M-I-S solar cell - Theory and experimental results
NASA Technical Reports Server (NTRS)
Childs, R.; Fortuna, J.; Geneczko, J.; Fonash, S. J.
1976-01-01
The paper presents an operating-mode analysis of an MIS solar cell and discusses the advantages which can arise as a result of the use of transport control, field shaping (increased n factor), and zero bias barrier height modification. It is noted that for an n-type semiconductor, it is relatively easy to obtain an enhanced n factor using acceptor-like states without an increase in diode saturation current, the converse being true for p-type semiconductors. Several MIS configurations are examined: an acceptor-like, localized state configuration producing field shaping and no change in diode saturation current, and acceptor-like localized configurations producing field shaping, with a decrease of diode saturation current, in one case, and an increase in the other.
Features of current-voltage characteristic of nonequilibrium trench MOS barrier Schottky diode
NASA Astrophysics Data System (ADS)
Mamedov, R. K.; Aslanova, A. R.
2018-06-01
The trench MOS barrier Schottky diodes (TMBS diode) under the influence of the voltage drop of the additional electric field (AEF) appearing in the near-contact region of the semiconductor are in a nonequilibrium state and their closed external circuit flows currents in the absence of an external voltage. When an external voltage is applied to the TMBS diode, the current transmission is described by the thermionic emission theory with a specific feature. Both forward and reverse I-V characteristics of the TMBS diode consist of two parts. In the initial first part of the forward I-V characteristic there are no forward currents, but reverse saturation currents flow, in its subsequent second part the currents increase exponentially with the voltage. In the initial first part of the reverse I-V characteristic, the currents increase in an abrupt way and in the subsequent second part the saturation currents flow under the action of the image force. The mathematical expressions for forward and reverse I-V characteristic of the TMBS diode and also narrow or nanostructure Schottky diode are proposed, which are in good agreement with the results of experimental and calculated I-V characteristics.
Cumulative dose 60Co gamma irradiation effects on AlGaN/GaN Schottky diodes and its area dependence
NASA Astrophysics Data System (ADS)
Sharma, Chandan; Laishram, Robert; Rawal, Dipendra Singh; Vinayak, Seema; Singh, Rajendra
2018-04-01
Cumulative dose gamma radiation effects on current-voltage characteristics of GaN Schottky diodes have been investigated. The different area diodes have been fabricated on AlGaN/GaN high electron mobility transistor (HEMT) epi-layer structure grown over SiC substrate and irradiated with a dose up to the order of 104 Gray (Gy). Post irradiation characterization shows a shift in the turn-on voltage and improvement in reverse leakage current. Other calculated parameters include Schottky barrier height, ideality factor and reverse saturation current. Schottky barrier height has been decreased whereas reverse saturation current shows an increase in the value post irradiation with improvement in the ideality factor. Transfer length measurement (TLM) characterization shows an improvement in the contact resistance. Finally, diodes with larger area have more variation in the calculated parameters due to the induced local heating effect.
Simulative research on the anode plasma dynamics in the high-power electron beam diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Dan; Liu, Lie; Ju, Jin-Chuan
2015-07-15
Anode plasma generated by electron beams could limit the electrical pulse-length, modify the impedance and stability of diode, and affect the generator to diode power coupling. In this paper, a particle-in-cell code is used to study the dynamics of anode plasma in the high-power electron beam diode. The effect of gas type, dynamic characteristic of ions on the diode operation with bipolar flow model are presented. With anode plasma appearing, the amplitude of diode current is increased due to charge neutralizations of electron flow. The lever of neutralization can be expressed using saturation factor. At same pressure of the anodemore » gas layer, the saturation factor of CO{sub 2} is bigger than the H{sub 2}O vapor, namely, the generation rate of C{sup +} ions is larger than the H{sup +} ions at the same pressure. The transition time of ions in the anode-cathode gap could be used to estimate the time of diode current maximum.« less
Iodine-stabilized single-frequency green InGaN diode laser.
Chen, Yi-Hsi; Lin, Wei-Chen; Shy, Jow-Tsong; Chui, Hsiang-Chen
2018-01-01
A 520-nm InGaN diode laser can emit a milliwatt-level, single-frequency laser beam when the applied current slightly exceeds the lasing threshold. The laser frequency was less sensitive to diode temperature and could be finely tuned by adjusting the applied current. Laser frequency was stabilized onto a hyperfine component in an iodine transition through the saturated absorption spectroscopy. The uncertainty of frequency stabilization was approximately 8×10 -9 at a 10-s integration time. This compact laser system can replace the conventional green diode-pumped solid-state laser and applied as a frequency reference. A single longitudinal mode operational region with diode temperature, current, and output power was investigated.
Monte Carlo modelling of Schottky diode for rectenna simulation
NASA Astrophysics Data System (ADS)
Bernuchon, E.; Aniel, F.; Zerounian, N.; Grimault-Jacquin, A. S.
2017-09-01
Before designing a detector circuit, the electrical parameters extraction of the Schottky diode is a critical step. This article is based on a Monte-Carlo (MC) solver of the Boltzmann Transport Equation (BTE) including different transport mechanisms at the metal-semiconductor contact such as image force effect or tunneling. The weight of tunneling and thermionic current is quantified according to different degrees of tunneling modelling. The I-V characteristic highlights the dependence of the ideality factor and the current saturation with bias. Harmonic Balance (HB) simulation on a rectifier circuit within Advanced Design System (ADS) software shows that considering non-linear ideality factor and saturation current for the electrical model of the Schottky diode does not seem essential. Indeed, bias independent values extracted in forward regime on I-V curve are sufficient. However, the non-linear series resistance extracted from a small signal analysis (SSA) strongly influences the conversion efficiency at low input powers.
Carbon nanotube intramolecular p-i-n junction diodes with symmetric and asymmetric contacts
Chen, Changxin; Liao, Chenghao; Wei, Liangming; Zhong, Hanqing; He, Rong; Liu, Qinran; Liu, Xiaodong; Lai, Yunfeng; Song, Chuanjuan; Jin, Tiening; Zhang, Yafei
2016-01-01
A p-i-n junction diode based on the selectively doped single-walled carbon nanotube (SWCNT) had been investigated, in which two opposite ends of individual SWCNT channel were doped into the p- and n-type SWCNT respectively while the middle segment of SWCNT was kept as the intrinsic. The symmetric and asymmetric contacts were used to fabricate the p-i-n junction diodes respectively and studied the effect of the contact on the device characteristics. It was shown that a low reverse saturation current of ~20 pA could be achieved by these both diodes. We found that the use of the asymmetric contact can effectively improve the performance of the p-i-n diode, with the rectification ratio enhanced from ~102 for the device with the Au/Au symmetric contact to >103 for the one with the Pd/Al asymmetric contact. The improvement of the device performance by the asymmetric-contact structure was attributed to the decrease of the effective Schottky-barrier height at the contacts under forward bias, increasing the forward current of the diode. The p-i-n diode with asymmetric contact also had a higher rectification ratio than its counterpart before doping the SWCNT channel, which is because that the p-i-n junction in the device decreased the reverse saturated current. PMID:26915400
Greatly improved 3C-SiC p-n junction diodes grown by chemical vapor deposition
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Larkin, David J.; Starr, Jonathan E.; Powell, J. A.; Salupo, Carl S.; Matus, Lawrence G.
1993-01-01
This paper reports the fabrication and initial electrical characterization of greatly improved 3C-SiC (beta-SiC) p-n junction diodes. These diodes, which were grown on commercially available 6H-SiC substrates by chemical vapor deposition, demonstrate rectification to -200 V at room temperature, representing a fourfold improvement in reported 3C-SiC diode blocking voltage. The reverse leakage currents and saturation current densities measured on these diodes also show significant improvement compared to previously reported 3C-SiC p-n junction diodes. When placed under sufficient forward bias, the diodes emit significantly bright green-yellow light. These results should lead to substantial advancements in 3C-SiC transistor performance.
Elimination of current spikes in buck power converters
NASA Technical Reports Server (NTRS)
Mclyman, W. T. (Inventor)
1981-01-01
Current spikes in a buck power converter due to commutating diode turn-off time are eliminated by using a tapped inductor in the converter with the tap connected to the switching transistor. The commutating diode is not in the usual place, but is instead connected to conduct current from one end of the tapped inductor remote from the load during the interval in which the transistor is not conducting. In the case of a converter having a center-tapped (primary and secondary) transformer between two switching power transistors operated in a push-pull mode and two rectifying diodes in the secondary circuit, current spikes due to transformer saturation are also eliminated by using a tapped inductor in the converter with the tap connected to the rectifying diodes and a diode connected to conduct current from one end of the tapped inductor remote from the load during the interval in which the transistors are not conducting.
NASA Astrophysics Data System (ADS)
Singh, R.; Arora, S. K.; Singh, J. P.; Kanjilal, D.
A Au/n-GaAs(100) Schottky diode was irradiated at 80 K by a 180 MeV Ag-107(14+) ion beam. In situ current-voltage (I--V) characterization of the diode was performed at various irradiation fluences ranging from 1x10(10) to 1x10(13) ions cm(-2) . The semiconductor was heavily doped (carrier concentration=1x10(18) cm(-3)), hence thermionic field emission was assumed to be the dominant current transport mechanism in the diode. Systematic variations in various parameters of the Schottky diode like characteristic energy E-0 , ideality factor n , reverse saturation current I-S , flatband barrier height Phi(bf) and reverse leakage current I-R have been observed with respect to the irradiation fluence. The nuclear and electronic energy losses of the swift heavy ion affect the interface state density at the metal-semiconductor interface resulting in observed variations in Schottky diode parameters.
Design Considerations for Heavily-Doped Cryogenic Schottky Diode Varactor Multipliers
NASA Technical Reports Server (NTRS)
Schlecht, E.; Maiwald, F.; Chattopadhyay, G.; Martin, S.; Mehdi, I.
2001-01-01
Diode modeling for Schottky varactor frequency multipliers above 500 GHz is presented with special emphasis placed on simple models and fitted equations for rapid circuit design. Temperature- and doping-dependent mobility, resistivity, and avalanche current multiplication and breakdown are presented. Next is a discussion of static junction current, including the effects of tunneling as well as thermionic emission. These results have been compared to detailed measurements made down to 80 K on diodes fabricated at JPL, followed by a discussion of the effect on multiplier efficiency. Finally, a simple model of current saturation in the undepleted active layer suitable for inclusion in harmonic balance simulators is derived.
Current transport mechanisms in mercury cadmium telluride diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn; Li, Qing; He, Jiale
This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I–V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I–V characteristics have been modelled over a range of gate voltages from −9 V to −2 V. This range of gate voltages includes accumulation,more » flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I–V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from −3 V to −5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.« less
Finger blood content, light transmission, and pulse oximetry errors.
Craft, T M; Lawson, R A; Young, J D
1992-01-01
The changes in light emitting diode current necessary to maintain a constant level of light incident upon a photodetector were measured in 20 volunteers at the two wavelengths employed by pulse oximeters. Three states of finger blood content were assessed; exsanguinated, hyperaemic, and normal. The changes in light emitting diode current with changes in finger blood content were small and are not thought to represent a significant source of error in saturation as measured by pulse oximetry.
NASA Astrophysics Data System (ADS)
Birel, Ozgul; Kavasoglu, Nese; Kavasoglu, A. Sertap; Dincalp, Haluk; Metin, Bengul
2013-03-01
Diazo-compounds are important class of chemical compounds in terms of optical and electronic properties which make them potentially attractive for device applications. Diazo compound containing polyoxy chain has been deposited on p-Si. Current-voltage characteristics of Al/diazo compound containing polyoxy chain/p-Si structure present rectifying behaviour. The Schottky barrier height (SBH), diode factor (n), reverse saturation current (Io), interface state density (Nss) of Al/diazo compound containing polyoxy chain/p-Si structure have been calculated from experimental forward bias current-voltage data measured in the temperature range 100-320 K and capacitance-voltage data measured at room temperature and 1 MHz. The calculated values of SBH have ranged from 0.041 and 0.151 eV for the high and low temperature regions. Diode factor values fluctuate between the values 14 and 18 with temperature. Such a high diode factors stem from disordered interface layer in a junction structure as stated by Brötzmann et al. [M. Brötzmann, U. Vetter, H. Hofsäss, J. Appl. Phys. 106 (2009) 063704]. The calculated values of saturation current have ranged from 3×10-11 A to 2.79×10-7 A and interface state density have ranged from 5×1011 eV-1 cm-2 and 4×1013 eV-1 cm-2 as temperature increases. Results show that Al/diazo compound containing polyoxy chain/p-Si structure is a valuable candidate for device applications in terms of low reverse saturation current and low interface state density.
Logarithmic circuit with wide dynamic range
NASA Technical Reports Server (NTRS)
Wiley, P. H.; Manus, E. A. (Inventor)
1978-01-01
A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.
A p-i-n junction diode based on locally doped carbon nanotube network
Liu, Xiaodong; Chen, Changxin; Wei, Liangming; Hu, Nantao; Song, Chuanjuan; Liao, Chenghao; He, Rong; Dong, Xusheng; Wang, Ying; Liu, Qinran; Zhang, Yafei
2016-01-01
A p-i-n junction diode constructed by the locally doped network of single-walled carbon nanotubes (SWNTs) was investigated. In this diode, the two opposite ends of the SWNT-network channel were selectively doped by triethyloxonium hexachloroantimonate (OA) and polyethylenimine (PEI) to obtain the air-stable p- and n-type SWNTs respectively while the central area of the SWNT-network remained intrinsic state, resulting in the formation of a p-i-n junction with a strong built-in electronic field in the SWNTs. The results showed that the forward current and the rectification ratio of the diode increased as the doping degree increased. The forward current of the device could also be increased by decreasing the channel length. A high-performance p-i-n junction diode with a high rectification ratio (~104), large forward current (~12.2 μA) and low reverse saturated current (~1.8 nA) was achieved with the OA and PEI doping time of 5 h and 18 h for a channel length of ~6 μm. PMID:26996610
A p-i-n junction diode based on locally doped carbon nanotube network.
Liu, Xiaodong; Chen, Changxin; Wei, Liangming; Hu, Nantao; Song, Chuanjuan; Liao, Chenghao; He, Rong; Dong, Xusheng; Wang, Ying; Liu, Qinran; Zhang, Yafei
2016-03-21
A p-i-n junction diode constructed by the locally doped network of single-walled carbon nanotubes (SWNTs) was investigated. In this diode, the two opposite ends of the SWNT-network channel were selectively doped by triethyloxonium hexachloroantimonate (OA) and polyethylenimine (PEI) to obtain the air-stable p- and n-type SWNTs respectively while the central area of the SWNT-network remained intrinsic state, resulting in the formation of a p-i-n junction with a strong built-in electronic field in the SWNTs. The results showed that the forward current and the rectification ratio of the diode increased as the doping degree increased. The forward current of the device could also be increased by decreasing the channel length. A high-performance p-i-n junction diode with a high rectification ratio (~10(4)), large forward current (~12.2 μA) and low reverse saturated current (~1.8 nA) was achieved with the OA and PEI doping time of 5 h and 18 h for a channel length of ~6 μm.
A p-i-n junction diode based on locally doped carbon nanotube network
NASA Astrophysics Data System (ADS)
Liu, Xiaodong; Chen, Changxin; Wei, Liangming; Hu, Nantao; Song, Chuanjuan; Liao, Chenghao; He, Rong; Dong, Xusheng; Wang, Ying; Liu, Qinran; Zhang, Yafei
2016-03-01
A p-i-n junction diode constructed by the locally doped network of single-walled carbon nanotubes (SWNTs) was investigated. In this diode, the two opposite ends of the SWNT-network channel were selectively doped by triethyloxonium hexachloroantimonate (OA) and polyethylenimine (PEI) to obtain the air-stable p- and n-type SWNTs respectively while the central area of the SWNT-network remained intrinsic state, resulting in the formation of a p-i-n junction with a strong built-in electronic field in the SWNTs. The results showed that the forward current and the rectification ratio of the diode increased as the doping degree increased. The forward current of the device could also be increased by decreasing the channel length. A high-performance p-i-n junction diode with a high rectification ratio (~104), large forward current (~12.2 μA) and low reverse saturated current (~1.8 nA) was achieved with the OA and PEI doping time of 5 h and 18 h for a channel length of ~6 μm.
High-temperature CW and pulsed operation in constricted double-heterojunction AlGaAs diode lasers
NASA Technical Reports Server (NTRS)
Botez, D.; Connolly, J. C.; Gilbert, D. B.
1981-01-01
The behavior of constricted double-heterojunction (CDH) diode lasers has been investigated up to 170 C CW and 270 C pulsed. It is found that the temperature-dependent current concentration effect responsible for low threshold-current sensitivity and temperature-invariant external differential quantum efficiency in CDH lasers saturates at about 100 C. It is also found that over a wide temperature interval (180-280 C) the threshold current density has a To value of 40-50 C and that the spontaneous emission becomes increasingly sublinear above 220 C. Both effects are believed to reflect Auger recombination.
NASA Astrophysics Data System (ADS)
Sachdeva, Sheenam; Sharma, Sameeksha; Singh, Devinder; Tripathi, S. K.
2018-05-01
To investigate the diode characteristics of organic solar cell based on the planar heterojunction of 4,4'- cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) and fullerene (C70), we report the use of silanized fluorine-doped tin oxide (FTO) anode with N1-(3-trimethoxysilylpropyl)diethyltriamine (DETA) forming monolayer. The use of silanized FTO results in the decrease of saturation current density and diode ideality factor of the device. Such silanized FTO anode is found to enhance the material quality and improve the device properties.
Orthogonal control of the frequency comb dynamics of a mode-locked laser diode.
Holman, Kevin W; Jones, David J; Ye, Jun; Ippen, Erich P
2003-12-01
We have performed detailed studies on the dynamics of a frequency comb produced by a mode-locked laser diode (MLLD). Orthogonal control of the pulse repetition rate and the pulse-to-pulse carrier-envelope phase slippage is achieved by appropriate combinations of the respective error signals to actuate the diode injection current and the saturable absorber bias voltage. Phase coherence is established between the MLLD at 1550 nm and a 775-nm mode-locked Ti:sapphire laser working as part of an optical atomic clock.
Contribution of the graded region of a HgCdTe diode to its saturation current
NASA Technical Reports Server (NTRS)
Schacham, S. E.; Finkman, E.
1990-01-01
Experimental results show that the contribution of the graded region to the current of Hg(1-x)Cd(x)Te diodes is not negligible, as compared to that of the p type bulk. The theoretical analysis reveals the influence of the electric field present outside the depletion region on the current generated by the graded region. The analysis shows the importance of the lifetime profile in the graded region, which is a function of the specific recombination mechanism and its dependence on the local dopant concentration. The effect of parameters such as substrate concentration, surface concentration, and junction depth on this current is discussed.
NASA Astrophysics Data System (ADS)
Onishi, Toshikazu; Imafuji, Osamu; Fukuhisa, Toshiya; Mochida, Atsunori; Kobayashi, Yasuhiro; Yuri, Masaaki; Itoh, Kunio; Shimizu, Hirokazu
2001-11-01
Monolithically integrated 780-nm-band and 650-nm-band self-sustained pulsating (SSP) lasers, which are desirable for simplified optical pickups in digital versatile disk (DVD) systems, have been developed for the first time. The real refractive index guided self-aligned (RISA) waveguide structure is adapted to reduce absorption loss in the current blocking layers. In order to obtain stable SSP, a saturable absorber formed in the active layer outside the current stripe, and a saturable absorbing layer above the active layer are utilized for the 780-nm-band and 650-nm-band laser diodes (LDs), respectively. Relative intensity noise less than -130 dB/Hz is maintained at temperatures of up to 80°C at an output power of 7 mW for the 650 nm band and 10 mW for the 780 nm band, which suggests that stable SSP operations have been realized.
Saturation of the junction voltage in GaN-based laser diodes
NASA Astrophysics Data System (ADS)
Feng, M. X.; Liu, J. P.; Zhang, S. M.; Liu, Z. S.; Jiang, D. S.; Li, Z. C.; Wang, F.; Li, D. Y.; Zhang, L. Q.; Wang, H.; Yang, H.
2013-05-01
Saturation of the junction voltage in GaN-based laser diodes (LDs) is studied. It is found that there is a bump above the lasing transition in the I(dV/dI)-I curve, instead of a dip as that for GaAs-based LDs. The bump in I(dV/dI)-I curve moves to higher currents along with the lasing threshold. A model considering ambipolar conduction and electron overflow into p-AlGaN cladding layer due to poor carrier confinement in active region is used to explain the anomaly. The characteristic temperature of GaN-based LD is obtained by fitting threshold currents determined from I(dV/dI)-I curves. Moreover, it is found that GaN-based LDs show characteristics with a nonlinear series resistance, which may be due to the electron overflow into p-AlGaN cladding layer and the enhanced activation of Mg acceptors.
Photovoltaic and thermophotovoltaic devices with quantum barriers
Wernsman, Bernard R [Jefferson Hills, PA
2007-04-10
A photovoltaic or thermophotovoltaic device includes a diode formed by p-type material and n-type material joined at a p-n junction and including a depletion region adjacent to said p-n junction, and a quantum barrier disposed near or in the depletion region of the p-n junction so as to decrease device reverse saturation current density while maintaining device short circuit current density. In one embodiment, the quantum barrier is disposed on the n-type material side of the p-n junction and decreases the reverse saturation current density due to electrons while in another, the barrier is disposed on the p-type material side of the p-n junction and decreases the reverse saturation current density due to holes. In another embodiment, both types of quantum barriers are used.
High-Gain AlxGa1-xAs/GaAs Transistors For Neural Networks
NASA Technical Reports Server (NTRS)
Kim, Jae-Hoon; Lin, Steven H.
1991-01-01
High-gain AlxGa1-xAs/GaAs npn double heterojunction bipolar transistors developed for use as phototransistors in optoelectronic integrated circuits, especially in artificial neural networks. Transistors perform both photodetection and saturating-amplification functions of neurons. Good candidates for such application because structurally compatible with laser diodes and light-emitting diodes, detect light, and provide high current gain needed to compensate for losses in holographic optical elements.
Effect of reabsorbed recombination radiation on the saturation current of direct gap p-n junctions
NASA Technical Reports Server (NTRS)
Von Roos, O.; Mavromatis, H.
1984-01-01
The application of the radiative transfer theory for semiconductors to p-n homojunctions subject to low level injection conditions is discussed. By virtue of the interaction of the radiation field with free carriers across the depletion layer, the saturation current density in Shockley's expression for the diode current is reduced at high doping levels. The reduction, due to self-induced photon generation, is noticeable for n-type material owing to the small electron effective mass in direct band-gap III-V compounds. The effect is insignificant in p-type material. At an equilibrium electron concentration of 2 x 10 to the 18th/cu cm in GaAs, a reduction of the saturation current density by 15 percent is predicted. It is concluded that realistic GaAs p-n junctions possess a finite thickness.
Optical response at 10.6 microns in tungsten silicide Schottky barrier diodes
NASA Technical Reports Server (NTRS)
Kumar, Sandeep; Boyd, Joseph T.; Jackson, Howard E.
1987-01-01
Optical response to radiation at a wavelength of 10.6 microns in tungsten silicide-silicon Schottky barrier diodes has been observed. Incident photons excite electrons by means of junction plasmon assisted inelastic electron tunneling. At 78 K, a peak in the second derivative of current versus junction bias voltage was observed at a voltage corresponding to the energy of photons having a wavelength of 10.6 microns. This peak increased with increasing incident laser power, saturating at the highest laser powers investigated.
Construction of an Extended Cavity Tunable Diode Laser
NASA Astrophysics Data System (ADS)
Deveney, Edward; Metcalf, Harold; Noe, John
2001-03-01
A diverse and vast amount of experiments at the forefront of experimental physics typically use diode lasers as an integral part of their arrangement. However, researchers who use unmodified commercially available diode lasers run into several complications. The laser diode that is purchased is often not of the same wavelength as is advertised; thus the researcher’s desired wavelength is not met. Because the semiconductor has such a short external cavity, it is very sensitive to the injection current, changes in room temperature, and has a large linewidth making it harder to tune. To obtain a finely tuned diode laser, temperature and current controlling of the diode laser are used in conjunction with an extended semiconductor cavity. This is achieved by mounting the hermetically sealed assembly atop a thermoelectric cooler, which uses the Peltier effect. Furthermore, the variation of the injection current may be used as an additional control for the wavelength output of the diode. The power range of 70 mW as controlled by the injection current adjusts the wavelength by a span of only 4 nanometers. The extended cavity consists of a diffraction grating adhered to a mirror mount and is used for grating feedback. That in turn is used to reduce the linewidth sufficiently enough in order to provide much better tunability. In the next three weeks, the tunable diode laser will be specifically applied to research in the areas of Second Harmonic Generation in a PPLN Crystal and Saturated Rubidium Spectroscopy. This study was supported in part by NSF grant PHY99-12312.
Transistors and tunnel diodes enabled by large-scale MoS2 nanosheets grown on GaN
NASA Astrophysics Data System (ADS)
San Yip, Pak; Zou, Xinbo; Cho, Wai Ching; Wu, Kam Lam; Lau, Kei May
2017-07-01
We report growth, fabrication, and device results of MoS2-based transistors and diodes implemented on a single 2D/3D material platform. The 2D/3D platform consists of a large-area MoS2 thin film grown on SiO2/p-GaN substrates. Atomic force microscopy, scanning electron microscopy, and Raman spectroscopy were used to characterize the thickness and quality of the as-grown MoS2 film, showing that the large-area MoS2 nanosheet has a smooth surface morphology constituted by small grains. Starting from the same material, both top-gated MoS2 field effect transistors and MoS2/SiO2/p-GaN heterojunction diodes were fabricated. The transistors exhibited a high on/off ratio of 105, a subthreshold swing of 74 mV dec-1, field effect mobility of 0.17 cm2 V-1 s-1, and distinctive current saturation characteristics. For the heterojunction diodes, current-rectifying characteristics were demonstrated with on-state current density of 29 A cm-2 and a current blocking property up to -25 V without breakdown. The reported transistors and diodes enabled by the same 2D/3D material stack present promising building blocks for constructing future nanoscale electronics.
Consideration of velocity saturation in the design of GaAs varactor diodes
NASA Technical Reports Server (NTRS)
Crowe, Thomas W.; Peatman, William C. B.; Zimmermann, Ruediger; Zimmermann, Ralph
1993-01-01
The design of GaAs Schottky barrier varactor diodes is reconsidered in light of the recent discovery of velocity saturation effects in these devices. Experimental data is presented which confirms that improved multiplier performance can be achieved.
Dual-Gated MoTe2/MoS2 van der Waals Heterojunction p-n Diode
NASA Astrophysics Data System (ADS)
Rai, Amritesh; Movva, Hema C. P.; Kang, Sangwoo; Larentis, Stefano; Roy, Anupam; Tutuc, Emanuel; Banerjee, Sanjay K.
2D materials are promising for future electronic and optoelectronic applications. In this regard, it is important to realize p-n diodes, the most fundamental building block of all modern semiconductor devices, based on these 2D materials. While it is challenging to achieve homojunction diodes in 2D semiconductors due to lack of reliable selective doping techniques, it is relatively easier to achieve diode-like behavior in van der Waals (vdW) heterostructures comprising different 2D semiconductors. Here, we demonstrate dual-gated vdW heterojunction p-n diodes based on p-type MoTe2 and n-type MoS2, with hBN as the top and bottom gate dielectric. The heterostructure stack is assembled using a polymer-based `dry-transfer' technique. Pt contact is used for hole injection in MoTe2, whereas Ag is used for electron injection in MoS2. The dual-gates allow for independent electrostatic tuning of the carriers in MoTe2 and MoS2. Room temperature interlayer current-voltage characteristics reveal a strong gate-tunable rectification behavior. At low temperatures, the diode turn-on voltage increases, whereas the reverse saturation current decreases, in accordance with conventional p-n diode behavior. Dual-Gated MoTe2/MoS2 van der Waals Heterojunction p-n Diode.
Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.
Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd
2015-05-21
Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.
NASA Astrophysics Data System (ADS)
Mwankemwa, Benard S.; Akinkuade, Shadrach; Maabong, Kelebogile; Nel, Jackie M.; Diale, Mmantsae
2018-04-01
We report on effect of surface morphology on the optical and electrical properties of chemical bath deposited Zinc oxide (ZnO) nanostructures. ZnO nanostructures were deposited on the seeded conducting indium doped tin oxide substrate positioned in three different directions in the growth solution. Field emission scanning electron microscopy was used to evaluate the morphological properties of the synthesized nanostructures and revealed that the positioning of the substrate in the growth solution affects the surface morphology of the nanostructures. The optical absorbance, photoluminescence and Raman spectroscopy of the resulting nanostructures are discussed. The electrical characterization of the Schottky diode such as barrier height, ideality factor, rectification ratios, reverse saturation current and series resistance were found to depend on the nanostructures morphology. In addition, current transport mechanism in the higher forward bias of the Schottky diode was studied and space charge limited current was found to be the dominant transport mechanism in all samples.
InGaAs/InP heteroepitaxial Schottky barrier diodes for terahertz applications
NASA Technical Reports Server (NTRS)
Bhapkar, Udayan V.; Li, Yongjun; Mattauch, Robert J.
1992-01-01
This paper explores the feasibility of planar, sub-harmonically pumped, anti-parallel InGaAs/InP heteroepitaxial Schottky diodes for terahertz applications. We present calculations of the (I-V) characteristics of such diodes using a numerical model that considers tunneling. We also present noise and conversion loss predictions of diode mixers operated at 500 GHz, and obtained from a multi-port mixer analysis, using the I-V characteristics predicted by our model. Our calculations indicate that InGaAs/InP heteroepitaxial Schottky barrier diodes are expected to have an I-V characteristic with an ideality factor comparable to that of GaAs Schottky diodes. However, the reverse saturation current of InGaAs/InP diodes is expected to be much greater than that of GaAs diodes. These predictions are confirmed by experiment. The mixer analyses predict that sub-harmonically pumped anti-parallel InGaAs/InP diode mixers are expected to offer a 2 dB greater conversion loss and a somewhat higher single sideband noise temperature than their GaAs counterparts. More importantly, the InGaAs/InP devices are predicted to require only one-tenth of the local oscillator power required by similar GaAs diodes.
NASA Astrophysics Data System (ADS)
Tregulov, V. V.; Litvinov, V. G.; Ermachikhin, A. V.
2018-01-01
Temperature dependences of current-voltage characteristics of the photoelectric converter with an antireflective film of porous silicon and an n + -p-junction formed by thermal diffusion of phosphorus from a porous film is studied. The porous silicon film was saturated with phosphorus during its growing by electrochemical method. It is shown that the current flow processes in the structure under study are significantly influenced by traps.
NASA Astrophysics Data System (ADS)
de Andrade, Rocelito Lopes; de Oliveira, Matheus Costa; Kohlrausch, Emerson Cristofer; Santos, Marcos José Leite
2018-05-01
This work presents a new and simple method for determining IPH (current source dependent on luminance), I0 (reverse saturation current), n (ideality factor), RP and RS, (parallel and series resistance) to build an electrical model for dye sensitized solar cells (DSSCs). The electrical circuit parameters used in the simulation and to generate theoretical curves for the single diode electrical model were extracted from I-V curves of assembled DSSCs. Model validation was performed by assembling five different types of DSSCs and evaluating the following parameters: effect of a TiO2 blocking/adhesive layer, thickness of the TiO2 layer and the presence of a light scattering layer. In addition, irradiance, temperature, series and parallel resistance, ideality factor and reverse saturation current were simulated.
NASA Technical Reports Server (NTRS)
Ando, K. J.
1971-01-01
Description of the performance of the silicon diode array vidicon - an imaging sensor which possesses wide spectral response, high quantum efficiency, and linear response. These characteristics, in addition to its inherent ruggedness, simplicity, and long-term stability and operating life make this device potentially of great usefulness for ground-base and spaceborne planetary and stellar imaging applications. However, integration and charged storage for periods greater than approximately five seconds are not possible at room temperature because of diode saturation from dark current buildup. Since dark current can be reduced by cooling, measurements were made in the range from -65 to 25 C. Results are presented on the extension of integration, storage, and slow scan capabilities achievable by cooling. Integration times in excess of 20 minutes were achieved at the lowest temperatures. The measured results are compared with results obtained with other types of sensors and the advantages of the silicon diode array vidicon for imaging applications are discussed.
Solution-Processed Organic Thin-Film Transistor Array for Active-Matrix Organic Light-Emitting Diode
NASA Astrophysics Data System (ADS)
Harada, Chihiro; Hata, Takuya; Chuman, Takashi; Ishizuka, Shinichi; Yoshizawa, Atsushi
2013-05-01
We developed a 3-in. organic thin-film transistor (OTFT) array with an ink-jetted organic semiconductor. All layers except electrodes were fabricated by solution processes. The OTFT performed well without hysteresis, and the field-effect mobility in the saturation region was 0.45 cm2 V-1 s-1, the threshold voltage was 3.3 V, and the on/off current ratio was more than 106. We demonstrated a 3-in. active-matrix organic light-emitting diode (AMOLED) display driven by the OTFT array. The display could provide clear moving images. The peak luminance of the display was 170 cd/m2.
NASA Technical Reports Server (NTRS)
Wolf, M.; Noel, G. T.; Stirn, R. J.
1977-01-01
Difficulties in relating observed current-voltage characteristics of individual silicon solar cells to their physical and material parameters were underscored by the unexpected large changes in the current-voltage characteristics telemetered back from solar cells on the ATS-1 spacecraft during their first year in synchronous orbit. Depletion region recombination was studied in cells exhibiting a clear double-exponential dark characteristic by subjecting the cells to proton irradiation. A significant change in the saturation current, an effect included in the Sah, Noyce, Shockley formulation of diode current resulting from recombination in the depletion region, was caused by the introduction of shallow levels in the depletion region by the proton irradiation. This saturation current is not attributable only to diffusion current from outside the depletion region and only its temperature dependence can clarify its origin. The current associated with the introduction of deep-lying levels did not change significantly in these experiments.
NASA Technical Reports Server (NTRS)
Godlewski, M. P.; Brandhorst, H. W., Jr.; Lindholm, F. A.; Sah, C. T.
1976-01-01
An experimental method is presented that can be used to interpret the relative roles of bandgap narrowing and recombination processes in the diffused layer. This method involves measuring the device time constant by open-circuit voltage decay and the base region diffusion length by X-ray excitation. A unique illuminated diode method is used to obtain the diode saturation current. These data are interpreted using a simple model to determine individually the minority carrier lifetime and the excess charge. These parameters are then used to infer the relative importance of bandgap narrowing and recombination processes in the diffused layer.
NASA Astrophysics Data System (ADS)
Li, M. X.; Jin, G. Y.; Li, Y.
2018-05-01
In this paper, we investigated the passively Q-switched Nd:GdTaO4 laser based on tungsten disulfide (WS2) saturable absorber (SA). The preparation method of WS2 SA was to attach the WS2-alcohol dispersion onto the quartz substrates. The diode-pumped passively Q-switched Nd:GdTaO4 laser operated at a central wavelength of 1066 nm. The stable pulse output could be obtained at the single pulse width of 560 ns. In a word, WS2 seems to be a suitable saturable absorber for solid state lasers.
Zhang, Heng; Feng, Yuanxiang; Chen, Shuming
2016-10-03
Light-emitting diodes based on organic (OLEDs) and colloidal quantum dot (QLEDs) are widely considered as next-generation display technologies because of their attractive advantages such as self-emitting and flexible form factor. The OLEDs exhibit relatively high efficiency, but their color saturation is quite poor compared with that of QLEDs. In contrast, the QLEDs show very pure color emission, but their efficiency is lower than that of OLEDs currently. To combine the advantages and compensate for the weaknesses of each other, we propose a hybrid tandem structure which integrates both OLED and QLED in a single device architecture. With ZnMgO/Al/HATCN interconnecting layer, hybrid tandem LEDs are successfully fabricated. The demonstrated hybrid tandem devices feature high efficiency and high color saturation simultaneously; for example, the devices exhibit maximum current efficiency and external quantum efficiency of 96.28 cd/A and 25.90%, respectively. Meanwhile, the full width at half-maximum of the emission spectra is remarkably reduced from 68 to 44 nm. With the proposed hybrid tandem structure, the color gamut of the displays can be effectively increased from 81% to 100% NTSC. The results indicate that the advantages of different LED technologies can be combined in a hybrid tandem structure.
NASA Astrophysics Data System (ADS)
Li, Chun; Liu, Jie; Guo, Zhinan; Zhang, Han; Ma, Weiwei; Wang, Jingya; Xu, Xiaodong; Su, Liangbi
2018-01-01
A multilayer black phosphorus, as a novel two dimensional saturable absorber, has superb saturable absorption properties for a Er:CaF2 solid-state pulse laser. The pulse laser is realized at mid-infrared region with the passively Q-switched technology by a diode-pumping. The high-quality black phosphorus saturable absorber is fabricated by liquid phase exfoliation method. The pulse laser generates the pulses operation with the pulse duration of 954.8 ns, the repetition rate of 41.93 kHz, the pulse energy of 4.25 μJ and the peak power of 4.45 W. Our work demonstrates that black phosphorus could be used as a kind of efficient mid-infrared region optical absorber for ultrafast photonics.
NASA Astrophysics Data System (ADS)
Wahab, Q.; Karlsteen, M.; Nur, O.; Hultman, L.; Willander, M.; Sundgren, J.-E.
1996-09-01
3C-SiC/Si heterojunction diodes were prepared by reactive magnetron sputtering of pure Si in CH4-Ar discharge on Si(111) substrates kept at temperatures (Ts) ranging from 800 to 1000°C. A good diode rectification process started for films grown at Ts≤900°C. Heterojunction diodes grown at Ts = 850°C showed the best performance with a saturation current density of 2.4 × 10-4 A cm-2. Diode reverse breakdown was obtained at a voltage of -110 V. The doping concentration (Nd) of the 3C-SiC films was calculated from 1/C2 vs V plot to be 3 × 1015 cm-3. Band offset values obtained were -0.27 and 1.35 eV for the conduction and valence band, respectively. X-ray diffraction analysis revealed the film grown at Ts = 850°C to be single-phase 3C-SiC. The full width at half maximum of the 3C-SiC(111) peak was only 0.25 degree. Cross-sectional transmission electron microscopy showed the film to be highly (111)-oriented with an epitaxial columnar structure of double positioning domain boundaries.
New Analysis and Design of a RF Rectifier for RFID and Implantable Devices
Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei
2011-01-01
New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from −15 dBm to −4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitableto passive UHF RFID tag IC and implantable devices. PMID:22163968
New analysis and design of a RF rectifier for RFID and implantable devices.
Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei
2011-01-01
New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from -15 dBm to -4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitable to passive UHF RFID tag IC and implantable devices.
Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran
2016-01-11
Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.
NASA Astrophysics Data System (ADS)
Cabalu, J. S.; Bhattacharyya, A.; Thomidis, C.; Friel, I.; Moustakas, T. D.; Collins, C. J.; Komninou, Ph.
2006-11-01
In this paper, we report on the growth by molecular beam epitaxy and fabrication of high power nitride-based ultraviolet light emitting diodes emitting in the spectral range between 340 and 350nm. The devices were grown on (0001) sapphire substrates via plasma-assisted molecular beam epitaxy. The growth of the light emitting diode (LED) structures was preceded by detailed materials studies of the bottom n-AlGaN contact layer, as well as the GaN /AlGaN multiple quantum well (MQW) active region. Specifically, kinetic conditions were identified for the growth of the thick n-AlGaN films to be both smooth and to have fewer defects at the surface. Transmission-electron microscopy studies on identical GaN /AlGaN MQWs showed good quality and well-defined interfaces between wells and barriers. Large area mesa devices (800×800μm2) were fabricated and were designed for backside light extraction. The LEDs were flip-chip bonded onto a Si submount for better heat sinking. For devices emitting at 340nm, the measured differential on-series resistance is 3Ω with electroluminescence spectrum full width at half maximum of 18nm. The output power under dc bias saturates at 0.5mW, while under pulsed operation it saturates at approximately 700mA to a value of 3mW, suggesting that thermal heating limits the efficiency of these devices. The output power of the investigated devices was found to be equivalent with those produced by the metal-organic chemical vapor deposition and hydride vapor-phase epitaxy methods. The devices emitting at 350nm were investigated under dc operation and the output power saturates at 4.5mW under 200mA drive current.
NASA Astrophysics Data System (ADS)
Durmuş, Perihan; Altindal, Şemsettin
2017-10-01
In this study, electrical parameters of the Al/Bi4Ti3O12/p-Si metal-ferroelectric-semiconductor (MFS) structure and their temperature dependence were investigated using current-voltage (I-V) data measured between 120 K and 300 K. Semi-logarithmic I-V plots of the structure revealed that fabricated structure presents two-diode behavior that leads to two sets of ideality factor, reverse saturation current and zero-bias barrier height (BH) values. Obtained results of these parameters suggest that current conduction mechanism (CCM) deviates strongly from thermionic emission theory particularly at low temperatures. High values of interface states and nkT/q-kT/q plot supported the idea of deviation from thermionic emission. In addition, ln(I)-ln(V) plots suggested that CCM varies from one bias region to another and depends on temperature as well. Series resistance values were calculated using Ohm’s law and Cheungs’ functions, and they decreased drastically with increasing temperature.
Silicon controlled rectifier polyphase bridge inverter commutated with gate-turn-off thyristor
NASA Technical Reports Server (NTRS)
Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)
1986-01-01
A polyphase SCR inverter (10) having N switching poles, each comprised of two SCR switches (1A, 1B; 2A, 2B . . . NA, NB) and two diodes (D1B; D1B; D2A, D2B . . . DNA, DNB) in series opposition with saturable reactors (L1A, L1B; L2A, L2B . . . LNA, LNB) connecting the junctions between the SCR switches and diodes to an output terminal (1, 2 . . . 3) is commutated with only one GTO thyristor (16) connected between the common negative terminal of a dc source and a tap of a series inductor (14) connected to the positive terminal of the dc source. A clamp winding (22) and diode (24) are provided, as is a snubber (18) which may have its capacitance (c) sized for maximum load current divided into a plurality of capacitors (C.sub.1, C.sub.2 . . . C.sub.N), each in series with an SCR switch S.sub.1, S.sub.2 . . . S.sub.N). The total capacitance may be selected by activating selected switches as a function of load current. A resistor 28 and SCR switch 26 shunt reverse current when the load acts as a generator, such as a motor while braking.
NASA Astrophysics Data System (ADS)
Avila-Avendano, Jesus; Quevedo-Lopez, Manuel; Young, Chadwin
2018-02-01
The I-V and C-V characteristics of CdTe/CdS heterojunctions deposited in-situ by Pulsed Laser Deposition (PLD) were evaluated. In-situ deposition enables the study of the CdTe/CdS interface by avoiding potential impurities at the surface and interface as a consequence of exposure to air. The I-V and C-V characteristics of the resulting junctions were obtained at different temperatures, ranging from room temperature to 150 °C, where the saturation current (from 10-8 to 10-4 A/cm2), ideality factor (between 1 and 2), series resistance (from 102 to 105 Ω), built-in potential (0.66-0.7 V), rectification factor (˜106), and carrier concentration (˜1016 cm-3) were obtained. The current-voltage temperature dependence study indicates that thermionic emission is the main transport mechanism at the CdTe/CdS interface. This study also demonstrated that the built-in potential (Vbi) calculated using a thermionic emission model is more accurate than that calculated using C-V extrapolation since C-V plots showed a Vbi shift as a function of frequency. Although CdTe/CdS is widely used for photovoltaic applications, the parameters evaluated in this work indicate that CdTe/CdS heterojunctions could be used as rectifying diodes and junction field effect transistors (JFETs). JFETs require a low PN diode saturation current, as demonstrated for the CdTe/CdS junction studied here.
Chen, Po-Chiang; Shen, Guozhen; Chen, Haitian; Ha, Young-geun; Wu, Chao; Sukcharoenchoke, Saowalak; Fu, Yue; Liu, Jun; Facchetti, Antonio; Marks, Tobin J; Thompson, Mark E; Zhou, Chongwu
2009-11-24
We report high-performance arsenic (As)-doped indium oxide (In(2)O(3)) nanowires for transparent electronics, including their implementation in transparent thin-film transistors (TTFTs) and transparent active-matrix organic light-emitting diode (AMOLED) displays. The As-doped In(2)O(3) nanowires were synthesized using a laser ablation process and then fabricated into TTFTs with indium-tin oxide (ITO) as the source, drain, and gate electrodes. The nanowire TTFTs on glass substrates exhibit very high device mobilities (approximately 1490 cm(2) V(-1) s(-1)), current on/off ratios (5.7 x 10(6)), steep subthreshold slopes (88 mV/dec), and a saturation current of 60 microA for a single nanowire. By using a self-assembled nanodielectric (SAND) as the gate dielectric, the device mobilities and saturation current can be further improved up to 2560 cm(2) V(-1) s(-1) and 160 microA, respectively. All devices exhibit good optical transparency (approximately 81% on average) in the visible spectral range. In addition, the nanowire TTFTs were utilized to control green OLEDs with varied intensities. Furthermore, a fully integrated seven-segment AMOLED display was fabricated with a good transparency of 40% and with each pixel controlled by two nanowire transistors. This work demonstrates that the performance enhancement possible by combining nanowire doping and self-assembled nanodielectrics enables silicon-free electronic circuitry for low power consumption, optically transparent, high-frequency devices assembled near room temperature.
NASA Astrophysics Data System (ADS)
He, Qiming; Mu, Wenxiang; Dong, Hang; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tang, Minghua; Tao, Xutang; Liu, Ming
2017-02-01
The Pt/β-Ga2O3 Schottky barrier diode and its temperature-dependent current-voltage characteristics were investigated for power device application. The edge-defined film-fed growth (EFG) technique was utilized to grow the (100)-oriented β-Ga2O3 single crystal substrate that shows good crystal quality characterized by X-ray diffraction and high resolution transmission electron microscope. Ohmic and Schottky electrodes were fabricated by depositing Ti and Pt metals on the two surfaces, respectively. Through the current-voltage (I-V) measurement under different temperature and the thermionic emission modeling, the fabricated Pt/β-Ga2O3 Schottky diode was found to show good performances at room temperature, including rectification ratio of 1010, ideality factor (n) of 1.1, Schottky barrier height (ΦB) of 1.39 eV, threshold voltage (Vbi) of 1.07 V, ON-resistance (RON) of 12.5 mΩ.cm2, forward current density at 2 V (J@2V) of 56 A/cm2, and saturation current density (J0) of 2 × 10-16 A/cm2. The effective donor concentration Nd - Na was calculated to be about 2.3 × 1014 cm3. Good temperature dependent performance was also found in the device. The Schottky barrier height was estimated to be about 1.3 eV-1.39 eV at temperatures ranging from room temperature to 150 °C. With increasing temperature, parameters such as RON and J@2V become better, proving that the diode can work well at high temperature. The EFG grown β-Ga2O3 single crystal is a promising material to be used in the power devices.
Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes
NASA Astrophysics Data System (ADS)
Gayen, R. N.; Bhattacharyya, S. R.; Jana, P.
2014-09-01
Zinc oxide (ZnO) nanowire based Schottky barrier diodes are fabricated by depositing Pd metal contact on top of vertically well-aligned ZnO nanowire arrays. A vertical array of ZnO nanowires on indium tin oxide (ITO) coated glass substrates is synthesized by hybrid wet chemical route. Scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) measurement confirm the formation of stoichiometric well-aligned hexagonal (h-ZnO) nanowire arrays with wurtzite structure. Temperature dependent current-voltage (I-V) measurements on palladium-ZnO (Pd/ZnO) nanowire Schottky junctions in the temperature range 303-383 K exhibit excellent rectifying character. From these nonlinear I-V plots, different electrical parameters of diode-like reverse saturation current, barrier height and ideality factor are determined as a function of temperature assuming pure thermionic emission model. The ideality factor is found to decrease while the barrier height increases with the increase in temperature. The series resistance values calculated from Cheung’s functions also show temperature dependency. Such behavior can be attributed to the presence of defects that traps carriers, and barrier height inhomogeneity at the interface of the barrier junction. After barrier height inhomogeneity correction, considering a Gaussian distributed barrier height fluctuation across the Pd/ZnO interface, the estimated values of mean barrier height and modified Richardson constant are more closely matched to the theoretically predicted value for Pd/ZnO Schottky barrier diodes. The variation of density of interface states as a function of interface state energy is also calculated.
Paralleling power MOSFETs in their active region: Extended range of passively forced current sharing
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
1989-01-01
A simple passive circuit that improves current balance in parallelled power MOSFETs that are not precisely matched and that are operated in their active region from a common gate drive are exhibited. A nonlinear circuit consisting of diodes and resistors generates the differential gate potential required to correct for unbalance while maintaining low losses over a range of current. Also application of a thin tape wound magnetic core to effect dynamic current balance is reviewed, and a simple theory is presented showing that for operation in the active region the branch currents tend to revert to their normal unbalanced values even if the core is not driven into saturation. Results of several comparative experiments are given.
NASA Astrophysics Data System (ADS)
Rangel-Kuoppa, Victor-Tapio; Albor-Aguilera, María-de-Lourdes; Hérnandez-Vásquez, César; Flores-Márquez, José-Manuel; González-Trujillo, Miguel-Ángel; Contreras-Puente, Gerardo-Silverio
2018-04-01
A new proposal for the extraction of the shunt resistance (R sh ) and saturation current (I sat ) of a current-voltage (I-V) measurement of a solar cell, within the one-diode model, is given. First, the Cheung method is extended to obtain the series resistance (R s ), the ideality factor (n) and an upper limit for I sat . In this article which is Part 1 of two parts, two procedures are proposed to obtain fitting values for R sh and I sat within some voltage range. These two procedures are used in two simulated I-V curves (one in darkness and the other one under illumination) to recover the known solar cell parameters R sh , R s , n, I sat and the light current I lig and test its accuracy. The method is compared with two different common parameter extraction methods. These three procedures are used and compared in Part 2 in the I-V curves of CdS-CdTe and CIGS-CdS solar cells.
Fabrication of n-ZnO:Al/p-Si(100) heterojunction diode and its characterization
NASA Astrophysics Data System (ADS)
Parvathy Venu, M.; Dharmaprakash, S. M.; Byrappa, K.
2018-04-01
Aluminum doped ZnO (n-ZnO:Al) nanostructured thin films were grown on ZnO seed layer coated p-Si(100) substrate employing hydrothermal technique. X-ray diffraction pattern revealed that the ZnO:Al film possess hexagonal wurtzite structure with preferential orientation along (002) direction. Photoluminescence of the sample displayed near band edge emission peak in the ultra-violet region and defect level emission peak in the visible region. The as grown thin film was used in the fabrication of n-ZnO:Al/p-Si heterojunction diode and the room temperature current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied. The heterojunction exhibited fairly good rectification with an ideality of 2.49 and reverse saturation current of 2 nA. The barrier height was found to be 0.668 eV from the I-V measurements. The C-V measurements showed a decrease in the capacitance of the heterojunction with an increase in the reverse bias voltage.
