat sink physics, engineering design, performance modeling, and configurations.
Large laser projection displays utilizing all-solid-state RGB lasers
NASA Astrophysics Data System (ADS)
Xu, Zuyan; Bi, Yong
2005-01-01
RGB lasers projection displays have the advantages of producing large color triangle, high color saturation and high image resolution. In this report, with more than 4W white light synthesized by red (671nm), green (532nm) and blue (473nm) lasers, a RGB laser projection display system based on diode pumped solid-state lasers is developed and the performance of brilliant and vivid DVD dynamitic pictures on 60 inch screen is demonstrated.
Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode.
Jelínková, Helena; Doroshenko, Maxim E; Jelínek, Michal; Sulc, Jan; Osiko, Vyacheslav V; Badikov, Valerii V; Badikov, Dmitrii V
2013-08-15
In this Letter, we demonstrate the pulsed and CW operation of the Dy:PbGa(2)S(4) laser directly pumped by the 1.7 μm laser diode. In the pulsed regime (pulse duration 5 ms; repetition rate 20 Hz), the maximum mean output power of 9.5 mW was obtained with the slope efficiency of 9.3% with respect to the absorbed pump power. The generated wavelength was 4.32 μm, and the laser beam cross section was approximately Gaussian on both axes. Stable CW laser generation was also successfully obtained with the maximum output power of 67 mW and the slope efficiency of 8%. Depopulation of the lower laser level by 1.7 μm pump radiation absorption followed by 1.3 μm upconversion fluorescence was demonstrated. These results show the possibility of construction of the compact diode-pumped solid-state pulsed or CW laser generating at 4.3 μm in the power level of tens mW operating at room temperature.
Resonantly diode-pumped eye-safe Er:YAG laser with fiber-shaped crystal
NASA Astrophysics Data System (ADS)
Němec, Michal; Šulc, Jan; Hlinomaz, Kryštof; Jelínková, Helena; Nejezchleb, Karel; Čech, Miroslav
2018-02-01
Solid-state eye-safe lasers are interesting sources for various applications, such as lidar, remote sensing, and ranging. A resonantly diode-pumped Er:YAG laser could be one of them allowing to reach a tunable laser emission in 1.6 μm spectral region. To overcome low pump absorption and poor pumping beam quality generated by commercially available laser diode, an active medium could be formed to long and thin laser rod guiding pumping radiation. Such an effective cooling during a high power pumping, which is a "crystal-fiber" benefit, may be useful for "standard" crystal active medium. The main goal of this work was to investigate the laser characteristics of new developed Er:YAG crystal with a special shape for diode-pumping. Er:YAG fiber-shape crystal with square cross-section (1x1mm) and 40mm in length was doped by 0.1% Er3+ ions. All sides of this crystal were polished and in addition the end-faces of it were antireflection coatings for the wavelength 1470 and 1645 nm. As a pump system, a fiber coupled laser diode (f = 10 Hz, t = 10 ms) emitting radiation at 1465 nm wavelength was used. Er:YAG fiber-shape crystal was placed onto a copper holder in the 85 mm long plan-concave resonator consisting of a pump flat mirror and output curved (r = 150 mm) coupler with a reflectivity of 96 % @ 1645 nm. The dependence of the output peak power on absorbed pump power was investigated and the maximum 0.8 W was obtained. The corresponding slope efficiency was 14.5 %. The emitting wavelength was equaled to 1645 nm (4 nm linewidth, FWHM). The spatial beam structure was close to the Gaussian mode.
The 1.083 micron tunable CW semiconductor laser
NASA Technical Reports Server (NTRS)
Wang, C. S.; Chen, Jan-Shin; Lu, Ken-Gen; Ouyang, Keng
1991-01-01
A tunable CW laser is desired to produce light equivalent to the helium spectral line at 1.08 microns. This laser will serve as an optical pumping source for He-3 and He-4 atoms used in space magnetometers. This light source can be fabricated either as a semiconductor laser diode or a pumped solid state laser. Continuous output power of greater than 10 mW is desired. Semiconductor lasers can be thermally tuned, but must be capable of locking onto the helium resonance lines. Solid state lasers must have efficient pumping sources suitable for space configuration. Additional requirements are as follows: space magnetometer applications will include low mass (less than 0.5 kg), low power consumption (less than 0.75 W), and high stability/reliability for long missions (5-10 years).
NASA Astrophysics Data System (ADS)
Li, M. X.; Jin, G. Y.; Li, Y.
2018-05-01
In this paper, we investigated the passively Q-switched Nd:GdTaO4 laser based on tungsten disulfide (WS2) saturable absorber (SA). The preparation method of WS2 SA was to attach the WS2-alcohol dispersion onto the quartz substrates. The diode-pumped passively Q-switched Nd:GdTaO4 laser operated at a central wavelength of 1066 nm. The stable pulse output could be obtained at the single pulse width of 560 ns. In a word, WS2 seems to be a suitable saturable absorber for solid state lasers.
All solid-state diode pumped Nd:YAG MOPA with stimulated Brillouin phase conjugate mirror
NASA Astrophysics Data System (ADS)
Offerhaus, H. L.; Godfried, H. P.; Witteman, W. J.
1996-02-01
At the Nederlands Centrum voor Laser Research (NCLR) a 1 kHz diode-pumped Nd:YAG Master Oscillator Power Amplifier (MOPA) chain with a Stimulated Brillouin Scattering (SBS) Phase Conjugate mirror is designed and operated. A small Brewster angle Nd:YAG slab (2 by 2 by 20 mm) is side pumped with 200 μs diode pulses in a stable oscillator. The oscillator is Q-switched and injection seeded with a commercial diode pumped single frequency CW Nd:YAG laser. The output consists of single-transverse, single-longitudinal mode 25 ns FWHM-pulses at 1064 nm. The oscillator slab is imaged on a square aperture that transmits between 3 and 2 mJ (at 100 and 400 Hz, resp.) The aperture is subsequently imaged four times in the amplifier. The amplifier is a 3 by 6 by 60 mm Brewster angle zig-zag slab, pumped by an 80-bar diode stack with pulses up to 250 μs. After the second pass the light is focused in two consecutive cells containing Freon-113 for wave-front reversal in an oscillator/amplifier-setup with a reflectivity of 60%. The light then passes through the amplifier twice more to produce 20 W (at 400 Hz) of output with near diffraction limited beam quality. To increase the output to 50 W at 1 kHz thermal lensing in the oscillator will be reduced.
Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range
NASA Astrophysics Data System (ADS)
Dolgovskiy, Vladimir; Schilt, Stéphane; Bucalovic, Nikola; Di Domenico, Gianni; Grop, Serge; Dubois, Benoît; Giordano, Vincent; Südmeyer, Thomas
2014-09-01
We demonstrate the first ultra-stable microwave generation based on a 1.5-μm diode-pumped solid-state laser (DPSSL) frequency comb. Our system relies on optical-to-microwave frequency division from a planar-waveguide external cavity laser referenced to an ultra-stable Fabry-Perot cavity. The evaluation of the microwave signal at ~10 GHz uses the transportable ultra-low-instability signal source ULISS®, which employs a cryo-cooled sapphire oscillator. With the DPSSL comb, we measured -125 dBc/Hz phase noise at 1 kHz offset frequency, likely limited by the photo-detection shot-noise or by the noise floor of the reference cryo-cooled sapphire oscillator. For comparison, we also generated low-noise microwave using a commercial Er:fiber comb stabilized in similar conditions and observed >20 dB lower phase noise in the microwave generated from the DPSSL comb. Our results confirm the high potential of the DPSSL technology for low-noise comb applications.
NASA Astrophysics Data System (ADS)
Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard
2017-12-01
Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.
Laser Diode Pumped Solid State Lasers
1987-01-01
Report N66001-83-C-0071, 17 April 1986, prepared for NOSC. 4.6 W.T. Welford, R. Winston , "The Option of Nonimaging Concentrators ," Academic Press, 1978...by non-imac optics such as reflective or refractive flux concentrators . Simple considerations regarding the optimum pumping configuration, high marks...reduced if the arrays can stand-off from the Nd:YAG laser. As mentioned before, compound parabolic concentrators or refractive optics cat employed to
DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser.
Banerjee, Saumyabrata; Ertel, Klaus; Mason, Paul D; Phillips, P Jonathan; De Vido, Mariastefania; Smith, Jodie M; Butcher, Thomas J; Hernandez-Gomez, Cristina; Greenhalgh, R Justin S; Collier, John L
2015-07-27
The Diode Pumped Optical Laser for Experiments (DiPOLE) project at the Central Laser Facility aims to develop a scalable, efficient high pulse energy diode pumped laser amplifier system based on cryogenic gas cooled, multi-slab ceramic Yb:YAG technology. We present recent results obtained from a scaled down prototype laser system designed for operation at 10 Hz pulse repetition rate. At 140 K, the system generated 10.8 J of energy in a 10 ns pulse at 1029.5 nm when pumped by 48 J of diode energy at 940 nm, corresponding to an optical to optical conversion efficiency of 22.5%. To our knowledge, this represents the highest pulse energy obtained from a cryo cooled Yb laser to date and the highest efficiency achieved by a multi-Joule diode pumped solid state laser system. Additionally, we demonstrated shot-to-shot energy stability of 0.85% rms for the system operated at 7 J, 10 Hz during several runs lasting up to 6 hours, with more than 50 hours in total. We also demonstrated pulse shaping capability and report on beam, wavefront and focal spot quality.
Cryogenic cooling for high power laser amplifiers
NASA Astrophysics Data System (ADS)
Perin, J. P.; Millet, F.; Divoky, M.; Rus, B.
2013-11-01
Using DPSSL (Diode Pumped Solid State Lasers) as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz). The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K-170 K with a heat flux of 1 MW*m-2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.
Iodine-stabilized single-frequency green InGaN diode laser.
Chen, Yi-Hsi; Lin, Wei-Chen; Shy, Jow-Tsong; Chui, Hsiang-Chen
2018-01-01
A 520-nm InGaN diode laser can emit a milliwatt-level, single-frequency laser beam when the applied current slightly exceeds the lasing threshold. The laser frequency was less sensitive to diode temperature and could be finely tuned by adjusting the applied current. Laser frequency was stabilized onto a hyperfine component in an iodine transition through the saturated absorption spectroscopy. The uncertainty of frequency stabilization was approximately 8×10 -9 at a 10-s integration time. This compact laser system can replace the conventional green diode-pumped solid-state laser and applied as a frequency reference. A single longitudinal mode operational region with diode temperature, current, and output power was investigated.
Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.
2008-01-01
In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of <2. The single frequency UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.
Peuser, Peter; Platz, Willi; Fix, Andreas; Ehret, Gerhard; Meister, Alexander; Haag, Matthias; Zolichowski, Paul
2009-07-01
We report on a compact, tunable ultraviolet laser system that consists of an optical parametric oscillator (OPO) and a longitudinally diode-pumped Nd:YAG master oscillator-power amplifier (MOPA). The pump energy for the whole laser system is supplied via a single delivery fiber. Nanosecond pulses are produced by an oscillator that is passively Q-switched by a Cr(4+):YAG crystal. The OPO is pumped by the second harmonic of the Nd:YAG MOPA. Continuously tunable radiation is generated by an intracavity sum-frequency mixing process within the OPO in the range of 245-260 nm with high beam quality. Maximum pulse energies of 1.2 mJ were achieved, which correspond to an optical efficiency of 3.75%, relating to the pulse energy of the MOPA at 1064 nm.
Semiconductor Laser Diode Arrays by MOCVD (Metalorganic Chemical Vapor Deposition)
1987-09-01
laser diode arrays are intended to be used as an optical pump for solid state yttrium aluminum garnet (YAG) lasers. In particular, linear uniform...corresponds to about . , 8080A. Such thin layer structures, while difficult to grow by such conventional growth methods as liquid phase epitaxy ( LPE ...lower yet than for DH lasers grown by LPE . , - Conventional self-aligned stripe laser This structure is formed by growing (on an n-type GaAs substrate
Payne, Stephen A.; Marshall, Christopher D.; Powell, Howard T.; Krupke, William F.
2001-01-01
In a master oscillator-power amplifier (MOPA) hybrid laser system, the master oscillator (MO) utilizes a Nd.sup.3+ -doped gain medium and the power amplifier (PA) utilizes a diode-pumped Yb.sup.3+ -doped material. The use of two different laser gain media in the hybrid MOPA system provides advantages that are otherwise not available. The Nd-doped gain medium preferably serves as the MO because such gain media offer the lowest threshold of operation and have already been engineered as practical systems. The Yb-doped gain medium preferably serves in the diode-pumped PA to store pump energy effectively and efficiently by virtue of the long emission lifetime, thereby reducing diode pump costs. One crucial constraint on the MO and PA gain media is that the Nd and Yb lasers must operate at nearly the same wavelength. The 1.047 .mu.m Nd:YLF/Yb:S-FAP [Nd:LiYF.sub.4 /Yb:Sr.sub.5 (PO.sub.4).sub.3 F] hybrid MOPA system is a preferred embodiment of the hybrid Nd/Yb MOPA.
Transverse Diode Pumping of Solid-State Lasers
1992-05-29
more common apertures (laser rod end and cavity end mirror ) leads to a thin-film coating damage issue. The transverse pumped geometry avoids the...proprietary one-half inch square cooler developed for high-power adaptive optics mirror applications. The laser performance observed, with up to 35 watts of...including the development of active mirrors capable of sustaining high power loadings. As part of those efforts, TTC has developed a small (one-half inch
NASA Technical Reports Server (NTRS)
Kozlovsky, W. J.; Gustafson, E. K.; Eckardt, R. C.; Byer, R. L.
1988-01-01
With the advent of new nonlinear materials and single-frequency pump sources, there is renewed interest in optical parametric oscillators (OPOs). A single-mode diode-laser-pumped monolithic Nd:YAG nonplanar ring laser that is both amplified and frequency doubled is used to pump a monolithic MgO:LiNbO3 pulsed singly resonant OPO. The OPO signal output was temperature tuned from 834 to 958 nm, producing an idler tuning from 1.47 to 1.2 microns. Efforts toward a CW all-solid-state doubly resonant OPO are also described.
Full System Operations of Mercury: A Diode Pumped Solid-State Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bibeau, C.; Bayramian, A.J.; Armstrong, P.
Operation of the Mercury laser with two amplifiers has yielded 30 Joules at 1 Hz and 12 Joules at 10 Hz with over 8x10{sup 4} shots on the system. Static distortions in the Yb:S-FAP amplifiers were corrected by a magneto-rheological finishing technique.
Full System Operations of Mercury; A Diode-Pumped Solid-State Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A J; Armstrong, P; Beach, R J
Operation of the Mercury laser with two amplifiers activated has yielded 30 Joules at 1 Hz and 12 Joules at 10 Hz and over 8 x 10{sup 4} shots on the system. Static distortions in the Yb:S-FAP amplifiers were corrected by magneto rheological finishing technique.
NASA Astrophysics Data System (ADS)
Li, Chun-Hao; Tsai, Ming-Jong
2009-06-01
A novel diode-pumped Nd:YAG laser system that employs a fixed active laser medium and a pair of quick-change output couplers on a precision linear stage for 1064 or 532 nm wavelength generation is presented. Fixed elements include a rear mirror, an acousto-optical Q-switch, and a diode-pumped solid-state laser (DPSSL). Movable elements for 1064 nm generation include an intra-cavity aperture as a mode selection element (MSE) and an output coupler. Movable elements for 532 nm generation include an intra-cavity frequency conversion with KTP, an intra-cavity aperture as a mode selection element (MSE), and an output coupler. Under stable operating conditions, the 1064 nm configuration produced a beam propagation ratio of 1.18 whereas the 532 nm configuration produced a beam propagation ratio of 1.1, both of which used an intra-cavity MSE with an aperture of 1.2 mm and a length of 5 mm.
885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System
NASA Technical Reports Server (NTRS)
Yu, Anthony
2012-01-01
The performance of a traditional diode pumped solid-state laser that is typically pumped with 808-nm laser diode array (LDA) and crystalline Nd:YAG was improved by using 885-nm LDAs and ceramic Nd:YAG. The advantage is lower quantum defect, which will improve the thermal loading on laser gain medium, resulting in a higher-performance laser. The use of ceramic Nd:YAG allows a higher Nd dopant level that will make up the lower absorption at the 885-nm wavelength on Nd:YAG. When compared to traditional 808-nm pump, 885-nm diodes will have 30% less thermal load (or wasted heat) and will thus see a similar percentage improvement in the overall laser efficiency. In order to provide a more efficient laser system for future flight missions that require the use of low-repetition- rate (
Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source
NASA Astrophysics Data System (ADS)
Cai, He; Wang, You; Han, Juhong; An, Guofei; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Zhou, Jie; Gao, Ming; Jiang, Zhigang
2015-03-01
Diode pumped alkali vapor lasers (DPALs) were first developed by in W. F. Krupke at the beginning of the 21th century. In the recent years, DPALs have been rapidly developed because of their high Stokes efficiency, good beam quality, compact size and near-infrared emission wavelengths. The Stokes efficiency of a DPAL can achieve a miraculous level as high as 95.3% for cesium (Cs), 98.1% for rubidium (Rb), and 99.6% for potassium (K), respectively. The thermal effect of a DPAL is theoretically smaller than that of a normal diode-pumped solid-state laser (DPSSL). Additionally, generated heat of a DPAL can be removed by circulating the gases inside a sealed system. Therefore, the thermal management would be relatively simple for realization of a high-powered DPAL. In the meantime, DPALs combine the advantages of both DPSSLs and normal gas lasers but evade the disadvantages of them. Generally, the collisionally broadened cross sections of both the D1 and the D2 lines for a DPAL are much larger than those for the most conventional solid-state, fiber and gas lasers. Thus, DPALs provide an outstanding potentiality for realization of high-powered laser systems. It has been shown that a DPAL is now becoming one of the most promising candidates for simultaneously achieving good beam quality and high output power. With a lot of marvelous merits, a DPAL becomes one of the most hopeful high-powered laser sources of next generation.
NASA Astrophysics Data System (ADS)
Platz, R.; Frevert, C.; Eppich, B.; Rieprich, J.; Ginolas, A.; Kreutzmann, S.; Knigge, S.; Erbert, G.; Crump, P.
2018-03-01
Diode lasers pump sources for future high-energy-class laser systems based on Yb-doped solid state amplifiers must deliver high optical intensities, high conversion efficiency (ηE = > 50%) at high repetition rates (f = 100 Hz) and long pulse widths (τ = 0.5…2 ms). Over the last decade, a series of pump modules has been developed at the Ferdinand-BraunInstitut to address these needs. The latest modules use novel wide-aperture single emitter diode lasers in passively side cooled stacks, operate at τ = 1 ms, f = 100…200 Hz and deliver 5…6 kW optical output power from a fiber with 1.9 mm core diameter and NA of 0.22, for spatial brightness BΩ > 1 MW/cm2 sr. The performance to date and latest developments in these high brightness modules are summarized here with recent work focusing on extending operation to other pumping conditions, as needed for alternative solid state laser designs. Specifically, the electro-optic, spectral and beam propagation characteristics of the module and its components are studied as a function of τ for a fixed duty cycle DC = 10% for τ = 1...100 ms, and first data is shown for continuous wave operation. Clear potential is seen to fulfill more demanding specifications without design changes. For example, high power long-pulse operation is demonstrated, with a power of > 5 kW at τ = 100 ms. Higher brightness operation is also confirmed at DC = 10% and τ = 1 ms, with > 5 kW delivered in a beam with BΩ > 4 MW/cm2 sr.
Is There Segregation of Rare Earth Ions in Garnet Optical Ceramics?
NASA Astrophysics Data System (ADS)
Boulon, Georges; Epicier, T.; Zhao, W.; Guzik, M.; Pan, Y.; Jiang, B.
Research on advanced optical materials for a large variety of applications is always increasing. As an example, we can note high progress in solid-state laser sources like laser-diode (LD) - pumped solid-state lasers (DPSSL) including developments of new materials and high-power laser diode led to high-power and tuneable solid-state lasers. A wide variety of materials has been studied to develop more efficient and high power microchip lasers [1]. In end-pumping schemes, in particular, materials with a short absorption length for the LD pump beam are strongly anticipated for highly efficient operations because of the excellent match between the mode and pump beam profiles. High Nd3+ concentrations were so considered such as NdP5O14, LiNdP4O12 (LNP), and NdAl3(BO3)O4. However, crystal growths of these compositions are not so easy. Cubic crystals are much more researched. When looking at the literature for actual applications, we see immediately the importance of cubic garnet crystals for which dodecahedral (Y3+), octahedral (Al3+) and tetrahedral (Al3+) sites are considered as a reservoir for many activators like: Ce3+, Nd3+, Er3+, Tm3+, Ho3+, Yb3+ rare earth ions in dodecahedral symmetry sites and transition metal ions like Cr3+ in the octahedral symmetry sites or Cr4+ in the tetrahedral symmetry sites. Among garnet crystals, Y3Al5O12 (YAG) host is the most used, commercially produced by the Czochralski method. However, in the case of the most used Nd3+: YAG laser crystal, the Nd3+ concentration that affects the performance in laser applications, is strongly limited to 0.2-1.4 Nd3+ at. % as a result of the segregation distribution coefficient [1].
Activation of theMercury Laser System: A Diode-Pumped Solid-State Laser Driver for Inertial Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A J; Beach, R J; Bibeau, C
Initial measurements are reported for the Mercury laser system, a scalable driver for rep-rated inertial fusion energy. The performance goals include 10% electrical efficiency at 10 Hz and 100 J with a 2-10 ns pulse length. We report on the first Yb:S-FAP crystals grown to sufficient size for fabricating full size (4 x 6 cm) amplifier slabs. The first of four 160 kW (peak power) diode arrays and pump delivery systems were completed and tested with the following results: 5.5% power droop over a 0.75 ms pulse, 3.95 nm spectral linewidth, far field divergence of 14.0 mrad and 149.5 mradmore » in the microlensed and unmicrolensed directions respectively, and 83% optical-to-optical transfer efficiency through the pump delivery system.« less
High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments
NASA Technical Reports Server (NTRS)
Eegholm, Niels; Ott, Melanie; Stephen, Mark; Leidecker, Henning
2005-01-01
Semiconductor laser diodes emit coherent light by simulated emission generated inside the cavity formed by the cleaved end facets of a slab of semiconductor that is typically less than a millimeter in any dimension for single emitters. The diode is pumped by current injection in the p-n junction through the metallic contacts. Laser diodes emitting in the range of 0.8 micron to 1.06 micron have a wide variety of applications from pumping erbium doped fiber amplifiers, dual-clad fiber lasers, solid-state lasers used in telecom, aerospace, military, medical purposes and all the way to CD players, laser printers and other consumer and industrial products. Laser diode bars have many single emitters side by side and spaced approximately .5 mm on a single slab of semiconductor material approximately .5 mm x 10 mm. The individual emitters are connected in parallel maintaining the voltage at -2V but increasing the current to 50-100A/bar. Stacking these laser diode bars in multiple layers, 2 to 20+ high, yields high power laser diode arrays capable of emitting several hundreds of Watts. Electrically the bars are wired in series increasing the voltage by 2V/bar but maintaining the total current at 50-100A. These arrays are one of the enabling technologies for efficient, high power solid-state lasers. Traditionally these arrays are operated in QCW (Quasi CW) mode with pulse widths 10-200 (mu)s and with repetition rates of 10-200Hz. In QCW mode the wavelength and the output power of the laser reaches steady-state but the temperature does not. The advantage is a substantially higher output power than in CW mode, where the output power would be limited by the internal heating and hence the thermal and heat sinking properties of the device. The down side is a much higher thermal induced mechanical stress caused by the constant heating and cooling cycle inherent to the QCW mode.
Solid state laser disk amplifer architecture: the normal-incidence stack
Dane, C. Brent; Albrecht, Georg F.; Rotter, Mark D.
2005-01-25
Normal incidence stack architecture coupled with the development of diode array pumping enables the power/energy per disk to be increased, a reduction in beam distortions by orders of magnitude, a beam propagation no longer restricted to only one direction of polarization, and the laser becomes so much more amendable to robust packaging.
NASA Astrophysics Data System (ADS)
Chu, Shu-Chun
2009-02-01
This paper introduces a scheme for generation of vortex laser beams from a solid-state laser with off-axis laser-diode pumping. The proposed system consists of a Dove prism embedded in an unbalanced Mach-Zehnder interferometer configuration. This configuration allows controlled construction of p × p vortex array beams from Ince-Gaussian modes, IGep,p modes. An incident IGe p,p laser beam of variety order p can easily be generated from an end-pumped solid-state laser with an off-axis pumping mechanism. This study simulates this type of vortex array laser beam generation and discusses beam propagation effects. The formation of ordered transverse emission patterns have applications in a variety of areas such as optical data storage, distribution, and processing that exploit the robustness of soliton and vortex fields and optical manipulations of small particles and atoms in the featured intensity distribution.
Room temperature high power mid-IR diode laser bars for atmospheric sensing applications
NASA Astrophysics Data System (ADS)
Crump, Paul; Patterson, Steve; Dong, Weimin; Grimshaw, Mike; Wang, Jun; Zhang, Shiguo; Elim, Sandrio; Bougher, Mike; Patterson, Jason; Das, Suhit; Wise, Damian; Matson, Triston; Balsley, David; Bell, Jake; DeVito, Mark; Martinsen, Rob
2007-04-01
Peak CW optical power from single 1-cm diode laser bars is advancing rapidly across all commercial wavelengths and the available range of emission wavelengths also continues to increase. Both high efficiency ~ 50% and > 100-W power InP-based CW bars have been available in bar format around 1500-nm for some time, as required for eye-safe illuminators and for pumping Er-YAG crystals. There is increasing demand for sources at longer wavelengths. Specifically, 1900-nm sources can be used to pump Holmium doped YAG crystals, to produce 2100-nm emission. Emission near 2100-nm is attractive for free-space communications and range-finding applications as the atmosphere has little absorption at this wavelength. Diode lasers that emit at 2100-nm could eliminate the need for the use of a solid-state laser system, at significant cost savings. 2100-nm sources can also be used as pump sources for Thulium doped solid-state crystals to reach even longer wavelengths. In addition, there are several promising medical applications including dental applications such as bone ablation and medical procedures such as opthamology. These long wavelength sources are also key components in infra-red-counter-measure systems. We have extended our high performance 1500-nm material to longer wavelengths through optimization of design and epitaxial growth conditions and report peak CW output powers from single 1-cm diode laser bars of 37W at 1910-nm and 25W at 2070-nm. 1-cm bars with 20% fill factor were tested under step-stress conditions up to 110-A per bar without failure, confirming reasonable robustness of this technology. Stacks of such bars deliver high powers in a collimated beam suitable for pump applications. We demonstrate the natural spectral width of ~ 18nm of these laser bars can be reduced to < 3-nm with use of an external Volume Bragg Grating, as required for pump applications. We review the developments required to reach these powers, latest advances and prospects for longer wavelength, higher power and higher efficiency.
Stable donutlike vortex beam generation from lasers with controlled Ince-Gaussian modes
NASA Astrophysics Data System (ADS)
Chu, Shu-Chun; Otsuka, Kenju
2007-11-01
This study proposes a three-lens configuration for generating a stable donutlike vortex laser beam with controlled Ince-Gaussian mode (IGM) operation in the model of laser-diode (LD)-pumped solid-state lasers. Simply controlling the lateral off-axis position of the pump beam's focus on the laser crystal can generate a desired donutlike vortex beam from the proposed simple and easily made three-lens configuration, a proposed astigmatic mode converter assembled into one body with a concave-convex laser cavity.
NASA Astrophysics Data System (ADS)
Bhardwaj, Atul; Agrawal, Lalita; Pal, Suranjan; Kumar, Anil
2006-12-01
Laser Science and Technology Center (LASTEC), Delhi, is developing a space qualified diode pumped Nd: YAG laser transmitter capable of generating 10 ns pulses of 30 mJ energy @ 10 pps. This paper presents the results of experiments for comparative studies between electro-optic and passively Q-switched Nd: YAG laser in a crossed porro prism based laser resonator. Experimental studies have been performed by developing an economical bench model of flash lamp pumped Nd: YAG laser (rod dimension, \
NASA Astrophysics Data System (ADS)
Khan, Pritam; Barik, A. R.; Vinod, E. M.; Sangunni, K. S.; Adarsh, K. V.
2015-02-01
We experimentally demonstrate photobleaching (PB) in Ge22As22Se56 thin films, when illuminated with a diode pumped solid state laser (DPSSL) of wavelength 671 nm, which is far below the optical bandgap of the sample. Interestingly, we found that PB is a slow process and occurs even at moderate pump beam intensity of 0.2 W/cm2, however the kinetics remain rather different.
A compact LIBS system for industrial applications
NASA Astrophysics Data System (ADS)
Noharet, B.; Sterner, C.; Irebo, T.; Gurell, J.; Bengtson, A.; Vainik, R.; Karlsson, H.; Illy, E.
2015-03-01
In recent years, laser-induced breakdown spectroscopy (LIBS) has been established as a promising analytical tool for online chemical analysis. The emitted light spectrum is analyzed for instantaneous determination of the elemental composition of the sample, enabling on-line classification of materials. Two major strengths of the technique are the possibilities to perform both fast and remote chemical analysis to determine the elemental composition of the samples under test. In order to reduce the size of LIBS systems, the use of a compact Q-switched diode-pumped solid-state laser (DPSSL) in a LIBS system is evaluated for the industrial sorting of aluminium alloys. The DPSSL, which delivers 150μJ pulses of high beam quality at more than 7KHz repetition rate, provides irradiance on the target that is appropriate for LIBS measurements. The experimental results indicate that alloy classification and quantitative analysis are possible on scrap aluminium samples placed 50 cm apart from the focusing and collecting lenses, without sample preparation. Similar calibration curves and limits of detection are obtained for traditional high-energy low-frequency flashlamp-pumped and low-energy high-frequency diode-pumped lasers, showing the applicability of compact diode-pumped lasers for industrial LIBS applications.
Coherent communication link using diode-pumped lasers
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Wallace, Richard W.
1989-01-01
Work toward developing a diffraction limited, single frequency, modulated transmitter suitable for coherent optical communication or direct detection communication is discussed. Diode pumped, monolithic Nd:YAG nonplanar ring oscillators were used as the carrier beam. An external modulation technique which can handle high optical powers, has moderate modulation voltage, and which can reach modulation rates of 1 GHz was invented. Semiconductor laser pumped solid-state lasers which have high output power (0.5 Watt) and which oscillate at a single frequency, in a diffraction limited beam, at the wavelength of 1.06 microns were built. A technique for phase modulating the laser output by 180 degrees with a 40-volt peak to peak driving voltage is demonstrated. This technique can be adapted for amplitude modulation of 100 percent with the same voltage. This technique makes use of a resonant bulk modulator, so it does not have the power handling limitations of guided wave modulators.
Efficient 10 kW diode-pumped Nd:YAG rod laser
NASA Astrophysics Data System (ADS)
Akiyama, Yasuhiro; Takada, Hiroyuki; Sasaki, Mitsuo; Yuasa, Hiroshi; Nishida, Naoto
2003-03-01
As a tool for high speed and high precision material processing such as cutting and welding, we developed a rod-type all-solid-state laser with an average power of more than 10 kW, an electrical-optical efficiency of more than 20%, and a laser head volume of less than 0.05 m3. We developed a highly efficient diode pumped module, and successfully obtained electrical-optical efficiencies of 22% in CW operation and 26% in QCW operation at multi-kW output powers. We also succeeded to reduce the laser head volume, and obtained the output power of 12 kW with an efficiency of 23%, and laser head volume of 0.045 m3. We transferred the technology to SHIBAURA mechatronics corp., who started to provide the LD pumped Nd:YAG laser system with output power up to 4.5 kW. We are now continuing development for further high power laser equipment.
Otsuka, K; Chu, S-C; Lin, C-C; Tokunaga, K; Ohtomo, T
2009-11-23
To provide the underlying physical mechanism for formations of spatial- and polarization-entangled lasing patterns (namely, SPEPs), we performed experiments using a c-cut Nd:GdVO(4) microchip laser with off-axis laser-diode pumping. This extends recent work on entangled lasing pattern generation from an isotropic laser, where such a pattern was explained only in terms of generalized coherent states (GCSs) formed by mathematical manipulation. Here, we show that polarization-resolved transverse patterns can be well explained by the transverse mode-locking of distinct orthogonal linearly polarized Ince-Gauss (IG) mode pairs rather than GCSs. Dynamic properties of SPEPs were experimentally examined in both free-running and modulated conditions to identify long-term correlations of IG mode pairs over time. The complete chaos synchronization among IG mode pairs subjected to external perturbation is also demonstrated.
The Geoscience Laser Altimeter System (GLAS) Laser Transmitter
NASA Technical Reports Server (NTRS)
Afzal, Robert S.; Yu, Anthony W.; Dallas, Joseph L.; Melak, Anthony; Lukemir, Alan; Ramos-Izqueirdo, L.; Mamakos, William
2007-01-01
The Geoscience Laser Altimeter System (GLAS), launched in January 2003, is a laser altimeter and lidar for the Earth Observing System's (EOS) ICESat mission. GLAS accommodates three, sequentially operated, diode-pumped, solid-state, Nd:YAG laser transmitters. The laser transmitter requirements, design and qualification test results for this space-based remote sensing instrument is summarized and presented
NASA Technical Reports Server (NTRS)
Day, T.; Farinas, A. D.; Byer, R. L.
1990-01-01
A type II 1.06-micron optical phase-locked loop (OPLL) for use in a coherent homodyne receiver is discussed. Diode-laser-pumped solid-state lasers are used for both the local oscillator and transmitter, because their phase noise is significantly lower than that of diode lasers. Closed-loop RMS phase noise of less than 12 mrad (0.69 deg) is achieved, and modulation-demodulation in bulk modulators at rates from 20 kHz to 20 MHz with less than 19 deg of modulation depth is demonstrated.
Diode pumped solid state lasers
NASA Astrophysics Data System (ADS)
Gluch, Richard P., Jr.
1990-05-01
I've come here today to share with you the experiences of an emerging company that has its hands around an emerging technology, and an interesting approach. And I'd like to make a few conmients today from a business aspect about the iaarketplace as they relate to our formulation of our market or business strategy. I'll share with you the direction on what the business strategy is and then trace with you some of the technical developments that are occurring at Laser Diode Products in St. Louis as they all relate directly to a customer requirernent.
NASA Technical Reports Server (NTRS)
Frese, Erich A.; Chiragh, Furqan L.; Switzer, Robert; Vasilyev, Aleksey A.; Thomes, Joe; Coyle, D. Barry; Stysley, Paul R.
2018-01-01
Flight quality solid-state lasers require a unique and extensive set of testing and qualification processes, both at the system and component levels to insure the laser's promised performance. As important as the overall laser transmitter design is, the quality and performance of individual subassemblies, optics, and electro-optics dictate the final laser unit's quality. The Global Ecosystem Dynamics Investigation (GEDI) laser transmitters employ all the usual components typical for a diode-pumped, solid-state laser, yet must each go through their own individual process of specification, modeling, performance demonstration, inspection, and destructive testing. These qualification processes and results for the laser crystals, laser diode arrays, electro-optics, and optics, will be reviewed as well as the relevant critical issues encountered, prior to their installation in the GEDI flight laser units.
Improvement in reduced-mode (REM) diodes enable 315 W from 105-μm 0.15-NA fiber-coupled modules
NASA Astrophysics Data System (ADS)
Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Martinsen, R.; Urbanek, W.; Zhang, S.
2018-02-01
High-power, high-brightness diode lasers have been pursued for many applications including fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. In particular, 915 nm - and 976 nm diodes are of interest as diode pumps for the kilowatt CW fiber lasers. As a result, there have been many technical thrusts for driving the diode lasers to have both high power and high brightness to achieve high-performance and reduced manufacturing costs. This paper presents our continued progress in the development of high brightness fiber-coupled product platform, nLIGHT element®. In the past decade, the power coupled into a single 105 μm and 0.15 NA fiber has increased by over a factor of ten through improved diode laser brightness and the development of techniques for efficiently coupling multiple emitters. In this paper, we demonstrate further brightness improvement and power-scaling enabled by both the rise in chip brightness/power and the increase in number of chips coupled into a given numerical aperture. We report a new chip technology using x-REM design with brightness as high as 4.3 W/mm-mrad at a BPP of 3 mm-mrad. We also report record 315 W output from a 2×12 nLIGHT element with 105 μm diameter fiber using x-REM diodes and these diodes will allow next generation of fiber-coupled product capable of 250W output power from 105 μm/0.15 NA beam at 915 nm.
Mass modeling for electrically powered space-based Yb:YAG lasers
NASA Astrophysics Data System (ADS)
Fitzgerald, Kevin F.; Leshner, Richard B.; Winsor, Harry V.
2000-05-01
An estimate for the mass of a nominal high-energy laser system envisioned for space applications is presented. The approach features a diode pumped solid state Yb:YAG laser. The laser specifications are10 MW average output power, and periods of up to 100 seconds continuous, full-power operation without refueling. The system is powered by lithium ion batteries, which are recharged by a solar array. The power requirements for this system dominate over any fixed structural features, so the critical issues in scaling a DPSSL to high power are made transparent. When based on currently available space qualified batteries, the design mass is about 500 metric tons. Therefore, innovations are required before high power electrical lasers will be serious contenders for use in space systems. The necessary innovations must improve the rate at which lithium ion batteries can output power. Masses for systems based on batteries that should be available in the near future are presented. This analysis also finds that heating of the solid state lasing material, cooling of the diode pump lasers and duty cycle are critical issues. Features dominating the thermal control requirements are the heat capacity of garnet, the operational temperature range of the system, and the required cooling time between periods of full operation. The duty cycle is a critical factor in determining both the mass of the diode array needed, and the mass of the power supply system.
Two-beam combined 3.36 J, 100 Hz diode-pumped high beam quality Nd:YAG laser system.
Qiu, J S; Tang, X X; Fan, Z W; Wang, H C; Liu, H
2016-07-20
In this paper, we develop a diode-pumped all-solid-state high-energy and high beam quality Nd:YAG laser system. A master oscillator power amplifier structure is used to provide a high pulse energy laser output with a high repetition rate. In order to decrease the amplifier working current so as to reduce the impact of the thermal effect on the beam quality, a beam splitting-amplifying-combining scheme is adopted. The energy extraction efficiency of the laser system is 50.68%. We achieve 3.36 J pulse energy at a 100 Hz repetition rate with a pulse duration of 7.1 ns, a far-field beam spot 1.71 times the diffraction limit, and 1.07% energy stability (RMS).
NASA Astrophysics Data System (ADS)
Li, Chun; Liu, Jie; Guo, Zhinan; Zhang, Han; Ma, Weiwei; Wang, Jingya; Xu, Xiaodong; Su, Liangbi
2018-01-01
A multilayer black phosphorus, as a novel two dimensional saturable absorber, has superb saturable absorption properties for a Er:CaF2 solid-state pulse laser. The pulse laser is realized at mid-infrared region with the passively Q-switched technology by a diode-pumping. The high-quality black phosphorus saturable absorber is fabricated by liquid phase exfoliation method. The pulse laser generates the pulses operation with the pulse duration of 954.8 ns, the repetition rate of 41.93 kHz, the pulse energy of 4.25 μJ and the peak power of 4.45 W. Our work demonstrates that black phosphorus could be used as a kind of efficient mid-infrared region optical absorber for ultrafast photonics.
Characterization of diode-laser stacks for high-energy-class solid state lasers
NASA Astrophysics Data System (ADS)
Pilar, Jan; Sikocinski, Pawel; Pranowicz, Alina; Divoky, Martin; Crump, P.; Staske, R.; Lucianetti, Antonio; Mocek, Tomas
2014-03-01
In this work, we present a comparative study of high power diode stacks produced by world's leading manufacturers such as DILAS, Jenoptik, and Quantel. The diode-laser stacks are characterized by central wavelength around 939 nm, duty cycle of 1 %, and maximum repetition rate of 10 Hz. The characterization includes peak power, electrical-to-optical efficiency, central wavelength and full width at half maximum (FWHM) as a function of diode current and cooling temperature. A cross-check of measurements performed at HiLASE-IoP and Ferdinand-Braun-Institut (FBH) shows very good agreement between the results. Our study reveals also the presence of discontinuities in the spectra of two diode stacks. We consider the results presented here a valuable tool to optimize pump sources for ultra-high average power lasers, including laser fusion facilities.
A Modular Control Platform for a Diode Pumped Alkali Laser
NASA Astrophysics Data System (ADS)
Shapiro, J.; Teare, S.
Many of the difficulties of creating compact, high power laser systems can be overcome if the heat dissipating properties of chemical lasers can be combined with the efficiency of diode lasers. Recently, the novel idea of using solid state diode lasers to pump gaseous gain media, such as is done in diode pumped alkali lasers (DPALs), has been proposed and early experiments have shown promising results. However, a number of technical issues need to be overcome to realize high output power from these lasers. In order to achieve higher power, the efficiency of coupling between pump laser energy and the chemical cell must be increased, and eventually multiple high power diode pumps must be combined and synchronized so that their energy can pump the chemical cell. Additionally, an inter-cavity adaptive optics system may be a requirement to be able to propagate these lasers with high efficiency. DPAL systems are complex and require a significant amount of data fusion and active feedback to control and optimize their performance. There are a wide range of components including pump lasers, gain cells and monitoring points needed to study and refine the overall laser system. In support of this dynamic development environment, we have developed a hardware framework using commercial off the shelf (COTS) components which supports the rapid assembly of functional system blocks into a cohesive integrated system. Critical to this system are a simple communication protocol, industry standard communication pipes (USB, Bluetooth, etc), and flexible high level scripting. Simplifying the integration process has the benefit of allowing flexible "on the fly" modifications to adapt the system as needed and enhance available functionality. The modular nature of the architecture allows scalability and adaptability as more pieces are added to the system. Key components of this system are demonstrated for selected portions of a DPAL system using a USB backbone.
Solid-state lasers for coherent communication and remote sensing
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1991-01-01
Work in the stabilization of monolithic Nd:YAG lasers and the application of these lasers to nonlinear optical frequency conversion is discussed. The intrinsic stability of semiconductor diode laser pumped solid state lasers has facilitated a number of demonstration in external resonant cavity harmonic generation and stable optical parametric oscillation. Relative laser frequency stabilization of 0.3 Hz was achieved, and absolute stability of a few hundred hertz is anticipated. The challenge is now to reproduce this frequency stability in the output of tunable nonlinear optical devices. Theoretical and experimental work toward this goal are continuing.
NASA Astrophysics Data System (ADS)
Chu, Shu-Chun
2008-07-01
This study proposes a systematic method of selecting excitations of part of Ince-Gaussian modes (IGMs) and a three-lens configuration for generating multiple vortex beams with forced IGMs in the model of laser-diode (LD)-pumped solid-state lasers. Simply changing the lateral off-axis position of the tight pump beam focus on the laser crystal can produce the desired multiple optical vortex beam from the laser in a well-controlled manner using a proposed astigmatic mode converter assembled into one body with the laser cavity.
One-Joule-per-Pulse Q-Switched 2-micron Solid State Laser
NASA Technical Reports Server (NTRS)
Yu, Jirong; Trieu, Bo C.; Modlin, Ed A.; Singh, Upendra N.; Kavaya, Michael J.; Chen, Songsheng; Bai, Yingxin; Petzar, Pual J.; Petros, Mulugeta
2005-01-01
Q-switched output of 1.1 J per pulse at 2-micron wavelength has been achieved in a diode pumped Ho:Tm:LuLF laser using a side-pumped rod configuration in a Master-Oscillator-Power-Amplifier (MOPA) architecture. This is the first time that a 2-micron laser has broken the Joule per pulse barrier for Q-switched operation. The total system efficiency reaches 5% and 6.2% for single and double pulse operation, respectively. The system produces excellent 1.4 times of transform limited beam quality.
NASA Astrophysics Data System (ADS)
Wan, Shunping; Tian, Qian; Sun, Liqun; Yao, Minyan; Mao, Xianhui; Qiu, Hongyun
2004-05-01
This paper reports an experimental research on the stability of bidirectional outputs and multi-longitudinal mode interference of laser diode end-pumped Nd:YVO4 solid-state ring laser (DPSSL). The bidirectional, multi-longitudinal and TEM00 mode continuous wave outputs are obtained and the output powers are measured and their stabilities are analyzed respectively. The spectral characteristic of the outputs is measured. The interfering pattern of the bidirectional longitudinal mode outputs is obtained and analyzed in the condition of the ring cavity with rotation velocity. The movement of the interfering fringe of the multi-longitudinal modes is very sensitive to the deformation of the setup base and the fluctuation of the intracavity air, but is stationary or randomly dithers when the stage is rotating.
Chaotic dynamics and synchronization in microchip solid-state lasers with optoelectronic feedback.
Uchida, Atsushi; Mizumura, Keisuke; Yoshimori, Shigeru
2006-12-01
We experimentally observe the dynamics of a two-mode Nd:YVO4 microchip solid-state laser with optoelectronic feedback. The total laser output is detected and fed back to the injection current of the laser diode for pumping. Chaotic oscillations are observed in the microchip laser with optoelectronic self-feedback. We also observe the dynamics of two microchip lasers coupled mutually with optoelectronic link. The output of one laser is detected by a photodiode and the electronic signal converted from the laser output is sent to the pumping of the other laser. Chaotic fluctuation of the laser output is observed when the relaxation oscillation frequency is close to each other between the two microchip lasers. Synchronization of periodic wave form is also obtained when the microchip lasers have a single-longitudinal mode.
Continued improvement in reduced-mode (REM) diodes enable 272 W from 105 μm 0.15 NA beam
NASA Astrophysics Data System (ADS)
Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Martinsen, R.; Urbanek, W.; Zhang, S.
2017-02-01
High-power, high-brightness diode lasers from 8xx nm to 9xx nm have been pursued in many applications including fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. In particular, 915 nm - 976 nm diodes are of interest as diode pumps for the kilowatt CW fiber lasers. Thus, there have been many technical efforts on driving the diode lasers to have both high power and high brightness to achieve high-performance and reduced manufacturing costs. This paper presents our continued progress in the development of high brightness fiber-coupled product platform, elementTM. In the past decade, the amount of power coupled into a single 105 μm and 0.15 NA fiber has increased by over a factor of ten through improved diode laser brilliance and the development of techniques for efficiently coupling multiple emitters into a single fiber. In this paper, we demonstrate the further brightness improvement and power-scaling enabled by both the rise in chip brightness/power and the increase in number of chips coupled into a given numerical aperture. We report a new x-REM design with brightness as high as 4.3 W/mm-mrad at a BPP of 3 mm-mrad. We also report the record 272W from a 2×9 elementTM with 105 μm/0.15 NA beam using x-REM diodes and a new product introduction at 200W output power from 105 μm/0.15 NA beam at 915 nm.
Advancements of ultra-high peak power laser diode arrays
NASA Astrophysics Data System (ADS)
Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.
2018-02-01
Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.
Prototype laser-diode-pumped solid state laser transmitters
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Cheng, Emily A. P.; Wallace, Richard W.
1989-01-01
Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique.
Design of diode-pumped solid-state laser applied in laser fuses
NASA Astrophysics Data System (ADS)
Deng, FangLin; Zhang, YiFei
2005-04-01
The function of laser fuzes which are parts of certain weapon systems is to control the blasting height of warheads. Commonly the battle environment these weapon systems are confronted with is very complicated and the tactical demand for them is very rigor, so laser fuzes equipped for them must fulfill some special technical requirements, such as high repetition rate, long ranging scope, etc. Lasers are one of key components which constitute fuze systems. Whether designed lasers are advanced and reasonable will determine whether laser fuzes can be applied in these weapon systems or not. So we adopt the novel technology of diode-pumped solid-state laser (DPSSL) to design lasers applied in fuzes. Nd:YVO4 crystal is accepted as gain material, which has wide absorption band and large absorption efficient for 808nm pumping laser. As warhead's temperature is usually very high, wider absorption band is beneficial to reduce the influence of temperature fluctuation. Passive Q-switching with Cr4+:YAG is used to reduce the power consumption farthest. Design the end-pumped microchip sandwich-architecture to decrease lasers' size and increase the reliability, further it's advantageous to produce short pulses and increase peak power of lasers. The designed DPSSL features small size and weight, high repetition rate and peak power, robustness, etc. The repetition rate is expected to reach 1 kHz; peak power will exceed 300 kW; pulse width is only 5 ns; and divergence angle of laser beams is less than 5 mrad. So DPSSL is suitable for laser fuzes as an emitter.
High-power diode-pumped solid-state lasers for optical space communications
NASA Technical Reports Server (NTRS)
Koechner, Walter; Burnham, Ralph; Kasinski, Jeff; Bournes, Pat; Dibiase, Don; Le, Khoa; Marshall, Larry; Hays, Alan
1991-01-01
The design and performance of a large diode-pumped multi-stage Nd:YAG laser system for space and airborne applications will be described. The laser operates at a repetition rate of 40 Hz and produces an output either at 1.064 micron or 532 nm with an average power in the Q-switched mode of 30 W at the fundamental and 20 W at the second harmonic wavelength. The output beam is diffraction limited (TEM 00 mode) and can optionally also be operated in a single longitudinal mode. The output energy ranges from 1.25 Joule/pulse in the free lasing mode, 0.75 Joule in a 17 nsec Q-switched pulse, to 0.5 Joules/pulse at 532 nm. The overall electrical efficiency for the Q-switched second harmonic output is 4.
1991-08-15
G. E. Betts Analog Optical Links for High Dynamic L. M. Johnson Range C. H. Cox III Nonimaging Concentrators for Diode- P. Lacovara Pumped Slab Lasers...P. Gleckman* SPIEs 1991 International R. Holman* Symposium on Optical Science R. Winston * and Engineering, San Diego, California, Free-Space Board-to...xxv 1. ELECTROOPTICAL DEVICES 1 1.1 Optical Phase Difference Measurement and Correction Using AIGaAs Integrated Guided-Wave Components 1 1.2 Two
System for beaming power from earth to a high altitude platform
Friedman, Herbert W.; Porter, Terry J.
2002-01-01
Power is transmitted to a high altitude platform by an array of diode pumped solid state lasers each operated at a single range of laser wavelengths outside of infrared and without using adaptive optics. Each laser produces a beam with a desired arrival spot size. An aircraft avoidance system uses a radar system for automatic control of the shutters of the lasers.
Wavelength stabilized multi-kW diode laser systems
NASA Astrophysics Data System (ADS)
Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens
2015-03-01
We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.
Recent Progress Made in the Development of High-Energy UV Transmitter
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Armstrong, Darrell J.
2007-01-01
In this paper, the status of an all-solid-state UV converter development for ozone sensing applications is discussed. A high energy Nd:YAG laser for pumping the UV converter arrangement was recently reported. The pump is an all-solid-state, single longitudinal mode, and conductively cooled Nd:YAG laser operating at 1064 nm wavelength. Currently, this pump laser provides an output pulse energy of greater than 1J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of approx. 2. The spatial profile of the output beam is a rectangular super Gaussian. This Nd:YAG pump laser has been developed to pump the nonlinear optics based UV converter arrangement to generate 320 nm and 308 nm wavelengths by means of 532 nm wavelength. Previously, this UV converter arrangement has demonstrated IR-to-UV conversion efficiency of 24% using a flash lamp pumped laser providing a round, flat top spatial profile. Recently, the UV converter was assembled and tested at NASA LaRC for pumping with the diode pumped Nd:YAG laser. With current spatial profile, the UV converter was made operational. Current efforts to maximize the nonlinear conversion efficiency by refining its spatial profile to match RISTRA OPO requirements are progressing.
Advanced helium magnetometer for space applications
NASA Technical Reports Server (NTRS)
Slocum, Robert E.
1987-01-01
The goal of this effort was demonstration of the concepts for an advanced helium magnetometer which meets the demands of future NASA earth orbiting, interplanetary, solar, and interstellar missions. The technical effort focused on optical pumping of helium with tunable solid state lasers. We were able to demonstrate the concept of a laser pumped helium magnetometer with improved accuracy, low power, and sensitivity of the order of 1 pT. A number of technical approaches were investigated for building a solid state laser tunable to the helium absorption line at 1083 nm. The laser selected was an Nd-doped LNA crystal pumped by a diode laser. Two laboratory versions of the lanthanum neodymium hexa-aluminate (LNA) laser were fabricated and used to conduct optical pumping experiments in helium and demonstrate laser pumped magnetometer concepts for both the low field vector mode and the scalar mode of operation. A digital resonance spectrometer was designed and built in order to evaluate the helium resonance signals and observe scalar magnetometer operation. The results indicate that the laser pumped sensor in the VHM mode is 45 times more sensitive than a lamp pumped sensor for identical system noise levels. A study was made of typical laser pumped resonance signals in the conventional magnetic resonance mode. The laser pumped sensor was operated as a scalar magnetometer, and it is concluded that magnetometers with 1 pT sensitivity can be achieved with the use of laser pumping and stable laser pump sources.
Yb:YAG master oscillator power amplifier for remote wind sensing.
Sridharan, A K; Saraf, S; Byer, R L
2007-10-20
We have demonstrated key advances towards a solid-state laser amplifier at 1.03 microm for global remote wind sensing. We designed end-pumped zig-zag slab amplifiers to achieve high gain. We overcame parasitic oscillation limitations using claddings on the slab's total internal reflection (TIR) and edge surfaces to confine the pump and signal light by TIR and allow leakage of amplified spontaneous emission rays that do not meet the TIR condition. This enables e3, e5, and e8 single-, double-, and quadruple-pass small-signal amplifier gain, respectively. The stored energy density is 15.6 J/cm3, a record for a laser-diode end-pumped Yb:YAG zig-zag slab amplifier.
In-Flight Performance of the Mercury Laser Altimeter Laser Transmitter
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Sun, Xiaoli; Li, Steven X.; Cavanaugh, John F.; Neumann, Gregory A.
2014-01-01
The Mercury Laser Altimeter (MLA) is one of the payload instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which was launched on August 3, 2004. MLA maps Mercury's shape and topographic landforms and other surface characteristics using a diode-pumped solid-state laser transmitter and a silicon avalanche photodiode receiver that measures the round-trip time of individual laser pulses. The laser transmitter has been operating nominally during planetary flyby measurements and in orbit about Mercury since March 2011. In this paper, we review the MLA laser transmitter telemetry data and evaluate the performance of solid-state lasers under extended operation in a space environment.
All-solid-state radiometers for environmental studies to 700 GHz
NASA Technical Reports Server (NTRS)
Zimmermann, Ralph; Zimmermann, Ruediger; Zimmermann, Peter
1992-01-01
We report results with an all-solid-state radiometer for measurements of the ClO molecule at 649 GHz. The project is part of a program to provide low-noise, low-weight, low-power radiometers for space operation, and special effort has been expended on the development of high-efficiency solid-state frequency multipliers and Schottky-barrier mixers with low local oscillator power requirements. The best measured system noise temperature was 1750 K with the mixer and preamplifier cooled to 77 K. The mixer diode was easily pumped into saturation, indicating that the design has excellent prospects of operating at higher frequencies - our present design goal being 1 THz. We comment on the principal design features of such systems and will report on stratospheric measurements performed with this system.
Laser demonstration and performance characterization of optically pumped Alkali Laser systems
NASA Astrophysics Data System (ADS)
Sulham, Clifford V.
Diode Pumped Alkali Lasers (DPALs) offer a promising approach for high power lasers in military applications that will not suffer from the long logistical trails of chemical lasers or the thermal management issues of diode pumped solid state lasers. This research focuses on characterizing a DPAL-type system to gain a better understanding of using this type of laser as a directed energy weapon. A rubidium laser operating at 795 nm is optically pumped by a pulsed titanium sapphire laser to investigate the dynamics of DPALs at pump intensities between 1.3 and 45 kW/cm2. Linear scaling as high as 32 times threshold is observed, with no evidence of second order kinetics. Comparison of laser characteristics with a quasi-two level analytic model suggests performance near the ideal steady-state limit, disregarding the mode mis-match. Additionally, the peak power scales linearly as high as 1 kW, suggesting aperture scaling to a few cm2 is sufficient to achieve tactical level laser powers. The temporal dynamics of the 100 ns pump and rubidium laser pulses are presented, and the continually evolving laser efficiency provides insight into the bottlenecking of the rubidium atoms in the 2P3/2 state. Lastly, multiple excited states of rubidium and cesium were accessed through two photon absorption in the red, yielding a blue and an IR photon through amplified stimulated emission. Threshold is modest at 0.3 mJ/pulse, and slope efficiencies increase dramatically with alkali concentrations and peak at 0.4%, with considerable opportunity for improvement. This versatile system might find applications for IR countermeasures or underwater communications.
Diode-pumped DUV cw all-solid-state laser to replace argon ion lasers
NASA Astrophysics Data System (ADS)
Zanger, Ekhard; Liu, B.; Gries, Wolfgang
2000-04-01
The slim series DELTATRAINTM-worldwide the first integrated cw diode-pumped all-solid-state DUV laser at 266 nm with a compact, slim design-has been developed. The slim design minimizes the DUV DPSSL footprint and thus greatly facilitates the replacement of commonly used gas ion lasers, including these with intra-cavity frequency doubling, in numerous industrial and scientific applications. Such a replacement will result in an operation cost reduction by several thousands US$DLR each year for one unit. Owing to its unique geometry-invariant frequency doubling cavity- based on the LAS patent-pending DeltaConcept architecture- this DUV laser provides excellent beam-pointing stability of <2 (mu) rad/ degree(s)C and power stability of <2%. The newest design of the cavity block has adopted a cemented resonator with each component positioned precisely inside a compact monolithic metal block. The automatic and precise crystal shifter ensures long operation lifetime of > 5000 hours of whole 266 nm laser. The microprocessor controlled power supply provides an automatic control of the whole 266 nm laser, making this DUV laser a hands-off system which can meet tough requirements posed by numerous industrial and scientific applications. It will replace the commonplace ion laser as the future DUV laser of choice.
NASA Technical Reports Server (NTRS)
Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.
1992-01-01
A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.
New laser sources for clinical treatment and diagnostics of neonatal jaundice
NASA Astrophysics Data System (ADS)
Hamza, Mostafa; El-Ahl, Mohammad H. S.; Hamza, Ahmad M.
2001-06-01
An elevated serum bilirubin concentration in the newborn infant presents a therapeutic as well as a diagnostic problem to the physician. It has long been recognized that high levels of bilirubin cause irreversible brain damage and even death. The authors introduce the use of semiconductor diode lasers and diode-pumped solid-state lasers that can be used for solving such diagnostic and therapeutic problems. These new laser sources can improve the ergonomics of using laser, enhance performance capabilities and reduce the cost of employing laser energy to pump bilirubin out of an infant's body. The choice of laser wavelengths follows the principles of bilirubinometry and phototherapy of neonatal jaundice. The wide spread use of these new laser sources for clinical monitoring and treatment of neonatal hyperbilirubinemia will be made possible as each incremental or quantum jump cost reduction is achieved. Our leading clinical experience as well as the selection rules of laser wavelengths will be presented.
Transverse diode-pumped neodymium-doped yttrium vanadate laser of simple design
NASA Astrophysics Data System (ADS)
Agüero, Mónica B.; Hnilo, Alejandro A.; Kovalsky, Marcelo G.
2010-03-01
The design and performance of an all-solid-state Nd:YVO4 laser, transversely pumped by a single 20-W (at 808 nm) diode with no coupling optics, are presented. The prototype, which is devised to be the source of a micro-LIDAR station, is very simple, easy to align, compact, and stable. The key element is a roof prism as the end mirror of the laser cavity, which is used to symmetrize the effects of the thermal distortion and the inhomogeneity of the population inversion distribution. Typical numbers are 4.2-W cw with a slightly astigmatic (3:2) homogeneous spot and a divergence of 0.5 mrad. The protoype is also tested in the active Q-switching mode, providing pulses 50-ns full width at half maximum (FWHM) at 14 KHz, 3.5 W average. Frequency doubling external to the cavity in a nonoptimized configuration provides 700 mW at 532 nm.
The Mercury Project: A High Average Power, Gas-Cooled Laser For Inertial Fusion Energy Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A; Armstrong, P; Ault, E
Hundred-joule, kilowatt-class lasers based on diode-pumped solid-state technologies, are being developed worldwide for laser-plasma interactions and as prototypes for fusion energy drivers. The goal of the Mercury Laser Project is to develop key technologies within an architectural framework that demonstrates basic building blocks for scaling to larger multi-kilojoule systems for inertial fusion energy (IFE) applications. Mercury has requirements that include: scalability to IFE beamlines, 10 Hz repetition rate, high efficiency, and 10{sup 9} shot reliability. The Mercury laser has operated continuously for several hours at 55 J and 10 Hz with fourteen 4 x 6 cm{sup 2} ytterbium doped strontiummore » fluoroapatite (Yb:S-FAP) amplifier slabs pumped by eight 100 kW diode arrays. The 1047 nm fundamental wavelength was converted to 523 nm at 160 W average power with 73% conversion efficiency using yttrium calcium oxy-borate (YCOB).« less
End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam.
Lin, Di; Andrew Clarkson, W
2017-08-01
A simple approach for alleviating thermal lensing in end-pumped solid-state lasers using a pump beam with a ring-shaped intensity distribution to decrease the radial temperature gradient is described. This scheme has been implemented in a diode-end-pumped Nd:YVO 4 laser yielding 14 W of TEM 00 output at 1.064 μm with a corresponding slope efficiency of 53% and a beam propagation factor (M 2 ) of 1.08 limited by available pump power. By comparison, the same laser design with a conventional quasi-top-hat pump beam profile of approximately equal radial extent yielded only 9 W of output before the power rolled over due to thermal lensing. Further investigation with the aid of a probe beam revealed that the thermal lens power was ∼30% smaller for the ring-shaped pump beam compared to the quasi-top-hat beam. The implications for further power scaling in end-pumped laser configurations are considered.
A portable lidar using a diode-pumped YAG laser
NASA Technical Reports Server (NTRS)
Takeuchi, N.; Okumura, H.; Sugita, T.; Matsumoto, H.; Yamaguchi, S.
1992-01-01
A Mie lidar system is technically established and is used for monitoring air pollution, stratospheric and boundary layer aerosol distribution, plume dispersion, visibility, and the study of atmospheric structure and cloud physics. However, a lidar system is not widely used because of its cumbersome handling and unwieldy portability. Although the author developed a laser diode lidar system based on RM-CW technique, it has a limit of measurement distance. Here we report the development of an all solid Mie lidar system using a diode-pumped Nd:YAG laser and a Si-APD detector. This was constructed as a prototype of a handy lidar system.
Development of mid-infrared solid state lasers for spaceborne lidar
NASA Technical Reports Server (NTRS)
Whitney, Donald A.; Kim, Kyong H.
1989-01-01
Laser performance of Ho(3+):Tm(3+):Cr(3+):YAG crystals was investigated under both Cr:GSAG laser and flashlamp pumping. A flashlamp pumped Cr:GSAG laser was built to simulate high power quasi-CW laser diode pumping of a 2.1 micrometer holmium laser. The 2.1 micrometer output laser energy exceeded more than 14 mJ, the highest value reported to date under laser pumping near 785 nm. This was obtained in a pulse length of nearly 650 microsec from a 3 x 3 mm Ho:Tm:Cr:YAG rod by using the flashlamp-pumped Cr:CSAG laser as a pumping source at the diode laser wavelength, 785 micrometers. In addition, Ho:Tm:Cr:YAG crystals with various Tm(3+) concentrations were evaluated for flashlamp-pumped normal mode and Q-switched 2.1 micrometer laser operations under a wide variety of experimental conditions in order to understand internal dynamic processes among the ions and to determine an optimum lasing condition. An increase of the laser slope efficiency was observed with the increase of the Tm(3+) concentration from 2.5 to 4.5 atomic percent. The thermal dependence of the laser performance was also investigated. Q-switched laser output energies corresponding to nearly 100 percent of the normal-mode laser energies were obtained in a strong single spike of 200 ns pulse length by optimizing the opening time of a lithium niobate Q-switch.
NASA Astrophysics Data System (ADS)
Kijko, V. V.; Ofitserov, Evgenii N.
2006-05-01
Thermooptic distortions of the active element of an axially diode-pumped Nd:YVO4 solid-state laser are studied at different methods of its mounting. The study was performed by the Hartmann method. A mathematical model for calculating the optical power of a thermal lens produced in the crystal upon pumping is developed and verified experimentally. It is shown that the optical power of a thermal lens produced upon axial pumping of the convectively cooled active element sealed off in a copper heat sink is half the optical power observed upon convective cooling of the active element without heat sink. The experimental and theoretical results are in good agreement.
Laser diode pumped, erbium-doped, solid state laser with high slope efficiency
NASA Astrophysics Data System (ADS)
Esterowitz, Leon; Allen, R.; Kintz, G.
1989-10-01
A laser and method for producing a laser emission at a wavelength of substantially 2.8 microns is disclosed. In a preferred embodiment of the invention, the laser comprises laser diode means for emitting a pump beam at a preselected wavelength; and a crystal having a preselected host material doped with a predetermined percent concentration of erbium activator ions sufficient to produce a laser emission at substantially 2.8 microns at a slope efficiency of at least 5 percent, but preferrably 10 percent, when the crystal is pumped by the pump beam. It is well known that the human body is comprised of approximately 70 percent water, with various human tissues containing about 60 to 90 percent of water, and bone and cartilage containing about 30 to 40 percent of water. Since the 2.8 micron wavelength has a substantially maximum absorption in water, this 2.8 micron wavelength is the ideal wavelength to use for a large variety of medical laser applications on the human body. A 2.8 micron wavelength laser could be used for precise surgery in such exemplary applications as brain surgery, neurosurgery, eye surgery, plastic surgery, burn treatment, and the removal of malignancies.
Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.
Huss, Rafael; Wilhelm, Ralf; Kolleck, Christian; Neumann, Jörg; Kracht, Dietmar
2010-06-07
The onset of parasitic oscillations limits the extraction efficiency and therefore energy scaling of Q-switched lasers. A solid-state laser was end pumped with a fiber-coupled diode laser and operated in q-cw as well as in passively Q-switched operation. For Q-switched operation, we demonstrate the suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.
Theoretical and experimental analysis of injection seeding a Q-switched alexandrite laser
NASA Technical Reports Server (NTRS)
Prasad, C. R.; Lee, H. S.; Glesne, T. R.; Monosmith, B.; Schwemmer, G. K.
1991-01-01
Injection seeding is a method for achieving linewidths of less than 500 MHz in the output of broadband, tunable, solid state lasers. Dye lasers, CW and pulsed diode lasers, and other solid state lasers have been used as injection seeders. By optimizing the fundamental laser parameters of pump energy, Q-switched pulse build-up time, injection seed power and mode matching, one can achieve significant improvements in the spectral purity of the Q-switched output. These parameters are incorporated into a simple model for analyzing spectral purity and pulse build-up processes in a Q-switched, injection-seeded laser. Experiments to optimize the relevant parameters of an alexandrite laser show good agreement.
Promoting Robust Design of Diode Lasers for Space: A National Initiative
NASA Technical Reports Server (NTRS)
Tratt, David M.; Amzajerdian, Farzin; Kashem, Nasir B.; Shapiro, Andrew A.; Mense, Allan T.
2007-01-01
The Diode-laser Array Working Group (DAWG) is a national-level consumer/provider forum for discussion of engineering and manufacturing issues which influence the reliability and survivability of high-power broad-area laser diode devices in space, with an emphasis on laser diode arrays (LDAs) for optical pumping of solid-state laser media. The goals of the group are to formulate and validate standardized test and qualification protocols, operational control recommendations, and consensus manufacturing and certification standards. The group is using reliability and lifetime data collected by laser diode manufacturers and the user community to develop a set of standardized guidelines for specifying and qualifying laser diodes for long-duration operation in space, the ultimate goal being to promote an informed U.S. Government investment and procurement strategy for assuring the availability and durability of space-qualified LDAs. The group is also working to establish effective implementation of statistical design techniques at the supplier design, development, and manufacturing levels to help reduce product performance variability and improve product reliability for diodes employed in space applications
ELI-Beamlines: development of next generation short-pulse laser systems
NASA Astrophysics Data System (ADS)
Rus, B.; Bakule, P.; Kramer, D.; Naylon, J.; Thoma, J.; Green, J. T.; Antipenkov, R.; Fibrich, M.; Novák, J.; Batysta, F.; Mazanec, T.; Drouin, M. A.; Kasl, K.; Baše, R.; Peceli, D.; Koubíková, L.; Trojek, P.; Boge, R.; Lagron, J. C.; Vyhlídka, Å.; Weiss, J.; Cupal, J.,; Hřebíček, J.; Hříbek, P.; Durák, M.; Polan, J.; Košelja, M.; Korn, G.; Horáček, M.; Horáček, J.; Himmel, B.; Havlíček, T.; Honsa, A.; Korouš, P.; Laub, M.; Haefner, C.; Bayramian, A.; Spinka, T.; Marshall, C.; Johnson, G.; Telford, S.; Horner, J.; Deri, B.; Metzger, T.; Schultze, M.; Mason, P.; Ertel, K.; Lintern, A.; Greenhalgh, J.; Edwards, C.; Hernandez-Gomez, C.; Collier, J.; Ditmire, T.,; Gaul, E.; Martinez, M.; Frederickson, C.; Hammond, D.; Malato, C.; White, W.; Houžvička, J.
2015-05-01
Overview of the laser systems being built for ELI-Beamlines is presented. The facility will make available high-brightness multi-TW ultrashort laser pulses at kHz repetition rate, PW 10 Hz repetition rate pulses, and kilojoule nanosecond pulses for generation of 10 PW peak power. The lasers will extensively employ the emerging technology of diode-pumped solid-state lasers (DPSSL) to pump OPCPA and Ti:sapphire broadband amplifiers. These systems will provide the user community with cutting-edge laser resources for programmatic research in generation and applications of high-intensity X-ray sources, in particle acceleration, and in dense-plasma and high-field physics.
Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping
NASA Astrophysics Data System (ADS)
Arbabzadah, E. A.; Damzen, M. J.
2016-06-01
We report the investigation of an Alexandrite laser end-pumped by a fibre-coupled red diode laser module. Power, efficiency, spatial, spectral, and wavelength tuning performance are studied as a function of pump and laser cavity parameters. It is the first demonstration, to our knowledge, of greater than 1 W power and also highest laser slope efficiency (44.2%) in a diode-pumped Alexandrite laser with diffraction-limited TEM00 mode operation. Spatial quality was excellent with beam propagation parameter M 2 ~ 1.05. Wavelength tuning from 737-796 nm was demonstrated using an intracavity birefringent tuning filter. Using a novel double pass end-pumping scheme to get efficient absorption of both polarisation states of the scrambled fibre-delivered diode pump, a total output coupled power of 1.66 W is produced in TEM00 mode with 40% slope efficiency.
DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry
NASA Astrophysics Data System (ADS)
Lichtenstein, Norbert; Schmidt, Berthold E.; Fily, Arnaud; Weiss, Stefan; Arlt, Sebastian; Pawlik, Susanne; Sverdlov, Boris; Muller, Jurgen; Harder, Christoph S.
2004-06-01
Diode-pumped solid state laser (DPSSL) and fiber laser (FL) are believed to become the dominant systems of very high power lasers in the industrial environment. Today, ranging from 100 W to 5 - 10 kW in light output power, their field of applications spread from biomedical and sensoring to material processing. Key driver for the wide spread of such systems is a competitive ratio of cost, performance and reliability. Enabling high power, highly reliable broad-area laser diodes and laser diode bars with excellent performance at the relevant wavelengths can further optimize this ratio. In this communication we present, that this can be achieved by leveraging the tremendous improvements in reliability and performance together with the high volume, low cost manufacturing areas established during the "telecom-bubble." From today's generations of 980-nm narrow-stripe laser diodes 1.8 W of maximum CW output power can be obtained fulfilling the stringent telecom reliability at operating conditions. Single-emitter broad-area lasers deliver in excess of 11 W CW while from similar 940-nm laser bars more than 160 W output power (CW) can be obtained at 200 A. In addition, introducing telecom-grade AuSn-solder mounting technology on expansion matched subassemblies enables excellent reliability performance. Degradation rates of less than 1% over 1000 h at 60 A are observed for both 808-nm and 940-nm laser bars even under harsh intermittent operation conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang
We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (μg) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (Δλ < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic aroundmore » 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under μg conditions. In order to demonstrate the capabilities of the capsule laser as a tool for μg combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.« less
High power fiber coupled diode lasers for display and lighting applications
NASA Astrophysics Data System (ADS)
Drovs, Simon; Unger, Andreas; Dürsch, Sascha; Köhler, Bernd; Biesenbach, Jens
2017-02-01
The performance of diode lasers in the visible spectral range has been continuously improved within the last few years, which was mainly driven by the goal to replace arc lamps in cinema or home projectors. In addition, the availability of such high power visible diode lasers also enables new applications in the medical field, but also the usage as pump sources for other solid state lasers. This paper summarizes the latest developments of fiber coupled sources with output power from 1.4 W to 120 W coupled into 100 μm to 400 μm fibers in the spectral range around 405 nm and 640 nm. New developments also include the use of fiber coupled multi single emitter arrays at 450 nm, as well as very compact modules with multi-W output power.
NASA Technical Reports Server (NTRS)
Fleming, K. J.; Crump, O. B.
1994-01-01
VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR's large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of and underground nuclear detonation. The Solid State VISAR uses a prototype diode pumped Nd:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).
System study of a diode-pumped solid-state-laser driver for inertial fusion energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orth, C.D.; Payne, S.A.
The present a conceptual design of a diode-pumped solid-state-laser (DPSSL) driver for an inertial fusion energy (IFE) power plant based on the maximized cost of electricity (COE) as determined in a comprehensive systems study. This study contained extensive detail for all significant DPSSL physics and costs, plus published scaling relationships for the costs of the target chamber and the balance of plant (BOP). Our DPSSL design offers low development cost because it is modular, can be fully tested functionally at reduced scale, and is based on mature solid-state-laser technology. Most of the parameter values that we used are being verifiedmore » by experiments now in progress. Future experiments will address the few issues that remain. As a consequence, the economic and technical risk of our DPSSL driver concept is becoming rather low. Baseline performance at 1 GW{sub e} using a new gain medium [Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F or Yb:S-FAP] includes a product of laser efficiency and target gain of {eta}G = 7, and a COE of 8.6 cents/kW{center_dot}h, although values of {eta}G {ge} 11 and COEs {le}6.6 cents/kW{center_dot}h are possible at double the assumed target gain of 76 at 3.7 MJ. We present a summary of our results, discuss why other more-common types of laser media do not perform as well as Yb:S-FAP, and present a simple model that shows where DPSSL development should proceed to reduce projected COEs.« less
Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF.
Wang, Y Y; Couny, F; Light, P S; Mangan, B J; Benabid, F
2010-04-15
We report on the realization of compact UV visible multiline Raman lasers based on two types of hydrogen-filled hollow-core photonic crystal fiber. The first, with a large pitch Kagome lattice structure, offers a broad spectral coverage from near IR through to the much sought after yellow, deep-blue and UV, whereas the other, based on photonic bandgap guidance, presents a pump conversion concentrated in the visible region. The high Raman efficiency achieved through these fibers allows for compact, portable diode-pumped solid-state lasers to be used as pumps. Each discrete component of this laser system exhibits a spectral density several orders of magnitude larger than what is achieved with supercontinuum sources and a narrow linewidth, making it an ideal candidate for forensics and biomedical applications.
Development of mid-infrared solid state lasers for spaceborne lidar
NASA Technical Reports Server (NTRS)
Whitney, Donald A.
1990-01-01
Researchers investigated laser performance of Ho(3+):Tm(3+):Cr(3+):YAG crystals under both Cr:GSAG laser and flashlamp pumping. A flashlamp pumped Cr:GSAG laser was built to simulate high power quasi-CW laser diode pumping of a 2.1 micron holmium laser. The 2.1 micron output laser energy exceeded more than 14 mJ, the highest value reported to date under laser pumping near 785 nm. This was obtained in a pulse length of nearly 650 microns from a 3 x 3 mm Ho:Tm:Cr:YAG rod by using the flashlamp-pumped Cr:GSAG laser as a pumping source at the diode laser wavelength, 785 microns. In addition, Ho:Tm:Cr:YAG crystals with various Tm(3+) concentrations have been evaluated for flashlamp-pumped normal mode and Q-switched 2.1 micron laser operations under a wide variety of experimental conditions in order to understand internal dynamic processes among the ions and to determine an optimum lasing condition. An increase of the laser slope efficiency was observed with the increase of the Tm(3+) concentration from 2.5 atomic percent to 4.5 atomic percent. The thermal dependence of the laser performance was also investigated. Q-switched laser output energies corresponding to nearly 100 percent of the normal-mode laser energies were obtained in a strong single spike of 200 ns pulse length by optimizing the opening time of a lithium niobate Q-switch.
DPSSL pumped 20-TW Ti:sapphire laser system for DD fusion experiment
NASA Astrophysics Data System (ADS)
Sekine, T.; Hatano, Y.; Takeuchi, Y.; Kawashima, T.
2016-03-01
A diode-pumped solid-state laser (DPSSL) pumped 20-TW output Ti:sapphire laser system has been developed. A diode-pumped Nd:glass laser with output energy of 12.7 J in 527 nm was used as a pump source for a 20-TW Ti:sapphire amplifier. A CeLiB6O10 nonlinear optical crystal was used as a frequency doubler of the Nd:glass DPSSL[1]. Figure 1 shows typical output pulse energy of the 20-TW amplifier as a function of pumping energy and a near field pattern. A 1.65 J pulse energy was obtained by 4.5 J pump energy. The amplified seed pulse is compressed to typically 60 fs as shown in Fig. 1 by a vacuumed pulse compressor with 80% of transmissivity. Encircled energy ratio, into a circled with 8 μm diameter area, of far field pattern focused by off-axis parabolic mirror with F# of 3 is numerically evaluated to 40% at TW class output condition. Then focal intensity would reach to 1018W/cm2. This all- DPSSL system contributes for stable and continual investigation of laser induced plasma experiment. We have succeeded continual and high efficient generation of DD fusion neutron from CD nano-particles by cluster fusion scheme using the 20-TW laser. A yield of ∼105 neutrons per shot was stably observed during continuous 100 shots with repetition rate of 0.1Hz.
Son, Sung-Ae; Park, Jeong-Kil; Jung, Kyoung-Hwa; Ko, Ching-Chang; Jeong, Chang-Mo; Kwon, Yong Hoon
2015-01-01
The purpose of the present study was to test the usefulness of 457 nm diode-pumped solid state (DPSS) laser as a light source to cure composite resins. Five different composite resins were light cured using three different light-curing units (LCUs): a DPSS 457 nm laser (LAS), a light-emitting diode (LED), and quartz-tungsten-halogen (QTH) units. The light intensity of LAS was 560 mW/cm(2), whereas LED and QTH LCUs was ∼900 mW/cm(2). The degree of polymerization was tested by evaluating microhardness, cross-link density, and polymerization shrinkage. Before water immersion, the microhardness of laser-treated specimens ranged from 40.8 to 84.7 HV and from 31.7 to 79.0 HV on the top and bottom surfaces, respectively, and these values were 3.3-23.2% and 2.9-31.1% lower than the highest microhardness obtained using LED or QTH LCUs. Also, laser-treated specimens had lower top and bottom microhardnesses than the other LCUs treated specimens by 2.4-19.4% and 1.4-27.8%, respectively. After ethanol immersion for 24 h, the microhardness of laser-treated specimens ranged from 20.3 to 63.2 HV on top and bottom surfaces, but from 24.9 to 71.5 HV when specimens were cured using the other LCUs. Polymerization shrinkage was 9.8-14.7 μm for laser-treated specimens, and these were significantly similar or lower (10.2-16.0 μm) than those obtained using the other LCUs. The results may suggest that the 457 nm DPSS laser can be used as a light source for light-curing dental resin composites.
Diode-end-pumped solid-state lasers with dual gain media for multi-wavelength emission
NASA Astrophysics Data System (ADS)
Cho, C. Y.; Chang, C. C.; Chen, Y. F.
2015-01-01
We develop a theoretical model for designing a compact efficient multi-wavelength laser with dual gain media in a shared resonator. The developed model can be used to analyze the optimal output reflectivity for each wavelength to achieve maximum output power for multi-wavelength emission. We further demonstrate a dual-wavelength laser at 946 nm and 1064 nm with Nd:YAG and Nd:YVO4 crystals to confirm the numerical analysis. Under optimum conditions and at incident pump power of 17 W, output power at 946 nm and 1064 nm was up to 2.51 W and 2.81 W, respectively.
2006-04-01
recording singlet oxygen emission spectra. A diode -pumped solid-state laser (Millenia X, Spectra-Physics) at 532 nm was the excitation source. The sample...biological properties in vitro Youngjae You,a,* Scott L. Gibsonb and Michael R. Dettya aInstitute for Lasers , Photonics, and Biophotonics, Department...relative to the exciting laser beam. An additional long-pass filter (850LP) was used to attenuate the excitation laser and the fluorescence from the
1984-02-15
Diode Lasers 10 - 3. MATERIALS RESEARCH 15 3.1 Role of Oxygen in Zone-Melting Recrystallization of Si Films on Si0 2 -Coated Si Substrates 15 3.2 Triple... Film that Has Been Etch-Delineated to Show Sub- ndaries. Upper Graphite Heater Was Scanned in Direction from top to Bottom of Micrograph. 15 3-2...Operation at 1060 nm with a 5-percent differential power efficiency has been obtained from a flashlamp-pumped laser rod of the sensitized garnet Nd:Cr:Gd 3Sc
High Energy Laser on the Joint Strike Fighter: A Reality in 2025?