NASA Astrophysics Data System (ADS)
Ćınar, K.; Yıldırım, N.; Coşkun, C.; Turut, A.
2009-10-01
To obtain detailed information about the conduction process of the Ag/p-GaN Schottky diodes (SDs) fabricated by us, we measured the I-V characteristics over the temperature range of 80-360 K by the steps of 20 K. The slope of the linear portion of the forward bias I-V plot and nkT =E0 of the device remained almost unchanged as independent of temperature with an average of 25.71±0.90 V-1 and 41.44±1.38 meV, respectively. Therefore, it can be said that the experimental I-V data quite well obey the field emission model rather than the thermionic emission or thermionic field emission model. The study is a very good experimental example for the FE model. Furthermore, the reverse bias saturation current ranges from 8.34×10-8 A at 80 K to 2.10×10-7 A at 360 K, indicating that the charge transport mechanism in the Ag/p-GaN SD is tunneling due to the weak temperature dependence of the saturation current. The possible origin of high experimental characteristic tunneling energy of E00=39 meV, which is ten times larger than possible theoretical value of 3.89 meV, is attributed to the accumulation of a large amount of defect states near the GaN surface or to the deep level defect band induced by high doping or to any mechanism which enhances the electric field and the state density at the semiconductor surface.
NASA Astrophysics Data System (ADS)
Zhu, Ronghua
An n-channel power vertical double-diffused metal-oxide-silicon field-effect transistor (VDMOSFET) with a new atomic-lattice-layout (ALL) has been designed and fabricated. The performance of the VDMOSFET with the ALL has been studied experimentally and comprehensively for the first time. The experimental results with the ALL are compared with the square (SQ), hexagonal (HEX) and stripe (STR) layouts for different applications. For high-frequency applications of VDMOSFET, the ALL is superior to the HEX and inferior to the STR. The optimum specific on-resistance and input capacitance product (Rsb{ON,SP} × Csb{iss,SP}) and optimum specific on-resistance and output capacitance product (Rsb{ON,SP} × Csb{oss,SP}) for the ALL are 44% and 36% lower than the HEX, and 10% and 13% higher than the STR, respectively. The ALL offers superior performance compared to the SQ for applications involving smart power feedback control using integrated current sensor. For a typical sense resistance of 100 Omega, the sense current drops 44% of its value at 0 Omega for the SQ, but only 11% for the ALL. For high-voltage and high-current applications, such as voltage-controlled current source, one observes that the ALL enters into quasi-saturation region at lower gate voltage (Vsb{G}). Typically, quasi-saturation occurs at Vsb{G} of 3V above the threshold voltage (Vsb{T}) for ALL, whereas this voltage is 5 and 6V for the STR and HEX, respectively. Minority carrier lifetime control by proton implantation has been successfully employed to improve the VDMOSFET built-in diode switching performance for the first time. A sevenfold reduction in reverse recovery charge has been achieved with a proton energy of 2.5 MeV and dose of 3 × 10sp{11}/cmsp2. The impact of proton implantation on diode forward voltage and the VDMOSFET characteristics, such as Vsb{T}, leakage current and on-resistance, has been found negligible. Proton implantation has also been found to significantly improve the device ruggedness. The peak reverse current of the built-in diode is reduced to 17.6 A for a proton energy of 1.5 MeV compared to 29.1 A for an un-implanted device at di/dt = 450 A/mus. The optimum location of the proton has been found at approximately middle of the epi-layer.
NASA Astrophysics Data System (ADS)
Abdallah, Omar; Stork, Wilhelm; Muller-Glaser, Klaus
2004-06-01
The deficiencies of the currently used pulse oximeter are discussed in diverse literature. A hazardous pitfalls of this method is that the pulse oximeter will not detect carboxyhemoglobin (COHb) and methemoglobin (metHb) concentrations. This leads to incorrect measurement of oxygen saturation by carbon monoxide poisoning and methemoglobinemia. Also the total hemoglobin concentration will not be considered and can only be measured in-vitro up to now. A second pitfall of the standard pulse oximetry is that it will not be able to show a result by low perfusion of tissues. This case is available inter alia when the patient is under shock or has a low blood pressure. The new non-invasive system we designed measures the actual (fractional) oxygen saturation and hemoglobin concentration. It will enable us also to measure COHb and metHb. The measurement can be applied at better perfused body central parts. Four or more light emitting diodes (LEDs) or laser diodes (LDs) and five photodiodes (PDs) are used. The reflected light signal detected by photodiodes is processed using a modified Lambert-Beer law (I=I0×e-α.d ). According to this law, when a non scattering probe is irradiated with light having the incident intensity I0, the intensity of transmitted light I decays exponentially with the absorption coefficient a of that probe and its thickness d. Modifications of this law have been performed following the theoretical developed models in literature, Monte Carlo simulation and experimental measurement.
Rectifying magnetic tunnel diode like behavior in Co2MnSi/ZnO/p-Si heterostructure
NASA Astrophysics Data System (ADS)
Maji, Nilay; Nath, T. K.
2018-04-01
The rectifying magnetic tunnel diode like behavior has been observed in Co2MnSi/ZnO/p-Si heterostructure. At first an ultra thin layer of ZnO has been deposited on p-Si (100) substrate with the help of pulsed laser deposition (PLD). After that a highly spin-polarized Heusler alloy Co2MnSi (CMS) film (250 nm) has been grown on ZnO/p-Si using electron beam physical vapor deposition technique. The phase purity of the sample has been confirmed through high resolution X-Ray diffraction technique. The electrical transport properties have been investigated at various isothermal conditions in the temperature range of 77-300 K. The current-voltage characteristics exhibit an excellent rectifying tunnel diode like behavior throughout the temperature regime. The current (I) across the junction has been found to decrease with the application of an external magnetic field parallel to the plane of the CMS film clearly indicating positive junction magnetoresistance (JMR) of the heterostructure. The magnetic field dependent JMR behavior of our heterostructure has been investigated in the same temperature range. Our heterostructure clearly demonstrates a giant positive JMR at 78 K (˜264%) and it starts decreasing with increasing temperature. If we compare our results with earlier reported results on other heterostructures, it can be seen that the JMR value for our heterojunction saturates at a much lower external magnetic field, thus creating it a better alternative for spin tunnel diodes in upcoming spintronics device applications.
NASA Astrophysics Data System (ADS)
Cojocari, O.; Mottet, B.; Rodriguez-Girones, M.; Biber, S.; Marchand, L.; Schmidt, L.-P.; Hartnagel, H. L.
2004-03-01
This paper presents the evaluation of a Schottky contact technology based on electrochemical metal deposition. The results of a long-term systematic investigation and optimization of the anode formation process to improve the yield and performance of Schottky-based GaAs mixer diodes are detailed. Surface preparation prior to the Schottky-metal deposition and anode metallization as previously optimized for whisker-contacted diodes are successfully transferred to the fabrication of planar structures. This uses an auxiliary honeycomb array of anode-like structures called 'dummy anodes', which are processed simultaneously with the real anodes and then removed in the later technological processes. Consequently, the scattering of planar diodes electrical parameters is significantly reduced and the yield of the fabrication process increases from about 5% up to about 50%. Very good dc characteristics such as series resistance (Rs) below 8 OHgr, ideality factor (eegr) below 1.2 and saturation current (Isat) of the order of 10-17A are achieved for the anode diameter as small as 1 µm. An excellent IF-noise figure of 250 K at 4.8 GHz up to 280 K at 2.1 GHz with current bias up to 3 mA is obtained for non-cooled THz mixer planar diodes. The use of this technological approach has enabled the extraction of statistically significant data which have been used to characterize the criticality of each step of the fabrication process on the device performance.
Elze, Tobias; Taylor, Christopher; Bex, Peter J.
2013-01-01
Purpose: In contrast to the dominant medical liquid crystal display (LCD) technology, organic light-emitting diode (OLED) monitors control the display luminance via separate light-emitting diodes for each pixel and are therefore supposed to overcome many previously documented temporal artifacts of medical LCDs. We assessed the temporal and luminance characteristics of the only currently available OLED monitor designed for use in the medical treatment field (SONY PVM2551MD) and checked the authors’ main findings with another SONY OLED device (PVM2541). Methods: Temporal properties of the photometric output were measured with an optical transient recorder. Luminances of the three color primaries and white for all 256 digital driving levels (DDLs) were measured with a spectroradiometer. Between the luminances of neighboring DDLs, just noticeable differences were calculated according to a perceptual model developed for medical displays. Luminances of full screen (FS) stimuli were compared to luminances of smaller stimuli with identical DDLs. Results: All measured luminance transition times were below 300 μs. Luminances were independent of the luminance in the preceding frame. However, for the single color primaries, up to 50.5% of the luminances of neighboring DDLs were not perceptually distinguishable. If two color primaries were active simultaneously, between 36.7% and 55.1% of neighboring luminances for increasing DDLs of the third primary were even decreasing. Moreover, luminance saturation effects were observed when too many pixels were active simultaneously. This effect was strongest for white; a small white patch was close to 400 cd/m2, but in FS the luminance of white saturated at 162 cd/m2. Due to different saturation levels, the luminance of FS green and FS yellow could exceed the luminance of FS white for identical DDLs. Conclusions: The OLED temporal characteristics are excellent and superior to those of LCDs. However, the OLEDs revealed severe perceptually relevant artifacts with implications for applicability to medical imaging. PMID:24007183
Elze, Tobias; Taylor, Christopher; Bex, Peter J
2013-09-01
In contrast to the dominant medical liquid crystal display (LCD) technology, organic light-emitting diode (OLED) monitors control the display luminance via separate light-emitting diodes for each pixel and are therefore supposed to overcome many previously documented temporal artifacts of medical LCDs. We assessed the temporal and luminance characteristics of the only currently available OLED monitor designed for use in the medical treatment field (SONY PVM2551MD) and checked the authors' main findings with another SONY OLED device (PVM2541). Temporal properties of the photometric output were measured with an optical transient recorder. Luminances of the three color primaries and white for all 256 digital driving levels (DDLs) were measured with a spectroradiometer. Between the luminances of neighboring DDLs, just noticeable differences were calculated according to a perceptual model developed for medical displays. Luminances of full screen (FS) stimuli were compared to luminances of smaller stimuli with identical DDLs. All measured luminance transition times were below 300 μs. Luminances were independent of the luminance in the preceding frame. However, for the single color primaries, up to 50.5% of the luminances of neighboring DDLs were not perceptually distinguishable. If two color primaries were active simultaneously, between 36.7% and 55.1% of neighboring luminances for increasing DDLs of the third primary were even decreasing. Moreover, luminance saturation effects were observed when too many pixels were active simultaneously. This effect was strongest for white; a small white patch was close to 400 cd/m(2), but in FS the luminance of white saturated at 162 cd/m(2). Due to different saturation levels, the luminance of FS green and FS yellow could exceed the luminance of FS white for identical DDLs. The OLED temporal characteristics are excellent and superior to those of LCDs. However, the OLEDs revealed severe perceptually relevant artifacts with implications for applicability to medical imaging.
Diode-pumped ytterbium-doped Sr{sub 5}(PO{sub 4}){sub 3}F laser performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C.D.; Smith, L.K.; Beach, R.J.
The performance of the first diode-pumped Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sup 3}F (Yb:S-FAP) solid-state laser is discussed. An InGaAs diode array has been fabricated that has suitable specifications for pumping a 3 x 3 x 30 mm Yb:S-FAP rod. The saturation fluence for diode pumping was deduced to be 5.5 J/cm{sup 2} for the particular 2.8 kW peak power diode array utilized in the studies. This is 2.5{times} higher than the intrinsic 2.2 J/cm{sup 2} saturation fluence as is attributed to the 6.5 nm bandwidth of the diode pump array. The small signal gain is consistent with the previously measuredmore » emission cross section of 6.0 {times} 10{sup {minus}20} cm{sup 2}, obtained from a narrowband-laser pumped gain experiment. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6 x 6 x 44 mm Yb:S-FAP amplifier rod. In a free running configuration, diode-pumped slope efficiencies up to 43% (laser output energy/absorbed pump energy) were observed with output energies up to {approximately}0.5 J per 1 ms pulse. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 {micro}s pulses.« less
Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.
Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N
2016-01-01
A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.
Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results
Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.
2016-01-01
A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575
2012-08-29
Pulse Oximetry: Arterial oxygen saturation (SpO2) at the index finger on the left hand was measured with a finger oximeter (Model 3900 P, Datex...minutes or until their finger O2 saturation levels dropped below 50%. Oxygen saturation was measured via the left index finger with a pulse oximeter ... saturation . Pulse oximeters have two light emitting diodes, using red (600-750 nm) and near infrared (850-1000 nm) light that penetrates the skin
NASA Astrophysics Data System (ADS)
Rangel-Kuoppa, Victor-Tapio; Albor-Aguilera, María-de-Lourdes; Hérnandez-Vásquez, César; Flores-Márquez, José-Manuel; Jiménez-Olarte, Daniel; Sastré-Hernández, Jorge; González-Trujillo, Miguel-Ángel; Contreras-Puente, Gerardo-Silverio
2018-04-01
In this Part 2 of this series of articles, the procedure proposed in Part 1, namely a new parameter extraction technique of the shunt resistance (R sh ) and saturation current (I sat ) of a current-voltage (I-V) measurement of a solar cell, within the one-diode model, is applied to CdS-CdTe and CIGS-CdS solar cells. First, the Cheung method is used to obtain the series resistance (R s ) and the ideality factor n. Afterwards, procedures A and B proposed in Part 1 are used to obtain R sh and I sat . The procedure is compared with two other commonly used procedures. Better accuracy on the simulated I-V curves used with the parameters extracted by our method is obtained. Also, the integral percentage errors from the simulated I-V curves using the method proposed in this study are one order of magnitude smaller compared with the integral percentage errors using the other two methods.
NASA Astrophysics Data System (ADS)
Singh, Satyendra Kumar; Hazra, Purnima
2018-05-01
This work reports fabrication and characterization of p-Si/ MgxZn1-xO thin film heterojunction diodes grown by RF magnetron sputtering technique. In this work, ZnO powder was mixed with MgO powder at per their weight percentage from 0 to 10% to prepare MgxZn1-xO target. The microstructural, surface morphological and optical properties of as-deposited p-Si/MgxZn1-xO heterostructure thin films have been studied using X-ray Diffraction, atomic force microscopy and variable angle ellipsometer. XRD spectra exhibit that undoped ZnO thin films has preferred crystal orientation in (002) plane. However, with increase in Mg-doping, ZnO (101) crystal plane is enhanced progressively due to phase segregation, even though preferred growth orientation of ZnO crystals is still towards (002) plane. The electrical characteristics of Si/ MgxZn1-xO heterojunction diodes with large area Al/Ti ohmic contacts are evaluated using semiconductor parameter analyzer. With rectification ratio of 27894, reverse saturation current of 20.5 nA and barrier height of 0.724 eV, Si/Mg0.5Zn0.95O thin film heterojunction diode is believed to have potential to be used in wider bandgap nanoelectronic device applications.
Flexible amorphous silicon PIN diode x-ray detectors
NASA Astrophysics Data System (ADS)
Marrs, Michael; Bawolek, Edward; Smith, Joseph T.; Raupp, Gregory B.; Morton, David
2013-05-01
A low temperature amorphous silicon (a-Si) thin film transistor (TFT) and amorphous silicon PIN photodiode technology for flexible passive pixel detector arrays has been developed using active matrix display technology. The flexible detector arrays can be conformed to non-planar surfaces with the potential to detect x-rays or other radiation with an appropriate conversion layer. The thin, lightweight, and robust backplanes may enable the use of highly portable x-ray detectors for use in the battlefield or in remote locations. We have fabricated detector arrays up to 200 millimeters along the diagonal on a Gen II (370 mm x 470 mm rectangular substrate) using plasma enhanced chemical vapor deposition (PECVD) a-Si as the active layer and PECVD silicon nitride (SiN) as the gate dielectric and passivation. The a-Si based TFTs exhibited an effective saturation mobility of 0.7 cm2/V-s, which is adequate for most sensing applications. The PIN diode material was fabricated using a low stress amorphous silicon (a-Si) PECVD process. The PIN diode dark current was 1.7 pA/mm2, the diode ideality factor was 1.36, and the diode fill factor was 0.73. We report on the critical steps in the evolution of the backplane process from qualification of the low temperature (180°C) TFT and PIN diode process on the 150 mm pilot line, the transfer of the process to flexible plastic substrates, and finally a discussion and demonstration of the scale-up to the Gen II (370 x 470 mm) panel scale pilot line.
Monte Carlo Simulation of THz Multipliers
NASA Technical Reports Server (NTRS)
East, J.; Blakey, P.
1997-01-01
Schottky Barrier diode frequency multipliers are critical components in submillimeter and Thz space based earth observation systems. As the operating frequency of these multipliers has increased, the agreement between design predictions and experimental results has become poorer. The multiplier design is usually based on a nonlinear model using a form of harmonic balance and a model for the Schottky barrier diode. Conventional voltage dependent lumped element models do a poor job of predicting THz frequency performance. This paper will describe a large signal Monte Carlo simulation of Schottky barrier multipliers. The simulation is a time dependent particle field Monte Carlo simulation with ohmic and Schottky barrier boundary conditions included that has been combined with a fixed point solution for the nonlinear circuit interaction. The results in the paper will point out some important time constants in varactor operation and will describe the effects of current saturation and nonlinear resistances on multiplier operation.
Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter
NASA Astrophysics Data System (ADS)
Sahoo, Snehasis; Dubey, Deepak Kumar; Singh, Meenu; Joseph, Vellaichamy; Thomas, K. R. Justin; Jou, Jwo-Huei
2018-04-01
High efficiency deep-blue emission is essential to realize energy-saving, high-quality display and lighting applications. We demonstrate here a deep-blue organic light emitting diode using a novel carbazole based fluorescent emitter 7-[4-(diphenylamino)phenyl]-9-(2-ethylhexyl)-9H-carbazole-2-carbonitrile (JV234). The solution processed resultant device shows a maximum luminance above 1,750 cd m-2 and CIE coordinates (0.15,0.06) with a 1.3 lm W-1 power efficiency, 2.0 cd A-1 current efficiency, and 4.1% external quantum efficiency at 100 cd m-2. The resulting deep-blue emission enables a greater than 100% color saturation. The high efficiency may be attributed to the effective host-to-guest energy transfer, suitable device architecture facilitating balanced carrier injection and low doping concentration preventing efficiency roll-off caused by concentration quenching.
Low-temperature performance of semiconducting asymmetric nanochannel diodes
NASA Astrophysics Data System (ADS)
Akbas, Y.; Savich, G. R.; Jukna, A.; Plecenik, T.; Ďurina, P.; Plecenik, A.; Wicks, G. W.; Sobolewski, Roman
2017-10-01
We present our studies on fabrication and electrical and optical characterization of semiconducting asymmetric nanochannel diodes (ANCDs), focusing mainly on the temperature dependence of their current-voltage (I-V) characteristics in the range from room temperature to 77 K. These measurements enable us to elucidate the electron transport mechanism in a nanochannel. Our test devices were fabricated in a GaAs/AlGaAs heterostructure with a two-dimensional electron gas layer and were patterned using electron-beam lithography. The 250-nm-wide, 70-nm-deep trenches that define the nanochannel were ion-beam etched using the photoresist as a mask, so the resulting nanostructure consisted of approximately ten ANCDs connected in parallel with 2-µm-long, 230-nm-wide nanochannels. The ANCD I-V curves collected in the dark exhibited nonlinear, diode-type behavior at all tested temperatures. Their forward-biased regions were fitted to the classical diode equation with a thermionic barrier, with the ideality factor n and the saturation current as fitting parameters. We have obtained very good fits, but with n as large as ˜50, suggesting that there must be a substantial voltage drop likely at the contact pads. The thermionic energy barrier was determined to be 56 meV at high temperatures. We have also observed that under optical illumination our ANCDs at low temperatures exhibited, at low illumination powers, a very strong photoresponse enhancement that exceeded that at room temperature. At 78 K, the responsivity was of the order of 104 A/W at the nW-level light excitation.
Li, Xiang; Wang, Hong; Qiao, Zhongliang; Guo, Xin; Wang, Wanjun; Ng, Geok Ing; Zhang, Yu; Xu, Yingqiang; Niu, Zhichuan; Tong, Cunzhu; Liu, Chongyang
2018-04-02
A two-section InGaSb/AlGaAsSb single quantum well (SQW) laser emitting at 2 μm is presented. By varying the absorber bias voltage with a fixed gain current at 130 mA, passive mode locking at ~18.40 GHz, Q-switched mode locking, and passive Q-switching are observed in this laser. In the Q-switched mode locking regimes, the Q-switched RF signal and mode locked RF signal coexist, and the Q-switched lasing and mode-locked lasing happen at different wavelengths. This is the first observation of these three pulsed working regimes in a GaSb-based diode laser. An analysis of the regime switching mechanism is given based on the interplay between the gain saturation and the saturable absorption.
Ji, Shiqi; Zheng, Sheng; Wang, Fei; ...
2017-07-06
The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Shiqi; Zheng, Sheng; Wang, Fei
The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less
Scintillation probe with photomultiplier tube saturation indicator
Ruch, Jeffrey F.; Urban, David J.
1996-01-01
A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated.
Minh Triet, Nguyen; Thai Duy, Le; Hwang, Byeong-Ung; Hanif, Adeela; Siddiqui, Saqib; Park, Kyung-Ho; Cho, Chu-Young; Lee, Nae-Eung
2017-09-13
A Schottky diode based on a heterojunction of three-dimensional (3D) nanohybrid materials, formed by hybridizing reduced graphene oxide (RGO) with epitaxial vertical zinc oxide nanorods (ZnO NRs) and Al 0.27 GaN 0.73 (∼25 nm)/GaN is presented as a new class of high-performance chemical sensors. The RGO nanosheet layer coated on the ZnO NRs enables the formation of a direct Schottky contact with the AlGaN layer. The sensing results of the Schottky diode with respect to NO 2 , SO 2 , and HCHO gases exhibit high sensitivity (0.88-1.88 ppm -1 ), fast response (∼2 min), and good reproducibility down to 120 ppb concentration levels at room temperature. The sensing mechanism of the Schottky diode can be explained by the effective modulation of the reverse saturation current due to the change in thermionic emission carrier transport caused by ultrasensitive changes in the Schottky barrier of a van der Waals heterostructure between RGO and AlGaN layers upon interaction with gas molecules. Advances in the design of a Schottky diode gas sensor based on the heterojunction of high-mobility two-dimensional electron gas channel and highly responsive 3D-engineered sensing nanomaterials have potential not only for the enhancement of sensitivity and selectivity but also for improving operation capability at room temperature.
Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser.
Ma, J; Xie, G Q; Gao, W L; Yuan, P; Qian, L J; Yu, H H; Zhang, H J; Wang, J Y
2012-04-15
A diode-end-pumped passively mode-locked femtosecond Tm-doped calcium lithium niobium gallium garnet (Tm:CLNGG) disordered crystal laser was demonstrated for the first time to our knowledge. With a 790 nm laser diode pumping, stable CW mode-locking operation was obtained by using a semiconductor saturable absorber mirror. The disordered crystal laser generated mode-locked pulses as short as 479 fs, with an average output power of 288 mW, and repetition rate of 99 MHz in 2 μm spectral region. © 2012 Optical Society of America
Ideal solar cell equation in the presence of photon recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, Dongchen, E-mail: d.lan@unsw.edu.au; Green, Martin A., E-mail: m.green@unsw.edu.au
Previous derivations of the ideal solar cell equation based on Shockley's p-n junction diode theory implicitly assume negligible effects of photon recycling. This paper derives the equation in the presence of photon recycling that modifies the values of dark saturation and light-generated currents, using an approach applicable to arbitrary three-dimensional geometries with arbitrary doping profile and variable band gap. The work also corrects an error in previous work and proves the validity of the reciprocity theorem for charge collection in such a more general case with the previously neglected junction depletion region included.
NASA Astrophysics Data System (ADS)
Huang, Fobao; Peng, Yingquan; Xu, Kun; Lv, Wenli; Xu, Sunan; Wang, Ying; Tang, Ying; Wei, Yi; Yang, Yuhuan; Liu, Guohan
2017-05-01
Built-in voltage (V bi) and charge carrier mobility are essential parameters of organic diodes, such as organic photodiodes, organic light-emitting diodes and organic solar cells. The existing methods for charge carrier mobility measurement require either expensive equipment, or stringent sample preparation. We demonstrate a method that simultaneously determines the V bi and charge carrier mobility in organic photodiodes and solar cells from incident light intensity dependent current-voltage characteristics. The V bi is determined from the saturation open-circuit voltage, while the charge carrier mobility from the space-charge limited photocurrent. The V bi for organic diodes, ‘ITO/copper phthalocyanine (CuPc)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/Al’, ‘ITO/ lead phthalocyanine (PbPc)/BCP/Al’, ‘ITO/CuPc/C60/BCP/Al’, and ‘ITO/PbPc/C60/BCP/Al’, were measured to be 0.583 ± 0.019, 0.458 ± 0.002, 0.605 ± 0.009 and 0.538 ± 0.004 V, respectively; the hole mobility of CuPc and PbPc thin films were measured to be (1.383 ± 0.367) × 10-6 cm2 V-1 s-1 and (3.675 ± 0.887) × 10-6 cm2 V-1 s-1, respectively. The measured values for V bi and carrier mobility coincide with related experimental results reported in other literature.
NASA Astrophysics Data System (ADS)
Weicht, J. A.; Hamelmann, F. U.; Behrens, G.
2016-02-01
Silicon-based thin film tandem solar cells consist of one amorphous (a-Si) and one microcrystalline (μc-Si) silicon solar cell. The Staebler - Wronski effect describes the light- induced degradation and temperature-dependent healing of defects of silicon-based solar thin film cells. The solar cell degradation depends strongly on operation temperature. Until now, only the light-induced degradation (LID) of the amorphous layer was examined in a-Si/μc-Si solar cells. The LID is also observed in pc-Si single function solar cells. In our work we show the influence of the light-induced degradation of the μc-Si layer on the diode equivalent circuit. The current-voltage-curves (I-V-curves) for the initial state of a-Si/pc-Si modules are measured. Afterwards the cells are degraded under controlled conditions at constant temperature and constant irradiation. At fixed times the modules are measured at standard test conditions (STC) (AM1.5, 25°C cell temperature, 1000 W/m2) for controlling the status of LID. After the degradation the modules are annealed at dark conditions for several hours at 120°C. After the annealing the dangling bonds in the amorphous layer are healed, while the degradation of the pc-Si is still present, because the healing of defects in pc-Si solar cells needs longer time or higher temperatures. The solar cells are measured again at STC. With this laboratory measured I-V-curves we are able to separate the values of the diode model: series Rs and parallel resistance Rp, saturation current Is and diode factor n.
Diode amplifier of modulated optical beam power
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'yachkov, N V; Bogatov, A P; Gushchik, T I
2014-11-30
Analytical relations are obtained between characteristics of modulated light at the output and input of an optical diode power amplifier operating in the highly saturated gain regime. It is shown that a diode amplifier may act as an amplitude-to-phase modulation converter with a rather large bandwidth (∼10 GHz). The low sensitivity of the output power of the amplifier to the input beam power and its high energy efficiency allow it to be used as a building block of a high-power multielement laser system with coherent summation of a large number of optical beams. (lasers)
Application of NIR laser diodes to pulse oximetry
NASA Astrophysics Data System (ADS)
Lopez Silva, Sonnia M.; Giannetti, Romano; Dotor, Maria L.; Sendra, Jose R.; Silveira, Juan P.; Briones, Fernando
1999-01-01
A transmittance pulse oximeter based on near-infrared laser diodes for monitoring arterial blood hemoglobin oxygen saturation has been developed and tested. The measurement system consists of the optical sensor, sensor electronics, acquisition board and personal computer. The system has been tested in a two-part experimental study involving human volunteers. A calibration curve was derived and healthy volunteers were monitored under normal and apnea conditions, both with the proposed system and with a commercial pulse oximeter. The obtained results demonstrate the feasibility of using a sensor with laser diodes emitting at specific near-infrared wavelengths for pulse oximetry.
NASA Astrophysics Data System (ADS)
Andre, C. L.; Wilt, D. M.; Pitera, A. J.; Lee, M. L.; Fitzgerald, E. A.; Ringel, S. A.
2005-07-01
Recent experimental measurements have shown that in GaAs with elevated threading dislocation densities (TDDs) the electron lifetime is much lower than the hole lifetime [C. L. Andre, J. J. Boeckl, D. M. Wilt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, Appl. Phys. Lett. 84, 3884 (2004)]. This lower electron lifetime suggests an increase in depletion region recombination and thus in the reverse saturation current (J0 for an n+/p diode compared with a p+/n diode at a given TDD. To confirm this, GaAs diodes of both polarities were grown on compositionally graded Ge /Si1-xGex/Si (SiGe) substrates with a TDD of 1×106cm-2. It is shown that the ratio of measured J0 values is consistent with the inverse ratio of the expected lifetimes. Using a TDD-dependent lifetime in solar cell current-voltage models we found that the Voc, for a given short-circuit current, also exhibits a poorer TDD tolerance for GaAs n+/p solar cells compared with GaAs p+/n solar cells. Experimentally, the open-circuit voltage (Voc) for the n+/p GaAs solar cell grown on a SiGe substrate with a TDD of ˜1×106cm-2 was ˜880mV which was significantly lower than the ˜980mV measured for a p+/n GaAs solar cell grown on SiGe at the same TDD and was consistent with the solar cell modeling results reported in this paper. We conclude that p+/n polarity GaAs junctions demonstrate superior dislocation tolerance than n+/p configured GaAs junctions, which is important for optimization of lattice-mismatched III-V devices.
Preliminary experiences on diode laser welding of skin
NASA Astrophysics Data System (ADS)
Reali, Umberto M.; Borgognoni, L.; Martini, L.; Chiarugi, C.; Gori, F.; Pini, Roberto; Toncelli, F.; Vanni, U.
1994-12-01
Dye enhanced laser welding has been recently proposed for skin closures to exploit the advantages of laser procedure (possible reduction of scar formation, no inflammatory reaction). In this preliminary study we used the diode laser-assisted technique to perform welding of rats' skin. In the pilot phase of the study we investigated the effect of the interaction between diode laser radiation and 20 full thickness skin wounds, performed on the shaved backs of 10 Wistar rats, using laser power in the range of 200 - 150 mW and, as the photoenhancing chromophore, Indocyanine Cardio-green (ICG) dye saturated solution in plasma. Ten wounds were sutured with 4.0 nylon thread, to provide a comparison with the traditional procedure. Wounds' samples were explanted on day 3 and 7 after the treatment, for histological evaluation. Clinical examination on the same days showed a high percentage of wounds dehiscence and presence of scales and crusts. Histologic examination demonstrated evidence of thermal injury and a heightened inflammation, superior to that of suture closures. In the second phase of the study, a lower laser power (150 - 80 mW), ICG-plasma-non saturated solution (ICG-sol) and ICG-plasma-saturated-sodium hyaluronate gel (ICG-gel), were used. Six wounds were filled with ICG-sol and six with ICG-gel, then irradiated at 150, 120 and 80 mW. Postoperative explants were performed on day 3 and 7. Clinical and histological results from this group were satisfactory: we recorded only one case of dehiscence, well healed wounds, no epidermal necrosis and a mild inflammatory reaction, reduced respect to that of traditional closure. We characterized the optimum range of parameters of diode laser-assisted technique to achieve an effective skin welding and the corresponding clinical and histologic pattern was described.
NASA Technical Reports Server (NTRS)
Birchenough, A. G. (Inventor)
1977-01-01
Advantage is taken of the current-exponential voltage characteristic of a diode over a certain range whereby the incremental impedance across the diode is inversely proportional to the current through the diode. Accordingly, a divider circuit employs a bias current through the diode proportional to the desired denominator and applies an incremental current to the diode proportional to the numerator. The incremental voltage across the diode is proportional to the quotient.
Systematic error of diode thermometer.
Iskrenovic, Predrag S
2009-08-01
Semiconductor diodes are often used for measuring temperatures. The forward voltage across a diode decreases, approximately linearly, with the increase in temperature. The applied method is mainly the simplest one. A constant direct current flows through the diode, and voltage is measured at diode terminals. The direct current that flows through the diode, putting it into operating mode, heats up the diode. The increase in temperature of the diode-sensor, i.e., the systematic error due to self-heating, depends on the intensity of current predominantly and also on other factors. The results of systematic error measurements due to heating up by the forward-bias current have been presented in this paper. The measurements were made at several diodes over a wide range of bias current intensity.
NASA Astrophysics Data System (ADS)
Kwiatkowski, Jacek; Jabczynski, Jan K.; Zendzian, Waldemar
2005-03-01
The saturable absorbers (Cr4+:YAG, GaAs and LiF crystals for 1064-nm wavelength, V3+:YAG crystals for 1340-nm respectively) were examined as passive Mode Lockers and Q-switches in diode pumped Nd:YVO4 lasers in the Z-type resonators. In each case, partially modulated long trains of QML pulses were observed. As a rule, envelopes with about 1 μs duration and more than 50% depth of modulation were observed. For stabilization of the mode locking trains nonlinear crystals (KTP or LBO) as negative feedback elements were inserted. The fully modulated QML trains for intracavity II harmonic conversion at 670-nm wavelength in V3+:YAG Q-switched Nd:YVO4 laser with LBO crystal were demonstrated.
Yamazoe, Shogo; Katou, Masaki; Adachi, Takashi; Kasamatsu, Tadashi
2010-03-01
We report a palm-top-size femtosecond diode-pumped mode-locked Yb(+3):KY(WO(4))(2) solid-state laser with a semiconductor saturable absorber mirror utilizing soliton mode locking for shortening the cavity to 50 mm. An average output power of 680 mW and a pulse width of 162 fs were obtained at 1045 nm with a repetition rate of 2.8 GHz, which led to a peak power of 1.5 kW. Average power fluctuations of a modularized laser source were found to be +/-10% for the free-running 3000 h operation and +/-1% for the power-controlled 2000 h operation.
Optical diagnosis of testicular torsion: feasibility and methodology
NASA Astrophysics Data System (ADS)
Shadgan, Babak; Macnab, Andrew; Stothers, Lynn; Kajbafzadeh, A. M.
2014-03-01
Background: Torsion of the testis compromises blood flow through the spermatic cord; testicular ischemia results which if not diagnosed promptly and corrected surgically irrevocably damages the testis. Current diagnostic modalities aimed at rationalizing surgical exploration by demonstrating interruption of spermatic cord blood flow or testicular ischemia have limited applicability. Near infrared spectroscopy (NIRS) offers a non-invasive optical method for detection of ischemia; continuous wave and frequency domain devices have been used experimentally; no device customized for clinical use has been designed. Methods: A miniature spatially resolved NIRS device with light emitting diode light source was applied over the right and left spermatic cord and the difference in oxygen saturation between the two sides measured. Results: In a 14-month old boy with a history of unilateral testicular pain color Doppler ultrasonography was equivocal but the NIRS-derived tissue oxygen saturation index (TSI) was significantly reduced on the left side. Confirmation of torsion of the left testicle was made surgically. Conclusions: Spatially resolved NIRS monitoring of spermatic cord oxygen saturation is feasible in children, adding to prior studies of testicular oxygen saturation in adults. Customized device design and further clinical trials would enhance the applicability of NIRS as a diagnostic entity for torsion.
NASA Technical Reports Server (NTRS)
Wolf, M.; Noel, G. T.; Stirn, R. J.
1976-01-01
A theoretical analysis is presented of certain peculiarities of the current-voltage characteristics of silicon solar cells, involving high values of the empirical constant A in the diode equation for a p-n junction. An attempt was made in a lab experiment to demonstrate that the saturation current which is associated with the exponential term qV/A2kT of the I-V characteristic, with A2 roughly equal to 2, originates in the space charge region and that it can be increased, as observed on ATS-1 cells, by the introduction of additional defects through low energy proton irradiation. It was shown that the proton irradiation introduces defects into the space charge region which give rise to a recombination current from this region, although the I-V characteristic is, in this case, dominated by an exponential term which has A = 1.
Henry, J.J.
1961-09-01
A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.
Power-scaling performance of a three-dimensional tritium betavoltaic diode
NASA Astrophysics Data System (ADS)
Liu, Baojun; Chen, Kevin P.; Kherani, Nazir P.; Zukotynski, Stefan
2009-12-01
Three-dimensional diodes fabricated by electrochemical etching are exposed to tritium gas at pressures from 0.05 to 33 atm at room temperature to examine its power scaling performance. It is shown that the three-dimensional microporous structure overcomes the self-absorption limited saturation of beta flux at high tritium pressures. These results are contrasted against the three-dimensional device powered in one instance by tritium absorbed in the near surface region of the three-dimensional microporous network, and in another by a planar scandium tritide foil. These findings suggest that direct tritium occlusion in the near surface of three-dimensional diode can improve the specific power production.
Cole, Brian; Lei, Jonathan; DiLazaro, Tom; Schilling, Bradley; Goldberg, Lew
2009-11-01
Optical triggering via direct bleaching of a Cr:YAG saturable absorber was applied to a monolithic Nd:YAG/Cr:YAG laser crystal. The method uses a single laser diode bar to bleach a thin sheet within the saturable absorber from a direction orthogonal to the lasing axis. By placing the Q-switch at the time corresponding to the steepest slope (dT/dt) for change in transmission during bleaching, the pulse-to-pulse timing jitter showed a 13.2x reduction in standard deviation, from 132 ns for free-running operation to 10 ns with optical triggering. We measured that a fluence of 60 kW/cm(2) was sufficient to enable optical triggering, where a diode appropriately sized for the length of the Cr:YAG (approximately 3 mm) would then require only approximately 150 W of optical power over a 1-2 micros duration to enable effective jitter reduction. Additionally, we measured an increase in optical-to-optical efficiency with optical triggering, where the efficiency improved from 12% to 13.5%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jinbo; Wu, Lili; Zhang, Chuanjiang
2017-01-01
Highly efficient saturation up-conversion (UC) luminescent Y2O3:Er3+ microspheres have been successfully prepared via a hydrothermal-homogeneous precipitation method. Bright visible luminescence can be clearly seen with a 1.55 mu m laser diode excitation power as low as similar to 0.03 W cm(-2). The up-conversion (UC) emission spectra indicate that the strongest red emission with a peak situated at similar to 660 nm originated from the I-4(9/2) -> I-4(15/2) transition of Er3+. The peaks situated at similar to 520 and 550 nm can be assigned to the transition from H-2(11/2)/S-4(3/2) state to the ground state of Er3+. The high efficient saturation up-conversionmore » emission is related to the highly crystalline structure. These results indicate a new way to enhance UC radiation in rare-earth ion-doped materials prepared using a hydrothermal-homogeneous precipitation method.« less
A transparent ultraviolet triggered amorphous selenium p-n junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Ichitaro; Soga, Kenichi; Overend, Mauro
2011-04-11
This paper will introduce a semitransparent amorphous selenium (a-Se) film exhibiting photovoltaic effects under ultraviolet light created through a simple and inexpensive method. We found that chlorine can be doped into a-Se through electrolysis of saturated salt water, and converts the weak p-type material into an n-type material. Furthermore, we found that a p-n diode fabricated through this process has shown an open circuit voltage of 0.35 V toward ultraviolet illumination. Our results suggest the possibility of doping control depending on the electric current during electrolysis and the possibility of developing a simple doping method for amorphous photoconductors.
NASA Astrophysics Data System (ADS)
Shen, Huaibin; Zheng, Ying; Wang, Hongzhe; Xu, Weiwei; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Li, Lin Song
2013-11-01
In this paper, we present an innovative method for the synthesis of CdTe/CdSe type-II core/shell structure quantum dots (QDs) using ‘greener’ chemicals. The PL of CdTe/CdSe type-II core/shell structure QDs ranges from 600 to 820 nm, and the as-synthesized core/shell structures show narrow size distributions and stable and high quantum yields (50-75%). Highly efficient near-infrared light-emitting diodes (LEDs) have been demonstrated by employing the CdTe/CdSe type-II core/shell QDs as emitters. The devices fabricated based on these type-II core/shell QDs show color-saturated near-infrared emission from the QD layers, a low turn-on voltage of 1.55 V, an external quantum efficiency (EQE) of 1.59%, and a current density and maximum radiant emittance of 2.1 × 103 mA cm-2 and 17.7 mW cm-2 at 8 V it is the first report to use type-II core/shell QDs as near-infrared emitters and these results may offer a practicable platform for the realization of near-infrared QD-based light-emitting diodes, night-vision-readable displays, and friend/foe identification system.
Self-Aligned van der Waals Heterojunction Diodes and Transistors.
Sangwan, Vinod K; Beck, Megan E; Henning, Alex; Luo, Jiajia; Bergeron, Hadallia; Kang, Junmo; Balla, Itamar; Inbar, Hadass; Lauhon, Lincoln J; Hersam, Mark C
2018-02-14
A general self-aligned fabrication scheme is reported here for a diverse class of electronic devices based on van der Waals materials and heterojunctions. In particular, self-alignment enables the fabrication of source-gated transistors in monolayer MoS 2 with near-ideal current saturation characteristics and channel lengths down to 135 nm. Furthermore, self-alignment of van der Waals p-n heterojunction diodes achieves complete electrostatic control of both the p-type and n-type constituent semiconductors in a dual-gated geometry, resulting in gate-tunable mean and variance of antiambipolar Gaussian characteristics. Through finite-element device simulations, the operating principles of source-gated transistors and dual-gated antiambipolar devices are elucidated, thus providing design rules for additional devices that employ self-aligned geometries. For example, the versatility of this scheme is demonstrated via contact-doped MoS 2 homojunction diodes and mixed-dimensional heterojunctions based on organic semiconductors. The scalability of this approach is also shown by fabricating self-aligned short-channel transistors with subdiffraction channel lengths in the range of 150-800 nm using photolithography on large-area MoS 2 films grown by chemical vapor deposition. Overall, this self-aligned fabrication method represents an important step toward the scalable integration of van der Waals heterojunction devices into more sophisticated circuits and systems.
NASA Astrophysics Data System (ADS)
Eshghi, M. J.; Majdabadi, A.; Koohian, A.
2017-01-01
In this paper, a low threshold diode pumped passively mode-locked Nd:YAG laser has been demonstrated by using a semiconductor saturable absorber mirror. The threshold power for continuous-wave mode-locking is relatively low, about 3.2 W. The resonator stability across the pump power has been analytically examined. Moreover, the mode overlap between the pump beam and the laser fundamental mode has been simulated by MATLAB software. Adopting Z-shaped resonator configuration and suitable design of the resonator’s arm lengths, has enabled the author to prepare mode-locking conditions, and obtain 40 ps pulses with 112 MHz pulse repetition rate. The laser output was stable without any Q switched instability. To the best of our knowledge, this is the lowest threshold for CW mode-locking operation of a Nd:YAG laser.
Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power.
Gürel, K; Wittwer, V J; Hoffmann, M; Saraceno, C J; Hakobyan, S; Resan, B; Rohrbacher, A; Weingarten, K; Schilt, S; Südmeyer, T
2015-11-16
We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.
Qualification and Selection of Flight Diode Lasers for Space Applications
NASA Technical Reports Server (NTRS)
Liebe, Carl C.; Dillon, Robert P.; Gontijo, Ivair; Forouhar, Siamak; Shapiro, Andrew A.; Cooper, Mark S.; Meras, Patrick L.
2010-01-01
The reliability and lifetime of laser diodes is critical to space missions. The Nuclear Spectroscopic Telescope Array (NuSTAR) mission includes a metrology system that is based upon laser diodes. An operational test facility has been developed to qualify and select, by mission standards, laser diodes that will survive the intended space environment and mission lifetime. The facility is situated in an electrostatic discharge (ESD) certified clean-room and consist of an enclosed temperature-controlled stage that can accommodate up to 20 laser diodes. The facility is designed to characterize a single laser diode, in addition to conducting laser lifetime testing on up to 20 laser diodes simultaneously. A standard laser current driver is used to drive a single laser diode. Laser diode current, voltage, power, and wavelength are measured for each laser diode, and a method of selecting the most adequate laser diodes for space deployment is implemented. The method consists of creating histograms of laser threshold currents, powers at a designated current, and wavelengths at designated power. From these histograms, the laser diodes that illustrate a performance that is outside the normal are rejected and the remaining lasers are considered spaceborne candidates. To perform laser lifetime testing, the facility is equipped with 20 custom laser drivers that were designed and built by California Institute of Technology specifically to drive NuSTAR metrology lasers. The laser drivers can be operated in constant-current mode or alternating-current mode. Situated inside the enclosure, in front of the laser diodes, are 20 power-meter heads to record laser power throughout the duration of lifetime testing. Prior to connecting a laser diode to the current source for characterization and lifetime testing, a background program is initiated to collect current, voltage, and resistance. This backstage data collection enables the operational test facility to have full laser diode traceablity.
NASA Astrophysics Data System (ADS)
Bai, Jinxi; Li, Ping; Chen, Xiaohan; Guo, Lei; Wang, Lili; Liu, Binghai
2017-08-01
Passively Q-switched Nd:YAG ceramic lasers at 1064 and 1123 nm are demonstrated based on a gold nanotriangles saturable absorber (GNTs-SA) for the first time. The maximum average output power reaches 226 mW at 1064 nm and 172 mW at 1123 nm with corresponding shortest pulse widths and maximum pulse repetition rates of (179 ns, 320 kHz) and (231 ns, 457 kHz), respectively. Our results prove that the GNTs-SA is a promising saturable absorber around the 1-µm region.
Mode-locked solid state lasers using diode laser excitation
Holtom, Gary R [Boston, MA
2012-03-06
A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.
Electronic switching circuit uses complementary non-linear components
NASA Technical Reports Server (NTRS)
Zucker, O. S.
1972-01-01
Inherent switching properties of saturable inductors and storage diodes are combined to perform large variety of electronic functions, such as pulse shaping, gating, and multiplexing. Passive elements replace active switching devices in generation of complex waveforms.
NASA Astrophysics Data System (ADS)
Frank, Milan; Jelínek, Michal; Kubeček, Václav
2015-01-01
In this paper the operation of pulsed diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively modelocked using semiconductor saturable absorber mirror (SAM), generating microjoule level picosecond pulses at wavelength of 1063 nm, is reported. Optimization of the output coupling for generation either Q-switched mode locked pulse trains or cavity dumped single pulses with maximum energy was performed, which resulted in extraction of single pulses as short as 10 ps and energy of 20 uJ. In comparison with the previous results obtained with this Nd:GdVO4 oscillator and saturable absorber in transmission mode, the achieved pulse duration is five times shorter. Using different absorbers and parameters of single pulse extraction enables generation of the pulses with duration up to 100 ps with the energy in the range from 10 to 20 μJ.
A diode-pumped Tm:CaYAlO4 laser at 1851 nm
NASA Astrophysics Data System (ADS)
Lan, Jinglong; Guan, Xiaofeng; Xu, Bin; Moncorgé, Richard; Xu, Huiying; Cai, Zhiping
2017-07-01
Laser emission at ~1850 nm is of great interest for neural stimulation applications. In this letter, we report on the diode-pumped continuous-wave (CW) and Q-switched (QS) laser operation of Tm:CaYAlO4 at 1851 nm, for the first time to our knowledge. In the CW regime, a maximum output power up to 0.62 W is obtained with a laser slope efficiency of about 18.0%. Using a Cr:ZnSe saturable absorber, QS laser operation is achieved with a maximum average output power of 0.25 W, the narrowest pulse width of 107 ns and the highest repetition rate of 5.85 kHz. The corresponding pulse peak power and pulse energy are about 388 W and 42.8 µJ, respectively. In this Q-switched mode, wavelength tuning is also realized over about 3 nm by slightly tilting the saturable absorber.
Li, Tao; Zhao, Shengzhi; Zhuo, Zhuang; Yang, Kejian; Li, Guiqiu; Li, Dechun
2009-04-20
A diode end-pumped doubly Q-switched YVO4/Nd:YVO4 laser has been realized for the first time to our knowledge by using both an electro-optic (EO) modulator and a Cr4):YAG saturable absorber. A 3.8 ns pulse width is generated by this laser under a pump power of 15 W at 2 kHz, which is obviously compressed in comparison with that of 8.8 ns from a single actively EO Q-switched laser. Under the same conditions, peak power values of 174.7 and 93 kW are also obtained. A coupled equation is given to theoretically analyze the experimental data. The experimental and theoretical results show that the doubly Q-switched laser has the advantages of a shorter pulse width and higher pulse peak power in contrast with a singly Q-switched laser.
Carrier-injection studies in GaN-based light-emitting-diodes
NASA Astrophysics Data System (ADS)
Nguyen, Dinh Chuong; Vaufrey, David; Leroux, Mathieu
2015-09-01
Although p-type GaN has been achieved by Mg doping, the low hole-mobility still remains a difficulty for GaN-based light-emitting diodes (LEDs). Due to the lack of field-dependent-velocity model for holes, in GaN-based LED simulations, the hole mobility is usually supposed to remain constant. However, as the p-GaN-layer conductivity is lower than the n-GaN-layer conductivity, a strong electric-field exists in the p-side of an LED when the applied voltage exceeds the LED's built-in voltage. Under the influence of this field, the mobilities of electrons and holes are expected to decrease. Based on a field-dependent-velocity model that is usually used for narrow-bandgap materials, an LED structure is modelled with three arbitrarily chosen hole saturation-velocities. The results show that a hole saturation-velocity lower than 4x106 cm/s can negatively affect the LED's behaviors.
Silicon Carbide Diodes Characterization at High Temperature and Comparison With Silicon Devices
NASA Technical Reports Server (NTRS)
Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry D., Jr.
2004-01-01
Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers rated at 200, 300, 600, and 1200 V, were electrically tested and characterized as a function of temperature up to 300 C. Electrical tests included both steady state and dynamic tests. Steady state tests produced forward and reverse I-V characteristic curves. Transient tests evaluated the switching performance of the diodes in either a hard-switched DC to DC buck converter or a half-bridge boost converter. For evaluation and comparison purposes, the same tests were performed with current state-of-the-art ultra fast silicon (Si) pn-junction diodes of similar ratings and also a Si Schottky diode. The comparisons made were forward voltage drop at rated current, reverse current at rated voltage, and turn-off peak reverse recovery current and reverse recovery time. In addition, efficiency measurements were taken for the buck DC to DC converter using both the SiC Schottky diodes and the Si pn-junction diodes at different temperatures and frequencies. The test results showed that at high temperature, the forward voltage drop for SiC Schottky diodes is higher than the forward drop of the ultra fast Si pn-junction diodes. As the temperature increased, the forward voltage drop of the SiC Schottky increased while for the ultra fast Si pn-junction diodes, the forward voltage drop decreased as temperature increased. For the elevated temperature steady state reverse voltage tests, the SiC Schottky diodes showed low leakage current at their rated voltage. Likewise, for the transient tests, the SiC Schottky diodes displayed low reverse recovery currents over the range of temperatures tested. Conversely, the Si pn-junction diodes showed increasing peak reverse current values and reverse recovery times with increasing temperature. Efficiency measurements in the DC to DC buck converter showed the advantage of the SiC Schottky diodes over the ultra fast Si pn-junction diodes, especially at the higher temperatures and higher frequencies.