2007-02-26
10 October 2006. 19. Siegman , A.E., Nemes, G., Serna, J. “How to (Maybe) Measure Laser Beam Quality,” in DPSS (Diode Pumped Solid State) Lasers ...AIR WAR COLLEGE AIR UNIVERSITY HIGH ENERGY LASER ON THE JOINT STRIKE FIGHTER A REALITY IN 2025? by Jeffrey A. Hausmann, Lt Col, USAF A...00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE High Energy Laser on the Joint Strike Fighter a Reality in 2025? 5a. CONTRACT NUMBER 5b. GRANT
Boundary layer temperature measurements of a noctual urban boundary layer
NASA Astrophysics Data System (ADS)
Holloway, Simon; Ricketts, Hugo; Vaughan, Geraint
2018-04-01
A low-power lidar system based in Manchester, United Kingdom has been developed to measure temperature profiles in the nocturnal urban boundary layer. The lidar transmitter uses a 355nm diode-pumped solid state Nd:YAG laser and two narrow-band interference filters in the receiver filter out rotational Raman lines that are dependent on temperature. The spectral response of the lidar is calibrated using a monochromator. Temperature profiles measured by the system are calibrated by comparison to co-located radiosondes.
Next generation laser for Inertial Confinement Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C.D.; Beach, J.; Bibeau, C.
1997-07-18
We are in the process of developing and building the ``Mercury`` laser system as the first in a series of a new generation of diode-pumped solid-state Inertial Confinement Fusion (ICF) lasers at LLNL. Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced high energy density (HED) physics applications. Primary performance goals include 10% efficiencies at 10 Hz and a 1-10 ns pulse with 1{omega} energies of 100 J and with 2{omega}/3{omega} frequency conversion.
Active mirror amplifiers for HiPER kiloJoule beamlines
NASA Astrophysics Data System (ADS)
Chanteloup, J.-C.; Lucianetti, A.
2013-11-01
A major challenge the HiPER [1] project is facing is to derive laser architectures satisfying simultaneously all HiPER requirements; among them, high wall-plug efficiency (15 to 20%) and repetition rate (around 10 Hz) are the most challenging constraints. Several groups over the world are actively pursuing research in the field of High average power Diode Pumped Solid State Lasers (DPSSL) [2]. We propose a comprehensive solution for a 1 kJ DPSSL beamline as the unit brick of a 12 beams bundle.
HiLASE Project: high intensity lasers for industrial and scientific applications
NASA Astrophysics Data System (ADS)
Rostohar, Danijela; Lucianetti, Antonio; Endo, Akira; Mocek, Tomas
2015-01-01
The Czech national R&D project HiLASE is a platform for development of advance high repetition rate, diode pump solid state lasers (DPSSL) systems with energies in the range from mJ to 10J and repetition rate from 10 Hz to 100 kHz. In this paper an overview and a status of the project will be given. Additionally some applications of these lasers in the hi-tech industry, which initiated their development, will be also presented.
2011-08-31
increased overlap with p-cladding, presumably due to dominant role of inter valence band absorption [7]. Details of the conduction band structure of the...absorption to total loss. In the specific structures used here the n-cladding composition resulted into material with three valleys in conduction band to...materials. The beam properties of the high power 2 μm emitting GaSb -based diode lasers was improved by utilization of the waveguide structure with
NASA Astrophysics Data System (ADS)
Berk, Yuri; Karni, Yoram; Klumel, Genady; Openhaim, Yaakov; Cohen, Shalom; Yanson, Dan
2011-03-01
Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scaleable pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.
High-pulse energy Q-switched Tm3+:YAG laser for nonlinear frequency conversion to the mid-IR
NASA Astrophysics Data System (ADS)
Stöppler, Georg; Kieleck, Christelle; Eichhorn, Marc
2010-10-01
For some medical fields in laser surgery and as a pump source for nonlinear materials to generate mid-IR radiation, e.g. for countermeasure applications, it is very useful to have a solid-state laser with high pulse energy at 2 μm. The rare earth ion Thulium offers a cross relaxation and can thus be directly diode pumped with common laser diodes around 800 nm for an efficient pumping. However, it was not considered for high pulse energy operation due to the high saturation fluence of around 62 J/cm2 at 2 μm. A limiting factor has always been the damage threshold of the optical elements inside the cavity. One of the reasons is the strong thermal lens of YAG, which affects a change of the beam radius inside the resonator and additionally degrades the beam quality with increasing pump power. Using a new pump geometry of the Tm3+:YAG laser system, it is now possible to reach pulse energies > 13 mJ at a diffraction limited beam quality of M2 < 1.1. The Q-switched Tm3+:YAG laser system uses an AOM operating at 100 Hz and will be described in detail. Due to the high pulse energy and very good beam quality, this laser is very interesting for nonlinear parametric frequency conversion.
High brightness diode laser module development at nLIGHT Photonics
NASA Astrophysics Data System (ADS)
Price, Kirk; Karlsen, Scott; Brown, Aaron; Reynolds, Mitch; Mehl, Ron; Leisher, Paul; Patterson, Steve; Bell, Jake; Martinsen, Rob
2009-05-01
We report on the development of ultra-high brightness laser diode modules at nLIGHT Photonics. This paper demonstrates a laser diode module capable of coupling over 100W at 976 nm into a 105 μm, 0.15 NA fiber with fiber coupling efficiency greater than 85%. The high brightness module has an optical excitation under 0.13 NA, is virtually free of cladding modes, and has been wavelength stabilized with the use of volume holographic gratings for narrow-band operation. Utilizing nLIGHT's Pearl product architecture, these modules are based on hard soldered single emitters packaged into a compact and passively-cooled package. These modules are designed to be compatible with high power 7:1 fused fiber combiners, enabling over 500W power coupled into a 220 μm, 0.22 NA fiber. These modules address the need in the market for high brightness and wavelength stabilized diode lasers for pumping fiber lasers and solid-state laser systems.
Hakobyan, Sargis; Wittwer, Valentin J; Brochard, Pierre; Gürel, Kutan; Schilt, Stéphane; Mayer, Aline S; Keller, Ursula; Südmeyer, Thomas
2017-08-21
We demonstrate the first self-referenced full stabilization of a diode-pumped solid-state laser (DPSSL) frequency comb with a GHz repetition rate. The Yb:CALGO DPSSL delivers an average output power of up to 2.1 W with a typical pulse duration of 96 fs and a center wavelength of 1055 nm. A carrier-envelope offset (CEO) beat with a signal-to-noise ratio of 40 dB (in 10-kHz resolution bandwidth) is detected after supercontinuum generation and f-to-2f interferometry directly from the output of the oscillator, without any external amplification or pulse compression. The repetition rate is stabilized to a reference synthesizer with a residual integrated timing jitter of 249 fs [10 Hz - 1 MHz] and a relative frequency stability of 10 -12 /s. The CEO frequency is phase-locked to an external reference via pump current feedback using home-built modulation electronics. It achieves a loop bandwidth of ~150 kHz, which results in a tight CEO lock with a residual integrated phase noise of 680 mrad [1 Hz - 1 MHz]. We present a detailed characterization of the GHz frequency comb that combines a noise analysis of the repetition rate f rep , of the CEO frequency f CEO , and of an optical comb line at 1030 nm obtained from a virtual beat with a narrow-linewidth laser at 1557 nm using a transfer oscillator. An optical comb linewidth of about 800 kHz is assessed at 1-s observation time, for which the dominant noise sources of f rep and f CEO are identified.
Diode pumped Nd:YAG laser development
NASA Technical Reports Server (NTRS)
Reno, C. W.; Herzog, D. G.
1976-01-01
A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.
FY96-98 Summary Report Mercury: Next Generation Laser for High Energy Density Physics SI-014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A.; Beach, R.; Bibeau, C.
The scope of the Mercury Laser project encompasses the research, development, and engineering required to build a new generation of diode-pumped solid-state lasers for Inertial Confinement Fusion (ICF). The Mercury Laser will be the first integrated demonstration of laser diodes, crystals, and gas cooling within a scalable laser architecture. This report is intended to summarize the progress accomplished during the first three years of the project. Due to the technological challenges associated with production of 900 nm diode-bars, heatsinks, and high optical-quality Yb:S-FAP crystals, the initial focus of the project was primarily centered on the R&D in these three areas.more » During the third year of the project, the R&D continued in parallel with the development of computer codes, partial activation of the laser, component testing, and code validation where appropriate.« less
Deformable mirror technologies at AOA Xinetics
NASA Astrophysics Data System (ADS)
Wirth, Allan; Cavaco, Jeffrey; Bruno, Theresa; Ezzo, Kevin M.
2013-05-01
AOA Xinetics (AOX) has been at the forefront of Deformable Mirror (DM) technology development for over two decades. In this paper the current state of that technology is reviewed and the particular strengths and weaknesses of the various DM architectures are presented. Emphasis is placed on the requirements for DMs applied to the correction of high-energy and high average power lasers. Mirror designs optimized for the correction of typical thermal lensing effects in diode pumped solid-state lasers will be detailed and their capabilities summarized. Passive thermal management techniques that allow long laser run times to be supported will also be discussed.
Highly-reliable laser diodes and modules for spaceborne applications
NASA Astrophysics Data System (ADS)
Deichsel, E.
2017-11-01
Laser applications become more and more interesting in contemporary missions such as earth observations or optical communication in space. One of these applications is light detection and ranging (LIDAR), which comprises huge scientific potential in future missions. The Nd:YAG solid-state laser of such a LIDAR system is optically pumped using 808nm emitting pump sources based on semiconductor laser-diodes in quasi-continuous wave (qcw) operation. Therefore reliable and efficient laser diodes with increased output powers are an important requirement for a spaceborne LIDAR-system. In the past, many tests were performed regarding the performance and life-time of such laser-diodes. There were also studies for spaceborne applications, but a test with long operation times at high powers and statistical relevance is pending. Other applications, such as science packages (e.g. Raman-spectroscopy) on planetary rovers require also reliable high-power light sources. Typically fiber-coupled laser diode modules are used for such applications. Besides high reliability and life-time, designs compatible to the harsh environmental conditions must be taken in account. Mechanical loads, such as shock or strong vibration are expected due to take-off or landing procedures. Many temperature cycles with high change rates and differences must be taken in account due to sun-shadow effects in planetary orbits. Cosmic radiation has strong impact on optical components and must also be taken in account. Last, a hermetic sealing must be considered, since vacuum can have disadvantageous effects on optoelectronics components.
Thermal investigation on high power dfb broad area lasers at 975 nm, with 60% efficiency
NASA Astrophysics Data System (ADS)
Mostallino, R.; Garcia, M.; Deshayes, Y.; Larrue, A.; Robert, Y.; Vinet, E.; Bechou, L.; Lecomte, M.; Parillaud, O.; Krakowski, M.
2016-03-01
The demand of high power diode lasers in the range of 910-980nm is regularly growing. This kind of device for many applications, such as fiber laser pumping [1], material processing [1], solid-state laser pumping [1], defense and medical/dental. The key role of this device lies in the efficiency (𝜂𝐸) of converting input electrical power into output optical power. The high value of 𝜂𝐸 allows high power level and reduces the need in heat dissipation. The requirement of wavelength stabilization with temperature is more obvious in the case of multimode 975nm diode lasers used for pumping Yb, Er and Yb/Er co-doped solid-state lasers, due to the narrow absorption line close to this wavelength. Such spectral width property (<1 nm), combined with wavelength thermal stabilization (0.07 𝑛𝑚 • °𝐶-1), provided by a uniform distributed feedback grating (DFB) introduced by etching and re-growth process techniques, is achievable in high power diode lasers using optical feedback. This paper reports on the development of the diode laser structure and the process techniques required to write the gratings taking into account of the thermal dissipation and optical performances. Performances are particularly determined in terms of experimental electro-optical characterizations. One of the main objectives is to determine the thermal resistance of the complete assembly to ensure the mastering of the diode laser temperature for operating condition. The classical approach to determine junction temperature is based on the infrared thermal camera, the spectral measurement and the pulse electrical method. In our case, we base our measurement on the spectral measurement but this approach is not well adapted to the high power diodes laser studied. We develop a new measurement based on the pulse electrical method and using the T3STERequipment. This method is well known for electronic devices and LEDs but is weakly developed for the high power diodes laser. This crucial measurement compared to spectral one is critical for understand the thermal management of diode laser device and improve the structure based on design for reliability. To have a perfect relation between structure, and their modification, and temperature, FEM simulations are performed using COMSOL software. In this case, we can understand the impact of structure on the isothermal distribution and then reveal the sensitive zones in the diode laser. To validate the simulation, we compare the simulation results to the experimental one and develop an analytical model to determine the different contributions of the thermal heating. This paper reports on the development laser structure and the process techniques required to write the gratings. Performances are particularly characterized in terms of experimental electro-optical characterization and spectral response. The extraction of thermal resistance (Rth) is particularly difficult, because of the implicit low value (Rth ≈ 2𝐾/𝑊) and the multimodal nature of the diode laser. In such a context, thermal resistance has been measured using a dedicated equipment namely T3STER©. The results have been compared with those given by the well-known technique achieved from the spectrum of the diode laser (central wavelength variations vs temperature) that is more difficult to apply for multimodal diodes laser. The last section deals with thermal simulations based on finite elements method (FEM) modeling in order to estimate junction temperature . This study represent a significant part of the general Design for Reliability (DfR) effort carried out on such devices to produce efficient and reliable high power devices at the industrial level.
NASA Astrophysics Data System (ADS)
See, Tian Long; Chantzis, Dimitrios; Royer, Raphael; Metsios, Ioannis; Antar, Mohammad; Marimuthu, Sundar
2017-09-01
This paper presents an investigation on the titanium aluminium nitride (TiAlN) coating removal from tungsten carbide (WC-Co) substrate using a diode pump solid state (DPSS) ultraviolet (UV) laser with maximum average power of 90 W, wavelength of 355 nm and pulse width of 50 ns. The TiAlN coating of 1.5 μm thickness is removed from the WC-Co substrate with laser fluence of 2.71 J/cm2 at 285.6 number of pulses (NOP) and with NOP of 117.6 at 3.38 J/cm2 fluence. Titanium oxide formation was observed on the ablated surface due to the re-deposition of ablated titanium residue and also attributed to the high temperature observed during the laser ablation process. Crack width of around 0.2 μm was observed over both TiAlN coating and WC-Co substrate. The crack depth ranging from 1 to 10 μm was observed and is related to the thickness of the melted carbide. The crack formation is a result of the thermal induced stresses caused by the laser beam interaction with the material as well as the higher thermal conductivity of cobalt compared to WC. Two cleaning regions are observed and is a consequence of the Gaussian distribution of the laser beam energy. The surface roughness of the ablated WC-Co increased with increasing laser fluence and NOP.
All solid-state high power visible laser
NASA Technical Reports Server (NTRS)
Grossman, William M.
1993-01-01
The overall objective of this Phase 2 effort was to develop and deliver to NASA a high repetition rate laser-diode-pumped solid-state pulsed laser system with output in the green portion of the spectrum. The laser is for use in data communications, and high efficiency, short pulses, and low timing jitter are important features. A short-pulse 1 micron laser oscillator, a new multi-pass amplifier to boost the infrared power, and a frequency doubler to take the amplified infrared pulsed laser light into the green. This produced 1.5 W of light in the visible at a pulse repetition rate of 20 kHz in the laboratory. The pulses have a full-width at half maximum of near 1 ns. The results of this program are being commercialized.
A review of the development of portable laser induced breakdown spectroscopy and its applications
NASA Astrophysics Data System (ADS)
Rakovský, J.; Čermák, P.; Musset, O.; Veis, P.
2014-11-01
In this review, we present person-transportable laser induced breakdown spectroscopy (LIBS) devices that have previously been developed and reported in the literature as well as their applications. They are compared with X-ray fluorescent (XRF) devices, which represent their strongest competition. Although LIBS devices have advantages over XRF devices, such as sensitivity to the light elements, high spatial resolution and the possibility to distinguish between different layers of the sample, there are also disadvantages and both are discussed here. Furthermore, the essential portable LIBS instrumentation (laser, spectrograph and detector) is presented, and published results related to new laser sources (diode-pumped solid-state, microchip and fiber lasers) used in LIBS are overviewed. Compared to conventional compact flashlamp pumped solid-state lasers, the new laser sources provide higher repetition rates, higher efficiency (less power consumption) and higher beam quality, resulting in higher fluences, even for lower energies, and could potentially increase the figure of merit of portable LIBS instruments. Compact spectrometers used in portable LIBS devices and their parts (spectrograph, detector) are also discussed.
NASA Astrophysics Data System (ADS)
Otsuka, Kenju; Nemoto, Kana; Kamikariya, Koji; Miyasaka, Yoshihiko; Chu, Shu-Chun
2007-09-01
Detailed oscillation spectra and polarization properties have been examined in laser-diode-pumped (LD-pumped) microchip ceramic (i.e., polycrystalline) Nd:YAG lasers and the inherent segregation of lasing patterns into local modes possessing different polarization states was observed. Single-frequency linearly-polarized stable oscillations were realized by forcing the laser to Ince-Gaussian mode operations by adjusting azimuthal cavity symmetry.
Brunel, Marc; Vallet, Marc
2007-02-19
We show that modulating the diode-pump power of a microchip solid-state laser enables to lock its wavelength to a reference molecular line. The method is applied to two different types of Er,Yb:glass monolithic microchip lasers operating at 1.53 microm. First, wavelength locking of a continuous-wave dual-polarization microchip laser to acetylene absorption lines is demonstrated, without using any additional modulator, internal or external. We then show that, remarkably, this simple method is also suitable for stabilizing a passively Q-switched microchip laser. A pulsed wavelength stability of 10(-8) over 1 hour is readily observed. Applications to lidars and to microwave photonics are discussed.
NASA Astrophysics Data System (ADS)
Basiev, Tasoltan T.; Smetanin, Sergei N.; Fedin, Aleksandr V.; Shurygin, Anton S.
2010-10-01
Lasing of a miniature all-solid-state SRS laser based on a Nd3+:SrMoO4 crystal with a LiF:F2--passive Q-switch is studied. The dependences of the laser and SRS self-conversion parameters on the initial transmission of the passive Q-switch are studied experimentally and theoretically. Simulation of the lasing kinetics has shown the possibility of nonlinear cavity dumping upon highly efficient SRS self-conversion of laser radiation. An increase in the active medium length from 1 to 3mm resulted in an increase in the energy of the output 1.17-μm SRS radiation from 20 μJ to record-high 60 μJ at the absorbed multimode diode pump energy of 3.7 mJ.
NASA Astrophysics Data System (ADS)
Sutherland, Brandon R.; Sargent, Edward H.
2016-05-01
The field of solution-processed semiconductors has made great strides; however, it has yet to enable electrically driven lasers. To achieve this goal, improved materials are required that combine efficient (>50% quantum yield) radiative recombination under high injection, large and balanced charge-carrier mobilities in excess of 10 cm2 V-1 s-1, free-carrier densities greater than 1017 cm-3 and gain coefficients exceeding 104 cm-1. Solid-state perovskites are -- in addition to galvanizing the field of solar electricity -- showing great promise in photonic sources, and may be the answer to realizing solution-cast laser diodes. Here, we discuss the properties of perovskites that benefit light emission, review recent progress in perovskite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.
Innovative ceramic slab lasers for high power laser applications
NASA Astrophysics Data System (ADS)
Lapucci, Antonio; Ciofini, Marco
2005-09-01
Diode Pumped Solid State Lasers (DPSSL) are gaining increasing interest for high power industrial application, given the continuous improvement in high power diode laser technology reliability and affordability. These sources open new windows in the parameter space for traditional applications such as cutting , welding, marking and engraving for high reflectance metallic materials. Other interesting applications for this kind of sources include high speed thermal printing, precision drilling, selective soldering and thin film etching. In this paper we examine the most important DPSS laser source types for industrial applications and we describe in details the performances of some slab laser configurations investigated at our facilities. The different architectures' advantages and draw-backs are briefly compared in terms of performances, system complexity and ease of scalability to the multi-kW level.
High-resolution smile measurement and control of wavelength-locked QCW and CW laser diode bars
NASA Astrophysics Data System (ADS)
Rosenkrantz, Etai; Yanson, Dan; Klumel, Genady; Blonder, Moshe; Rappaport, Noam; Peleg, Ophir
2018-02-01
High-power linewidth-narrowed applications of laser diode arrays demand high beam quality in the fast, or vertical, axis. This requires very high fast-axis collimation (FAC) quality with sub-mrad angular errors, especially where laser diode bars are wavelength-locked by a volume Bragg grating (VBG) to achieve high pumping efficiency in solid-state and fiber lasers. The micron-scale height deviation of emitters in a bar against the FAC lens causes the so-called smile effect with variable beam pointing errors and wavelength locking degradation. We report a bar smile imaging setup allowing FAC-free smile measurement in both QCW and CW modes. By Gaussian beam simulation, we establish optimum smile imaging conditions to obtain high resolution and accuracy with well-resolved emitter images. We then investigate the changes in the smile shape and magnitude under thermal stresses such as variable duty cycles in QCW mode and, ultimately, CW operation. Our smile measurement setup provides useful insights into the smile behavior and correlation between the bar collimation in QCW mode and operating conditions under CW pumping. With relaxed alignment tolerances afforded by our measurement setup, we can screen bars for smile compliance and potential VBG lockability prior to assembly, with benefits in both lower manufacturing costs and higher yield.
Jiménez-Banzo, Ana; Ragàs, Xavier; Kapusta, Peter; Nonell, Santi
2008-09-01
Two recent advances in optoelectronics, namely novel near-IR sensitive photomultipliers and inexpensive yet powerful diode-pumped solid-state lasers working at kHz repetition rate, enable the time-resolved detection of singlet oxygen (O2(a1Deltag)) phosphorescence in photon counting mode, thereby boosting the time-resolution, sensitivity, and dynamic range of this well-established detection technique. Principles underlying this novel approach and selected examples of applications are provided in this perspective, which illustrate the advantages over the conventional analog detection mode.
Next-generation laser for Inertial Confinement Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C.D.; Deach, R.J.; Bibeau, C.
1997-09-29
We report on the progress in developing and building the Mercury laser system as the first in a series of a new generation of diode- pumped solid-state Inertial Confinement Fusion (ICF) lasers at Lawrence Livermore National Laboratory (LLNL). Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced high energy density (HED) physics applications. Primary performance goals include 10% efficiencies at 10 Hz and a 1-10 ns pulse with 1 omega energies of 100 J and with 2 omega/3 omega frequency conversion.
Advances in nonlinear optical materials and devices
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1991-01-01
The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.
2011-08-31
dominant role of inter valence band absorption [7]. Details of the conduction band structure of the particular 0 20 40 60 80 100 0 10 20 30 CW 30s...here the n-cladding composition resulted into material with three valleys in conduction band to have almost the same energy minimum so no inter...emitting GaSb -based diode lasers was improved by utilization of the waveguide structure with asymmetric claddings. The AlGaAsSb p-cladding contained
Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser.
Cong, Zhenhua; Zhang, Xingyu; Wang, Qingpu; Liu, Zhaojun; Li, Shutao; Chen, Xiaohan; Zhang, Xiaolei; Fan, Shuzhen; Zhang, Huaijin; Tao, Xutang
2009-09-01
An efficient intracavity frequency-doubled Raman laser was obtained by using an SrWO(4) Raman medium, an Nd:YAG ceramic gain medium, and a KTP frequency-doubling medium. Three laser cavities, including a two-mirror cavity, a three-mirror coupled cavity, and a folded cavity, were investigated. With the coupled cavity, a 2.93 W, 590 nm laser was obtained at an incident pump power of 16.2 W and a pulse repetition frequency of 20 kHz; the corresponding conversion efficiency was 18.1%. The highest conversion efficiency of 19.2% was obtained at an incident pump power of 14.1 W and a pulse repetition frequency of 15 kHz. The obtained maximum output power and conversion efficiency were much higher than the results previously obtained with intracavity frequency-doubled solid-state Raman lasers.
Robust and compact entanglement generation from diode-laser-pumped four-wave mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrie, B. J.; Yang, Y.; Eaton, M.
Four-wave-mixing processes are now routinely used to demonstrate multi-spatial-mode Einstein- Podolsky-Rosen entanglement and intensity difference squeezing. Recently, diode-laser-pumped four-wave mixing processes have been shown to provide an affordable, compact, and stable source for intensity difference squeezing, but it was unknown if excess phase noise present in power amplifier pump configurations would be an impediment to achieving quadrature entanglement. Here, we demonstrate the operating regimes under which these systems are capable of producing entanglement and under which excess phase noise produced by the amplifier contaminates the output state. We show that Einstein-Podolsky-Rosen entanglement in two mode squeezed states can be generatedmore » by a four-wave-mixing source deriving both the pump field and the local oscillators from a tapered-amplifier diode-laser. In conclusion, this robust continuous variable entanglement source is highly scalable and amenable to miniaturization, making it a critical step toward the development of integrated quantum sensors and scalable quantum information processors, such as spatial comb cluster states.« less
Robust and compact entanglement generation from diode-laser-pumped four-wave mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrie, B. J., E-mail: lawriebj@ornl.gov; Pooser, R. C.; Yang, Y.
Four-wave-mixing processes are now routinely used to demonstrate multi-spatial-mode Einstein-Podolsky-Rosen entanglement and intensity difference squeezing. Diode-laser-pumped four-wave mixing processes have recently been shown to provide an affordable, compact, and stable source for intensity difference squeezing, but it was unknown if excess phase noise present in power amplifier pump configurations would be an impediment to achieving quadrature entanglement. Here, we demonstrate the operating regimes under which these systems are capable of producing entanglement and under which excess phase noise produced by the amplifier contaminates the output state. We show that Einstein-Podolsky-Rosen entanglement in two mode squeezed states can be generated bymore » a four-wave-mixing source deriving both the pump field and the local oscillators from a tapered-amplifier diode-laser. This robust continuous variable entanglement source is highly scalable and amenable to miniaturization, making it a critical step toward the development of integrated quantum sensors and scalable quantum information processors, such as spatial comb cluster states.« less
Robust and compact entanglement generation from diode-laser-pumped four-wave mixing
Lawrie, B. J.; Yang, Y.; Eaton, M.; ...
2016-04-11
Four-wave-mixing processes are now routinely used to demonstrate multi-spatial-mode Einstein- Podolsky-Rosen entanglement and intensity difference squeezing. Recently, diode-laser-pumped four-wave mixing processes have been shown to provide an affordable, compact, and stable source for intensity difference squeezing, but it was unknown if excess phase noise present in power amplifier pump configurations would be an impediment to achieving quadrature entanglement. Here, we demonstrate the operating regimes under which these systems are capable of producing entanglement and under which excess phase noise produced by the amplifier contaminates the output state. We show that Einstein-Podolsky-Rosen entanglement in two mode squeezed states can be generatedmore » by a four-wave-mixing source deriving both the pump field and the local oscillators from a tapered-amplifier diode-laser. In conclusion, this robust continuous variable entanglement source is highly scalable and amenable to miniaturization, making it a critical step toward the development of integrated quantum sensors and scalable quantum information processors, such as spatial comb cluster states.« less
Preparation of balanced trichromatic white phosphors for solid-state white lighting.
Al-Waisawy, Sara; George, Anthony F; Jadwisienczak, Wojciech M; Rahman, Faiz
2017-08-01
High quality white light-emitting diodes (LEDs) employ multi-component phosphor mixtures to generate light of a high color rendering index (CRI). The number of distinct components in a typical phosphor mix usually ranges from two to four. Here we describe a systematic experimental technique for starting with phosphors of known chromatic properties and arriving at their respective proportions for creating a blended phosphor to produce light of the desired chromaticity. This method is applicable to both LED pumped and laser diode (LD) pumped white light sources. In this approach, the radiometric power in the down-converted luminescence of each phosphor is determined and that information is used to estimate the CIE chromaticity coordinate of light generated from the mixed phosphor. A suitable method for mixing multi-component phosphors is also described. This paper also examines the effect of light scattering particles in phosphors and their use for altering the spectral characteristics of LD- and LED-generated light. This is the only approach available for making high efficiency phosphor-converted single-color LEDs that emit light of wide spectral width. Copyright © 2016 John Wiley & Sons, Ltd.
THz Local Oscillator Technology
NASA Technical Reports Server (NTRS)
Mehdi, Imran
2004-01-01
The last decade has seen a number of technological advancements that have now made it possible to implement fully solid state local oscillator chains up to 2 THz. These chains are composed of cascaded planar multiplier stages that are pumped with W-band high power sources. The high power W-band sources are achieved by power combining MMIC amplifiers and can provide in access of 150 mW with about 10% bandwidth. Planar diode technology has also enabled novel circuit topologies that can take advantage of the high input power and demonstrate significant efficiencies well into the THz range. Cascaded chains to 1.9 THz have now been demonstrated with enough output power to successfully pump hot-electron bolometer mixers in this frequency range. An overview of the current State-of-the-Art of the local oscillator technology will be presented along with highlighting future trends and challenges.
NASA Astrophysics Data System (ADS)
Heinemann, S.; McDougall, S. D.; Ryu, G.; Zhao, L.; Liu, X.; Holy, C.; Jiang, C.-L.; Modak, P.; Xiong, Y.; Vethake, T.; Strohmaier, S. G.; Schmidt, B.; Zimer, H.
2018-02-01
The advance of high power semiconductor diode laser technology is driven by the rapidly growing industrial laser market, with such high power solid state laser systems requiring ever more reliable diode sources with higher brightness and efficiency at lower cost. In this paper we report simulation and experimental data demonstrating most recent progress in high brightness semiconductor laser bars for industrial applications. The advancements are in three principle areas: vertical laser chip epitaxy design, lateral laser chip current injection control, and chip cooling technology. With such improvements, we demonstrate disk laser pump laser bars with output power over 250W with 60% efficiency at the operating current. Ion implantation was investigated for improved current confinement. Initial lifetime tests show excellent reliability. For direct diode applications <1 um smile and >96% polarization are additional requirements. Double sided cooling deploying hard solder and optimized laser design enable single emitter performance also for high fill factor bars and allow further power scaling to more than 350W with 65% peak efficiency with less than 8 degrees slow axis divergence and high polarization.
Dental ablation with 1064 nm, 500 ps, Diode pumped solid state laser: A preliminary study.
Sozzi, Michele; Fornaini, Carlo; Cucinotta, Annamaria; Merigo, Elisabetta; Vescovi, Paolo; Selleri, Stefano
2013-01-01
The Er:YAG laser in conservative dentistry is. good alternative to conventional instruments. Though several studies show the advantages of these devices, some drawbacks and unsolved problems are still present, such as the cost of the device and the large dimensions of the equipment. In the present study, the effectiveness of dental surface ablation with a picosecond infrared diode-pumped solid-state (DPSS) laser was investigated. In vitro tests on extracted human teeth were carried out, with assessment of the ablation quality in the tooth and thermal increase inside the pulp chamber. A solid-state picosecond laser was used for the experiments. The samples were exposed to laser energy at 1064 nm at a frequency of 30 kHz and a 500 ps pulse width. The target teeth were cooled during exposures. The internal temperature of the pulp chamber was monitored with. thermocouple. Optical microscope images showed effective ablation with the absence of carbonisation and micro-cracks. The cooling maintained the temperature rise in the pulp chamber below the permitted 5.5°C. The main problem with the use of lasers in dentistry when teeth are the target is the heat generated in the pulp chamber of the target teeth. With lasers operating in the femtosecond mode, a better management of the internal temperature is possible, but is offset by the high cost of such devices. With the ps domain system used in the present study together with cooling using chilled water, effective and clean ablation could be achieved with a controlled thermal effect in the pulp chamber. In this preliminary study with a picosecond domain DPSS laser using water cooling for the target, effective hard tissue ablation was achieved keeping the thermal increase in the pulp within the permitted range. The results suggest that this system could be used in clinical practice with appropriate modifications.
300 mW of coherent light at 488 nm using a generic approach
NASA Astrophysics Data System (ADS)
Karamehmedović, Emir; Pedersen, Christian; Andersen, Martin T.; Tidemand-Lichtenberg, Peter
2008-02-01
We present a generic approach for efficient generation of CW light with a predetermined wavelength within the visible or UV spectrum. Based on sum-frequency generation (SFG), the circulating intra-cavity field of a high-finesse diode pumped CW solid-state laser (DPSSL) and the output from a tapered, single-frequency external cavity diode laser (ECDL) are mixed inside a 10 mm periodically poled KTP crstal (pp-KTP). The pp-KTP is situated inside the DPSSL cavity to enhance conversion efficiency of the nonlinear mixing process. This approach combines different solid state technologies; the tuneability of ECDLs, the high intra-cavity filed of DPSSLs and flexible quasi phase matching in pp-tapered ECDL with a center wavelength of 766 nm in combination with a high finesse Nd:YVo4 laser at 1342 nm. Up to 308 mW of light at 488nm was measured in our experiments. The conversion of te ECDL beam was up to 47% after it was transmitted through a PM fiber, and up to 32% without fiber coupling. Replacing the seed laser and the nonlinear crystal makes it possible to generate light at virtually any desired wavelength withing the visible spectrum.
LED pumped Nd:YAG laser development program
NASA Technical Reports Server (NTRS)
Farmer, G. I.; Kiang, Y. C.; Lynch, R. J.
1973-01-01
The results of a development program for light emitting diode (LED) pumped Nd:YAG lasers are described. An index matching method to increase the coupling efficiency of the laser is described. A solid glass half-cylinder of 5.0 by 5.6 centimeters was used for index matching and also as a pumping cavity reflector. The laser rods were 1.5 by 56 millimeters with dielectric coatings on both end surfaces. The interfaces between the diode array, glass cylinder, and laser rod were filled with viscous fluid of refractive index n = 1.55. Experiments performed with both the glass cylinder and a gold coated stainless steel reflector of the same dimensions under the same operating conditions indicate that the index matching cylinder gave 159 to 200 percent improvement of coupling efficiency over the metal reflector at various operating temperatures.
1987-01-07
Excimer-Laser Projection Lithography 38 4.5 Observation of Millimeter-Wave Oscillations from Resonant- Tunneling Diodes and Some Theroretical...and SIMOX Circuits 32 4-1 Resonant Tunneling Diode Parameters 41 XI INTRODUCTION 1. SOLID STATE DEVICE RESEARCH Optoelectronic switches have...radiation and reflective optics. Oscillation frequencies as high as 56 GHz have been observed from resonant- tunneling double- barrier diodes. Recent
NASA Astrophysics Data System (ADS)
Ludwig, Hans C.; Kruschat, Thomas; Knobloch, Torsten; Rostasy, Kevin; Buchfelder, Michael
2005-04-01
Preterm infants have a high incidence of post hemorrhagic or post infectious hydrocephalus often associated with ventricular or arachnoic cysts which carry a high risk of entrapment of cerebrospinal fluid (CSF). In these cases fenestration and opening of windows within the separating membranes are neurosurgical options. Although Nd:YAG- and diode-lasers have already been used in neuroendoscopic procedures, neurosurgeons avoid the use of high energy lasers in proximity to vital structures because of potential side effects. We have used a recently developed diode pumped solid state (DPSS) laser emitting light at a wavelength of 2.0 μm (Revolix TM LISA laser products, Katlenburg, Germany), which can be delivered through silica fibres towards endoscopic targets. From July 2002 until June 2004 fourteen endoscopic procedures in 12 consecutive patients (age 3 months to 12 years old) were performed. Most children suffered from complex post hemorrhagic and post infectious hydrocephalus, in whom ventriculoperitoneal shunt devices failed to restore a CSF equilibrium due to entrapment of CSF pathways by the cysts. We used two different endoscopes, a 6 mm Neuroendoscope (Braun Aesculap, Melsungen, Germany; a 4 mm miniature Neuroscope (Storz, Tuttlingen, Germany). The endoscopes were connected to a standard camera and TV monitor, the laser energy was introduced through a 365 μm core diameter bare ended silica fibre (PercuFib, LISA laser products, Katlenburg, Germany) through the endoscope"s working channel. The continuous wave laser was operated at power levels from 5 to 15 Watt in continuous and chopped mode. The frequency of the laser in chopped mode was varied between 5 and 20 Hz. All patients tolerated the procedure well. No immediate or long term side effects were noted. In 3 patients with cystic compression of the 4th ventricle, insertion of a shunt device could be avoided. The authors conclude that the use of the new RevolixTM laser enables safe and effective procedures in neuroendoscopy.
NASA Astrophysics Data System (ADS)
Pasmanik, Guerman; Latone, Kevin; Shilov, Alex; Shklovsky, Eugeni; Spiro, Alex; Tiour, Larissa
2005-06-01
We have demonstrated that direct excitation of 3rd Stokes Raman emission in crystal can produce short (few nanosecond) eye-safe pulses. Produced beam has very high quality and the pulse energy can be as high as tens of millijoules. For pulsed diode pumped solid state lasers the demonstrated repetition rate was 250 Hz but higher repetition rates are certainly achievable. It is important that tested schemes do not have strict requirements on laser pump parameters, namely beam divergence and frequency bandwidth. The obtained results are very relevant to the development of eye-safe lasers, such as the new generation of rangefinders, target designators, and laser tracking and pin-pointing devices, as well as remote 2D and 3D imaging systems.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady;
2010-01-01
Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.
2011-01-01
Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.
An All-Solid-State, Room-Temperature, Heterodyne Receiver for Atmospheric Spectroscopy at 1.2 THz
NASA Technical Reports Server (NTRS)
Siles, Jose V.; Mehdi, Imran; Schlecht, Erich T.; Gulkis, Samuel; Chattopadhyay, Goutam; Lin, Robert H.; Lee, Choonsup; Gill, John J.; Thomas, Bertrand; Maestrini, Alain E.
2013-01-01
Heterodyne receivers at submillimeter wavelengths have played a major role in astrophysics as well as Earth and planetary remote sensing. All-solid-state heterodyne receivers using both MMIC (monolithic microwave integrated circuit) Schottky-diode-based LO (local oscillator) sources and mixers are uniquely suited for long-term planetary missions or Earth climate monitoring missions as they can operate for decades without the need for any active cryogenic cooling. However, the main concern in using Schottky-diode-based mixers at frequencies beyond 1 THz has been the lack of enough LO power to drive the devices because 1 to 3 mW are required to properly pump Schottky diode mixers. Recent progress in HEMT- (high-electron-mobility- transistor) based power amplifier technology, with output power levels in excess of 1 W recently demonstrated at W-band, as well as advances in MMIC Schottky diode circuit technology, have led to measured output powers up to 1.4 mW at 0.9 THz. Here the first room-temperature tunable, all-planar, Schottky-diode-based receiver is reported that is operating at 1.2 THz over a wide (˜20%) bandwidth. The receiver front-end (see figure) consists of a Schottky-diode-based 540 to 640 GHz multiplied LO chain (featuring a cascade of W-band power amplifiers providing around 120 to 180 mW at W-band), a 200-GHz MMIC frequency doubler, and a 600-GHz MMIC frequency tripler, plus a biasable 1.2-THz MMIC sub-harmonic Schottky-diode mixer. The LO chain has been designed, fabricated, and tested at JPL and provides around 1 to 1.5 mW at 540 o 640 GHz. The sub-harmonic mixer consists of two Schottky diodes on a thin GaAs membrane in an anti-parallel configuration. An integrated metal insulator metal (MIM) capacitor has been included on-chip to allow dc bias for the Schottky diodes. A bias voltage of around 0.5 V/diode is necessary to reduce the LO power required down to the 1 to 1.5 mW available from the LO chain. The epilayer thickness and doping profiles have been specifically optimized to maximize the mixer performance beyond 1 THz. The measured DSB noise temperatures and conversion losses of the receiver are 2,000 to 3,500 K and 12 to 14 dB, respectively, at 120 K, and 4,000 to 6,000 K and 13 to 15 dB, respectively, at 300 K. These results establish the state-of-the-art for all-solid-state, all-planar heterodyne receivers at 1.2 THz operating at either room temperature or using passive cooling only. Since no cryogenic cooling is needed, the receiver is eminently suited to atmospheric heterodyne spectroscopy of the outer planets and their moons.
LD side-pumped Nd:YAG Q-switched laser without water cooling
NASA Astrophysics Data System (ADS)
Ling, Ming; Jin, Guang-yong; Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu
2009-07-01
A novel LD side-pumped Nd:YAG Q-switched solid-state laser, which made use of the special pumping strcture with conductive cooling instead of water cooling, was investigated.After selecting an appropriate length and diameter of Nd:YAG laser crystal rod and using three groups of laser diode centimeter bar which was composed by 12 laser diodes and uniformly arranged according to the angle of 120°,side-pumping structure of laser was accomplished.Adopting plano-concave resonator ,mending double end face of laser crystal and designing heat-stability resonator made the resonator steadily oscillate.Laser crystal rod which was tight fastened by copper net was conductively cooled and radiation block was furnished on the external of copper net for increasing the radiation capacity.High reflection gold film was plated on the cooling wall in the opposite way of pumping light, so that the laser crystal was uniformly pumped and the laser with low order mode output.Making the use of pillar lens focus and ray trace computing, reasonable parameters were caculated to couple pumping light to laser with high-efficiency.It was the electrooptic Q-switched which was made to be micro-integration eliminating voltage by KD*P crystal that improved the ratio between acting and unacting.Inner heat radiated from laser in good time with TE cooler and the laser ran at constant temperature with water cooling when the big external heat sink emanated a steady heat to periphery. Experiments revealed that the syetem pumping efficiency riseed by 18% and the laser threshold energy was 192 mJ under the condition of this novel pumping structure. The low mode output of 10-12ns pulse width and the maximum output energy of 98 mJ was achieved with an incident pump energy of 720 mJ in 1064nm.The optical-to-optical conversion efficiency was up to 13. 6 %,and the power instability in 24 h was better than +/-1. 7 %.
Development of high-average-power DPSSL with high beam quality
NASA Astrophysics Data System (ADS)
Nakai, Sadao; Kanabe, Tadashi; Kawashima, Toshiyuki; Yamanaka, Masanobu; Izawa, Yasukazu; Nakatuka, Masahiro; Kandasamy, Ranganathan; Kan, Hirofumi; Hiruma, Teruo; Niino, Masayuki
2000-08-01
The recent progress of high power diode laser is opening new fields of laser and its application. We are developing high average power diode pumped solid state laser DPSSL for laser fusion power plant, for space propulsion and for various applications in industry. The common features or requirements of our High Average-power Laser for Nuclear-fusion Application (HALNA) are large pulse energy with relatively low repetition of few tens Hz, good beam quality of order of diffraction limit and high efficiency more than 10%. We constructed HALNA 10 (10J X 10 Hz) and tested the performance to clarify the scalability to higher power system. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern.
Development of trivalent ytterbium doped fluorapatites for diode-pumped laser applications
NASA Astrophysics Data System (ADS)
Bayramian, Andrew James
2000-11-01
A major motivator of this work is the Mercury Project, a one kilowatt diode-pumped solid-state laser system under development at Lawrence Livermore National Laboratory (LLNL), which incorporates ytterbium doped strontium fluorapatite, Sr5(PO4)3F (S-FAP), as the amplifier gain medium. The primary focus of this thesis is a full understanding of the properties of this material, which is necessary for proper design and modeling of the system. Ytterbium-doped fluorapatites were investigated at LLNL prior to this work and found to be ideal candidate materials for high-power amplifier systems providing high absorption and emission cross sections, long radiative lifetimes, and high efficiency. A family of barium substituted S-FAP crystals was grown in an effort to modify the pump and emission bandwidths for application to broadband diode pumping and short pulse generation. Crystals of Yb 3+:Srs5-xBax(PO4) 3F where x < 1 showed homogeneous lines offering 8.4 nm (1.8X enhancement) of absorption bandwidth and 6.9 nm (1.4X enhancement) of emission bandwidth. The gain saturation fluence of Yb:S-FAP was measured to be 3.2 J/cm 2 with homogeneous extraction using a pump-probe experiment where the probe laser was a high intensity Q-switched master oscillator power amplifier system. The crystal quality of Czochralski grown Yb:S-FAP boules, which is effected by defects such as cracking, cloudiness, bubble core, slip dislocations, and anomalous absorption, was investigated interferometrically and quantified by means of Power Spectral Density (PSD) plots. Stimulated Raman Scattering (SRS) losses were evaluated by first measuring the SRS gain coefficient to be 1.3 cm/GW, then modeling the losses in the Mercury amplifier system. Countermeasures including the addition of bandwidth to the extraction beam and wedging of amplifier surfaces are shown to reduce the SRS losses allowing efficient laser gain extraction at higher intensities. Finally, an efficient Q-switched Yb:S-FAP oscillator was developed which operates three-level at 985 nm with a 21% slope efficiency. Frequency conversion of the 985 nm light to the 2nd harmonic at 492.5 nm was achieved with a 31% conversion efficiency. A diode pumped, doubled Yb:S-FAP laser at 492.5 nm would make possible a compact, efficient, high-power blue laser source.
Towards an 100 Hz X-Ray Laser Station
NASA Astrophysics Data System (ADS)
Tümmler, J.; Stiel, H.; Jung, R.; Janulewicz, K. A.; Nickles, P. V.; Sandner, W.
During the last few years the optimization of pumping schemes of X-ray lasers (XRL) has reached a level where the required pump power could be provided by table-top or even by commercially available laser systems. But the stability of the XRL output signal is limited by that of the pumping lasers and also the repetition rate is at maximum about 10 Hz. Many envisioned applications would however benefit from an improvement of these crucial parameters. A way to overcome this situation could be the use of diode pumped solid state lasers (DPSSL) as drivers. Therefore we are developing a new 100 Hz DPSSL based on Yb:YAG thin disk and CPA technology. This system is based on newly developed efficient diode stacks for 100 Hz repetition rate. According to the common requirements of a transient collisional XRL (here in a grazing incidence pumping scheme -GRIP) the new laser driver has a double beam structure with one beam for plasma performing, delivering an energy at the target in the range of 200 mJ in 200 ps and a second one with > 500 mJ and < 5 ps to heat the plasma. The amplifier system consists of 4 amplifiers of different sizes. For the following XRL operation a water cooled Ag or Mo tape as target for 13.9 nm or 18.9 nm XRL emission was developed. The target speed can be adjusted to the driver laser repetition rate. Parallel to the commissioning the XRL station and first application experiments an upgrade of the driver laser is planned.
Tunable Single-Frequency Near IR Lasers for DIAL Applications
NASA Technical Reports Server (NTRS)
Henderson, Sammy W.; Marquardt, John H.; Carrig, Timothy J.; Gatt, Phil; Smith, Duane D.; Hale, Charley P.
2000-01-01
Tunable single-frequency sources in the 2-4 micron wavelength region are useful for remote DIAL measurements of chemicals and pollutants. We are developing tunable single-frequency transmitters and receivers for both direct and coherent detection lidar measurement applications. We have demonstrated a direct-diode-pumped PPLN-based OPO that operates single frequency, produces greater than 10 mW cw and is tunable over the 2.5 - 3.9 micron wavelength region. This laser has been used to injection seed a pulsed PPLN OPO, pumped by a 1.064 micron Nd:YAG laser, producing 50-100 microJoule single-frequency pulses at 100 Hz PRF near 3.6 micron wavelength. In addition, we have demonstrated a cw Cr:ZnSe laser that is tunable over the 2.1 - 2.8 micron wavelength region. This laser is pumped by a cw diode-pumped Tm:YALO laser and has produced over 1.8 W cw. Tm- and Tm, Ho-doped single-frequency solid-state lasers that produce over 50 mW cw and are tunable over approximately 10 nm in the 2 -2.1 micron band with fast PZT tuning have also been demonstrated. A fast PZT-tunable Tm, Ho:YLF laser was used for a direct-detection column content DIAL measurement of atmospheric CO2. Modeling shows that that all these cw and pulsed sources are useful for column-content coherent DIAL measurements at several km range using topographic targets.
An Open-path Laser Transmissometer for Atmospheric Extinction Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandran, P. M. Satheesh; Krishnakumar, C. P.; Varma, Ravi
2011-10-20
A transmissometer is an optical instrument which measures transmitted intensity of monochromatic light over a fixed pathlength. Prototype of a simple laser transmissometer has been developed for transmission (or extinction) measurements through suspended absorbers and scatterers in the atmosphere over tens of meters. Instrument consists of a continuous green diode pumped solid state laser, transmission optics, photodiode detectors and A/D data acquisition components. A modulated laser beam is transmitted and subsequently reflected and returned to the unit by a retroreflecting mirror assembly placed several tens of meters away. Results from an open-path field measurement of the instrument are described.
Investigation on Nonlinear-Optical Properties of Palm Oil/Silver Nanoparticles
NASA Astrophysics Data System (ADS)
Zamiri, R.; Parvizi, R.; Zakaria, A.; Sadrolhosseini, A. R.; Zamiri, G.; Darroudi, M.; Husin, M. S.
2012-06-01
We have investigated the spatial self phase modulation of palm oil containing silver nanoparticles (palm oil/Ag-NPs). The study carried out using continuous wave diode pumped solid state laser with wavelength of 405 nm and power of 50 mW. The strong spatial self phase modulation patterns were observed that suggest the palm oil/Ag-NPs have a relatively large nonlinear refractive index. The obtained values of nonlinear refractive index were increased with the increment in the volume fractions. The observed experimental patterns were also theoretically modeled which are in good agreement with experimental results.
Beach, R.J.; Benett, W.J.
1994-04-26
A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding is described. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic. 3 figures.
Thin planar package for cooling an array of edge-emitting laser diodes
Mundinger, David C.; Benett, William J.
1992-01-01
A laser diode array is disclosed that includes a plurality of planar assemblies and active cooling of each assembly. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar assembly having the laser diode bar located proximate to one edge. In an array, a number of such thin planar assemblies are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink proximate to the laser diode bar to absorb heat generated by laser operation. To provide the coolant to the microchannels, each thin planar assembly comprises passageways that connect the microchannels to inlet and outlet corridors. Each inlet passageway may comprise a narrow slot that directs coolant into the microchannels and increases the velocity of flow therethrough. The corridors comprises holes extending through each of the assemblies in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has applications as an optical pump for high power solid state lasers, or by mating the diodes with fiber optic lenses. Further, the arrays can be useful in applications having space constraints and energy limitations, and in military and space applications. The arrays can be incorporated in equipment such as communications devices and active sensors.
Modular package for cooling a laser diode array
Mundinger, David C.; Benett, William J.; Beach, Raymond J.
1992-01-01
A laser diode array is disclosed that includes a plurality of planar packages and active cooling. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar package having the laser diode bar located proximate to one edge. In an array, a number of such thin planar packages are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink that is attached proximate to the laser bar so that it absorbs heat generated by laser operation. To provide the coolant to the microchannels, each thin planar package comprises a thin inlet manifold and a thin outlet manifold connected to an inlet corridor and an outlet corridor. The inlet corridor comprises a hole extending through each of the packages in the array, and the outlet corridor comprises a hole extending through each of the packages in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has application as an optical pump for high power solid state lasers. Further, it can be incorporated in equipment such as communications devices and active sensors, and in military and space applications, and it can be useful in applications having space constraints and energy limitations.
Computational model for operation of 2 mum co-doped Tm,Ho solid state lasers.
Louchev, Oleg A; Urata, Yoshiharu; Saito, Norihito; Wada, Satoshi
2007-09-17
A computational model for operation of co-doped Tm,Ho solid-state lasers is developed coupling (i) 8-level rate equations with (ii) TEM00 laser beam distribution, and (iii) complex heat dissipation model. Simulations done for Q-switched approximately 0.1 J giant pulse generation by Tm,Ho:YLF laser show that approximately 43% of the 785 nm light diode side-pumped energy is directly transformed into the heat inside the crystal, whereas approximately 45% is the spontaneously emitted radiation from (3)F(4), (5)I(7) , (3)H(4) and (3)H(5) levels. In water-cooled operation this radiation is absorbed inside the thermal boundary layer where the heat transfer is dominated by heat conduction. In high-power operation the resulting temperature increase is shown to lead to (i) significant decrease in giant pulse energy and (ii) thermal lensing.
High peak power solid-state laser for micromachining of hard materials
NASA Astrophysics Data System (ADS)
Herbst, Ludolf; Quitter, John P.; Ray, Gregory M.; Kuntze, Thomas; Wiessner, Alexander O.; Govorkov, Sergei V.; Heglin, Mike
2003-06-01
Laser micromachining has become a key enabling technology in the ever-continuing trend of miniaturization in microelectronics, micro-optics, and micromechanics. New applications have become commercially viable due to the emergence of innovative laser sources, such as diode pumped solid-state lasers (DPSSL), and the progress in processing technology. Examples of industrial applications are laser-drilled micro-injection nozzles for highly efficient automobile engines, or manufacturing of complex spinnerets for production of synthetic fibers. The unique advantages of laser-based techniques stem from their ability to produce high aspect ratio holes, while yielding low heat affected zones with exceptional surface quality, roundness and taper tolerances. Additionally, the ability to drill blind holes and slots in very hard materials such as diamond, silicon, sapphire, ceramics and steel is of great interest for many applications in microelectronics, semiconductor and automotive industry. This kind of high quality, high aspect ratio micromachining requires high peak power and short pulse durations.
Portuondo-Campa, E; Paschotta, R; Lecomte, S
2013-08-01
We report on the ultralow timing jitter of the 100 MHz pulse trains generated by two identical passively mode-locked diode-pumped solid-state lasers (DPSSLs) emitting at 1556 nm. Ultralow timing jitter of 83 as (integrated from 10 kHz to 50 MHz) for one laser has been measured with a balanced optical cross-correlator as timing discriminator. Extremely low intensity noise has been measured as well. Several measurement techniques have been used and show similar jitter results. Different possible noise sources have been theoretically investigated and compared to the measured jitter power spectral density. It is found that although the measured integrated jitter is quite low, it is still significantly above the quantum limit in the considered frequency span. Therefore, there is a substantial potential for technical improvements that could make passively mode-locked DPSSL outperform fiber lasers as source of microwaves with low phase noise.
NASA Technical Reports Server (NTRS)
Spinhirne, James D. (Inventor)
1993-01-01
An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.
Novel solid state lasers for Lidar applications at 2 μm
NASA Astrophysics Data System (ADS)
Della Valle, G.; Galzerano, G.; Toncelli, A.; Tonelli, M.; Laporta, P.
2005-09-01
A review on the results achieved by our group in the development of novel solid-state lasers for Lidar applications at 2 μm is presented. These lasers, based on fluoride crystals (YLF4, BaY2F8, and KYF4) doped with Tm and Ho ions, are characterized by high-efficiency and wide wavelength tunability around 2 μm. Single crystals of LiYF4, BaY2F8, and KYF4 codoped with the same Tm3+ and Ho3+ concentrations were successfully grown by the Czochralski method. The full spectroscopic characterization of the different laser crystals and the comparison between the laser performance are presented. Continuous wave operation was efficiently demonstrated by means of a CW diode-pumping. These oscillators find interesting applications in the field of remote sensing (Lidar and Dial systems) as well as in high-resolution molecular spectroscopy, frequency metrology, and biomedical applications.
NASA Technical Reports Server (NTRS)
Spinhirne, James D.
1993-01-01
An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering has been demonstrated. The transmitter of the micropulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited by optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that systems built on the micropulse lidar concept are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.
High-Reliability Pump Module for Non-Planar Ring Oscillator Laser
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak
2007-01-01
We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.
Active media for up-conversion diode-pumped lasers
NASA Astrophysics Data System (ADS)
Tkachuk, Alexandra M.
1996-03-01
In this work, we consider the different methods of populating the initial and final working levels of laser transitions in TR-doped crystals under the selective 'up-conversion' and 'avalanche' diode laser pumping. On the basis of estimates of the probabilities of competing non-radiative energy-transfer processes rates obtained from the experimental data and theoretical calculations, we estimated the efficiency of the up-conversion pumping and selfquenching of the upper TR3+ states excited by laser-diode emission. The effect of the host composition, dopant concentration, and temperature on the output characteristics and up-conversion processes in YLF:Er; BaY2F8:Er; BaY2F8:Er,Yb and BaY2F8:Yb,Ho are determined.
Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deri, R J
2011-01-03
Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and productionmore » capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and increased reliability. The high-level requirements on the semiconductor lasers involve reliability, price points on a price-per-Watt basis, and a set of technical requirements. The technical requirements for the amplifier design in reference 1 are discussed in detail and are summarized in Table 1. These values are still subject to changes as the overall laser system continues to be optimized. Since pump costs can be a significant fraction of the overall laser system cost, it is important to achieve sufficiently low price points for these components. At this time, the price target for tenth-of-akind IFE plant is $0.007/Watt for packaged devices. At this target level, the pumps account for approximately one third of the laser cost. The pump lasers should last for the life of the power plant, leading to a target component lifetime requirement of roughly 14 Ghosts, corresponding to a 30 year plant life and 15 Hz repetition rate. An attractive path forward involes pump operation at high output power levels, on a Watts-per-bar (Watts/chip) basis. This reduces the cost of pump power (price-per-Watt), since to first order the unit price does not increase with power/bar. The industry has seen a continual improvement in power output, with current 1 cm-wide bars emitting up to 500 W QCW (quasi-continuous wave). Increased power/bar also facilitates achieving high irradiance in the array plane. On the other hand, increased power implies greater heat loads and (possibly) higher current drive, which will require increased attention to thermal management and parasitic series resistance. Diode chips containing multiple p-n junctions and quantum wells (also called nanostack structures) may provide an additional approach to reduce the peak current.« less
Pump Diode Characterization for an Unstable Diode-Pumped Alkali Laser Resonator
2013-03-01
2003. Petersen, A., and R. Lane, Second harmonic operation of diode-pumped Rb vapor lasers , Proc. of SPIE, 7005, 2008. Siegman , A. E., Lasers ...University Science Books, Sausalito, CA, 1986. Siegman , A. E., Defining, measuring and optimizing laser beam quality, Proc. of SPIE, 1868, 1993. Steck, D...PUMP DIODE CHARACTERIZATION FOR AN UNSTABLE DIODE-PUMPED ALKALI LASER RESONATOR THESIS Chad T. Taguba, Master Sergeant, USAF AFIT-ENP-13-M-33
The 20 GHz solid state transmitter design, impatt diode development and reliability assessment
NASA Technical Reports Server (NTRS)
Picone, S.; Cho, Y.; Asmus, J. R.
1984-01-01
A single drift gallium arsenide (GaAs) Schottky barrier IMPATT diode and related components were developed. The IMPATT diode reliability was assessed. A proof of concept solid state transmitter design and a technology assessment study were performed. The transmitter design utilizes technology which, upon implementation, will demonstrate readiness for development of a POC model within the 1982 time frame and will provide an information base for flight hardware capable of deployment in a 1985 to 1990 demonstrational 30/20 GHz satellite communication system. Life test data for Schottky barrier GaAs diodes and grown junction GaAs diodes are described. The results demonstrate the viability of GaAs IMPATTs as high performance, reliable RF power sources which, based on the recommendation made herein, will surpass device reliability requirements consistent with a ten year spaceborne solid state power amplifier mission.
Practical internal combustion engine laser spark plug development
NASA Astrophysics Data System (ADS)
Myers, Michael J.; Myers, John D.; Guo, Baoping; Yang, Chengxin; Hardy, Christopher R.
2007-09-01
Fundamental studies on laser ignition have been performed by the US Department of Energy under ARES (Advanced Reciprocating Engines Systems) and by the California Energy Commission under ARICE (Advanced Reciprocating Internal Combustion Engine). These and other works have reported considerable increases in fuel efficiencies along with substantial reductions in green-house gas emissions when employing laser spark ignition. Practical commercial applications of this technology require low cost high peak power lasers. The lasers must be small, rugged and able to provide stable laser beam output operation under adverse mechanical and environmental conditions. New DPSS (Diode Pumped Solid State) lasers appear to meet these requirements. In this work we provide an evaluation of HESP (High Efficiency Side Pumped) DPSS laser design and performance with regard to its application as a practical laser spark plug for use in internal combustion engines.
Krupke, William F.; Payne, Stephen A.; Marshall, Christopher D.
2001-01-01
The invention provides an efficient, compact means of generating blue laser light at a wavelength near .about.493+/-3 nm, based on the use of a laser diode-pumped Yb-doped laser crystal emitting on its zero phonon line (ZPL) resonance transition at a wavelength near .about.986+/-6 nm, whose fundamental infrared output radiation is harmonically doubled into the blue spectral region. The invention is applied to the excitation of biofluorescent dyes (in the .about.490-496 nm spectral region) utilized in flow cytometry, immunoassay, DNA sequencing, and other biofluorescence instruments. The preferred host crystals have strong ZPL fluorecence (laser) transitions lying in the spectral range from .about.980 to .about.992 nm (so that when frequency-doubled, they produce output radiation in the spectral range from 490 to 496 nm). Alternate preferred Yb doped tungstate crystals, such as Yb:KY(WO.sub.4).sub.2, may be configured to lase on the resonant ZPL transition near 981 nm (in lieu of the normal 1025 nm transition). The laser light is then doubled in the blue at 490.5 nm.
3 μm CW lasers for myringotomy and microsurgery.
Linden, Kurt J; Pfeffer, Christian P; Sousa, John Gary; D'Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S
2013-03-08
This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899.
3-μm CW lasers for myringotomy and microsurgery
NASA Astrophysics Data System (ADS)
Linden, Kurt J.; Pfeffer, Christian P.; Sousa, John Gary; D'Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S.
2013-03-01
This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899.
3 μm CW lasers for myringotomy and microsurgery
Linden, Kurt J.; Pfeffer, Christian P.; Sousa, John Gary; D’Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S.
2013-01-01
This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899. PMID:24382990
Diode-Laser Pumped Far-Infrared Local Oscillator Based on Semiconductor Quantum Wells
NASA Technical Reports Server (NTRS)
Kolokolov, K.; Li, J.; Ning, C. Z.; Larrabee, D. C.; Tang, J.; Khodaparast, G.; Kono, J.; Sasa, S.; Inoue, M.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
The contents include: 1) Tetrahertz Field: A Technology Gap; 2) Existing THZ Sources and Shortcomings; 3) Applications of A THZ Laser; 4) Previous Optical Pumped LW Generations; 5) Optically Pumped Sb based Intersubband Generation Whys; 6) InGaAs/InP/AlAsSb QWs; 7) Raman Enhanced Optical Gain; 8) Pump Intensity Dependence of THZ Gain; 9) Pump-Probe Interaction Induced Raman Shift; 10) THZ Laser Gain in InGaAs/InP/AlAsSb QWs; 11) Diode-Laser Pumped Difference Frequency Generation (InGaAs/InP/AlAsSb QWs); 12) 6.1 Angstrom Semiconductor Quantum Wells; 13) InAs/GaSb/AlSb Nanostructures; 14) InAs/AlSb Double QWs: DFG Scheme; 15) Sb-Based Triple QWs: Laser Scheme; and 16) Exciton State Pumped THZ Generation. This paper is presented in viewgraph form.
Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markosyan, Aram H.
Here, lasing on the D 1 transition (6 2P 1/2 → 6 2S 1/2) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D 2 transition (6 2S 1/2 → 6 2P 3/2) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D 1 transition, differences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side inmore » Ar/C 2H 6/Cs.« less
Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers
Markosyan, Aram H.
2018-01-05
Here, lasing on the D 1 transition (6 2P 1/2 → 6 2S 1/2) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D 2 transition (6 2S 1/2 → 6 2P 3/2) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D 1 transition, differences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side inmore » Ar/C 2H 6/Cs.« less
Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers.
Markosyan, Aram H
2018-01-08
Lasing on the D 1 transition (6 2 P 1/2 → 6 2 S 1/2 ) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D 2 transition (6 2 S 1/2 → 6 2 P 3/2 ) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D 1 transition, differences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side in Ar/C 2 H 6 /Cs.
ELI-beamlines: progress in development of next generation short-pulse laser systems
NASA Astrophysics Data System (ADS)
Rus, B.; Bakule, P.; Kramer, D.; Naylon, J.; Thoma, J.; Fibrich, M.; Green, J. T.; Lagron, J. C.; Antipenkov, R.; Bartoníček, J.; Batysta, F.; Baše, R.; Boge, R.; Buck, S.; Cupal, J.; Drouin, M. A.; Durák, M.; Himmel, B.; Havlíček, T.; Homer, P.; Honsa, A.; Horáček, M.; Hríbek, P.; Hubáček, J.; Hubka, Z.; Kalinchenko, G.; Kasl, K.; Indra, L.; Korous, P.; Košelja, M.; Koubíková, L.; Laub, M.; Mazanec, T.; Meadows, A.; Novák, J.; Peceli, D.; Polan, J.; Snopek, D.; Šobr, V.; Trojek, P.; Tykalewicz, B.; Velpula, P.; Verhagen, E.; Vyhlídka, Å.; Weiss, J.; Haefner, C.; Bayramian, A.; Betts, S.; Erlandson, A.; Jarboe, J.; Johnson, G.; Horner, J.; Kim, D.; Koh, E.; Marshall, C.; Mason, D.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Stolz, C.; Suratwala, T.; Telford, S.; Ditmire, T.; Gaul, E.; Donovan, M.; Frederickson, C.; Friedman, G.; Hammond, D.; Hidinger, D.; Chériaux, G.; Jochmann, A.; Kepler, M.; Malato, C.; Martinez, M.; Metzger, T.; Schultze, M.; Mason, P.; Ertel, K.; Lintern, A.; Edwards, C.; Hernandez-Gomez, C.; Collier, J.
2017-05-01
Overview of progress in construction and testing of the laser systems of ELI-Beamlines, accomplished since 2015, is presented. Good progress has been achieved in construction of all four lasers based largely on the technology of diode-pumped solid state lasers (DPSSL). The first part of the L1 laser, designed to provide 200 mJ <15 fs pulses at 1 kHz repetition rate, is up and running. The L2 is a development line employing a 10 J / 10 Hz cryogenic gas-cooled pump laser which has recently been equipped with an advanced cryogenic engine. Operation of the L3-HAPLS system, using a gas-cooled DPSSL pump laser and a Ti:sapphire broadband amplifier, was recently demonstrated at 16 J / 28 fs, at 3.33 Hz rep rate. Finally, the 5 Hz OPCPA front end of the L4 kJ laser is up running and amplification in the Nd:glass large-aperture power amplifiers was demonstrated.
Power degradation and reliability study of high-power laser bars at quasi-CW operation
NASA Astrophysics Data System (ADS)
Zhang, Haoyu; Fan, Yong; Liu, Hui; Wang, Jingwei; Zah, Chungen; Liu, Xingsheng
2017-02-01
The solid state laser relies on the laser diode (LD) pumping array. Typically for high peak power quasi-CW (QCW) operation, both energy output per pulse and long term reliability are critical. With the improved bonding technique, specially Indium-free bonded diode laser bars, most of the device failures were caused by failure within laser diode itself (wearout failure), which are induced from dark line defect (DLD), bulk failure, point defect generation, facet mirror damage and etc. Measuring the reliability of LD under QCW condition will take a rather long time. Alternatively, an accelerating model could be a quicker way to estimate the LD life time under QCW operation. In this report, diode laser bars were mounted on micro channel cooler (MCC) and operated under QCW condition with different current densities and junction temperature (Tj ). The junction temperature is varied by modulating pulse width and repetition frequency. The major concern here is the power degradation due to the facet failure. Reliability models of QCW and its corresponding failures are studied. In conclusion, QCW accelerated life-time model is discussed, with a few variable parameters. The model is compared with CW model to find their relationship.
Kersten, Hendrik; Lorenz, Matthias; Brockmann, Klaus J; Benter, Thorsten
2011-06-01
The performance of a KrF* bench top excimer laser and a compact diode pumped UV solid state (DPSS) Nd:YAG laser as photo-ionizing source in LC-APLI MS is compared. The commonly applied bench-top excimer laser, operating at 248 nm, provides power densities of the order of low MW/cm(2) on an illuminated area of 0.5 cm(2) (8 mJ/pulse, 5 ns pulse duration, beam waist area 0.5 cm(2), 3 MW/cm(2)). The DPSS laser, operating at 266 nm, provides higher power densities, however, on a two orders of magnitude smaller illuminated area (60 μJ/pulse, 1 ns pulse duration, beam waist area 2 × 10(-3) cm(2), 30 MW/cm(2)). In a common LC-APLI MS setup with direct infusion of a 10 nM pyrene solution, the DPSS laser yields a significantly smaller ion signal (0.9%) and signal to noise ratio (1.4%) compared with the excimer laser. With respect to the determined low detection limits (LODs) for PAHs of 0.1 fmol using an excimer laser, LODs in DPSS laser LC-APLI MS in the low pmol regime are expected. The advantages of the DPSS laser with respect to applicability (size, cost, simplicity) may render this light source the preferred one for APLI applications not focusing on ultimately high sensitivities. Furthermore, the impact of adjustable ion source parameters on the performance of both laser systems is discussed in terms of the spatial sensitivity distribution described by the distribution of ion acceptance (DIA) measurements. Perspectives concerning the impact on future APLI-MS applications are given.
Solid-state X-band Combiner Study
NASA Technical Reports Server (NTRS)
Pitzalis, O., Jr.; Russell, K. J.
1979-01-01
The feasibility of developing solid-state amplifiers at 4 and 10 GHz for application in spacecraft altimeters was studied. Bipolar-transistor, field-effect-transistor, and Impatt-diode amplifier designs based on 1980 solid-state technology are investigated. Several output power levels of the pulsed, low-duty-factor amplifiers are considered at each frequency. Proposed transistor and diode amplifier designs are illustrated in block diagrams. Projections of size, weight, and primary power requirements are given for each design.
Path toward a high-energy solid-state laser
NASA Astrophysics Data System (ADS)
Wood, Gary L.; Merkle, Larry D.; Dubinskii, Mark; Zandi, Bahram
2004-04-01
Lasers have come a long way since the first demonstration by Maiman of a ruby crystal laser in 1960. Lasers are used as scientific tools as well as for a wide variety of applications for both commercial industry and the military. Today lasers come in all types, shapes and sizes depending on their application. The solid-state laser has some distinct advantages in that it can be rugged, compact, and self contained, making it reliable over long periods of time. With the advent of diode laser pumping a ten times increase in overall laser efficiency has been realized. This significant event, and others, is changing the way solid-state lasers are applied and allows new possibilities. One of those new areas of exploration is the high energy laser. Solid-state lasers for welding are already developed and yield energies in the 0.5 to 6 kilojoule range. These lasers are at the forefront of what is possible in terms of high energy solid-state lasers. It is possible to achieve energies of greater than 100 kJ. These sorts of energies would allow applications, in addition to welding, such as directed energy weapons, extremely remote sensing, power transfer, propulsion, biological and chemical agent neutralization and unexploded and mine neutralization. This article will review these new advances in solid-state lasers and the different paths toward achieving a high energy laser. The advantages and challenges of each approach will be highlighted.
Characterization of resonant tunneling diodes for microwave and millimeter-wave detection
NASA Technical Reports Server (NTRS)
Mehdi, I.; East, J. R.; Haddad, G. I.
1991-01-01
The authors report on the direct detection capabilities of resonant tunneling diodes in the 10-100 GHz range. An open circuit voltage sensitivity of 1750 mV/mW (in Ka-band) was measured. This is higher than the sensitivity of comparatively based commercially available solid-state detectors. The detector properties are a strong function of diode bias and the measured tangential signal sensitivity (-32 dBm at Ka-band with 1-MHz bandwidth) and the dynamic range (25 dB) of the diode are smaller compared to other solid-state detectors.
Sudo, S; Ohtomo, T; Otsuka, K
2015-08-01
We achieved a highly sensitive method for observing the motion of colloidal particles in a flowing suspension using a self-mixing laser Doppler velocimeter (LDV) comprising a laser-diode-pumped thin-slice solid-state laser and a simple photodiode. We describe the measurement method and the optical system of the self-mixing LDV for real-time measurements of the motion of colloidal particles. For a condensed solution, when the light scattered from the particles is reinjected into the solid-state laser, the laser output is modulated in intensity by the reinjected laser light. Thus, we can capture the motion of colloidal particles from the spectrum of the modulated laser output. For a diluted solution, when the relaxation oscillation frequency coincides with the Doppler shift frequency, fd, which is related to the average velocity of the particles, the spectrum reflecting the motion of the colloidal particles is enhanced by the resonant excitation of relaxation oscillations. Then, the spectral peak reflecting the motion of colloidal particles appears at 2×fd. The spectrum reflecting the motion of colloidal particles in a flowing diluted solution can be measured with high sensitivity, owing to the enhancement of the spectrum by the thin-slice solid-state laser.
NASA Astrophysics Data System (ADS)
Jones, Ivy Krystal
In this dissertation the material development and optical spectroscopy of Pr3+ activated low phonon energy halide crystals is presented for possible applications in resonantly pumped eye-safe solid-state laser gain media. In the last twenty years, the developments in fiber and diode lasers have enabled highly efficient resonant pumping of Pr3+ doped crystals for possible lasing in the 1.6--1.7 microm region. In this work, the results of the purification, crystal growth, and near-infrared (NIR) spectroscopic characterization of Pr3+ doped lead (II) chloride, PbCl2 and lead (II) bromide, PbBr2 are presented. The investigated PbCl2 and PbBr2 crystals are non-hygroscopic with maximum phonon energies between ~180--200 cm-1, which enable efficient emission in the NIR spectral region (~ 1.6 microm) from the 3F3/3F4 → 3H4 transition of Pr3+ ions. The commercial available starting materials were purchased as ultra dry, high purity (~ 99.999 %) beads and purified through a combination of zone-refinement and halogenation. The crystal growth of Pr3+ doped PbCl 2 and PbBr2 was performed via vertical Bridgman technique using a two-zone furnace. The resulting Pr3+ doped PbCl 2 and PbBr2 crystals exhibited characteristic IR absorption bands in the 1.5--1.7 microm region (3H4 → 3F3/3F4), which allow for resonant pumping using commercial diode lasers. A broad IR emission band centered at ~1.6 microm was observed under ~1445 nm diode laser excitation from both Pr3+ doped halides. This dissertation presents comparative spectroscopic results for Pr 3+:PbCl2 and Pr3+:PbBr2 including NIR absorption and emission studies, lifetime measurements, modelling of radiative and non-radiative decay rates, determination of transition cross-section, and the net effective gain cross sections.
Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.
2000-01-01
A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.
High laser efficiency and photostability of pyrromethene dyes mediated by nonpolar solvent.
Gupta, Monika; Kamble, Priyadarshini; Rath, M C; Naik, D B; Ray, Alok K
2015-08-10
Many pyrromethene (PM) dyes have been shown to outperform established rhodamine dyes in terms of laser efficiency in the green-yellow spectral region, but their rapid photochemical degradation in commonly used ethanol or methanol solvents continues to limit its use in high average power liquid dye lasers. A comparative study on narrowband laser efficiency and photostability of commercially available PM567 and PM597 dyes, using nonpolar n-heptane and 1,4-dioxane and polar ethanol solvents, was carried out by a constructed pulsed dye laser, pumped by the second harmonic (532 nm) radiation of a Q-switched Nd:YAG laser. Interestingly, both nonpolar solvents showed a significantly higher laser photostability (∼100 times) as well as peak efficiency (∼5%) of these PM dyes in comparison to ethanol. The different photostability of the PM dyes was rationalized by determining their triplet-state spectra and capability to generate reactive singlet oxygen (O21) by energy transfer to dissolved oxygen in these solvents using pulse radiolysis. Heptane is identified as a promising solvent for these PM dyes for use in high average power dye lasers, pumped by copper vapor lasers or diode-pumped solid-state green lasers.
All-solid-state single longitudinal mode MOPA laser system
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Gu, Haidong; Hu, Wenhua; Ren, Shilong
2018-03-01
Side diode pumped electro-optical Q Switching Nd: YAG is demonstrated as master oscillator. F-P etalon and twisted-mode cavity combined configuration is introduced to select longitudinal modes. The seed light experiences a round trip through the two flash pump amplifiers, in this device, the 4f image transmission system and SBS phase conjugate mirror is adopted in order to improved beam quality, by compensating the heat depolarization effect and eliminate wave-front distortion. In the condition of 1 or 5 repetitions of the wavelength at 1064nm, it produces the pulse energy of 300mJ, pulse width of 12ns, and energy instability (RMS) below 3% in single longitudinal mode operation. With a type two-phase matched KTP crystal, 532nm green light is yielded, at 1 Hz repetition rate, the pulse energy of green light is more than 150mJ.
NASA Astrophysics Data System (ADS)
Frank, M.; Jelínek, M., Jr.; Vyhlídal, D.; Kubeček, V.; Ivleva, L. I.; Zverev, P. G.; Smetanin, S. N.
2018-02-01
In this paper, we demonstrate the generation of three (1179, 1227, and 1323 nm) Stokes components of stimulated Raman scattering with long (925 cm-1 ) and short (332 cm-1 ) Raman shifts in an all-solid-state, synchronously pumped, extra-cavity Raman laser based on a BaWO4 crystal excited by a quasi-continuous, 36 ps, diode side-pumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. We achieved the strongest 12-fold pulse shortening down to 3 ps at the 925 cm-1 + 332 cm-1 shifted 1227 nm wavelength due to a shorter dephasing time (wider linewidth) of the short-shift 332 cm-1 Raman line, resulting in a peak power of 2.5 kW.
Narrowband diode laser pump module for pumping alkali vapors.
Rotondaro, M D; Zhdanov, B V; Shaffer, M K; Knize, R J
2018-04-16
We describe a method of line narrowing and frequency-locking a diode laser stack to an alkali atomic line for use as a pump module for Diode Pumped Alkali Lasers. The pump module consists of a 600 W antireflection coated diode laser stack configured to lase using an external cavity. The line narrowing and frequency locking is accomplished by introducing a narrowband polarization filter based on magneto-optical Faraday effect into the external cavity, which selectively transmits only the frequencies that are in resonance with the 6 2 S 1/2 → 6 2 P 3/2 transition of Cs atoms. The resulting pump module has demonstrated that a diode laser stack, which lases with a line width of 3 THz without narrowbanding, can be narrowed to 10 GHz. The line narrowed pump module produced 518 Watts that is 80% of the power generated by the original broadband diode laser stack.
Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode
Backus, Sterling; Colorado State Univ., Fort Collins, CO; Kirchner, Matt; ...
2017-05-18
We demonstrate a direct diode-pumped Kerr Lens Modelocked Ti:sapphire laser producing 13 fs pulses with 1.85 nJ energy at 78 MHz (145 mW) using a single laser diode pump. We also present a similar laser using three spectrally combined diodes, generating >300 mW output power with >50 nm bandwidth. We discuss the use of far-from TEM 00 pump laser sources, and their effect on the Kerr lens modelocking process.
Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, Sterling; Colorado State Univ., Fort Collins, CO; Kirchner, Matt
We demonstrate a direct diode-pumped Kerr Lens Modelocked Ti:sapphire laser producing 13 fs pulses with 1.85 nJ energy at 78 MHz (145 mW) using a single laser diode pump. We also present a similar laser using three spectrally combined diodes, generating >300 mW output power with >50 nm bandwidth. We discuss the use of far-from TEM 00 pump laser sources, and their effect on the Kerr lens modelocking process.
Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films
NASA Astrophysics Data System (ADS)
Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan
2004-03-01
Photoinduced birefringence in bacteriorhodopsin films was investigated using pump-probe method and its application for photonic switching explored. A diode-pumped second-harmonic YAG laser was used as a pumping beam and a diode laser at λ=660 nm was used as a probing beam. The pump and probe beams overlap at the sample. Without the pumping beam, the probing light cannot transmit the analyzer to the detector. However, due to the photoinduced anisotropy, a portion of the probing light is detected when the pumping beam is present. Since λ=660 nm is far from the absorption peak (˜570 nm) of the ground state, the photoinduced birefringence predominates. Using the intensity-dependent photoinduced birefringence in a bacteriorhodopsin film, we have demonstrated a photonic switch with ˜1000:1 contrast ratio, ˜0.6 s rise time and ˜1.5 s decay time.
Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range.
Zhang, Yuxia; Yu, Haohai; Zhang, Rui; Zhao, Gang; Zhang, Huaijin; Chen, Yanxue; Mei, Liangmo; Tonelli, Mauro; Wang, Jiyang
2017-02-01
Visible lasers are a fascinating regime, and their significance is illustrated by the 2014 Noble prizes in physics and chemistry. With the development of blue laser diodes (LDs), the LD-pumped solid-state visible lasers become a burgeoning direction today. Constrained by the scarce visible optical modulators, the solid-state ultrafast visible lasers are rarely realized. Based on the bandgap structure and optoelectronic properties of atomic-layer MoS2, it can be proposed that MoS2 has the potential as a visible optical modulator. Here, by originally revealing layer-dependent nonlinear absorption of the atomic-layer MoS2 in the visible range, broadband atomic-layer MoS2 optical modulators for the visible ultrafast pulse generation are developed and selected based on the proposed design criteria for novel two-dimensional (2D) optical modulators. By applying the selected MoS2 optical modulators in the solid-state praseodymium lasers, broadband mode-locked ultrafast lasers from 522 to 639 nm are originally realized. We believe that this Letter should promote the development of visible ultrafast photonics and further applications of 2D optoelectronic materials.