NASA Astrophysics Data System (ADS)
Espenlaub, Andrew C.; Alhassan, Abdullah I.; Nakamura, Shuji; Weisbuch, Claude; Speck, James S.
2018-04-01
We report on measurements of the photo-modulated current-voltage and electroluminescence characteristics of forward biased single quantum well, blue InGaN/GaN light emitting diodes with and without electron blocking layers. Low intensity resonant optical excitation of the quantum well was observed to induce an additional forward current at constant forward diode bias, in contrast to the usual sense of the photocurrent in photodiodes and solar cells, as well as an increased electroluminescence intensity. The presence of an electron blocking layer only slightly decreased the magnitude of the photo-induced current at constant forward bias. Photo-modulation at constant forward diode current resulted in a reduced diode bias under optical excitation. We argue that this decrease in diode bias at constant current and the increase in forward diode current at constant applied bias can only be due to additional hot carriers being ejected from the quantum well as a result of an increased Auger recombination rate within the quantum well.
Insight into the performance of multi-color InGaN/GaN nanorod light emitting diodes.
Robin, Y; Bae, S Y; Shubina, T V; Pristovsek, M; Evropeitsev, E A; Kirilenko, D A; Davydov, V Yu; Smirnov, A N; Toropov, A A; Jmerik, V N; Kushimoto, M; Nitta, S; Ivanov, S V; Amano, H
2018-05-09
We report on the thorough investigation of light emitting diodes (LEDs) made of core-shell nanorods (NRs) with InGaN/GaN quantum wells (QWs) in the outer shell, which are grown on patterned substrates by metal-organic vapor phase epitaxy. The multi-bands emission of the LEDs covers nearly the whole visible region, including UV, blue, green, and orange ranges. The intensity of each emission is strongly dependent on the current density, however the LEDs demonstrate a rather low color saturation. Based on transmission electron microscopy data and comparing them with electroluminescence and photoluminescence spectra measured at different excitation powers and temperatures, we could identify the spatial origination of each of the emission bands. We show that their wavelengths and intensities are governed by different thicknesses of the QWs grown on different crystal facets of the NRs as well as corresponding polarization-induced electric fields. Also the InGaN incorporation strongly varies along the NRs, increasing at their tips and corners, which provides the red shift of emission. With increasing the current, the different QW regions are activated successively from the NR tips to the side-walls, resulting in different LED colors. Our findings can be used as a guideline to design effectively emitting multi-color NR-LEDs.
A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA
NASA Astrophysics Data System (ADS)
Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao
2015-10-01
Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.
Quantum-dot saturable absorber and Kerr-lens mode-locked Yb:KGW laser with >450 kW of peak power.
Akbari, R; Zhao, H; Fedorova, K A; Rafailov, E U; Major, A
2016-08-15
The hybrid action of quantum-dot saturable absorber and Kerr-lens mode locking in a diode-pumped Yb:KGW laser was demonstrated. Using a quantum-dot saturable absorber with a 0.7% (0.5%) modulation depth, the mode-locked laser delivered 90 fs (93 fs) pulses with 3.2 W (2.9 W) of average power at the repetition rate of 77 MHz, corresponding to 462 kW (406 kW) of peak power and 41 nJ (38 nJ) of pulse energy. To the best of our knowledge, this represents the highest average and peak powers generated to date from quantum-dot saturable absorber-based mode-locked lasers.
An improved push-pull voltage fed converter using a tapped output-filter inductor
NASA Technical Reports Server (NTRS)
Wester, G. W.
1983-01-01
A new concept of using a tapped output-filter inductor and an auxiliary commutating diode to reduce the likelihood of transformer core saturation in a push-pull, voltage-fed converter is presented. The linearized circuit model and transfer functions are derived with a hybrid approach using both state-space and circuit averaging. Operation of the new converter - including parasitic effects - is discussed, and a design equation for inductor tap ratio is established. It is predicted and experimentally confirmed that the new converter has more symmetrical transformer core operation, and the potential exits for lower transistor turnon current and reduced transistor voltage stress. These benefits reduce switching loss and enhance transistor reliability.
The influence of visible light on transparent zinc tin oxide thin film transistors
NASA Astrophysics Data System (ADS)
Görrn, P.; Lehnhardt, M.; Riedl, T.; Kowalsky, W.
2007-11-01
The characteristics of transparent zinc tin oxide thin film transistors (TTFTs) upon illumination with visible light are reported. Generally, a reversible decrease of threshold voltage Vth, saturation field effect mobility μsat, and an increase of the off current are found. The time scale of the recovery in the dark is governed by the persistent photoconductivity in the semiconductor. Devices with tuned [Zn]:[Sn] ratio show a shift of Vth of less 2V upon illumination at 5mW/cm2 (brightness >30000cd/m2) throughout the visible spectrum. These results demonstrate TTFTs which are candidates as pixel drivers in transparent active-matrix organic light emitting diode displays.
NASA Astrophysics Data System (ADS)
Wang, Cheng; He, Yue; Lu, Bin; Jiang, Jun; Miao, Li; Deng, Xian-Jin; Xiong, Yong-zhong; Zhang, Jian
2017-11-01
This paper presents a sub-harmonic mixer at 340 GHz based on anti-parallel Schottky diodes (SBDs). Intrinsic resonances in low-pass hammer-head filter have been adopted to enhance the isolation for different harmonic components, while greatly minimizing the transmission loss. The application of new DC grounding structure, impedance matching structure, and suspended micro-strip mitigates the negative influences of fabrication errors from metal cavity, quartz substrate, and micro-assembly. An improved lumped element equivalent circuit model of SBDs guarantees the accuracy of simulation, which takes current-voltage (I/V) behavior, capacitance-voltage (C/V) behavior, carrier velocity saturation, DC series resistor, plasma resonance, skin effect, and four kinds of noise generation mechanisms into consideration thoroughly. The measurement indicates that with local oscillating signal of 2 mW, the lowest double sideband conversion loss is 5.5 dB at 339 GHz; the corresponding DSB noise temperature is 757 K. The 3 dB bandwidth of conversion loss is 50 GHz from 317 to 367 GHz.
External cavity diode laser setup with two interference filters
NASA Astrophysics Data System (ADS)
Martin, Alexander; Baus, Patrick; Birkl, Gerhard
2016-12-01
We present an external cavity diode laser setup using two identical, commercially available interference filters operated in the blue wavelength range around 450 nm. The combination of the two filters decreases the transmission width, while increasing the edge steepness without a significant reduction in peak transmittance. Due to the broad spectral transmission of these interference filters compared to the internal mode spacing of blue laser diodes, an additional locking scheme, based on Hänsch-Couillaud locking to a cavity, has been added to improve the stability. The laser is stabilized to a line in the tellurium spectrum via saturation spectroscopy, and single-frequency operation for a duration of two days is demonstrated by monitoring the error signal of the lock and the piezo drive compensating the length change of the external resonator due to air pressure variations. Additionally, transmission curves of the filters and the spectra of a sample of diodes are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, X., E-mail: xi.zeng@csem.ch, E-mail: dmitri.boiko@csem.ch; Stadelmann, T.; Grossmann, S.
2015-02-16
In this letter, we investigate the behavior of a Q-switched InGaN multi-section laser diode (MSLD) under optical injection from a continuous wave external cavity diode laser. We obtain solitary optical pulse generation when the slave MSLD is driven near free running threshold, and the peak output power is significantly enhanced with respect to free running configuration. When the slave laser is driven well above threshold, optical injection reduces the peak power. Using standard semiconductor laser rate equation model, we find that both power enhancement and suppression effects are the result of partial bleaching of the saturable absorber by externally injectedmore » photons.« less
Method and system for communicating with a laser power driver
Telford, Steven
2017-07-18
A system for controlling a plurality of laser diodes includes an optical transmitter coupled to the laser diode driver for each laser diode. An optical signal including bi-phase encoded data is provided to each laser diode driver. The optical signal includes current level and pulse duration information at which each of the diodes is to be driven. Upon receiving a trigger signal, the laser diode drivers operate the laser diodes using the current level and pulse duration information to output a laser beam.
NASA Astrophysics Data System (ADS)
Benarab, Mustapha; Mokdad, Rabah; Djellout, Hocine; Benfdila, Arezki; Lamrous, Omar; Meyrueis, Patrick
2011-09-01
We have adapted the point model for the study of an all-fiber laser doped with Nd3+ and Q-switched by a saturable fiber absorber doped with Cr4+. Calculations of the output power of the 1084 nm laser are considered as a function of the pump power supplied by a 790 nm laser diode. The analysis of the simulation results reveals the existence of pulsed, sinusoidal, and dc operating regimes.
Wade, E.J.; Stone, R.S.
1959-03-10
Electronic,amplifier circuits, especially a logai-ithmic amplifier characterizxed by its greatly improved strability are discussed. According to the in ention, means are provided to feed bach the output valtagee to a diode in the amplifier input circuit, the diode being utilized to produce the logarithmic characteristics. The diode is tics, The diode isition therewith and having its filament operated from thc same source s the filament of the logarithmic diode. A bias current of relatively large value compareii with the signal current is continuously passed through the compiting dioie to render the diode insensitivy to variations in the signal current. by this odes kdu to variaelled, so that the stability of the amlifier will be unimpaired.
Investigation of Saturation Effects in Ceramic Phosphors for Laser Lighting
Krasnoshchoka, Anastasiia; Dam-Hansen, Carsten; Corell, Dennis Dan; Petersen, Paul Michael
2017-01-01
We report observations of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion. It is shown that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on the incident power and spot size diameter of the illumination. A phosphor conversion efficiency up to 140.8 lm/W with CRI of 89.4 was achieved. The saturation in a ceramic phosphor, when illuminated by high intensity laser diodes, is estimated to play the main role in limiting the available luminance from laser-based lighting systems. PMID:29292770
NASA Astrophysics Data System (ADS)
Gopal, Vishnu; Qiu, WeiCheng; Hu, Weida
2014-11-01
The current-voltage characteristics of long wavelength mercury cadmium telluride infrared detectors have been studied using a recently suggested method for modelling of illuminated photovoltaic detectors. Diodes fabricated on in-house grown arsenic and vacancy doped epitaxial layers were evaluated for their leakage currents. The thermal diffusion, generation-recombination (g-r), and ohmic currents were found as principal components of diode current besides a component of photocurrent due to illumination. In addition, both types of diodes exhibited an excess current component whose growth with the applied bias voltage did not match the expected growth of trap-assisted-tunnelling current. Instead, it was found to be the best described by an exponential function of the type, Iexcess = Ir0 + K1 exp (K2 V), where Ir0, K1, and K2 are fitting parameters and V is the applied bias voltage. A study of the temperature dependence of the diode current components and the excess current provided the useful clues about the source of origin of excess current. It was found that the excess current in diodes fabricated on arsenic doped epitaxial layers has its origin in the source of ohmic shunt currents. Whereas, the source of excess current in diodes fabricated on vacancy doped epitaxial layers appeared to be the avalanche multiplication of photocurrent. The difference in the behaviour of two types of diodes has been attributed to the difference in the quality of epitaxial layers.
Metal-Insulator-Semiconductor Diode Consisting of Two-Dimensional Nanomaterials.
Jeong, Hyun; Oh, Hye Min; Bang, Seungho; Jeong, Hyeon Jun; An, Sung-Jin; Han, Gang Hee; Kim, Hyun; Yun, Seok Joon; Kim, Ki Kang; Park, Jin Cheol; Lee, Young Hee; Lerondel, Gilles; Jeong, Mun Seok
2016-03-09
We present a novel metal-insulator-semiconductor (MIS) diode consisting of graphene, hexagonal BN, and monolayer MoS2 for application in ultrathin nanoelectronics. The MIS heterojunction structure was fabricated by vertically stacking layered materials using a simple wet chemical transfer method. The stacking of each layer was confirmed by confocal scanning Raman spectroscopy and device performance was evaluated using current versus voltage (I-V) and photocurrent measurements. We clearly observed better current rectification and much higher current flow in the MIS diode than in the p-n junction and the metal-semiconductor diodes made of layered materials. The I-V characteristic curve of the MIS diode indicates that current flows mainly across interfaces as a result of carrier tunneling. Moreover, we observed considerably high photocurrent from the MIS diode under visible light illumination.
Adjustable direct current and pulsed circuit fault current limiter
Boenig, Heinrich J.; Schillig, Josef B.
2003-09-23
A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.
Zener diode controls switching of large direct currents
NASA Technical Reports Server (NTRS)
1965-01-01
High-current zener diode is connected in series with the positive input terminal of a dc supply to block the flow of direct current until a high-frequency control signal is applied across the zener diode. This circuit controls the switching of large dc signals.
Injection locking of a low cost high power laser diode at 461 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagett, C. J. H.; Moriya, P. H., E-mail: paulohisao@ifsc.usp.br; Celistrino Teixeira, R.
2016-05-15
Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments, this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the mastermore » laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.« less
Compact diode-pumped continuous-wave and passively Q-switched Nd:GYSO laser at 1.07 μm
NASA Astrophysics Data System (ADS)
Lin, Zhi; Huang, Xiaoxu; Lan, Jinglong; Cui, Shengwei; Wang, Yi; Xu, Bin; Luo, Zhengqian; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Xiaoyan; Wang, Jun; Xu, Jun
2016-08-01
We report diode-pumped continuous-wave (CW) and Q-switched Nd:GYSO lasers using a compact two-mirror linear laser cavity. Single-wavelength laser emissions at 1074.11 nm with 4.1-W power and at 1058.27 nm with 1.47-W power have been obtained in CW mode. The slope efficiencies with respect to the absorbed pump powers are 48.5% and 22.9%, respectively. Wavelength tunability is also demonstrated with range of about 8 nm. Using a MoS2 saturable absorber, maximum average output power up to 410 mW at 1074 nm can be yielded with absorbed pump power 6.41 W and the maximum pulse energy reaches 1.20 μJ with pulse repetition rate of 342.5 kHz and shortest pulse width of 810 ns. The CW laser results represent the best laser performance and the Q-switching also present the highest output power for Q-switched Nd3+ lasers with MoS2 as saturable absorber.
1.55 µm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser
NASA Astrophysics Data System (ADS)
Zhang, Z. Y.; Oehler, A. E. H.; Resan, B.; Kurmulis, S.; Zhou, K. J.; Wang, Q.; Mangold, M.; Süedmeyer, T.; Keller, U.; Weingarten, K. J.; Hogg, R. A.
2012-06-01
High pulse repetition rate (>=10 GHz) diode-pumped solid-state lasers, modelocked using semiconductor saturable absorber mirrors (SESAMs) are emerging as an enabling technology for high data rate coherent communication systems owing to their low noise and pulse-to-pulse optical phase-coherence. Quantum dot (QD) based SESAMs offer potential advantages to such laser systems in terms of reduced saturation fluence, broader bandwidth, and wavelength flexibility. Here, we describe the development of an epitaxial process for the realization of high optical quality 1.55 µm In(Ga)As QDs on GaAs substrates, their incorporation into a SESAM, and the realization of the first 10 GHz repetition rate QD-SESAM modelocked laser at 1.55 µm, exhibiting ~2 ps pulse width from an Er-doped glass oscillator (ERGO). With a high areal dot density and strong light emission, this QD structure is a very promising candidate for many other applications, such as laser diodes, optical amplifiers, non-linear and photonic crystal based devices.
Modelling of graphene Q-switched Tm lasers
NASA Astrophysics Data System (ADS)
Yasukevich, A. S.; Loiko, P.; Gusakova, N. V.; Serres, J. M.; Mateos, X.; Yumashev, K. V.; Kuleshov, N. V.; Petrov, V.; Griebner, U.; Aguiló, M.; Díaz, F.
2017-04-01
We report on a model of diode-pumped Thulium lasers passively Q-switched by a graphene saturable absorber applicable also for any other "fast" saturable absorber. It reasonably predicts the dependence of the pulse duration, pulse energy and pulse repetition frequency on the absorbed power. The model is applied in the present work for a Tm: KLuW microchip laser passively Q-switched with a multi-layer graphene saturable absorber. The laser generates 1 W at 1926 nm with a slope efficiency of 39%. Stable 190 ns /4.1 μJ pulses are achieved at a pulse repetition frequency of 260 kHz. The potential of graphene for the generation of few-ns pulses at 2 μm is discussed.
Digital control of diode laser for atmospheric spectroscopy
NASA Technical Reports Server (NTRS)
Menzies, R. T.; Rutledge, C. W. (Inventor)
1985-01-01
A system is described for remote absorption spectroscopy of trace species using a diode laser tunable over a useful spectral region of 50 to 200 cm(-1) by control of diode laser temperature over range from 15 K to 100 K, and tunable over a smaller region of typically 0.1 to 10 cm(-1) by control of the diode laser current over a range from 0 to 2 amps. Diode laser temperature and current set points are transmitted to the instrument in digital form and stored in memory for retrieval under control of a microprocessor during measurements. The laser diode current is determined by a digital to analog converter through a field effect transistor for a high degree of ambient temperature stability, while the laser diode temperature is determined by set points entered into a digital to analog converter under control of the microprocessor. Temperature of the laser diode is sensed by a sensor diode to provide negative feedback to the temperature control circuit that responds to the temperature control digital to analog converter.
Theory and simulation of electron beam dynamics in the AWE superswarf magnetically immersed diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, B.V.; Welch, D.R.; Olson, C.L.
1999-07-01
Results from numerical simulation and analytic theory of magnetically immersed diode behavior on the United Kingdom's Atomic Weapons Establishment (AWE) Superswarf accelerator are presented. The immersed diode consists of a cylindrical needle point cathode immersed in a strong {approximately}10--20 T solenoidal magnetic field. The anode-cathode (A-K) accelerating gap is held at vacuum and is {approximately}5--10 cm in length, with the anode/target located at the mid-plane of the solenoid. Typical accelerator parameters are 5--6 MeV and 40 kA. Ions emitted from the anode target stream toward the cathode and interact strongly with the electron beam. Collective oscillations between the beam electronsmore » and counter-streaming ions are driven unstable and results in a corkscrew rotation of the beam, yielding a time-integrated spot size substantially larger than that expected from single particle motion. This magnetized ion-hose instability is three dimensional. On the other hand, beam transverse temperature variations, although slightly enhanced in 3D, are primarily due to changes in the effective potential at the cathode (a combination of both the electrostatic and vector potential) and are manifest in 2D. Simulation studies examining spot and dose variation with varying cathode diameter and A-K gap distance are presented and confirm the above mentioned trends. Conclusions are that the diode current is determined by standard di-polar space-charge limited emissions, the minimum beam spot-size is limited by the ion-hose instability saturation amplitude, and the beam transverse temperature at the target is a function of the initial conditions on the cathode. Comparison to existing data will also be presented.« less
NASA Astrophysics Data System (ADS)
Liu, Lilin; Ling, Minjie; Yang, Jianfu; Xiong, Wang; Jia, Weiqing; Wang, Gang
2012-05-01
With this work, we demonstrate a three-stage degradation behavior of GaN based LED chips under current/thermal co-stressing. The three stages in sequence are the initial improvement stage, the platform stage, and the rapid degradation stage, indicating that current/thermal co-stressing activates positive effects and negative ones simultaneously, and the dominant degradation mechanisms evolve with aging time. Degradation mechanisms are discussed. Electric current stress has dual characters: damaging the active layers by generating defects and at the same time improving the p-type conductivity by activating the Mg-dopant. High temperature stresses will promote the effects from electric current stresses. The activation of the Mg-dopant will saturate, whereas the generation of defects is carried on in a progressive way. Other mechanisms, such as deterioration of ohmic contacts, also operate. These mechanisms compete/cooperate with each other and evolve with aging time, resulting in the observed three-stage degradation behavior. There exist risks to predict the lifetime of LEDs by a model with a constant accelerated factor.
NASA Astrophysics Data System (ADS)
Mahala, Pramila; Kumar, Ajay; Nayak, Sasmita; Behura, Sanjay; Dhanavantri, Chenna; Jani, Omkar
2016-04-01
Understanding the physics of charge carrier transport at graphene/p-GaN interface is critical for achieving efficient device functionality. Currently, the graphene/p-GaN interface is being explored as light emitting diodes, however this interface can be probed as a potential photovoltaic cell. We report the intimate interfacing of mechanically exfoliated graphene (EG), conducting polymer (PEDOT:PSS) and composite of reduced graphene oxide (rGO) and PEDOT:PSS with a wide band gap p-GaN layer. To explore their potential in energy harvesting, three heterojunction devices such as: (i) EG/p-GaN/sapphire, (ii) PEDOT:PSS/p-GaN/sapphire and (iii) PEDOT:PSS(rGO)/p-GaN/sapphire are designed and their photovoltaic characteristics are examined. It is interesting to observe that the EG/p-GaN/sapphire solar cell exhibits high open-circuit voltage of 0.545 V with low ideality factor and reverse saturation current. However, improved short circuit current density (13.7 mA/cm2) is noticed for PEDOT:PSS/p-GaN/sapphire solar cell because of enhanced conductivity accompanied by high transmittance for PEDOT:PSS. Further, the low series resistance for PEDOT:PSS(rGO)/p-GaN/sapphire is observed suggesting that the PEDOT:PSS and rGO composite is well dispersed and exhibits low interfacial resistances with p-GaN. The present investigation leverages the potential of graphene, conducting polymer and their composites as dual capability of (a) transparent and current spreading electrode and (b) an active top layer to make an intimate contact with wide bandgap p-type GaN for possible prospect towards high performance diodes, switches and solar cells.
30 CFR 18.50 - Protection against external arcs and sparks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... volts. (c) A device(s) such as a diode(s) of adequate peak inverse voltage rating and current-carrying capacity to conduct possible fault current through the grounded power conductor. Diode installations shall include: (1) An overcurrent device in series with the diode, the contacts of which are in the machine's...
30 CFR 18.50 - Protection against external arcs and sparks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... volts. (c) A device(s) such as a diode(s) of adequate peak inverse voltage rating and current-carrying capacity to conduct possible fault current through the grounded power conductor. Diode installations shall include: (1) An overcurrent device in series with the diode, the contacts of which are in the machine's...
30 CFR 18.50 - Protection against external arcs and sparks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... volts. (c) A device(s) such as a diode(s) of adequate peak inverse voltage rating and current-carrying capacity to conduct possible fault current through the grounded power conductor. Diode installations shall include: (1) An overcurrent device in series with the diode, the contacts of which are in the machine's...
NASA Astrophysics Data System (ADS)
Girkin, John M.; Burns, David; Dawson, Martin D.
1999-06-01
We report on the development of practical and user friendly lasers for multiphoton imaging of biological material. The laser developed for the work is a laser diode pumped Cr:LiSAF source modelocked using a saturable Bragg reflector as the passive modelocking element. For this system we routinely obtain 100 fs pulses at a repetition rate 200 MHz with an average output power of 20 mW. The laser has a single operator control and is particularly suitable for use by non-laser specialists. We have used the source developed to image a range of biologically significant samples. The initial work has centered on the imaging of intact human dental tissue. The first two-photon images of dental tissue are reported showing the development of early dental disease from depths up to 500 micrometers into the tooth. These results demonstrate the detection of carious lesions before the more conventional techniques currently used by dental practitioners. Work on other living intact biological tissue is also reported, in particular plants containing a genetically bred fluorescent marker to enable the examination of complete and intact living plant tissue.
An assessment of the accuracy of pulse oximeters.
Milner, Q J W; Mathews, G R
2012-04-01
Peripheral pulse oximetry has become a core monitoring modality in most fields of medicine. Pulse oximeters are used ubiquitously in operating theatres, hospital wards, outpatient clinics and general practice surgeries. This study used a portable spectrometer (Lightman(®), The Electrode Co. Ltd., Monmouthshire, UK) to measure the emission spectra of the two light emitting diodes within the pulse oximeter sensor and to determine the accuracy of 847 pulse oximeters currently in use in 29 NHS hospitals in the UK. The standard manufacturing claim of accuracy for pulse oximeters is ± 2-3% over the range of 70-100% S(p)O(2). Eighty-nine sensors (10.5%) were found to have a functional error of their electrical circuitry that could cause inaccuracy of measurement. Of the remaining 758 sensors, 169 (22.3%) were found to have emission spectra different from the manufacturers' specification that would cause an inaccuracy in saturation estimation of > 4% in the range of 70-100% saturation. This study has demonstrated that a significant proportion of pulse oximeter sensors may be inaccurate. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.
Cathode buffer composed of fullerene-ethylenediamine adduct for an organic solar cell
NASA Astrophysics Data System (ADS)
Kimoto, Yoshinori; Akiyama, Tsuyoshi; Fujita, Katsuhiko
2017-02-01
We developed a fullerene-ethylenediamine adduct (C60P-DC) for a cathode buffer material in organic bulk heterojunction solar cells, which enhance the open-circuit voltage (V oc). The evaporative spray deposition using ultra dilute solution (ESDUS) technique was employed to deposit the buffer layer onto the organic active layer to avoid damage during the deposition. By the insertion of a C60P-DC buffer layer, V oc and power conversion efficiency (PCE) were increased from 0.41 to 0.57 V and from 1.65 to 2.10%, respectively. The electron-only device with the C60P-DC buffer showed a much lower current level than that without the buffer, indicating that the V oc increase is caused not by vacuum level shift but by hole blocking. The curve fitting of current density-voltage (J-V) characteristics to the equivalent circuit with a single diode indicated that the decrease in reversed saturation current by hole blocking increased caused the V oc.
Vertical nanowire heterojunction devices based on a clean Si/Ge interface.
Chen, Lin; Fung, Wayne Y; Lu, Wei
2013-01-01
Different vertical nanowire heterojunction devices were fabricated and tested based on vertical Ge nanowires grown epitaxially at low temperatures on (111) Si substrates with a sharp and clean Si/Ge interface. The nearly ideal Si/Ge heterojuctions with controlled and abrupt doping profiles were verified through material analysis and electrical characterizations. In the nSi/pGe heterojunction diode, an ideality factor of 1.16, subpicoampere reverse saturation current, and rectifying ratio of 10(6) were obtained, while the n+Si/p+Ge structure leads to Esaki tunnel diodes with a high peak tunneling current of 4.57 kA/cm(2) and negative differential resistance at room temperature. The large valence band discontinuity between the Ge and Si in the nanowire heterojunctions was further verified in the p+Si/pGe structure, which shows a rectifying behavior instead of an Ohmic contact and raises an important issue in making Ohmic contacts to heterogeneously integrated materials. A raised Si/Ge structure was further developed using a self-aligned etch process, allowing greater freedom in device design for applications such as the tunneling field-effect transistor (TFET). All measurement data can be well-explained and fitted with theoretical models with known bulk properties, suggesting that the Si/Ge nanowire system offers a very clean heterojunction interface with low defect density, and holds great potential as a platform for future high-density and high-performance electronics.
Light-weight DC to very high voltage DC converter
Druce, Robert L.; Kirbie, Hugh C.; Newton, Mark A.
1998-01-01
A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current.
Atomistic nature in band-to-band tunneling in two-dimensional silicon pn tunnel diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabe, Michiharu, E-mail: tabe.michiharu@shizuoka.ac.jp; Tan, Hoang Nhat; Mizuno, Takeshi
We study low-temperature transport properties of two-dimensional (2D) Si tunnel diodes, or Si Esaki diodes, with a lateral layout. In ordinary Si Esaki diodes, interband tunneling current is severely limited because of the law of momentum conservation, while nanoscale Esaki diodes may behave differently due to the dopants in the narrow depletion region, by atomistic effects which release such current limitation. In thin-Si lateral highly doped pn diodes, we find clear signatures of interband tunneling between 2D-subbands involving phonon assistance. More importantly, the tunneling current is sharply enhanced in a narrow voltage range by resonance via a pair of amore » donor- and an acceptor-atom in the pn junction region. Such atomistic behavior is recognized as a general feature showing up only in nanoscale tunnel diodes. In particular, a donor-acceptor pair with deeper ground-state energies is likely to be responsible for such a sharply enhanced current peak, tunable by external biases.« less
Diode-pumped continuous-wave and passively Q-switched Nd:GdLuAG laser at 1443.9 nm
NASA Astrophysics Data System (ADS)
Wu, Qianwen; Liu, Zhaojun; Zhang, Sasa; Cong, Zhenghua; Guan, Chen; Xue, Feng; Chen, Hui; Huang, Qingjie; Xu, Xiaodong; Xu, Jun; Qin, Zengguang
2017-12-01
We investigated the 1443.9 nm laser characteristics of Nd:GdLuAG crystal. Diode-end-pumping configuration was employed under both continuous-wave (CW) and passively Q-switched operations. For CW operation, the maximum average output power was 1.36 W with a slope efficiency of 15%. By using a V3+:YAG crystal as the saturable absorber, we obtained the maximum average output power of 164 mW under Q-switched operation. The corresponding pulse energy was 29.3 μJ and pulse duration was 59 ns.
Highly efficient and high-power diode-pumped femtosecond Yb:LYSO laser
NASA Astrophysics Data System (ADS)
Tian, Wenlong; Wang, Zhaohua; Zhu, Jiangfeng; Zheng, Lihe; Xu, Jun; Wei, Zhiyi
2017-04-01
A diode-pumped high-power femtosecond Yb:LYSO laser with high efficiency is demonstrated. With a semiconductor saturable absorber mirror for passive mode-locking and a Gires-Tournois interferometer mirror for intracavity dispersion compensation, stable mode-locking pulses of 297 fs duration at 1042 nm were obtained. The maximum average power of 3.07 W was realized under 5.17 W absorbed pump power, corresponding to as high as 59.4% opt-opt efficiency. The single pulse energy and peak power are about 35.5 nJ and 119.5 kW, respectively.
Update on diode-pumped solid-state laser experiments for inertial fusion energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C.; Smith, L.; Payne, S.
The authors have completed the initial phase of the diode-pumped solid-state laser (DPSSL) experimental program to validate the expected pumping dynamics and extraction cross-sections of Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) crystals. Yb:S-FAP crystals up to 25 x 25 x 175 mm in size have been grown for this purpose which have acceptable loss characteristics (<1 %/cm) and laser damage thresholds ({approximately}20 J/cm{sup 2}). The saturation fluence for pumping has been measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gainmore » under saturated pumping conditions was measured. These measurements imply an emission cross section of 6.0 x 10{sup {minus}20} cm{sup 2} that falls within error bars of the previously reported value of 7.3 x 10{sup {minus}20} cm{sup 2}, obtained from purely spectroscopic techniques. The effects of radiation trapping on the emission lifetime have been quantified. The long lifetime of Yb:S-FAP has beneficial effects for diode-pumped amplifier designs, relative to materials with equivalent cross sections but shorter lifetimes, in that less peak pump intensity is required (thus lower diode costs) and that lower spontaneous emission rates lead to a reduction in amplified spontaneous emission. Consequently, up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6x6x44 mm Yb:S-FAP amplifier rod; this stored energy density is large relative to typical flashlamp-pumped Nd:glass values of 0.3 to 0.5 J/cm{sup 3}. A 2.4 kW peak power InGaAs diode array has been fabricated by Beach, Emanuel, and co-workers which meets the central wavelength, bandwidth, and energy specifications for the author`s immediate experiments. These results further increase their optimism of being able to produce a {approximately} 10% efficient diode-pumped solid state laser for inertial fusion energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn; Qiu, WeiCheng; Hu, Weida, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn
2014-11-14
The current–voltage characteristics of long wavelength mercury cadmium telluride infrared detectors have been studied using a recently suggested method for modelling of illuminated photovoltaic detectors. Diodes fabricated on in-house grown arsenic and vacancy doped epitaxial layers were evaluated for their leakage currents. The thermal diffusion, generation–recombination (g-r), and ohmic currents were found as principal components of diode current besides a component of photocurrent due to illumination. In addition, both types of diodes exhibited an excess current component whose growth with the applied bias voltage did not match the expected growth of trap-assisted-tunnelling current. Instead, it was found to be themore » best described by an exponential function of the type, I{sub excess} = I{sub r0} + K{sub 1} exp (K{sub 2} V), where I{sub r0}, K{sub 1}, and K{sub 2} are fitting parameters and V is the applied bias voltage. A study of the temperature dependence of the diode current components and the excess current provided the useful clues about the source of origin of excess current. It was found that the excess current in diodes fabricated on arsenic doped epitaxial layers has its origin in the source of ohmic shunt currents. Whereas, the source of excess current in diodes fabricated on vacancy doped epitaxial layers appeared to be the avalanche multiplication of photocurrent. The difference in the behaviour of two types of diodes has been attributed to the difference in the quality of epitaxial layers.« less
NASA Astrophysics Data System (ADS)
Megherbi, M. L.; Pezzimenti, F.; Dehimi, L.; Rao, S.; Della Corte, F. G.
2015-07-01
In this work different experimental current-voltage behaviours of several Al implanted 4H-SiC p-i-n diodes are investigated by means of numerical simulations in a wide range of currents and temperatures. Some devices for which recombination and tunneling are the dominant current processes at all biases are classified as "leaky" diodes. The well behaved diodes, instead, show good rectifying characteristics with a current conduction due to tunneling below 1.7 V, recombination between 1.7 V and 2.5 V, and diffusion processes above 2.5 V. At higher current regimes, a series resistance in excess of 1 mΩ cm2 becomes the main current limiting factor. Depending on the relative weight between the contact resistances and the internal diode resistance, different temperature dependencies of the current are obtained. A good agreement between numerical and measured data is achieved employing temperature-dependent carrier lifetime and mobility as fitting parameters.
Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage
NASA Astrophysics Data System (ADS)
Watahiki, Tatsuro; Yuda, Yohei; Furukawa, Akihiko; Yamamuka, Mikio; Takiguchi, Yuki; Miyajima, Shinsuke
2017-11-01
Heterojunction p-Cu2O/n-β-Ga2O3 diodes were fabricated on an epitaxially grown β-Ga2O3(001) layer. The reverse breakdown voltage of these p-n diodes reached 1.49 kV with a specific on-resistance of 8.2 mΩ cm2. The leakage current of the p-n diodes was lower than that of the Schottky barrier diode due to the higher barrier height against the electron. The ideality factor of the p-n diode was 1.31. It indicated that some portion of the recombination current at the interface contributed to the forward current, but the diffusion current was the dominant. The forward current more than 100 A/cm2 indicated the lower conduction band offset at the hetero-interface between Cu2O and Ga2O3 layers than that predicted from the bulk properties, resulting in such a high forward current without limitation. These results open the possibility of advanced device structures for wide bandgap Ga2O3 to achieve higher breakdown voltage and lower on-resistance.
Light-weight DC to very high voltage DC converter
Druce, R.L.; Kirbie, H.C.; Newton, M.A.
1998-06-30
A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current. 1 fig.
Wang, Zhibin; Cheng, Tai; Wang, Fuzhi; Bai, Yiming; Bian, Xingming; Zhang, Bing; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao
2018-05-31
Stable and efficient red (R), green (G), and blue (B) light sources based on solution-processed quantum dots (QDs) play important roles in next-generation displays and solid-state lighting technologies. The brightness and efficiency of blue QDs-based light-emitting diodes (LEDs) remain inferior to their red and green counterparts, due to the inherently unfavorable energy levels of different colors of light. To solve these problems, a device structure should be designed to balance the injection holes and electrons into the emissive QD layer. Herein, through a simple autoxidation strategy, pure blue QD-LEDs which are highly bright and efficient are demonstrated, with a structure of ITO/PEDOT:PSS/Poly-TPD/QDs/Al:Al2O3. The autoxidized Al:Al2O3 cathode can effectively balance the injected charges and enhance radiative recombination without introducing an additional electron transport layer (ETL). As a result, high color-saturated blue QD-LEDs are achieved with a maximum luminance over 13,000 cd m -2 , and a maximum current efficiency of 1.15 cd A -1 . The easily controlled autoxidation procedure paves the way for achieving high-performance blue QD-LEDs.
60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode
Tsai, Cheng-Ting; Lin, Chi-Hsiang; Lin, Chun-Ting; Chi, Yu-Chieh; Lin, Gong-Ru
2016-01-01
A directly modulated dual-mode laser diode (DMLD) with third-order intermodulation distortion (IMD3) suppression is proposed for a 60-GHz millimeter-wave over fiber (MMWoF) architecture, enabling new fiber-wireless communication access to cover 4-km single-mode-fiber (SMF) and 3-m wireless 16-QAM OFDM transmissions. By dual-mode injection-locking, the throughput degradation of the DMLD is mitigated with saturation effect to reduce its threshold, IMD3 power and relative intensity noise to 7.7 mA, −85 dBm and −110.4 dBc/Hz, respectively, providing huge spurious-free dynamic range of 85.8 dB/Hz2/3. This operation suppresses the noise floor of the DMLD carried QPSK-OFDM spectrum by 5 dB. The optical receiving power is optimized to restrict the power fading effect for improving the bit error rate to 1.9 × 10−3 and the receiving power penalty to 1.1 dB. Such DMLD based hybrid architecture for 60-GHz MMW fiber-wireless access can directly cover the current optical and wireless networks for next-generation indoor and short-reach mobile communications. PMID:27297267
Plasma-filled diode based on the coaxial gun
NASA Astrophysics Data System (ADS)
Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.
2012-10-01
The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.
Plasma-filled diode based on the coaxial gun.
Zherlitsyn, A A; Kovalchuk, B M; Pedin, N N
2012-10-01
The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.
Cole, Brian; Goldberg, Lew; Trussell, C Ward; Hays, Alan; Schilling, Bradley W; McIntosh, Chris
2009-02-02
A method for optical triggering of a Q-switched Nd:YAG laser by direct bleaching of a Cr:YAG saturable absorber is described. This method involves the bleaching of a thin sheet of the saturable absorber from a direction orthogonal to the lasing axis using a single laser diode bar, where the Cr:YAG transmission increased from a non-bleached value of 47% to a bleached value of 63%. For steady state operation of a passively Q-switched laser (PRF=10 Hz), the pulse-to-pulse timing jitter showed approximately 12X reduction in standard deviation, from 241 nsec for free running operation to 20 nsec with optical triggering.
NASA Astrophysics Data System (ADS)
Ma, Li; Gao, Yong
2009-01-01
This paper proposes a novel super junction (SJ) SiGe switching power diode which has a columnar structure of alternating p- and n- doped pillar substituting conventional n- base region and has far thinner strained SiGe p+ layer to overcome the drawbacks of existing Si switching power diode. The SJ SiGe diode can achieve low specific on-resistance, high breakdown voltages and fast switching speed. The results indicate that the forward voltage drop of SJ SiGe diode is much lower than that of conventional Si power diode when the operating current densities do not exceed 1000 A/cm2, which is very good for getting lower operating loss. The forward voltage drop of the Si diode is 0.66 V whereas that of the SJ SiGe diode is only 0.52 V at operating current density of 10 A/cm2. The breakdown voltages are 203 V for the former and 235 V for the latter. Compared with the conventional Si power diode, the reverse recovery time of SJ SiGe diode with 20 per cent Ge content is shortened by above a half and the peak reverse current is reduced by over 15%. The SJ SiGe diode can remarkably improve the characteristics of power diode by combining the merits of both SJ structure and SiGe material.
Forward voltage short-pulse technique for measuring high power laser array junction temperature
NASA Technical Reports Server (NTRS)
Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)
2012-01-01
The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.
Design of a quasi-CW laser diode driver for space-based laser transmitter
NASA Astrophysics Data System (ADS)
Singh, Ravindra; Dangwal, Nishma; Chandraprakash, .; Agrawal, Lalita; Pal, Suranjan; Kamlakar, J. A.
2006-12-01
LASTEC Delhi in a joint collaborative activity with LEOS, Bangalore is developing a space qualified diode array pumped Nd:YAG laser transmitter delivering 30 mJ @ 10 pps of 10 ns duration. For space applications laser diodes are preferred because of their excellent reliability with lifetimes exceeding 100,000 hours. However, they are extremely sensitive to electro-static discharge, excessive current levels, and current spikes and transients. Small variations in bias voltage may produce large fluctuations in the current causing instability and damage to the device. Hence instead of the traditional power supplies a current controlled laser diode driver is required. This paper presents the design of a Q-CW laser diode driver based on closed loop current regulator, capable of driving 24 QCW laser diode bars each with 75W peak power at 70 A. The driver can generate up to 100 Amp peak current and 200μsec pulse width operating at 10 Hz. The current source design includes special circuits for low noise operation, slow turn-on and turn-off, circuits for over voltage and transient current protection; and good regulation. Space qualified and radiation hardened components are required to be used to sustain stringent space environment requirements during mission life of two years.
New approach to the design of Schottky barrier diodes for THz mixers
NASA Technical Reports Server (NTRS)
Jelenski, A.; Grueb, A.; Krozer, V.; Hartnagel, H. L.
1992-01-01
Near-ideal GaAs Schottky barrier diodes especially designed for mixing applications in the THz frequency range are presented. A diode fabrication process for submicron diodes with near-ideal electrical and noise characteristics is described. This process is based on the electrolytic pulse etching of GaAs in combination with an in-situ platinum plating for the formation of the Schottky contacts. Schottky barrier diodes with a diameter of 1 micron fabricated by the process have already shown excellent results in a 650 GHz waveguide mixer at room temperature. A conversion loss of 7.5 dB and a mixer noise temperature of less than 2000 K have been obtained at an intermediate frequency of 4 GHz. The optimization of the diode structure and the technology was possible due to the development of a generalized Schottky barrier diode model which is valid also at high current densities. The common diode design and optimization is discussed on the basis of the classical theory. However, the conventional fomulas are valid only in a limited forward bias range corresponding to currents much smaller than the operating currents under submillimeter mixing conditions. The generalized new model takes into account not only the phenomena occurring at the junction such as current dependent recombination and drift/diffusion velocities, but also mobility and electron temperature variations in the undepleted epi-layer. Calculated diode I/V and noise characteristics are in excellent agreement with the measured values. Thus, the model offers the possibility of optimizing the diode structure and predicting the diode performance under mixing conditions at THz frequencies.
Fetal oxygenation measurement using wireless near infrared spectroscopy
NASA Astrophysics Data System (ADS)
Macnab, Andrew; Shadgan, Babak; Janssen, Patricia; Rurak, Dan
2012-03-01
Background: Fetal well-being is determined in large part by how well the placenta is able to supply oxygen and nutrients, but current technology is unable to directly measure how well a placenta functions. Near-infrared spectroscopy (NIRS) utilizes optical methods to measure tissue oxygenation. This pilot project evaluated the feasibility of NIRS for fetal monitoring through the maternal abdominal wall using a sheep model. Methods: A miniature wireless 2-wavelength NIRS device was placed on the abdominal skin over the placenta of a pregnant ewe whose fetus had been chronically catheterized to allow arterial sampling for measurement of arterial oxygen saturation. The NIRS device has 3-paired light emitting diodes and a single photodiode detector; allowing measurement of an index of tissue oxygen saturation (TSI%). Fetal limb TSI% values were compared before and during fetal breathing movements. Correlation was made during these events between arterial values and placental TSI% monitored continuously in real time. Results: Serial measurements were obtained in a single experiment. The correlation between transcutaneous NIRS derived TSI% and direct arterial oxygen saturation was very high (R2=0.86). Measures of fetal limb TSI% were declined after episodes of fetal breathing (P<0.005). Conclusions: This correlation suggests that NIRS is sensitive enough to detect changes in fetal tissue oxygenation noninvasively through the maternal abdominal wall in real-time in a sheep model. NIRS data confirmed that fetal breathing movements decrease arterial oxygen saturation in fetal lambs. If validated by further study this optical methodology could be applied as means of monitoring fetal wellbeing in humans.
Leakage current reduction of vertical GaN junction barrier Schottky diodes using dual-anode process
NASA Astrophysics Data System (ADS)
Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Watahiki, Tatsuro; Yamamuka, Mikio
2018-04-01
The origin of the leakage current of a trench-type vertical GaN diode was discussed. We found that the edge of p-GaN is the main leakage spot. To reduce the reverse leakage current at the edge of p-GaN, a dual-anode process was proposed. As a result, the reverse blocking voltage defined at the leakage current density of 1 mA/cm2 of a vertical GaN junction barrier Schottky (JBS) diode was improved from 780 to 1,190 V, which is the highest value ever reported for vertical GaN Schottky barrier diodes (SBDs).
Conduction mechanism change with transport oxide layer thickness in oxide hetero-interface diode
NASA Astrophysics Data System (ADS)
Nam, Bu-il; Park, Jong Seo; Lim, Keon-Hee; Ahn, Yong-keon; Lee, Jinwon; Park, Jun-woo; Cho, Nam-Kwang; Lee, Donggun; Lee, Han-Bo-Ram; Kim, Youn Sang
2017-07-01
An effective and facile strategy is proposed to demonstrate an engineered oxide hetero-interface of a thin film diode with a high current density and low operating voltage. The electrical characteristics of an oxide hetero-interface thin film diode are governed by two theoretical models: the space charge-limited current model and the Fowler-Nordheim (F-N) tunneling model. Interestingly, the dominant mechanism strongly depends on the insulator thickness, and the mechanism change occurs at a critical thickness. This paper shows that conduction mechanisms of oxide hetero-interface thin film diodes depend on thicknesses of transport oxide layers and that current densities of these can be exponentially increased through quantum tunneling in the diodes with the thicknesses less than 10 nm. These oxide hetero-interface diodes have great potential for low-powered transparent nanoscale applications.
NASA Astrophysics Data System (ADS)
Thapaswini, P. Prabhu; Padma, R.; Balaram, N.; Bindu, B.; Rajagopal Reddy, V.
2016-05-01
Au/Ba0.6Sr0.4TiO3 (BST)/n-InP metal/insulator/semiconductor (MIS) Schottky diodes have been analyzed by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The surface morphology of the BST films on InP is fairly smooth. The Au/BST/n-InP MIS Schottky diode shows better rectification ratio and low leakage current compared to the conventional Au/n-InP metal-semiconductor (MS) Schottky diode. Higher barrier height is achieved for the MIS Schottky diode compared to the MS Schottky diode. The Norde and Cheung's methods are employed to determine the barrier height, ideality factor and series resistance. The interface state density (NSS) is determined from the forward bias I-V data for both the MS and MIS Schottky diodes. Results reveal that the NSS of the MIS Schottky diode is lower than that of the MS Schottky diode. The Poole-Frenkel emission is found dominating the reverse current in both Au/n-InP MS and Au/BST/n-InP MIS Schottky diodes, indicating the presence of structural defects and trap levels in the dielectric film.
Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm
NASA Astrophysics Data System (ADS)
Guan, Chen; Liu, Zhaojun; Cong, Zhenhua; Liu, Yang; Xu, Xiaodong; Xu, Jun; Huang, Qingjie; Rao, Han; Chen, Xia; Zhang, Yanmin; Wu, Qianwen; Bai, Fen; Zhang, Sasa
2017-02-01
A diode-end-pumped passively Q-switched Nd:LuAG laser at 1442.6 nm was demonstrated with a V3+:YAG crystal as the saturable absorber. Under continuous-wave (CW) operation, the maximum output power of 1.83 W was obtained with an absorbed pumping power of 11.1 W. The corresponding optical-to-optical conversion efficiency was 16.5%. Under Q-switched operation, the maximum average output power of 424 mW was obtained at the same pumping power. The pulse duration and pulse repetition rate were 72 ns and 17.4 kHz, respectively.
CW and femtosecond operation of a diode-pumped Yb:BaY(2)F(8) laser.
Galzerano, G; Coluccelli, N; Gatti, D; Di Lieto, A; Tonelli, M; Laporta, P
2010-03-15
We report for the first time on laser action of a diode-pumped Yb:BaY(2)F(8) crystal. Both CW and femtosecond operations have been demonstrated at room-temperature conditions. A maximum output power of 0.56 W, a slope efficiency of 34%, and a tunability range from 1013 to 1067 nm have been obtained in CW regime. Transform-limited pulse trains with a minimum duration of 275 fs, an average power of 40 mW, and a repetition rate of 83 MHz have been achieved in a passive mode-locked regime using a semiconductor saturable absorber mirror.
Passively mode-locked diode-pumped Tm3+:YLF laser emitting at 1.91 µm using a GaAs-based SESAM
NASA Astrophysics Data System (ADS)
Tyazhev, A.; Soulard, R.; Godin, T.; Paris, M.; Brasse, G.; Doualan, J.-L.; Braud, A.; Moncorgé, R.; Laroche, M.; Camy, P.; Hideur, A.
2018-04-01
We report on a diode-pumped Tm:YLF laser passively mode-locked with an InGaAs saturable absorber. The laser emits a train of 31 ps pulses at a wavelength of 1.91 µm with a repetition rate of 94 MHz and a maximum average power of 95 mW. A sustained and robust mode-locking with a signal-to-noise ratio of ~70 dB is obtained even at high relative air humidity, making this system attractive for applications requiring ultra-short pulses in the spectral window just below 2 µm.
NASA Astrophysics Data System (ADS)
Kim, You-Hyun; Wai Cheah, Kok; Young Kim, Woo
2013-07-01
Phosphorescent white organic light-emitting diodes (PHWOLEDs) with single emissive layer were fabricated by co-doping phosphorescent blue, green, and red emitters with different concentrations. WOLEDs using Ir(piq)3 and Ir(ppy)3 as red and green dopants along with 8% of Firpic as blue dopant with host materials of 4CzPBP in the emissive layer were compared under various doping ratio between Ir(piq)3 and Ir(ppy)3. Triplet-triplet Dexter energy transfer in single emissive PHWOLEDs including three primary colors was saturated from higher triplet energy levels to lower triplet energy levels directly.
Passively Q-switched microchip Er, Yb:YAl3(BO3)4 diode-pumped laser.
Kisel, V E; Gorbachenya, K N; Yasukevich, A S; Ivashko, A M; Kuleshov, N V; Maltsev, V V; Leonyuk, N I
2012-07-01
We report, for the first time to our knowledge, a diode-pumped cw and passively Q-switched microchip Er, Yb:YAl(3)(BO(3))(4) laser. A maximal output power of 800 mW at 1602 nm in the cw regime was obtained at an absorbed pump power of 7.7 W. By using Co(2+):MgAl(2)O(4) as a saturable absorber, a TEM(00)-mode Q-switched average output power of 315 mW was demonstrated at 1522 nm, with pulse duration of 5 ns and pulse energy of 5.25 μJ at a repetition rate of 60 kHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maenchen, J.E.
1983-01-01
The coupling of energy from a high power pulsed accelerator through a long triplate magnetically insulated transmission line (MITL) in vacuum to an annular applied magnetic field insulated extraction ion diode is examined. The narrow power transport window and the wave front erosion of the MITL set stringent impedance history conditions on the diode load. A new ion diode design developed to satisfy these criteria with marginal electron insulation is presented. The LION accelerator is used to provide a positive polarity 1.5 MV, 350 kA, 40 ns FWHM pulse with a 30 kA/ns current rate from a triplate MITL source.more » A transition converts the triplate into a cylindrical cross section which flares into the ion diode load. Extensive current and voltage measurements performed along this structure and on the extracted ion beam provide conclusive evidence that the self insulation condition of the MITL is maintained in the transition by current loss alone. The ion diode utilizes a radial magnetic field between a grounded cathode annular emission tip and a disk anode. A 50 cm/sup 2/ dielectric/metal anode area serves as the ion plasma source subject to direct electron bombardment from the opposing cathode tip under marginal magnetic insulation conditions. The ions extracted cross the radial magnetic field and exit the diode volume as an annular cross section beam of peak current about 100 kA. The diode current gradually converts from the initial electron flow to nearly 100% ion current af« less
Maximum time-dependent space-charge limited diode currents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griswold, M. E.; Fisch, N. J.