NASA Astrophysics Data System (ADS)
Iorsh, Ivan; Glauser, Marlene; Rossbach, Georg; Levrat, Jacques; Cobet, Munise; Butté, Raphaël; Grandjean, Nicolas; Kaliteevski, Mikhail A.; Abram, Richard A.; Kavokin, Alexey V.
2012-09-01
The main emission characteristics of electrically driven polariton lasers based on planar GaN microcavities with embedded InGaN quantum wells are studied theoretically. The polariton emission dependence on pump current density is first modeled using a set of semiclassical Boltzmann equations for the exciton polaritons that are coupled to the rate equation describing the electron-hole plasma population. Two experimentally relevant pumping geometries are considered, namely the direct injection of electrons and holes into the strongly coupled microcavity region and intracavity optical pumping via an embedded light-emitting diode. The theoretical framework allows the determination of the minimum threshold current density Jthr,min as a function of lattice temperature and exciton-cavity photon detuning for the two pumping schemes. A Jthr,min value of 5 and 6 A cm-2 is derived for the direct injection scheme and for the intracavity optical pumping one, respectively, at room temperature at the optimum detuning. Then an approximate quasianalytical model is introduced to derive solutions for both the steady-state and high-speed current modulation. This analysis makes it possible to show that the exciton population, which acts as a reservoir for the stimulated relaxation process, gets clamped once the condensation threshold is crossed, a behavior analogous to what happens in conventional laser diodes with the carrier density above threshold. Finally, the modulation transfer function is calculated for both pumping geometries and the corresponding cutoff frequency is determined.
Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers
NASA Technical Reports Server (NTRS)
Hwang, In H.; Lee, Ja H.
1991-01-01
The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.
808nm high-power high-efficiency GaAsP/GaInP laser bars
NASA Astrophysics Data System (ADS)
Wang, Ye; Yang, Ye; Qin, Li; Wang, Chao; Yao, Di; Liu, Yun; Wang, Lijun
2008-11-01
808nm high power diode lasers, which is rapidly maturing technology technically and commercially since the introduction in 1999 of complete kilowatt-scale diode laser systems, have important applications in the fields of industry and pumping solid-state lasers (DPSSL). High power and high power conversion efficiency are extremely important in diode lasers, and they could lead to new applications where space, weight and electrical power are critical. High efficiency devices generate less waste heat, which means less strain on the cooling system and more tolerance to thermal conductivity variation, a lower junction temperature and longer lifetimes. Diode lasers with Al-free materials have superior power conversion efficiency compared with conventional AlGaAs/GaAs devices because of their lower differential series resistance and higher thermal conductivity. 808nm GaAsP/GaInP broad-waveguide emitting diode laser bars with 1mm cavity length have been fabricated. The peak power can reach to 100.9W at 106.5A at quasicontinuous wave operation (200μs, 1000Hz). The maximum power conversion efficiency is 57.38%. Based on these high power laser bars, we fabricate a 1x3 arrays, the maximum power is 64.3W in continuous wave mode when the current is 25.0A. And the threshold current is 5.9A, the slope efficiency is 3.37 W/A.
Technology Development of Miniaturized Far-Infrared Sources for Biomolecular Spectroscopy
NASA Technical Reports Server (NTRS)
Kono, Junichiro
2003-01-01
The objective of this project was to develop a purely solid-state based, thus miniaturized, far-infrared (FIR) (also known as terahertz (THz)) wave source using III-V semiconductor nanostructures for biomolecular detection and sensing. Many biomolecules, such as DNA and proteins, have distinct spectroscopic features in the FIR wavelength range as a result of vibration-rotation-tunneling motions and various inter- and intra-molecule collective motions. Spectroscopic characterization of such molecules requires narrow linewidth, sufficiently high power, tunable (in wavelength), and coherent FIR sources. Unfortunately, the FIR frequency is one of the least technologically developed ranges in the electromagnetic spectrum. Currently available FIR sources based on non-solid state technology are bulky, inefficient, and very often incoherent. In this project we investigated antimonide based compound semiconductor (ABCS) nanostructures as the active medium to generate FIR radiation. The final goal of this project was to demonstrate a semiconductor THz source integrated with a pumping diode laser module to achieve a compact system for biomolecular applications.
[The design of all solid-state tunable pulsed Ti:sapphire laser system].
Chen, Zhe; Ku, Geng; Wan, Junchao; Wang, Wei; Zhou, Chuanqing
2013-05-01
This paper presented a design of broadly all solid-state tunable pulsed Ti:sapphire laser with high power and stable performance. The laser was pumped by custom-made Nd:YAG laser which had water cooling system and amplified by two stage amplifier. The method accomplished tunable output of all solid-state tunable pulsed Ti:sapphire laser by modifying the reflection angle of the back mirror. We investigated the relationship between the power of the pumping laser and the all solid-state tunable pulsed Ti: sapphire laser by changing the power of the pumping source.
Gürel, Kutan; Wittwer, Valentin J; Hakobyan, Sargis; Schilt, Stéphane; Südmeyer, Thomas
2017-03-15
We demonstrate the first diode-pumped Ti:sapphire laser frequency comb. It is pumped by two green laser diodes with a total pump power of 3 W. The Ti:sapphire laser generates 250 mW of average output power in 61-fs pulses at a repetition rate of 216 MHz. We generated an octave-spanning supercontinuum spectrum in a photonic-crystal fiber and detected the carrier envelope offset (CEO) frequency in a standard f-to-2f interferometer setup. We stabilized the CEO-frequency through direct current modulation of one of the green pump diodes with a feedback bandwidth of 55 kHz limited by the pump diode driver used in this experiment. We achieved a reduction of the CEO phase noise power spectral density by 140 dB at 1 Hz offset frequency. An advantage of diode pumping is the ability for high-bandwidth modulation of the pump power via direct current modulation. After this experiment, we studied the modulation capabilities and noise properties of green pump laser diodes with improved driver electronics. The current-to-output-power modulation transfer function shows a bandwidth larger than 1 MHz, which should be sufficient to fully exploit the modulation bandwidth of the Ti:sapphire gain for CEO stabilization in future experiments.
Optimizing UV laser focus profiles for improved MALDI performance.
Holle, Armin; Haase, Andreas; Kayser, Markus; Höhndorf, Jens
2006-06-01
Matrix assisted laser desorption/ionization (MALDI) applications, such as proteomics, genomics, clinical profiling and MALDI imaging, have created a growing demand for faster instrumentation. Since the commonly used nitrogen lasers have throughput and life span limitations, diode-pumped solid-state lasers are an alternative. Unfortunately this type of laser shows clear performance limitations in MALDI in terms of sensitivity, resolution and ease of use, for applications such as thin-layer sample preparations, acceptance of various matrices (e.g. DHB for glycopeptides) and MALDI imaging. While it is obvious that the MALDI process has some dependence on the characteristics of the laser used, it is unclear which features are the most critical in determining laser performance for MALDI. In this paper we show, for the first time, that a spatially structured laser beam profile in lieu of a Gaussian profile is of striking importance. This result enabled us to design diode-pumped Nd : YAG lasers that on various critical applications perform as well for MALDI as the nitrogen lasers and in some respects even better. The modulation of the beam profile appears to be a new parameter for optimizing the MALDI process. In addition, the results trigger new questions directing us to a better understanding of the MALDI process. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resonator design and performance estimation for a space-based laser transmitter
NASA Astrophysics Data System (ADS)
Agrawal, Lalita; Bhardwaj, Atul; Pal, Suranjan; Kamalakar, J. A.
2006-12-01
Development of a laser transmitter for space applications is a highly challenging task. The laser must be rugged, reliable, lightweight, compact and energy efficient. Most of these features are inherently achieved by diode pumping of solid state lasers. Overall system reliability can further be improved by appropriate optical design of the laser resonator besides selection of suitable electro-optical and opto-mechanical components. This paper presents the design details and the theoretically estimated performance of a crossed-porro prism based, folded Z-shaped laser resonator. A symmetrically pumped Nd: YAG laser rod of 3 mm diameter and 60 mm length is placed in the gain arm with total input peak power of 1800 W from laser diode arrays. Electro-optical Q-switching is achieved through a combination of a polarizer, a fractional waveplate and LiNbO 3 Q-switch crystal (9 x 9 x 25 mm) placed in the feedback arm. Polarization coupled output is obtained by optimizing azimuth angle of quarter wave plate placed in the gain arm. Theoretical estimation of laser output energy and pulse width has been carried out by varying input power levels and resonator length to analyse the performance tolerances. The designed system is capable of meeting the objective of generating laser pulses of 10 ns duration and 30 mJ energy @ 10 Hz.
High Efficiency End-Pumped Ho:Tm:YLF Disk Amplifier
NASA Technical Reports Server (NTRS)
Yu, Jirong; Singh, Upendra N.; Petros, Mulugeta; Axenson, Theresa J.; Barnes, Norman P.
1999-01-01
Space based coherent lidar for global wind measurement requires an all solid state laser system with high energy, high efficiency and narrow linewidth that operates in the eye safe region. A Q-switched, diode pumped Ho:Tm:YLF 2 micrometer laser with output energy of as much as 125 mJ at 6 Hz with an optical-to-optical efficiency of 3% has been reported. Single frequency operation of the laser was achieved by injection seeding. The design of this laser is being incorporated into NASA's SPARCLE (SPAce Readiness Coherent Lidar Experiment) wind lidar mission. Laser output energy ranging from 500 mJ to 2 J is required for an operational space coherent lidar. We previously developed a high energy Ho:Tm:YLF master oscillator and side pumped power amplifier system and demonstrated a 600-mJ single frequency pulse at a repetition rate of 10 Hz. Although the output energy is high, the optical-to-optical efficiency is only about 2%. Designing a high energy, highly efficient, conductively cooled 2-micrometer laser remains a challenge. In this paper, the preliminary result of an end-pumped amplifier that has a potential to provide a factor 3 of improvement in the system efficiency is reported.
Active mode-locked operation of a diode pumped colour-centre laser
NASA Astrophysics Data System (ADS)
Mazighi, K.; Doualan, J. L.; Hamel, J.; Margerie, J.; Mounier, D.; Ostrovsky, A.
1991-09-01
The cw laser diode pumping of an (F +2) ∗ colour centre laser has been recently demonstrated in our laboratory. The intensity of the pumping diode can easily be hf modulated. We present here the first experiments in which the colour centre laser is synchronously pumped at the mode spacing frequency, resulting in the emission of clean, regularly spaced pulses. The opto-electronic feedback is a very promising method of obtaining such a pulsed operation of a diode pumped colour centre laser without the use of an external hf oscillator.
Wang, Song; Cottrill, Anton L; Kunai, Yuichiro; Toland, Aubrey R; Liu, Pingwei; Wang, Wen-Jun; Strano, Michael S
2017-05-24
Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young's moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell-Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences - analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.
NASA Technical Reports Server (NTRS)
Heyman, Joseph S.
1993-01-01
Pump uses acoustic-radiation forces. Momentum transferred from sound waves to sound-propagating material in way resulting in net pumping action on material. Acoustic pump is solid-state pump. Requires no moving parts, entirely miniaturized, and does not invade pumped environment. Silent, with no conventional vibration. Used as pump for liquid, suspension, gas, or any other medium interacting with radiation pressure. Also used where solid-state pump needed for reliability and controllability. In microgravity environment, device offers unusual control for low flow rates. For medical or other applications in which contamination cannot be allowed, offers noninvasive pumping force.
Search and Characterization of Optical Ceramics and Crystals for Diode-pumped Laser Oscillations
2013-04-01
results in a lower oscillation efficiency due to a strong loss of excitation energy during fast nonradiative interactions in Nd-Nd pairs than...associated nonradiative losses due to the formation of unquenched Nd-La pairs. To ensure that Nd-La pairs predominate in a SrF2-LaF3 solid solution, a
NASA Astrophysics Data System (ADS)
Dixit, S. K.
The field of gas lasers, started with the invention of He-Ne laser in 1961, has witnessed tremendous growth in terms of technology development, research into gaseous gain medium, resonator physics and application in widely diverse arenas. This was possible due to high versatility of gas lasers in terms of operating wavelengths, power, beam quality and mode of operation. In recent years, there is a definite trend to replace the gas lasers, wherever possible, by more efficient and compact solid-state lasers. However, for many industrial, medical and military applications, the gas lasers still rule the roost due to their high-power capabilities with good beam quality at specific wavelengths. This chapter presents a short review covering the operating principle, important technical details and application potential of all the important gas lasers such as He-Ne, CO2, argon ion, copper vapour, excimer and chemical lasers. These neutral atoms, ions and molecule gas lasers are discussed as per applicable electrical, chemical and optical excitation schemes. The optically pumped gas lasers, recently experiencing resurgence, are discussed in the context of far infrared THz molecular lasers, diode-pumped alkali lasers and optically pumped gas-filled hollow-core fibre lasers.
Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser.
Xu, Jin-Long; Li, Xian-Lei; Wu, Yong-Zhong; Hao, Xiao-Peng; He, Jing-Liang; Yang, Ke-Jian
2011-05-15
High-quality graphene sheets with lateral size over 20 μm have been obtained by bath sonicating after subjecting the wormlike graphite marginally to mixed oxidizer. To date, to our knowledge, they are the largest graphene sheets prepared by exfoliation in the liquid phase. A saturable absorber mirror was fabricated based on these sheets. We exploited it to realize mode-locking operation in a diode-pumped Nd:GdVO(4) laser. A pulse duration of 16 ps was produced with an average power of 360 mW and a highest pulse energy of 8.4 nJ for a graphene mode-locked laser. © 2011 Optical Society of America
Generation of 1-J bursts with picosecond pulses from Perla B thin-disk laser system
NASA Astrophysics Data System (ADS)
Chyla, Michal; Nagisetty, Siva S.; Severova, Patricie; Zhou, Huang; Smrz, Martin; Endo, Akira; Mocek, Tomas
2018-02-01
In many fields of modern physics and industrial applications high-average power pulsed diode-pumped solid-state lasers are essential. Scaling of these lasers towards higher pulse energies is often limited by the onset of thermal effects which are determined by the average power. In this paper we would like to propose a way of increasing the pulse energies by operating the PERLA B laser system in 100 Hz burst mode with 1 ms burst duration and intra-burst repetition rate of 10 kHz. The CPA-based system incorporates fiber front-end, regenerative amplifier and the multipass amplifier followed by the booster amplifier and <2ps compressor.
Next-generation laser for inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C; Bibeau, C; Bayramian, A
1998-03-13
We are developing and building the ''Mercury'' laser system as the first in a series of a new generation of diode-pumped solid-state lasers (DPSSL) for advanced high energy density (HED) physics experiments at LLNL. Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced Inertial Confinement Fusion (ICF) goals. Primary performance goals include 10% efficiencies at 10 Hz and a <10 ns pulse with l {omega} energies of 100 J and with 2 {omega}/3 {omega} frequency conversion. Achieving this performance will provide a near term capability for HED experiments and prove the potential of DPSSLsmore » for inertial fusion energy (IFE).« less
Status of HiLASE project: High average power pulsed DPSSL systems for research and industry
NASA Astrophysics Data System (ADS)
Mocek, T.; Divoky, M.; Smrz, M.; Sawicka, M.; Chyla, M.; Sikocinski, P.; Vohnikova, H.; Severova, P.; Lucianetti, A.; Novak, J.; Rus, B.
2013-11-01
We introduce the Czech national R&D project HiLASE which focuses on strategic development of advanced high-repetition rate, diode pumped solid state laser (DPSSL) systems that may find use in research, high-tech industry and in the future European large-scale facilities such as HiPER and ELI. Within HiLASE we explore two major concepts: thin-disk and cryogenically cooled multislab amplifiers capable of delivering average output powers above 1 kW level in picosecond-to-nanosecond pulsed regime. In particular, we have started a programme of technology development to demonstrate the scalability of multislab concept up to the kJ level at repetition rate of 1-10 Hz.
Wang, Yaoting; Liu, Jianli; Liu, Qin; Li, Yuanji; Zhang, Kuanshou
2010-06-07
We report a continuous-wave (cw) single frequency Nd:YAG blue laser at 473 nm end-pumped by a laser diode. A ring laser resonator was designed, the frequency doubling efficiency and the length of nonlinear crystal were optimized based on the investigation of the influence of the frequency doubling efficiency on the thermal lensing effect induced by energy-transfer upconversion. By intracavity frequency doubling with PPKTP crystal, an output power of 1 W all-solid-state cw blue laser of single-frequency operation was achieved. The stability of the blue output power was better than +/- 1.8% in the given four hours.
Near-ultraviolet laser diodes for brilliant ultraviolet fluorophore excitation.
Telford, William G
2015-12-01
Although multiple lasers are now standard equipment on most modern flow cytometers, ultraviolet (UV) lasers (325-365 nm) remain an uncommon excitation source for cytometry. Nd:YVO4 frequency-tripled diode pumped solid-state lasers emitting at 355 nm are now the primary means of providing UV excitation on multilaser flow cytometers. Although a number of UV excited fluorochromes are available for flow cytometry, the cost of solid-state UV lasers remains prohibitively high, limiting their use to all but the most sophisticated multilaser instruments. The recent introduction of the brilliant ultraviolet (BUV) series of fluorochromes for cell surface marker detection and their importance in increasing the number of simultaneous parameters for high-dimensional analysis has increased the urgency of including UV sources in cytometer designs; however, these lasers remain expensive. Near-UV laser diodes (NUVLDs), a direct diode laser source emitting in the 370-380 nm range, have been previously validated for flow cytometric analysis of most UV-excited probes, including quantum nanocrystals, the Hoechst dyes, and 4',6-diamidino-2-phenylindole. However, they remain a little-used laser source for cytometry, despite their significantly lower cost. In this study, the ability of NUVLDs to excite the BUV dyes was assessed, along with their compatibility with simultaneous brilliant violet (BV) labeling. A NUVLD emitting at 375 nm was found to excite most of the available BUV dyes at least as well as a UV 355 nm source. This slightly longer wavelength did produce some unwanted excitation of BV dyes, but at sufficiently low levels to require minimal additional compensation. NUVLDs are compact, relatively inexpensive lasers that have higher power levels than the newest generation of small 355 nm lasers. They can, therefore, make a useful, cost-effective substitute for traditional UV lasers in multicolor analysis involving the BUV and BV dyes. Published 2015 Wiley Periodicals Inc. on behalf of ISAC.
Wierer, Jonathan; Tsao, Jeffrey Y.
2014-09-01
III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less
1.55 µm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser
NASA Astrophysics Data System (ADS)
Zhang, Z. Y.; Oehler, A. E. H.; Resan, B.; Kurmulis, S.; Zhou, K. J.; Wang, Q.; Mangold, M.; Süedmeyer, T.; Keller, U.; Weingarten, K. J.; Hogg, R. A.
2012-06-01
High pulse repetition rate (>=10 GHz) diode-pumped solid-state lasers, modelocked using semiconductor saturable absorber mirrors (SESAMs) are emerging as an enabling technology for high data rate coherent communication systems owing to their low noise and pulse-to-pulse optical phase-coherence. Quantum dot (QD) based SESAMs offer potential advantages to such laser systems in terms of reduced saturation fluence, broader bandwidth, and wavelength flexibility. Here, we describe the development of an epitaxial process for the realization of high optical quality 1.55 µm In(Ga)As QDs on GaAs substrates, their incorporation into a SESAM, and the realization of the first 10 GHz repetition rate QD-SESAM modelocked laser at 1.55 µm, exhibiting ~2 ps pulse width from an Er-doped glass oscillator (ERGO). With a high areal dot density and strong light emission, this QD structure is a very promising candidate for many other applications, such as laser diodes, optical amplifiers, non-linear and photonic crystal based devices.
A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping.
Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung
2014-07-01
An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies.
A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping
Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S.; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung
2014-01-01
An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies. PMID:25379101
NASA Astrophysics Data System (ADS)
Frank, Milan; Jelínek, Michal; Kubeček, Václav; Ivleva, Lyudmila I.; Zverev, Petr G.; Smetanin, Sergei
2017-12-01
A lot of attention is currently focused on synchronously pumped, extra-cavity crystalline Raman lasers generating one or two Stokes Raman components in KGW or diamond Raman-active crystals, and also generating additional components of stimulated polariton scattering in lithium niobate crystal having both cubic and quadratic nonlinearities. In this contribution we report on generation of more than two Stokes components of stimulated Raman scattering with different Raman shifts in the all-solid-state, synchronously pumped, extra-cavity Raman laser based on the Raman-active a-cut BaWO4 crystal excited by a mode-locked, 220 nJ, 36 ps, 150 MHz diode sidepumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. Excitation by the pumping radiation polarized along the BaWO4 crystal optical axis resulted in the Raman generation with not only usual (925cm - 1), but also additional (332cm - 1) Raman shift. Besides the 1180-nm first and 1323 nm second Stokes components with the Raman shift of 925cm - 1 from the 1063nm fundamental laser wavelength, we have achieved generation of the additional 1227 nm Raman component with different Raman shift of 332cm - 1 from the 1180nm component. At the 1227 nm component the strongest 12-times pulse shortening from 36ps down to 3ps was obtained due to shorter dephasing time of this additional Raman line (3ps for the 332-cm - 1 line instead of 6.5ps for the 925cm - 1 line). It has to be also noted that the 1225 nm generation is intracavity pumped by the 1179 nm first Stokes component resulting in the strongest pulse shortening close to the 332cm -1 line dephasing time (3ps). Slope efficiency of three Stokes components generation exceeded 20%.
Simulation of deleterious processes in a static-cell diode pumped alkali laser
NASA Astrophysics Data System (ADS)
Oliker, Benjamin Q.; Haiducek, John D.; Hostutler, David A.; Pitz, Greg A.; Rudolph, Wolfgang; Madden, Timothy J.
2014-02-01
The complex interactions in a diode pumped alkali laser (DPAL) gain cell provide opportunities for multiple deleterious processes to occur. Effects that may be attributable to deleterious processes have been observed experimentally in a cesium static-cell DPAL at the United States Air Force Academy [B.V. Zhdanov, J. Sell, R.J. Knize, "Multiple laser diode array pumped Cs laser with 48 W output power," Electronics Letters, 44, 9 (2008)]. The power output in the experiment was seen to go through a "roll-over"; the maximum power output was obtained with about 70 W of pump power, then power output decreased as the pump power was increased beyond this point. Research to determine the deleterious processes that caused this result has been done at the Air Force Research Laboratory utilizing physically detailed simulation. The simulations utilized coupled computational fluid dynamics (CFD) and optics solvers, which were three-dimensional and time-dependent. The CFD code used a cell-centered, conservative, finite-volume discretization of the integral form of the Navier-Stokes equations. It included thermal energy transport and mass conservation, which accounted for chemical reactions and state kinetics. Optical models included pumping, lasing, and fluorescence. The deleterious effects investigated were: alkali number density decrease in high temperature regions, convective flow, pressure broadening and shifting of the absorption lineshape including hyperfine structure, radiative decay, quenching, energy pooling, off-resonant absorption, Penning ionization, photoionization, radiative recombination, three-body recombination due to free electron and buffer gas collisions, ambipolar diffusion, thermal aberration, dissociative recombination, multi-photon ionization, alkali-hydrocarbon reactions, and electron impact ionization.
Temperature effects on tunable cw Alexandrite lasers under diode end-pumping.
Kerridge-Johns, William R; Damzen, Michael J
2018-03-19
Diode pumped Alexandrite is a promising route to high power, efficient and inexpensive lasers with a broad (701 nm to 858 nm) gain bandwidth; however, there are challenges with its complex laser dynamics. We present an analytical model applied to experimental red diode end-pumped Alexandrite lasers, which enabled a record 54 % slope efficiency with an output power of 1.2 W. A record lowest lasing wavelength (714 nm) and record tuning range (104 nm) was obtained by optimising the crystal temperature between 8 °C and 105 °C in the vibronic mode. The properties of Alexandrite and the analytical model were examined to understand and give general rules in optimising Alexandrite lasers, along with their fundamental efficiency limits. It was found that the lowest threshold laser wavelength was not necessarily the most efficient, and that higher and lower temperatures were optimal for longer and shorter laser wavelengths, respectively. The pump excited to ground state absorption ratio was measured to decrease from 0.8 to 0.7 by changing the crystal temperature from 10 °C to 90 °C.
Harmonic balance optimization of terahertz Schottky diode multipliers using an advanced device model
NASA Technical Reports Server (NTRS)
Schlecht, E. T.; Chattopadhyay, G.; Maestrini, A.; Pukala, D.; Gill, J.; Mehdi, I.
2002-01-01
Substantial proress has been made recently in the advancement of solid state terahertz sources using chains of Schottky diode frequency multipliers. We have developed a harmonic balance simulator and corresponding diode model that incorporates many other factors participating in the diode behavior.
Broadband Pumping Effects on the Diode Pumped Alkali Laser
2011-03-01
vaccuum) Cs…………………………………………………………………………………... Cesium E……………………………………………..………………………..ethane concentration Fr…………………………………………………………………….……………Francium gi...turbulence the ABL has a limited range of approximately 600 km for liquid fueled ICBM and 300 km for solid fueled ICBM. In addition, it takes the...narrow-banding, laser photon engine [2]. An alkali, typically Rubidium (Rb) or Cesium (Cs), is heated to its gas phase and subject to diode
Solid-State Ionic Diodes Demonstrated in Conical Nanopores
Plett, Timothy S.; Cai, Wenjia; Le Thai, Mya; ...
2017-02-27
Ionic transport at the nanoscale features phenomena that are not observed in larger systems. Nonlinear current–voltage curves characteristic of ionic diodes as well as ion selectivity are examples of effects observed at the nanoscale. Many man-made nanopore systems are inspired by biological channels in a cell membrane, thus measurements are often performed in aqueous solutions. Consequently, much less is known about ionic transport in nonaqueous systems, especially in solid-state electrolytes. Here we show ionic transport through single pores filled with gel electrolyte of poly(methyl methacrylate) (PMMA) doped with LiClO 4 in propylene carbonate. The system has no liquid interface andmore » the ionic transport occurs through the porous gel structure. We demonstrate that a conically shaped nanopore filled with the gel rectifies the current and works as a solid-state ionic diode.« less
Losses, gain, and lasing in organic and perovskite active materials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pourdavoud, Neda; Riedl, Thomas J.
2016-09-01
Organic solid state lasers (OSLs) based on semiconducting polymers or small molecules have seen some significant progress over the past decade. Highly efficient organic gain materials combined with high-Q resonator geometries (distributed feedback (DFB), VCSEL, etc.) have enabled OSLs, optically pumped by simple inorganic laser diodes or even LEDs. However, some fundamental goals remain to be reached, like continuous wave (cw) operation and injection lasing. I will address various loss mechanisms related to accumulated triplet excitons or long-lived polarons that in combination with the particular photo-physics of organic gain media state the dominant road-blocks on the way to reach these goals. I will discuss the recent progress in fundamental understanding of these loss processes, which now provides a solid basis for modelling, e.g. of laser dynamics. Avenues to mitigate these fundamental loss mechanisms, e.g. by alternative materials will be presented. In this regard, a class of gain materials based on organo-lead halide perovskites re-entered the scene as light emitters, recently. Enjoying a tremendous lot of attention as active material for solution processed solar cells with a 20+% efficiency, they have recently unveiled their exciting photo-physics for lasing applications. Optically pumped lasing in these materials has been achieved. I will discuss some of the unique properties that render this class of materials a promising candidate to overcome some of the limitations of "classical" organic gain media.
Bykov, Sergei V; Mao, Michael; Gares, Katie L; Asher, Sanford A
2015-08-01
We describe a new compact acousto-optically Q-switched diode-pumped solid-state (DPSS) intracavity frequency-tripled neodymium-doped yttrium vanadate laser capable of producing ~100 mW of 213 nm power quasi-continuous wave as 15 ns pulses at a 30 kHz repetition rate. We use this new laser in a prototype of a deep ultraviolet (UV) Raman standoff spectrometer. We use a novel high-throughput, high-resolution Echelle Raman spectrograph. We measure the deep UV resonance Raman (UVRR) spectra of solid and solution sodium nitrate (NaNO3) and ammonium nitrate (NH4NO3) at a standoff distance of ~2.2 m. For this 2.2 m standoff distance and a 1 min spectral accumulation time, where we only monitor the symmetric stretching band, we find a solid state NaNO3 detection limit of ~100 μg/cm(2). We easily detect ~20 μM nitrate water solutions in 1 cm path length cells. As expected, the aqueous solutions UVRR spectra of NaNO3 and NH4NO3 are similar, showing selective resonance enhancement of the nitrate (NO3(-)) vibrations. The aqueous solution photochemistry is also similar, showing facile conversion of NO3(-) to nitrite (NO2(-)). In contrast, the observed UVRR spectra of NaNO3 and NH4NO3 powders significantly differ, because their solid-state photochemistries differ. Whereas solid NaNO3 photoconverts with a very low quantum yield to NaNO2, the NH4NO3 degrades with an apparent quantum yield of ~0.2 to gaseous species.
Laser-diode-pumped 1319-nm monolithic non-planar ring single-frequency laser
NASA Astrophysics Data System (ADS)
Wang, Qing; Gao, Chunqing; Zhao, Yan; Yang, Suhui; Wei, Guanghui; 2, Dongmei Hong
2003-10-01
Single-frequency 1319-nm laser was obtained by using a laser-diode-pumped monolithic Nd:YAG crystal with a non-planar ring oscillator (NPRO). When the NPRO laser was pumped by an 800-?m fiber coupled laser diode, the output power of the single-frequency 1319-nm laser was 220 mW, and the slope efficiency was 16%. With a 100-1m fiber coupled diode laser pumped, 99-mW single-frequency 1319-nm laser was obtained with a slope efficiency of 29%.
Rapid Prototyping: State of the Art
2003-10-23
Rapid Prototyping SCS Solid Creation System SLM Selective Laser Melting SLP Solid Laser diode Plotter SLS Selective Laser Sintering SOAR State of the...121,000, respectively. SLP stands for Sold Laser Diode Plotter. The machines are relatively slow and parts are small, so, to date, the products have been...Gigerenzer, H., “Directed Laser Welding of Metal Matrix Composite Structures for Space Based Applications,“ Triton Systems Inc., Chelmsford, MA., 1
Room temperature operation of 2.67 mJ pulse LD end pumped Q-switched Tm:YAG laser
NASA Astrophysics Data System (ADS)
Song, Xuedi; Wu, Chunting; Chen, Xinyu; Yu, Kai; Jin, Guangyong
2014-12-01
Due to 2 μm band in the absorption of water and CO2, the diode pumped solid state lasers with wavelength around 2 μm have important applications in laser medicine and remote sensing, such as it can be used as a scalpe or a light source of Coherent Doppler Wind Lidar and Differential Absorption Lidar. In the recently years, scientists have done much work on the development of such lasers. There're many reports on continuous Tm:YAG laser. However, the study on Q-switched Tm:YAG laser, which is more useful in applications, was very rare. As the light source of Coherent Doppler Wind Lidar, large energy and wide pulse width is desired. Current reports mostly adopted CW pumped source, but it would make a mount of heat. Pulse pumping method could reduce the heat accumulation and improve the heat stability of the laser. How to improve the single pulse energy was the focus of current study. In this paper, a single end bonding Tm:YAG crystal with Tm3+ doping concentration of 3.5at.% was used. Acousto-optic (AO) Q-switched (GOOCH and HOUSEGO QS041-10M-HI8) operation was adopted in our experiment. In the repetition frequency of 100Hz, a maximum single energy of 2.67 mJ (measured by Ophir 30A-BB) and the narrowest pulse width of 149 ns (measured by Vigo PCI-3TE-12 detector) were achieved at room temperature. The M2x was 1.31 and the M2y was 1.35 (measured by Spiricon Pyrocam-III). Tm:YAG laser was developed by using a pulse diode pumped L shape resonant cavity. The transmittance of the curve output mirror was 4% and the curvature radius of which was 300 mm. The output center wavelength of the laser was measured to be 2013.5 nm (measured by YOKOGAWA AQ6375).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savanier, Marc, E-mail: msavanier@eng.ucsd.edu; Mookherjea, Shayan, E-mail: smookherjea@eng.ucsd.edu
Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, wemore » generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.« less
NASA Astrophysics Data System (ADS)
Savanier, Marc; Mookherjea, Shayan
2016-06-01
Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, we generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.
Use of a novel tunable solid state disk laser as a diagnostic system for laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Paa, Wolfgang; Triebel, Wolfgang
2004-09-01
An all solid state disk laser system-named "Advanced Disk Laser (ADL)" -particularly tailored for laser induced fluorescence (LIF) in combustion processes is presented. The system currently under development comprises an Yb:YAG-seedlaser and a regenerative amplifier. Both are based on the disk laser concept as a new laser architecture. This allows a tunable, compact, efficient diode pumped solid state laser (DPSSL) system with repetition rates in the kHz region. After frequency conversion to the UV-spectral region via third and fourth harmonics generation, this laser-due to its unique properties such as single-frequency operation, wavelength tuneability and excellent beam profile-is well suited for excitation of small molecules such as formaldehyde, OH, NO or O2, which are characteristic for combustion processes. Using the method of planar laser induced fluorescence (PLIF) we observed concentration distributions of formaldehyde in cool and hot flames of a specially designed diethyl-ether burner. The images recorded with 1 kHz repetition rate allow visualizing the distribution of formaldehyde on a 1 ms time scale. This demonstrates for the first time the usability of this novel laser for LIF measurements and is the first step towards integration of the ADL into capsules for drop towers and the international space station.
Rotationally resolved fluorescence spectroscopy of molecular iodine
NASA Astrophysics Data System (ADS)
Lemon, Christopher; Canagaratna, Sebastian; Gray, Jeffrey
2008-03-01
Vibration-electronic spectroscopy of I2 vapor is a common, important experiment in physical chemistry lab courses. We use narrow bandwidth diode-pumped solid state (DPSS) lasers to excite specific rotational levels; these lasers are surprisingly stable and are now available at low cost. We also use efficient miniature fiber-optic spectrometers to resolve rotational fluorescence patterns in a vibrational progression. The resolution enables thorough and accurate analysis of spectroscopic constants for the ground electronic state. The high signal-to-noise ratio, which is easily achieved, also enables students to precisely measure fluorescence band intensities, providing further insight into vibrational wavefunctions and the molecular potential function. We will provide a detailed list of parts for the apparatus as well as modeling algorithms with statistical evaluation to facilitate widespread adoption of these experimental improvements by instructors of intermediate and advanced lab courses.
CO.sub.2 optically pumped distributed feedback diode laser
Rockwood, Stephen D.
1980-01-01
A diode laser optically pumped by a CO.sub.2 coherent source. Interference fringes generated by feeding the optical pumping beam against a second beam, periodically alter the reflectivity of the diode medium allowing frequency variation of the output signal by varying the impingent angle of the CO.sub.2 laser beams.
From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes
Wu, Xiaojian
2017-01-01
Asymmetrically shaped nanopores have been shown to rectify the ionic current flowing through pores in a fashion similar to a p-n junction in a solid-state diode. Such asymmetric nanopores include conical pores in polymeric membranes and pyramidal pores in mica membranes. We review here both theoretical and experimental aspects of this ion current rectification phenomenon. A simple intuitive model for rectification, stemming from previously published more quantitative models, is discussed. We also review experimental results on controlling the extent and sign of rectification. It was shown that ion current rectification produces a related rectification of electroosmotic flow (EOF) through asymmetric pore membranes. We review results that show how to measure and modulate this EOF rectification phenomenon. Finally, EOF rectification led to the development of an electroosmotic pump that works under alternating current (AC), as opposed to the currently available direct current EOF pumps. Experimental results on AC EOF rectification are reviewed, and advantages of using AC to drive EOF are discussed. PMID:29240676
From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes.
Experton, Juliette; Wu, Xiaojian; Martin, Charles R
2017-12-14
Asymmetrically shaped nanopores have been shown to rectify the ionic current flowing through pores in a fashion similar to a p-n junction in a solid-state diode. Such asymmetric nanopores include conical pores in polymeric membranes and pyramidal pores in mica membranes. We review here both theoretical and experimental aspects of this ion current rectification phenomenon. A simple intuitive model for rectification, stemming from previously published more quantitative models, is discussed. We also review experimental results on controlling the extent and sign of rectification. It was shown that ion current rectification produces a related rectification of electroosmotic flow (EOF) through asymmetric pore membranes. We review results that show how to measure and modulate this EOF rectification phenomenon. Finally, EOF rectification led to the development of an electroosmotic pump that works under alternating current (AC), as opposed to the currently available direct current EOF pumps. Experimental results on AC EOF rectification are reviewed, and advantages of using AC to drive EOF are discussed.
All-fibre Q-switching YDFL operation with bismuth-doped fibre as saturable absorber
NASA Astrophysics Data System (ADS)
Muhammad, A. R.; Haris, H.; Arof, H.; Tan, S. J.; Ahmad, M. T.; Harun, S. W.
2018-05-01
We demonstrate the generation of a passively Q-switched ytterbium-doped fibre laser (YDFL) using a bismuth-doped fibre (BDF) as a solid-state fibre saturable absorber (FSA) in a ring cavity. The BDF used has a wide and low absorption band of 5 dB/m at the 1.0 μm region due to the ion transition of ? that occurs around the region. When introduced into a YDFL laser cavity, a stable Q-switched pulse operation was observed and the pulse repetition rate was proportional to the input pump power. It was limited to 72.99 kHz by the maximum power that the laser diode could supply. Meanwhile, the pulse width decreased from 12.22 to 4.85 μs as the pump power was increased from 215.6 to 475.6 mW. The finding suggests that BDF could be used as a potential SA for the development of robust, compact, efficient and low cost Q-switched fibre lasers operating at 1 micron region.
Analytical thermal model for end-pumped solid-state lasers
NASA Astrophysics Data System (ADS)
Cini, L.; Mackenzie, J. I.
2017-12-01
Fundamentally power-limited by thermal effects, the design challenge for end-pumped "bulk" solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints.
Yuan, Biao; Guan, Shanyue; Sun, Xingming; Li, Xiaoming; Zeng, Haibo; Xie, Zheng; Chen, Ping; Zhou, Shuyun
2018-05-09
Carbon dots (CDs) have potentials to be utilized in optoelectronic devices, bioimaging, and photocatalysis. The majority of the current CDs with high quantum yield to date were limited in the blue light emission region. Herein, on the basis of surface electron-state engineering, we report a kind of CDs with reversible switching ability between green and red photoluminescence with a quantum yield (QY) of both up to 80%. Highly efficient green and red solid-state luminescence is realized by doping CDs into a highly transparent matrix of methyltriethoxysilane and 3-triethoxysilylpropylamine to form CDs/gel glasses composites with QYs of 80 and 78%. The CDs/gel glasses show better transmittance in visible light bands and excellent thermal stability. A blue-pumped CDs/gel glasses phosphor-based trichromatic white light-emitting diode (WLED) is realized, whose color rendering index is 92.9. The WLED gets the highest luminous efficiency of 71.75 lm W -1 in CDs-based trichromatic WLEDs. This work opens a door for developing highly efficient green- and red-emissive switching CDs which were used as phosphors for WLEDs and have the tendency for applications in other fields, such as sensing, bioimaging, and photocatalysis.
Overview on new diode lasers for defense applications
NASA Astrophysics Data System (ADS)
Neukum, Joerg
2012-11-01
Diode lasers have a broad wavelength range, from the visible to beyond 2.2μm. This allows for various applications in the defense sector, ranging from classic pumping of DPSSL in range finders or target designators, up to pumping directed energy weapons in the 50+ kW range. Also direct diode applications for illumination above 1.55μm, or direct IR countermeasures are of interest. Here an overview is given on some new wavelengths and applications which are recently under discussion. In this overview the following aspects are reviewed: • High Power CW pumps at 808 / 880 / 940nm • Pumps for DPAL - Diode Pumped Alkali Lasers • High Power Diode Lasers in the range < 1.0 μm • Scalable Mini-Bar concept for high brightness fiber coupled modules • The Light Weight Fiber Coupled module based on the Mini-Bar concept Overall, High Power Diode Lasers offer many ways to be used in new applications in the defense market.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wierer, Jonathan J.; Tsao, Jeffrey Y.
2015-01-14
III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from color mixed emitters is equally challenging formore » both LEDs and LDs, with neither source having a direct advantage. Fourth, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. Finally, the smaller area and higher current density operation of LDs provides them with a potential cost advantage over LEDs. These advantages make LDs a compelling source for future SSL.« less
970-nm ridge waveguide diode laser bars for high power DWBC systems
NASA Astrophysics Data System (ADS)
Wilkens, Martin; Erbert, Götz; Wenzel, Hans; Knigge, Andrea; Crump, Paul; Maaßdorf, Andre; Fricke, Jörg; Ressel, Peter; Strohmaier, Stephan; Schmidt, Berthold; Tränkle, Günther
2018-02-01
de lasers are key components in material processing laser systems. While mostly used as pump sources for solid state or fiber lasers, direct diode laser systems using dense wavelength multiplexing have come on the market in recent years. These systems are realized with broad area lasers typically, resulting in beam quality inferior to disk or fiber lasers. We will present recent results of highly efficient ridge waveguide (RW) lasers, developed for dense-wavelength-beamcombining (DWBC) laser systems expecting beam qualities comparable to solid state laser systems and higher power conversion efficiencies (PCE). The newly developed RW lasers are based on vertical structures with an extreme double asymmetric large optical cavity. Besides a low vertical divergence these structures are suitable for RW-lasers with (10 μm) broad ridges, emitting in a single mode with a good beam quality. The large stripe width enables a lateral divergence below 10° (95 % power content) and a high PCE by a comparably low series resistance. We present results of single emitters and small test arrays under different external feedback conditions. Single emitters can be tuned from 950 nm to 975 nm and reach 1 W optical power with more than 55 % PCE and a beam quality of M2 < 2 over the full wavelength range. The spectral width is below 30 pm FWHM. 5 emitter arrays were stabilized using the same setup. Up to now we reached 3 W optical power, limited by power supply, with 5 narrow spectral lines.
NASA Astrophysics Data System (ADS)
Danylov, Andriy A.; Waldman, Jerry; Light, Alexander R.; Goyette, Thomas M.; Giles, Robert H.; Qian, Xifeng; Chandrayan, Neelima; Goodhue, William D.; Nixon, William E.
2012-02-01
Operational temperature increase of CW THz QCLs to 77 K has enabled us to employ solid nitrogen (SN2) as the cryogen. A roughing pump was used to solidify liquid nitrogen and when the residual vapor pressure in the nitrogen reservoir reached the pumping system's minimum pressure the temperature equilibrated and remained constant until all the nitrogen sublimated. The hold time compared to liquid helium has thereby increased approximately 70-fold, and at a greatly reduced cost. The milliwatt CW QCL was at a temperature of approximately 60 K, dissipating 5 W of electrical power. To measure the long-term frequency, current, and temperature stability, we heterodyned the free-running 2.31 THz QCL with a CO2 pumped far-infrared gas laser line in methanol (2.314 THz) in a corner-cube Schottky diode and recorded the IF frequency, current and temperature. Under these conditions the performance characteristics of the QCL, which will be reported, exceeded that of a device mounted in a mechanical cryocooler.
Okada, Hajime; Tanaka, Momoko; Kiriyama, Hiromitsu; Nakai, Yoshiki; Ochi, Yoshihiro; Sugiyama, Akira; Daido, Hiroyuki; Kimura, Toyoaki; Yanagitani, Takagimi; Yagi, Hideki; Meichin, Noriyuki
2010-09-15
We have successfully developed and demonstrated broadband emission Nd-doped mixed scandium garnets based on laser ceramic technology. The inhomogeneous broadening of Nd(3+) fluorescence lines results in a bandwidth above 5 nm that is significantly broader than that for Nd:YAG and enables subpicosecond mode-locked pulse durations. We have also found the emission cross section of 7.8 × 10(-20) cm(2) to be adequate for efficient energy extraction and thermal conductivity of 4.7 W/mK from these new Nd-doped laser ceramics. The new laser ceramics are good candidates for laser host material in a diode-pumped subpicosecond laser system with high efficiency and high repetition rate.
Diode-pumped UV refractive surgery laser
NASA Astrophysics Data System (ADS)
Lin, Jui T.; Hwang, Ming-Yi; Huang, C. H.
1993-07-01
Ophthalmic applications of medical lasers have been extensively explored recently because of their market potential. Refractive surgical lasers represent one of the major development efforts due to the large population of eye disorders: about 160 million people in the USA and more than 2 billion worldwide. The first refractive laser developed was the ArF excimer laser at 193 nm in 1987 - 88 for a procedure called photorefractive keratectomy (PRK). More recently, solid state refractive lasers have also been explored for preliminary clinical trials. These lasers include Nd:YLF (picosecond at 1054 nm), doubled-Nd:YAG (nanosecond at 532 nm), Ho:YAG (microsecond at 2100 nm) and ultraviolet (UV) lasers generated from the harmonic of Ti:sapphire-laser (205 - 220 nm) and Nd:YAG (at 213 nm).
High-power all-fiber ultra-low noise laser
NASA Astrophysics Data System (ADS)
Zhao, Jian; Guiraud, Germain; Pierre, Christophe; Floissat, Florian; Casanova, Alexis; Hreibi, Ali; Chaibi, Walid; Traynor, Nicholas; Boullet, Johan; Santarelli, Giorgio
2018-06-01
High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches - 160 dBc/Hz between 3 and 20 kHz.
NASA Astrophysics Data System (ADS)
Ribes-Pleguezuelo, Pol; Inza, Andoni Moral; Basset, Marta Gilaberte; Rodríguez, Pablo; Rodríguez, Gemma; Laudisio, Marco; Galan, Miguel; Hornaff, Marcel; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas
2016-11-01
A miniaturized diode-pumped solid-state laser (DPSSL) designed as part of the Raman laser spectrometer (RLS) instrument for the European Space Agency (ESA) Exomars mission 2020 is assembled and tested for the mission purpose and requirements. Two different processes were tried for the laser assembling: one based on adhesives, following traditional laser manufacturing processes; another based on a low-stress and organic-free soldering technique called solderjet bumping technology. The manufactured devices were tested for the processes validation by passing mechanical, thermal cycles, radiation, and optical functional tests. The comparison analysis showed a device improvement in terms of reliability of the optical performances from the soldered to the assembled by adhesive-based means.
NASA Astrophysics Data System (ADS)
Xu, Chang-Qing; Gan, Yi; Sun, Jian
2012-03-01
Laser displays require red, green and blue (RGB) laser sources each with a low-cost, a high wall-plug efficiency, and a small size. However, semiconductor chips that directly emit green light with sufficient power and efficiency are not currently available on the market. A practical solution to the "green" bottleneck is to employ diode pumped solid state laser (DPSSL) technology, in which a frequency doubling crystal is used. In this paper, recent progress of MgO doped periodically poled lithium niobate (MgO:PPLN) frequency doubling optical chips will be presented. It is shown that MgO:PPLN can satisfy all of the requirements for laser displays and is ready for mass production.
Fabrication of optical waveguides using laser direct writing method
NASA Astrophysics Data System (ADS)
Cho, Sung H.; Kim, Jung Min; Kim, Jae G.; Chang, Won S.; Lee, Eung S.
2004-09-01
Laser direct writing (LDW) process is developed using 3-rd harmonic Diode Pumped Solid State Laser (DPSSL) with the near UV wavelength of 355 nm. Photo-sensitive curable polymer is irradiated by UV laser and developed using polymer solvent to obtain quasi-3D patterns. We performed basic experiments for the various process conditions such as laser power, writing speed, laser focus, and optical polymer property to get the optimal conditions. This process could be applied to fabricate a single-mode waveguide without expensive mask projection method. Experimentally, the patterns of trapezoidal shape were manufactured into dimension of 8.4μm width and 7.5μm height. Propagation loss of planar waveguide was 1.42 dB/cm at wavelength of 1,550 nm.
Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG
Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping
2016-01-01
Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm. PMID:27535577
Novel high-density packaging of solid state diode pumped eye-safe laser for LIBS
NASA Astrophysics Data System (ADS)
Bares, Kim; Torgerson, Justin; McNeil, Laine; Maine, Patrick; Patterson, Steve
2018-02-01
Laser-Induced Breakdown Spectroscopy (LIBS) has proven to be a useful research tool for material analysis for decades. However, because of the amount of energy required in a few nanosecond pulse to generate a stable and reliable LIBS signal, the lasers are often large and inefficient, relegating their implementation to research facilities, factory floors, and assembly lines. Small portable LIBS systems are now possible without having to compromise on energy needs by leveraging off of advances in high-density packaging of electronics, opto-mechanics, and highly efficient laser resonator architecture. This paper explores the integration of these techniques to achieve a mJ class eye-safe LIBS laser source, while retaining a small, light-weight package suitable for handheld systems.
Karlen, Lauriane; Buchs, Gilles; Portuondo-Campa, Erwin; Lecomte, Steve
2016-01-15
A novel scheme for intracavity control of the carrier-envelope offset (CEO) frequency of a 100 MHz mode-locked Er:Yb:glass diode-pumped solid-state laser (DPSSL) based on the modulation of the laser gain via stimulated emission of the excited Er(3+) ions is demonstrated. This method allows us to bypass the ytterbium system few-kHz low-pass filter in the f(CEO) stabilization loop and thus to push the phase lock bandwidth up to a limit close to the relaxation oscillations frequency of the erbium system. A phase lock bandwidth above 70 kHz has been achieved with the fully stabilized laser, leading to an integrated phase noise [1 Hz-1 MHz] of 120 mrad.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quarrie, L., E-mail: Lindsay.Quarrie@l-3com.com, E-mail: lindsay.o.quarrie@gmail.com; Air Force Research Laboratory, AFRL/RDLC Laser CoE, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776
The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and outputmore » laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.« less
Kerr-lens mode-locked Ti:Sapphire laser pumped by a single laser diode
NASA Astrophysics Data System (ADS)
Kopylov, D. A.; Esaulkov, M. N.; Kuritsyn, I. I.; Mavritskiy, A. O.; Perminov, B. E.; Konyashchenko, A. V.; Murzina, T. V.; Maydykovskiy, A. I.
2018-04-01
The performance of a Ti:sapphire laser pumped by a single 461 nm laser diode is presented for both the continuous-wave and the mode-locked regimes of operation. We introduce a simple astigmatism correction scheme for the laser diode beam consisting of two cylindrical lenses affecting the pump beam along the fast axis of the laser diode, which provides the mode-matching between the nearly square-shaped pump beam and the cavity mode. The resulting efficiency of the suggested Ti:Sapphire oscillator pumped by such a laser diode is analyzed for the Ti:sapphire crystals of 3 mm, 5 mm and 10 mm in length. We demonstrate that such a system provides the generation of ultrashort pulses up to 15 fs in duration with the repetition rate of 87 MHz, the average power being 170 mW.
Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
Chang, Suk Tai; Beaumont, Erin; Petsev, Dimiter N; Velev, Orlin D
2008-01-01
We demonstrate new principles of microfluidic pumping and mixing by electronic components integrated into a microfluidic chip. The miniature diodes embedded into the microchannel walls rectify the voltage induced between their electrodes from an external alternating electric field. The resulting electroosmotic flows, developed in the vicinity of the diode surfaces, were utilized for pumping or mixing of the fluid in the microfluidic channel. The flow velocity of liquid pumped by the diodes facing in the same direction linearly increased with the magnitude of the applied voltage and the pumping direction could be controlled by the pH of the solutions. The transverse flow driven by the localized electroosmotic flux between diodes oriented oppositely on the microchannel was used in microfluidic mixers. The experimental results were interpreted by numerical simulations of the electrohydrodynamic flows. The techniques may be used in novel actively controlled microfluidic-electronic chips.
Theoretical study on the thermal and optical features of a diode side-pumped alkali laser
NASA Astrophysics Data System (ADS)
Han, Juhong; Liu, Xiaoxu; Wang, Hongyuan; Cai, He; An, Guofei; Zhang, Wei; Wang, You
2018-03-01
As one of the most hopeful candidates to achieve high power performances, a diode-pumped alkali laser (DPAL) has attracted a lot of attention in the last decade. Comparing with a diode end-pumped alkali laser (DEPAL), a diode side-pumped alkali laser (DSPAL) has great potentiality to realize an even-higher output of alkali lasers. However, there are few related researching studies concern DSPAL. In this paper, we introduce a theoretical model to investigate the physical features of a double-directions side-pumped alkali laser. The distributions of the population density, temperature, and absorption power at the cross section of a vapor cell are systematically studied. The analyses should be valuable for design of a steady high-powered DPAL.
One joule per Q-switched pulse diode-pumped laser
NASA Technical Reports Server (NTRS)
Holder, Lonnie E.; Kennedy, Chandler; Long, Larry; Dube, George
1992-01-01
Q-switched 1-J output has been achieved from diode-pumped zig-zag Nd:YAG slabs in an oscillator-amplifier configuration. The oscillator was single transverse and longitudinal model. This laser set records for Q-switched energy per pulse, and for average power from a diode-pumped laser. The laser was constructed in a rugged configuration suitable for routine laboratory use.
NASA Astrophysics Data System (ADS)
Bogdanovich, M. V.; Izyneev, A. A.; Lantsov, K. I.; Lepchenkov, K. V.; Ryabtsev, A. G.; Pavlovskii, V. N.; Sadovskii, P. I.; Svitenkov, I. E.; Shchemelev, M. A.
2018-03-01
Temperature effects on photoluminescence and absorption spectra of the active medium (LGS-DE erbium phosphate glass) and passive Q-switch (MgAl2O4:Co2+ crystal) of a diode-side pumped Yb,Er-laser are studied. The obtained data are applied to an analysis of the spectral and energetic characteristics of compact erbium emitters. It is established that the dominant generation channel in the temperature range 233-328 K is the optical transition between lower Stark sublevels of Er3+ states 4I13/2 and 4I15/2 (λ = 1532.0-1533.9 nm). A rate-equation system taking into account thermal population of Stark sublevels of states 4I13/2 and 4I15/2 is proposed to describe the experimental temperature dependence of the threshold absorbed power of the pumping radiation. This system and the lasing threshold enable modeling of Yb,Er-emitter output energetic and temporal characteristics.
NASA Astrophysics Data System (ADS)
De Vido, M.; Ertel, K.; Mason, P. D.; Banerjee, S.; Phillips, P. J.; Smith, J. M.; Butcher, T. J.; Chekhlov, O.; Divoky, M.; Pilar, J.; Hooker, C.; Shaikh, W.; Lucianetti, A.; Hernandez-Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.
2017-02-01
In this paper, we review the development, at the STFC's Central Laser Facility (CLF), of high energy, high repetition rate diode-pumped solid-state laser (DPSSL) systems based on cryogenically-cooled multi-slab ceramic Yb:YAG. Up to date, two systems have been completed, namely the DiPOLE prototype and the DiPOLE100 system. The DiPOLE prototype has demonstrated amplification of nanosecond pulses in excess of 10 J at 10 Hz repetition rate with an opticalto- optical efficiency of 22%. The larger scale DiPOLE100 system, designed to deliver 100J temporally-shaped nanosecond pulses at 10 Hz repetition rate, has been developed at the CLF for the HiLASE project in the Czech Republic. Recent experiments conducted on the DiPOLE100 system demonstrated the energy scalability of the DiPOLE concept to the 100 J pulse energy level. Furthermore, second harmonic generation experiments carried out on the DiPOLE prototype confirmed the suitability of DiPOLE-based systems for pumping high repetition rate PW-class laser systems based on Ti:sapphire or optical parametric chirped pulse amplification (OPCPA) technology.
GaAs laser diode pumped Nd:YAG laser
NASA Technical Reports Server (NTRS)
Conant, L. C.; Reno, C. W.
1974-01-01
A 1.5-mm by 3-cm neodymium-ion doped YAG laser rod has been side pumped using a GaAs laser diode array tuned to the 8680-A absorption line, achieving a multimode average output power of 120 mW for a total input power of 20 W to the final-stage laser diode drivers. The pumped arrangement was designed to take advantage of the high brightness of a conventional GaAs array as a linear source by introducing the pump light through a slit into a close-wrapped gold coated pump cavity. This cavity forms an integrating chamber for the pump light.
Apparatus for producing voltage and current pulses
Kirbie, Hugh; Dale, Gregory E.
2010-12-21
An apparatus having one or more modular stages for producing voltage and current pulses. Each module includes a diode charging means to charge a capacitive means that stores energy. One or more charging impedance means are connected to the diode charging means to provide a return current pathway. A solid-state switch discharge means, with current interruption capability, is connected to the capacitive means to discharge stored energy. Finally, a control means is provided to command the switching action of the solid-state switch discharge means.
Demonstrating the Light-Emitting Diode.
ERIC Educational Resources Information Center
Johnson, David A.
1995-01-01
Describes a simple inexpensive circuit which can be used to quickly demonstrate the basic function and versatility of the solid state diode. Can be used to demonstrate the light-emitting diode (LED) as a light emitter, temperature sensor, light detector with both a linear and logarithmic response, and charge storage device. (JRH)
NASA Astrophysics Data System (ADS)
Smyrek, P.; Zheng, Y.; Seifert, H. J.; Pfleging, W.
2016-03-01
NMC thick films were prepared by tape-casting and subsequent ultrafast laser-structuring. The lithium distribution in electrochemically cycled and unstructured or fs laser-structured NMC cathodes was investigated by using Laser-Induced Breakdown Spectroscopy (LIBS). The main goal is to develop an optimized three dimensional cell architecture with improved electrochemical properties based on studies of the homogeneity of the local State-of-Charge. LIBS experiments were carried out using a LIBS workstation equipped with a mode-locked diode pumped solid state Nd:YAG laser operating at a wavelength of 1063 nm. The element distribution was investigated using two different techniques: element mapping and element depth-profiling of the unstructured / fs laser-structured electrode surface. Results achieved from post-mortem studies using LIBS will be presented.
Experiments with Lasers and Frequency Doublers
NASA Technical Reports Server (NTRS)
Bachor, H.-A.; Taubman, M.; White, A. G.; Ralph, T.; McClelland, D. E.
1996-01-01
Solid state laser sources, such as diode-pumped Nd:YAG lasers, have given us CW laser light of high power with unprecedented stability and low noise performance. In these lasers most of the technical sources of noise can be eliminated allowing them to be operated close to the theoretical noise limit set by the quantum properties of light. The next step of reducing the noise below the standard limit is known as squeezing. We present experimental progress in generating reliably squeezed light using the process of frequency doubling. We emphasize the long term stability that makes this a truly practical source of squeezed light. Our experimental results match noise spectra calculated with our recently developed models of coupled systems which include the noise generated inside the laser and its interaction with the frequency doubler. We conclude with some observations on evaluating quadrature squeezed states of light.
FY00 LDRD Final Report High Power IFE Driver Component Development 00-SI-009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bibeau, C; Schaffers, K; Tassano, J
We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for target physics research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule and megajoule energy levels for fusion energy applications. The primary near-term performance goals include 10% electrical efficiencies at 10 Hz and 100 J with a 2-10 ns pulse length at 1.047 {micro}m wavelength. Currently, this review concentrates on the critical development and production of Yb:S-FAP crystals. After solving many defect issues that can be presentmore » in the crystals, reproducibility is the final issue that needs to be resolved. We have enlisted the help of national experts and have strongly integrated two capable commercial crystal growth companies (Litton-Airton/Synoptics and Scientific Materials) into the effort, and have solicited the advice of Robert Morris (retired from Allied Signal), a recognized international expert in high temperature oxide growth.« less
NASA Astrophysics Data System (ADS)
Ozolinsh, Maris; Paulins, Paulis
2017-09-01
An experimental setup allowing the modeling of conditions in optical devices and in the eye at various degrees of scattering such as cataract pathology in human eyes is presented. The scattering in cells of polymer-dispersed liquid crystals (PDLCs) and ‘Smart Glass’ windows is used in the modeling experiments. Both applications are used as optical obstacles placed in different positions of the optical information flow pathway either directly on the stimuli demonstration computer screen or mounted directly after the image-formation lens of a digital camera. The degree of scattering is changed continuously by applying an AC voltage of up to 30-80 V to the PDLC cell. The setup uses a camera with 14 bit depth and a 24 mm focal length lens. Light-emitting diodes and diode-pumped solid-state lasers emitting radiation of different wavelengths are used as portable small-divergence light sources in the experiments. Image formation, optical system point spread function, modulation transfer functions, and system resolution limits are determined for such sample optical systems in student optics and optometry experimental exercises.
High duty cycle hard soldered kilowatt laser diode arrays
NASA Astrophysics Data System (ADS)
Klumel, Genady; Karni, Yoram; Oppenheim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom
2010-02-01
High-brightness laser diode arrays operating at a duty cycle of 10% - 20% are in ever-increasing demand for the optical pumping of solid state lasers and directed energy applications. Under high duty-cycle operation at 10% - 20%, passive (conductive) cooling is of limited use, while micro-coolers using de-ionized cooling water can considerably degrade device reliability. When designing and developing actively-cooled collimated laser diode arrays for high duty cycle operation, three main problems should be carefully addressed: an effective local and total heat removal, a minimization of packaging-induced and operational stresses, and high-precision fast axis collimation. In this paper, we present a novel laser diode array incorporating a built-in tap water cooling system, all-hard-solder bonded assembly, facet-passivated high-power 940 nm laser bars and tight fast axis collimation. By employing an appropriate layout of water cooling channels, careful choice of packaging materials, proper design of critical parts, and active optics alignment, we have demonstrated actively-cooled collimated laser diode arrays with extended lifetime and reliability, without compromising their efficiency, optical power density, brightness or compactness. Among the key performance benchmarks achieved are: 150 W/bar optical peak power at 10% duty cycle, >50% wallplug efficiency and <1° collimated fast axis divergence. A lifetime of >0.5 Ghots with <2% degradation has been experimentally proven. The laser diode arrays have also been successfully tested under harsh environmental conditions, including thermal cycling between -20°C and 40°C and mechanical shocks at 500g acceleration. The results of both performance and reliability testing bear out the effectiveness and robustness of the manufacturing technology for high duty-cycle laser arrays.
100J-level nanosecond pulsed Yb:YAG cryo-cooled DPSSL amplifier
NASA Astrophysics Data System (ADS)
Smith, J. M.; Butcher, T. J.; Mason, P. D.; Ertel, K.; Phillips, P. J.; Banerjee, S.; De Vido, M.; Chekhlov, O.; Divoky, M.; Pilar, J.; Shaikh, W.; Hooker, C.; Lucianetti, A.; Hernandez Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.
2018-02-01
We report on the successful demonstration of the world's first kW average power, 100 Joule-class, high-energy, nanosecond pulsed diode-pumped solid-state laser (DPSSL), DiPOLE100. Results from the first long-term test for amplification will be presented; the system was operated for 1 hour with 10 ns duration pulses at 10 Hz pulse repetition rate and an average output energy of 105 J and RMS energy stability of approximately 1%. The laser system is based on scalable cryogenic gas-cooled multi-slab ceramic Yb:YAG amplifier technology. The DiPOLE100 system comprises three major sub-systems, a spatially and temporally shaped front end, a 10 J cryo-amplifier and a 100 J cryo-amplifier. The 10 J cryo-amplifier contain four Yb:YAG ceramic gain media slabs, which are diode pumped from both sides, while a multi-pass architecture configured for seven passes enables 10 J of energy to be extracted at 10 Hz. This seeds the 100 J cryo-amplifier, which contains six Yb:YAG ceramic gain media slabs with the multi-pass configured for four passes. Our future development plans for this architecture will be introduced including closed-loop pulse shaping, increased energy, higher repetition rates and picosecond operation. This laser architecture unlocks the potential for practical applications including new sources for industrial materials processing and high intensity laser matter studies as envisioned for ELI [1], HiLASE [2], and the European XFEL [3]. Alternatively, it can be used as a pump source for higher repetition rate PW-class amplifiers, which can themselves generate high-brightness secondary radiation and ion sources leading to new remote imaging and medical applications.
Towards diode-pumped mid-infrared praseodymium-ytterbium-doped fluoride fiber lasers
NASA Astrophysics Data System (ADS)
Woodward, R. I.; Hudson, D. D.; Jackson, S. D.
2018-02-01
We explore the potential of a new mid-infrared laser transition in praseodymium-doped fluoride fiber for emission around 3.4 μm, which can be conveniently pumped by 0.975 μm diodes via ytterbium sensitizer co-doping. Optimal cavity designs are determined through spectroscopic measurements and numerical modeling, suggesting that practical diode-pumped watt-level mid-infrared fiber sources beyond 3 μm could be achieved.
Scalable diode array pumped Nd rod laser
NASA Technical Reports Server (NTRS)
Zenzie, H. H.; Knights, M. G.; Mosto, J. R.; Chicklis, E. P.; Perkins, P. E.
1991-01-01
Experiments were carried out on a five-array pump head which utilizes gold-coated reflective cones to couple the pump energy to Nd:YAG and Nd:YLF rod lasers, demonstrating high efficiency and uniform energy deposition. Because the cones function as optical diodes to light outside their acceptance angle (typically 10-15 deg), much of the diode energy not absorbed on the first pass can be returned to the rod.
Laser Space Propulsion Overview (Postprint)
2006-09-01
meet with currently fielded thruster technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a...with Cm = 56µN/W and ηAB = 100%. These two units will be combined in a single device using low-mass diode-pumped glass fiber laser amplifiers to...advantage of extremely lightweight diode-pumped glass fiber lasers onboard the spacecraft to provide thrust with variable Isp and unmatched thrust
885-nm laser diode array pumped ceramic Nd:YAG master oscillator power amplifier system
NASA Astrophysics Data System (ADS)
Yu, Anthony W.; Li, Steven X.; Stephen, Mark A.; Seas, Antonios; Troupaki, Elisavet; Vasilyev, Aleksey; Conley, Heather; Filemyr, Tim; Kirchner, Cynthia; Rosanova, Alberto
2010-04-01
The objective of this effort is to develop more reliable, higher efficiency diode pumped Nd:YAG laser systems for space applications by leveraging technology investments from the DoD and other commercial industries. Our goal is to design, build, test and demonstrate the effectiveness of combining 885 nm laser pump diodes and the use of ceramic Nd:YAG for future flight missions. The significant reduction in thermal loading on the gain medium by the use of 885 nm pump lasers will improve system efficiency.
Method and system for homogenizing diode laser pump arrays
Bayramian, Andrew James
2016-05-03
An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.
Method and system for homogenizing diode laser pump arrays
Bayramian, Andy J
2013-10-01
An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.
Development of Ceramic Solid-State Laser Host Material
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra
2009-01-01
Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.
NASA Astrophysics Data System (ADS)
Chen, Y. F.; Chang, C. C.; Lee, C. Y.; Tung, J. C.; Liang, H. C.; Huang, K. F.
2018-01-01
Theoretical wave functions are analytically derived to characterize the propagation evolution of the Hermite-Gaussian (HG) beams transformed by a single-lens astigmatic mode converter with arbitrary angle. The derived wave functions are related to the combination of the rotation transform and the antisymmetric fractional Fourier transform. The derived formula is systematically validated by using an off-axis diode-pumped solid-state laser to generate various high-order HG beams for mode conversions. In addition to validation, the creation and evolution of vortex structures in the transformed HG beams are numerically manifested. The present theoretical analyses can be used not only to characterize the evolution of the transformed beams but to design the optical vortex beams with various forms.
Diode end-pumped passively Q-switched Tm:YAP laser with 1.85-mJ pulse energy.
Sebbag, Daniel; Korenfeld, Arik; Ben-Ami, Udi; Elooz, David; Shalom, Eran; Noach, Salman
2015-04-01
Passive Q switching of a Tm:YAP solid-state laser at 1935 nm with Cr:ZnSe and Cr:ZnS polycrystalline saturable absorbers is demonstrated for the first time, to the best of our knowledge. With Cr:ZnS, a maximum pulse energy of 1.85 mJ is obtained for a pulse duration of 35.8 ns, resulting in a peak power of 51.7 kW. With Cr:ZnSe, the achieved pulse energy of 1.55 mJ with a pulse duration of 42.2 ns leads to 36.7-kW peak power. These high pulse energies, together with the unique lasing wavelength at 1935 nm, make this laser a promising tool for biomedical and microsurgery applications.
Development of Rust Stripping System using High Power Laser
NASA Astrophysics Data System (ADS)
Shirakawa, Kazuomi; Ohashi, Katsuaki; Ashidate, Shuichi; Kurosawa, Kiyoshi; Nakayama, Michio; Uchida, Yutaka; Nobusada, Yuuji
The repainting cycle depends on removal of rust in maintenance of outdoor steel-frame structural facilities. However existing stripping process, which is usually made by hands with brushes, cannot strip the rust completely in maintenance of power transmission towers, for example. To solve this problem, we investigated laser fluence and pulse width for removal of rust using DPSSL (Diode Pumped Solid State Laser), and selected optimum laser supply. Then we checked the effect of laser stripping on prolongation of the repainting cycle compared with the conventional stripping process. Utilizing results of the research, we developed rust stripping system using DPSSL. From the results of field trial of rust removal operation using this system at high places of a power transmission tower, possibility of practical use of the system for the maintenance was confirmed.
Coherent THz Repetitive Pulse Generation in a GaSe Crystal by Dual-wavelength Nd:YLF Laser
NASA Astrophysics Data System (ADS)
Bezotosnyi, V. V.; Cheshev, E. A.; Gorbunkov, M. V.; Koromyslov, A. L.; Krokhin, O. N.; Mityagin, Yu. A.; Popov, Yu. M.; Savinov, S. A.; Tunkin, V. G.
We present modification of difference frequency generator of coherent THz radiation in a nonlinear GaSe crystal using dual-wavelength diode-pumped solid-state Nd:YLF laser. Generation at the two wavelengths (1.047 and 1.053 μm) was carried out by equalization of the gains at these wavelengths near the frequency degeneracy of the transverse modes in resonator cavity, Q-switched by acousto-optical modulator. The main parameters of the device were measured: angular synchronism (width 0.6 degrees), polarization ratio (1:100), conversion efficiency (10-7), pulse power (0.8 mW), frequency and width (53,8 сm-1, 0,6 сm-1), pulse width and repetition rate (10 ns,7 kHz). The method is promising for practical purposes.
Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications
NASA Astrophysics Data System (ADS)
Opalevs, D.; Scholz, M.; Stuhler, J.; Gilfert, C.; Liu, L. J.; Wang, X. Y.; Vetter, A.; Kirner, R.; Scharf, T.; Noell, W.; Rockstuhl, C.; Li, R. K.; Chen, C. T.; Voelkel, R.; Leisching, P.
2018-02-01
We present a novel industrial-grade prototype version of a continuous-wave 193 nm laser system entirely based on solid state pump laser technology. Deep-ultraviolet emission is realized by frequency-quadrupling an amplified diode laser and up to 20 mW of optical power were generated using the nonlinear crystal KBBF. We demonstrate the lifetime of the laser system for different output power levels and environmental conditions. The high stability of our setup was proven in > 500 h measurements on a single spot, a crystal shifter multiplies the lifetime to match industrial requirements. This laser improves the relative intensity noise, brilliance, wall-plug efficiency and maintenance cost significantly. We discuss first lithographic experiments making use of this improvement in photon efficiency.
NASA Astrophysics Data System (ADS)
Morasse, Bertrand; Plourde, Estéban
2017-02-01
We present a simple way to achieve and optimize hundreds of kW peak power pulsed output using a monolithic amplifier chain based on solid core double cladding fiber tightly packaged. A fiber pigtailed current driven diode is used to produce nanosecond pulses at 1064 nm. We present how to optimize the use of Fabry-Perot versus DFB type diode along with the proper wavelength locking using a fiber Bragg grating. The optimization of the two pre-amplifiers with respect to the pump wavelength and Yb inversions is presented. We explain how to manage ASE using core and cladding pumping and by using single pass and double pass amplifier. ASE rejection within the Yb fiber itself and with the use of bandpass filter is discussed. Maximizing the amplifier conversion efficiency with regards to the fiber parameters, glass matrix and signal wavelength is described in details. We present how to achieve high peak power at the power amplifier stage using large core/cladding diameter ratio highly doped Yb fibers pumped at 975 nm. The effect of pump bleaching on the effective Yb fiber length is analyzed carefully. We demonstrate that counter-pumping brings little advantage in very short length amplifier. Dealing with the self-pulsation limit of stimulated Brillouin scattering is presented with the adjustment of the seed pulsewidth and linewidth. Future prospects for doubling the output peak power are discussed.
NASA Astrophysics Data System (ADS)
Tian, Ying; Jing, Xufeng; Xu, Shiqing
2013-11-01
Intense 2.0 μm emission has been obtained in Ho3+/Tm3+ codoped ZBLAY glass pumped by common laser diode. Three intensity parameters and radiative properties have been determined from the absorption spectrum based on the Judd-Ofelt theory. The 2 μm emission characteristics and the energy transfer mechanism upon excitation of a conventional 800 nm laser diode are investigated. Efficient Tm3+ to Ho3+ energy transfer processes have been observed in present glass and investigated using steady-state and time-resolved optical spectroscopy measurement. The energy transfer microscopic parameter has been calculated with the Inokuti-Hirayama and Förster-Dexter models. High quantum efficiency of 2 μm emission (80.35%) and large energy transfer coefficient from Tm3+ to Ho3+ indicates this Ho3+/Tm3+ codoped ZBLAY glass is a promising material for 2.0 μm laser.
Laser Space Propulsion Overview (Preprint)
2006-08-22
thruster technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a total of 350-W optical power...achieved Isp = 3660s with Cm = 56µN/W and ηAB = 100%. These two units will be combined in a single device using low-mass diode-pumped glass fiber...diode-pumped glass fiber lasers onboard the spacecraft to provide thrust with variable Isp and unmatched thrust efficiency deriving from exothermic
NASA Technical Reports Server (NTRS)
Poberezhskiy, Ilya Y; Chang, Daniel H.; Erlig, Herman
2011-01-01
Optical metrology system reliability during a prolonged space mission is often limited by the reliability of pump laser diodes. We developed a metrology laser pump module architecture that meets NASA SIM Lite instrument optical power and reliability requirements by combining the outputs of multiple single-mode pump diodes in a low-loss, high port count fiber coupler. We describe Monte-Carlo simulations used to calculate the reliability of the laser pump module and introduce a combined laser farm aging parameter that serves as a load-sharing optimization metric. Employing these tools, we select pump module architecture, operating conditions, biasing approach and perform parameter sensitivity studies to investigate the robustness of the obtained solution.
Properties of excited states in organic light emitting diodes and lasers
NASA Astrophysics Data System (ADS)
Giebink, Noel C.
The field of organic semiconductors has grown rapidly over the past decade with the development of light emitting diodes, solar cells, and lasers that promise a new generation of low-cost, flexible optoelectronic devices. In each case, the behavior of molecular excited states, or excitons, is of fundamental importance. The present study explores the nature and interactions of such excited states in the attempt to develop an electrically pumped organic semiconductor laser, and to improve the performance and operational stability of organic light emitting diodes. We begin by investigating intrinsic loss processes in optically pumped organic semiconductor lasers and demonstrate that exciton annihilation implies a fundamental limit that will prevent lasing by electrical injection in currently known materials. Searching for an alternative approach to reach threshold leads us to study metastable geminate charge pairs, where we find that optically generated excitons can be accumulated over time in an external electric field via these intermediate states. Upon field turn-off, the excitons are immediately restored, leading to a sudden burst of excitation density over 30 times higher than that generated by the pump alone. Unfortunately, we identify limitations that have thus far prevented reaching laser threshold with this technique. In a parallel push toward high power density, we investigate the origins of quantum efficiency roll-off in organic light emitting diodes (OLEDs) and find that it is dominated by loss of charge balance in the majority of fluorescent and phosphorescent devices. The second major theme of this work involves understanding the intrinsic modes of OLED operational degradation. Based on extensive modeling and supported directly by experimental evidence, we identify exciton-charge carrier annihilation reactions as a principle degradation pathway. Exploiting the diffusion of triplet excitons, we show that fluorescence and phosphorescence can be combined to increase the operational lifetime of white OLEDs and still retain the potential for unity internal quantum efficiency.
Theory of repetitively pulsed operation of diode lasers subject to delayed feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napartovich, A P; Sukharev, A G
2015-03-31
Repetitively pulsed operation of a diode laser with delayed feedback has been studied theoretically at varying feedback parameters and pump power levels. A new approach has been proposed that allows one to reduce the system of Lang–Kobayashi equations for a steady-state repetitively pulsed operation mode to a first-order nonlinear differential equation. We present partial solutions that allow the pulse shape to be predicted. (lasers)
Chu, Shu-Chun; Chen, Yun-Ting; Tsai, Ko-Fan; Otsuka, Kenju
2012-03-26
This study reports the first systematic approach to the excitation of all high-order Hermite-Gaussian modes (HGMs) in end-pumped solid-state lasers. This study uses a metal-wire-inserted laser resonator accompanied with the "off axis pumping" approach. This study presents numerical analysis of the excitation of HGMs in end-pumped solid-state lasers and experimentally generated HGM patterns. This study also experimentally demonstrates the generation of an square vortex array laser beams by passing specific high-order HGMs (HGn,n + 1 or HGn + 1,n modes) through a Dove prism-embedded unbalanced Mach-Zehnder interferometer [Optics Express 16, 19934-19949]. The resulting square vortex array laser beams with embedded vortexes aligned in a square array can be applied to multi-spot dark optical traps in the future.
A comparison of Doppler lidar wind sensors for Earth-orbit global measurement applications
NASA Technical Reports Server (NTRS)
Menzies, Robert T.
1985-01-01
Now, there are four Doppler lidar configurations which are being promoted for the measurement of tropospheric winds: (1) the coherent CO2 Lidar, operating in the 9 micrometer region using a pulsed, atmospheric pressure CO2 gas discharge laser transmitter, and heterodyne detection; (2) the coherent Neodymium doped YAG or Glass Lidar, operating at 1.06 micrometers, using flashlamp or diode laser optical pumping of the solid state laser medium, and heterodyne detection; (3) the Neodymium doped YAG/Glass Lidar, operating at the doubled frequency (at 530 nm wavelength), again using flashlamp or diode laser pumping of the laser transmitter, and using a high resolution tandem Fabry-Perot filter and direct detection; and (4) the Raman shifted Xenon Chloride Lidar, operating at 350 nm wavelength, using a pulsed, atmospheric pressure XeCl gas discharge laser transmitter at 308 nm, Raman shifted in a high pressure hydrogen cell to 350 nm in order to avoid strong stratospheric ozone absorption, also using a high resolution tandem Fabry-Perot filter and direct detection. Comparisons of these four systems can include many factors and tradeoffs. The major portion of this comparison is devoted to efficiency. Efficiency comparisons are made by estimating the number of transmitted photons required for a single pulse wind velocity estimate of + or - 1 m/s accuracy in the middle troposphere, from an altitude of 800 km, which is assured to be reasonable for a polar orbiting platform.
Nonimaging concentrators for diode-pumped slab lasers
NASA Astrophysics Data System (ADS)
Lacovara, Philip; Gleckman, Philip L.; Holman, Robert L.; Winston, Roland
1991-10-01
Diode-pumped slab lasers require concentrators for high-average power operation. We detail the properties of diode lasers and slab lasers which set the concentration requirements and the concentrator design methodologies that are used, and describe some concentrator designs used in high-average power slab lasers at Lincoln Laboratory.
Solar-pumped solid state Nd lasers
NASA Technical Reports Server (NTRS)
Williams, M. D.; Zapata, L.
1985-01-01
Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.
High-efficiency, 154 W CW, diode-pumped Raman fiber laser with brightness enhancement.
Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark
2017-01-20
We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).
Diode-laser-pump module with integrated signal ports for pumping amplifying fibers and method
Savage-Leuchs,; Matthias, P [Woodinville, WA
2009-05-26
Apparatus and method for collimating pump light of a first wavelength from laser diode(s) into a collimated beam within an enclosure having first and second optical ports, directing pump light from the collimated beam to the first port; and directing signal light inside the enclosure between the first and second port. The signal and pump wavelengths are different. The enclosure provides a pump block having a first port that emits pump light to a gain fiber outside the enclosure and that also passes signal light either into or out of the enclosure, and another port that passes signal light either out of or into the enclosure. Some embodiments use a dichroic mirror to direct pump light to the first port and direct signal light between the first and second ports. Some embodiments include a wavelength-conversion device to change the wavelength of at least some of the signal light.
Extraordinary variation of pump light intensity inside a four-level solid-state laser medium
NASA Astrophysics Data System (ADS)
Qin, Hua; Fu, Rulian; Wang, Zhaoqi; Liu, Juan
2008-08-01
A theoretical investigation of the absorption of the pump light at different intensities through a four-level solid-state laser medium is presented. It is found that the variation of the pump intensity inside the laser medium cannot always simply be dominated by Beer's law. Transmission of the pump light through this laser medium is closely related to the pump intensity itself. In fact, when the pump intensity is relatively low, whose values depend on the characteristics of the medium, the variation of the pump light through the laser medium is consistent with Beer's law. However, while the pump intensity is high enough, the relationship between the transmission of the pump light and its propagation distance is demonstrated to be linear. These theoretical results have been confirmed by the experiment with a medium of YAG:Nd.
Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.
Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J
2010-06-21
We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.
Noise and loss in balanced and subharmonically pumped mixers. I - Theory. II - Application
NASA Technical Reports Server (NTRS)
Kerr, A. R.