Recent papers claim that a one dimensional (1D) diode with a time-varying voltage drop can transmit current densities that exceed the Child-Langmuir (CL) limit on average, apparently contradicting a previous conjecture that there is a hard limit on the average current density across any 1D diode, as t → ∞, that is equal to the CL limit. However, these claims rest on a different definition of the CL limit, namely, a comparison between the time-averaged diode current and the adiabatic average of the expression for the stationary CL limit. If the current were considered as a function of the maximummore » applied voltage, rather than the average applied voltage, then the original conjecture would not have been refuted.« less
Coherent blue emission generated by Rb two-photon excitation using diode and femtosecond lasers
NASA Astrophysics Data System (ADS)
Lopez, Jesus P.; Moreno, Marco P.; de Miranda, Marcio H. G.; Vianna, Sandra S.
2017-04-01
The coherent blue light generated in rubidium vapor due to the combined action of an ultrashort pulse train and a continuous wave diode laser is investigated. Each step of the two-photon transition 5S-5P{}3/2-5D is excited by one of the lasers, and the induced coherence between the 5S and 6P{}3/2 states is responsible for generating the blue beam. Measurements of the excitation spectrum reveal the frequency comb structure and allow us to identify the resonant modes responsible for inducing the nonlinear process. Further, each resonant mode excites a different group of atoms, making the process selective in atomic velocity. The signal dependency on the atomic density is characterized by a sharp growth and a rapid saturation. We also show that for high intensity of the diode laser, the Stark shift at resonance causes the signal suppression observed at low atomic density.
Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank
2017-09-25
Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martens, M.; Kuhn, C.; Ziffer, E.
2016-04-11
Current injection into AlGaN-based laser diode structures with high aluminum mole fractions for deep ultraviolet emission is investigated. The electrical characteristics of laser diode structures with different p-AlGaN short period superlattice (SPSL) cladding layers with various aluminum mole fractions are compared. The heterostructures contain all elements that are needed for a current-injection laser diode including cladding and waveguide layers as well as an AlGaN quantum well active region emitting near 270 nm. We found that with increasing aluminum content in the p-AlGaN cladding, the diode turn-on voltage increases, while the series resistance slightly decreases. By introducing an SPSL instead of bulkmore » layers, the operating voltage is significantly reduced. A gain guided broad area laser diode structure with transparent p-Al{sub 0.70}Ga{sub 0.30}N waveguide layers and a transparent p-cladding with an average aluminum content of 81% was designed for strong confinement of the transverse optical mode and low optical losses. Using an optimized SPSL, this diode could sustain current densities of more than 4.5 kA/cm{sup 2}.« less
Cr-Si Schottky nano-diodes utilizing anodic aluminum oxide templates.
Kwon, Namyong; Kim, Kyohyeok; Heo, Jinhee; Chung, Ilsub
2014-04-01
We have fabricated Cr nanodot Schottky diodes utilizing AAO templates formed on n-Si substrates. The diameters of the diodes were 75.0, 57.6, and 35.8 nm. Cr nanodot Schottky diodes with smaller diameters yield higher current densities than those with larger diameters due to an enhanced tunnel current contribution, which is attributed to a reduction in the barrier thickness. The diameters of Cr nanodots smaller than the Debye length (156 nm) play an important role in the reduction of barrier thickness. Also, we have fabricated Cr-Si nanorod Schottky diodes with three different lengths (130, 220, and 330 nm) by dry etching of n-Si substrate. Cr-Si nanorod Schottky diodes with longer nanorods yield higher reverse current than those with shorter nanorods due to the enhanced electric field, which is attributed to a high aspect ratio of Si nanorod.
Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.
Kumar, Ashutosh; Kashid, Ranjit; Ghosh, Arindam; Kumar, Vikram; Singh, Rajendra
2016-03-01
Temperature-dependent electrical transport characteristics of exfoliated graphene/GaN Schottky diodes are investigated and compared with conventional Ni/GaN Schottky diodes. The ideality factor of graphene/GaN and Ni/GaN diodes are measured to be 1.33 and 1.51, respectively, which is suggestive of comparatively higher thermionic emission current in graphene/GaN diode. The barrier height values for graphene/GaN diode obtained using thermionic emission model and Richardson plots are found to be 0.60 and 0.72 eV, respectively, which are higher than predicted barrier height ∼0.40 eV as per the Schottky-Mott model. The higher barrier height is attributed to hole doping of graphene due to graphene-Au interaction which shifts the Fermi level in graphene by ∼0.3 eV. The magnitude of flicker noise of graphene/GaN Schottky diode increases up to 175 K followed by its decrease at higher temperatures. This indicates that diffusion currents and barrier inhomogeneities dominate the electronic transport at lower and higher temperatures, respectively. The exfoliated graphene/GaN diode is found to have lower level of barrier inhomogeneities than conventional Ni/GaN diode, as well as earlier reported graphene/GaN diode fabricated using chemical vapor deposited graphene. The lesser barrier inhomogeneities in graphene/GaN diode results in lower flicker noise by 2 orders of magnitude as compared to Ni/GaN diode. Enhanced thermionic emission current, lower level of inhomogeneities, and reduced flicker noise suggests that graphene-GaN Schottky diodes may have the underlying trend for replacing metal-GaN Schottky diodes.
Wang, Baoju; Zhan, Qiuqiang; Zhao, Yuxiang; Wu, Ruitao; Liu, Jing; He, Sailing
2016-01-25
Further development of multiphoton microscopic imaging is confronted with a number of limitations, including high-cost, high complexity and relatively low spatial resolution due to the long excitation wavelength. To overcome these problems, for the first time, we propose visible-to-visible four-photon ultrahigh resolution microscopic imaging by using a common cost-effective 730-nm laser diode to excite the prepared Nd(3+)-sensitized upconversion nanoparticles (Nd(3+)-UCNPs). An ordinary multiphoton scanning microscope system was built using a visible CW diode laser and the lateral imaging resolution as high as 161-nm was achieved via the four-photon upconversion process. The demonstrated large saturation excitation power for Nd(3+)-UCNPs would be more practical and facilitate the four-photon imaging in the application. A sample with fine structure was imaged to demonstrate the advantages of visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals. Combining the uniqueness of UCNPs, the proposed visible-to-visible four-photon imaging would be highly promising and attractive in the field of multiphoton imaging.
Stability of amorphous silicon thin film transistors and circuits
NASA Astrophysics Data System (ADS)
Liu, Ting
Hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs) have been widely used for the active-matrix addressing of flat panel displays, optical scanners and sensors. Extending the application of the a-Si TFTs from switches to current sources, which requires continuous operation such as for active-matrix organic light-emitting-diode (AMOLED) pixels, makes stability a critical issue. This thesis first presents a two-stage model for the stability characterization and reliable lifetime prediction for highly stable a-Si TFTs under low gate-field stress. Two stages of the threshold voltage shift are identified from the decrease of the drain saturation current under low-gate field. The first initial stage dominates up to hours or days near room temperature. It can be characterized with a stretched-exponential model, with the underlying physical mechanism of charge trapping in the gate dielectric. The second stage dominates in the long term and then saturates. It corresponds to the breaking of weak bonds in the amorphous silicon. It can be modeled with a "unified stretched exponential fit," in which a thermalization energy is used to unify experimental measurements of drain current decay at different temperatures into a single curve. Two groups of experiments were conducted to reduce the drain current instability of a-Si TFTs under prolonged gate bias. Deposition conditions for the silicon nitride (SiNx) gate insulator and the a-Si channel layer were varied, and TFTs were fabricated with all reactive ion etching steps, or with all wet etching steps, the latter in a new process. The two-stage model that unites charge trapping in the SiNx gate dielectric and defect generation in the a-Si channel was used to interpret the experimental results. We identified the optimal substrate temperature, gas flow ratios, and RF deposition power densities. The stability of the a-Si channel depends also on the deposition conditions for the underlying SiNx gate insulator. TFTs made with wet etching are more stable than TFTs made with reactive ion etching. Combining the various improvements raised the extrapolated 50% decay time of the drain current of back channel passivated dry-etched TFTs under continuous operation at 20°C from 3.3 x 104 sec (9.2 hours) to 4.4 x 107 sec (1.4 years). The 50% lifetime can be further improved by ˜2 times through wet etching process. Two assumptions in the two-stage model were revisited. First, the distribution of the gap state density in a-Si was obtained with the field-effect technique. The redistribution of the gap state density after low-gate field stress supports the idea that defect creation in a-Si dominates in the long term. Second, the drain-bias dependence of drain current degradation was measured and modeled. The unified stretched exponential was validated for a-Si TFTs operating in saturation. Finally, a new 3-TFT voltage-programmed pixel circuit with an in-pixel current source is presented. This circuit is largely insensitive to the TFT threshold voltage shift. The fabricated pixel circuit provides organic light-emitting diode (OLED) currents ranging from 25 nA to 2.9 microA, an on/off ratio of 116 at typical quarter graphics display resolution (QVGA) display timing. The overall conclusion of this thesis research is that the operating life of a-Si TFTs can be quite long, and that these transistors can expect to find yet more applications in large area electronics.
X-ray detection with zinc-blende (cubic) GaN Schottky diodes
NASA Astrophysics Data System (ADS)
Gohil, T.; Whale, J.; Lioliou, G.; Novikov, S. V.; Foxon, C. T.; Kent, A. J.; Barnett, A. M.
2016-07-01
The room temperature X-ray responses as functions of time of two n type cubic GaN Schottky diodes (200 μm and 400 μm diameters) are reported. The current densities as functions of time for both diodes showed fast turn-on transients and increases in current density when illuminated with X-ray photons of energy up to 35 keV. The diodes were also electrically characterized: capacitance, implied depletion width and dark current measurements as functions of applied bias at room temperature are presented. At -5 V reverse bias, the capacitances of the diodes were measured to be (84.05 ± 0.01) pF and (121.67 ± 0.02) pF, respectively. At -5 V reverse bias, the dark current densities of the diodes were measured to be (347.2 ± 0.4) mA cm-2 and (189.0 ± 0.2) mA cm-2, respectively. The Schottky barrier heights of the devices (0.52 ± 0.07) eV and (0.63 ± 0.09) eV, respectively, were extracted from the forward dark current characteristics.
Testing of Diode-Clamping in an Inductive Pulsed Plasma Thruster Circuit
NASA Technical Reports Server (NTRS)
Toftul, Alexandra; Polzin, Kurt A.; Martin, Adam K.; Hudgins, Jerry L.
2014-01-01
Testing of a 5.5 kV silicon (Si) diode and 5.8 kV prototype silicon carbide (SiC) diode in an inductive pulsed plasma thruster (IPPT) circuit was performed to obtain a comparison of the resulting circuit recapture efficiency,eta(sub r), defined as the percentage of the initial charge energy remaining on the capacitor bank after the diode interrupts the current. The diode was placed in a pulsed circuit in series with a silicon controlled rectifier (SCR) switch, and the voltages across different components and current waveforms were collected over a range of capacitor charge voltages. Reverse recovery parameters, including turn-off time and peak reverse recovery current, were measured and capacitor voltage waveforms were used to determine the recapture efficiency for each case. The Si fast recovery diode in the circuit was shown to yield a recapture efficiency of up to 20% for the conditions tested, while the SiC diode further increased recapture efficiency to nearly 30%. The data presented show that fast recovery diodes operate on a timescale that permits them to clamp the discharge quickly after the first half cycle, supporting the idea that diode-clamping in IPPT circuit reduces energy dissipation that occurs after the first half cycle
Modeling Emerging Solar Cell Materials and Devices
NASA Astrophysics Data System (ADS)
Thongprong, Non
Organic photovoltaics (OPVs) and perovskite solar cells are emerging classes of solar cell that are promising for clean energy alternatives to fossil fuels. Understanding fundamental physics of these materials is crucial for improving their energy conversion efficiencies and promoting them to practical applications. Current density-voltage (JV) curves; which are important indicators of OPV efficiency, have direct connections to many fundamental properties of solar cells. They can be described by the Shockley diode equation, resulting in fitting parameters; series and parallel resistance (Rs and Rp), diode saturation current ( J0) and ideality factor (n). However, the Shockley equation was developed specifically for inorganic p-n junction diodes, so it lacks physical meanings when it is applied to OPVs. Hence, the puRposes of this work are to understand the fundamental physics of OPVs and to develop new diode equations in the same form as the Shockley equation that are based on OPV physics. We develop a numerical drift-diffusion simulation model to study bilayer OPVs, which will be called the drift-diffusion for bilayer interface (DD-BI) model. The model solves Poisson, drift-diffusion and current-continuity equations self-consistently for charge densities and potential profiles of a bilayer device with an organic heterojunction interface described by the GWWF model. We also derive new diode equations that have JV curves consistent with the DD-BI model and thus will be called self-consistent diode (SCD) equations. Using the DD-BI and the SCD model allows us to understand working principles of bilayer OPVs and physical definitions of the Shockley parameters. Due to low carrier mobilities in OPVs, space charge accumulation is common especially near the interface and electrodes. Hence, quasi-Fermi levels (i.e. chemical potentials), which depend on charge densities, are modified around the interface, resulting in a splitting of quasi-Fermi levels that works as a driving potential for the heterojunction diode. This brings about the meaning of R s as the resistance that gives rise to the diode voltage equal to the interface quasi-Fermi level splitting instead of the voltage between the electrodes. Quasi-Fermi levels that drop near the electrodes because of unmatched electrode work functions or due to charge injection can also increase Rs. Furthermore, we are able to study dissociation and recombination rates of bound charge pairs across the interface (i.e. polaron pairs or PPs) and arrive at the physical meaning of Rp as recombination resistance of PPs. In the dark, PP density is very low, so Rp is possibly caused by a tunneling leakage current at the interface. Ideality factors are parameters that depend on the split of quasi-Fermi levels and the ratio of recombination rate to recombination rate at equilibrium. Even though they are related to trap characteristics as normally understood, their relations are complicated and careful inte Rpretations of fitted ideality factors are needed. Our models are successfully applied to actual devices, and useful physics can be deduced, for example differences between the Shockley parameters under dark and illumination conditions. Another puRpose of this thesis is to study electronic properties of CsSnBr3 perovskite and processes of growing the perovskite film using an epitaxy technique. Calculation results using density functional theory reveal that a CsSnBr3 film that is grown on a NaCl(100) substrate can undergo a phase transition to CsSn 2Br5, which is a wide-bandgap semiconductor material. Actual mechanisms of the transition and the interface between CsSnBr3 and CsSn2Br5are interesting for future studies.
Current-voltage characteristics of n-AlMgZnO/p-GaN junction diodes
NASA Astrophysics Data System (ADS)
Hsueh, Kuang-Po; Cheng, Po-Wei; Cheng, Yi-Chang; Sheu, Jinn-Kong; Yeh, Yu-Hsiang; Chiu, Hsien-Chin; Wang, Hsiang-Chun
2013-03-01
This study investigates the temperature dependence of the current-voltage (I-V) characteristics of Al-doped MgxZn1-xO/p-GaN junction diodes. Specifically, this study reports the deposition of n-type Al-doped MgxZn1-xO (AMZO) films on p-GaN using a radio-frequency (RF) magnetron sputtering system followed by annealing at 700, 800, 900, and 1000 °C in a nitrogen ambient for 60 seconds, respectively. The AMZO/GaN films were thereafter analyzed using Hall measurement and the x-ray diffraction (XRD) patterns. The XRD results show that the diffraction angles of the annealed AMZO films remain the same as that of GaN without shifting. The n-AMZO/p-GaN diode with 900 °C annealing had the lowest leakage current in forward and reverse bias. However, the leakage current of the diodes did not change significantly with an increase in annealing temperatures. These findings show that the n-AMZO/p-GaN junction diode is feasible for GaN-based heterojunction bipolar transistors (HBTs) and UV light-emitting diodes (LEDs).
Photodiode Based on CdO Thin Films as Electron Transport Layer
NASA Astrophysics Data System (ADS)
Soylu, M.; Kader, H. S.
2016-11-01
Cadmium oxide (CdO) thin films were synthesized by the sol-gel method. The films were analyzed by means of XRD, AFM, and UV/Vis spectrophotometry. X-ray diffraction patterns confirm that the films are formed from CdO with cubic crystal structure and consist of nano-particles. The energy gap of the prepared film was found to be 2.29 eV. The current-voltage ( I- V) characteristics of the CdO/ p-Si heterojunction were examined in the dark and under different illumination intensities. The heterojunction showed high rectifying behavior and a strong photoresponse. Main electrical parameters of the photodiode such as series and shunt resistances ( R s and R sh), saturation current I 0, and photocurrent I ph, were extracted considering a single diode equivalent circuit of a photovoltaic cell. Results indicate that the application of CdO thin films as an electron transport layer on p-Si acts as a photodetector in the field of the UV/visible.
Xun, Ma; Jianqiang, Yuan; Hongwei, Liu; Hongtao, Li; Lingyun, Wang; Ping, Jiang
2016-06-01
The industrial x-ray diode with high impedance configuration is usually adopted to generate repetitive x-ray, but its performance would be worsened due to lower electric field on the cathode of diode when a voltage of several hundreds of kV is applied. To improve its performance, a novel metal-ceramic cathode is proposed in this paper. Key factors (width, relative permittivity of ceramic, and so on) affecting electric field distribution on triple points are analyzed by electrostatic field calculation program, so as to optimize the design of this novel cathode. Experiments are done to study the characteristics including emission current of cathode, diode voltage duration, diode mean dynamic impedance, and diode impedance drop velocity within diode power duration. The results show that metal-ceramic cathode could improve diode performance by enhancing emission current and stabling impedance; the impedance drop velocity of diode with spoke-shaped metal-ceramic cathode was reduced to -5 Ω ns(-1) within diode power duration, comparing to -15 Ω ns(-1) with metal foil cathode.
NASA Astrophysics Data System (ADS)
Singh, Satyendra Kumar; Hazra, Purnima
2017-04-01
In this article, temperature-dependent current-voltage characteristics of n-ZnO/p-Si nanoparticle thin film heterojunction diode grown by RF sputtering technique are analyzed in the temperature range of 300-433 k to investigate the performance of the device in high temperature environment. The microstructural, morphological, optical and temptrature dependent electrical properties of as-grown nanoparticle thin film were characterized by X-ray diffractometer (XRD), atomic force microscopy (AFM), field emmision scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), variable angle ellipsometer and semiconductor device analyzer. XRD spectra of as-grown ZnO films are exhibited that highly c-axis oriented ZnO nanostructures are grown on p- Si〈100〉 substrate whereas AFM and FESEM images confirm the homogeneous deposition of ZnO nanoparticles on surface of Si substratewith minimum roughness.The optical propertiesof as-grown ZnO nanoparticles have been measured in the spectral range of 300-800 nm using variable angle ellipsometer.To measure electrical parameters of the device prototype in the temperature range of room temperature (300 K) to 433 K, large area ohmic contacts were fabricated on both side of the ZnO/Si heterostructure. From the current-voltage charcteristics of ZnO/Si heterojunction device, it is observed that the device exhibits rectifing nature at room temperature. However, with increase in temperature, reverse saturation current and barrier height are found to increase, whereas ideality factor is started decreasing. This phenomenon confirms that barrier inhomogeneities are present at the interface of ZnO/Si heterojunction, as a result of lattice constant and thermal coefficient mismatch between Si and ZnO. Therefore, a modified value of Richardson constant [33.06 Acm-2K-2] has been extracted from the temperature-dependent electrical characteristics after assuming the Gaussian distribution of special barrier height inhomogeneities across the Si/ZnO interface which is close to its theoretical value [32 Acm-2K-2]. This result indicates that regardless of presence of barrier height inmogeneities, ZnO/Si heterojunction diode still hasability to perform well in high temperature environment.
Si /SiGe n-type resonant tunneling diodes fabricated using in situ hydrogen cleaning
NASA Astrophysics Data System (ADS)
Suet, Z.; Paul, D. J.; Zhang, J.; Turner, S. G.
2007-05-01
In situ hydrogen cleaning to reduce the surface segregation of n-type dopants in SiGe epitaxy has been used to fabricate Si /SiGe resonant tunneling diodes in a joint gas source chemical vapor deposition and molecular beam epitaxial system. Diodes fabricated without the in situ clean demonstrate linear current-voltage characteristics, while a 15min hydrogen clean produces negative differential resistance with peak-to-valley current ratios up to 2.2 and peak current densities of 5.0A/cm2 at 30K. Analysis of the valley current and the band structure of the devices suggest methods for increasing the operating temperature of Si /SiGe resonant tunneling diodes as required for applications.
Gallium phosphide high temperature diodes
NASA Technical Reports Server (NTRS)
Chaffin, R. J.; Dawson, L. R.
1981-01-01
High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.
Modeling and Simulation of a 5.8kV SiC PiN Diode for Inductive Pulsed Plasma Thruster Applications
NASA Technical Reports Server (NTRS)
Toftul, Alexandra; Hudgins, Jerry L.; Polzin, Kurt A.; Martin, Adam K.
2014-01-01
Current ringing in an Inductive Pulsed Plasma Thruster (IPPT) can lead to reduced energy efficiency, excess heating, and wear on circuit components such as capacitors and solid state devices. Clamping off the current using a fast turn-off power diode is an effective way to reduce current ringing and increase energy efficiency. A diode with a shorter reverse recovery time will allow the least amount of current to ring back through the circuit, as well as minimize switching losses. The reverse recovery response of a new 5.8 kilovolt SiC PiN diode from Cree, Inc. in the IPPT plasma drive circuit is investigated using a physicsbased Simulink model, and compared with that of a 5SDF 02D6004 5.5 kilovolt fast-switching Si diode from ABB. Parameter extraction was carried out for each diode using both datasheet specifications and experimental waveforms, in order to most accurately adapt the model to the specific device. Further experimental data will be discussed using a flat-plate IPPT developed at NASA Marshall Space Flight Center and used to verify the simulation results. A final quantitative measure of circuit efficiency will be described for both the Si and SiC diode configuration.
808-nm diode-pumped dual-wavelength passively Q-switched Nd:LuLiF4 laser with Bi-doped GaAs
NASA Astrophysics Data System (ADS)
Li, S. X.; Li, T.; Li, D. C.; Zhao, S. Z.; Li, G. Q.; Hang, Y.; Zhang, P. X.; Li, X. Y.; Qiao, H.
2015-09-01
Diode-pumped CW and passively Q-switched Nd:LuLiF4 lasers with stable, synchronous dual-wavelength operations near 1047 and 1053 nm were demonstrated for the first time. The maximal CW output power of 821 mW was obtained at an incident pump power of 6.52 W. Employing high quality Bi-doped GaAs as saturable absorber, stable dual-wavelength Q-switched operation was realized. Under 6.52 W incident pump power, the minimal pulse duration of 1.5 ns, the largest single pulse energy of 11.32 μJ, and the highest peak power of 7.25 kW were achieved.
Hildebrandt, Lars; Knispel, Richard; Stry, Sandra; Sacher, Joachim R; Schael, Frank
2003-04-20
Commercially available GaN-based laser diodes were antireflection coated in our laboratory and operated in an external cavity in a Littrow configuration. A total tuning range of typically 4 nm and an optical output power of up to 30 mW were observed after optimization of the external cavity. The linewidth was measured with a beterodyne technique, and 0.8 MHz at a sweep time of 50 ms was obtained. The mode-hop-free tuning range was more than 50 GHz. We demonstrated the performance of the laser by detecting the saturated absorption spectrum of atomic indium at 410 nm, allowing observation of well-resolved Lamb dips.
NASA Astrophysics Data System (ADS)
Chung, Seungjun; Lee, Jae-Hyun; Jeong, Jaewook; Kim, Jang-Joo; Hong, Yongtaek
2009-06-01
We report substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes (OLEDs). Heat dissipation behavior of top-emission OLEDs fabricated on silicon, glass, and planarized stainless steel substrates was measured by using an infrared camera. Peak temperature measured from the backside of each substrate was saturated to be 21.4, 64.5, and 40.5 °C, 180 s after the OLED was operated at luminance of 10 000 cd/m2 and 80% luminance lifetime was about 198, 31, and 96 h, respectively. Efficient heat dissipation through the highly thermally conductive substrates reduced temperature increase, resulting in much improved OLED lifetime.
Passively mode-locked diode-pumped Nd:YVO4 oscillator operating at an ultralow repetition rate.
Papadopoulos, D N; Forget, S; Delaigue, M; Druon, F; Balembois, F; Georges, P
2003-10-01
We demonstrate the operation of an ultralow-repetition-rate, high-peak-power, picosecond diode-pumped Nd:YVO4 passively mode-locked laser oscillator. Repetition rates lower than 1 MHz were achieved with the use of a new design for a multiple-pass cavity and a semiconductor saturable absorber. Long-term stable operation at 1.2 MHz with a pulse duration of 16.3 ps and an average output power of 470 mW, corresponding to 24-kW peak-power pulses, is reported. These are to our knowledge the lowest-repetition-rate high-peak-power pulses ever generated directly from apicosecond laser resonator without cavity dumping.
Operation of AC Adapters Visualized Using Light-Emitting Diodes
ERIC Educational Resources Information Center
Regester, Jeffrey
2016-01-01
A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…
Tao, Li; Daghighian, Henry M; Levin, Craig S
2017-01-01
We compare the performance of two detector materials, cadmium telluride (CdTe) and bismuth silicon oxide (BSO), for optical property modulation-based radiation detection method for positron emission tomography (PET), which is a potential new direction to dramatically improve the annihilation photon pair coincidence time resolution. We have shown that the induced current flow in the detector crystal resulting from ionizing radiation determines the strength of optical modulation signal. A larger resistivity is favorable for reducing the dark current (noise) in the detector crystal, and thus the higher resistivity BSO crystal has a lower (50% lower on average) noise level than CdTe. The CdTe and BSO crystals can achieve the same sensitivity under laser diode illumination at the same crystal bias voltage condition while the BSO crystal is not as sensitive to 511-keV photons as the CdTe crystal under the same crystal bias voltage. The amplitude of the modulation signal induced by 511-keV photons in BSO crystal is around 30% of that induced in CdTe crystal under the same bias condition. In addition, we have found that the optical modulation strength increases linearly with crystal bias voltage before saturation. The modulation signal with CdTe tends to saturate at bias voltages higher than 1500 V due to its lower resistivity (thus larger dark current) while the modulation signal strength with BSO still increases after 3500 V. Further increasing the bias voltage for BSO could potentially further enhance the modulation strength and thus, the sensitivity.
Probing longitudinal modes evolution of a InGaN green laser diode
NASA Astrophysics Data System (ADS)
Chen, Yi-Hsi; Lin, Wei-Chen; Chen, Hong-Zui; Shy, Jow-Tsong; Chui, Hsiang-Chen
2018-06-01
This study aims to investigate the longitudinal mode evolution of a InGaN green laser diode. A spectrometer with a 3-pm resolution was employed to obtain the emission spectra of a green laser diode, at a wavelength of around 520 nm, as a function of applied current and temperature. The spectral behavior of the laser modes with applied current was investigated. Right above the lasing threshold, the green diode laser emitted single longitudinal mode output. With increasing applied current, the number of the longitudinal modes increased. Up to ten lasing modes oscillated within the entire gain profile when the applied currents were tuned to 2.2Ith. Subsequently, a multi-Lorentzian profile model was adopted to analyze the spectra and observe how the modes evolved with temperature and applied current.
Trasobares, J.; Vuillaume, D.; Théron, D.; Clément, N.
2016-01-01
Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S11 parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation. PMID:27694833
Tan, Shih-Wei; Lai, Shih-Wen
2012-01-01
Characterization and modeling of metal-semiconductor-metal (MSM) GaAs diodes using to evaporate SiO2 and Pd simultaneously as a mixture electrode (called M-MSM diodes) compared with similar to evaporate Pd as the electrode (called Pd-MSM diodes) were reported. The barrier height (φ b) and the Richardson constant (A*) were carried out for the thermionic-emission process to describe well the current transport for Pd-MSM diodes in the consideration of the carrier over the metal-semiconductor barrier. In addition, in the consideration of the carrier over both the metal-semiconductor barrier and the insulator-semiconductor barrier simultaneously, thus the thermionic-emission process can be used to describe well the current transport for M-MSM diodes. Furthermore, in the higher applied voltage, the carrier recombination will be taken into discussion. Besides, a composite-current (CC) model is developed to evidence the concepts. Our calculated results are in good agreement with the experimental ones. PMID:23226352
Red electroluminescence and photoluminescence properties of new porphyrin compounds
NASA Astrophysics Data System (ADS)
Zhang, X. H.; Xie, Z. Y.; Wu, F. P.; Zhou, L. L.; Wong, O. Y.; Lee, C. S.; Kwong, H. L.; Lee, S. T.; Wu, S. K.
2003-12-01
Three new porphyrin compounds with saturated red emission were synthesized and their photoluminescence and electroluminescence were studied. The emission of the new dopants peaked at about 635-655 nm and the half-width of the emission peaks was very narrow (below 30 nm). Of the three porphyrin compounds, the one (TBDPP) with the smallest conjugation system had the highest fluorescent quantum yield of 21% in solution. Organic light-emitting diodes using TBDPP as a dopant showed saturated red emission (CIE coordinates of x=0.69, y=0.29) with a luminance of 150 cd/m 2 at a driving voltage of 22 V.
Design, fabrication and characterization of an a-Si:H-based UV detector for sunburn applications
NASA Astrophysics Data System (ADS)
Bayat, Khadijeh; Vygranenko, Yuriy; Sazonov, Andrei; Farrokh-Baroughi, Mahdi
2006-12-01
A thin-film a-Si:H pin detector was developed for selective detection of UVA (320-400 nm) radiation. In order for the fabrication technology to be transferable onto flexible substrates, all of the processing steps were conducted at temperatures less than 125 °C. The measured saturation current as low as 2 pA cm-2 and the ideality factor of 1.47 show that the pin diodes have a good quality i-layer as well as p-i and n-i interfaces. The film thicknesses were optimized to suppress the detector sensitivity in the visible spectral range, and the peak of spectral response was observed at 410 nm. The selectivity estimated from the ratio of the photocurrent generated by UVA absorption to the total photocurrent is 21%.
Contribution of the backstreaming ions to the self-magnetic pinch (SMP) diode current
NASA Astrophysics Data System (ADS)
Mazarakis, Michael G.; Bennett, Nichelle; Cuneo, Michael E.; Fournier, Sean D.; Johnston, Mark D.; Kiefer, Mark L.; Leckbee, Joshua J.; Nielsen, Dan S.; Oliver, Bryan V.; Sceiford, Matthew E.; Simpson, Sean C.; Renk, Timothy J.; Ruiz, Carlos L.; Webb, Timothy J.; Ziska, Derek; Droemer, Darryl W.; Gignac, Raymond E.; Obregon, Robert J.; Wilkins, Frank L.; Welch, Dale R.
2018-04-01
The results presented here were obtained with a self-magnetic pinch (SMP) diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The RITS driver together with the SMP diode has produced x-ray spots of the order of 1 mm in diameter and doses adequate for the radiographic imaging of high area density objects. Although, through the years, a number of different types of radiographic electron diodes have been utilized with SABER, HERMES III and RITS accelerators, the SMP diode appears to be the most successful and simplest diode for the radiographic investigation of various objects. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target and second to try to evaluate the energy of those ions and hence the Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage adder utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the A-K gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (˜1 cm) and the diode region very hostile. The accelerating voltage quoted in the literature is from estimates based on the measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus, it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high-Z metals in order to produce copious and energetic flash x-rays. It was established experimentally that the back-streaming ion currents are a strong function of the anode materials and their stage of cleanness. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatment: namely, heating at very high temperatures with DC and pulsed current, with RF plasma cleaning, and with both plasma cleaning and heating. We have also evaluated the A-K gap voltage by energy filtering technique. Experimental results in comparison with LSP simulations are presented.
Current-voltage characteristics of manganite-titanite perovskite junctions.
Ifland, Benedikt; Peretzki, Patrick; Kressdorf, Birte; Saring, Philipp; Kelling, Andreas; Seibt, Michael; Jooss, Christian
2015-01-01
After a general introduction into the Shockley theory of current voltage (J-V) characteristics of inorganic and organic semiconductor junctions of different bandwidth, we apply the Shockley theory-based, one diode model to a new type of perovskite junctions with polaronic charge carriers. In particular, we studied manganite-titanate p-n heterojunctions made of n-doped SrTi1- y Nb y O3, y = 0.002 and p-doped Pr1- x Ca x MnO3, x = 0.34 having a strongly correlated electron system. The diffusion length of the polaron carriers was analyzed by electron beam-induced current (EBIC) in a thin cross plane lamella of the junction. In the J-V characteristics, the polaronic nature of the charge carriers is exhibited mainly by the temperature dependence of the microscopic parameters, such as the hopping mobility of the series resistance and a colossal electro-resistance (CER) effect in the parallel resistance. We conclude that a modification of the Shockley equation incorporating voltage-dependent microscopic polaron parameters is required. Specifically, the voltage dependence of the reverse saturation current density is analyzed and interpreted as a voltage-dependent electron-polaron hole-polaron pair generation and separation at the interface.
Arbitrary waveform generator to improve laser diode driver performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulkerson, Jr, Edward Steven
2015-11-03
An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.
High Current Ionic Diode Using Homogeneously Charged Asymmetric Nanochannel Network Membrane.
Choi, Eunpyo; Wang, Cong; Chang, Gyu Tae; Park, Jungyul
2016-04-13
A high current ionic diode is achieved using an asymmetric nanochannel network membrane (NCNM) constructed by soft lithography and in situ self-assembly of nanoparticles with uniform surface charge. The asymmetric NCNM exhibits high rectified currents without losing a rectification ratio because of its ionic selectivity gradient and differentiated electrical conductance. Asymmetric ionic transport is analyzed with diode-like I-V curves and visualized via fluorescent dyes, which is closely correlated with ionic selectivity and ion distribution according to variation of NCNM geometries.
Quantum thermal diode based on two interacting spinlike systems under different excitations.
Ordonez-Miranda, Jose; Ezzahri, Younès; Joulain, Karl
2017-02-01
We demonstrate that two interacting spinlike systems characterized by different excitation frequencies and coupled to a thermal bath each, can be used as a quantum thermal diode capable of efficiently rectifying the heat current. This is done by deriving analytical expressions for both the heat current and rectification factor of the diode, based on the solution of a master equation for the density matrix. Higher rectification factors are obtained for lower heat currents, whose magnitude takes their maximum values for a given interaction coupling proportional to the temperature of the hotter thermal bath. It is shown that the rectification ability of the diode increases with the excitation frequencies difference, which drives the asymmetry of the heat current, when the temperatures of the thermal baths are inverted. Furthermore, explicit conditions for the optimization of the rectification factor and heat current are explicitly found.
Vertical GaN merged PiN Schottky diode with a breakdown voltage of 2 kV
NASA Astrophysics Data System (ADS)
Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Yamamuka, Mikio
2017-06-01
In this study, we successfully fabricated vertical GaN merged PiN Schottky (MPS) diodes and comparatively investigated the cyclic p-GaN width (W p) dependence of their electrical characteristics, including turn-on voltage and reverse leakage current. The MPS diodes with W p of more than 6 µm can turn on at around 3 V. Increasing W p can suppress the reverse leakage current. Moreover, the vertical GaN MPS diode with the breakdown voltage of 2 kV was realized for the first time.
Pulse power applications of silicon diodes in EML capacitive pulsers
NASA Astrophysics Data System (ADS)
Dethlefsen, Rolf; McNab, Ian; Dobbie, Clyde; Bernhardt, Tom; Puterbaugh, Robert; Levine, Frank; Coradeschi, Tom; Rinaldi, Vito
1993-01-01
Crowbar diodes are used for increasing the energy transfer from capacitive pulse forming networks. They also prevent voltage reversal on the energy storage capacitors. 52 mm diameter diodes with a 5 kV reverse blocking voltage, rated 40 kA were successfully used for the 32 MJ SSG rail gun. An uprated diode with increased current capability and a 15 kV reverse blocking voltage has been developed. Transient thermal analysis has predicted the current ratings for different pulse length. Analysis verification is obtained from destructive testing.
Precision envelope detector and linear rectifier circuitry
Davis, Thomas J.
1980-01-01
Disclosed is a method and apparatus for the precise linear rectification and envelope detection of oscillatory signals. The signal is applied to a voltage-to-current converter which supplies current to a constant current sink. The connection between the converter and the sink is also applied through a diode and an output load resistor to a ground connection. The connection is also connected to ground through a second diode of opposite polarity from the diode in series with the load resistor. Very small amplitude voltage signals applied to the converter will cause a small change in the output current of the converter, and the difference between the output current and the constant current sink will be applied either directly to ground through the single diode, or across the output load resistor, dependent upon the polarity. Disclosed also is a full-wave rectifier utilizing constant current sinks and voltage-to-current converters. Additionally, disclosed is a combination of the voltage-to-current converters with differential integrated circuit preamplifiers to boost the initial signal amplitude, and with low pass filtering applied so as to obtain a video or signal envelope output.
NASA Astrophysics Data System (ADS)
Jaya, T. P.; Pradyumnan, P. P.
2017-12-01
Transparent crystalline n-indium tin oxide/p-copper indium oxide diode structures were fabricated on quartz substrates by plasma vapor deposition using radio frequency (RF) magnetron sputtering. The p-n heterojunction diodes were highly transparent in the visible region and exhibited rectifying current-voltage (I-V) characteristics with a good ideality factor. The sputter power during fabrication of the p-layer was found to have a profound effect on I-V characteristics, and the diode with the p-type layer deposited at a maximum power of 200 W exhibited the highest value of the diode ideality factor (η value) of 2.162, which suggests its potential use in optoelectronic applications. The ratio of forward current to reverse current exceeded 80 within the range of applied voltages of -1.5 to +1.5 V in all cases. The diode structure possessed an optical transmission of 60-70% in the visible region.
Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes
ERIC Educational Resources Information Center
Wagner, Eugene P., II
2016-01-01
A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…
Low Temperature Thermometry Using Inexpensive Silicon Diodes.
ERIC Educational Resources Information Center
Waltham, N. R.; And Others
1981-01-01
Describes the use of silicon diodes for low temperature thermometry in the teaching laboratory. A simple and inexpensive circuit for display of the diode forward voltage under constant current conditions is described, and its application in the evaluation of low cost silicon diodes as low temperature thermometers is presented. (SK)
Antiferromagnetic spin current rectifier
NASA Astrophysics Data System (ADS)
Khymyn, Roman; Tiberkevich, Vasil; Slavin, Andrei
2017-05-01
It is shown theoretically, that an antiferromagnetic dielectric with bi-axial anisotropy, such as NiO, can be used for the rectification of linearly-polarized AC spin current. The AC spin current excites two evanescent modes in the antiferromagnet, which, in turn, create DC spin current flowing back through the antiferromagnetic surface. Spin diode based on this effect can be used in future spintronic devices as direct detector of spin current in the millimeter- and submillimeter-wave bands. The sensitivity of such a spin diode is comparable to the sensitivity of modern electric Schottky diodes and lies in the range 102-103 V/W for 30 ×30 nm2 structure.
Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing
NASA Astrophysics Data System (ADS)
Lagov, P. B.; Drenin, A. S.; Zinoviev, M. A.
2017-05-01
Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding.
Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability
NASA Astrophysics Data System (ADS)
Parali, Ufuk; Sheng, Xin; Minassian, Ara; Tawy, Goronwy; Sathian, Juna; Thomas, Gabrielle M.; Damzen, Michael J.
2018-03-01
We report the first experimental demonstration of a wavelength tunable passively Q-switched red-diode-end pumped Alexandrite laser using a semiconductor saturable absorber mirror (SESAM). We present the results of the study of passive SESAM Q-switching and wavelength-tuning in continuous diode-pumped Alexandrite lasers in both linear cavity and X-cavity configurations. In the linear cavity configuration, pulsed operation up to 27 kHz repetition rate in fundamental TEM00 mode was achieved and maximum average power was 41 mW. The shortest pulse generated was 550 ns (FWHM) and the Q-switched wavelength tuning band spanned was between 740 nm and 755 nm. In the X-cavity configuration, a higher average power up to 73 mW, and obtained with higher pulse energy 6 . 5 μJ at 11.2 kHz repetition rate, in fundamental TEM00 mode with excellent spatial quality M2 < 1 . 1. The Q-switched wavelength tuning band spanned was between 775 nm and 781 nm.
Pentacene Schottky diodes studied by impedance spectroscopy: Doping properties and trap response
NASA Astrophysics Data System (ADS)
Pahner, Paul; Kleemann, Hans; Burtone, Lorenzo; Tietze, Max L.; Fischer, Janine; Leo, Karl; Lüssem, Björn
2013-11-01
We study doping properties and charge carrier trap distributions in pentacene Schottky diodes doped by the fluorinated fullerene derivate C60F36 and 2,2'-(perdiylidene)dimalononitrile (F6-TCNNQ) upon small signal excitation. We show that the charge carrier depletion zones present in these Schottky diodes are tunable by the applied bias and temperature. Mott-Schottky evaluations yield reduced doping efficiencies and dopant activation energies between 19 and 54 meV. In the low-frequency regime, we resolve additional capacitive contributions from inherent charge carrier traps. A Gaussian distributed trap center 0.6 eV above the hole transport level with a density in the range of 1016 cm-3 depending on the material purity is found to be an intrinsic feature of the pentacene matrix. Upon doping, the deep Gaussian trap center saturates in density and broad exponentially tailing trap distributions arise. Subsequent ultraviolet photoelectron spectroscopy measurements are conducted to inspect for energetic broadening due to doping.
High current density Esaki tunnel diodes based on GaSb-InAsSb heterostructure nanowires.
Ganjipour, Bahram; Dey, Anil W; Borg, B Mattias; Ek, Martin; Pistol, Mats-Erik; Dick, Kimberly A; Wernersson, Lars-Erik; Thelander, Claes
2011-10-12
We present electrical characterization of broken gap GaSb-InAsSb nanowire heterojunctions. Esaki diode characteristics with maximum reverse current of 1750 kA/cm(2) at 0.50 V, maximum peak current of 67 kA/cm(2) at 0.11 V, and peak-to-valley ratio (PVR) of 2.1 are obtained at room temperature. The reverse current density is comparable to that of state-of-the-art tunnel diodes based on heavily doped p-n junctions. However, the GaSb-InAsSb diodes investigated in this work do not rely on heavy doping, which permits studies of transport mechanisms in simple transistor structures processed with high-κ gate dielectrics and top-gates. Such processing results in devices with improved PVR (3.5) and stability of the electrical properties.
Direct diode lasers and their advantages for materials processing and other applications
NASA Astrophysics Data System (ADS)
Fritsche, Haro; Ferrario, Fabio; Koch, Ralf; Kruschke, Bastian; Pahl, Ulrich; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang; Eibl, Florian; Kohl, Stefanie; Dobler, Michael
2015-03-01
The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of <10μs and repetition rates can be adjusted continuously from several kHz up to cw mode while addressing power levels from 0-100%. By combining trigger signals with analog modulations nearly any kind of pulse form can be realized. Diode lasers also offer a wide, adaptable range of wavelengths, and wavelength stabilization. We report a line width of less than 0.1nm while the wavelength stability is in the range of MHz which is comparable to solid state lasers. In terms of applications, especially our (broad) wavelength combining technology for power scaling opens the window to new processes of cutting or welding and process control. Fast power modulation through direct current control allows pulses of several microseconds with hundreds of watts average power. Spot sizes of less than 100 μm are obtained at the work piece. Such a diode system allows materials processing with a pulse parameter range that is hardly addressed by any other laser system. High productivity material ablation with cost effective lasers is enabled. The wide variety of wavelengths, high brightness, fast power modulation and high efficiency of diode lasers results in a strong pull of existing markets, but also spurs the development of a wide variety of new applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamirzaev, V. T., E-mail: tim@isp.nsc.ru; Gaisler, V. A.; Shamirzaev, T. S.
The spectrum of ultraviolet (UV) InGaN/GaN light-emitting diodes and its dependence on the current flowing through the structure are studied. The intensity of the UV contribution to the integrated diode luminescence increases steadily with increasing density of current flowing through the structure, despite a drop in the emission quantum efficiency. The electroluminescence excitation conditions that allow the fraction of UV emission to be increased to 97% are established. It is shown that the nonuniform generation of extended defects, which penetrate the active region of the light-emitting diodes as the structures degrade upon local current overheating, reduces the integrated emission intensitymore » but does not affect the relative intensity of diode emission in the UV (370 nm) and visible (550 nm) spectral ranges.« less
Estimating p-n Diode Bulk Parameters, Bandgap Energy and Absolute Zero by a Simple Experiment
ERIC Educational Resources Information Center
Ocaya, R. O.; Dejene, F. B.
2007-01-01
This paper presents a straightforward but interesting experimental method for p-n diode characterization. The method differs substantially from many approaches in diode characterization by offering much tighter control over the temperature and current variables. The method allows the determination of important diode constants such as temperature…
Constant-current regulator improves tunnel diode threshold-detector performance
NASA Technical Reports Server (NTRS)
Cancro, C. A.
1965-01-01
Grounded-base transistor is placed in a tunnel diode threshold detector circuit, and a bias voltage is applied to the tunnel diode. This provides the threshold detector with maximum voltage output and overload protection.
High-power direct diode laser output by spectral beam combining
NASA Astrophysics Data System (ADS)
Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao
2018-03-01
We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.
Electrical characteristics of TMAH-surface treated Ni/Au/Al2O3/GaN MIS Schottky structures
NASA Astrophysics Data System (ADS)
Reddy, M. Siva Pratap; Lee, Jung-Hee; Jang, Ja-Soon
2014-03-01
The electrical characteristics and reverse leakage mechanisms of tetramethylammonium hydroxide (TMAH) surface-treated Ni/Au/Al2O3/GaN metal-insulator-semiconductor (MIS) diodes were investigated by using the current-voltage ( I-V) and capacitance-voltage ( C-V) characteristics. The MIS diode was formed on n-GaN after etching the AlGaN in the AlGaN/GaN heterostructures. The TMAH-treated MIS diode showed better Schottky characteristics with a lower ideality factor, higher barrier height and lower reverse leakage current compared to the TMAH-free MIS diode. In addition, the TMAH-free MIS diodes exhibited a transition from Poole-Frenkel emission at low voltages to Schottky emission at high voltages, whereas the TMAH-treated MIS diodes showed Schottky emission over the entire voltage range. Reasonable mechanisms for the improved device-performance characteristics in the TMAH-treated MIS diode are discussed in terms of the decreased interface state density or traps associated with an oxide material and the reduced tunneling probability.
NASA Astrophysics Data System (ADS)
Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V.; Shunailov, S. A.; Kolomiets, M. D.; Mesyats, G. A.; Sharypov, K. A.; Shpak, V. G.; Ulmaskulov, M. R.; Yalandin, M. I.
2016-01-01
The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, the theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V.
2016-01-14
The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, themore » theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.« less
Single-molecular diodes based on opioid derivatives.
Siqueira, M R S; Corrêa, S M; Gester, R M; Del Nero, J; Neto, A M J C
2015-12-01
We propose an efficient single-molecule rectifier based on a derivative of opioid. Electron transport properties are investigated within the non-equilibrium Green's function formalism combined with density functional theory. The analysis of the current-voltage characteristics indicates obvious diode-like behavior. While heroin presents rectification coefficient R>1, indicating preferential electronic current from electron-donating to electron-withdrawing, 3 and 6-acetylmorphine and morphine exhibit contrary behavior, R<1. Our calculations indicate that the simple inclusion of acetyl groups modulate a range of devices, which varies from simple rectifying to resonant-tunneling diodes. In particular, the rectification rations for heroin diodes show microampere electron current with a maximum of rectification (R=9.1) at very low bias voltage of ∼0.6 V and (R=14.3)∼1.8 V with resistance varying between 0.4 and 1.5 M Ω. Once most of the current single-molecule diodes usually rectifies in nanoampere, are not stable over 1.0 V and present electrical resistance around 10 M. Molecular devices based on opioid derivatives are promising in molecular electronics.
Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaskell, J.; Fromhold, T. M.; Greenaway, M. T.
We assess the potential of two-terminal graphene-hexagonal boron nitride-graphene resonant tunneling diodes as high-frequency oscillators, using self-consistent quantum transport and electrostatic simulations to determine the time-dependent response of the diodes in a resonant circuit. We quantify how the frequency and power of the current oscillations depend on the diode and circuit parameters including the doping of the graphene electrodes, device geometry, alignment of the graphene lattices, and the circuit impedances. Our results indicate that current oscillations with frequencies of up to several hundred GHz should be achievable.
NASA Astrophysics Data System (ADS)
Lachab, M.; Sultana, M.; Fatima, H.; Adivarahan, V.; Fareed, Q.; Khan, M. A.
2012-12-01
This work reports on the dc performance of AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) grown on Si (1 1 1) substrate and the study of current dispersion in these devices using various widely adopted methods. The MOSHEMTs were fabricated using a very thin (4.2 nm) SiO2 film as the gate insulator and were subsequently passivated with about 30 nm thick Si3N4 layer. For devices with 2.5 µm long gates and a 4 µm drain-to-source spacing, the maximum saturation drain current density was 822 mA mm-1 at + 4 V gate bias and the peak external transconductance was ˜100 mS mm-1. Furthermore, the oxide layer successfully suppressed the drain and gate leakage currents with the subthreshold current and the gate diode current levels exceeding by more than three orders of magnitude the levels found in their Schottky gate counterparts. Capacitance-voltage and dynamic current-voltage measurements were carried out to assess the oxide quality as well as the devices’ surface properties after passivation. The efficacy of each of these characterization techniques to probe the presence of interface traps and oxide charge in the nitride-based transistors is also discussed.
Flexible Cryogenic Temperature and Liquid-Level Probes
NASA Technical Reports Server (NTRS)
Haberbusch, Mark
2005-01-01
Lightweight, flexible probes have been developed for measuring temperatures at multiple locations in tanks that contain possibly pressurized cryogenic fluids. If the fluid in a given tank is subcritical (that is, if it consists of a liquid and its vapor), then in one of two modes of operation, the temperature measurements made by a probe of this type can be used to deduce the approximate level of the liquid. The temperature sensors are silicon diodes located at intervals along a probe. If the probe is to be used to measure a temperature gradient along a given axis in the tank, then the probe must be mounted along that axis. In the temperature-measurement mode, a constant small electric current is applied to each diode and the voltage across the diode a known function of the current and temperature is measured as an indication of its temperature. For the purpose of this measurement, small electric current signifies a current that is not large enough to cause a significant increase in the measured temperature. More specifically, the probe design calls for a current of 10 A, which, in the cryogenic temperature range of interest, generates heat at a rate of only about 0.01 mW per diode. In the liquid-level-sensing mode, one applies a larger current (30 mA) to each diode so as to heat each diode appreciably (with a power of about 36 mW in the temperature range of interest). Because the liquid cools the diode faster than does the vapor, the temperature of the diode is less when the diode is immersed in the liquid than when it is above the surface of the liquid. Thus, the temperature (voltage) reading from each diode can be used to determine whether the liquid level is above or below the diode, and one can deduce that the liquid level lies between two adjacent diodes, the lower one of which reads a significantly lower temperature. The aforementioned techniques for measuring temperature and deducing liquid level are not new. What is new here are the designs of the probes and of associated external electronic circuitry. In each probe, the diodes and the lead wires are embedded in a strong, lightweight, flexible polyimide strip. Each probe is constructed as an integral unit that includes a multipin input/output plug or socket for solderless connection of the lead wires to the external circuitry. The polyimide strip includes mounting tabs with holes that can accommodate rivets, screws, or other fasteners. Alternatively, a probe can be mounted by use of an epoxy. A probe can be manufactured to almost any length or width, and the diodes can be embedded at almost any desired location along and across the polyimide strip. In designing a probe for a specific application, one seeks a compromise between (1) minimizing the number of diodes in order to minimize the complexity of input/output connections and external electronic circuitry while (2) using enough diodes to obtain the required precision. Optionally, to minimize spurious heating of the cryogenic fluid, the external circuitry can be designed to apply power to the probe only during brief measurement intervals. Assuming that the external circuitry is maintained at a steady temperature, a power-on interval of only a few seconds is sufficient to obtain accurate data on temperatures and/or the height of the liquid/vapor interface.
Flexible Cryogenic Temperature and Liquid-Level Probes
NASA Technical Reports Server (NTRS)
Haberbusch, Mark
2003-01-01
Lightweight, flexible probes have been developed for measuring temperatures at multiple locations in tanks that contain possibly pressurized cryogenic fluids. If the fluid in a given tank is subcritical (that is, if it consists of a liquid and its vapor), then in one of two modes of operation, the temperature measurements made by a probe of this type can be used to deduce the approximate level of the liquid. The temperature sensors are silicon diodes located at intervals along a probe. If the probe is to be used to measure a temperature gradient along a given axis in the tank, then the probe must be mounted along that axis. In the non-liquid-level-sensing temperature-measurement mode, a constant small electric current is applied to each diode and the voltage across the diode . a known function of the current and temperature . is measured as an indication of its temperature. For the purpose of this measurement, "small electric current" signifies a current that is not large enough to cause a significant increase in the measured temperature. More specifically, the probe design calls for a current of 10 A, which, in the cryogenic temperature range of interest, generates heat at a rate of only about 0.01 mW per diode. In the liquid-level-sensing mode, one applies a larger current (30 mA) to each diode so as to heat each diode appreciably (with a power of about 36 mW in the temperature range of interest). Because the liquid cools the diode faster than does the vapor, the temperature of the diode is less when diode is immersed in the liquid than when it is above the surface of the liquid. Thus, the temperature (voltage) reading from each diode can be used to determine whether the liquid level is above or below the diode, and one can deduce that the liquid level lies between two adjacent diodes, the lower one of which reads a significantly lower temperature. The aforementioned techniques for measuring temperature and deducing liquid level are not new. What is new here are the designs of the probes and of associated external electronic circuitry. In each probe, the diodes and the lead wires are embedded in a strong, lightweight, flexible polyimide strip. Each probe is constructed as an integral unit that includes a multipin input/output plug or socket for solderless connection of the lead wires to the external circuitry. The polyimide strip includes mounting tabs with holes that can accommodate rivets, screws, or other fasteners. Alternatively, a probe can be mounted by use of an epoxy. A probe can be manufactured to almost any length or width, and the diodes can be embedded at almost any desired locations along and across the polyimide strip. In designing a probe for a specific application, one seeks a compromise between (1) minimizing the number of diodes in order to minimize the complexity of input/output connections and external electronic circuitry while (2) using enough diodes to obtain the required precision. Optionally, to minimize spurious heating of the cryogenic fluid, the external circuitry can be designed to apply power to the probe only during brief measurement intervals. Assuming that the external circuitry is maintained at a steady temperature, a power-on interval of only a few seconds is sufficient to obtain accurate data on temperatures and/or the height of the liquid/vapor interface.
Contribution of the backstreaming ions to the Self-Magnetic pinch (SMP) diode current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, Michael G.; Cuneo, Michael E.; Fournier, Sean D.
2016-08-08
Summary form only given. The results presented here were obtained with an SMP diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulses of six 1.3 MV inductively insulated cavities. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target to the diode beam current, and second to try to evaluate the energy of those ions and hence the actual Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage addermore » (IVA) utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the anode-cathode (A-K) gap is problematic. The accelerating voltage quoted in the literature is from estimates based on measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high Z metals in order to produce copious and energetic flash x-rays. The backstreaming currents are a strong fraction of the anode materials and their stage of cleanness and gas adsorption. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatments, such as heating to very high temperatures with DC and pulsed current, with RF plasma cleaning and with both plasma cleaning and heating. Finally, we have also evaluated the A-K gap voltage by ion filtering techniques.« less
NASA Astrophysics Data System (ADS)
Thomas, Paul M.
Understanding of quantum tunneling phenomenon in semiconductor systems is increasingly important as CMOS replacement technologies are investigated. This work studies a variety of heterojunction materials and types to increase tunnel currents to CMOS competitive levels and to understand how integration onto Si substrates affects performance. Esaki tunnel diodes were grown by Molecular Beam Epitaxy (MBE) on Si substrates via a graded buffer and control Esaki tunnel diodes grown on lattice matched substrates for this work. Peak current density for each diode is extracted and benchmarked to build an empirical data set for predicting diode performance. Additionally, statistics are used as tool to show peak to valley ratio for the III-V on Si sample and the control perform similarly below a threshold area. This work has applications beyond logic, as multijunction solar cell, heterojunction bipolar transistor, and light emitting diode designs all benefit from better tunnel contact design.
Gürel, Kutan; Wittwer, Valentin J; Hakobyan, Sargis; Schilt, Stéphane; Südmeyer, Thomas
2017-03-15
We demonstrate the first diode-pumped Ti:sapphire laser frequency comb. It is pumped by two green laser diodes with a total pump power of 3 W. The Ti:sapphire laser generates 250 mW of average output power in 61-fs pulses at a repetition rate of 216 MHz. We generated an octave-spanning supercontinuum spectrum in a photonic-crystal fiber and detected the carrier envelope offset (CEO) frequency in a standard f-to-2f interferometer setup. We stabilized the CEO-frequency through direct current modulation of one of the green pump diodes with a feedback bandwidth of 55 kHz limited by the pump diode driver used in this experiment. We achieved a reduction of the CEO phase noise power spectral density by 140 dB at 1 Hz offset frequency. An advantage of diode pumping is the ability for high-bandwidth modulation of the pump power via direct current modulation. After this experiment, we studied the modulation capabilities and noise properties of green pump laser diodes with improved driver electronics. The current-to-output-power modulation transfer function shows a bandwidth larger than 1 MHz, which should be sufficient to fully exploit the modulation bandwidth of the Ti:sapphire gain for CEO stabilization in future experiments.
11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.
Okhrimchuk, Andrey G; Obraztsov, Petr A
2015-06-08
We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.
Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser.
Xu, Jin-Long; Li, Xian-Lei; Wu, Yong-Zhong; Hao, Xiao-Peng; He, Jing-Liang; Yang, Ke-Jian
2011-05-15
High-quality graphene sheets with lateral size over 20 μm have been obtained by bath sonicating after subjecting the wormlike graphite marginally to mixed oxidizer. To date, to our knowledge, they are the largest graphene sheets prepared by exfoliation in the liquid phase. A saturable absorber mirror was fabricated based on these sheets. We exploited it to realize mode-locking operation in a diode-pumped Nd:GdVO(4) laser. A pulse duration of 16 ps was produced with an average power of 360 mW and a highest pulse energy of 8.4 nJ for a graphene mode-locked laser. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Lin, Ja-Hon; Yang, Pao-Keng; Lin, Wei-Cheng
2012-04-01
We demonstrate a diode-pumped passively mode-locked (ML) c-cut Nd:LuVO4 laser with central wavelength at 1086 nm by shifting the reflectance band of the SESAM into a longer wavelength to result in larger loss around 1068 nm. At 15 W absorbed pump power, the highest output power of the ML pulse was about 2.6 W that corresponded to the 17.3% optical-to-optical conversion efficiency and the slope efficiency of laser was about 22.9%. Using our ML laser as the light source, we have also successfully measured the saturation fluence of the SESAM at 1086 nm.
Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber.
Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Yumashev, Konstantin; Yasukevich, Anatoly; Petrov, Valentin; Griebner, Uwe; Aguiló, Magdalena; Díaz, Francesc
2015-11-15
Passive Q-switching of a compact Tm:KLu(WO(4))(2) microchip laser diode pumped at 805 nm is demonstrated with a polycrystalline Cr(2+):ZnS saturable absorber. This laser generates subnanosecond (780 ps) pulses with a pulse repetition frequency of 5.6 kHz at 1846.6 nm, the shortest pulse duration ever achieved by Q-switching of ~2 μm lasers. The maximum average output power is 146 mW with a slope efficiency of 21% with respect to the absorbed power. This corresponds to a pulse energy of 25.6 μJ and a peak power of 32.8 kW.
Design of an Oximeter Based on LED-LED Configuration and FPGA Technology
Stojanovic, Radovan; Karadaglic, Dejan
2013-01-01
A fully digital photoplethysmographic (PPG) sensor and actuator has been developed. The sensing circuit uses one Light Emitting Diode (LED) for emitting light into human tissue and one LED for detecting the reflectance light from human tissue. A Field Programmable Gate Array (FPGA) is used to control the LEDs and determine the PPG and Blood Oxygen Saturation (SpO2). The configurations with two LEDs and four LEDs are developed for measuring PPG signal and Blood Oxygen Saturation (SpO2). N-LEDs configuration is proposed for multichannel SpO2 measurements. The approach resulted in better spectral sensitivity, increased and adjustable resolution, reduced noise, small size, low cost and low power consumption. PMID:23291575
11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene
Okhrimchuk, Andrey G.; Obraztsov, Petr A.
2015-01-01
We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires–Tournois interferometer. PMID:26052678
Array size and area impact on nanorectenna performance properties
NASA Astrophysics Data System (ADS)
Arsoy, Elif Gul; Durmaz, Emre Can; Shafique, Atia; Ozcan, Meric; Gurbuz, Yasar
2017-02-01
The metal-insulator-metal (MIM) diodes have high speed and compatibility with integrated circuits (IC's) making MIM diodes very attractive to detect and harvest energy for infrared (IR) regime of the electromagnetic spectrum. Due to the fact that small size of the MIM diodes, it is possible to obtain large volume of devices in same unit area. Hence, MIM diodes offer a feasible solution for nanorectennas (nano rectifiying antenna) in IR regime. The aim of this study is to design and develop MIM diodes as array format coupled with antennas for energy harvesting and IR detection. Moreover, varying number of elements which are 4x4, and 40x30 has been fabricated in parallel having 0.040, 0.065 and 0.080 μm2 diode area. For this work we have studied given type of material; Ti-HfO2-Ni, is used for fabricating MIM diodes as a part of rectenna. The effect of the diode array size is investigated. Furthermore, the effect of the array size is also investigated for larger arrays by applying given type of material set; Cr-HfO2-Ni. The fabrication processes in physical vapor deposition (PVD) systems for the MIM diodes resulted in the devices having high non-linearity and responsivity. Also, to achieve uniform and very thin insulator layer atomic layer deposition (ALD) was used. The nonlinearity 1.5 mA/V2 and responsivity 3 A/W are achieved for Ti-HfO2-Ni MIM diodes under low applied bias of 400 mV. The responsivity and nonlinearity of Cr-HfO2-Ni are found to be 5 A/W and 65 μA/V2, respectively. The current level of Cr-HfO2-Ni and Ti-HfO2-Ni is around μA range therefore corresponding resistance values are in 1-10 kΩ range. The comparison of single and 4x4 elements revealed that 4x4 elements have higher current level hence lower resistance value is obtained for 4x4 elements. The array size is 40x30 elements for Cr-HfO2-Ni type of MIM diodes with 40, 65 nm2 diode areas. By increasing the diode area, the current level increases for same size of array. The current level is increased from10 μA to100 μA with increasing the diode area. Therefore resistance decreased in the range of 10 kΩ and nonlinearity is increased from 58 μA/V2 to 65 μA/V2.
High voltage and high current density vertical GaN power diodes
Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; ...
2016-01-01
We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm 2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm 2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.
High current, high bandwidth laser diode current driver
NASA Technical Reports Server (NTRS)
Copeland, David J.; Zimmerman, Robert K., Jr.
1991-01-01
A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.
Improving Extraction Ion Diode Operation By Introducing An Axial Load
NASA Astrophysics Data System (ADS)
Vesey, R. A.; Desjarlais, M. P.; Greenly, J. B.
1997-11-01
Recent ion diode experiments at Cornell have shown that the presence of an axial current load (in this case an inductive voltage monitor) significantly reduced the electron loss to the anode with some indication of a simultaneous reduction in the beam divergence(J. B. Greenly et al., this conference.). The QUICKSILVER 3D particle-in-cell code has been used to simulate axial loads on the SABRE (6 MV, 250 kA) ion diode at Sandia. Initial results show that an axial load drawing 30% of the total diode current reduces the electron loss by 55% while reducing the ion current by just 15%. With an increased applied magnetic field, the electron loss to the anode face is completely suppressed and ion mode oscillations are strongly damped, albeit with a 40% reduction in the ion current. These results show that further scoping simulations are necessary to understand the mechanism involved and to refine the operating parameters (axial current, B-field, A-K gap) for optimum performance.
Reverse Current Characteristics of InP Gunn Diodes for W-Band Waveguide Applications.
Kim, Hyun-Seok; Heo, Jun-Woo; Chol, Seok-Gyu; Ko, Dong-Sik; Rhee, Jin-Koo
2015-07-01
InP is considered as the most promising material for millimeter-wave laser-diode applications owing to its superior noise performance and wide operating frequency range of 75-110 GHz. In this study, we demonstrate the fabrication of InP Gunn diodes with a current-limiting structure using rapid thermal annealing to modulate the potential height formed between an n-type InP active layer and a cathode contact. We also explore the reverse current characteristics of the InP Gunn diodes. Experimental results indicate a maximum anode current and an oscillation frequency of 200 mA and 93.53 GHz, respectively. The current-voltage characteristics are modeled by considering the Schottky and ohmic contacts, work function variations, negative differential resistance (NDR), and tunneling effect. Although no direct indication of the NDR is observed, the simulation results match the measured data well. The modeling results show that the NDR effect is always present but is masked because of electron emission across the shallow Schottky barrier.
Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; ...
2014-12-15
We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometrymore » that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renk, T. J., E-mail: tjrenk@sandia.gov; Harper-Slaboszewicz, V.; Mikkelson, K. A.
2014-12-15
We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry thatmore » has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. A new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. In addition, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.« less
NASA Astrophysics Data System (ADS)
Chraygane, Mohamed; Teissier, Maurice; Jammal, Ahmad; Masson, Jean-Pierre
1994-11-01
The high voltage power supply for magnetron, used for the modular microwave generators in industrial applications, is of a classical design : a single phase leakage flux transformer supplying a cell, composed of a capacitor and a diode, which multiplies the voltage and stabilizes the current. A π model of this transformer is developed, taking the saturation phenomena and the stabilization process of the magnetron current into account. Three inductances are characterized by the non linear relations between flux and magnetizing current. This model was tested by E.M.T.P. software (Electro-Magnetic Transients Program), near the nominal state. The theoretical results were compared to experimental measurements with a good agreement. L'alimentation haute tension des magnétrons, utilisés comme source d'énergie microondes dans l'industrie, est de conception classique : un transformateur monophasé à fuites magnétiques alimentant une cellule doubleuse de tension et stabilisatrice de courant. Un schéma équivalent en π du transformateur est présenté, prenant en compte la saturation des différentes parties du fer et la stabilisation du courant du magnétron. Trois inductances sont caractérisées par les relations non linéaires entre flux et courant magnétisant. Ce modèle a été testé à l'aide du logiciel de calcul E.M.T.P. (Electro-Magnetic Transients Program), au voisinage du régime nominal. Les résultats théoriques, comparés aux mesures expérimentales, se trouvent en bon accord avec elles.
ZnS-Based ZnSTe:N/n-ZnS Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Ichino, Kunio; Kojima, Takahiro; Obata, Shunsuke; Kuroyanagi, Takuma; Nakazawa, Shoichi; Kashiyama, Shota
2013-11-01
ZnS1-xTex:N/n-ZnS diodes have been fabricated in an attempt to convert ZnS into p-type by Te incorporation and the resulting upward shift of the valence band maximum. The diodes exhibit clear rectification in the current-voltage characteristic and a peak of the electron-beam-induced current at the ZnS1-xTex:N/n-ZnS interface. Furthermore, a ZnS0.85Te0.15:N/n-ZnS diode exhibits blue-green electroluminescence due to self-activated emission in n-ZnS at 290 K under a forward current. These results suggest p-type conduction in ZnS1-xTex:N, and thus the LED operation of a ZnS-based pn-junction.
Compact modeling of SiC Schottky barrier diode and its extension to junction barrier Schottky diode
NASA Astrophysics Data System (ADS)
Navarro, Dondee; Herrera, Fernando; Zenitani, Hiroshi; Miura-Mattausch, Mitiko; Yorino, Naoto; Jürgen Mattausch, Hans; Takusagawa, Mamoru; Kobayashi, Jun; Hara, Masafumi
2018-04-01
A compact model applicable for both Schottky barrier diode (SBD) and junction barrier Schottky diode (JBS) structures is developed. The SBD model considers the current due to thermionic emission in the metal/semiconductor junction together with the resistance of the lightly doped drift layer. Extension of the SBD model to JBS is accomplished by modeling the distributed resistance induced by the p+ implant developed for minimizing the leakage current at reverse bias. Only the geometrical features of the p+ implant are necessary to model the distributed resistance. Reproduction of 4H-SiC SBD and JBS current-voltage characteristics with the developed compact model are validated against two-dimensional (2D) device-simulation results as well as measurements at different temperatures.
Miao, Xinyu; Yin, Longfei; Zhuang, Wei; Luo, Bin; Dang, Anhong; Chen, Jingbiao; Guo, Hong
2011-08-01
We demonstrate an external-cavity laser system using an anti-reflection coated laser diode as gain medium with about 60 nm fluorescence spectrum, and a Rb Faraday anomalous dispersion optical filter (FADOF) as frequency-selecting element with a transmission bandwidth of 1.3 GHz. With 6.4% optical feedback, a single stable longitudinal mode is obtained with a linewidth of 69 kHz. The wavelength of this laser is operating within the center of the highest transmission peak of FADOF over a diode current range from 55 mA to 142 mA and a diode temperature range from 15 °C to 35 °C, thus it is immune to the fluctuations of current and temperature.
Saturable Absorption in 2D Ti3 C2 MXene Thin Films for Passive Photonic Diodes.
Dong, Yongchang; Chertopalov, Sergii; Maleski, Kathleen; Anasori, Babak; Hu, Longyu; Bhattacharya, Sriparna; Rao, Apparao M; Gogotsi, Yury; Mochalin, Vadym N; Podila, Ramakrishna
2018-03-01
MXenes comprise a new class of 2D transition metal carbides, nitrides, and carbonitrides that exhibit unique light-matter interactions. Recently, 2D Ti 3 CNT x (T x represents functional groups such as OH and F) was found to exhibit nonlinear saturable absorption (SA) or increased transmittance at higher light fluences, which is useful for mode locking in fiber-based femtosecond lasers. However, the fundamental origin and thickness dependence of SA behavior in MXenes remain to be understood. 2D Ti 3 C 2 T x thin films of different thicknesses are fabricated using an interfacial film formation technique to systematically study their nonlinear optical properties. Using the open aperture Z-scan method, it is found that the SA behavior in Ti 3 C 2 T x MXene arises from plasmon-induced increase in the ground state absorption at photon energies above the threshold for free carrier oscillations. The saturation fluence and modulation depth of Ti 3 C 2 T x MXene is observed to be dependent on the film thickness. Unlike other 2D materials, Ti 3 C 2 T x is found to show higher threshold for light-induced damage with up to 50% increase in nonlinear transmittance. Lastly, building on the SA behavior of Ti 3 C 2 T x MXenes, a Ti 3 C 2 T x MXene-based photonic diode that breaks time-reversal symmetry to achieve nonreciprocal transmission of nanosecond laser pulses is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kisch-Wedel, H; Bernreuter, P; Kemming, G; Albert, M; Zwissler, B
2009-09-01
A new technique was validated in vivo in reflectance pulse oximetry for measuring low oxygen saturations. Two pairs of light emitter/detector diodes allow for estimation of light attenuation (LA) in tissue, which is assumed to be responsible for the inaccuracy of pulse oximetry at less than 70 % arterial oxygen saturation. For validation, 17 newborn piglets were desaturated stepwise from 21 % to 1.25 % inspiratory oxygen concentration during general anesthesia, and arterial oxygen saturation was measured with the reflectance pulse oximeter adjusted for LA in tissue, with a standard transmission pulse oximeter and a hemoximeter. LA in tissue could be quantified and was different between snout and foreleg (probability level (p) < 0.05). At arterial oxygen saturations above 70 %, the bias between the methods was at 0 %-1 % and the variability 4 %-5 %. From 2 % to 100 % arterial oxygen saturation, the reflectance pulse oximeter estimated oxyhemoglobin saturation more accurately than a conventional transmission pulse oximeter (p < 0.05). At low oxygen saturations below 70 %, the bias and variability of the reflectance pulse oximeter calibration were closer to the hemoximeter measurements than the transmission pulse oximeter (p < 0.05). The variability of the reflectance pulse oximeter was slightly lower than the traditional oximeter by taking into account the LA in tissue (9 % versus 11 % -15 %, ns), and thus, the quality of the individual calibration lines improved (correlation coefficient, p < 0.05).
Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode
NASA Astrophysics Data System (ADS)
Hu, J.; Stoffels, S.; Lenci, S.; Bakeroot, B.; Venegas, R.; Groeseneken, G.; Decoutere, S.
2015-02-01
This paper presents a combined technique of high voltage off-state stress and current transient measurements to investigate the trapping/de-trapping characteristics of Au-free AlGaN/GaN Schottky barrier diodes. The device features a symmetric three-terminal structure with a central anode contact surrounded by two separate cathodes. Under the diode off-state stress conditions, the two separate cathodes were electrically shorted. The de-trapping dynamics was studied by monitoring the recovery of the two-dimensional electron gas (2DEG) current at different temperatures by applying 0.5 V at cathode 2 while grounding cathode 1. During the recovery, the anode contact acts as a sensor of changes in diode leakage current. This leakage variation was found to be mainly due to the barrier height variation. With this method, the energy level and capture cross section of different traps in the AlGaN/GaN Schottky barrier diode can be extracted. Furthermore, the physical location of different trapping phenomena is indicated by studying the variation of the diode leakage current during the recovery. We have identified two distinct trapping mechanisms: (i) electron trapping at the AlGaN surface in the vicinity of the Schottky contact which results in the leakage reduction (barrier height ϕB increase) together with RON degradation; (ii) the electron trapping in the GaN channel layer which partially depletes the 2DEG. The physical origin of the two different traps is discussed in the text.
Schottky barrier diode and method thereof
NASA Technical Reports Server (NTRS)
Aslam, Shahid (Inventor); Franz, David (Inventor)
2008-01-01
Pt/n.sup.-GaN Schottky barrier diodes are disclosed that are particularly suited to serve as ultra-violet sensors operating at wavelengths below 200 nm. The Pt/n.sup.-GaN Schottky barrier diodes have very large active areas, up to 1 cm.sup.2, which exhibit extremely low leakage current at low reverse biases. Very large area Pt/n.sup.-GaN Schottky diodes of sizes 0.25 cm.sup.2 and 1 cm.sup.2 have been fabricated from n.sup.-/n.sup.+ GaN epitaxial layers grown by vapor phase epitaxy on single crystal c-plane sapphire, which showed leakage currents of 14 pA and 2.7 nA, respectively for the 0.25 cm.sup.2 and 1 cm.sup.2 diodes both configured at a 0.5V reverse bias.
Current–voltage characteristics of manganite–titanite perovskite junctions
Ifland, Benedikt; Peretzki, Patrick; Kressdorf, Birte; Saring, Philipp; Kelling, Andreas; Seibt, Michael
2015-01-01
Summary After a general introduction into the Shockley theory of current voltage (J–V) characteristics of inorganic and organic semiconductor junctions of different bandwidth, we apply the Shockley theory-based, one diode model to a new type of perovskite junctions with polaronic charge carriers. In particular, we studied manganite–titanate p–n heterojunctions made of n-doped SrTi1− yNbyO3, y = 0.002 and p-doped Pr1− xCaxMnO3, x = 0.34 having a strongly correlated electron system. The diffusion length of the polaron carriers was analyzed by electron beam-induced current (EBIC) in a thin cross plane lamella of the junction. In the J–V characteristics, the polaronic nature of the charge carriers is exhibited mainly by the temperature dependence of the microscopic parameters, such as the hopping mobility of the series resistance and a colossal electro-resistance (CER) effect in the parallel resistance. We conclude that a modification of the Shockley equation incorporating voltage-dependent microscopic polaron parameters is required. Specifically, the voltage dependence of the reverse saturation current density is analyzed and interpreted as a voltage-dependent electron–polaron hole–polaron pair generation and separation at the interface. PMID:26199851
Modeling, Fabrication, and Electrical Testing of Metal-Insulator-Metal Diode
2011-12-01
1 2. MIM Model 1 2.1 Potential Energy and Image Potential . . . . . . . . . . . . . . . . . . . . . . 1 2.2 Thermionic Emission -limited Current ...4 4 Thermionic emission -limited current through the symmetric MIM diode in figure 1...7 7 Absolute value of tunnel-limited, thermal emission -limited, and total currents vs. applied bias for the
Nitride-based stacked laser diodes with a tunnel junction
NASA Astrophysics Data System (ADS)
Okawara, Satoru; Aoki, Yuta; Kuwabara, Masakazu; Takagi, Yasufumi; Maeda, Junya; Yoshida, Harumasa
2018-01-01
We report on nitride-based two-stack laser diodes with a tunnel junction for the first time. The stacked laser diode was monolithically grown by metalorganic vapor phase epitaxy. It was confirmed that the two-stack InGaN/GaN multiple-quantum-well laser diode with an emission wavelength of 394 nm exhibited laser oscillation up to a peak output power of over 10 W in the pulsed current mode. The upper and lower emitters of the device were capable of lasing at different threshold currents of 2.4 and 5.2 A with different slope efficiencies of 0.8 and 0.3 W/A, respectively.
By-Pass Diode Temperature Tests of a Solar Array Coupon under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon
2016-01-01
By-Pass diodes are a key design feature of solar arrays and system design must be robust against local heating, especially with implementation of larger solar cells. By-Pass diode testing was performed to aid thermal model development for use in future array designs that utilize larger cell sizes that result in higher string currents. Testing was performed on a 56-cell Advanced Triple Junction solar array coupon provided by SSL. Test conditions were vacuum with cold array backside using discrete by-pass diode current steps of 0.25 A ranging from 0 A to 2.0 A.
2011-01-01
Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd) nanoparticles (NPs) in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures. PMID:21831273
Direct-current polarization characteristics of various AlGaAs laser diodes
NASA Technical Reports Server (NTRS)
Fuhr, P. L.
1984-01-01
Polarization characteristics of AlGaAs laser diodes having various device geometries have been measured. Measurements were performed with the laser diodes operating under dc conditions. Results show that laser diodes having different device geometries have optical outputs that exhibit varying degrees of polarization purity. Implications of this result, with respect to incoherent polarization-beam combining, are addressed.
Dynamic characteristics of 4H-SiC drift step recovery diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Kon’kov, O. I.; Samsonova, T. P.
The dynamic characteristics of 4H-SiC p{sup +}–p–n{sub 0}–n{sup +} diodes are experimentally studied in the pulsed modes characteristic of the operation of drift step recovery diodes (DSRD-mode). The effect of the subnanosecond termination of the reverse current maintained by electron-hole plasma preliminarily pumped by a forward current pulse is analyzed in detail. The influence exerted on the DSRD effect by the amplitude of reverse-voltage pulses, the amplitude and duration of forward-current pulses, and the time delay between the forward and reverse pulses is demonstrated and accounted for.
Forward Current Transport Mechanisms of Ni/Au—InAlN/AlN/GaN Schottky Diodes
NASA Astrophysics Data System (ADS)
Wang, Xiao-Feng; Shao, Zhen-Guang; Chen, Dun-Jun; Lu, Hai; Zhang, Rong; Zheng, You-Dou
2014-05-01
We fabricate two Ni/Au-In0.17Al0.83N/AlN/GaN Schottky diodes on substrates of sapphire and Si, respectively, and investigate their forward-bias current transport mechanisms by temperature-dependent current-voltage measurements. In the temperature range of 300-485 K, the Schottky barrier heights (SBHs) calculated by using the conventional thermionic-emission (TE) model are strongly positively dependent on temperature, which is in contrast to the negative-temperature-dependent characteristic of traditional semiconductor Schottky diodes. By fitting the forward-bias I-V characteristics using different current transport models, we find that the tunneling current model can describe generally the I-V behaviors in the entire measured range of temperature. Under the high forward bias, the traditional TE mechanism also gives a good fit to the measured I-V data, and the actual barrier heights calculated according to the fitting TE curve are 1.434 and 1.413 eV at 300K for InAlN/AlN/GaN Schottky diodes on Si and the sapphire substrate, respectively, and the barrier height shows a slightly negative temperature coefficient. In addition, a formula is given to estimate SBHs of Ni/Au—InAlN/AlN/GaN Schottky diodes taking the Fermi-level pinning effect into account.
NASA Astrophysics Data System (ADS)
Radu, R.; Pintilie, I.; Nistor, L. C.; Fretwurst, E.; Lindstroem, G.; Makarenko, L. F.
2015-04-01
This work is focusing on generation, time evolution, and impact on the electrical performance of silicon diodes impaired by radiation induced active defects. n-type silicon diodes had been irradiated with electrons ranging from 1.5 MeV to 27 MeV. It is shown that the formation of small clusters starts already after irradiation with high fluence of 1.5 MeV electrons. An increase of the introduction rates of both point defects and small clusters with increasing energy is seen, showing saturation for electron energies above ˜15 MeV. The changes in the leakage current at low irradiation fluence-values proved to be determined by the change in the configuration of the tri-vacancy (V3). Similar to V3, other cluster related defects are showing bistability indicating that they might be associated with larger vacancy clusters. The change of the space charge density with irradiation and with annealing time after irradiation is fully described by accounting for the radiation induced trapping centers. High resolution electron microscopy investigations correlated with the annealing experiments revealed changes in the spatial structure of the defects. Furthermore, it is shown that while the generation of point defects is well described by the classical Non Ionizing Energy Loss (NIEL), the formation of small defect clusters is better described by the "effective NIEL" using results from molecular dynamics simulations.
A simple approximation for the current-voltage characteristics of high-power, relativistic diodes
Ekdahl, Carl
2016-06-10
A simple approximation for the current-voltage characteristics of a relativistic electron diode is presented. The approximation is accurate from non-relativistic through relativistic electron energies. Although it is empirically developed, it has many of the fundamental properties of the exact diode solutions. Lastly, the approximation is simple enough to be remembered and worked on almost any pocket calculator, so it has proven to be quite useful on the laboratory floor.
Lee, Hyekyung; Kim, Junsuk; Kim, Hyeonsoo; Kim, Ho-Young; Lee, Hyomin; Kim, Sung Jae
2017-08-24
Over the past decade, nanofluidic diodes that rectify ionic currents (i.e. greater current in one direction than in the opposite direction) have drawn significant attention in biomolecular sensing, switching and energy harvesting devices. To obtain current rectification, conventional nanofluidic diodes have utilized complex nanoscale asymmetry such as nanochannel geometry, surface charge density, and reservoir concentration. Avoiding the use of sophisticated nano-asymmetry, micro/nanofluidic diodes using microscale asymmetry have been recently introduced; however, their diodic performance is still impeded by (i) low (even absent) rectification effects at physiological concentrations over 100 mM and strong dependency on the bulk concentration, and (ii) the fact that they possess only passive predefined rectification factors. Here, we demonstrated a new class of micro/nanofluidic diode with an ideal perm-selective nanoporous membrane based on ion concentration polarization (ICP) phenomenon. Thin side-microchannels installed near a nanojunction served as mitigators of the amplified electrokinetic flows generated by ICP and induced convective salt transfer to the nanoporous membrane, leading to actively controlled micro-scale asymmetry. Using this device, current rectifications were successfully demonstrated in a wide range of electrolytic concentrations (10 -5 M to 3 M) as a function of the fluidic resistance of the side-microchannels. Noteworthily, it was confirmed that the rectification factors were independent from the bulk concentration due to the ideal perm-selectivity. Moreover, the rectification of the presenting diode was actively controlled by adjusting the external convective flows, while that of the previous diode was passively determined by invariant nanoscale asymmetry.
Tunable diode-laser heterodyne spectrometer for remote observations near 8 microns
NASA Technical Reports Server (NTRS)
Glenar, D.; Kostiuk, T.; Jennings, D. E.; Buhl, D.; Mumma, M. J.
1982-01-01
A diode-laser-based, ultrahigh resolution IR heterodyne spectrometer for laboratory and field use has been developed for operation between 7.5 and 8.5 microns. The local oscillator is a PbSe tunable diode laser kept continuously at operating temperatures of 12-60 K using a closed-cycle cooler. The laser output frequency is controlled and stabilized using a high-precision diode current supply, constant temperature controller, and a shock isolator mounted between the refrigerator cold tip and the diode mount. The system largely employs reflecting optics to minimize losses from internal reflection and absorption and to eliminate chromatic effects. Spectral analysis of the diode-laser output between 0 and 1 GHz reveals excess noise at many diode current settings, which limits the IR spectral regions over which useful heterodyne operation can be achieved. Observations have been made of atmospheric N2O, O3, and CH4 between 1170 and 1200/cm, using both a single-frequency swept IF channel and a 64-channel RF spectral line receiver with a total IF coverage of 1600 MHz.
Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.
2017-03-01
Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.
Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes
NASA Astrophysics Data System (ADS)
Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko
2018-05-01
We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.
Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merghem, K.; Aubin, G.; Ramdane, A.
2015-09-14
We demonstrate passive mode locking of a GaSb-based diode laser emitting at 2.1 μm. The active region of the studied device consists in two 10-nm-thick GaInSbAs/GaAlSbAs quantum wells. Passive mode locking has been achieved in a two-section laser with one of the sections used as a saturable absorber. A microwave signal at 20.6 GHz, measured in the electrical circuit of the absorber, corresponds to the fundamental photon round-trip frequency in the laser resonator. The linewidth of this signal as low as ∼10 kHz has been observed at certain operating conditions, indicating low phase noise mode-locked operation.
Role of stable and metastable Mg-H complexes in p-type GaN for cw blue laser diodes
NASA Astrophysics Data System (ADS)
Castiglia, A.; Carlin, J.-F.; Grandjean, N.
2011-05-01
Secondary ion mass spectroscopy (SIMS) and capacitance-voltage measurements were combined to thoroughly study Mg doping in GaN layers grown by metal organic vapor phase epitaxy. First we found that the Mg steady-state incorporation regime occurs for a surface coverage of 0.3 monolayer. Additionally SIMS indicates that H incorporates proportionally with Mg until a certain [Mg] where [H] saturates. After thermal activation, [H] while being much lower still scales with [Mg]. These results suggest that H combines with Mg to form two different types of Mg-H complexes: a metastable one leading to the Mg acceptor after annealing, the other one (dominating at high [Mg]) being stable and electrically inactive. The obtained results allowed us optimizing doping conditions for blue laser diodes.
Radial tunnel diodes based on InP/InGaAs core-shell nanowires
NASA Astrophysics Data System (ADS)
Tizno, Ofogh; Ganjipour, Bahram; Heurlin, Magnus; Thelander, Claes; Borgström, Magnus T.; Samuelson, Lars
2017-03-01
We report on the fabrication and characterization of radial tunnel diodes based on InP(n+)/InGaAs(p+) core-shell nanowires, where the effect of Zn-dopant precursor flow on the electrical properties of the devices is evaluated. Selective and local etching of the InGaAs shell is employed to access the nanowire core in the contact process. Devices with an n+-p doping profile show normal diode rectification, whereas n+-p+ junctions exhibit typical tunnel diode characteristics with peak-to-valley current ratios up to 14 at room temperature and 100 at 4.2 K. A maximum peak current density of 28 A/cm2 and a reverse current density of 7.3 kA/cm2 at VSD = -0.5 V are extracted at room temperature after normalization with the effective junction area.
High-resolution investigation of longitudinal modes of a GaN-based blue laser diode
NASA Astrophysics Data System (ADS)
Al-Basheer, Watheq; Aljalal, Abdulaziz; Gasmi, Khaled; Adigun, Taofeek O.
2017-05-01
Typical emission spectra of GaN-based blue laser diodes are known to have irregular shapes. Hence, well-resolved study of their spectra may help in understanding the origin of their spectral shapes irregularity. In this paper, the spectra of a commercial GaN-based blue laser diode are studied as a function of injection current and temperature using a spectrometer with highresolution of 0.003-nm over the spectral region 440 - 450 nm. The obtained laser spectra are used to track the longitudinal modes evolution as a function of operating currents and temperatures as well as to precisely map single mode operation. In addition, yielded laser spectra will be utilized to evaluate few parameters related to the laser diode, such as mode spacing, optical gain, slope efficiency and threshold current at certain temperature.
Thermal diode utilizing asymmetric contacts to heat baths.
Komatsu, Teruhisa S; Ito, Nobuyasu
2010-01-01
We propose a simple thermal diode passively acting as a rectifier of heat current. The key design of the diode is the size asymmetry of the areas in contact with two distinct heat baths. The heat-conducting medium is liquid, inside of which gaslike regions are induced depending on the applied conditions. Simulating nanoscale systems of this diode, the rectification of heat current is demonstrated. If the packing density of the medium and the working regime of temperature are properly chosen, the heat current is effectively cut off when the heat bath with narrow contact is hotter, but it flows normally under opposite temperature conditions. In the former case, the gaslike region is induced in the system and it acts as a thermal insulator because it covers the entire narrow area of contact with the bath.
Silicon-Based Quantum MOS Technology Development
2000-03-07
resonant interband tunnel diodes were demonstrated with peak current density greater than 104 A/cm2; peak-to-valley current ratio exceeding 2 was...photon emission reduce the peak-to-valley current ratio and device performance. Therefore, interband tunnel devices should be more resilient to...Comparison of bipolar interband tunnel and optical devices: (a) Esaki diode biased into the valley current region and (b) optical light emitter. The Esaki
11.72 sq cm SiC Wafer-scale Interconnected 64 kA PiN Diode
2012-01-30
drop of 10.3 V. The dissipated energy was 382 J and the calculated action exceeded 1.7 MA2 -s. Preliminary development of high voltage interconnection...scale diode action (surge current integral), a key reliability parameter, exceeded 1.7 MA2 -s. Figure 6: The wafer-scale interconnected diode...scale diode was 382 J and the calculated action exceeded 1.7 MA2 -sec. High voltage operation of PiN diodes, thyristors, and other semiconductor
NASA Astrophysics Data System (ADS)
Radevici, Ivan; Tiira, Jonna; Sadi, Toufik; Oksanen, Jani
2018-05-01
Current crowding close to electrical contacts is a common challenge in all optoelectronic devices containing thin current spreading layers (CSLs). We analyze the effects of current spreading on the operation of the so-called double diode structure (DDS), consisting of a light emitting diode (LED) and a photodiode (PD) fabricated within the same epitaxial growth process, and providing an attractive platform for studying electroluminescent (EL) cooling under high bias conditions. We show that current spreading in the common n-type layer between the LED and the PD can be dramatically improved by the strong optical coupling between the diodes, as the coupling enables a photo-generated current through the PD. This reduces the current in the DDS CSL and enables the study of EL cooling using structures that are not limited by the conventional light extraction challenges encountered in normal LEDs. The current spreading in the structures is studied using optical imaging techniques, electrical measurements, simulations, as well as simple equivalent circuit models developed for this purpose. The improved current spreading leads further to a mutual dependence with the coupling efficiency, which is expected to facilitate the process of optimizing the DDS. We also report a new improved value of 63% for the DDS coupling quantum efficiency.
INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Surface effects in laser diodes
NASA Astrophysics Data System (ADS)
Beister, G.; Maege, J.; Richter, G.
1988-11-01
Changes in the current-voltage characteristics below the threshold current were observed in gain-guided stripe laser diodes after preliminary lasing. This effect was not fully understood. Similar changes in the laser characteristics appeared as a result of etching in a gaseous medium. The observed changes were attributed tentatively to surface currents.
NASA Astrophysics Data System (ADS)
Rama Subbanna, S.; Suryakalavathi, M., Dr.
2017-08-01
This paper is an attempt to accomplish a performance analysis of the different control techniques on spikes reduction method applied on the medium frequency transformer based DC spot welding system. Spike reduction is an important factor to be considered while spot welding systems are concerned. During normal RSWS operation welding transformer’s magnetic core can become saturated due to the unbalanced resistances of both transformer secondary windings and different characteristics of output rectifier diodes, which causes current spikes and over-current protection switch-off of the entire system. The current control technique is a piecewise linear control technique that is inspired from the DC-DC converter control algorithms to register a novel spike reduction method in the MFDC spot welding applications. Two controllers that were used for the spike reduction portion of the overall applications involve the traditional PI controller and Optimized PI controller. Care is taken such that the current control technique would maintain a reduced spikes in the primary current of the transformer while it reduces the Total Harmonic Distortion. The performance parameter that is involved in the spikes reduction technique is the THD, Percentage of current spike reduction for both techniques. Matlab/SimulinkTM based simulation is carried out for the MFDC RSWS with KW and results are tabulated for the PI and Optimized PI controllers and a tradeoff analysis is carried out.
Current Modulation of a Heterojunction Structure by an Ultra-Thin Graphene Base Electrode.
Alvarado Chavarin, Carlos; Strobel, Carsten; Kitzmann, Julia; Di Bartolomeo, Antonio; Lukosius, Mindaugas; Albert, Matthias; Bartha, Johann Wolfgang; Wenger, Christian
2018-02-27
Graphene has been proposed as the current controlling element of vertical transport in heterojunction transistors, as it could potentially achieve high operation frequencies due to its metallic character and 2D nature. Simulations of graphene acting as a thermionic barrier between the transport of two semiconductor layers have shown cut-off frequencies larger than 1 THz. Furthermore, the use of n-doped amorphous silicon, (n)-a-Si:H, as the semiconductor for this approach could enable flexible electronics with high cutoff frequencies. In this work, we fabricated a vertical structure on a rigid substrate where graphene is embedded between two differently doped (n)-a-Si:H layers deposited by very high frequency (140 MHz) plasma-enhanced chemical vapor deposition. The operation of this heterojunction structure is investigated by the two diode-like interfaces by means of temperature dependent current-voltage characterization, followed by the electrical characterization in a three-terminal configuration. We demonstrate that the vertical current between the (n)-a-Si:H layers is successfully controlled by the ultra-thin graphene base voltage. While current saturation is yet to be achieved, a transconductance of ~230 μ S was obtained, demonstrating a moderate modulation of the collector-emitter current by the ultra-thin graphene base voltage. These results show promising progress towards the application of graphene base heterojunction transistors.
NASA Astrophysics Data System (ADS)
Gardiner, B. L.; Thomson, D. J.
2006-12-01
Starting with the designs of earlier solar radio telescopes, particularly the one at Bell Labs, Murray Hill, we have built a new instrument. The major differences between this telescope and its predecessors are that it has: 1) parallel low and high gain channels for both polarizations; 2) four additional channels for active interference cancellation; and 3) all eight IF strips terminating in 100 MHz, 14--bit analog--to--digital converters with synchronized sampling. The advantages of such a configuration are: a) The parallel low and high gain channels allow a higher dynamic range without saturating than a single channel. b) Estimating bispectra between the channels gives a sensitive test for saturation in the higher gain channel. c) In the usual case, when both channels are in their linear region, one can use them with a noise injection diode to track the amplifier noise figures. d) With the noise diode off, the two channels can be used in a mode similar to remote reference. As the telescope is operating in a small city we anticipate that more than 90% of the measurements will be contaminated by various communications signals and impulsive noise. Thus all the signal processing will build on various robust statistical procedures that have proven effective in other applications. The best mode of operating the four active interference cancelling channels is still under study
NASA Technical Reports Server (NTRS)
Been, J. F.
1973-01-01
The effects of nuclear radiation on the reverse bias electrical characteristics of one hundred silicon power diodes were investigated. On a percentage basis, the changes in reverse currents were large but, due to very low initial values, this electrical characteristic was not the limiting factor in use of these diodes. These changes were interpreted in terms of decreasing minority carrier lifetimes as related to generation-recombination currents. The magnitudes of reverse voltage breakdown were unaffected by irradiation.
Elbing, Mark; Ochs, Rolf; Koentopp, Max; Fischer, Matthias; von Hänisch, Carsten; Weigend, Florian; Evers, Ferdinand; Weber, Heiko B; Mayor, Marcel
2005-06-21
We have designed and synthesized a molecular rod that consists of two weakly coupled electronic pi -systems with mutually shifted energy levels. The asymmetry thus implied manifests itself in a current-voltage characteristic with pronounced dependence on the sign of the bias voltage, which makes the molecule a prototype for a molecular diode. The individual molecules were immobilized by sulfur-gold bonds between both electrodes of a mechanically controlled break junction, and their electronic transport properties have been investigated. The results indeed show diode-like current-voltage characteristics. In contrast to that, control experiments with symmetric molecular rods consisting of two identical pi-systems did not show significant asymmetries in the transport properties. To investigate the underlying transport mechanism, phenomenological arguments are combined with calculations based on density functional theory. The theoretical analysis suggests that the bias dependence of the polarizability of the molecule feeds back into the current leading to an asymmetric shape of the current-voltage characteristics, similar to the phenomena in a semiconductor diode.
Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.
Maeda, Y
1994-01-10
Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.
Design of spin-Seebeck diode with spin semiconductors.
Zhang, Zhao-Qian; Yang, Yu-Rong; Fu, Hua-Hua; Wu, Ruqian
2016-12-16
We report a new design of spin-Seebeck diode using two-dimensional spin semiconductors such as sawtooth-like (ST) silicence nanoribbons (SiNRs), to generate unidirectional spin currents with a temperature gradient. ST SiNRs have subbands with opposite spins across the Fermi level and hence the flow of thermally excited carriers may produce a net spin current but not charge current. Moreover, we found that even-width ST SiNRs display a remarkable negative differential thermoelectric resistance due to a charge-current compensation mechanism. In contrast, odd-width ST SiNRs manifest features of a thermoelectric diode and can be used to produce both charge and spin currents with temperature gradient. These findings can be extended to other spin semiconductors and open the door for designs of new materials and spin caloritronic devices.
Electric field distribution and current emission in a miniaturized geometrical diode
NASA Astrophysics Data System (ADS)
Lin, Jinpu; Wong, Patrick Y.; Yang, Penglu; Lau, Y. Y.; Tang, W.; Zhang, Peng
2017-06-01
We study the electric field distribution and current emission in a miniaturized geometrical diode. Using Schwarz-Christoffel transformation, we calculate exactly the electric field inside a finite vacuum cathode-anode (A-K) gap with a single trapezoid protrusion on one of the electrode surfaces. It is found that there is a strong field enhancement on both electrodes near the protrusion, when the ratio of the A-K gap distance to the protrusion height d /h <2. The calculations are spot checked against COMSOL simulations. We calculate the effective field enhancement factor for the field emission current, by integrating the local Fowler-Nordheim current density along the electrode surfaces. We systematically examine the electric field enhancement and the current rectification of the miniaturized geometrical diode for various geometric dimensions and applied electric fields.
Comparative study of I- V methods to extract Au/FePc/p-Si Schottky barrier diode parameters
NASA Astrophysics Data System (ADS)
Oruç, Çiğdem; Altındal, Ahmet
2018-01-01
So far, various methods have been proposed to extract the Schottky diode parameters from measured current-voltage characteristics. In this work, Schottky barrier diode with structure of Au/2(3),9(10),16(17),23(24)-tetra(4-(4-methoxyphenyl)-8-methylcoumarin-7 oxy) phthalocyaninatoiron(II) (FePc)/p-Si was fabricated and current-voltage measurements were carried out on it. In addition, current-voltage measurements were also performed on Au/p-Si structure, without FePc, to clarify the influence of the presence of an interface layer on the device performance. The measured current-voltage characteristics indicate that the interface properties of a Schottky barrier diode can be controlled by the presence of an organic interface layer. It is found that the room temperature barrier height of Au/FePc/p-Si structure is larger than that of the Au/p-Si structure. The obtained forward bias current-voltage characteristics of the Au/FePc/p-Si device was analysed by five different analytical methods. It is found that the extracted values of SBD parameters strongly depends on the method used.
Wang, Lin; Chen, Xiaoshuang; Hu, Yibin; Yu, Anqi; Lu, Wei
2014-11-07
Recent observations of the negative differential conductance (NDC) phenomenon in graphene field-effect transistors (FET) open up new opportunities for their application in graphene-based fast switches, frequency multipliers and, most importantly, in high frequency oscillators up to the terahertz regime. Unlike conventional two-terminal NDC devices that rely on resonant tunneling and inter-valley transferring, in the present work, it has been shown that the universal NDC phenomenon of graphene-based FETs originates from their intrinsic nonlinear carrier transport under a strong electric field. The operation of graphene-NDC devices depends strongly on the interface between graphene and dielectric materials, the scattering-limited carrier mobility, and on the saturation velocity. To reveal such NDC behavior, the output characteristics of GFET are investigated rigorously, with both an analytical model and self-consistent transport equation, and with a multi-electrical parameter simulation. It is demonstrated that the contact-induced doping effect plays an important role in the operational efficiency of graphene-based NDC devices, rather than the ambipolar behavior associated with the competition between electron and hole conductances. In the absence of a NDC regime or beyond one, ambipolar transport starts at Vds > 2Vgs at the drain end, and as the dielectric layer begins to thin down, the kink-like saturation output characteristic is enhanced by the quantum capacitance contribution. These observations reveal the intrinsic mechanism of the NDC effect and open up new opportunities for the performance improvement of GFETs in future high-frequency applications, beyond the current paradigm based on two-terminal diodes.