1979-01-01
The theory of noise and frequency conversion for two-diode balanced and subharmonically pumped mixers is presented. The analysis is based on the equivalent circuit of the Schottky diode, having nonlinear capacitance, series resistance, and shot and thermal noise. Expressions for the conversion loss, noise temperature, and input and output impedances are determined in a form suitable for numerical analysis. In Part II, the application of the theory to practical mixers is demonstrated, and the properties of some two-diode mixers are examined. The subharmonically pumped mixer is found to be much more strongly affected by the loop inductance than the balanced mixer, and the ideal two-diode mixer using exponential diodes has a multiport noise-equivalent network (attenuator) similar to that of the ideal single-diode mixer. It is concluded that the theory can be extended to mixers with more than two diodes and will be useful for their design and analysis, provided a suitable nonlinear analysis is available to determine the diode waveforms.
Spatial Combining of Laser-Diode Beams for Pumping an NPRO
NASA Technical Reports Server (NTRS)
Gelsinger, Paul; Liu, Duncan; Mulder, Jerry; Aguayo, Francisco
2008-01-01
A free-space optical beam combiner now undergoing development makes it possible to use the outputs of multiple multimode laser diodes to pump a neodymium-doped yttrium aluminum garnet (Nd:YAG) non-planar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, a Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained in this article, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. To minimize coupling loss, one must ensure that the NA (approximately equal to 0.3) of the combined laser-diode beams is less than the NA of the fiber. The A(Omega) of the laser-diode beam in the slow-axis plane is 1/1.3 as large as that of the fiber. This A(Omega) is small enough to enable efficient coupling of light into the optical fiber, but too large for combining of beams in the slow-axis plane. Therefore, a pair of cylindrical lenses is used to cancel the slow-axis plane magnification introduced by the on-cylindrical lenses used to effect magnification in the fast-axis plane.
Diode-pumped laser with improved pumping system
Chang, Jim J.
2004-03-09
A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.
NASA Astrophysics Data System (ADS)
Mikheev, A. V.; Kazakov, B. N.
2015-09-01
A new mechanism has been proposed for the transfer of the energy of exciting laser radiation through the donor subsystem (Yb3+) to acceptors (Tm3+), which induces multiphoton transitions in the acceptor subsystem. The coherence of the induced radiation of donors is of key importance in this mechanism. An analytical dependence of the intensity of the up-conversion luminescence of Tm3+ (1G4 → 3H6) ions in the Y0.8Yb0.2F3:Tm3+ system on the pump power at the steady-state excitation by 934-nm infrared radiation of a laser diode has been obtained using the mathematical technique of the theory of Poisson processes. In contrast to known mechanisms, this dependence approximates the experimental dependence well in a wide power range (200-1200 mW). The proposed model is applicable for any system where the energy of pump radiation is transferred to acceptors through the subsystem of donor ions.
NASA Astrophysics Data System (ADS)
Dong, Jun; Wang, Xiaolei; Zhang, Mingming; Wang, Xiaojie; He, Hongsen
2018-04-01
Structured optical vortices with 4 phase singularities have been generated in a laser diode pumped continuous-wave Yb:Y3Al5O12/YVO4 (Yb:YAG/YVO4) Raman microchip laser. The broadband comb-like first order Stokes laser emitting spectrum including 30 longitudinal modes covers from 1072.49 nm to 1080.13 nm with a bandwidth of 7.64 nm, which is generated with the Raman shift 259 cm-1 of the c-cut YVO4 crystal converted from the fundamental laser around 1.05 μm. Pump power dependent optical vortex beams are attributed to overlap of the Stokes laser field with the fundamental laser field caused by dynamically changing the coupling losses of the fundamental laser field. The maximum output power is 1.16 W, and the optical-to-optical efficiency is 18.4%. This work provides a method for generating structured optical vortices with an optical frequency comb in solid-state Raman microchip lasers, which have potential applications in quantum computations, micro-machining, and information processing.
Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W.
Han, J; Heaven, M C; Moran, P J; Pitz, G A; Guild, E M; Sanderson, C R; Hokr, B
2017-11-15
Optically pumped rare gas lasers are being investigated as potential high-energy, high beam quality systems. The lasing medium consists of rare gas atoms (Rg=Ne, Ar, Kr, or Xe) that have been electric discharge excited to the metastable np 5 (n+1)s P3 2 state. Following optical excitation, helium (He) at pressures of 200-1000 Torr is used as the energy transfer agent to create a population inversion. The primary technical difficulty for this scheme is the discharge production of sufficient Rg* metastables in the presence of >200 Torr of He. In this Letter, we describe a pulsed discharge that yields >10 13 cm -3 Ar* in the presence of He at total pressures up to 750 Torr. Using this discharge, a diode-pumped Ar* laser providing 4.1 W has been demonstrated.
Efficient, diode-laser-pumped, diode-laser-seeded, high-peak-power Nd:YLF regenerative amplifier.
Selker, M D; Afzal, R S; Dallas, J L; Yu, A W
1994-04-15
Optical amplification of 11 orders of magnitude in a microlens-collimated, diode-laser-pumped regenerative amplifier has been demonstrated. The amplifier was seeded with 20-ps pulses from an FM mode-locked oscillator and with 0.9-ns pulses from a modulated diode laser. Seed pulses from both sources were amplified to energies exceeding 2.5 mJ. With the thermoelectric coolers and the Pockels cell electronics neglected, the diode-seeded system exhibited an electrical-to-optical efficiency of 2.2%.
NASA Astrophysics Data System (ADS)
Zhao, Y. D.; Liu, J. H.
2013-08-01
We report a laser architecture to obtain continuous-wave (CW) yellow-orange light sources at the 591 nm wavelength. An 808 nm diode pumped a Nd:GdVO4 crystal emitting at 1063 nm. A part of the pump power was then absorbed by the Nd:CNGG crystal. The remaining pump power was used to pump a Nd:CNGG crystal emitting at 1329 nm. Intracavity sum-frequency mixing at 1063 and 1329 nm was then realized in a LiB3O5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 494 mW at 591 nm with a pump laser diode emitting 17.8 W at 808 nm.
NASA Technical Reports Server (NTRS)
Welford, David; Rines, David M.; Dinerman, Bradley J.; Martinsen, Robert
1992-01-01
The authors report operation of a laser-diode side-pumped Nd:YAG laser with a novel pumping geometry that ensures efficient conversion of pump energy into the TEM00 mode. Significant enhancement of thermally induced lensing due to the near-Gaussian energy deposition profile of the pump radiation was observed. An induced lens of approximately 3.2-m focal length was measured at average incident pump powers of only 3.2 W (corresponding to a 0.6 W heat load).
Diffractive Combiner of Single-Mode Pump Laser-Diode Beams
NASA Technical Reports Server (NTRS)
Liu, Duncan; Wilson, Daniel; Qiu, Yueming; Forouhar, Siamak
2007-01-01
An optical beam combiner now under development would make it possible to use the outputs of multiple single-mode laser diodes to pump a neodymium: yttrium aluminum garnet (Nd:YAG) nonplanar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, an Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained below, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. Figure 1 schematically illustrates the principle of operation of a laser-diode-pumped Nd:YAG NPRO. The laser beam path is confined in a Nd:YAG crystal by means of total internal reflections on the three back facets and a partial-reflection coating on the front facet. The wavelength of the pump beam - 808 nm - is the wavelength most strongly absorbed by the Nd:YAG crystal. The crystal can lase at a wavelength of either 1,064 nm or 1,319 nm - which one depending on the optical coating on the front facet. A thermal lens effect induced by the pump beam enables stable lasing in the lowest-order transverse electromagnetic mode (the TEM00 mode). The frequency of this laser is very stable because of the mechanical stability of the laser crystal and the unidirectional nature of the lasing. The unidirectionality is a result of the combined effects of (1) a Faraday rotation induced by an externally applied magnetic field and (2) polarization associated with non-normal incidence and reflection on the front facet.
Diode-pumped passively mode-locked and passively stabilized Nd3+:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Agnesi, Antonio; Guandalini, Annalisa; Tomaselli, Alessandra; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro
2004-07-01
Continuous-wave mode locking (CW-ML) of a diode-pumped Nd3+:BaY2F8 laser is reported for the first time to our knowledge. Pulses as short as 4.8 ps were measured with a total output power of almost equal to 1 W at 1049 nm, corresponding to 3.4 W of absorbed power from the pump diode at 806 nm. A novel technique for passive stabilization of CW-ML has been demonstrated.
Defence and security applications of quantum cascade lasers
NASA Astrophysics Data System (ADS)
Grasso, Robert J.
2016-09-01
Quantum Cascade Lasers (QCL) have seen tremendous recent application in the realm of Defence and Security. And, in many instances replacing traditional solid state lasers as the source of choice for Countermeasures, Remote Sensing, In-situ Sensing, Through-Barrier Sensing, and many others. Following their development and demonstration in the early 1990's, QCL's reached some maturity and specific defence and security application prior to 2005; with much initial development fostered by DARPA initiatives in the US, dstl, MoD, and EOARD funding initiatives in the UK, and University level R&D such as those by Prof Manijeh Razeghi at Northwestern University [1], and Prof Ted Masselink at Humboldt University [2]. As QCL's provide direct mid-IR laser output for electrical input, they demonstrate high quantum efficiency compared with diode pumped solid state lasers with optical parametric oscillators (OPOs) to generate mid-Infrared output. One particular advantage of QCL's is their very broad operational bandwidth, extending from the terahertz to the near-infrared spectral regions. Defence and Security areas benefiting from QCL's include: Countermeasures, Remote Sensing, Through-the-Wall Sensing, and Explosive Detection. All information used to construct this paper obtained from open sources.
Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers.
Demirbas, Umit; Schmalz, Michael; Sumpf, Bernd; Erbert, Götz; Petrich, Gale S; Kolodziejski, Leslie A; Fujimoto, James G; Kärtner, Franz X; Leitenstorfer, Alfred
2011-10-10
We report compact, low-cost and efficient Cr:Colquiriite lasers that are pumped by high brightness tapered laser diodes. The tapered laser diodes provided 1 to 1.2 W of output power around 675 nm, at an electrical-to-optical conversion efficiency of about 30%. Using a single tapered diode laser as the pump source, we have demonstrated output powers of 500 mW and 410 mW together with slope efficiencies of 47% and 41% from continuous wave (cw) Cr:LiSAF and Cr:LiCAF lasers, respectively. In cw mode-locked operation, sub-100-fs pulse trains with average power between 200 mW and 250 mW were obtained at repetition rates around 100 MHz. Upon pumping the Cr:Colquiriite lasers with two tapered laser diodes (one from each side of the crystal), we have observed scaling of cw powers to 850 mW in Cr:LiSAF and to 650 mW in Cr:LiCAF. From the double side pumped Cr:LiCAF laser, we have also obtained ~220 fs long pulses with 5.4 nJ of pulse energy at 77 MHz repetition rate. These are the highest energy levels reported from Cr:Colquiriite so far at these repetition rates. Our findings indicate that tapered diodes in the red spectral region are likely to become the standard pump source for Cr:Colquiriite lasers in the near future. Moreover, the simplified pumping scheme might facilitate efficient commercialization of Cr:Colquiriite systems, bearing the potential to significantly boost applications of cw and femtosecond lasers in this spectral region (750-1000 nm).
Laterally injected light-emitting diode and laser diode
Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.
2015-06-16
A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.
Diode-pumped quasi-three-level Nd:GdV O4-Nd:YAG sum-frequency laser at 464 nm
NASA Astrophysics Data System (ADS)
Lu, Jie
2014-04-01
We report a laser architecture to obtain continuous-wave (cw) blue radiation at 464 nm. A 808 nm diode pumped a Nd:GdV O4 crystal emitting at 912 nm. A part of the pump power was then absorbed by the Nd:GdV O4 crystal. The remainder was used to pump a Nd:YAG crystal emitting at 946 nm. Intracavity sum-frequency mixing at 912 and 946 nm was then realized in a LiB3O5 (LBO) crystal to produce blue radiation. We obtained a cw output power of 1.52 W at 464 nm with a pump laser diode emitting 18.4 W at 808 nm.
High-energy directly diode-pumped Q-switched 1617 nm Er:YAG laser at room temperature.
Wang, Mingjian; Zhu, Liang; Chen, Weibiao; Fan, Dianyuan
2012-09-01
We describe high-energy Erbium-doped yttrium aluminum garnet (Er:YAG) lasers operating at 1617 nm, resonantly pumped using 1532 nm fiber-coupled laser diodes. A maximum continuous wave output power of 4.3 W at 1617 nm was achieved with an output coupler of 20% transmission under incident pump power of 29.7 W, resulting in an optical conversion of 14% with respect to the incident pump power. In Q-switched operation, the pulse energy of 11.8 mJ at 100 Hz pulse repetition frequency and 81 ns pulse duration was obtained. This energy is the highest pulse energy reported for a directly diode-pumped Q-switched Er:YAG laser operating at 1617 nm.
Environmental testing of a diode-laser-pumped Nd:YAG laser and a set of diode-laser-arrays
NASA Technical Reports Server (NTRS)
Hemmati, H.; Lesh, J. R.
1989-01-01
Results of the environmental test of a compact, rigid and lightweight diode-laser-pumped Nd:YAG laser module are discussed. All optical elements are bonded onto the module using space applicable epoxy, and two 200 mW diode laser arrays for pump sources are used to achieve 126 mW of CW output with about 7 percent electrical-to-optical conversion efficiency. This laser assembly and a set of 20 semiconductor diode laser arrays were environmentally tested by being subjected to vibrational and thermal conditions similar to those experienced during launch of the Space Shuttle, and both performed well. Nevertheless, some damage to the laser front facet in diode lasers was observed. Significant degradation was observed only on lasers which performed poorly in the life test. Improvements in the reliability of the Nd:YAG laser are suggested.
Single-frequency diode-pumped lasers for free-space optical communication
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Cheng, Emily A. P.; Gerstenberger, David C.; Wallace, Richard W.
1990-01-01
Recent advances in laser technology for intersatellite optical communication systems are reviewed and illustrated with graphs and diagrams. Topics addressed include (1) single-frequency diode-pumped Nd:YAG lasers of monolithic ring configuration (yielding 368-384 mW output power with 1-W pumping), (2) injection chaining of up to 10 monolithic resonators to achieve redundancy and/or higher output power, (3) 2-kHz-linewidth 5-mW versions of (1) which are tunable over a 30-MHz range for use as local oscillators in coherent communication, (4) resonant external modulation and doubling or resonant phase modulation of diode-pumped lasers, and (5) wavelength multiplexing.
Semiconductor diode laser device adjuvanting intradermal vaccine
Kimizuka, Yoshifumi; Callahan, John J.; Huang, Zilong; Morse, Kaitlyn; Katagiri, Wataru; Shigeta, Ayako; Bronson, Roderick; Takeuchi, Shu; Shimaoka, Yusuke; Chan, Megan P. K.; Zeng, Yang; Li, Binghao; Chen, Huabiao; Tan, Rhea Y. Y.; Dwyer, Conor; Mulley, Tyler; Leblanc, Pierre; Goudie, Calum; Gelfand, Jeffrey; Tsukada, Kosuke; Brauns, Timothy; Poznansky, Mark C.; Bean, David; Kashiwagi, Satoshi
2017-01-01
A brief exposure of skin to a low-power, non-tissue damaging laser light has been demonstrated to augment immune responses to intradermal vaccination. Both preclinical and clinical studies show that this approach is simple, effective, safe and well tolerated compared to standard chemical or biological adjuvants. Until now, these laser exposures have been performed using a diode-pumped solid-state laser (DPSSL) devices, which are expensive and require labor-intensive maintenance and special training. Development of an inexpensive, easy-to-use and small device would form an important step in translating this technology toward clinical application Here we report that we have established a handheld, near-infrared (NIR) laser device using semiconductor diodes emitting either 1061, 1258, or 1301 nm light that costs less than $4,000, and that this device replicates the adjuvant effect of a DPSSL system in a mouse model of influenza vaccination. Our results also indicate that a broader range of NIR laser wavelengths possess the ability to enhance vaccine immune responses, allowing engineering options for the device design. This small, low-cost device establishes the feasibility of using a laser adjuvant approach for mass-vaccination programs in a clinical setting, opens the door for broader testing of this technology with a variety of vaccines and forms the foundation for development of devices ready for use in the clinic. PMID:28365253
Semiconductor diode laser device adjuvanting intradermal vaccine.
Kimizuka, Yoshifumi; Callahan, John J; Huang, Zilong; Morse, Kaitlyn; Katagiri, Wataru; Shigeta, Ayako; Bronson, Roderick; Takeuchi, Shu; Shimaoka, Yusuke; Chan, Megan P K; Zeng, Yang; Li, Binghao; Chen, Huabiao; Tan, Rhea Y Y; Dwyer, Conor; Mulley, Tyler; Leblanc, Pierre; Goudie, Calum; Gelfand, Jeffrey; Tsukada, Kosuke; Brauns, Timothy; Poznansky, Mark C; Bean, David; Kashiwagi, Satoshi
2017-04-25
A brief exposure of skin to a low-power, non-tissue damaging laser light has been demonstrated to augment immune responses to intradermal vaccination. Both preclinical and clinical studies show that this approach is simple, effective, safe and well tolerated compared to standard chemical or biological adjuvants. Until now, these laser exposures have been performed using a diode-pumped solid-state laser (DPSSL) devices, which are expensive and require labor-intensive maintenance and special training. Development of an inexpensive, easy-to-use and small device would form an important step in translating this technology toward clinical application. Here we report that we have established a handheld, near-infrared (NIR) laser device using semiconductor diodes emitting either 1061, 1258, or 1301nm light that costs less than $4000, and that this device replicates the adjuvant effect of a DPSSL system in a mouse model of influenza vaccination. Our results also indicate that a broader range of NIR laser wavelengths possess the ability to enhance vaccine immune responses, allowing engineering options for the device design. This small, low-cost device establishes the feasibility of using a laser adjuvant approach for mass-vaccination programs in a clinical setting, opens the door for broader testing of this technology with a variety of vaccines and forms the foundation for development of devices ready for use in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.
High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Eegholm, Niels; Stephen, Mark; Leidecker, Henning; Plante, Jeannette; Meadows, Byron; Amzajerdian, Farzin; Jamison, Tracee; LaRocca, Frank
2006-01-01
High-power laser diode arrays (LDAs) are used for a variety of space-based remote sensor laser programs as an energy source for diode-pumped solid-state lasers. LDAs have been flown on NASA missions including MOLA, GLAS and MLA and have continued to be viewed as an important part of the laser-based instrument component suite. There are currently no military or NASA-grade, -specified, or - qualified LDAs available for "off-the-shelf" use by NASA programs. There has also been no prior attempt to define a standard screening and qualification test flow for LDAs for space applications. Initial reliability studies have also produced good results from an optical performance and stability standpoint. Usage experience has shown, howeve that the current designs being offered may be susceptible to catastrophic failures due to their physical construction (packaging) combined with the electro-optical operational modes and the environmental factors of space application. design combined with operational mode was at the root of the failures which have greatly reduced the functionality of the GLAS instrument. The continued need for LDAs for laser-based science instruments and past catastrophic failures of this part type demand examination of LDAs in a manner which enables NASA to select, buy, validate and apply them in a manner which poses as little risk to the success of the mission as possible.
Laser induced fluorescence in Ar and He plasmas with a tunable diode laser
NASA Astrophysics Data System (ADS)
Boivin, R. F.; Scime, E. E.
2003-10-01
A diode laser based laser induced fluorescence (LIF) diagnostic that uses an inexpensive diode laser system is described. This LIF diagnostic has been developed on the hot helicon experiment (HELIX) plasma device. The same diode laser is used to alternatively pump Ar II and He I transitions to obtain argon ion and atomic helium temperatures, respectively. The 1.5 MHz bandwidth diode laser has a Littrow external cavity with a mode-hop free tuning range up to 14 GHz (≈0.021 nm) and a total power output of about 12 mW. Wavelength scanning is achieved by varying the voltage on a piezoelectric controlled grating located within the laser cavity. The fluorescence radiation is monitored with a photomultiplier detector. A narrow band interference filter is used to eliminate all but the plasma radiation in the immediate vicinity of the fluorescence wavelength. Lock-in amplification is used to isolate the fluorescence signal from noise and electron-impact induced radiation. For the Ar ion, the laser tuned at 668.43 nm is used to pump the 3d 4F7/2 Ar II metastable level to the 4p 4D5/2 level. The 442.60 nm fluorescence radiation between the 4p 4D5/2 and the 4s 4P3/2 levels is captured by the photomultiplier tube. For atomic He, the laser is tuned at 667.82 nm to pump a fraction of the electron population from the 21P state to the 31D upper level. Although the 21P level is not a metastable, the close proximity of 21S metastable makes this new He I LIF scheme possible. In this scheme, a fraction of the laser-excited electrons undergo collisional excitation transfer from the 31D to the 31P level. In turn, the 31P state decays to the metastable 21S by emitting 501.57 nm fluorescence photons.
High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers
NASA Technical Reports Server (NTRS)
Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.
1991-01-01
The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.
Er-doped YVO4 amplifier diode pumped at 976 nm
NASA Astrophysics Data System (ADS)
Newburgh, G. A.; Dubinskii, Mark
2016-05-01
We report on the use of a 976 nm diode pumped Er:YVO4 slab for the amplification of 1603 nm laser radiation with a small signal gain of 2.1. To the best of our knowledge, this represents the first use of Er:YVO4 as a non-resonantly pumped amplifier.
NASA Astrophysics Data System (ADS)
An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg
2015-03-01
We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.
NASA Astrophysics Data System (ADS)
Wetter, Niklaus U.; Bereczki, Allan; Paes, João. Pedro Fonseca
2018-02-01
Nd:YLiF4 is the gain material of choice whenever outstanding beam quality or a birefringent gain material is necessary such as in certain applications for terahertz radiation or dual-frequency mode-locking. However, for high power CW applications the material is hampered by a low thermal fracture threshold. This problem can be mitigated by special 2D pump set-ups or by keeping the quantum defect to a minimum. Direct pumping into the upper laser level of Nd:YLiF4 is usually performed at 880 nm. For quasi-three level laser emission at 908 nm, direct pumping at this wavelength provides a high quantum defect of 0.97, which allows for very high CW pump powers. Although the direct pumping transition to the upper laser state at 872 nm has a slightly smaller quantum defect of 0.96, its pump absorption cross section along the c-axis is 50% higher than at 880 nm, leading to a higher absorption efficiency. In this work we explore, for the first time to our knowledge, 908 nm lasing under 872 nm diode pumping and compare the results with 880 nm pumping for quasicw and cw operation. By inserting a KGW crystal in the cavity, Raman lines at 990 nm and 972 nm were obtained for the first time from a directly pumped 908 nm Nd:YLF fundamental laser for both quasi-cw and cw conditions.
Radiation damage and waste management options for the SOMBRERO final focus system and neutron dumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latkowski, J F; Meier, W R; Reyes, S
1999-08-09
Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were notmore » addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three -dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view.« less
Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power.
Gaponenko, Maxim; Kuleshov, Nikolay; Südmeyer, Thomas
2014-05-19
We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM(00) mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.
Effect of laser speckle on light from laser diode-pumped phosphor-converted light sources.
Aquino, Felipe; Jadwisienczak, Wojciech M; Rahman, Faiz
2017-01-10
Laser diode (LD) pumped white light sources are being developed as an alternative to light-emitting diode-pumped sources for high efficiency and/or high brightness applications. While several performance metrics of laser-pumped phosphor-converted light sources have been investigated, the effect of laser speckle has not been sufficiently explored. This paper describes our experimental studies on how laser speckle affects the behavior of light from laser-excited phosphor lamps. A single LD pumping a phosphor plate was the geometry explored in this work. Overall, our findings are that the down-converted light did not exhibit any speckle, whereas speckle was present in the residual pump light but much reduced from that in direct laser light. Furthermore, a thicker coating of small-grained phosphors served to effectively reduce speckle through static pump light diffusion in the phosphor coating. Our investigations showed that speckle is not of concern in illumination from LD-pumped phosphor-converted light sources.
NASA Astrophysics Data System (ADS)
Park, Kwan-Woo; Na, Suck-Joo
2010-06-01
A computational model for UV pulsed-laser scribing of silicon target is presented and compared with experimental results. The experiments were performed with a high-power Q-switched diode-pumped solid state laser which was operated at 355 nm. They were conducted on n-type 500 μm thick silicon wafers. The scribing width and depth were measured using scanning electron microscopy. The model takes into account major physics, such as heat transfer, evaporation, multiple reflections, and Rayleigh scattering. It also considers the attenuation and redistribution of laser energy due to Rayleigh scattering. Especially, the influence of the average particle sizes in the model is mainly investigated. Finally, it is shown that the computational model describing the laser scribing of silicon is valid at an average particle size of about 10 nm.
Laser-induced damage of coatings on Yb:YAG crystals at cryogenic condition
NASA Astrophysics Data System (ADS)
Wang, He; Zhang, Weili; Chen, Shunli; Zhu, Meiping; He, Hongbo; Fan, Zhengxiu
2011-12-01
As large amounts of heat need to be dissipated during laser operation, some diode pumped solid state lasers (DPSSL), especially Yb:YAG laser, operate at cryogenic condition. This work investigated the laser induced damage of coatings (high-reflective and anti-reflective coatings) on Yb:YAG crystals at cryogenic temperature and room temperature. The results show that the damage threshold of coatings at cryogenic temperature is lower than the one at room temperature. Field-emission scanning electron microscopy (FESEM), optical profiler, step profiler and Atomic force microscope (AFM) were used to obtain the damage morphology, size and depth. Taking alteration of physical parameters, microstructure of coatings and the environmental pollution into consideration, we analyzed the key factor of lowering the coating damage threshold at cryogenic conditions. The results are important to understand the mechanisms leading to damage at cryogenic condition.
Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers
NASA Astrophysics Data System (ADS)
Huang, Robin K.; Chann, Bien; Burgess, James; Kaiman, Michael; Overman, Robert; Glenn, John D.; Tayebati, Parviz
2012-03-01
TeraDiode has produced kW-class ultra-high brightness fiber-coupled direct diode lasers. A fiber-coupled direct diode laser with a power level of 2,040 W from a 50 μm core diameter, 0.15 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.75 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 2-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers.
Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser.
Ma, J; Xie, G Q; Gao, W L; Yuan, P; Qian, L J; Yu, H H; Zhang, H J; Wang, J Y
2012-04-15
A diode-end-pumped passively mode-locked femtosecond Tm-doped calcium lithium niobium gallium garnet (Tm:CLNGG) disordered crystal laser was demonstrated for the first time to our knowledge. With a 790 nm laser diode pumping, stable CW mode-locking operation was obtained by using a semiconductor saturable absorber mirror. The disordered crystal laser generated mode-locked pulses as short as 479 fs, with an average output power of 288 mW, and repetition rate of 99 MHz in 2 μm spectral region. © 2012 Optical Society of America
High efficiency, linearly polarized, directly diode-pumped Er:YAG laser at 1617 nm.
Yu, Zhenzhen; Wang, Mingjian; Hou, Xia; Chen, Weibiao
2014-12-01
An efficient, directly diode-pumped Er:YAG laser at 1617 nm was demonstrated. A folding mirror with high reflectivity for the s-polarized light at the laser wavelength was used to achieve a linearly polarized laser. A maximum continuous-wave output power of 7.73 W was yielded under incident pump power of 50.57 W, and the optical conversion efficiency with respect to incident pump power was ∼15.28%, which was the highest optical conversion efficiency with directly diode-pumped Er:YAG lasers up to now; in Q-switched operation, the maximum pulse energy of 7.82 mJ was generated with pulse duration of about 80 ns at a pulse repetition frequency of 500 Hz.
NASA Astrophysics Data System (ADS)
König, H.; Lell, A.; Stojetz, B.; Ali, M.; Eichler, C.; Peter, M.; Löffler, A.; Strauss, U.; Baumann, M.; Balck, A.; Malchus, J.; Krause, V.
2018-02-01
Industrial material processing like cutting or welding of metals is rather energy efficient using direct diode or diode pumped solid state lasers. However, many applications cannot be addressed by established infrared laser technology due to fundamental material properties of the workpiece: For example materials like copper or gold have too low absorption in the near infrared wavelength range to be processed efficiently by use of existing high power laser systems. The huge interest to enable high power kW systems with more suitable wavelengths in the blue spectral range triggered the German funded research project 'BLAULAS': Therein the feasibility and capability of CW operating high power laser bars based on the GaN material system was investigated by Osram and Laserline. High performance bars were enabled by defeating fundamental challenges like material quality as well as the chip processes, both of which differ significantly from well-known IR laser bars. The research samples were assembled on actively cooled heat sinks with hard solder technology. For the first time an output power of 98W per bar at 60A drive current was achieved. Conversion efficiency as high as 46% at 50W output power was demonstrated.
Method for fabrication of cylindrical microlenses of selected shape
Snyder, J.J.; Baer, T.M.
1992-01-14
The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. The present invention has many applications, such as integrated optics, optical detectors and laser diodes. The lens, when connected to a laser diode bar, can provide a high intensity source of laser radiation for pumping a high average power solid state laser. In integrated optics, a lens can be used to couple light into and out of apertures such as waveguides. The lens can also be used to collect light, and focus it on a detector. 11 figs.
Method for fabrication of cylindrical microlenses of selected shape
Snyder, James J.; Baer, Thomas M.
1992-01-01
The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. The present invention has many applications, such as integrated optics, optical detectors and laser diodes. The lens, when connected to a laser diode bar, can provide a high intensity source of laser radiation for pumping a high average power solid state laser. In integrated optics, a lens can be used to couple light into and out of apertures such as waveguides. The lens can also be used to collect light, and focus it on a detector.
NASA Astrophysics Data System (ADS)
Tian, Pengfei; Althumali, Ahmad; Gu, Erdan; Watson, Ian M.; Dawson, Martin D.; Liu, Ran
2016-04-01
The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm-2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.
Analysis of Technology for Solid State Coherent Lidar
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
1997-01-01
Over the past few years, considerable advances have been made in the areas of the diode-pumped, eye-safe, solid state lasers, wide bandwidth, semiconductor detectors operating in the near-infrared region. These advances have created new possibilities for the development of low-cost, reliable, and compact coherent lidar systems for measurements of atmospheric winds and aerosol backscattering from a space-based platform. The work performed by the UAH personnel concentrated on design and analyses of solid state pulsed coherent lidar systems capable of measuring atmospheric winds from space, and design and perform laboratory experiments and measurements in support of solid state laser radar remote sensing systems which are to be designed, deployed, and used by NASA to measure atmospheric processes and constituents. A lidar testbed system was designed and analyzed by considering the major space operational and environmental requirements, and its associated physical constraints. The lidar optical system includes a wedge scanner and the compact telescope designed by the UAH personnel. The other major optical components included in the design and analyses were: polarizing beam splitter, routing mirrors, wave plates, signal beam derotator, and lag angle compensator. The testbed lidar optical train was designed and analyzed, and different design options for mounting and packaging the lidar subsystems and components and support structure were investigated. All the optical components are to be mounted in a stress-free and stable manner to allow easy integration and alignment, and long term stability. This lidar system is also intended to be used for evaluating the performance of various lidar subsystems and components that are to be integrated into a flight unit and for demonstrating the integrity of the signal processing algorithms by performing actual atmospheric measurements from a ground station.
Luminorefrigeration: vibrational cooling of NaCs.
Wakim, A; Zabawa, P; Haruza, M; Bigelow, N P
2012-07-02
We demonstrate the use of optical pumping of kinetically ultracold NaCs to cool an initial vibrational distribution of electronic ground state molecules X(1)Σ(+)(v ≥ 4) into the vibrational ground state X(1)Σ(+)(v=0). Our approach is based on the use of simple, commercially available multimode diode lasers selected to optically pump population into X(1)Σ(+)(v=0). We investigate the impact of the cooling process on the rotational state distribution of the vibrational ground state, and observe that an initial distribution, J(initial)=0-2 is only moderately affected resulting in J(final)=0-4. This method provides an inexpensive approach to creation of vibrational ground state ultracold polar molecules.
A diode-pumped Nd:YAlO3 dual-wavelength yellow light source
NASA Astrophysics Data System (ADS)
Zhang, Jing; Fu, Xihong; Zhai, Pei; Xia, Jing; Li, Shutao
2013-11-01
We present what is, to the best of our knowledge, the first diode-pumped Nd:YAlO3 (Nd:YAP) continuous-wave (cw) dual-wavelength yellow laser at 593 nm and 598 nm, based on sum-frequency generation between 1064 and 1339 nm in a-axis polarization using LBO crystal and between 1079 and 1341 nm in c-axis polarization using PPKTP crystal, respectively. At an incident pump power of 17.3 W, the maximum output power obtained at 593 nm and 598 nm is 0.18 W and 1.86 W, respectively. The laser experiment shows that Nd:YAP crystal can be used for an efficient diode-pumped dual-wavelength yellow laser system.
Kwon, Osung; Ra, Young-Sik; Kim, Yoon-Ho
2009-07-20
Coherence properties of the photon pair generated via spontaneous parametric down-conversion pumped by a multi-mode cw diode laser are studied with a Mach-Zehnder interferometer. Each photon of the pair enters a different input port of the interferometer and the biphoton coherence properties are studied with a two-photon detector placed at one output port. When the photon pair simultaneously enters the interferometer, periodic recurrence of the biphoton de Broglie wave packet is observed, closely resembling the coherence properties of the pump diode laser. With non-zero delays between the photons at the input ports, biphoton interference exhibits the same periodic recurrence but the wave packet shapes are shown to be dependent on both the input delay as well as the interferometer delay. These properties could be useful for building engineered entangled photon sources based on diode laser-pumped spontaneous parametric down-conversion.
Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings.
Chen, Y L; Chen, W W; Du, C E; Chang, W K; Wang, J L; Chung, T Y; Chen, Y H
2009-12-07
We report on the demonstration of a narrow-line, cw orange 593-nm laser achieved via intracavity sum-frequency generation (SFG) of a diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO(4) laser using two volume Bragg grating (VBG) reflectors. At diode pump power of up to 3.6 W, the 593-nm intracavity SFG laser radiates at the single longitudinal mode of spectral linewidth as narrow as approximately 15 MHz. More than 23-mW single-longitudinal-mode or 40-mW, <8.5-GHz (10-pm) linewidth (at 4.2-W diode pump power) 593-nm orange lights can be obtained from this compact laser system. Spectral tuning of the orange light was performed via the temperature tuning of the two VBGs in this system, achieving an effective tuning rate of ~5 pm/degrees C.
40 CFR 63.7195 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... units used to manufacture p-type and n-type semiconductors or active solid state devices from a wafer.... Examples of semiconductor or related solid state devices include semiconductor diodes, semiconductor stacks... permanently attached to motor vehicles such as trucks, railcars, barges, or ships; (2) Flow-through tanks...
40 CFR 63.7195 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... units used to manufacture p-type and n-type semiconductors or active solid state devices from a wafer.... Examples of semiconductor or related solid state devices include semiconductor diodes, semiconductor stacks... permanently attached to motor vehicles such as trucks, railcars, barges, or ships; (2) Flow-through tanks...
40 CFR 63.7195 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... units used to manufacture p-type and n-type semiconductors or active solid state devices from a wafer.... Examples of semiconductor or related solid state devices include semiconductor diodes, semiconductor stacks... permanently attached to motor vehicles such as trucks, railcars, barges, or ships; (2) Flow-through tanks...
High-power pulse repetitive HF(DF) laser with a solid-state pump generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikanov, S D; Domazhirov, A P; Zaretskiy, N A
2015-11-30
Operation of a repetitively pulsed electric-discharge HF(DF) laser with an all-solid-state pump generator based on FID switches is demonstrated. The energy stored in the pump generator capacitors was 880 J at an open-circuit voltage of 240 kV and a discharge pulse repetition rate of 25 Hz. The specific energy extractions were 3.8 and 3.4 J L{sup -1} for the HF and DF lasers, respectively. The possibilities of improving the output laser characteristics are discussed. (lasers)
NASA Technical Reports Server (NTRS)
Coyle, Barry; Poulios, Demetrios
2013-01-01
A fiber/solid-state hybrid seeded regenerative amplifier, capable of achieving high output energy with tunable pulse widths, has been developed for satellite laser ranging applications. The regenerative amplifier cavity uses a pair of Nd:YAG zigzag slabs oriented orthogonally to one another in order to make thermal lensing effects symmetrical and simplify optical correction schemes. The seed laser used is a fiber-coupled 1,064-nm narrowband (<0.02 nm) diode laser that is discretely driven in a new short-pulsed mode, enabling continuously tunable seed pulse widths in the 0.2-to-0.4-ns range. The amplifier gain unit consists of a pair of Brewster-cut 6-bounce zigzag Nd:YAG laser slabs, oriented 90deg relative to each other in the amplifier head. This arrangement creates a net-symmetrical thermal lens effect (an opposing singleaxis effect in each slab), and makes thermo-optical corrections simple by optimizing the curvature of the nearest cavity mirror. Each slab is pumped by a single 120-W, pulsed 808-nm laser diode array. In this configuration, the average pump beam distribution in the slabs had a 1-D Gaussian shape, which matches the estimated cavity mode size. A half-wave plate between the slabs reduces losses from Fresnel reflections due to the orthogonal slabs Brewster-cut end faces. Successful "temporal" seeding of the regenerative amplifier cavity results in a cavity Q-switch pulse envelope segmenting into shorter pulses, each having the width of the input seed, and having a uniform temporal separation corresponding to the cavity round-trip time of approx. =10 ns. The pulse energy is allowed to build on successive passes in the regenerative amplifier cavity until a maximum is reached, (when cavity gains and losses are equal), after which the pulse is electro- optically switched out on the next round trip The overall gain of the amplifier is approx. =82 dB (or a factor of 1.26 million). After directing the amplified output through a LBO frequency doubling crystal, approx. = 2.1 W of 532-nm output (>1 mJ) was measured. This corresponds to a nonlinear conversion efficiency of >60%. Furthermore, by pulse pumping this system, a single pulse per laser shot can be created for the SLR (satellite laser ranging) measurement, and this can be ejected into the instrument. This is operated at the precise frequency needed by the measurement, as opposed to commercial short-pulsed, mode-locked systems that need to operate in a continuous fashion, or CW (continuous wave), and create pulses at many MHz. Therefore, this design does not need to throw away or dump 99% of the laser energy to produce what is required; this system can be far smaller, more efficient, cheaper, and readily deployed in the field when packaged efficiently. Finally, by producing custom diode seed pulses electronically, two major advantages over commercial systems are realized: First, this pulse shape is customizable and not affected by the cavity length or gain of the amplifier cavity, and second, it can produce adjustable (selectable) pulse widths by simply adding multiple seed diodes and coupling each into commercial, low-cost fiber-optic combiners.
An aluminium nitride light-emitting diode with a wavelength of 210 nanometres.
Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki
2006-05-18
Compact high-efficiency ultraviolet solid-state light sources--such as light-emitting diodes (LEDs) and laser diodes--are of considerable technological interest as alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. Microelectronic fabrication technologies and the environmental sciences both require light sources with shorter emission wavelengths: the former for improved resolution in photolithography and the latter for sensors that can detect minute hazardous particles. In addition, ultraviolet solid-state light sources are also attracting attention for potential applications in high-density optical data storage, biomedical research, water and air purification, and sterilization. Wide-bandgap materials, such as diamond and III-V nitride semiconductors (GaN, AlGaN and AlN; refs 3-10), are potential materials for ultraviolet LEDs and laser diodes, but suffer from difficulties in controlling electrical conduction. Here we report the successful control of both n-type and p-type doping in aluminium nitride (AlN), which has a very wide direct bandgap of 6 eV. This doping strategy allows us to develop an AlN PIN (p-type/intrinsic/n-type) homojunction LED with an emission wavelength of 210 nm, which is the shortest reported to date for any kind of LED. The emission is attributed to an exciton transition, and represents an important step towards achieving exciton-related light-emitting devices as well as replacing gas light sources with solid-state light sources.
Cryogenic ultra-high power infrared diode laser bars
NASA Astrophysics Data System (ADS)
Crump, Paul; Frevert, C.; Hösler, H.; Bugge, F.; Knigge, S.; Pittroff, W.; Erbert, G.; Tränkle, G.