Zhou, Rong; Tang, Pinghua; Chen, Yu; Chen, Shuqing; Zhao, Chujun; Zhang, Han; Wen, Shuangchun
2014-01-10
Nonlinear transmission parameters of monolayer graphene at 1645 nm were obtained. Based on the monolayer graphene saturable absorber, a 1532 nm LD pumped 1645 nm passively Q-switched Er:YAG laser was demonstrated. Under the pump power of 20.8 W, a 1645 nm Q-switched pulse with FWHM of 0.13 nm (without the use of etalon) and energy of 13.5 μJ per pulse can be obtained. To the best of our knowledge, this is the highest pulse energy for graphene-based passively Q-switched Er:YAG laseroperating at 1645 nm, suggesting the potentials of graphene materials for high-energy solid-state laser applications.
NASA Astrophysics Data System (ADS)
Cai, Wei; Li, Yaqi; Zhu, Hongtong; Jiang, Shouzhen; Xu, Shicai; Liu, Jie; Zheng, Lihe; Su, Liangbi; Xu, Jun
2014-12-01
A reflective graphene saturable absorber mirror (SAM) was successfully fabricated by chemical vapor deposition technology. A stable diode-pumped passively mode-locked Yb3+:Sc2SiO5 laser using a graphene SAM as a saturable absorber was accomplished for the first time. The measured average output power amounts to 351 mW under the absorbed pump power of 12.5 W. Without prisms compensating for dispersion, the minimum pulse duration of 7 ps with a repetition rate of 97 MHz has been obtained at the central wavelength of 1063 nm. The corresponding peak power and the maximum pulse energy were 516 W and 3.6 nJ, respectively.
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.
1981-01-01
Protective bypass diodes and mounting configurations which are applicable for use with photovoltaic modules having power dissipation requirements in the 5 to 50 watt range were investigated. Using PN silicon and Schottky diode characterization data on packaged diodes and diode chips, typical diodes were selected as representative for each range of current carrying capacity, an appropriate heat dissipating mounting concept along with its environmental enclosure was defined, and a thermal analysis relating junction temperature as a function of power dissipation was performed. In addition, the heat dissipating mounting device dimensions were varied to determine the effect on junction temperature. The results of the analysis are presented as a set of curves indicating junction temperature as a function of power dissipation for each diode package.
NASA Astrophysics Data System (ADS)
Gotti, Riccardo; Prevedelli, Marco; Kassi, Samir; Marangoni, Marco; Romanini, Daniele
2018-02-01
We apply a feed-forward frequency control scheme to establish a phase-coherent link from an optical frequency comb to a distributed feedback (DFB) diode laser: This allows us to exploit the full laser tuning range (up to 1 THz) with the linewidth and frequency accuracy of the comb modes. The approach relies on the combination of an RF single-sideband modulator (SSM) and of an electro-optical SSM, providing a correction bandwidth in excess of 10 MHz and a comb-referenced RF-driven agile tuning over several GHz. As a demonstration, we obtain a 0.3 THz cavity ring-down scan of the low-pressure methane absorption spectrum. The spectral resolution is 100 kHz, limited by the self-referenced comb, starting from a DFB diode linewidth of 3 MHz. To illustrate the spectral resolution, we obtain saturation dips for the 2ν3 R(6) methane multiplet at μbar pressure. Repeated measurements of the Lamb-dip positions provide a statistical uncertainty in the kHz range.
Transistor biased amplifier minimizes diode discriminator threshold attenuation
NASA Technical Reports Server (NTRS)
Larsen, R. N.
1967-01-01
Transistor biased amplifier has a biased diode discriminator driven by a high impedance /several megohms/ current source, rather than a voltage source with several hundred ohms output impedance. This high impedance input arrangement makes the incremental impedance of the threshold diode negligible relative to the input impedance.
The determination of modified barrier heights in Ti/GaN nano-Schottky diodes at high temperature.
Lee, Seung-Yong; Kim, Tae-Hong; Chol, Nam-Kyu; Seong, Han-Kyu; Choi, Heon-Jin; Ahn, Byung-Guk; Lee, Sang-Kwon
2008-10-01
We have investigated the size-effect of the nano-Schottky diodes on the electrical transport properties and the temperature-dependent current transport mechanism in a metal-semiconductor nanowire junction (a Ti/GaN nano-Schottky diode) using current-voltage characterization in the range of 300-423 K. We found that the modified mean Schottky barrier height (SBH) was approximately 0.7 eV with a standard deviation of approximately 0.14 V using a Gaussian distribution model of the barrier heights. The slightly high value of the modified mean SBH (approximately 0.11 eV) compared to the results from the thin-film based Ti/GaN Schottky diodes could be due to an additional oxide layer at the interface between the Ti and GaN nanowires. Moreover, we found that the abnormal behavior of the barrier heights and the ideality factors in a Ti/GaN nano-Schottky diode at a temperature below 423 K could be explained by a combination of the enhancement of the tunneling current and a model with a Gaussian distribution of the barrier heights.
Electrical system for a motor vehicle
Tamor, Michael Alan
1999-01-01
In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.
Electrical system for a motor vehicle
Tamor, M.A.
1999-07-20
In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.
Shot-to-shot reproducibility of a self-magnetically insulated ion diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pushkarev, A. I.; Isakova, Yu. I.; Khailov, I. P.
In this paper we present the analysis of shot to shot reproducibility of the ion beam which is formed by a self-magnetically insulated ion diode with an explosive emission graphite cathode. The experiments were carried out with the TEMP-4M accelerator operating in double-pulse mode: the first pulse is of negative polarity (300-500 ns, 100-150 kV), and this is followed by a second pulse of positive polarity (150 ns, 250-300 kV). The ion current density was 10-70 A/cm{sup 2} depending on the diode geometry. The beam was composed from carbon ions (80%-85%) and protons. It was found that shot to shotmore » variation in the ion current density was about 35%-40%, whilst the diode voltage and current were comparatively stable with the variation limited to no more than 10%. It was shown that focusing of the ion beam can improve the stability of the ion current generation and reduces the variation to 18%-20%. In order to find out the reason for the shot-to-shot variation in ion current density we examined the statistical correlation between the current density of the accelerated beam and other measured characteristics of the diode, such as the accelerating voltage, total current, and first pulse duration. The correlation between the ion current density measured simultaneously at different positions within the cross-section of the beam was also investigated. It was shown that the shot-to-shot variation in ion current density is mainly attributed to the variation in the density of electrons diffusing from the drift region into the A-K gap.« less
Shot-to-shot reproducibility of a self-magnetically insulated ion diode.
Pushkarev, A I; Isakova, Yu I; Khailov, I P
2012-07-01
In this paper we present the analysis of shot to shot reproducibility of the ion beam which is formed by a self-magnetically insulated ion diode with an explosive emission graphite cathode. The experiments were carried out with the TEMP-4M accelerator operating in double-pulse mode: the first pulse is of negative polarity (300-500 ns, 100-150 kV), and this is followed by a second pulse of positive polarity (150 ns, 250-300 kV). The ion current density was 10-70 A/cm(2) depending on the diode geometry. The beam was composed from carbon ions (80%-85%) and protons. It was found that shot to shot variation in the ion current density was about 35%-40%, whilst the diode voltage and current were comparatively stable with the variation limited to no more than 10%. It was shown that focusing of the ion beam can improve the stability of the ion current generation and reduces the variation to 18%-20%. In order to find out the reason for the shot-to-shot variation in ion current density we examined the statistical correlation between the current density of the accelerated beam and other measured characteristics of the diode, such as the accelerating voltage, total current, and first pulse duration. The correlation between the ion current density measured simultaneously at different positions within the cross-section of the beam was also investigated. It was shown that the shot-to-shot variation in ion current density is mainly attributed to the variation in the density of electrons diffusing from the drift region into the A-K gap.
Laser damage tests on InSb photodiodes at 1.064 micron and 0.532 micron
NASA Technical Reports Server (NTRS)
Bearman, G. H.; Staller, C.; Mahoney, C.
1992-01-01
InSb photodiodes were examined for performance degradation after pulsed laser illumination at 0.532 micron and 1.064 micron. Incident laser powers ranged from 6 x 10 exp-18 micron-watts to 16 micron-watts in a 50 pm diameter spot. Dark current and spectral response were both measured before and after illumination. Dark current measurements were taken with the diode blanked off and viewing only 77 K surfaces. Long term stability tests demonstrated that the blackbody did not exhibit long term drifts. Other tests showed that room temperature variations did not affect the diode signal chain or the digitization electronics used in data acquisition. Results of the experiment show that the diodes did not exhibit changes in dark current or spectral response performance as a result of the laser illumination. A typical change in diode spectral response (before/after laser exposure) was about 0.2 percent +/- 0.2 percent.
100 years of the physics of diodes
NASA Astrophysics Data System (ADS)
Zhang, Peng; Valfells, Ágúst; Ang, L. K.; Luginsland, J. W.; Lau, Y. Y.
2017-03-01
The Child-Langmuir Law (CL), discovered a century ago, gives the maximum current that can be transported across a planar diode in the steady state. As a quintessential example of the impact of space charge shielding near a charged surface, it is central to the studies of high current diodes, such as high power microwave sources, vacuum microelectronics, electron and ion sources, and high current drivers used in high energy density physics experiments. CL remains a touchstone of fundamental sheath physics, including contemporary studies of nanoscale quantum diodes and nano gap based plasmonic devices. Its solid state analog is the Mott-Gurney law, governing the maximum charge injection in solids, such as organic materials and other dielectrics, which is important to energy devices, such as solar cells and light emitting diodes. This paper reviews the important advances in the physics of diodes since the discovery of CL, including virtual cathode formation and extension of CL to multiple dimensions, to the quantum regime, and to ultrafast processes. We review the influence of magnetic fields, multiple species in bipolar flow, electromagnetic and time dependent effects in both short pulse and high frequency THz limits, and single electron regimes. Transitions from various emission mechanisms (thermionic-, field-, and photoemission) to the space charge limited state (CL) will be addressed, especially highlighting the important simulation and experimental developments in selected contemporary areas of study. We stress the fundamental physical links between the physics of beams to limiting currents in other areas, such as low temperature plasmas, laser plasmas, and space propulsion.
Spin-polarized light-emitting diodes based on organic bipolar spin valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham
Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.
Pseudo-diode based on protonic/electronic hybrid oxide transistor
NASA Astrophysics Data System (ADS)
Fu, Yang Ming; Liu, Yang Hui; Zhu, Li Qiang; Xiao, Hui; Song, An Ran
2018-01-01
Current rectification behavior has been proved to be essential in modern electronics. Here, a pseudo-diode is proposed based on protonic/electronic hybrid indium-gallium-zinc oxide electric-double-layer (EDL) transistor. The oxide EDL transistors are fabricated by using phosphorous silicate glass (PSG) based proton conducting electrolyte as gate dielectric. A diode operation mode is established on the transistor, originating from field configurable proton fluxes within the PSG electrolyte. Current rectification ratios have been modulated to values ranged between ˜4 and ˜50 000 with gate electrode biased at voltages ranged between -0.7 V and 0.1 V. Interestingly, the proposed pseudo-diode also exhibits field reconfigurable threshold voltages. When the gate is biased at -0.5 V and 0.3 V, threshold voltages are set to ˜-1.3 V and -0.55 V, respectively. The proposed pseudo-diode may find potential applications in brain-inspired platforms and low-power portable systems.
The method of pulsed x-ray detection with a diode laser.
Liu, Jun; Ouyang, Xiaoping; Zhang, Zhongbing; Sheng, Liang; Chen, Liang; Tan, Xinjian; Weng, Xiufeng
2016-12-01
A new class of pulsed X-ray detection methods by sensing carrier changes in a diode laser cavity has been presented and demonstrated. The proof-of-principle experiments on detecting pulsed X-ray temporal profile have been done through the diode laser with a multiple quantum well active layer. The result shows that our method can achieve the aim of detecting the temporal profile of a pulsed X-ray source. We predict that there is a minimum value for the pre-bias current of the diode laser by analyzing the carrier rate equation, which exists near the threshold current of the diode laser chip in experiments. This behaviour generally agrees with the characterizations of theoretical analysis. The relative sensitivity is estimated at about 3.3 × 10 -17 C ⋅ cm 2 . We have analyzed the time scale of about 10 ps response with both rate equation and Monte Carlo methods.
Wu, Chia-Ching; Yang, Cheng-Fu
2013-06-12
P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.
Investigation of significantly high barrier height in Cu/GaN Schottky diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garg, Manjari, E-mail: meghagarg142@gmail.com; Kumar, Ashutosh; Singh, R.
2016-01-15
Current-voltage (I-V) measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu) Schottky diodes fabricated on Gallium Nitride (GaN) epitaxial films. An ideality factor of 1.7 was found at room temperature (RT), which indicated deviation from thermionic emission (TE) mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE) mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS) was used to investigate the plausible reason for observing Schottky barrier height (SBH) that is significantlymore » higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu{sub 2}O) layer at the interface between Cu and GaN. With Cu{sub 2}O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu{sub 2}O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.« less
Large laser projection displays utilizing all-solid-state RGB lasers
NASA Astrophysics Data System (ADS)
Xu, Zuyan; Bi, Yong
2005-01-01
RGB lasers projection displays have the advantages of producing large color triangle, high color saturation and high image resolution. In this report, with more than 4W white light synthesized by red (671nm), green (532nm) and blue (473nm) lasers, a RGB laser projection display system based on diode pumped solid-state lasers is developed and the performance of brilliant and vivid DVD dynamitic pictures on 60 inch screen is demonstrated.
NASA Astrophysics Data System (ADS)
Gharib, A.; Hagedorn, D.; Della Corte, A.; Fiamozzi Zignani, C.; Turtu, S.; Brown, D.; Rout, C.
2004-06-01
For the protection of the LHC superconducting magnets, about 2100 specially developed by-pass diodes were manufactured by DYNEX SEMICONDUCTOR LTD (Lincoln, GB) and about 1300 of these diodes were mounted into diode stacks and submitted to tests at cryogenic temperatures. To date about 800 dipole diode stacks and about 250 quadrupole diode stacks for the protection of the superconducting lattice dipole and lattice quadrupole magnets have been assembled at OCEM (Bologna,Italy) and successfully tested in liquid helium at ENEA (Frascati, Italy). This report gives an overview of the test results obtained so far. After a short description of the test installations and test procedures, a statistical analysis is presented for test data during diode production as well as for the performance of the diode stacks during testing in liquid helium, including failure rates and degradation of the diodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreedhar, Sreeja, E-mail: sreejasreedhar83@gmail.com; Muneera, C. I., E-mail: drcimuneera@hotmail.com; Illyaskutty, Navas
2016-05-21
Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of themore » polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.« less
Passive Q-switching of a Tm,Ho:KLu(WO4)2 microchip laser by a Cr:ZnS saturable absorber.
Serres, J M; Loiko, P; Mateos, X; Jambunathan, V; Yasukevich, A S; Yumashev, K V; Petrov, V; Griebner, U; Aguiló, M; Díaz, F
2016-05-10
A diode-pumped Tm,Ho:KLu(WO4)2 microchip laser passively Q-switched with a Cr:ZnS saturable absorber generated an average output power of 131 mW at 2063.6 nm with a slope efficiency of 11% and a Q-switching conversion efficiency of 58%. The pulse characteristics were 14 ns/9 μJ at a pulse repetition frequency of 14.5 kHz. With higher modulation depth of the saturable absorber, 9 ns/10.4 μJ/8.2 kHz pulses were generated at 2061.1 nm, corresponding to a record peak power extracted from a passively Q-switched Tm,Ho laser of 1.15 kW. A theoretical model is presented, predicting the pulse energy and duration. The simulations are in good agreement with the experimental results.
NUCLEAR REACTOR AND THERMIONIC FUEL ELEMENT THEREFOR
Rasor, N.S.; Hirsch, R.L.
1963-12-01
The patent relates to the direct conversion of fission heat to electricity by use of thermionic plasma diodes having fissionable material cathodes, said diodes arranged to form a critical mass in a nuclear reactor. The patent describes a fuel element comprising a plurality of diodes each having a fissionable material cathode, an anode around said cathode, and an ionizable gas therebetween. Provision is made for flowing the gas and current serially through the diodes. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rondeau, G.D.
1989-01-01
Magnetically insulated diodes (MIDs) are of interest as ion sources for inertial confinement fusion. The authors examined several issues that are of concern with MIDs, including ion turn-on delay and anode plasma production, and diode impedance history and particle current scaling with the applied magnetic field and gas spacing. The LION pulsed power generator (1.5 MV, 4 {Omega}, 40 ns pulse length) was used to power an extractor geometry magnetically insulated (radical magnetic field) ion beam diode. The diode was studied with three anode configurations. In the first, with epoxy-filled-groove (epoxy) anodes, scaling of the ion and electron currents withmore » the gap and the magnetic field was examined. He found that the observed ion current is consistent with a diode model that has been successful with barrel geometry MIDs. The electron leakage current scaled proportionally to 1/Bd{sup 2}, where d is the anode-cathode gap spacing and B is the magnetic field strength. Studies of ion beam propagation in vacuum showed that space charge non-neutrality near the magnetic field coils caused the beam to expand initially. Later in the ion pulse (20 to 30 ns), the beam expansion became much less severe. The second anode configuration utilized an electron collector protruding above an epoxy anode surface. With the collector, he observed less bremsstrahlung across the active anode region. The last anode configuration studied was the exploding metal film active anode plasma source (EMFAAPS). Current from the accelerator was directed by an electron collector or a plasma opening switch through a thin aluminum film, which exploded to form the anode plasma.« less
Bistable optical devices with laser diodes coupled to absorbers of narrow spectral bandwidth.
Maeda, Y
1994-06-20
An optical signal inverter was demonstrated with a combination of the following two effects: One is the decrease of the transmission of an Er-doped YAG crystal with increasing red shift of a laser diode resulting from an increase in the injection current, and the other is a negative nonlinear absorption in which the transmission decreases inversely with increasing laser intensity. Because a hysteresis characteristic exists in the relationship between the wavelength and the injection current of the laser diode, an optical bistability was observed in this system.
High-voltage crowbar circuit with cascade-triggered series ignitrons
Baker, William R. [Orinda, CA
1980-11-04
A series string of ignitrons for switching a large current at high voltage to ground. Switching is initiated by means of a negative trigger pulse applied to the cathode of the lowest voltage level ignitron next to ground to draw ground current through diodes in the ignitor circuit. The trigger pulse is applied thereby to the next higher ignitron cathode and sequentially to the remainder of the ignitrons in the string through diodes in respective ignitor circuits. Full line voltage is held off of nonconducting diodes and ignitrons by means of varistors.
High-voltage crowbar circuit with cascade-triggered series ignitrons
Baker, W.R.
A series string of ignitrons for switching a large current at high voltage to ground is discussed. Switching is initiated by means of a negative trigger pulse applied to the cathode of the lowest voltage level ignitron next to ground to draw ground current through diodes in the ignitor circuit. The trigger pulse is applied thereby to the next higher ignitron cathode and sequentially to the remainder of the ignitrons in the string through diodes in respective ignitor circuits. Full line voltage is held off of nonconducting diodes and ignitrons by means of varistors.
High-voltage crowbar circuit with cascade-triggered series ignitrons
Baker, W.R.
1980-11-04
A series string of ignitrons for switching a large current at high voltage to ground. Switching is initiated by means of a negative trigger pulse applied to the cathode of the lowest voltage level ignitron next to ground to draw ground current through diodes in the ignitor circuit. The trigger pulse is applied thereby to the next higher ignitron cathode and sequentially to the remainder of the ignitrons in the string through diodes in respective ignitor circuits. Full line voltage is held off of nonconducting diodes and ignitrons by means of varistors. 1 fig.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gyeong Won; Shim, Jong-In; Shin, Dong-Soo, E-mail: dshin@hanyang.ac.kr
While there have been many discussions on the standard Si pn-diodes, little attention has been paid and confusion still arises on the ideality factor of the radiative recombination current in semiconductor light-emitting diodes (LEDs). In this letter, we theoretically demonstrate and experimentally confirm by using blue and infrared semiconductor LEDs that the ideality factor of the radiative recombination current is unity especially for low-current-density ranges. We utilize the data of internal quantum efficiency measured by the temperature-dependent electroluminescence to separate the radiative current component from the total current.
Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95 μm.
Nie, Hongkun; Zhang, Peixiong; Zhang, Baitao; Yang, Kejian; Zhang, Lianhan; Li, Tao; Zhang, Shuaiyi; Xu, Jianqiu; Hang, Yin; He, Jingliang
2017-02-15
A diode-end-pumped continuous-wave (CW) and passively Q-switched Ho, Pr:LiLuF4 (Ho, Pr:LLF) laser operation at 2.95 μm was demonstrated for the first time, to the best of our knowledge. The maximum CW output power was 172 mW. By using a monolayer graphene as the saturable absorber, the passively Q-switched operation was realized, in which regimes with the highest output power, the shortest pulse duration, and the maximum repetition rate were determined to be 88 mW, 937.5 ns, and 55.7 kHz, respectively. The laser beam quality factor M2 at the maximum CW output power were measured to be Mx2=1.48 and My2=1.47.
NASA Astrophysics Data System (ADS)
Otsuka, Kenju; Chu, Shu-Chun
2017-07-01
Selective excitation of Laguerre-Gauss modes (optical vortices: helical LG0,2 and LG0,1), reflecting their weak transverse cross-saturation of population inversions against a preceding higher-order Ince-Gauss (IG0,2) or Hermite-Gauss (HG2,1) mode, was observed in a thin-slice c-cut Nd:GdVO4 laser with wide-aperture laser-diode end pumping. Single-frequency coherent vector beams were generated through the transverse mode locking of a pair of orthogonally polarized IG2,0 and LG0,2 or HG2,1 and LG0,1 modes. Highly sensitive self-mixing rotational and translational Doppler velocimetry is demonstrated by using vortex and coherent vector beams.
NASA Astrophysics Data System (ADS)
Venkata Prasad, C.; Rajagopal Reddy, V.; Choi, Chel-Jong
2017-04-01
The electrical and transport properties of rare-earth Y2O3 on n-type GaN with Au electrode have been investigated by current-voltage and capacitance-voltage techniques at room temperature. The Au/Y2O3/n-GaN metal-insulator-semiconductor (MIS) diode shows a good rectification behavior compared to the Au/n-GaN metal-semiconductor (MS) diode. Statistical analysis showed that a mean barrier height (BH) and ideality factor are 0.78 eV and 1.93, and 0.96 eV and 2.09 for the Au/n-GaN MS and Au/Y2O3/n-GaN MIS diodes, respectively. Results indicate that the high BH is obtained for the MIS diode compared to the MS diode. The BH, ideality factor and series resistance are also estimated by Cheung's function and Norde method. From the forward current-voltage data, the interface state density ( N SS) is estimated for both the MS and MIS Schottky diodes, and found that the estimated N SS is lower for the MIS diode compared to the MS diode. The results reveal that the introduction of Y2O3 interlayer facilitated the reduction of N SS of the Au/n-GaN interface. Experimental results suggest that the Poole-Frenkel emission is a dominant conduction mechanism in the reverse bias region of both Au/n-GaN MS and Au/Y2O3/n-GaN MIS diodes.
High temperature semiconductor diode laser pumps for high energy laser applications
NASA Astrophysics Data System (ADS)
Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel
2018-02-01
Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.
Acoustoelectric current saturation in c-axis fiber-textured polycrystalline zinc oxide films
NASA Astrophysics Data System (ADS)
Pompe, T.; Srikant, V.; Clarke, D. R.
1996-12-01
Acoustoelectric current saturation, which until now has only been observed in piezoelectric single crystals, is observed in thin polycrystalline zinc oxide films. Epitaxial ZnO films on c-plane sapphire and textured ZnO polycrystalline films on fused silica both exhibit current saturation phenomenon. The values of the saturation current densities are in the range 105-106 A/cm2, depending on the carrier concentration in the film, with corresponding saturation electric fields of 3-5×103 V/cm. In addition to the current saturation, the electrical properties of the films degraded with the onset of the acoustoelectric effect but could be restored by annealing at 250 °C in a vacuum for 30 min.
Silicon Carbide Diodes Performance Characterization and Comparison With Silicon Devices
NASA Technical Reports Server (NTRS)
Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Trapp, Scott
2003-01-01
Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers were electrically tested and characterized at room temperature. Performed electrical tests include steady state forward and reverse I-V curves, as well as switching transient tests performed with the diodes operating in a hard switch dc-to-dc buck converter. The same tests were performed in current state of the art silicon (Si) and gallium arsenide (GaAs) Schottky and pn junction devices for evaluation and comparison purposes. The SiC devices tested have a voltage rating of 200, 300, and 600 V. The comparison parameters are forward voltage drop at rated current, reverse current at rated voltage and peak reverse recovery currents in the dc to dc converter. Test results show that steady state characteristics of the tested SiC devices are not superior to the best available Si Schottky and ultra fast pn junction devices. Transient tests reveal that the tested SiC Schottky devices exhibit superior transient behavior. This is more evident at the 300 and 600 V rating where SiC Schottky devices showed drastically lower reverse recovery currents than Si ultra fast pn diodes of similar rating.
Silicon Carbide Diodes Performance Characterization at High Temperatures
NASA Technical Reports Server (NTRS)
Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry
2004-01-01
NASA Glenn Research center's Electrical Systems Development branch is working to demonstrate and test the advantages of Silicon Carbide (SiC) devices in actual power electronics applications. The first step in this pursuit is to obtain commercially available SiC Schottky diodes and to individually test them under both static and dynamic conditions, and then compare them with current state of the art silicon Schottky and ultra fast p-n diodes of similar voltage and current ratings. This presentation covers the results of electrical tests performed at NASA Glenn. Steady state forward and reverse current-volt (I-V) curves were generated for each device to compare performance and to measure their forward voltage drop at rated current, as well as the reverse leakage current at rated voltage. In addition, the devices were individually connected as freewheeling diodes in a Buck (step down) DC to DC converter to test their reverse recovery characteristics and compare their transient performance in a typical converter application. Both static and transient characterization tests were performed at temperatures ranging from 25 C to 300 C, in order to test and demonstrate the advantages of SiC over Silicon at high temperatures.
How to realize a spin-dependent Seebeck diode effect in metallic zigzag γ-graphyne nanoribbons?
Wu, Dan-Dan; Liu, Qing-Bo; Fu, Hua-Hua; Wu, Ruqian
2017-11-30
The spin-dependent Seebeck effect (SDSE) is one of the core topics of spin caloritronics. In the traditional device designs of spin-dependent Seebeck rectifiers and diodes, finite spin-dependent band gaps of materials are required to realize the on-off characteristic in thermal spin currents, and nearly zero charge current should be achieved to reduce energy dissipation. Here, we propose that two ferromagnetic zigzag γ-graphyne nanoribbons (ZγGNRs) without any spin-dependent band gaps around the Fermi level can not only exhibit the SDSE, but also display rectifier and diode effects in thermal spin currents characterized by threshold temperatures, which originates from the compensation effect occurring in spin-dependent transmissions but not from the spin-splitting band gaps in materials. The metallic characteristics of ZγGNRs bring about an advantage that the gate voltage is an effective route to adjust the symmetry of spin-splitting bands to obtain pure thermal spin currents. The results provide a new mechanism to realize spin-Seebeck rectifier and diode effects in 2D materials and expand material candidates towards spin-Seebeck device applications.
Diode Laser Measurements of Concentration and Temperature in Microgravity Combustion
NASA Technical Reports Server (NTRS)
Silver, Joel A.; Kane, Daniel J.
1999-01-01
Diode laser absorption spectroscopy provides a direct method of determinating species concentration and local gas temperature in combustion flames. Under microgravity conditions, diode lasers are particularly suitable, given their compact size, low mass and low power requirements. The development of diode laser-based sensors for gas detection in microgravity is presented, detailing measurements of molecular oxygen. Current progress of this work and future application possibilities for these methods on the International Space Station are discussed.
Back-streaming ion beam measurements in a Self Magnetic Insulated (SMP) electron diode
NASA Astrophysics Data System (ADS)
Mazarakis, Michael; Johnston, Mark; Kiefer, Mark; Leckbee, Josh; Webb, Timothy; Bennett, Nichelle; Droemer, Darryl; Welch, Dale; Nielsen, Dan; Ziska, Derek; Wilkins, Frank; Advance radiography department Team
2014-10-01
A self-magnetic pinch diode (SMP) is presently the electron diode of choice for high energy flash x-ray radiography utilizing pulsed power drivers. The Sandia National Laboratories RITS accelerator is presently fit with an SMP diode that generates very small electron beam spots. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The diode's anode is made of high Z metal in order to produce copious and energetic flash x-rays for radiographic imaging of high areal density objects. In any high voltage inductive voltage adder (IVA) utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the anode-cathode (A-K) gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (~1 cm) and the diode region very hostile. We are currently measuring the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip. We then are evaluating the A-K gap voltage by ion time of flight measurements supplemented with filtered Rogowski coils. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE- AC04-94AL850.
Rectified diode response of a multimode quantum cascade laser integrated terahertz transceiver.
Dyer, Gregory C; Norquist, Christopher D; Cich, Michael J; Grine, Albert D; Fuller, Charles T; Reno, John L; Wanke, Michael C
2013-02-25
We characterized the DC transport response of a diode embedded in a THz quantum cascade laser as the laser current was changed. The overall response is described by parallel contributions from the rectification of the laser field due to the non-linearity of the diode I-V and from thermally activated transport. Sudden jumps in the diode response when the laser changes from single mode to multi-mode operation, with no corresponding jumps in output power, suggest that the coupling between the diode and laser field depends on the spatial distribution of internal fields. The results demonstrate conclusively that the internal laser field couples directly to the integrated diode.
Shock isolator for diode laser operation on a closed-cycle refrigerator
NASA Technical Reports Server (NTRS)
Jennings, D. E.; Hillman, J. J.
1977-01-01
Closed-cycle helium refrigerators are widely used as coolers for semiconductor diode lasers. These refrigerators pose several difficulties including temperature oscillations due to varying refrigerator capacity during the Solvay cycle, and impact shocks delivered to the diode in the cycle's expansion phase. A shock isolator has been designed to isolate diode lasers from such impact shocks. Slow diode current scans have been made before installation of the shock isolator, with the isolator but no thermal damper, and with both devices. With the isolator and no damper, the diode output frequency oscillated at the refrigerator cycle rate, deviating by plus or minus 40 MHz. Using the isolator and the damper no frequency fluctuation was detected.
DC switching regulated power supply for driving an inductive load
Dyer, George R.
1986-01-01
A power supply for driving an inductive load current from a dc power supply hrough a regulator circuit including a bridge arrangement of diodes and switching transistors controlled by a servo controller which regulates switching in response to the load current to maintain a selected load current. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. The regulator may be operated in three "stages" or modes: (1) For current runup in the load, both first and second transistor switch arrays are turned "on" and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned "off", and load current "flywheels" through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays "off", allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load. The three operating states are controlled automatically by the controller.
Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique.
Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu
2017-04-26
In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed.
The transverse magnetic field effect on steady-state solutions of the Bursian diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramanik, Sourav; Chakrabarti, Nikhil; Ender, A. Ya.
2015-04-15
A study of steady-states of a planar vacuum diode driven by a cold electron beam (the Bursian diode) under an external transverse magnetic field is presented. The regime of no electrons turned around by a magnetic field only is under the consideration. The emitter electric field is evaluated as a characteristic function for the existence of solutions depending on the diode length, the applied voltage, and the magnetic field strength. At certain conditions, it is shown that a region of non-unique solutions exists in the Bursian diode when the magnetic field is absent. An expression for the maximum current transmittedmore » through the diode is derived. The external magnetic field is put forth to control fast electronic switches based on the Bursian diode.« less
Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique
Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu
2017-01-01
In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed. PMID:28445393
Trap-induced photoconductivity in singlet fission pentacene diodes
NASA Astrophysics Data System (ADS)
Qiao, Xianfeng; Zhao, Chen; Chen, Bingbing; Luan, Lin
2014-07-01
This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leading to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.
Development and optimization of a miniaturized fiber-optic photoplethysmographic sensor
NASA Astrophysics Data System (ADS)
Morley, Aisha; Davenport, John J.; Hickey, Michelle; Phillips, Justin P.
2017-11-01
Photoplethysmography (PPG) is a widely used technique for measuring blood oxygen saturation, commonly using an external pulse oximeter applied to a finger, toe, or earlobe. Previous research has demonstrated the utility of direct monitoring of the oxygen saturation of internal organs, using optical fibers to transmit light between the photodiode/light emitting diode and internal site. However, little research into the optimization and standardization of such a probe has yet been carried out. This research establishes the relationship between fiber separation distance and PPG signal, and between fiber core width and PPG signal. An ideal setup is suggested: 1000-μm fibers at a separation distance of 3 to 3.5 mm, which was found to produce signals around 0.35 V in amplitude with a low variation coefficient.
NASA Technical Reports Server (NTRS)
Siegel, P. H.; Kerr, A. R.
1979-01-01
A user oriented computer program for analyzing microwave and millimeter wave mixers with a single Schottky barrier diode of known I-V and C-V characteristics is described. The program first performs a nonlinear analysis to determine the diode conductance and capacitance waveforms produced by the local oscillator. A small signal linear analysis is then used to find the conversion loss, port impedances, and input noise temperature of the mixer. Thermal noise from the series resistance of the diode and shot noise from the periodically pumped current in the diode conductance are considered. The effects of the series inductance and diode capacitance on the performance of some simple mixer circuits using a conventional Schottky diode, a Schottky diode in which there is no capacitance variation, and a Mott diode are studied. It is shown that the parametric effects of the voltage dependent capacitance of a conventional Schottky diode may be either detrimental or beneficial depending on the diode and circuit parameters.
Child-Langmuir flow in a planar diode filled with charged dust impurities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Xiaoyan; Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44870 Bochum; Shukla, Padma Kant
The Child-Langmuir (CL) flow in a planar diode in the presence of stationary charged dust particles is studied. The limiting electron current density and other diode properties, such as the electrostatic potential, the electron flow speed, and the electron number density, are calculated analytically. A comparison of the results with the case without dust impurities reveals that the diode parameters mentioned above decrease with the increase of the dust charge density. Furthermore, it is found that the classical scaling of D{sup -2} (the gap spacing D) for the CL current density remains exactly valid, while the scaling of V{sup 3/2}more » (the applied gap voltage V) can be a good approximation for low applied gap voltage and for low dust charge density.« less
A study of temperature-related non-linearity at the metal-silicon interface
NASA Astrophysics Data System (ADS)
Gammon, P. M.; Donchev, E.; Pérez-Tomás, A.; Shah, V. A.; Pang, J. S.; Petrov, P. K.; Jennings, M. R.; Fisher, C. A.; Mawby, P. A.; Leadley, D. R.; McN. Alford, N.
2012-12-01
In this paper, we investigate the temperature dependencies of metal-semiconductor interfaces in an effort to better reproduce the current-voltage-temperature (IVT) characteristics of any Schottky diode, regardless of homogeneity. Four silicon Schottky diodes were fabricated for this work, each displaying different degrees of inhomogeneity; a relatively homogeneous NiV/Si diode, a Ti/Si and Cr/Si diode with double bumps at only the lowest temperatures, and a Nb/Si diode displaying extensive non-linearity. The 77-300 K IVT responses are modelled using a semi-automated implementation of Tung's electron transport model, and each of the diodes are well reproduced. However, in achieving this, it is revealed that each of the three key fitting parameters within the model display a significant temperature dependency. In analysing these dependencies, we reveal how a rise in thermal energy "activates" exponentially more interfacial patches, the activation rate being dependent on the carrier concentration at the patch saddle point (the patch's maximum barrier height), which in turn is linked to the relative homogeneity of each diode. Finally, in a review of Tung's model, problems in the divergence of the current paths at low temperature are explained to be inherent due to the simplification of an interface that will contain competing defects and inhomogeneities.
NASA Astrophysics Data System (ADS)
Kaur, Jotinder; Sharma, Vinay; Sharma, Vipul; Veerakumar, V.; Kuanr, Bijoy K.
2016-05-01
Barium Hexaferrite (BaM) is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm)/silicon substrate was used to grow the BaM thin films (100-150 nm) using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc) voltage much larger.
Electrical Properties of a p-n Heterojunction of Li-Doped NiO and Al-Doped ZnO for Thermoelectrics
NASA Astrophysics Data System (ADS)
Desissa, Temesgen D.; Schrade, Matthias; Norby, Truls
2018-06-01
The electrical properties of a p-n heterojunction of polycrystalline p-type Ni0.98Li0.02O and n-type Zn0.98Al0.02O have been investigated for potential applications in high-temperature oxide-based thermoelectric generators without metallic interconnects. Current-voltage characteristics of the junction were measured in a two-electrode setup in ambient air at 500-1000°C. The resistance and rectification of the junction decreased with increasing temperature. A non-ideal Shockley diode model was used to fit the measured current-voltage data in order to extract characteristic parameters of the junction, such as area-specific series resistance R s and parallel shunt resistance R p, non-ideality factor, and the saturation current density. R s and R p decreased exponentially with temperature, with activation energies of 0.4 ± 0.1 eV and 1.1 ± 0.2 eV, respectively. The interface resistance of the direct p-n junction studied here is as such too high for practical applications in thermoelectrics. However, it is demonstrated that it can be reduced by an order of magnitude by using a composite of the individual materials at the interface, yielding a large effective contact area.
High-Sensitivity, Broad-Range Vacuum Gauge Using Nanotubes for Micromachined Cavities
NASA Technical Reports Server (NTRS)
Manohara, Harish; Kaul, Anupama B.
2011-01-01
A broad-range vacuum gauge has been created by suspending a single-walled carbon nanotube (SWNT) (metallic or semiconducting) in a Schottky diode format or in a bridge conductor format, between two electrically charged mesas. SWNTs are highly sensitive to molecular collisions because of their extremely small diameters in the range of 1 to 3 nanometers. The measurement parameter will be the change in conductivity of SWNT due to decreasing rate of molecular collisions as the pressure inside a chamber decreases. The rate of heat removal approaches a saturation limit as the mean free path (m.f.p.) lengths of molecules increase due to decreasing pressure. Only those sensing elements that have a long relaxation time can produce a measureable response when m.f.p. of molecules increases (or time between two consecutive collisions increases). A suspended SWNT offers such a capability because of its one-dimensional nature and ultrasmall diameter. In the initial approach, similar architecture was used as that of a SWNT-Schottky diode that has been developed at JPL, and has its changing conductivity measured as the test chamber is pumped down from atmospheric pressure to high vacuum (10(exp -7) Torr). Continuous response of decreasing conductivity has been measured as a function of decreasing pressure (SWNT is a negative thermal coefficient material) from atmosphere to less than 10(exp -6) Torr. A measureable current change in the hundreds of nA range has been recorded in the 10(exp -6) Torr regime.
Hakobyan, Sargis; Wittwer, Valentin J; Gürel, Kutan; Mayer, Aline S; Schilt, Stéphane; Südmeyer, Thomas
2017-11-15
We demonstrate, to the best of our knowledge, the first carrier-envelope offset (CEO) frequency stabilization of a GHz femtosecond laser based on opto-optical modulation (OOM) of a semiconductor saturable absorber mirror (SESAM). The 1.05-GHz laser is based on a Yb:CALGO gain crystal and emits sub-100-fs pulses with 2.1-W average power at a center wavelength of 1055 nm. The SESAM plays two key roles: it starts and stabilizes the mode-locking operation and is simultaneously used as an actuator to control the CEO frequency. This second functionality is implemented by pumping the SESAM with a continuous-wave 980-nm laser diode in order to slightly modify its nonlinear reflectivity. We use the standard f-to-2f method for detection of the CEO frequency, which is stabilized by applying a feedback signal to the current of the SESAM pump diode. We compare the SESAM-OOM stabilization with the traditional method of gain modulation via control of the pump power of the Yb:CALGO gain crystal. While the bandwidth for gain modulation is intrinsically limited to ∼250 kHz by the laser cavity dynamics, we show that the OOM provides a feedback bandwidth above 500 kHz. Hence, we were able to obtain a residual integrated phase noise of 430 mrad for the stabilized CEO beat, which represents an improvement of more than 30% compared to gain modulation stabilization.
Theory of active mode locking of a semiconductor laser in an external cavity
NASA Technical Reports Server (NTRS)
Yeung, J. A.
1981-01-01
An analytical treatment is given for the active mode locking of a semiconductor laser in an external resonator. The width of the mode-locked pulses is obtained as a function of the laser and cavity parameters and the amount of frequency detuning. The effects of self-modulation and saturation are included in the treatment. The pulse output is compared with that obtained by a strong modulation of the laser diode with no external cavity.
Picosecond Nd:BaY2F8 laser discretely tunable around 1 μm
NASA Astrophysics Data System (ADS)
Agnesi, A.; Pirzio, F.; Reali, G.; Toncelli, A.; Tonelli, M.
2010-09-01
Passive mode-locking of a diode-pumped Nd:BaY2F8 (Nd:BaYF) was achieved on four lines in the range 1040-1074 nm, employing a semiconductor saturable absorber mirror (SAM). Nearly Fourier-limited pulses with durations of 2.6 to 7.2 ps and output power ≈50 mW were generated in a dispersion-controlled resonator using a single prism for wavelength selection, tuning and dispersion management.
Li, Yingtao; Yuan, Peng; Fu, Liping; Li, Rongrong; Gao, Xiaoping; Tao, Chunlan
2015-10-02
Diode-like volatile resistive switching as well as nonvolatile resistive switching behaviors in a Cu/ZrO₂/TiO₂/Ti stack are investigated. Depending on the current compliance during the electroforming process, either volatile resistive switching or nonvolatile resistive switching is observed. With a lower current compliance (<10 μA), the Cu/ZrO₂/TiO₂/Ti device exhibits diode-like volatile resistive switching with a rectifying ratio over 10(6). The permanent transition from volatile to nonvolatile resistive switching can be obtained by applying a higher current compliance of 100 μA. Furthermore, by using different reset voltages, the Cu/ZrO₂/TiO₂/Ti device exhibits multilevel memory characteristics with high uniformity. The coexistence of nonvolatile multilevel memory and diode-like volatile resistive switching behaviors in the same Cu/ZrO₂/TiO₂/Ti device opens areas of applications in high-density storage, logic circuits, neural networks, and passive crossbar memory selectors.
NASA Technical Reports Server (NTRS)
Connolly, J. C.; Carlin, D. B.; Ettenberg, M.
1989-01-01
A high power single spatial mode channeled substrate planar AlGaAs semiconductor diode laser was developed. The emission wavelength was optimized at 860 to 880 nm. The operating characteristics (power current, single spatial mode behavior, far field radiation patterns, and spectral behavior) and results of computer modeling studies on the performance of the laser are discussed. Reliability assessment at high output levels is included. Performance results on a new type of channeled substrate planar diode laser incorporating current blocking layers, grown by metalorganic chemical vapor deposition, to more effectively focus the operational current to the lasing region was demonstrated. The optoelectronic behavior and fabrication procedures for this new diode laser are discussed. The highlights include single spatial mode devices with up to 160 mW output at 8600 A, and quantum efficiencies of 70 percent (1 W/amp) with demonstrated operating lifetimes of 10,000 h at 50 mW.
Apparatus for producing voltage and current pulses
Kirbie, Hugh; Dale, Gregory E.
2010-12-21
An apparatus having one or more modular stages for producing voltage and current pulses. Each module includes a diode charging means to charge a capacitive means that stores energy. One or more charging impedance means are connected to the diode charging means to provide a return current pathway. A solid-state switch discharge means, with current interruption capability, is connected to the capacitive means to discharge stored energy. Finally, a control means is provided to command the switching action of the solid-state switch discharge means.
Gabrielsson, Erik O; Janson, Per; Tybrandt, Klas; Simon, Daniel T; Berggren, Magnus
2014-08-13
Full-wave rectification of ionic currents is obtained by constructing the typical four-diode bridge out of ion conducting bipolar membranes. Together with conjugated polymer electrodes addressed with alternating current, the bridge allows for generation of a controlled ionic direct current for extended periods of time without the production of toxic species or gas typically arising from electrode side-reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Universal EUV in-band intensity detector
Berger, Kurt W.
2004-08-24
Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.
Resonant tunneling diodes as sources for millimeter and submillimeter wavelengths
NASA Technical Reports Server (NTRS)
Vanbesien, O.; Bouregba, R.; Mounaix, P.; Lippens, D.; Palmateer, L.; Pernot, J. C.; Beaudin, G.; Encrenaz, P.; Bockenhoff, E.; Nagle, J.
1992-01-01
High-quality Resonant Tunneling Diodes have been fabricated and tested as sources for millimeter and submillimeter wavelengths. The devices have shown excellent I-V characteristics with peak-to-valley current ratios as high as 6:1 and current densities in the range of 50-150 kA/cm(exp 2) at 300 K. Used as local oscillators, the diodes are capable of state of the art output power delivered by AlGaAs-based tunneling devices. As harmonic multipliers, a frequency of 320 GHz has been achieved by quintupling the fundamental oscillation of a klystron source.
Power loss in open cavity diodes and a modified Child-Langmuir law
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Debabrata; Kumar, Raghwendra; Puri, R.R.
Diodes used in most high power devices are inherently open. It is shown that under such circumstances, there is a loss of electromagnetic radiation leading to a lower critical current as compared to closed diodes. The power loss can be incorporated in the standard Child-Langmuir framework by introducing an effective potential. The modified Child-Langmuir law can be used to predict the maximum power loss for a given plate separation and potential difference as well as the maximum transmitted current for this power loss. The effectiveness of the theory is tested numerically.
NASA Astrophysics Data System (ADS)
Zebiri, Mohamed; Mediouni, Mohamed; Idadoub, Hicham
2018-05-01
In photovoltaic renewable energy production systems where production is dependent on weather conditions, maintaining production at a suitable level is more than essential. The shading effect in photovoltaic panels affects the production of electrical energy by reducing it or even causing the destruction of some or all of the panels. To circumvent this problem, among the solutions proposed in the literature we find the use of by-pass diode and anti-return diode to minimize these consequences.In this paper we present a simulation under Matlab-Simulink of the shading effect and we compare the current voltages characteristics (I-V) and power voltage (P-V) of a photovoltaic system for different irradiations in the presence and absence of diode by -pass. For modeling, we will use the diode model and the Lambert W-function to solve the implicit equation of the output current. This method allows you to analyze the performance of a panel at different shading levels.
Submicron nickel-oxide-gold tunnel diode detectors for rectennas
NASA Technical Reports Server (NTRS)
Hoofring, A. B.; Kapoor, V. J.; Krawczonek, W.
1989-01-01
The characteristics of a metal-oxide-metal (MOM) tunnel diode made of nickel, nickel-oxide, and gold, designed and fabricated by standard integrated circuit technology for use in FIR rectennas, are presented. The MOM tunnel diode was formed by overlapping a 0.8-micron-wide layer of 1000-A of nickel, which was oxidized to form a thin layer of nickel oxide, with a 1500 A-thick layer of gold. The dc current-voltage characteristics of the MOM diode showed that the current dependence on voltage was linear about zero bias up to a bias of about 70 mV. The maximum detection of a low-level signal (10-mV ac) was determined to be at a dc voltage of 70 mV across the MOM diode. The rectified output signal due to a chopped 10.6-micron CO2 laser incident upon the rectenna device was found to increase with dc bias, with a maximum value of 1000 nV for a junction bias of 100 mV at room temperature.
Schmitt, S W; Brönstrup, G; Shalev, G; Srivastava, S K; Bashouti, M Y; Döhler, G H; Christiansen, S H
2014-07-21
Vertically aligned silicon nanowire (SiNW) diodes are promising candidates for the integration into various opto-electronic device concepts for e.g. sensing or solar energy conversion. Individual SiNW p-n diodes have intensively been studied, but to date an assessment of their device performance once integrated on a silicon substrate has not been made. We show that using a scanning electron microscope (SEM) equipped with a nano-manipulator and an optical fiber feed-through for tunable (wavelength, power using a tunable laser source) sample illumination, the dark and illuminated current-voltage (I-V) curve of individual SiNW diodes on the substrate wafer can be measured. Surprisingly, the I-V-curve of the serially coupled system composed of SiNW/wafers is accurately described by an equivalent circuit model of a single diode and diode parameters like series and shunting resistivity, diode ideality factor and photocurrent can be retrieved from a fit. We show that the photo-carrier collection efficiency (PCE) of the integrated diode illuminated with variable wavelength and intensity light directly gives insight into the quality of the device design at the nanoscale. We find that the PCE decreases for high light intensities and photocurrent densities, due to the fact that considerable amounts of photo-excited carriers generated within the substrate lead to a decrease in shunting resistivity of the SiNW diode and deteriorate its rectification. The PCE decreases systematically for smaller wavelengths of visible light, showing the possibility of monitoring the effectiveness of the SiNW device surface passivation using the shown measurement technique. The integrated device was pre-characterized using secondary ion mass spectrometry (SIMS), TCAD simulations and electron beam induced current (EBIC) measurements to validate the properties of the characterized material at the single SiNW diode level.
A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping.
Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung
2014-07-01
An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies.
A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping
Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S.; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung
2014-01-01
An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies. PMID:25379101
NASA Astrophysics Data System (ADS)
Gao, Yong; Liu, Jing; Yang, Yuan
2008-12-01
This paper analyses the reverse recovery characteristics and mechanism of SiGeC p-i-n diodes. Based on the integrated systems engineering (ISE) data, the critical physical models of SiGeC diodes are proposed. Based on hetero-junction band gap engineering, the softness factor increases over six times, reverse recovery time is over 30% short and there is a 20% decrease in peak reverse recovery current for SiGeC diodes with 20% of germanium and 0.5% of carbon, compared to Si diodes. Those advantages of SiGeC p-i-n diodes are more obvious at high temperature. Compared to lifetime control, SiGeC technique is more suitable for improving diode properties and the tradeoff between reverse recovery time and forward voltage drop can be easily achieved in SiGeC diodes. Furthermore, the high thermal-stability of SiGeC diodes reduces the costs of further process steps and offers more freedoms to device design.
Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra
2016-01-01
The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258
A Fresh Look at the Semiconductor Bandgap Using Constant Current Data
ERIC Educational Resources Information Center
Ocaya, R. O.; Luhanga, P. V. C.
2011-01-01
It is shown that the well-known linear variation of p-n diode terminal voltage with temperature at different fixed forward currents allows easy and accurate determination of the semiconductor ideality factor and bandgap from only two data points. This is possible if the temperature difference required to maintain the same diode voltage drop can be…
Over-injection and self-oscillations in an electron vacuum diode
NASA Astrophysics Data System (ADS)
Leopold, J. G.; Siman-Tov, M.; Goldman, A.; Krasik, Ya. E.
2017-07-01
We demonstrate a practical means by which one can inject more than the space-charge limiting current into a vacuum diode. This over-injection causes self-oscillations of the space-charge resulting in an electron beam current modulation at a fixed frequency, a reaction of the system to the Coulomb repulsive forces due to charge accumulation.
Exploring Faraday's Law of Electrolysis Using Zinc-Air Batteries with Current Regulative Diodes
ERIC Educational Resources Information Center
Kamata, Masahiro; Paku, Miei
2007-01-01
Current regulative diodes (CRDs) are applied to develop new educational experiments on Faraday's law by using a zinc-air battery (PR2330) and a resistor to discharge it. The results concluded that the combination of zinc-air batteries and the CRD array is simpler, less expensive, and quantitative and gives accurate data.
P-type doping of GaN(000\\bar{1}) by magnesium ion implantation
NASA Astrophysics Data System (ADS)
Narita, Tetsuo; Kachi, Tetsu; Kataoka, Keita; Uesugi, Tsutomu
2017-01-01
Magnesium ion implantation has been performed on a GaN(000\\bar{1}) substrate, whose surface has a high thermal stability, thus allowing postimplantation annealing without the use of a protective layer. The current-voltage characteristics of p-n diodes fabricated on GaN(000\\bar{1}) showed distinct rectification at a turn-on voltage of about 3 V, although the leakage current varied widely among the diodes. Coimplantation with magnesium and hydrogen ions effectively suppressed the leakage currents and device-to-device variations. In addition, an electroluminescence band was observed at wavelengths shorter than 450 nm for these diodes. These results provide strong evidence that implanted magnesium ions create acceptors in GaN(000\\bar{1}).
Heterojunction photodiode on cleaved SiC
NASA Astrophysics Data System (ADS)
Solovan, Mykhailo M.; Farah, John; Kovaliuk, Taras T.; Brus, Viktor V.; Mostovyi, Andrii I.; Maistruk, Eduard V.; Maryanchuk, Pavlo D.
2018-01-01
Graphite/n-SiC Shottky diodes were prepared by means of the recently proposed technique based on the transferring of drawn graphite films onto the n-SiC single crystal substrate. Current-voltage characteristics were measured and analyzed. High quality ohmic contancts were prepared by the DC magnetron sputtering of Ni thin films onto cleaved n-type SiC single crystal substrates. The height of the potential barrier and the series resistance of the graphite/n-SiC junctions were measured and analysed. The dominant current transport mechanisms through the diodes were determined. There was shown that the dominant current transport mechanisms through the graphite/n-SiC Shottky diodes were the multi-step tunnel-recombination at forward bias and the tunnelling mechanisms at reverse bias.
Modeling of Schottky barrier diode characteristics on heteroepitaxial β-gallium oxide thin films
NASA Astrophysics Data System (ADS)
Splith, Daniel; Müller, Stefan; von Wenckstern, Holger; Grundmann, Marius
2018-02-01
When investigating Schottky contacts on heteroepitaxial β-Ga2O3 thin films, several non-idealities are observed in the current voltage characteristics, which cannot be accounted for with the standard diode current models. In this article, we therefore employed a model for the rigorous calculation of the diode currents in order to understand the origin of this non-idealities. Using the model and a few parameters determined from the measurements, we were able to simulate the characteristics with good agreement to the measured data for temperatures between 30 °C and 150 °C. Fitting of the simulated curves to the measured curves allows a deeper insight into the microscopic origins of said non-idealities.
Progress on single barrier varactors for submillimeter wave power generation
NASA Technical Reports Server (NTRS)
Nilsen, Svein M.; Groenqvist, Hans; Hjelmgren, Hans; Rydberg, Anders; Kollberg, Erik L.
1992-01-01
Theoretical work on Single Barrier Varactor (SBV) diodes, indicate that the efficiency for a multiplier has a maximum for a considerably smaller capacitance variation than previously thought. The theoretical calculations are performed, both with a simple theoretical model and a complete computer simulation using the method of harmonic balance. Modeling of the SBV is carried out in two steps. First, the semiconductor transport equations are solved simultaneously using a finite difference scheme in one dimension. Secondly, the calculated I-V, and C-V characteristics are input to a multiplier simulator which calculates the optimum impedances, and output powers at the frequencies of interest. Multiple barrier varactors can also be modeled in this way. Several examples on how to design the semiconductor layers to obtain certain characteristics are given. The calculated conversion efficiencies of the modeled structures, in a multiplier circuit, are also presented. Computer simulations for a case study of a 750 GHz multiplier show that InAs diodes perform favorably compared to GaAs diodes. InAs and InGaAs SBV diodes have been fabricated and their current vs. voltage characteristics are presented. In the InAs diode, was the large bandgap semiconductor AlSb used as barrier. The InGaAs diode was grown lattice matched to an InP substrate with InAlAs as a barrier material. The current density is greatly reduced for these two material combinations, compared to that of GaAs/AlGaAs SBV diodes. GaAs based diodes can be biased to higher voltages than InAs diodes.
UHF front-end feeding RFID-based body sensor networks by exploiting the reader signal
NASA Astrophysics Data System (ADS)
Pasca, M.; Colella, R.; Catarinucci, L.; Tarricone, L.; D'Amico, S.; Baschirotto, A.
2016-05-01
This paper presents an integrated, high-sensitivity UHF radio frequency identification (RFID) power management circuit for body sensor network applications. The circuit consists of a two-stage RF-DC Dickson's rectifier followed by an integrated five-stage DC-DC Pelliconi's charge pump driven by an ultralow start-up voltage LC oscillator. The DC-DC charge pump interposed between the RF-DC rectifier and the output load provides the RF to load isolation avoiding losses due to the diodes reverse saturation current. The RF-DC rectifier has been realized on FR4 substrate, while the charge pump and the oscillator have been realized in 180 nm complementary metal oxide semiconductor (CMOS) technology. Outdoor measurements demonstrate the ability of the power management circuit to provide 400 mV output voltage at 14 m distance from the UHF reader, in correspondence of -25 dBm input signal power. As demonstrated in the literature, such output voltage level is suitable to supply body sensor network nodes.
Local uniqueness solution of illuminated solar cell intrinsic electrical parameters.
Jarray, Abdennaceur; Abdelkrim, Mahdi; Bouchiba, Mohamed; Boukricha, Abderrahman
2014-01-01
Starting from an electrical dissipative illuminated one-diode solar cell with a given model data at room temperature (I sc , V oc , R s0 , R sh0 , I max ); we present under physical considerations a specific mathematical method (using the Lambert function) for unique determination of the intrinsic electrical parameters (n, I s , I ph , R s , R sh ). This work proves that for a given arbitrary fixed shunt resistance R sh , the saturation current I S and the ideality factor n are uniquely determined as a function of the photocurrent I ph , and the series resistance R s . The correspondence under the cited physical considerations: R s does not exceed ]0, 20[Ω and n is between ]0, 3[ and I ph and I s are arbitrary positive [Formula: see text] , is biunivocal. This study concludes that for both considered solar cells, the five intrinsic electrical parameters that were determined numerically are unique.
Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications.
Mintairov, S A; Kalyuzhnyy, N A; Lantratov, V M; Maximov, M V; Nadtochiy, A M; Rouvimov, Sergei; Zhukov, A E
2015-09-25
Hybrid quantum well-dots (QWD) nanostructures have been formed by deposition of 7-10 monolayers of In0.4Ga0.6As on a vicinal GaAs surface using metal-organic chemical vapor deposition. Transmission electron microscopy, photoluminescence and photocurrent analysis have shown that such structures represent quantum wells comprising three-dimensional (quantum dot-like) regions of two kinds. At least 20 QWD layers can be deposited defect-free providing high gain/absorption in the 0.9-1.1 spectral interval. Use of QWD media in a GaAs solar cell resulted in a photocurrent increment of 3.7 mA cm(-2) for the terrestrial spectrum and by 4.1 mA cm(-2) for the space spectrum. Diode lasers based on QWD emitting around 1.1 μm revealed high saturated gain and low transparency current density of about 15 cm(-1) and 37 A cm(-2) per layer, respectively.
Analytical and exact solutions of the spherical and cylindrical diodes of Langmuir-Blodgett law
NASA Astrophysics Data System (ADS)
Torres-Cordoba, Rafael; Martinez-Garcia, Edgar
2017-10-01
This paper discloses the exact solutions of a mathematical model that describes the cylindrical and spherical electron current emissions within the context of a physics approximation method. The solution involves analyzing the 1D nonlinear Poisson equation, for the radial component. Although an asymptotic solution has been previously obtained, we present a theoretical solution that satisfies arbitrary boundary conditions. The solution is found in its parametric form (i.e., φ(r )=φ(r (τ)) ) and is valid when the electric field at the cathode surface is non-zero. Furthermore, the non-stationary spatial solution of the electric potential between the anode and the cathode is also presented. In this work, the particle-beam interface is considered to be at the end of the plasma sheath as described by Sutherland et al. [Phys. Plasmas 12, 033103 2005]. Three regimes of space charge effects—no space charge saturation, space charge limited, and space charge saturation—are also considered.
Transparent Cu4O3/ZnO heterojunction photoelectric devices
NASA Astrophysics Data System (ADS)
Kim, Hong-Sik; Yadav, Pankaj; Patel, Malkeshkumar; Kim, Joondong; Pandey, Kavita; Lim, Donggun; Jeong, Chaehwan
2017-12-01
The present article reports the development of flexible, self-biased, broadband, high speed and transparent heterojunction photodiode, which is essentially important for the next generation electronic devices. We grow semitransparent p-type Cu4O3 using the reactive sputtering method at room temperature. The structural and optical properties of the Cu4O3 film were investigated by using the X-ray diffraction and UV-visible spectroscopy, respectively. The p-Cu4O3/n-ZnO heterojunction diode under dark condition yields rectification behavior with an extremely low saturation current value of 1.8 × 10-10 A and a zero bias photocurrent under illumination condition. The transparent p-Cu4O3/n-ZnO heterojunction photodetector can be operated without an external bias, due to the light-induced voltage production. The metal oxide heterojunction based on Cu4O3/ZnO would provide a route for the transparent and flexible photoelectric devices, including photodetectors and photovoltaics.
Temperature Effects in Varactors and Multipliers
NASA Technical Reports Server (NTRS)
East, J.; Mehdi, Imran
2001-01-01
Varactor diode multipliers are a critical part of many THz measurement systems. The power and efficiencies of these devices limit the available power for THz sources. Varactor operation is determined by the physics of the varactor device and a careful doping profile design is needed to optimize the performance. Higher doped devices are limited by junction breakdown and lower doped structures are limited by current saturation. Higher doped structures typically have higher efficiencies and lower doped structures typically have higher powers at the same operating frequency and impedance level. However, the device material properties are also a function of the operating temperature. Recent experimental evidence has shown that the power output of a multiplier can be improved by cooling the device. We have used a particle Monte Carlo simulation to investigate the temperature dependent velocity vs. electric field in GaAs. This information was then included in a nonlinear device circuit simulator to predict multiplier performance for various temperatures and device designs. This paper will describe the results of this analysis of temperature dependent multiplier operation.
Nanoscale cross-point diode array accessing embedded high density PCM
NASA Astrophysics Data System (ADS)
Wang, Heng; Liu, Yan; Liu, Bo; Gao, Dan; Xu, Zhen; Zhan, Yipeng; Song, Zhitang; Feng, Songlin
2017-08-01
The main bottlenecks in the development of current embedded phase change memory (PCM) technology are the current density and data storage density. In this paper, we present a PCM with 4F2 cross-point diode selector and blade-type bottom electrode contact (BEC). A blade TiN BEC with a cross-sectional area of 630 nm2 (10 nm × 63 nm) reduces the reset current down to about 750 μA. The optimized diode array could supply this 750 μA reset current at about 1.7 V and low off-current 1 × 10-4 μA at about -5.05 V. The on-off ratio of this device is 7.5 × 106. The proposed nanoscale PCM device simultaneously exhibits an operation voltage as low as 3 V and a high density drive current with an ultra small cell size of 4F2 (108 nm × 108 nm). Over 106 cycling endurance properties guarantee that it can work effectively on the embedded memory.
Temperature characteristics of silicon space solar cells and underlying parameters
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Kachare, Ram; Garlick, G. F. J.
1987-01-01
Silicon space cells, 2 cm x 2 cm, with 10 ohm-cm p-base resistivity, 8-mil base thickness, and no back-surface fields have been investigated over the temperature range from 301 to 223 K by measurements of dark forward and reverse current-voltage characteristics and current-voltage relations under illumination. From dark forward bias data, the first and second diode saturation currents, I01 and I02, are determined and hence the base diffusion length and lifetime of minority carriers as functions of temperature. Lifetime increases exponentially with temperature and is explained by a Shockley-Read-Hall model with deep recombination levels 0.245 eV above the valence band. The I02 variation with temperature follows the Sah-Noyce-Shockley-Choo model except at low temperature where extra transitions raise the value above the predicted level. Reverse bias current at low voltage is a thermally assisted tunneling process via deep levels which are observed in base recombination at higher temperatures. The tunneling effects tend to become independent of temperature in the low-temperature region. These results demonstrate the ability to deduce basic parameters such as lifetime from simple measurements and show that back-surface fields offer no advantage at temperatures below 230 K. The analysis also explains the fall in lifetimes observed as the base conductivity increases, attributing it to native defects (perhaps carbon-oxygen-vacancy complexes) rather than the concentration of base dopant.
Analyses of absorption distribution of a rubidium cell side-pumped by a Laser-Diode-Array (LDA)
NASA Astrophysics Data System (ADS)
Yu, Hang; Han, Juhong; Rong, Kepeng; Wang, Shunyan; Cai, He; An, Guofei; Zhang, Wei; Yu, Qiang; Wu, Peng; Wang, Hongyuan; Wang, You
2018-01-01
A diode-pumped alkali laser (DPAL) has been regarded as one of the most potential candidates to achieve high power performances of next generation. In this paper, we investigate the physical properties of a rubidium cell side-pumped by a Laser-Diode-Array (LDA) in this study. As the saturated concentration of a gain medium inside a vapor cell is extremely sensitive to the temperature, the populations of every energy-level of the atomic alkali are strongly relying on the vapor temperature. Thus, the absorption characteristics of a DPAL are mainly dominated by the temperature distribution. In this paper, the temperature, absorption, and lasing distributions in the cross-section of a rubidium cell side-pumped by a LDA are obtained by means of a complicated mathematic procedure. Based on the original end-pumped mode we constructed before, a novel one-direction side-pumped theoretical mode has been established to explore the distribution properties in the transverse section of a rubidium vapor cell by combining the procedures of heat transfer and laser kinetics together. It has been thought the results might be helpful for design of a side-pumped configuration in a high-powered DPAL.
Demirbas, Umit; Baali, Ilyes
2015-10-15
We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.
Transient behavior of an actively mode-locked semiconductor laser diode
NASA Technical Reports Server (NTRS)
Auyeung, J. C.; Bergman, L. A.; Johnston, A. R.
1982-01-01
Experimental investigation was carried out to study the transient regimes during the buildup and decay of the active mode-locked state in a laser diode. The mode locking was achieved through a sinusoidal modulation of the diode current with the laser in an external cavity. The pulse shape evolution and the time constants for the buildup and decay were determined.
NASA Technical Reports Server (NTRS)
Glenar, D.; Kostiuk, T.; Jennings, D. E.; Mumma, M. J.
1980-01-01
A diode laser based IR heterodyne spectrometer for laboratory and field use was developed for high efficiency operation between 7.5 and 8.5 microns. The local oscillator is a PbSSe tunable diode laser kept continuously at operating temperatures of 12-60 K using a closed cycle cooler. The laser output frequency is controlled and stabilized using a high precision diode current supply, constant temperature controller, and a shock isolator mounted between the refrigerator cold tip and the diode mount. Single laser modes are selected by a grating placed in the local oscillator beam. The system employs reflecting optics throughout to minimize losses from internal reflection and absorption, and to eliminate chromatic effects. Spectral analysis of the diode laser output between 0 and 1 GHz reveals excess noise at many diode current settings, which limits the infrared spectral regions over which useful heterodyne operation can be achieved. System performance has been studied by making heterodyne measurements of etalon fringes and several Freon 13 (CF3Cl) absorption lines against a laboratory blackbody source. Preliminary field tests have also been performed using the Sun as a source.
Ito, H; Miyake, H; Masugata, K
2008-10-01
Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.
A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper.
Chen, Hong; Cogswell, Jeremy; Anagnostopoulos, Constantine; Faghri, Mohammad
2012-08-21
Current microfluidic paper-based devices lack crucial components for fluid manipulation. We created a fluidic diode fabricated entirely on a single layer of paper to control the wicking of fluids. The fluidic diode is a two-terminal component that promotes or stops wicking along a paper channel. We further constructed a trigger and a delay valve based on the fluidic diode. Furthermore, we demonstrated a high-level functional circuit, consisting of a diode and a delay valve, to manipulate two fluids in a sequential manner. Our study provides new, transformative tools to manipulate fluid in microfluidic paper-based devices.
[The heating effect of the Er3+/Yb3+ doped Y2O3 nanometer powder by 980 nm laser diode pumping].
Zheng, Long-Jiang; Gao, Xiao-Yang; Liu, Hai-Long; Li, Bing; Xu, Chen-Xi
2013-01-01
The Er3+ and Yb3+ doped Y2O3 Nano powder was prepared by sol-gel method. Based on 2H11/2 --> 4I15/2 and 4S3/2 --> 4I15/2 green conversion luminescence intensity rate of Er3+, the sample surface temperature changes caused by the increase in 980 nm diode laser pump power were studied. The results show that with pump power increasing, the sample surface temperature substantially rises. And the surface temperature reached to 820 K when the pump power was 1 000 mW. The phenomenon plays an important role in the analysis of upconversion process, especially with saturation power. And this feature has a potential application prospect in the biomedicine, soft tissue hole burning as well as the field of temperature sensing materials.
Diode-pumped 1.5-1.6 μm laser operation in Er³⁺ doped YbAl₃(BO₃)₄ microchip.
Chen, Yujin; Lin, Yanfu; Zou, Yuqi; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong
2014-06-02
Er3+ doped YbAl3(BO3)4 crystal with large absorption coefficient of 184 cm(-1) at pump wavelength of 976 nm is a promising microchip gain medium of 1.5-1.6 μm laser. End-pumped by a 976 nm diode laser, 1.5-1.6 μm continuous-wave laser with maximum output power of 220 mW and slope efficiency of 8.1% was obtained at incident pump power of 4.54 W in a c-cut 200-μm-thick Er:YbAl3(BO3)4 microchip. When a Co2+:Mg0.4Al2.4O4 crystal was used as the saturable absorber, 1521 nm passively Q-switched pulse laser with about 0.19 μJ energy, 265 ns duration, and 96 kHz repetition rate was realized.
DC switching regulated power supply for driving an inductive load
Dyer, G.R.
1983-11-29
A dc switching regulated power supply for driving an inductive load is provided. The regulator basic circuit is a bridge arrangement of diodes and transistors. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. A dc power supply is connected to the input of the bridge and the output is connected to the load. A servo controller is provided to control the switching rate of the transistors to maintain a desired current to the load. The regulator may be operated in three stages or modes: (1) for current runup in the load, both first and second transistor switch arrays are turned on and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned off, and load current flywheels through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays off, allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load.
100 Years of the Physics of Diodes
NASA Astrophysics Data System (ADS)
Luginsland, John
2013-10-01
The Child-Langmuir Law (CL), discovered 100 years ago, gives the maximum current that can be transported across a planar diode in the steady state. As a quintessential example of the impact of space-charge shielding near a charged surface, it is central to the studies of high current diodes, such as high power microwave sources, vacuum microelectronics, electron and ion sources, and high current drivers used in high-energy density physics experiments. CL remains a touchstone of fundamental sheath physics, including contemporary studies of nano-scale quantum diodes and plasmonic devices. Its solid state analog is the Mott-Gurney law, governing the maximum charge injection in solids, such as organic materials and other dielectrics, which is important to energy devices, such as solar cells and light-emitting diodes. This paper reviews the important advances in the physics of diodes since the discovery of CL, including virtual cathode formation and extension of CL to multiple dimensions, to the quantum regime, and to ultrafast processes. We will review the influence of magnetic fields, multiple species in bipolar flow, electromagnetic and time dependent effects in both short pulse and high frequency THz limits, and single electron regimes. Transitions from various emission mechanisms (thermionic, field, and photo-emission) to the space charge limited state (CL) will be addressed, especially highlighting important simulation and experimental developments in selected contemporary areas of study. This talk will stress the fundamental physical links between the physics of beams to limiting currents in other areas, such as low temperature plasmas, laser plasmas, and space propulsion. Also emphasized is the role of non-equilibrium phenomena associated with materials and plasmas in close contact. Work supported by the Air Force Office of Scientific Research.
Diode laser operating on an atomic transition limited by an isotope ⁸⁷Rb Faraday filter at 780 nm.
Tao, Zhiming; Hong, Yelong; Luo, Bin; Chen, Jingbiao; Guo, Hong
2015-09-15
We demonstrate an extended cavity Faraday laser system using an antireflection-coated laser diode as the gain medium and the isotope (87)Rb Faraday anomalous dispersion optical filter (FADOF) as the frequency selective device. Using this method, the laser wavelength works stably at the highest transmission peak of the isotope (87)Rb FADOF over the laser diode current from 55 to 140 mA and the temperature from 15°C to 35°C. Neither the current nor the temperature of the laser diode has significant influence on the output frequency. Compared with previous extended cavity laser systems operating at frequencies irrelevant to spectacular atomic transition lines, the laser system realized here provides a stable laser source with the frequency operating on atomic transitions for many practical applications.
Silicon nanowire Esaki diodes.
Schmid, Heinz; Bessire, Cedric; Björk, Mikael T; Schenk, Andreas; Riel, Heike
2012-02-08
We report on the fabrication and characterization of silicon nanowire tunnel diodes. The silicon nanowires were grown on p-type Si substrates using Au-catalyzed vapor-liquid-solid growth and in situ n-type doping. Electrical measurements reveal Esaki diode characteristics with peak current densities of 3.6 kA/cm(2), peak-to-valley current ratios of up to 4.3, and reverse current densities of up to 300 kA/cm(2) at 0.5 V reverse bias. Strain-dependent current-voltage (I-V) measurements exhibit a decrease of the peak tunnel current with uniaxial tensile stress and an increase of 48% for 1.3 GPa compressive stress along the <111> growth direction, revealing the strain dependence of the Si band structure and thus the tunnel barrier. The contributions of phonons to the indirect tunneling process were probed by conductance measurements at 4.2 K. These measurements show phonon peaks at energies corresponding to the transverse acoustical and transverse optical phonons. In addition, the low-temperature conductance measurements were extended to higher biases to identify potential impurity states in the band gap. The results demonstrate that the most likely impurity, namely, Au from the catalyst particle, is not detectable, a finding that is also supported by the excellent device properties of the Esaki diodes reported here. © 2012 American Chemical Society
Calculations of High-Current Characteristics of Silicon Diodes at Microwave Frequencies.
1984-10-01
4,4rn .,,,1,v ’ + :.:: 60V, 104 UU ,... 55V’ •" :103 0i Figure 3. Peak forward current diensity as a function of applied frequency for various diode...8217.-,. ’ DRSMCLEP-L DISTRIBUTION (Cont’d) COMMANDER AIR FORCE WEAPONS LABORATORY US ARMY MISSILE COMMAND ATTN DR. BABU SINGARAJU, AFWL/NTC ATTN DRSMI- RHB , H
Observation of reflected waves on the SABRE positive polarity inductive adder MITL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuneo, M.E.; Poukey, J.W.; Mendel, C.W.
We are studying the coupling of extraction applied-B ion diodes to Magnetically Insulated Transmission Line (MITLs) on the SABRE (Sandia Accelerator and Beam Research Experiment, 6 MV, 300 kA) positive polarity inductive voltage adder. Our goal is to determine conditions under which efficient coupling occurs. The best total power efficiency for an ideal ion diode load (i.e., without parasitic losses) is obtained by maximizing the product of cathode current and gap voltage. MITLs require that the load impedance be undermatched to the self-limited line operating impedance for efficient transfer of power to ion diodes, independent of transit time isolation, andmore » even in the case of multiple cathode system with significant vacuum electron flow. We observe that this undermatched condition results in a reflected wave which decreases the line voltage and gap electron sheath current, and increases the anode and cathode current in a time-dependent way. The MITL diode coupling is determined by the flow impedance at the adder exit. We also show that the flow impedance increases along the extension MITL on SABRE. Experimental measurements of current and peak voltage are compared to analytical models and TWOQUICK 2.5-D PIC code simulations.« less
Development and optimization of a diode laser for photodynamic therapy.
Lim, Hyun Soo
2011-01-01
This study demonstrated the development of a laser system for cancer treatment with photodynamic therapy (PDT) based on a 635 nm laser diode. In order to optimize efficacy in PDT, the ideal laser system should deliver a homogeneous nondivergent light energy with a variable spot size and specific wavelength at a stable output power. We developed a digital laser beam controller using the constant current method to protect the laser diode resonator from the current spikes and other fluctuations, and electrical faults. To improve the PDT effects, the laser system should deliver stable laser energy in continuous wave (CW), burst mode and super burst mode, with variable irradiation times depending on the tumor type and condition. The experimental results showed the diode laser system described herein was eminently suitable for PDT. The laser beam was homogeneous without diverging and the output power increased stably and in a linear manner from 10 mW to 1500 mW according to the increasing input current. Variation between the set and delivered output was less than 7%. The diode laser system developed by the author for use in PDT was compact, user-friendly, and delivered a stable and easily adjustable output power at a specific wavelength and user-set emission modes.
Development and optimization of a diode laser for photodynamic therapy
Lim, Hyun Soo
2011-01-01
Background and Aims: This study demonstrated the development of a laser system for cancer treatment with photodynamic therapy (PDT) based on a 635 nm laser diode. In order to optimize efficacy in PDT, the ideal laser system should deliver a homogeneous nondivergent light energy with a variable spot size and specific wavelength at a stable output power. Materials and Methods: We developed a digital laser beam controller using the constant current method to protect the laser diode resonator from the current spikes and other fluctuations, and electrical faults. To improve the PDT effects, the laser system should deliver stable laser energy in continuous wave (CW), burst mode and super burst mode, with variable irradiation times depending on the tumor type and condition. Results and Comments: The experimental results showed the diode laser system described herein was eminently suitable for PDT. The laser beam was homogeneous without diverging and the output power increased stably and in a linear manner from 10 mW to 1500 mW according to the increasing input current. Variation between the set and delivered output was less than 7%. Conclusions: The diode laser system developed by the author for use in PDT was compact, user-friendly, and delivered a stable and easily adjustable output power at a specific wavelength and user-set emission modes. PMID:24155529
Modeling and characterization of field-enhanced corona discharge in ozone-generator diode
NASA Astrophysics Data System (ADS)
Patil, Jagadish G.; Vijayan, T.
2010-02-01
Electric field enhanced corona plasma discharge in ozone generator diode of axial symmetry has been investigated and characterized in theory. The cathode K of diode is made of a large number of sharpened nozzles arranged on various radial planes on the axial mast and pervaded in oxygen gas inside the anode cup A, produces high fields over MV/m and aids in the formation of a corona plume of dense ozone cloud over the cathode surface. An r-z finite difference scheme has been devised and employed to numerically determine the potential and electric field distributions inside the diode. The analyses of cathode emissions revealed a field emission domain conformed to modified Child-Langmuir diode-current. Passage of higher currents (over μA) in shorter A-K gaps d gave rise to cathode heated plasma extending from the corona to Saha regimes depending on local temperature. Plasma densities of order 102-106 m-3 are predicted in these. For larger d however, currents are smaller and heating negligible and a negative corona favoring ozone formation is attained. High ozone yields about 20 per cent of oxygen input is predicted in this domain. The generator so developed will be applied to various important applications such as, purification of ambient air /drinking water, ozone therapy, and so on.
Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auf der Maur, M., E-mail: auf.der.maur@ing.uniroma2.it; Di Carlo, A.; Galler, B.
Based on numerical simulation and comparison with measured current characteristics, we show that the current in InGaN/GaN single-quantum-well light-emitting diodes at low forward bias can be accurately described by a standard trap-assisted tunneling model. The qualitative and quantitative differences in the current characteristics of devices with different emission wavelengths are demonstrated to be correlated in a physically consistent way with the tunneling model parameters.
Detection and modeling of leakage current in AlGaN-based deep ultraviolet light-emitting diodes
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2015-03-01
Current-voltage (IV) characteristics of two AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with differing densities of open-core threading dislocations (nanopipes) are analyzed. A three-diode circuit is simulated to emulate the IV characteristics of the DUV-LEDs, but is only able to accurately model the lower leakage current, lower nanopipe density DUV-LED. It was found that current leakage through the nanopipes in these structures is rectifying, despite nanopipes being previously established as inherently n-type. Using defect-sensitive etching, the nanopipes are revealed to terminate within the p-type GaN capping layer of the DUV-LEDs. The circuit model is modified to account for another p-nmore » junction between the n-type nanopipes and the p-type GaN, and an excellent fit to the IV characteristics of the leaky DUV-LED is achieved.« less
Diode-Pumped, 2-Micron, Q-Switched Thulium: Y3Al5O12 (Tm:Yag) Microchip Laser
2011-05-01
switch with a chromium -doped zinc selenide crystal acting as a saturable absorber passive Q-switch. Finally, we will propose possible future...literature by Heine and Huber [4] and others, while passive Q-switching of 2 μm lasers by a chromium -doped zinc selenide has been demonstrated by Tsai and...these objectives for each component of the laser system. In Chapter 4 a design is presented for replacing our acousto-optic Q-switch with a chromium
NASA Astrophysics Data System (ADS)
Kawaguchi, Kenichi; Takahashi, Tsuyoshi; Okamoto, Naoya; Sato, Masaru
2018-02-01
p-GaAsSb/n-InAs type-II nanowire (NW) diodes were fabricated using the position-controlled vapor-liquid-solid growth method. InAs and GaAsSb NW segments were grown vertically on GaAs(111)B substrates with the assistance of Au catalysts. Transmission electron microscopy-energy-dispersive X-ray spectroscopy analysis revealed that the GaAsSb segments have an Sb content of 40%, which is sufficient to form a tunnel heterostructure. Scanning capacitance microscope images clearly indicated the formation of a p-n junction in the NWs. Backward diode characteristics, that is, current flow toward negative bias originating from a tunnel current and current suppression toward positive bias by a heterobarrier, were demonstrated.
Performance of the K+ ion diode in the 2 MV injector for heavy ion fusion
NASA Astrophysics Data System (ADS)
Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.
2002-02-01
Heavy ion beam inertial fusion driver concepts depend on the availability and performance of high-brightness high-current ion sources. Surface ionization sources have relatively low current density but high brightness because of the low temperature of the emitted ions. We have measured the beam profiles at the exit of the injector diode, and compared the measured profiles with EGUN and WARP-3D predictions. Spherical aberrations are significant in this large aspect ratio diode. We discuss the measured and calculated beam size and beam profiles, the effect of aberrations, quality of vacuum, and secondary electron distributions on the beam profile.
Tests of by-pass diodes at cryogenic temperatures for the KATRIN magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gil, W.; Bolz, H.; Jansen, A.
The Karlsruhe Tritium Neutrino experiment (KATRIN) requires a series of superconducting solenoid magnets for guiding beta-electrons from the source to the detector. By-pass diodes will operate at liquid helium temperatures to protect the superconducting magnets and bus bars in case of quenches. The operation conditions of the by-pass diodes depend on the different magnet systems of KATRIN. Therefore, different diode stacks are designed with adequate copper heat sinks assuming adiabatic conditions. The by-pass diode stacks have been submitted to cold tests both at liquid nitrogen and liquid helium temperatures for checking operation conditions. This report presents the test set upmore » and first results of the diode characteristics at 300 K and 77 K, as well as of endurance tests of the diode stacks at constant current load at 77 K and 4.2 K.« less
Park, Woo Young; Kim, Gun Hwan; Seok, Jun Yeong; Kim, Kyung Min; Song, Seul Ji; Lee, Min Hwan; Hwang, Cheol Seong
2010-05-14
This study examined the properties of Schottky-type diodes composed of Pt/TiO(2)/Ti, where the Pt/TiO(2) and TiO(2)/Ti junctions correspond to the blocking and ohmic contacts, respectively, as the selection device for a resistive switching cross-bar array. An extremely high forward-to-reverse current ratio of approximately 10(9) was achieved at 1 V when the TiO(2) film thickness was 19 nm. TiO(2) film was grown by atomic layer deposition at a substrate temperature of 250 degrees C. Conductive atomic force microscopy revealed that the forward current flew locally, which limits the maximum forward current density to < 10 A cm(-2) for a large electrode (an area of approximately 60 000 microm(2)). However, the local current measurement showed a local forward current density as high as approximately 10(5) A cm(-2). Therefore, it is expected that this type of Schottky diode effectively suppresses the sneak current without adverse interference effects in a nano-scale resistive switching cross-bar array with high block density.
Power blue and green laser diodes and their applications
NASA Astrophysics Data System (ADS)
Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver
2013-03-01
InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.
Asymmetric anode and cathode extraction structure fast recovery diode
NASA Astrophysics Data System (ADS)
Xie, Jiaqiang; Ma, Li; Gao, Yong
2018-05-01
This paper presents an asymmetric anode structure and cathode extraction fast and soft recovery diode. The device anode is partial-heavily doped and partial-lightly doped. The P+ region is introduced into the cathode. Firstly, the characteristics of the diode are simulated and analyzed. Secondly, the diode was fabricated and its characteristics were tested. The experimental results are in good agreement with the simulation results. The results show that, compared with the P–i–N diode, although the forward conduction characteristic of the diode is declined, the reverse recovery peak current is reduced by 47%, the reverse recovery time is shortened by 20% and the softness factor is doubled. In addition, the breakdown voltage is increased by 10%. Project supported by the National Natural Science Foundation of China (No. 51177133).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Xianfeng, E-mail: qiaoxianfeng@hotmail.com; Zhao, Chen; Chen, Bingbing
This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leadingmore » to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zotova, N. V.; Karandashev, S. A.; Matveev, B. A., E-mail: Bmat@iropt3.ioffe.ru
Current-voltage characteristics of surface-irradiated photodiodes based on the InAsSbP/InAs structures are analyzed using experimental data on the distribution of electroluminescence intensity over the diode surface and taking into account thickening the current streamlines near the contacts. The influence of the potential barrier associated with the N-InAsSbP/n-InAs junction in double heterostructures on the differential resistance of diodes under zero bias, the value of the reverse current, and spreading of the forward current is discussed.
Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm.
Tsai, Tzong-Yow; Fang, Yen-Cheng; Huang, Huai-Min; Tsao, Hong-Xi; Lin, Shih-Ting
2010-11-08
We demonstrate a novel passively pulsed all-Yb3+ all-fiber laser pumped by a continuous-wave 915-nm pump laser diode. The laser was saturable absorber Q-switched at 976 nm and gain-switched at 1064 nm, using the method of mode-field-area mismatch. With a pump power of 105 mW, the laser iteratively produced a 976-nm pulse with an energy of 2.8 μJ and a duration of 280 ns, followed by a 1064-nm pulse with 1.1 μJ and a 430-ns duration at a repetition rate of 9 kHz. A set of rate equations was established to simulate the self-balancing mechanism and the correlation between the Q- and gain-switched photon numbers and the populations of the gain and absorber fibers.
Minority-carrier lifetime in InP as a function of light bias
NASA Technical Reports Server (NTRS)
Yater, Jane A.; Weinberg, I.; Jenkins, Phillip P.; Landis, Geoffrey A.
1995-01-01
Minority-carrier lifetime in InP is studied as a function of doping level and laser intensity using time-resolved photoluminescence. A continuous wave diode laser illuminates bulk InP and acts as a light bias, injecting a steady-state concentration of carriers. A 200 ps laser pulse produces a small transient signal on top of the steady-state luminescence, allowing lifetime to be measured directly as a function of incident intensity. For p-InP, lifetime increases with light bias up to a maximum value. Bulk recombination centers are presumably filled to saturation, allowing minority carriers to live longer. The saturation bias scales with dopant concentration for a particular dopant species. As light bias is increased for n-InP, minority-carrier lifetime increases slightly but then decreases, suggesting radiative recombination as a dominant decay mechanism.
Miniaturized pulse oximeter sensor for continuous vital parameter monitoring
NASA Astrophysics Data System (ADS)
Fiala, Jens; Reichelt, Stephan; Werber, Armin; Bingger, Philipp; Zappe, Hans; Förster, Katharina; Klemm, Rolf; Heilmann, Claudia; Beyersdorf, Friedhelm
2007-07-01
A miniaturized photoplethysmographic sensor system which utilizes the principle of pulse oximetry is presented. The sensor is designed to be implantable and will permit continuous monitoring of important human vital parameters such as arterial blood oxygen saturation as well as pulse rate and shape over a long-term period in vivo. The system employs light emitting diodes and a photo transistor embedded in a transparent elastic cu. which is directly wrapped around an arterial vessel. This paper highlights the specific challenges in design, instrumentation, and electronics associated with that sensor location. In vitro measurements were performed using an artificial circulation system which allows for regulation of the oxygen saturation and pulsatile pumping of whole blood through a section of a domestic pig's arterial vessel. We discuss our experimental results compared to reference CO-oximeter measurements and determine the empirical calibration curve. These results demonstrate the capabilities of the pulse oximeter implant for measurement of a wide range of oxygen saturation levels and pave the way for a continuous and mobile monitoring of high-risk cardiovascular patients.
Diode-pumped Yb:Sr{sub 5}(PO{sub 4}){sub 3}F laser performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C.D.; Payne, S.A.; Smith, L.K.
The performance of the first diode-pumped Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) laser is discussed. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0 x 10{sup -20} cm{sup 2} that falls within error bars of the previously reported value of 7.3 x 10{sup -20} cm{supmore » 2}, obtained from spectroscopic techniques. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6 x 6 x 44 mm Yb:S-FAP amplifier rod. An InGaAs diode array has been fabricated that has suitable specifications for pumping a 3 x 3 x 30 mm Yb:S-FAP rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to {approximately}0.5 J per 1 ms pulse. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz and 500 {mu}s pulses.« less
Effect of temperature on series resistance of organic/inorganic semiconductor junction diode
NASA Astrophysics Data System (ADS)
Tripathi, Udbhav; Kaur, Ramneek; Bharti, Shivani
2016-05-01
The paper reports the fabrication and characterization of CuPc/n-Si organic/inorganic semiconductor diode. Copper phthalocyanine, a p-type organic semiconductor layer has been deposited on Si substrate by thermal evaporation technique. The detailed analysis of the forward and reverse bias current-voltage characteristics has been provided. Temperature dependence of the schottky diode parameters has been studied and discussed in the temperature range, 303 K to 353 K. Series resistance of the diode has been determined using Cheung's function method. Series resistance decreases with increase in temperature. The large value of series resistance at low temperature has been explained on the basis of barrier inhomogeneities in the diode.
Research and Development of Laser Diode Based Instruments for Applications in Space
NASA Technical Reports Server (NTRS)
Krainak, Michael; Abshire, James; Cornwell, Donald; Dragic, Peter; Duerksen, Gary; Switzer, Gregg
1999-01-01
Laser diode technology continues to advance at a very rapid rate due to commercial applications such as telecommunications and data storage. The advantages of laser diodes include, wide diversity of wavelengths, high efficiency, small size and weight and high reliability. Semiconductor and fiber optical-amplifiers permit efficient, high power master oscillator power amplifier (MOPA) transmitter systems. Laser diode systems which incorporate monolithic or discrete (fiber optic) gratings permit single frequency operation. We describe experimental and theoretical results of laser diode based instruments currently under development at NASA Goddard Space Flight Center including miniature lidars for measuring clouds and aerosols, water vapor and wind for Earth and planetary (Mars Lander) use.
Effect of the fabrication conditions of SiGe LEDs on their luminescence and electrical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalyadin, A. E.; Sobolev, N. A., E-mail: nick@sobolev.ioffe.rssi.ru; Strel’chuk, A. M.
2016-02-15
SiGe-based n{sup +}–p–p{sup +} light-emitting diodes (LEDs) with heavily doped layers fabricated by the diffusion (of boron and phosphorus) and CVD (chemical-vapor deposition of polycrystalline silicon layers doped with boron and phosphorus) techniques are studied. The electroluminescence spectra of both kinds of LEDs are identical, but the emission intensity of CVD diodes is ∼20 times lower. The reverse and forward currents in the CVD diodes are substantially higher than those in diffusion-grown diodes. The poorer luminescence and electrical properties of the CVD diodes are due to the formation of defects at the interface between the emitter and base layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, P.; Liu, G. Z.; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024
The emission threshold of explosive emission cathodes (EECs) is an important factor for beam quality. It can affect the explosive emission delay time, the plasma expansion process on the cathode surface, and even the current amplitude when the current is not fully space-charge-limited. This paper researches the influence of the emission threshold of an annular EEC on the current waveform in a foilless diode when the current is measured by a Rogowski coil. The particle-in-cell simulation which is performed under some tolerable and necessary simplifications shows that the long explosive emission delay time of high-threshold cathodes may leave an apparentmore » peak of displacement current on the rise edge of the current waveform, and this will occur only when the electron emission starts after this peak. The experimental researches, which are performed under a diode voltage of 1 MV and a repetitive frequency of 20 Hz, demonstrate that the graphite cathode has a lower emission threshold and a longer lifetime than the stainless steel cathode according to the variation of the peak of displacement current on the rise edge of the current waveform.« less
NASA Astrophysics Data System (ADS)
Heinemann, S.; McDougall, S. D.; Ryu, G.; Zhao, L.; Liu, X.; Holy, C.; Jiang, C.-L.; Modak, P.; Xiong, Y.; Vethake, T.; Strohmaier, S. G.; Schmidt, B.; Zimer, H.
2018-02-01
The advance of high power semiconductor diode laser technology is driven by the rapidly growing industrial laser market, with such high power solid state laser systems requiring ever more reliable diode sources with higher brightness and efficiency at lower cost. In this paper we report simulation and experimental data demonstrating most recent progress in high brightness semiconductor laser bars for industrial applications. The advancements are in three principle areas: vertical laser chip epitaxy design, lateral laser chip current injection control, and chip cooling technology. With such improvements, we demonstrate disk laser pump laser bars with output power over 250W with 60% efficiency at the operating current. Ion implantation was investigated for improved current confinement. Initial lifetime tests show excellent reliability. For direct diode applications <1 um smile and >96% polarization are additional requirements. Double sided cooling deploying hard solder and optimized laser design enable single emitter performance also for high fill factor bars and allow further power scaling to more than 350W with 65% peak efficiency with less than 8 degrees slow axis divergence and high polarization.
Solid state saturable absorbers for Q-switching at 1 and 1.3μm: investigation and modeling
NASA Astrophysics Data System (ADS)
Šulc, Jan; Arátor, Pavel; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav; Kokta, Milan R.
2008-02-01
Yttrium and Lutecium garnets (YAG and LuAG) doped by Chromium or Vanadium ions (Cr 4+ or V 3+) were investigated as saturable absorbers potentially useful for passive Q-switching at wavelengths 1 μm and/or 1.3 μm. For comparison also color center saturable absorber LiF:F - II and Cobalt doped spinel (Co:MALO) were studied. Firstly, low power absorption spectra were recorded for all samples. Next, absorbers transmission in dependence on incident energy/power density was measured using the z-scan method. Crystals Cr:YAG, Cr:LuAG, V:YAG, and LiF:F - II were tested at wavelength 1064 nm. Therefore Alexandrite laser pumped Q-switched Nd:YAG laser was used as a radiation source (pulse length 6.9 ns, energy up to 1.5 mJ). Crystals V:YAG, V:LuAG, and Co:MALO were tested at wavelength 1338 nm. So diode pumped Nd:YAG/V:YAG microchip laser was used as a radiation source (pulse length 6.2 ns, energy up to 0.1 mJ). Using measured data fitting, and by their comparison with numerical model of a "thick" saturable absorber transmission for Q-switched Gaussian laser beam, following parameters were estimated: saturable absorber initial transmission T 0, saturation energy density w s, ground state absorption cross-section σ GSA, saturated absorber transmission T s, excited state absorption cross-section σ ESA, ratio γ = σ GSA/σ ESA, and absorbing ions density. For V:YAG crystal, a polarization dependence of T s was also investigated. With the help of rate equation numerical solution, an impact of saturable absorber parameters on generated Q-switched pulse properties was studied in plane wave approximation. Selected saturable absorbers were also investigated as a Q-switch and results were compared with the model.
Study of the Insulating Magnetic Field in an Accelerating Ion Diode
NASA Astrophysics Data System (ADS)
Kozlovsky, K. I.; Martynenko, A. S.; Vovchenko, E. D.; Lisovsky, M. I.; Isaev, A. A.
2017-12-01
The results of examination of the insulating magnetic field in an accelerating ion diode are presented. This field is produced in order to suppress the electron current and thus enhance the neutron yield of the D( d, n)3He nuclear reaction. The following two designs are discussed: a gas-filled diode with inertial electrostatic confinement of ions and a vacuum diode with a laser-plasma ion source and pulsed magnetic insulation. Although the insulating field of permanent magnets is highly nonuniform, it made it possible to extend the range of accelerating voltages to U = 200 kV and raise the neutron yield to Q = 107 in the first design. The nonuniform field structure is less prominent in the device with pulsed magnetic insulation, which demonstrated efficient deuteron acceleration with currents up to 1 kA at U = 400 kV. The predicted neutron yield is as high as 109 neutrons/pulse.
NASA Astrophysics Data System (ADS)
Shin, Sunhae; Rok Kim, Kyung
2016-04-01
We propose complement double-peak negative differential resistance (NDR) devices with ultrahigh peak-to-valley current ratio (PVCR) over 106 by combining tunnel diode with conventional CMOS and its compact five-state latch circuit by introducing standard ternary inverter (STI). At the “high”-state of STI, n-type NDR device (tunnel diode with nMOS) has 1st NDR characteristics with 1st peak and valley by band-to-band tunneling (BTBT) and trap-assisted tunneling (TAT), whereas p-type NDR device (tunnel diode with pMOS) has second NDR characteristics from the suppression of diode current by off-state MOSFET. The “intermediate”-state of STI permits double-peak NDR device to operate five-state latch with only four transistors, which has 33% area reduction compared with that of binary inverter and 57% bit-density reduction compared with binary latch.
Saturation thresholds of evoked neural and hemodynamic responses in awake and asleep rats
NASA Astrophysics Data System (ADS)
Schei, Jennifer L.; Van Nortwick, Amy S.; Meighan, Peter C.; Rector, David M.
2011-03-01
Neural activation generates a hemodynamic response to the localized region replenishing nutrients to the area. Changes in vigilance state have been shown to alter the vascular response where the vascular response is muted during wake compared to quiet sleep. We tested the saturation thresholds of the neurovascular response in the auditory cortex during wake and sleep by chronically implanting rats with an EEG electrode, a light emitting diode (LED, 600 nm), and photodiode to simultaneously measure evoked response potentials (ERPs) and evoked hemodynamic responses. We stimulated the cortex with a single speaker click delivered at random intervals 2-13 s at varied stimulus intensities ranging from 45-80 dB. To further test the potential for activity related saturation, we sleep deprived animals for 2, 4, or 6 hours and recorded evoked responses during the first hour recovery period. With increasing stimulus intensity, integrated ERPs and evoked hemodynamic responses increased; however the hemodynamic response approached saturation limits at a lower stimulus intensity than the ERP. With longer periods of sleep deprivation, the integrated ERPs did not change but evoked hemodynamic responses decreased. There may be physical limits in cortical blood delivery and vascular compliance, and with extended periods of neural activity during wake, vessels may approach these limits.
Stacked switchable element and diode combination with a low breakdown switchable element
Wang, Qi [Littleton, CO; Ward, James Scott [Englewood, CO; Hu, Jian [Englewood, CO; Branz, Howard M [Boulder, CO
2012-06-19
A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship. The semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a low-density forming current and/or a low voltage.
Laser Space Propulsion Overview (Postprint)
2006-09-01
meet with currently fielded thruster technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a...with Cm = 56µN/W and ηAB = 100%. These two units will be combined in a single device using low-mass diode-pumped glass fiber laser amplifiers to...advantage of extremely lightweight diode-pumped glass fiber lasers onboard the spacecraft to provide thrust with variable Isp and unmatched thrust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Jie; Shu Ting; Fan Yuwei
2013-01-28
Time-and-space resolved comparison of the expansion velocities of plasmas in the planar diode with cathodes made of carbon velvet and polymer velvet has been performed. The diode was powered by a 200 kV, 110 ns pulse, and the peak current density was nearly 477 A/cm{sup 2}. A four-channel high speed framing camera (HSFC) was used to observe the formation and subsequent movement of the cathode plasmas. More accurate and valuable information about the two-dimensional (radial and axial) velocity components of the cathode plasmas was also acquired by utilizing the digital image processing methods. Additionally, the perveance model based on themore » Child-Langmuir law was used to calculate the expansion velocities of the diode plasmas from voltage and current profiles. Results from the two diagnostics were compared. Comparing the average values of the radial and axial velocity components indicated that the former was much larger than the latter during the initial period of the current. It was also found that the radial velocity of the carbon velvet cathode (190 cm/{mu}s) was much larger than that (90 cm/{mu}s) of the polymer velvet cathode. Moreover, the average values of both the radial and axial velocity components of the carbon velvet cathode were typically in the range of 2.5 {+-} 1.5 cm/{mu}s, which were smaller than that of the polymer velvet cathode during the current flattop. These results, together with the comparison of calculated values from the perveance model, indicated that the diode with carbon velvet cathode was more robust as compared with the polymer velvet cathode for the same electron current densities.« less
NASA Astrophysics Data System (ADS)
Mistry, Bhaumik V.; Avasthi, D. K.; Joshi, U. S.
2016-12-01
Electrical and optical properties of pristine and swift heavy ion (SHI) irradiated p- n junction diode have been investigated for advanced electronics application. Fe:SnO2/Li:NiO p- n junction was fabricated by using pulsed laser deposition on c-sapphire substrate. The optical band gaps of Fe:SnO2 and Li:NiO films were obtained to be 3.88 and 3.37 eV, respectively. The current-voltage characteristics of the oxide-based p- n junction showed a rectifying behaviour with turn-on voltage of 0.95 V. The oxide-based p- n junction diode was irradiated to 80 MeV O+6 ions with 1 × 1012 ions/cm2 fluence. Decrease in grain size due to SHI irradiation is confirmed by the grazing angle X-ray diffraction and atomic force microscopy. In comparison with the pristine p- n junction diode, O+6 ion irradiated p-n junction diode shows the increase of surface roughness and decrease of percentage transmittance in visible region. For irradiated p- n junction diode, current-voltage curve has still rectifying behaviour but exhibits lower turn-on voltage than that of virgin p- n junction diode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Myung-Jea; Kim, Myeong-Ho; Choi, Duck-Kyun, E-mail: duck@hanyang.ac.kr
2015-08-03
We introduce a transparent diode that shows both high rectifying ratio and low leakage current at process temperature below 250 °C. This device is clearly distinguished from all previous transparent diodes in that the rectifying behavior results from the junction between a semiconductor (amorphous indium-gallium-zinc oxide (a-IGZO)) and insulator (SiN{sub x}). We systematically study the properties of each junction within the device structure and demonstrate that the a-IGZO/SiN{sub x} junction is the source of the outstanding rectification. The electrical characteristics of this transparent diode are: 2.8 A/cm{sup 2} on-current density measured at −7 V; lower than 7.3 × 10{sup −9} A/cm{sup 2} off-currentmore » density; 2.53 ideality factor; and high rectifying ratio of 10{sup 8}–10{sup 9}. Furthermore, the diode structure has a transmittance of over 80% across the visible light range. The operating principle of the indium-tin oxide (ITO)/a-IGZO/SiN{sub x}/ITO device was examined with an aid of the energy band diagram and we propose a preliminary model for the rectifying behavior. Finally, we suggest further directions for research on this transparent diode.« less
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Spry, David J.; Trunek, Andrew J.