2014-02-01
GaAs-based high power diode lasers are the most efficient source of optical energy, and are in wide use in industrial applications, either directly or as pump sources for other laser media. Increased output power per laser is required to enable new applications (increased optical power density) and to reduce cost (more output per component leads to lower cost in $/W). For example, laser bars in the 9xx nm wavelength range with the very highest power and efficiency are needed as pump sources for many high-energy-class solid-state laser systems. We here present latest performance progress using a novel design approach that leverages operation at temperatures below 0°C for increases in bar power and efficiency. We show experimentally that operation at -55°C increases conversion efficiency and suppresses thermal rollover, enabling peak quasi-continuous wave bar powers of Pout > 1.6 kW to be achieved (1.2 ms, 10 Hz), limited by the available current. The conversion efficiency at 1.6 kW is 53%. Following on from this demonstration work, the key open challenge is to develop designs that deliver higher efficiencies, targeting > 80% at 1.6 kW. We present an analysis of the limiting factors and show that low electrical resistance is crucial, meaning that long resonators and high fill factor are needed. We review also progress in epitaxial design developments that leverage low temperatures to enable both low resistance and high optical performance. Latest results will be presented, summarizing the impact on bar performance and options for further improvements to efficiency will also be reviewed.
Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm.
Lee, Hee Chul; Byeon, Sung Ug; Lukashev, Alexei
2012-04-01
We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.
Solid state laser technology - A NASA perspective
NASA Technical Reports Server (NTRS)
Allario, F.
1985-01-01
NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.
Avalanche diodes for the generation of coherent radiation
NASA Technical Reports Server (NTRS)
Penfield, P., Jr.
1973-01-01
Solid state devices and characterization, and optimum imbedding networks for realizing best performance were investigated along with a barrier injection transit time diode. These diodes were investigated for possible application as microwave amplifiers and oscillators. Measurements were made of diode noise figures in the frequency ranges of 4 - 6 GHz. Initial results indicate that a noise figure of 6 - 8 db may be possible. Optimum device structure and fabrication techniques necessary for low noise performance were investigated. Previously published documents on electrodynamics are included.
Structure, luminescence and thermal quenching properties of Eu doped Sr2-xBaxSi5N8 red phosphors
NASA Astrophysics Data System (ADS)
Liu, Y. H.; Chen, L.; Zhou, X. F.; Liu, R. H.; Zhuang, W. D.
2017-02-01
Eu2+ doped Sr2-xBaxSi5N8 phosphors were synthesized at 1610 ℃ for 4 h via the solid-state reaction method. The XRD results confirm that the complete solid solutions are formed. With the increase of x, the emission spectra show an obvious blue-shift from 610 nm to 585 nm under the excitation of 460 nm. The color tone can be tuned from yellow to red. The corresponding mechanism for the blue-shift of peak-wavelength is studied in detail. The results of decomposed Gaussian spectra and fluorescence lifetime show that the local coordination structure surrounding activator ions changes with increasing x value. It is found that the probability of Eu occupying Sr1 and Sr2 site is dependent on Ba/Sr ratio. The variation of thermal quenching properties and the corresponding mechanism is discussed in detail. The results indicate that Eu2+ doped Sr2-xBaxSi5N8 is a promising orange red-emitting phosphor for near UV or blue light-pumped white light-emitting-diodes (wLEDs).
Diode-pumped SrMoO4:Tm3+ crystal lasing near 1500 nm
NASA Astrophysics Data System (ADS)
Doroshenko, M. E.; Sulc, J.; Jelinkova, H.; Nemec, M.; Ivleva, L. I.; Dunaeva, E. E.
2018-04-01
Diode-pumped lasing of Tm3+ ions in SrMoO4 crystal at wavelength near 1500 nm was obtained for the first time to our best knowledge. Two laser lines with orthogonal polarizations were observed at 1452 and 1492 nm. The laser pulse was self-terminated about 500 µs after the pump start.
CW lasing of Ho in KLu(WO4)2 in-band pumped by a diode-pumped Tm:KLu(WO4)2 laser.
Mateos, Xavier; Jambunathan, Venkatesan; Pujol, Maria Cinta; Carvajal, Joan Josep; Díaz, Francesc; Aguiló, Magdalena; Griebner, Uwe; Petrov, Valentin
2010-09-27
We demonstrate continuous wave (CW) room temperature laser operation of the monoclinic Ho(3+)-doped KLu(WO(4))(2) crystal using a diode-pumped Tm(3+):KLu(WO(4))(2) laser for in-band pumping. The slope efficiency achieved amounts to ~55% with respect to the absorbed power and the maximum output power of 648 mW is generated at 2078 nm.
Transversely diode-pumped alkali metal vapour laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkhomenko, A I; Shalagin, A M
2015-09-30
We have studied theoretically the operation of a transversely diode-pumped alkali metal vapour laser. For the case of high-intensity laser radiation, we have obtained an analytical solution to a complex system of differential equations describing the laser. This solution allows one to exhaustively determine all the energy characteristics of the laser and to find optimal parameters of the working medium and pump radiation (temperature, buffer gas pressure, and intensity and width of the pump spectrum). (lasers)
Theoretical analyses of an injection-locked diode-pumped rubidium vapor laser.
Cai, He; Gao, Chunqing; Liu, Xiaoxu; Wang, Shunyan; Yu, Hang; Rong, Kepeng; An, Guofei; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You
2018-04-02
Diode-pumped alkali lasers (DPALs) have drawn much attention since they were proposed in 2001. The narrow-linewidth DPAL can be potentially applied in the fields of coherent communication, laser radar, and atomic spectroscopy. In this study, we propose a novel protocol to narrow the width of one kind of DPAL, diode-pumped rubidium vapor laser (DPRVL), by use of an injection locking technique. A kinetic model is first set up for an injection-locked DPRVL with the end-pumped configuration. The laser tunable duration is also analyzed for a continuous wave (CW) injection-locked DPRVL system. Then, the influences of the pump power, power of a master laser, and reflectance of an output coupler on the output performance are theoretically analyzed. The study should be useful for design of a narrow-linewidth DPAL with the relatively high output.
Jackson, Stuart D
2009-08-01
A high-power diode-cladding-pumped Ho(3+), Pr(3+)-doped fluoride glass fiber laser is demonstrated. The laser produced a maximum output power of 2.5 W at a slope efficiency of 32% using diode lasers emitting at 1,150 nm. The long-emission wavelength of 2.94 microm measured at maximum pump power, which is particularly suited to medical applications, indicates that tailoring of the proportion of Pr(3+) ions can provide specific emission wavelengths while providing sufficient de-excitation of the lower laser level.
The 20 GHz spacecraft IMPATT solid state transmitter
NASA Technical Reports Server (NTRS)
Best, T.; Ngan, Y. C.
1986-01-01
The engineering development of a solid-state transmitter amplifier operating in the 20-GHz frequency range is described. This effort involved a multitude of disciplines including IMPATT device development, circulator design, multiple-diode circuit design, and amplifier integration and test. The objective was to develop a transmitter amplifier demonstrating the feasibility of providing an efficient, reliable, lightweight solid-state transmitter to be flown on a 30 to 20 GHz communication demonstration satellite. The work was done under contract from NASA/Lewis Research Center for a period of three years. The result was the development of a GaAs IMPACT diode amplifier capable of an 11-W CW output power and a 2-dB bandwidth of 300 MHz. GaAs IMPATT diodes incorporating diamond heatsink and double-Read doping profile capable of 5.3-W CW oscillator output power and 15.5% efficiency were developed. Up to 19% efficiency was also observed for an output power level of 4.4 W. High performance circulators with a 0.2 dB inserting loss and bandwidth of 5 GHz have also been developed. These represent a significant advance in both device and power combiner circuit technologies in K-band frequencies.
Spectroscopic and Kinetic Measurements of Alkali Atom-Rare Gas Excimers
2009-11-04
vapors – Exciplex molecules absorb over much greater bandwidth • Control of inherent high optical gain to minimize ASE and optimize laser oscillation... Exciplex assisted diode Pumped Alkali Laser (XPAL) • Education of a future generation of laser scientists VG09-227-2 Physical Sciences Inc. Novel Approach...This new laser exploits the optical properties of weakly-bound alkali/rare-gas exciplexes for pumping the 2P1/2, 3/2 alkali atomic excited states 4
Hetzl, Martin; Wierzbowski, Jakob; Hoffmann, Theresa; Kraut, Max; Zuerbig, Verena; Nebel, Christoph E; Müller, Kai; Finley, Jonathan J; Stutzmann, Martin
2018-06-13
Solid-state quantum emitters embedded in a semiconductor crystal environment are potentially scalable platforms for quantum optical networks operated at room temperature. Prominent representatives are nitrogen-vacancy (NV) centers in diamond showing coherent entanglement and interference with each other. However, these emitters suffer from inefficient optical outcoupling from the diamond and from fluctuations of their charge state. Here, we demonstrate the implementation of regular n-type gallium nitride nanowire arrays on diamond as photonic waveguides to tailor the emission direction of surface-near NV centers and to electrically control their charge state in a p-i-n nanodiode. We show that the electrical excitation of single NV centers in such a diode can efficiently replace optical pumping. By the engineering of the array parameters, we find an optical read-out efficiency enhanced by a factor of 10 and predict a lateral NV-NV coupling 3 orders of magnitude stronger through evanescently coupled nanowire antennas compared to planar diamond not covered by nanowires, which opens up new possibilities for large-scale on-chip quantum-computing applications.
Efficient blue emission of ytterbium-doped Sr5(PO4)3F under quasi-three-level intracavity pumping
NASA Astrophysics Data System (ADS)
Yang, Y.; Cao, G. H.
2012-02-01
We report an Yb:Sr5(PO4)3F (Yb:S-FAP) laser emitting at 985 nm intracavity pumped by a 912 nm diode-pumped Nd:GdVO4 laser. A 808 nm diode laser is used to pump the Nd:GdVO4 crystal emitting at 912 nm, and the Yb:S-FAP laser emitting at 985 nm intracavity pumped at 912 nm. With incident pump power of 17.5 W, intracavity second harmonic generation has been demonstrated with a power of 131 mW at 492.5 nm by using a LBO nonlinear crystal.
100 years of the physics of diodes
NASA Astrophysics Data System (ADS)
Zhang, Peng; Valfells, Ágúst; Ang, L. K.; Luginsland, J. W.; Lau, Y. Y.
2017-03-01
The Child-Langmuir Law (CL), discovered a century ago, gives the maximum current that can be transported across a planar diode in the steady state. As a quintessential example of the impact of space charge shielding near a charged surface, it is central to the studies of high current diodes, such as high power microwave sources, vacuum microelectronics, electron and ion sources, and high current drivers used in high energy density physics experiments. CL remains a touchstone of fundamental sheath physics, including contemporary studies of nanoscale quantum diodes and nano gap based plasmonic devices. Its solid state analog is the Mott-Gurney law, governing the maximum charge injection in solids, such as organic materials and other dielectrics, which is important to energy devices, such as solar cells and light emitting diodes. This paper reviews the important advances in the physics of diodes since the discovery of CL, including virtual cathode formation and extension of CL to multiple dimensions, to the quantum regime, and to ultrafast processes. We review the influence of magnetic fields, multiple species in bipolar flow, electromagnetic and time dependent effects in both short pulse and high frequency THz limits, and single electron regimes. Transitions from various emission mechanisms (thermionic-, field-, and photoemission) to the space charge limited state (CL) will be addressed, especially highlighting the important simulation and experimental developments in selected contemporary areas of study. We stress the fundamental physical links between the physics of beams to limiting currents in other areas, such as low temperature plasmas, laser plasmas, and space propulsion.
Laser at 532 nm by intracavity frequency-doubling in BBO
NASA Astrophysics Data System (ADS)
Yuan, Xiandan; Wang, Jinsong; Chen, Yongqi; Wu, Yulong; Qi, Yunfei; Sun, Meijiao; Wang, Qi
2017-06-01
A simple and compact linear resonator green laser at 532 nm is generated by intracavity frequency-doubling of a diode-side-pumped acousto-optically (AO) Q-switched Nd:YAG laser at 1064 nm. Two acousto-optic Q-switches were placed orthogonally with each other to improve the hold-off capacity. As high as 214 W of continuous-wave (CW) and 154 W of quasi-continuous-wave (QCW) output power at 1064 nm were obtained when the pumping power was 1598 W. The type I phase-matched BBO crystal was used as the nonlinear medium in the second harmonic generation. A green laser with an average output power of 37 W was obtained at a repetition rate of 20 kHz and a pulse width of 54 ns, which corresponds to pulse energy of 1.85 mJ per pulse and a peak power 34.26 kW, respectively. Project supported by the Beijing Engineering Technology Research Center of All-Solid-State Lasers Advanced Manufacturing, the National High Technology Research and Development Program of China (No. 2014AA032607), and the National Natural Science Foundation of China (Nos. 61404135, 61405186, 61308032, 61308033).
Development of all-solid-state flash x-ray generator with photoconductive semiconductor switches.
Xun, Ma; Jianjun, Deng; Hongwei, Liu; Jianqiang, Yuan; Jinfeng, Liu; Bing, Wei; Yanling, Qing; Wenhui, Han; Lingyun, Wang; Pin, Jiang; Hongtao, Li
2014-09-01
A compact, low-jitter, and high repetitive rate all-solid-state flash x-ray generator making use of photo conductive semiconductor switches was developed recently for the diagnostic purpose of some hydrokinetical experiments. The generator consisted of twelve stages of Blumlein pulse forming networks, and an industrial cold cathode diode was used to generate intense x-ray radiations with photon energy up to 220 keV. Test experiments showed that the generator could produce >1 kA electron beam currents and x-ray pulses with ~40 ns duration under 100 Hz repetitive rates at least (limited by the triggering laser on hand), also found was that the delay time of the cathode explosive emission is crucial to the energy transfer efficiency of the whole system. In addition, factors affecting the diode impedance, how the switching synchronization and diode impedance determining the allowable operation voltage were discussed.
Theoretical investigation of output features of a diode-pumped rubidium vapor laser
NASA Astrophysics Data System (ADS)
Wang, You; Cai, He; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Han, Juhong
2014-02-01
In the recent years, diode-pumped alkali lasers (DPALs) have been paid many attentions because of their excellent performances. In fact, the characteristics of a DPAL strongly depend on the physical features of buffer gases. In this report, we selected a diode-pumped rubidium vapor laser (DPRVL), which is an important type among three common DPALs, to investigate how the characteristics of a DPRVL are affected by different conditions. The results signify that the population ratio of two excitation energy-levels are close to that corresponding to thermal equilibrium as the pressure of buffer gases and the temperature of a vapor cell become higher. It has been found that quenching of the upper levels cannot be simply ignored especially for the case of weak pump. The conclusions are thought to be helpful for the configuration design of an end-pumped DPAL.
High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system.
Noom, Daniel W E; Witte, Stefan; Morgenweg, Jonas; Altmann, Robert K; Eikema, Kjeld S E
2013-08-15
We report on a high-power quasi-CW pumped Nd:YAG laser system, producing 130 mJ, 64 ps pulses at 1064 nm wavelength with a repetition rate of 300 Hz. Pulses from a Nd:YVO(4) oscillator are first amplified by a regenerative amplifier to the millijoule level and then further amplified in quasi-CW diode-pumped Nd:YAG modules. Pulsed diode pumping enables a high gain at repetition rates of several hundred hertz, while keeping thermal effects manageable. Birefringence compensation and multiple thermal-lensing-compensated relay-imaging stages are used to maintain a top-hat beam profile. After frequency doubling, 75 mJ pulses are obtained at 532 nm. The intensity stability is better than 1.1%, which makes this laser an attractive pump source for a high-repetition-rate optical parametric amplification system.
A compact 300 kV solid-state high-voltage nanosecond generator for dielectric wall accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yi; Wang, Wei; Liu, Yi
2015-05-15
Compact solid-state system is the main development trend in pulsed power technologies. A compact solid-state high-voltage nanosecond pulse generator with output voltage of 300 kV amplitude, 10 ns duration (FWHM), and 3 ns rise-time was designed for a dielectric wall accelerator. The generator is stacked by 15 planar-plate Blumlein pulse forming lines (PFL). Each Blumlein PFL consists of two solid-state planar transmission lines, a GaAs photoconductive semiconductor switch, and a laser diode trigger. The key components of the generator and the experimental results are reported in this paper.
High-energy, 2µm laser transmitter for coherent wind LIDAR
NASA Astrophysics Data System (ADS)
Singh, Upendra N.; Yu, Jirong; Kavaya, Michael J.; Koch, Grady J.
2017-11-01
A coherent Doppler lidar at 2μm wavelength has been built with higher output energy (300 mJ) than previously available. The laser transmitter is based on the solid-state Ho:Tm:LuLiF, a NASA Langley Research Center invented laser material for higher extraction efficiency. This diode pumped injection seeded MOPA has a transform limited line width and diffraction limited beam quality. NASA Langley Research Center is developing coherent wind lidar transmitter technology at eye-safe wavelength for satellite-based observation of wind on a global scale. The ability to profile wind is a key measurement for understanding and predicting atmospheric dynamics and is a critical measurement for improving weather forecasting and climate modeling. We would describe the development and performance of an engineering hardened 2μm laser transmitter for coherent Doppler wind measurement from ground/aircraft/space platform.
Silicon nanoparticle-ZnS nanophosphors for ultraviolet-based white light emitting diode
NASA Astrophysics Data System (ADS)
Stupca, Matthew; Nayfeh, Osama M.; Hoang, Tuan; Nayfeh, Munir H.; Alhreish, Bahjat; Boparai, Jack; AlDwayyan, Abdullah; AlSalhi, Mohamad
2012-10-01
Present red phosphor converters provide spectra dominated by sharp lines and suffer from availability and stability issues which are not ideal for color mixing in display or solid state lighting applications. We examine the use of mono dispersed 3 nm silicon nanoparticles, with inhomogeneously broadened red luminescence as an effective substitute for red phosphors. We tested a 3-phase hybrid nanophosphor consisting of ZnS:Ag, ZnS:Cu,Au,Al, and nanoparticles. Correlated color temperature is examined under UV and LED pumping in the range 254, 365-400 nm. The temperature is found reasonably flat for the longer wavelengths and drops for the shorter wavelengths while the color rendering index increases. The photo stability of the phosphors relative to the silicon nanoparticles is recorded. The variation in the temperature is analyzed in terms of the strength of inter-band-gap transition and continuum band to band transitions.
Investigation of continuous wave and pulsed laser performance based on Nd3+:Gd0.6Y1.4SiO5 crystal
NASA Astrophysics Data System (ADS)
Feng, Chao; Liu, Zhaojun; Cong, Zhenhua; Shen, Hongbin; Li, Yongfu; Wang, Qingpu; Fang, Jiaxiong; Xu, Xiaodong; Xu, Jun; Zhang, Xingyu
2015-12-01
We systematically investigated a laser diode (LD) pumped Nd:GYSO (Nd3+:Gd0.6Y1.4SiO5) laser. The output power of the continuous wave laser was as high as 3.5 W with a slope efficiency of 31.8%. In the Q-switched operation; the laser exhibited dual-wavelengths output (1073.6 nm and 1074.7 nm) synchronously with a Cr4+:YAG as the saturable absorber (SA). Additionally, a passively mode-locked laser was demonstrated using a semiconductor SA mirror with a maximum average output power of 510 mW at a central wavelength of 1074 nm, while the pulse width of the laser was as short as 5 ps. Our experiment proved that the Nd:GYSO mixed crystal was a promising material for a solid-state laser.
Characterization of Bivoj/DiPOLE 100: HiLASE 100-J/10-Hz diode pumped solid state laser
NASA Astrophysics Data System (ADS)
Pilar, Jan; De Vido, Mariastefania; Divoky, Martin; Mason, Paul; Hanus, Martin; Ertel, Klaus; Navratil, Petr; Butcher, Thomas; Slezak, Ondrej; Banerjee, Saumyabrata; Phillips, Jonathan; Smith, Jodie; Lucianetti, Antonio; Hernandez-Gomez, Cristina; Edwards, Chris; Collier, John; Mocek, Tomas
2018-02-01
The HiLASE "Bivoj" laser system developed at CLF Rutherford Appleton Laboratory in collaboration with HiLASE team as DiPOLE100 was relocated to Dolni Brezany near Prague, Czechia at the end of 2015 and fully re-commissioned at the end of 2016. In 2016, the system demonstrated average output power of 1kW generating pulses of 105 J at 10 Hz repetition rate for the first time in the world. Since then the system has been subjected to several testing campaigns in order to determine some of its key characteristics. Beam quality, wavefront quality, pointing stability, energy stability and experience with long term operation of 1 kW laser are presented. In addition, depolarization effects have been detected inside the main amplifier. Details on these results along with numerical simulations are presented.
Micro sculpting technology using DPSSL
NASA Astrophysics Data System (ADS)
Chang, Won-Seok; Shin, Bosung; Kim, Jae-gu; Whang, Kyung-Hyun
2003-11-01
Multiple pulse laser ablation of polymer is performed with DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO4 laser (355 nm) in order to fabricate three-dimensional micro components. Here we considered mechanistic aspects of the interaction between UV laser and polymer to obtain optimum process conditions for maskless photomachining using DPSSL. The photo-physical and photochemical parameters such as laser wavelength and optical characteristics of polymers are investigated by experiments to reduce plume effect, which induce the re-deposited debris on the surface of substrate. In this study, LDST (laser direct sculpting technique) are developed to gain various three-dimensional shape with size less than 500 micrometer. Main process sequences are from rapid prototyping technology such as CAD/CAM modeling of products, machining path generation, layer-by-layer machining, and so on. This method can be applied to manufacture the prototype of micro device and the polymer mould for mass production without expensive mask fabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F.; Hartemann, F. V.; Anderson, S. G.
Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less
Laser diode and pumped Cr:Yag passively Q-switched yellow-green laser at 543 nm
NASA Astrophysics Data System (ADS)
Yao, Y.; Ling, Zhao; Li, B.; Qu, D. P.; Zhou, K.; Zhang, Y. B.; Zhao, Y.; Zheng, Q.
2013-03-01
Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Kim, K. H.; Stock, L. V.
1987-01-01
The improvement on the collection system of the Tarmarack Solar Simulator beam was attemped. The basic study of evaluating the solid state laser materials for the solar pumping and also the work to construct a kinetic model algorithm for the flashlamp pumped iodine lasers were carried out. It was observed that the collector cone worked better than the lens assembly in order to collect the solar simulator beam and to focus it down to a strong power density. The study on the various laser materials and their lasing characteristics shows that the neodymium and chromium co-doped gadolinium scandium gallium garnet (Nr:Cr:GSGG) may be a strong candidate for the high power solar pumped solid state laser crystal. On the other hand the improved kinetic modeling for the flashlamp pumped iodine laser provides a good agreement between the theoretical model and the experimental data on the laser power output, and predicts the output parameters of a solar pumped iodine laser.
Compact and highly efficient laser pump cavity
Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.
1999-01-01
A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.
NASA Astrophysics Data System (ADS)
Schilt, S.; Dolgovskiy, V.; Bucalovic, N.; Schori, C.; Stumpf, M. C.; Di Domenico, G.; Pekarek, S.; Oehler, A. E. H.; Südmeyer, T.; Keller, U.; Thomann, P.
2012-11-01
We present a detailed investigation of the noise properties of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser operating in the 1.5-μm spectral region. The stabilization of the passively mode-locked Er:Yb:glass laser oscillator, referred to as ERGO, is achieved using pump power modulation for the control of the carrier envelope offset (CEO) frequency and by adjusting the laser cavity length for the control of the repetition rate. The stability and the noise of the ERGO comb are characterized in free-running and in phase-locked operation by measuring the noise properties of the CEO, of the repetition rate, and of a comb line at 1558 nm. The comb line is analyzed from the heterodyne beat signal with a cavity-stabilized ultra-narrow-linewidth laser using a frequency discriminator. Two different schemes to stabilize the comb to a radio-frequency (RF) reference are compared. The comb properties (phase noise, frequency stability) are limited in both cases by the RF oscillator used to stabilize the repetition rate, while the contribution of the CEO is negligible at all Fourier frequencies, as a consequence of the low-noise characteristics of the CEO-beat. A linewidth of ≈150 kHz and a fractional frequency instability of 4.2×10-13 at 1 s are obtained for an optical comb line at 1558 nm. Improved performance is obtained by stabilizing the comb to an optical reference, which is a cavity-stabilized ultra-narrow linewidth laser at 1558 nm. The fractional frequency stability of 8×10-14 at 1 s, measured in preliminary experiments, is limited by the reference oscillator used in the frequency comparison.
Spectral narrowing of a 980 nm tapered diode laser bar
NASA Astrophysics Data System (ADS)
Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Ga"lle; Petersen, Paul Michael; Thestrup, Birgitte
2011-03-01
High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation, the wavelength spread of the laser could be limited to 0.04 nm with an output power in excess of 8 W at an operating current of 30A. The spectrum was found to be tuneable in a range of 16 nm.
Cladding for transverse-pumped solid-state laser
NASA Technical Reports Server (NTRS)
Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)
1989-01-01
In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.
Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications
NASA Astrophysics Data System (ADS)
Henderson, Sammy W.; Hale, Charley P.
2017-08-01
We are developing a family of fast, widely-tunable cw diode-pumped single frequency solid-state lasers, called Swift. The Swift laser architecture is compatible with operation using many different solid-state laser crystals for operation at various emission lines between 1 and 2.1 micron. The initial prototype Swift laser using a Tm,Ho:YLF laser crystal near 2.05 micron wavelength achieved over 100 mW of single frequency cw output power, up to 50 GHz-wide, fast, mode-hop-free piezoelectric tunability, and 100 kHz/ms frequency stability. For the Tm,Ho:YLF laser material, the fast 50 GHz tuning range can be centered at any wavelength from 2047-2059 nm using appropriate intracavity spectral filters. The frequency stability and power are sufficient to serve as the local oscillator (LO) laser in long-range coherent wind-measuring lidar systems, as well as a frequency-agile master oscillator (MO) or injection-seed source for larger pulsed transmitter lasers. The rapid and wide frequency tunablity meets the requirements for integrated-path or range-resolved differential absorption lidar or applications where targets with significantly different line of sight velocities (Doppler shifts) must be tracked. Initial demonstration of an even more compact version of the Swift is also described which requires less prime power and produces less waste heat.
Subpicosecond Electrooptic Sampling
1993-01-01
22GHz, limited by the photodector and spectrum analzyer used as the receiver. The more interesting type of system, and the type we have with the...economical, low-noise, diode-pumped, infrared wavelength short-pulsed sources. This need is addressed in the first part of the thesis, where a 20 GHz...pumped, infrared wavelength short-pulsed sources. In recent years this has led to increased interest in mode-locking of diode-pumped Chapter 1
2.4 μm diode-pumped Dy2+:CaF2 laser
NASA Astrophysics Data System (ADS)
Švejkar, Richard; Papashvili, Alexander G.; Šulc, Jan; Němec, Michal; Jelínková, Helena; Doroshenko, Maxim E.; Batygov, Sergei H.; Osiko, Vyacheslav V.
2018-01-01
In this work, a cryogenic cooled, longitudinal diode-pumped Dy2+ :CaF2 laser was investigated for the first time. The temperature dependence of the spectroscopy and the laser properties of Dy2+ :CaF2 are presented. The tested Dy2+ :CaF2 crystal was a longitudinal pump in a near-IR region (926 nm) by laser diode radiation. The maximal mean output power and slope efficiency at 78 K during the pulse regime of the laser were 57.5 mW and 7%, respectively. Furthermore, the CW regime was successfully tested and a maximum output power of 0.37 W was obtained for the absorbed pumping power 5.7 W. The emission laser wavelength was 2367 nm.
NASA Technical Reports Server (NTRS)
Poberezhskiy, Ilya; Chang, Daniel; Erlig, Hernan
2011-01-01
Non Planar Ring Oscillator (NPRO) lasers are highly attractive for metrology applications. NPRO reliability for prolonged space missions is limited by reliability of 808 nm pump diodes. Combined laser farm aging parameter allows comparing different bias approaches. Monte-Carlo software developed to calculate the reliability of laser pump architecture, perform parameter sensitivity studies To meet stringent Space Interferometry Mission (SIM) Lite lifetime reliability / output power requirements, we developed a single-mode Laser Pump Module architecture that: (1) provides 2 W of power at 808 nm with >99.7% reliability for 5.5 years (2) consists of 37 de-rated diode lasers operating at -5C, with outputs combined in a very low loss 37x1 all-fiber coupler
Time and frequency technology at NIST
NASA Technical Reports Server (NTRS)
Sullivan, D. B.
1994-01-01
The state of development of advanced timing systems at NIST is described. The work on cesium and rubidium frequency standards, stored-ion frequency standards, diode lasers used to pump such standards, time transfer, and methods for characterizing clocks, oscillators, and time distribution systems is presented. The emphasis is on NIST-developed technology rather than the general state of the art in this field.
Nd:GdVO4 ring laser pumped by laser diodes
NASA Astrophysics Data System (ADS)
Hao, E. J.; Li, T.; Wang, Z. D.; Zhang, Y.
2013-02-01
The design and operation of a laser diode-pumped Nd:GdVO4 ring laser is described. A composite crystal (Nd:GdVO4/YVO4) with undoped ends is single-end pumped by a fiber-coupled laser diode (LD) at 808 nm. A four-mirror ring cavity is designed to keep the laser operating unidirectionally, which eliminates spatial hole burning in the standing-wave cavity. This laser can operate either as continuous wave (CW) or Q-switched. The single-frequency power obtained was 9.1 W at 1063 nm. Q-switched operation produced 0.23 mJ/pulse at 20 kHz in the fundamental laser.
MERCURY COMPOUNDS, CADMIUM COMPOUNDS, TELLURIDES, NEODYMIUM COMPOUNDS, PHOSPHATES , ELECTRON TRANSITIONS, INFRARED OPTICAL MATERIALS, CRYSTAL GROWTH, MAGNESIUM OXIDES, PHOSPHORESCENT MATERIALS, SEMICONDUCTOR DIODES, MICROELECTRONICS
Energy transfer and up-conversion in rare-earth doped dielectric crystals
NASA Astrophysics Data System (ADS)
Tkachuk, Alexandra M.
1996-01-01
In this work, we consider the prospects of development of the visible, and IR laser-diode pumped lasers based on TR3+-doped double-fluoride crystals. On the basis of estimates of the probabilities of competing non-radiative energy-transfer processes obtained from the experiments and theoretical calculations, the conclusions are drawn on the efficiency of up-conversion pumping and selfquenching of the upper TR3+ states excited by laser-diode emission. The effect of the host composition, dopant concentration, and temperature on the efficiency of up-conversion processes is demonstrated on the example of the YLF:Nd, YLF:Er, BaY2F8:Er, and BaY2F8:Er,Yb crystals. The transfer microparameters for most important cross-relaxation transitions are determined and the conclusions about interaction mechanisms are drawn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaffers, K.I.; Bayramian, A.J.; Marshall, C.D.
Crystals of Yb{sup 3+}:Sr{sub 1-x}Ba{sub x}(PO{sub 4}){sub 3}F (0 < x < 5) have been investigated as a means to obtain broader absorption bands than are currently available with Yb{sup 3+}:S-FAP [Yb{sup 3+}: Sr{sub 5}(PO{sub 4}){sub 3}F], thereby improving diode-pumping efficiency for high peak power applications. Large diode-arrays have a FWHM pump band of >5 nm while the FWHM of the 900 nm absorption band for Yb:S-FAP is 5.5 nm; therefore, a significant amount of pump power can be wasted due to the nonideal overlap. Spectroscopic analysis of Yb:Sr{sub 5-x}Ba{sub x}-FAP crystals indicates that adding barium to the lattice increasesmore » the pump band to 13-16 run which more than compensates for the diode-array pump source without a detrimental reduction in absorption cross section. However, the emission cross section decreases by approximately half with relatively no effect on the emission lifetime. The small signal gain has also been measured and compared to the parent material Yb:S-FAP and emission cross sections have been determined by the method of reciprocity, the Filchtbauer-Ladenburg method, and small signal gain. Overall, Yb{sup 3+}:Sr{sub 5-x}Ba{sub x}(PO{sub 4}){sub 3}F crystals appear to achieve the goal of nearly matching the favorable thermal and laser performance properties of Yb:S-FAP while having a broader absorption band to better accommodate diode pumping.« less
NASA Astrophysics Data System (ADS)
Frevert, C.; Bugge, F.; Knigge, S.; Ginolas, A.; Erbert, G.; Crump, P.
2016-03-01
Both high-energy-class laser facilities and commercial high-energy pulsed laser sources require reliable optical pumps with the highest pulse power and electro-optical efficiency. Although commercial quasi-continuous wave (QCW) diode laser bars reach output powers of 300…500 W further improvements are urgently sought to lower the cost per Watt, improve system performance and reduce overall system complexity. Diode laser bars operating at temperatures of around 200 K show significant advances in performance, and are particularly attractive in systems that use cryogenically cooled solid state lasers. We present the latest results on 940 nm, passively cooled, 4 mm long QCW diode bars which operate under pulse conditions of 1.2 ms, 10 Hz at an output power of 1 kW with efficiency of 70% at 203 K: a two-fold increase in power compared to 300 K, without compromising efficiency. We discuss how custom low-temperature design of the vertical layers can mitigate the limiting factors such as series resistance while sustaining high power levels. We then focus on the remaining obstacles to higher efficiency and power, and use a detailed study of multiple vertical structures to demonstrate that the properties of the active region are a major performance limit. Specifically, one key limit to series resistance is transport in the layers around the active region and the differential internal efficiency is closely correlated to the threshold current. Tailoring the barriers around the active region and reducing transparency current density thus promise bars with increased performance at temperatures of 200 K as well as 300 K.
Solid-State Laser Source of Tunable Narrow-Bandwidth Ultraviolet Radiation
NASA Technical Reports Server (NTRS)
Goldberg, Lew; Kliner, Dahv A.; Koplow, Jeffrey P.
1998-01-01
A solid-state laser source of tunable and narrow-bandwidth UV light is disclosed. The system relies on light from a diode laser that preferably generates light at infrared frequencies. The light from the seed diode laser is pulse amplified in a light amplifier, and converted into the ultraviolet by frequency tripling, quadrupling, or quintupling the infrared light. The narrow bandwidth, or relatively pure light, of the seed laser is preserved, and the pulse amplifier generates high peak light powers to increase the efficiency of the nonlinear crystals in the frequency conversion stage. Higher output powers may be obtained by adding a fiber amplifier to power amplify the pulsed laser light prior to conversion.
A 2 Thz Schottky Solid-State Heterodyne Receiver for Atmospheric Studies
NASA Technical Reports Server (NTRS)
Treuttel, Jeanne; Schlecht, Erich; Siles, Jose; Lee, Choonsup; Lin, Robert; Thomas, Bertrand; Gonzalez-Olvero, David; Yee, Jeng-Hwa; Wu, Dong; Mehdi, Imran
2016-01-01
Obtaining temperature, pressure, and composition profiles along with wind velocities in the Earth's thermosphere/ionosphere system is a key NASA goal for understanding our planet. We report on the status of a technology development effort to build an all-solid-state heterodyne receiver at 2.06 terahertz that will allow the measurement of the 2.06 terahertz [OI] line for altitudes greater than 100 kilometers. The receiver front end features low-parasitic Schottky diode mixer chips that are driven by a local oscillator (LO) source using Schottky diode based multipliers. The multiplier chain consists of a 38 gigahertz oscillator followed by a set of three cascaded triplers at 114 gigahertz, 343 gigahertz and 1.03 terahertz.
Red laser-diode pumped 806 nm Tm3+: ZBLAN fibre laser
NASA Astrophysics Data System (ADS)
Juárez-Hernández, M.; Mejía, E. B.
2017-06-01
A Tm3+-doped fluorozirconate (ZBLAN) fibre laser operating CW at 806 nm when diode-pumped at 687 nm is described for the first time. This device is based on the 3F4 → 3H6 transition, and is suitable for first telecom window and sensing applications. A slope efficiency of 50.3% and low threshold pump-power of 11.6 mW were obtained. Maximum output power of 15 mW for 40 mW coupled pump was achieved.
Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser
Durfee, Charles G.; Storz, Tristan; Garlick, Jonathan; Hill, Steven; Squier, Jeff A.; Kirchner, Matthew; Taft, Greg; Shea, Kevin; Kapteyn, Henry; Murnane, Margaret; Backus, Sterling
2012-01-01
We describe a Ti:sapphire laser pumped directly with a pair of 1.2W 445nm laser diodes. With over 30mW average power at 800 nm and a measured pulsewidth of 15fs, Kerr-lens-modelocked pulses are available with dramatically decreased pump cost. We propose a simple model to explain the observed highly stable Kerr-lens modelocking in spite of the fact that both the mode-locked and continuous-wave modes are smaller than the pump mode in the crystal. PMID:22714433
NASA Astrophysics Data System (ADS)
Guryev, D. A.; Nikolaev, D. A.; Tsvetkov, V. B.; Shcherbakov, I. A.
2018-05-01
A study of how the transverse distribution of an optical path changes in a Nd:YVO4 active disk was carried out in a ten-beam spatially periodic diode pumping in the one-dimensional case. The pumping beams’ transverse dimensions were comparable with the distances between them. The investigations were carried out using laser interferometry methods. It was found that the optical thickness changing in the active disk along the line of pumping spots was well described by a Gaussian function.
Laser diode package with enhanced cooling
Deri, Robert J [Pleasanton, CA; Kotovsky, Jack [Oakland, CA; Spadaccini, Christopher M [Oakland, CA
2011-09-13
A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.
Laser diode package with enhanced cooling
Deri, Robert J [Pleasanton, CA; Kotovsky, Jack [Oakland, CA; Spadaccini, Christopher M [Oakland, CA
2012-06-12
A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.
Laser diode package with enhanced cooling
Deri, Robert J; Kotovsky, Jack; Spadaccini, Christopher M
2012-06-26
A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.
Laser-Powered Thrusters for High Efficiency Variable Specific Impulse Missions (Preprint)
2007-04-10
technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a total of 350-W optical power can...in a single device using low-mass diode-pumped glass fiber laser amplifiers to operate in either long- or short-pulse regimes at will. Adequate fiber...pulsewidth glass fiber oscillator-amplifiers, rather than the diodes used in the µ LPT, to achieve Table 2. Demonstrated technology basis Ablation Fuel Gold
Extending solid state laser performance
NASA Astrophysics Data System (ADS)
Miesak, Ed
2017-02-01
Coherent Diode-Pumped Solid-State Orlando (CDO), formerly known as Lee Laser, headquartered in Orlando Florida produces CW and pulsed solid state lasers. Primary wavelengths include 1064 nm, 532 nm, and 355 nm. Other wavelengths produced include 1320 nm, 15xx nm, and 16xx nm. Pulse widths are in the range of singles to hundreds of nanoseconds. Average powers are in the range of a few watts to 1000 watts. Pulse repetition rates are typically in the range of 100 Hz to 100 KHz. Laser performance parameters are often modified according to customer requests. Laser parameters that can be adjusted include average power, pulse repetition rate, pulse length, beam quality, and wavelength. Laser parameters are typically cross-coupled such that adjusting one may change some or all of the others. Customers often request one or more parameters be changed without changing any of the remaining parameters. CDO has learned how to accomplish this successfully with rapid turn-around times and minimal cost impact. The experience gained by accommodating customer requests has produced a textbook of cause and effect combinations of laser components to accomplish almost any parameter change request. Understanding the relationships between component combinations provides valuable insight into lasing effects allowing designers to extend laser performance beyond what is currently available. This has led to several break through products, i.e. >150W average power 355 nm, >60W average power 6 ps 1064 nm, pulse lengths longer than 400 ns at 532 nm with average power >100W, >400W 532 nm with pulse lengths in the 100 ns range.
Miniature solid-state lasers for pointing, illumination, and warning devices
NASA Astrophysics Data System (ADS)
Brown, D. C.; Singley, J. M.; Yager, E.; Kowalewski, K.; Lotito, B.; Guelzow, J.; Hildreth, J.; Kuper, J. W.
2008-04-01
In this paper we review the current status of and progress towards higher power and more wavelength diverse diode-pumped solid-state miniature lasers. Snake Creek Lasers now offers unprecedented continuous wave (CW) output power from 9.0 mm and 5.6 mm TO type packages, including the smallest green laser in the world, the MicroGreen TM laser, and the highest density green laser in the world, the MiniGreen TM laser. In addition we offer an infrared laser, the MiniIR TM, operating at 1064 nm, and have just introduced a blue Mini laser operating at 473 nm in a 9.0 mm package. Recently we demonstrated over 1 W of output power at 1064 nm from a 12 mm TO type package, and green output power from 300-500 mW from the same 12 mm package. In addition, the company is developing a number of other innovative new miniature CW solid-state lasers operating at 750 nm, 820 nm, 458 nm, and an eye-safe Q-switched laser operating at 1550 nm. We also review recently demonstrated combining volume Bragg grating (VBG) technology has been combined with automatic power control (APC) to produce high power MiniGreen TM lasers whose output is constant to +/- 10 % over a wide temperature range, without the use of a thermoelectric cooler (TEC). This technology is expected to find widespread application in military and commercial applications where wide temperature operation is particularly important. It has immediate applications in laser pointers, illuminators, and laser flashlights, and displays.