2005-01-01
This paper reports on initial fabrication and electrical characterization of 3C-SiC p-n junction diodes grown on step-free 4H-SiC mesas. Diodes with n-blocking-layer doping ranging from approx. 2 x 10(exp 16)/cu cm to approx.. 5 x 10(exp 17)/cu cm were fabricated and tested. No optimization of junction edge termination or ohmic contacts was employed. Room temperature reverse characteristics of the best devices show excellent low-leakage behavior, below previous 3C-SiC devices produced by other growth techniques, until the onset of a sharp breakdown knee. The resulting estimated breakdown field of 3C-SiC is at least twice the breakdown field of silicon, but is only around half the breakdown field of <0001> 4H-SiC for the doping range studied. Initial high current stressing of 3C diodes at 100 A/sq cm for more than 20 hours resulted in less than 50 mV change in approx. 3 V forward voltage. 3C-SiC, pn junction, p+n diode, rectifier, reverse breakdown, breakdown field,heteroepitaxy, epitaxial growth, electroluminescence, mesa, bipolar diode
Laser-induced electron source in a vacuum diode
NASA Astrophysics Data System (ADS)
Ghera, U.; Boxman, R. L.; Kleinman, H.; Ruschin, S.
1989-11-01
Experiments were conducted in which a high-power CO2 TEA laser interacted with metallic cathode in a high-vacuum (10 to the -8th Torr) diode. For power densities lower than 5 x 10 to the 7th W/sq cm, no current was detected. For power densities in the range of 5 x 10 to the 7th to 5 x 10 to the 8th W/sq cm, the Cu cathode emitted a maximum current of 40 mA. At a higher power density level, a circuit-limited current of 8 A was detected. The jump of a few orders of magnitude in the current is attributed to breakdown of the diode gap. The experimental results are similar to those of a triggered vacuum gap, and a thorough comparison is presented in this paper. The influence of the pressure in the vacuum chamber on the current magnitude shows the active role that adsorbed gas molecules have in the initial breakdown. When the cathode material was changed from metal to metal oxide, much lower laser power densities were required to reach the breakdown current region.
Diode laser application in soft tissue oral surgery.
Azma, Ehsan; Safavi, Nassimeh
2013-01-01
Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. The diode laser can be used as a modality for oral soft tissue surgery.
Diode Laser Application in Soft Tissue Oral Surgery
Azma, Ehsan; Safavi, Nassimeh
2013-01-01
Introduction: Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Discussion: Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. Conclusion: The diode laser can be used as a modality for oral soft tissue surgery PMID:25606331
NASA Astrophysics Data System (ADS)
Shirazi, Muhammad Faizan; Kim, Pilun; Jeon, Mansik; Kim, Chang-Seok; Kim, Jeehyun
2018-05-01
We developed a tunable laser diode for an optical coherence tomography system that can perform three-dimensional profile measurement using an area scanning technique. The tunable laser diode is designed using an Eagleyard tunable laser diode with a galvano filter. The Littman free space configuration is used to demonstrate laser operation. The line- and bandwidths of this source are 0.27 nm (∼110 GHz) and 43 nm, respectively, at the center wavelength of 860 nm. The output power is 20 mW at an operating current of 150 mA. A step height target is imaged using a wide-area scanning system to show the measurement accuracy of the proposed tunable laser diode. A TEM grid is also imaged to measure the topography and thickness of the sample by proposed tunable laser diode.
NASA Astrophysics Data System (ADS)
Zhao, S.; Lioliou, G.; Barnett, A. M.
2017-07-01
Two commercial-off-the-shelf (COTS) 4H-SiC UV photodiodes have been investigated for their suitability as low-cost high temperature tolerant X-ray detectors. Electrical characterisation of the photodiodes which had different active areas (0.06 mm2 and 0.5 mm2) is reported over the temperature range 0 °C to 140 °C together with measurements of the X-ray photocurrents generated when the detectors were illuminated with an 55Fe radioisotope X-ray source. The 0.06 mm2 photodiode was also investigated as a photon counting spectroscopic X-ray detector across the temperature range 0 °C to 100 °C. The depletion widths (at 120 V reverse bias) of the two diodes were found to be 2.3 μm and 4.5 μm, for the 0.06 mm2 and 0.5 mm2 detectors respectively, at 140 °C. Both devices had low leakage currents (<10 pA) at temperatures ≤40 °C even at high electric field strengths (500 kV/cm for 0.06 mm2 diode; 267 kV/cm for 0.5 mm2 diode). At 140 °C and similar field strengths (514 kV/cm for 0.06 mm2 diode; 269 kV/cm for 0.5 mm2 diode), the leakage currents of both diodes were <2 nA (corresponding to leakage current densities of 2.4 μA/cm2 and 0.3 μA/cm2 for each diode respectively). The results demonstrated that both devices could function as current mode detectors of soft X-rays at the temperatures <80 °C and that when coupled to a low noise charge sensitive preamplifier, the smaller diode functioned as a photon counting spectroscopic X-ray detector at temperatures ≤100 °C with modest energy resolution (1.6 keV FWHM at 5.9 keV at 0 °C; 2.6 keV FWHM at 5.9 keV at 100 °C). Due to their temperature tolerance, wide commercial availability, and the radiation hardness of SiC, such detectors are expected to find utility in future low-cost nanosatellite (cubesat) missions and cost-sensitive industrial applications.
Unidirectional oxide hetero-interface thin-film diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Youngmin; Lee, Eungkyu; Lee, Jinwon
2015-10-05
The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10{sup 5} at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10{sup 2} Hz < f < 10{sup 6} Hz, providing amore » high feasibility for practical applications.« less
Current transport across the pentacene/CVD-grown graphene interface for diode applications.
Berke, K; Tongay, S; McCarthy, M A; Rinzler, A G; Appleton, B R; Hebard, A F
2012-06-27
We investigate the electronic transport properties across the pentacene/graphene interface. Current transport across the pentacene/graphene interface is found to be strikingly different from transport across pentacene/HOPG and pentacene/Cu interfaces. At low voltages, diodes using graphene as a bottom electrode display Poole–Frenkel emission, while diodes with HOPG and Cu electrodes are dominated by thermionic emission. At high voltages conduction is dominated by Poole–Frenkel emission for all three junctions. We propose that current across these interfaces can be accurately modeled by a combination of thermionic and Poole–Frenkel emission. Results presented not only suggest that graphene provides low resistive contacts to pentacene where a flat-laying orientation of pentacene and transparent metal electrodes are desired but also provides further understanding of the physics at the organic semiconductor/graphene interface.
Space station power semiconductor package
NASA Technical Reports Server (NTRS)
Balodis, Vilnis; Berman, Albert; Devance, Darrell; Ludlow, Gerry; Wagner, Lee
1987-01-01
A package of high-power switching semiconductors for the space station have been designed and fabricated. The package includes a high-voltage (600 volts) high current (50 amps) NPN Fast Switching Power Transistor and a high-voltage (1200 volts), high-current (50 amps) Fast Recovery Diode. The package features an isolated collector for the transistors and an isolated anode for the diode. Beryllia is used as the isolation material resulting in a thermal resistance for both devices of .2 degrees per watt. Additional features include a hermetical seal for long life -- greater than 10 years in a space environment. Also, the package design resulted in a low electrical energy loss with the reduction of eddy currents, stray inductances, circuit inductance, and capacitance. The required package design and device parameters have been achieved. Test results for the transistor and diode utilizing the space station package is given.
NASA Astrophysics Data System (ADS)
Yan, Liangwen; Hu, Sijung; Alharbi, Samah; Blanos, Panagiotis
2018-02-01
To effectively capture human vital signs, a multi-wavelength optoelectronic patch sensor (MOEPS), together with a schematic architecture of electronics, was developed to overcome the drawbacks of present photoplethysmographic (PPG) sensors. To obtain a better performance of in vivo physiological measurement, the optimal illuminations, i.e., light emitting diodes (LEDs) in the MOEPS, whose wavelength is automatically adjusted to each specific subject, were selected to capture better PPG signals. A multiplexed electronic architecture has been well established to properly drive the MOEPS and effectively capture pulsatile waveforms at rest. The protocol was designed to investigate its performance with the participation of 11 healthy subjects aged between 18 and 30. The signals obtained from green (525nm) and orange (595nm) illuminations were used to extract heart rate (HR) and oxygen saturation (SpO2%). These results were compared with data, simultaneously acquired, from a commercial ECG and a pulse oximeter. Considering the difficulty for current devices to attain the SpO2%, a new computing method, to obtain the value of SpO2%, is proposed depended on the green and orange wavelength illuminations. The values of SpO2% between the MOEPS and the commercial Pulse Oximeter devics showed that the results were in good agreement. The values of HR showed close correlation between commercial devices and the MOEPS (HR: r1=0.994(Green); r2=0.992(Orange); r3=0.975(Red); r4=0.990(IR)).
Effect of current on the maximum possible reward.
Gallistel, C R; Leon, M; Waraczynski, M; Hanau, M S
1991-12-01
Using a 2-lever choice paradigm with concurrent variable interval schedules of reward, it was found that when pulse frequency is increased, the preference-determining rewarding effect of 0.5-s trains of brief cathodal pulses delivered to the medial forebrain bundle of the rat saturates (stops increasing) at values ranging from 200 to 631 pulses/s (pps). Raising the current lowered the saturation frequency, which confirms earlier, more extensive findings showing that the rewarding effect of short trains saturates at pulse frequencies that vary from less than 100 pps to more than 800 pps, depending on the current. It was also found that the maximum possible reward--the magnitude of the reward at or beyond the saturation pulse frequency--increases with increasing current. Thus, increasing the current reduces the saturation frequency but increases the subjective magnitude of the maximum possible reward.
NASA Astrophysics Data System (ADS)
Strohmaier, S. G.; Erbert, G.; Meissner-Schenk, A. H.; Lommel, M.; Schmidt, B.; Kaul, T.; Karow, M.; Crump, P.
2017-02-01
Progress will be presented on ongoing research into the development of ultra-high power and efficiency bars achieving significantly higher output power, conversion efficiency and brightness than currently commercially available. We combine advanced InAlGaAs/GaAs-based epitaxial structures and novel lateral designs, new materials and superior cooling architectures to enable improved performance. Specifically, we present progress in kilowatt-class 10-mm diode laser bars, where recent studies have demonstrated 880 W continuous wave output power from a 10 mm x 4 mm laser diode bar at 850 A of electrical current and 15°C water temperature. This laser achieves < 60% electro-optical efficiency at 880 W CW output power.
Bypass Diode Temperature Tests of a Solar Array Coupon Under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon
2016-01-01
Tests were performed on a 56-cell Advanced Triple Junction solar array coupon whose purpose was to determine margin available for bypass diodes integrated with new, large multi-junction solar cells that are manufactured from a 4-inch wafer. The tests were performed under high vacuum with coupon back side thermal conditions of both cold and ambient. The bypass diodes were subjected to a sequence of increasing discrete current steps from 0 Amp to 2.0 Amp in steps of 0.25 Amp. At each current step, a temperature measurement was obtained via remote viewing by an infrared camera. This paper discusses the experimental methodology, experiment results, and the thermal model.
By-Pass Diode Temperature Tests of a Solar Array Coupon Under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie
2016-01-01
Tests were performed on a 56-cell Advanced Triple Junction solar array coupon whose purpose was to determine margin available for bypass diodes integrated with new, large multi-junction solar cells that are manufactured from a 4-inch wafer. The tests were performed under high vacuum with cold and ambient coupon back-side. The bypass diodes were subjected to a sequence of increasing discrete current steps from 0 Amp to 2.0 Amp in steps of 0.25 Amp. At each current step, a temperature measurement was obtained via remote viewing by an infrared camera. This paper discusses the experimental methodology, including the calibration of the thermal imaging system, and the results.
Bilayer avalanche spin-diode logic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, Joseph S., E-mail: joseph.friedman@u-psud.fr; Querlioz, Damien; Fadel, Eric R.
2015-11-15
A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yongpeng; Northwest Institute of Nuclear Technology, P.O. Box 69-13, Xi'an 710024; Liu Guozhi
In this paper, the Child-Langmuir law and Langmuir-Blodgett law are generalized to the relativistic regime by a simple method. Two classical laws suitable for the nonrelativistic regime are modified to simple approximate expressions applicable for calculating the space-charge-limited currents of one-dimensional steady-state planar diodes and coaxial diodes under the relativistic regime. The simple approximate expressions, extending the Child-Langmuir law and Langmuir-Blodgett law to fit the full range of voltage, have small relative errors less than 1% for one-dimensional planar diodes and less than 5% for coaxial diodes.
Low-frequency noise properties in Pt-indium gallium zinc oxide Schottky diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiawei; Zhang, Linqing; Ma, Xiaochen
2015-08-31
The low-frequency noise properties of Pt-indium gallium zinc oxide (IGZO) Schottky diodes at different forward biases are investigated. The IGZO layer and Pt contact were deposited by RF sputtering at room temperature. The diode showed an ideality factor of 1.2 and a barrier height of 0.94 eV. The current noise spectral density exhibited 1/f behavior at low frequencies. The analysis of the current dependency of the noise spectral density revealed that for the as-deposited diode, the noise followed Luo's mobility and diffusivity fluctuation model in the thermionic-emission-limited region and Hooge's empirical theory in the series-resistance-limited region. A low Hooge's constant ofmore » 1.4 × 10{sup −9} was found in the space-charge region. In the series-resistance-limited region, the Hooge's constant was 2.2 × 10{sup −5}. After annealing, the diode showed degradation in the electrical performance. The interface-trap-induced noise dominated the noise spectrum. By using the random walk model, the interface-trap density was obtained to be 3.6 × 10{sup 15 }eV{sup −1 }cm{sup −2}. This work provides a quantitative approach to analyze the properties of Pt-IGZO interfacial layers. These low noise properties are a prerequisite to the use of IGZO Schottky diodes in switch elements in memory devices, photosensors, and mixer diodes.« less
Review of terahertz semiconductor sources
NASA Astrophysics Data System (ADS)
Wei, Feng
2012-03-01
Terahertz (THz) technology can be used in information science, biology, medicine, astronomy, and environmental science. THz sources are the key devices in THz applications. The author gives a brief review of THz semiconductor sources, such as GaAs1-xNx Gunn-like diodes, quantum wells (QWs) negative-effective-mass (NEM) THz oscillators, and the THz quantum cascade lasers (QCLs). THz current self-oscillation in doped GaAs1-xNx diodes driven by a DC electric field was investigated. The current self-oscillation is associated with the negative differential velocity effect in the highly nonparabolic conduction band of this unique material system. The current self-oscillations and spatiotemporal current patterns in QW NEM p+pp+ diodes was studied by considering scattering contributions from impurities, acoustic phonons, and optic phonons. It is indicated that both the applied bias and the doping concentration strongly influence the patterns and self-oscillating frequencies. The NEM p+pp+ diode may be used as an electrically tunable THz source. Meanwhile, by using the Monte Carlo method, the device parameters of resonant-phonon THz QCLs were optimized. The results show that the calculated gain is more sensitive to the injection barrier width, the doping concentration, and the phonon extraction level separation, which is consistent with the experiments.
Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes
NASA Technical Reports Server (NTRS)
Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.
1991-01-01
InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.
AlGaInP light-emitting diodes with SACNTs as current-spreading layer
2014-01-01
Transparent conductive current-spreading layer is important for quantum efficiency and thermal performance of light-emitting diodes (LEDs). The increasing demand for tin-doped indium oxide (ITO) caused the price to greatly increase. Super-aligned carbon nanotubes (SACNTs) and Au-coated SACNTs as current-spreading layer were applied on AlGaInP LEDs. The LEDs with Au-coated SACNTs showed good current spreading effect. The voltage bias at 20 mA dropped about 0.15 V, and the optical power increased about 10% compared with the LEDs without SACNTs. PMID:24712527
Investigation of mode partition noise in Fabry-Perot laser diode
NASA Astrophysics Data System (ADS)
Guo, Qingyi; Deng, Lanxin; Mu, Jianwei; Li, Xun; Huang, Wei-Ping
2014-09-01
Passive optical network (PON) is considered as the most appealing access network architecture in terms of cost-effectiveness, bandwidth management flexibility, scalability and durability. And to further reduce the cost per subscriber, a Fabry-Perot (FP) laser diode is preferred as the transmitter at the optical network units (ONUs) because of its lower cost compared to distributed feedback (DFB) laser diode. However, the mode partition noise (MPN) associated with the multi-longitudinal-mode FP laser diode becomes the limiting factor in the network. This paper studies the MPN characteristics of the FP laser diode using the time-domain simulation of noise-driven multi-mode laser rate equation. The probability density functions are calculated for each longitudinal mode. The paper focuses on the investigation of the k-factor, which is a simple yet important measure of the noise power, but is usually taken as a fitted or assumed value in the penalty calculations. In this paper, the sources of the k-factor are studied with simulation, including the intrinsic source of the laser Langevin noise, and the extrinsic source of the bit pattern. The photon waveforms are shown under four simulation conditions for regular or random bit pattern, and with or without Langevin noise. The k-factors contributed by those sources are studied with a variety of bias current and modulation current. Simulation results are illustrated in figures, and show that the contribution of Langevin noise to the k-factor is larger than that of the random bit pattern, and is more dominant at lower bias current or higher modulation current.
High-performance ionic diode membrane for salinity gradient power generation.
Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei
2014-09-03
Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.
Park, Ik Jae; Seo, Seongrok; Park, Min Ah; Lee, Sangwook; Kim, Dong Hoe; Zhu, Kai; Shin, Hyunjung; Kim, Jin Young
2017-12-06
We report the electrical properties of rubidium-incorporated methylammonium lead iodide ((Rb x MA 1-x )PbI 3 ) films and the photovoltaic performance of (Rb x MA 1-x )PbI 3 film-based p-i-n-type perovskite solar cells (PSCs). The incorporation of a small amount of Rb + (x = 0.05) increases both the open circuit voltage (V oc ) and the short circuit photocurrent density (J sc ) of the PSCs, leading to an improved power conversion efficiency (PCE). However, a high fraction of Rb + incorporation (x = 0.1 and 0.2) decreases the J sc and thus the PCE, which is attributed to the phase segregation of the single tetragonal perovskite phase to a MA-rich tetragonal perovskite phase and a RbPbI 3 orthorhombic phase at high Rb fractions. Conductive atomic force microscopic and admittance spectroscopic analyses reveal that the single-phase (Rb 0.05 MA 0.95 )PbI 3 film has a high electrical conductivity because of a reduced deep-level trap density. We also found that Rb substitution enhances the diode characteristics of the PSC, as evidenced by the reduced reverse saturation current (J 0 ). The optimized (Rb x MA 1-x )PbI 3 PSCs exhibited a PCE of 18.8% with negligible hysteresis in the photocurrent-voltage curve. The results from this work enhance the understanding of the effect of Rb incorporation into organic-inorganic hybrid halide perovskites and enable the exploration of Rb-incorporated mixed perovskites for various applications, such as solar cells, photodetectors, and light-emitting diodes.
Free-Standing Undoped ZnO Microtubes with Rich and Stable Shallow Acceptors
Wang, Qiang; Yan, Yinzhou; Zeng, Yong; Lu, Yue; Chen, Liang; Jiang, Yijian
2016-01-01
Fabrication of reliable large-sized p-ZnO is a major challenge to realise ZnO-based electronic device applications. Here we report a novel technique to grow high-quality free-standing undoped acceptor-rich ZnO (A-ZnO) microtubes with dimensions of ~100 μm (in diameter) × 5 mm (in length) by optical vapour supersaturated precipitation. The A-ZnO exhibits long lifetimes (>1 year) against compensation/lattice-relaxation and the stable shallow acceptors with binding energy of ~127 meV are confirmed from Zn vacancies. The A-ZnO provides a possibility for a mimetic p-n homojunction diode with n+-ZnO:Sn. The high concentrations of holes in A-ZnO and electrons in n+-ZnO make the dual diffusion possible to form a depletion layer. The diode threshold voltage, turn-on voltage, reverse saturated current and reverse breakdown voltage are 0.72 V, 1.90 V, <10 μA and >15 V, respectively. The A-ZnO also demonstrates quenching-free donor-acceptor-pairs (DAP) emission located in 390–414 nm with temperature of 270–470 K. Combining the temperature-dependent DAP violet emission with native green emission, the visible luminescence of A-ZnO microtube can be modulated in a wide region of colour space across white light. The present work opens up new opportunities to achieve ZnO with rich and stable acceptors instead of p-ZnO for a variety of potential applications. PMID:27263856
Chen, Jing; Zhao, Dewei; Li, Chi; Xu, Feng; Lei, Wei; Sun, Litao; Nathan, Arokia; Sun, Xiao Wei
2014-01-01
White quantum dot light-emitting diodes (QD-LEDs) have been a promising candidate for high-efficiency and color-saturated displays. However, it is challenging to integrate various QD emitters into one device and also to obtain efficient blue QDs. Here, we report a simply solution-processed white QD-LED using a hybrid ZnO@TiO2 as electron injection layer and ZnCdSeS QD emitters. The white emission is obtained by integrating the yellow emission from QD emitters and the blue emission generated from hybrid ZnO@TiO2 layer. We show that the performance of white QD-LEDs can be adjusted by controlling the driving force for hole transport and electroluminescence recombination region via varying the thickness of hole transport layer. The device is demonstrated with a maximum luminance of 730 cd/m2 and power efficiency of 1.7 lm/W, exhibiting the Commission Internationale de l'Enclairage (CIE) coordinates of (0.33, 0.33). The unencapsulated white QD-LED has a long lifetime of 96 h at its initial luminance of 730 cd/m2, primarily due to the fact that the device with hybrid ZnO@TiO2 has low leakage current and is insensitive to the oxygen and the moisture. These results indicate that hybrid ZnO@TiO2 provides an alternate and effective approach to achieve high-performance white QD-LEDs and also other optoelectronic devices. PMID:24522341
Esaki, Leo; Kitamura, Masatoshi; Iwamoto, Satoshi; Arakawa, Yasuhiko
2010-01-01
We report, as the result of shelf-life tests for Esaki diodes, the observation of minute but tangible reductions in the tunnel current after the lapse of half a century. The reduction could be attributed to 0.25% widening in the tunnel path.
Avalanche diode having reduced dark current and method for its manufacture
Davids, Paul; Starbuck, Andrew Lee; Pomerene, Andrew T. S.
2017-08-29
An avalanche diode includes an absorption region in a germanium body epitaxially grown on a silicon body including a multiplication region. Aspect-ratio trapping is used to suppress dislocation growth in the vicinity of the absorption region.
NASA Technical Reports Server (NTRS)
Misiakos, K.; Lindholm, F. A.
1986-01-01
Several parameters of certain three-dimensional semiconductor devices including diodes, transistors, and solar cells can be determined without solving the actual boundary-value problem. The recombination current, transit time, and open-circuit voltage of planar diodes are emphasized here. The resulting analytical expressions enable determination of the surface recombination velocity of shallow planar diodes. The method involves introducing corresponding one-dimensional models having the same values of these parameters.
Microwave noise measurements on double barrier resonant tunneling diodes
NASA Astrophysics Data System (ADS)
Kwaspen, J. J. M.; Heyker, H. C.; Demarteau, J. I. M.; Vanderoer, T. G.
1990-12-01
Double Barrier Resonant Tunneling (DBRT) diodes have nonlinear current voltage characteristics with Negative Differential Resistance (NDR) regions. Biased in one of these NDR regions, the DBRT diode can be used for microwave amplification purposes, so knowledge of the diode's noise behavior is important from a physics point of view. Two noise parameter measurement methods were developed in which the DBRT diode is used in a reflection amplifier configuration with circulator to transform the active one port device into an active two port with separate input and output ports. The Noise Figure (NF) of the DBRT diode must be deembedded from the NF of the reflection amplifier. An equation for the NF of the DBRT diode is derived. Two different measurement methods are used. A (complicated) more exact method uses the measured S parameters of the actual circulator and accounts for reflections at the noise source, NF meter and DBRT diode. A mathematically simple method (three versions) uses only scalar data collected by the NF meter. The results from these two methods are compared and they coincide well.
Passive Optical Locking Techniques for Diode Lasers
NASA Astrophysics Data System (ADS)
Zhang, Quan
1995-01-01
Most current diode-based nonlinear frequency converters utilize electronic frequency locking techniques. However, this type of locking technique typically involves very complex electronics, and suffers the 'power-drop' problem. This dissertation is devoted to the development of an all-optical passive locking technique that locks the diode laser frequency to the external cavity resonance stably without using any kind of electronic servo. The amplitude noise problem associated with the strong optical locking has been studied. Single-mode operation of a passively locked single-stripe diode with an amplitude stability better than 1% has been achieved. This passive optical locking technique applies to broad-area diodes as well as single-stripe diodes, and can be easily used to generate blue light. A schematic of a milliwatt level blue laser based on the single-stripe diode locking technique has been proposed. A 120 mW 467 nm blue laser has been built using the tapered amplifier locking technique. In addition to diode-based blue lasers, this passive locking technique has applications in nonlinear frequency conversions, resonant spectroscopy, particle counter devices, telecommunications, and medical devices.
Electronic and Interfacial Properties of PD/6H-SiC Schottky Diode Gas Sensors
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Bansal, Gaurav; Petit, Jeremy B.; Knight, Dak; Liu, Chung-Chiun; Wu, Qinghai
1996-01-01
Pd/SiC Schottky diodes detect hydrogen and hydrocarbons with high sensitivity. Variation of the diode temperature from 100 C to 200 C shows that the diode sensitivity to propylene is temperature dependent. Long-term heat treating at 425 C up to 140 hours is carried out to determine the effect of extended heat treating on the diode properties and gas sensitivity. The heat treating significantly affects the diode's capacitive characteristics, but the diode's current carrying characteristics are much more stable with a large response to hydrogen. Scanning Electron Microscopy and X-ray Spectrometry studies of the Pd surface after the heating show cluster formation and background regions with grain structure observed in both regions. The Pd and Si concentrations vary between grains. Auger Electron Spectroscopy depth profiles revealed that the heat treating promoted interdiffusion and reaction between the Pd and SiC dw broadened the interface region. This work shows that Pd/SiC Schottky diodes have significant potential as high temperature gas sensors, but stabilization of the structure is necessary to insure their repeatability in long-term, high temperature applications.
Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications
NASA Astrophysics Data System (ADS)
Giri, Pushpa; Chakrabarti, P.
2016-05-01
Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.
Khurelbaatar, Zagarzusem; Hyung, Jung-Hwan; Kim, Gil-Sung; Park, No-Won; Shim, Kyu-Hwan; Lee, Sang-Kwon
2014-06-01
We demonstrate locally contacted PEDOT:PSS Schottky diodes with excellent rectifying behavior, fabricated on n-type Si substrates using a spin-coating process and a reactive-ion etching process. Electrical transport characterizations of these Schottky diodes were investigated by both current-voltage (I-V) and capacitance-voltage (C-V) measurements. We found that these devices exhibit excellent modulation in the current with an on/off ratio of - 10(6). Schottky junction solar cells composed of PEDOT:PSS and n-Si structures were also examined. From the current density-voltage (J-V) measurement of a solar cell under illumination, the short circuit current (I(sc)), open circuit voltage (V(oc)), and conversion efficiency (eta) were - 19.7 mA/cm2, - 578.5 mV, and - 6.5%, respectively. The simple and low-cost fabrication process of the PEDOT:PSS/n-Si Schottky junctions makes them a promising candidate for further high performance solar cell applications.
Tunneling Electroresistance Effect with Diode Characteristic for Cross-Point Memory.
Lee, Hong-Sub; Park, Hyung-Ho
2016-06-22
Cross-point memory architecture (CPMA) by using memristors has attracted considerable attention because of its high-density integration. However, a common and significant drawback of the CPMA is related to crosstalk issues between cells by sneak currents. This study demonstrated the sneak current free resistive switching characteristic of a ferroelectric tunnel diode (FTD) memristor for a CPMA by utilizing a novel concept of a ferroelectric quadrangle and triangle barrier switch. A FTD of Au/BaTiO3 (5 nm)/Nb-doped SrTiO3 (100) was used to obtain a desirable memristive effect for the CPMA. The FTD could reversibly change the shape of the ferroelectric potential from a quadrangle to a triangle. The effect included high nonlinearity and diode characteristics. It was derived from utilizing different sequences of carrier transport mechanisms such as the direct tunneling current, Fowler-Nordheim tunneling, and thermionic emission. The FTD memristor demonstrated the feasibility of sneak current-free high-density CPMA.
Electrolyte diodes with weak acids and bases. I. Theory and an approximate analytical solution.
Iván, Kristóf; Simon, Péter L; Wittmann, Mária; Noszticzius, Zoltán
2005-10-22
Until now acid-base diodes and transistors applied strong mineral acids and bases exclusively. In this work properties of electrolyte diodes with weak electrolytes are studied and compared with those of diodes with strong ones to show the advantages of weak acids and bases in these applications. The theoretical model is a one dimensional piece of gel containing fixed ionizable groups and connecting reservoirs of an acid and a base. The electric current flowing through the gel is measured as a function of the applied voltage. The steady-state current-voltage characteristic (CVC) of such a gel looks like that of a diode under these conditions. Results of our theoretical, numerical, and experimental investigations are reported in two parts. In this first, theoretical part governing equations necessary to calculate the steady-state CVC of a reverse-biased electrolyte diode are presented together with an approximate analytical solution of this reaction-diffusion-ionic migration problem. The applied approximations are quasielectroneutrality and quasiequilibrium. It is shown that the gel can be divided into an alkaline and an acidic zone separated by a middle weakly acidic region. As a further approximation it is assumed that the ionization of the fixed acidic groups is complete in the alkaline zone and that it is completely suppressed in the acidic one. The general solution given here describes the CVC and the potential and ionic concentration profiles of diodes applying either strong or weak electrolytes. It is proven that previous formulas valid for a strong acid-strong base diode can be regarded as a special case of the more general formulas presented here.
Quantitative near-infrared spectroscopy on patients with peripheral vascular disease
NASA Astrophysics Data System (ADS)
Franceschini, Maria-Angela; Fantini, Sergio; Palumbo, Renato; Pasqualini, Leonella; Vaudo, Gaetano; Franceschini, Edoardo; Gratton, Enrico; Palumbo, Barbara; Innocente, Salvatore; Mannarino, Elmo
1998-01-01
We have used near-infrared spectroscopy to measure the hemoglobin saturation at rest and during exercise on patients affected by peripheral vascular disease (PVD). The instrument used in our study is a frequency-domain tissue oximeter which employs intensity modulated (110 MHz) laser diodes. We examined 9 subjects, 3 of which were controls and 6 were patients affected by stage II PVD. The optical probe was located on the calf muscle of the subjects. The measurement protocol consisted of: (1) baseline (approximately 5 min); (2) stationary bicycle exercise (approximately 5 min); (3) recovery (approximately 15 min). The change in hemoglobin saturation during exercise ((Delta) Y) and the recovery time after exercise (trec) were significantly greater in the PVD patients ((Delta) Y equals -21 +/- 3%, trec equals 5.9 +/- 3.8 min) than in the control subjects ((Delta) Y equals 2 +/- 3%, trec equals 0.6 +/- 0.1 min).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang Gao
2015-11-30
A diode-pumped, passively Q-switched, intracavity frequency-doubled YVO{sub 4}/Nd : YVO{sub 4}/KTP green laser is realised using a GaAs saturable absorber. Two pieces of GaAs wafers are employed in the experiment. In using a 400-μm-thick GaAs wafer and an incident pump power of 10.5 W, the maximum output power of the passively Q-switched green laser is 362 mW at a pulse repetition rate of 84 kHz and a pulse duration of 2.5 ns. When use is made of a 700-mm-thick GaAs wafer, the minimum pulse duration is 1.5 ns at a repetition rate of 67 kHz, pulse energy of 4.18 μJmore » and peak power of 2.8 kW. (control of laser radiation parameters)« less
Q-switching of a Tm,Ho:KLu(WO4)2 microchip laser by a graphene-based saturable absorber
NASA Astrophysics Data System (ADS)
Serres, J. M.; Loiko, P.; Mateos, X.; Jambunathan, V.; Yumashev, K.; Griebner, U.; Petrov, V.; Aguiló, M.; Díaz, F.
2016-02-01
The first Ho microchip laser passively Q-switched using a graphene-based saturable absorber is demonstrated based on a Tm,Ho:KLu(WO4)2 crystal cut along the N g-axis. A maximum average output power of 74 mW is extracted from the diode-pumped laser at 2061 nm with a slope efficiency of 4%. Pulses as short as 200 ns with an energy of ~0.2 μJ are obtained at a repetition rate of 340 kHz. The energy transfer (ET), 3F4 (Tm3+) ↔ 5I7 (Ho3+) is studied, yielding ET parameters of P 28 = 1.69 and P 71 = 0.15 × 10-22 cm3 μs-1, revealing the strong prevalence of direct ET.
Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Huang, Ke; Tao, Mengmeng; Chen, Hongwei; Yi, Aiping; Feng, Guobin; Si, Jinhai
2016-01-01
A diode-cladding pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) is demonstrated. Stable pulse train was produced at a slope efficiency of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ, from which the maximum peak power was calculated to be 21.9 W. To the best of our knowledge, the average power and the peak power are the highest in 3 μm region passively Q-switched fiber lasers. The influence of gain fiber length on the operation regime of the fiber laser has been investigated in detail. PMID:27225029
Analysis and modeling of a family of two-transistor parallel inverters
NASA Technical Reports Server (NTRS)
Lee, F. C. Y.; Wilson, T. G.
1973-01-01
A family of five static dc-to-square-wave inverters, each employing a square-loop magnetic core in conjunction with two switching transistors, is analyzed using piecewise-linear models for the nonlinear characteristics of the transistors, diodes, and saturable-core devices. Four of the inverters are analyzed in detail for the first time. These analyses show that, by proper choice of a frame of reference, each of the five quite differently appearing inverter circuits can be described by a common equivalent circuit. This equivalent circuit consists of a five-segment nonlinear resistor, a nonlinear saturable reactor, and a linear capacitor. Thus, by proper interpretation and identification of the parameters in the different circuits, the results of a detailed solution for one of the inverter circuits provide similar information and insight into the local and global behavior of each inverter in the family.
Saturation current and collection efficiency for ionization chambers in pulsed beams.
DeBlois, F; Zankowski, C; Podgorsak, E B
2000-05-01
Saturation currents and collection efficiencies in ionization chambers exposed to pulsed megavoltage photon and electron beams are determined assuming a linear relationship between 1/I and 1/V in the extreme near-saturation region, with I and V the chamber current and polarizing voltage, respectively. Careful measurements of chamber current against polarizing voltage in the extreme near-saturation region reveal a current rising faster than that predicted by the linear relationship. This excess current combined with conventional "two-voltage" technique for determination of collection efficiency may result in an up to 0.7% overestimate of the saturation current for standard radiation field sizes of 10X10 cm2. The measured excess current is attributed to charge multiplication in the chamber air volume and to radiation-induced conductivity in the stem of the chamber (stem effect). These effects may be accounted for by an exponential term used in conjunction with Boag's equation for collection efficiency in pulsed beams. The semiempirical model follows the experimental data well and accounts for both the charge recombination as well as for the charge multiplication effects and the chamber stem effect.
Investigations of large area electron beam diodes for excimer lasers. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-31
This report summarizes the results of a one year research program at the University of Michigan to investigate the physics and technology of microsecond electron beam diodes. These experiments were performed on the Michigan Electron Long Beam Accelerator (MELBA) at parameters: Voltage {equals} {minus}0.65 to {minus}0.9 MV, current {equals} 1 {minus}50 kA, and pulselength {equals} 0.5 {minus} 5 microseconds. Major accomplishments include: (1) the first two-wavelength (CO2 and HeNe) laser deflection measurements of diode plasma and neutrals; (2) measurements of the effects on magnetic field gradient on microsecond diode closure; (3) demonstration of good fidelity of processed x-ray signals asmore » a diagnostic of beam voltage; (4) extended-pulselength scaling of electron beam diode arcing and diode closure; and (5) innovative Cerenkov plate diagnostics of e-beam dynamics.« less
Stacked, Filtered Multi-Channel X-Ray Diode Array
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacNeil, Lawrence P.; Dutra, Eric C.; Raphaelian, Mark
2015-08-01
This system meets the need for a low-cost, robust X-ray diode array to use for experiments in hostile environments on multiple platforms, and for experiments utilizing forces that may destroy the diode(s). Since these uses require a small size with a minimal single line-of-sight, a parallel array often cannot be used. So a stacked, filtered multi-channel X-ray diode array was developed that was called the MiniXRD. The design was modeled, built, and tested at National Security Technologies, LLC (NSTec) Livermore Operations (LO) to determine fundamental characteristics. Then, several different systems were fielded as ancillary “ridealong” diagnostics at several national facilitiesmore » to allow us to iteratively improve the design and usability. Presented here are design considerations and experimental results. This filtered diode array is currently at Technical Readiness Level (TRL) 6.« less
Spin-torque diode frequency tuning via soft exchange pinning of both magnetic layers
NASA Astrophysics Data System (ADS)
Khudorozhkov, A. A.; Skirdkov, P. N.; Zvezdin, K. A.; Vetoshko, P. M.; Popkov, A. F.
2017-12-01
A spin-torque diode, which is a magnetic tunnel junction with magnetic layers softly pinned at some tilt to each other, is proposed. The resonance operating frequency of such a dual exchange-pinned spin-torque diode can be significantly higher (up to 9.5 GHz) than that of a traditional free layer spin-torque diode, and, at the same time, the sensitivity remains rather high. Using micromagnetic modeling we show that the maximum microwave sensitivity of the considered diode is reached at the bias current densities slightly below the self-sustained oscillations initiating. The dependence of the resonance frequency and the sensitivity on the angle between pinning exchange fields is presented. Thus, a way of designing spin-torque diode with a given resonance response frequency in the microwave region in the absence of an external magnetic field is proposed.
High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments
NASA Technical Reports Server (NTRS)
Eegholm, Niels; Ott, Melanie; Stephen, Mark; Leidecker, Henning
2005-01-01
Semiconductor laser diodes emit coherent light by simulated emission generated inside the cavity formed by the cleaved end facets of a slab of semiconductor that is typically less than a millimeter in any dimension for single emitters. The diode is pumped by current injection in the p-n junction through the metallic contacts. Laser diodes emitting in the range of 0.8 micron to 1.06 micron have a wide variety of applications from pumping erbium doped fiber amplifiers, dual-clad fiber lasers, solid-state lasers used in telecom, aerospace, military, medical purposes and all the way to CD players, laser printers and other consumer and industrial products. Laser diode bars have many single emitters side by side and spaced approximately .5 mm on a single slab of semiconductor material approximately .5 mm x 10 mm. The individual emitters are connected in parallel maintaining the voltage at -2V but increasing the current to 50-100A/bar. Stacking these laser diode bars in multiple layers, 2 to 20+ high, yields high power laser diode arrays capable of emitting several hundreds of Watts. Electrically the bars are wired in series increasing the voltage by 2V/bar but maintaining the total current at 50-100A. These arrays are one of the enabling technologies for efficient, high power solid-state lasers. Traditionally these arrays are operated in QCW (Quasi CW) mode with pulse widths 10-200 (mu)s and with repetition rates of 10-200Hz. In QCW mode the wavelength and the output power of the laser reaches steady-state but the temperature does not. The advantage is a substantially higher output power than in CW mode, where the output power would be limited by the internal heating and hence the thermal and heat sinking properties of the device. The down side is a much higher thermal induced mechanical stress caused by the constant heating and cooling cycle inherent to the QCW mode.
Esaki, Leo; Kitamura, Masatoshi; Iwamoto, Satoshi; Arakawa, Yasuhiko
2010-01-01
We report, as the result of shelf-life tests for Esaki diodes, the observation of minute but tangible reductions in the tunnel current after the lapse of half a century. The reduction could be attributed to 0.25% widening in the tunnel path. PMID:20431267
NASA Astrophysics Data System (ADS)
Cova, P.; Singh, A.; Medina, A.; Masut, R. A.
1998-04-01
A detailed study of the effect of doping density on current transport was undertaken in Au metal-insulator-semiconductor (MIS) contacts fabricated on Zn-doped InP layers grown by metal organic vapor phase epitaxy. A recently developed method was used for the simultaneous analysis of the current-voltage ( I- V) and capacitance-voltage ( C- V) characteristics in an epitaxial MIS diode which brings out the contributions of different current-transport mechanisms to the total current. I- V and high-frequency C- V measurements were performed on two MIS diodes at different temperatures in the range 220-395 K. The barrier height at zero bias of Au/InP:Zn MIS diodes, φ0 (1.06 V±10%), was independent both of the Zn-doping density and of the surface preparation. The interface state density distribution Nss as well as the thickness of the oxide layer (2.2±15% nm) unintentionally grown before Au deposition were independent of the Zn-doping concentration in the range 10 16< NA<10 17 cm -3; not so the effective potential barrier χ of the insulator layer and the density of the mid-gap traps. χ was much lower for the highly-doped sample. Our results indicate that at high temperatures, independent of the Zn-doping concentration, the interfacial layer-thermionic (ITE) and interfacial layer-diffusion (ID) mechanisms compete with each other to control the current transport. At intermediate temperatures, however, ITE and ID will no longer be the only dominant mechanisms in the MIS diode fabricated on the highly-doped sample. In this case, the assumption of a generation-recombination current permits a better fit to the experimental data. Analysis of the data suggests that the generation-recombination current, observed only in the highly-doped sample, is associated with an increase in the Zn-doping density. From the forward I- V data for this diode we obtained the energy level (0.60 eV from the conduction band) for the most effective recombination centers.
An analysis of the ArcCHECK-MR diode array's performance for ViewRay quality assurance.
Ellefson, Steven T; Culberson, Wesley S; Bednarz, Bryan P; DeWerd, Larry A; Bayouth, John E
2017-07-01
The ArcCHECK-MR diode array utilizes a correction system with a virtual inclinometer to correct the angular response dependencies of the diodes. However, this correction system cannot be applied to measurements on the ViewRay MR-IGRT system due to the virtual inclinometer's incompatibility with the ViewRay's multiple simultaneous beams. Additionally, the ArcCHECK's current correction factors were determined without magnetic field effects taken into account. In the course of performing ViewRay IMRT quality assurance with the ArcCHECK, measurements were observed to be consistently higher than the ViewRay TPS predictions. The goals of this study were to quantify the observed discrepancies and test whether applying the current factors improves the ArcCHECK's accuracy for measurements on the ViewRay. Gamma and frequency analysis were performed on 19 ViewRay patient plans. Ion chamber measurements were performed at a subset of diode locations using a PMMA phantom with the same dimensions as the ArcCHECK. A new method for applying directionally dependent factors utilizing beam information from the ViewRay TPS was developed in order to analyze the current ArcCHECK correction factors. To test the current factors, nine ViewRay plans were altered to be delivered with only a single simultaneous beam and were measured with the ArcCHECK. The current correction factors were applied using both the new and current methods. The new method was also used to apply corrections to the original 19 ViewRay plans. It was found the ArcCHECK systematically reports doses higher than those actually delivered by the ViewRay. Application of the current correction factors by either method did not consistently improve measurement accuracy. As dose deposition and diode response have both been shown to change under the influence of a magnetic field, it can be concluded the current ArcCHECK correction factors are invalid and/or inadequate to correct measurements on the ViewRay system. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
High-performance single nanowire tunnel diodes.
Wallentin, Jesper; Persson, Johan M; Wagner, Jakob B; Samuelson, Lars; Deppert, Knut; Borgström, Magnus T
2010-03-10
We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 27.6 at liquid helium temperature. These sub-100-nm-diameter structures are promising components for solar cells as well as electronic applications.
Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly.
Tikhonchuk, V T; Bailly-Grandvaux, M; Santos, J J; Poyé, A
2017-08-01
Recent experiments are showing possibilities to generate strong magnetic fields on the excess of 500 T with high-energy nanosecond laser pulses in a compact setup of a capacitor connected to a single turn coil. Hot electrons ejected from the capacitor plate (cathode) are collected at the other plate (anode), thus providing the source of a current in the coil. However, the physical processes leading to generation of currents exceeding hundreds of kiloamperes in such a laser-driven diode are not sufficiently understood. Here we present a critical analysis of previous results and propose a self-consistent model for the high current generation in a laser-driven capacitor-coil assembly. It accounts for three major effects controlling the diode current: the space charge neutralization, the plasma magnetization between the capacitor plates, and the Ohmic heating of the external circuit-the coil-shaped connecting wire. The model provides the conditions necessary for transporting strongly super-Alfvenic currents through the diode on the time scale of a few nanoseconds. The model validity is confirmed by a comparison with the available experimental data.
NASA Astrophysics Data System (ADS)
Encomendero, Jimy; Yan, Rusen; Verma, Amit; Islam, S. M.; Protasenko, Vladimir; Rouvimov, Sergei; Fay, Patrick; Jena, Debdeep; Xing, Huili Grace
2018-03-01
We report the generation of room temperature microwave oscillations from GaN/AlN resonant tunneling diodes, which exhibit record-high peak current densities. The tunneling heterostructure grown by molecular beam epitaxy on freestanding GaN substrates comprises a thin GaN quantum well embedded between two AlN tunneling barriers. The room temperature current-voltage characteristics exhibit a record-high maximum peak current density of ˜220 kA/cm2. When biased within the negative differential conductance region, microwave oscillations are measured with a fundamental frequency of ˜0.94 GHz, generating an output power of ˜3.0 μW. Both the fundamental frequency and the output power of the oscillator are limited by the external biasing circuit. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is predicted to be ˜200 GHz. This work represents a significant step towards microwave power generation enabled by resonant tunneling transport, an ultra-fast process that goes beyond the limitations of current III-Nitride high electron mobility transistors.
CURRENT-VOLTAGE CHARACTERISTICS OF THERMALLY ANNEALED Ni/n-GaAs SCHOTTKY CONTACTS
NASA Astrophysics Data System (ADS)
Yildirim, Nezir; Turut, Abdulmecit; Dogan, Hulya
The Schottky barrier type Ni/n-GaAs contacts fabricated by us were thermally annealed at 600∘C and 700∘C for 1min. The apparent barrier height Φap and ideality factor of the diodes were calculated from the forward bias current-voltage characteristic in 60-320K range. The Φap values for the nonannealed and 600∘C and 700∘C annealed diodes were obtained as 0.80, 0.81 and 0.67eV at 300K, respectively. Thus, it has been concluded that the reduced barrier due to the thermal annealing at 700∘C promises some device applications. The current preferentially flows through the lowest barrier height (BH) with the temperature due to the BH inhomogeneities. Therefore, it was seen that the Φap versus (2kT)‑1 plots for the nonannealed and annealed diodes showed the linear behavior according to Gaussian distributions.
Intense Pulsed Heavy Ion Beam Technology
NASA Astrophysics Data System (ADS)
Masugata, Katsumi; Ito, Hiroaki
Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.
Lin, Chia-Chun; Wu, Yung-Hsien; Chang, You-Tai; Sun, Cherng-En
2014-01-01
A simplified one-diode one-resistor (1D1R) resistive switching memory cell that uses only four layers of TaN/ZrTiO x /Ni/n(+)-Si was proposed to suppress sneak current where TaN/ZrTiO x /Ni can be regarded as a resistive-switching random access memory (RRAM) device while Ni/n(+)-Si acts as an Schottky diode. This is the first RRAM cell structure that employs metal/semiconductor Schottky diode for current rectifying. The 1D1R cell exhibits bipolar switching behavior with SET/RESET voltage close to 1 V without requiring a forming process. More importantly, the cell shows tight resistance distribution for different states, significantly rectifying characteristics with forward/reverse current ratio higher than 10(3) and a resistance ratio larger than 10(3) between two states. Furthermore, the cell also displays desirable reliability performance in terms of long data retention time of up to 10(4) s and robust endurance of 10(5) cycles. Based on the promising characteristics, the four-layer 1D1R structure holds the great potential for next-generation nonvolatile memory technology.
NASA Astrophysics Data System (ADS)
Mansour, Shehab A.; Ibrahim, Mervat M.
2017-11-01
Iron oxide (α-Fe2O3) nanocrystals have been synthesized via the sol-gel technique. The structural and morphological features of these nanocrystals were studied using x-ray diffraction, Fourier transform-infrared spectroscopy and transmission electron microscopy. Colloidal solution of synthesized α-Fe2O3 (hematite) was spin-coated onto a single-crystal p-type silicon (p-Si) wafer to fabricate a heterojunction diode with Mansourconfiguration Ag/Fe2O3/p-Si/Al. This diode was electrically characterized at room temperature using current-voltage (I-V) characteristics in the voltage range from -9 V to +9 V. The fabricated diode showed a good rectification behavior with a rectification factor 1.115 × 102 at 6 V. The junction parameters such as ideality factor, barrier height, series resistance and shunt resistance are determined using conventional I-V characteristics. For low forward voltage, the conduction mechanism is dominated by the defect-assisted tunneling process with conventional electron-hole recombination. However, at higher voltage, I-V ohmic and space charge-limited current conduction was became less effective with the contribution of the trapped-charge-limited current at the highest voltage range.
NASA Technical Reports Server (NTRS)
Bybee, Shannon J.
2001-01-01
Electro-Optic Holography (EOH) is a non-intrusive, laser-based, displacement measurement technique capable of static and dynamic displacement measurements. EOH is an optical interference technique in which fringe patterns that represent displacement contour maps are generated. At excessively large displacements the fringe density may be so great that individual fringes are not resolvable using typical EOH techniques. This thesis focuses on the development and implementation of a method for controlling the sensitivity of the EOH system. This method is known as Frequency Translated Electro-Optic Holography (FTEOH). It was determined that by modulating the current source of the laser diode at integer multiples of the object vibration, the fringe pattern is governed by higher order Bessel function of the first kind and the number of fringes that represent a given displacement can be controlled. The reduction of fringes is theoretically unlimited but physically limited by the frequency bandwidth of the signal generator, providing modulation to the laser diode. Although this research technique has been verified theoretically and experimentally in this thesis, due to the current laser diode capabilities it is a tedious and time consuming process to acquire data using the FTEOH technique.
Cho, Seong Gook; Lee, Dong Uk; Kim, Eun Kyu
2013-09-01
We investigated the electrical and optical properties of n-ZnO/p-GaN hetero-junction diode fabricated by an ultra-high vacuum radio frequency magnetron sputter. A physical relationship between the rotation rate during deposition process and post annealing conditions after deposited ZnO layer on p-GaN layer was discussed. When the rotation rates during deposition process of n-ZnO layer were 5 rpm and 15 rpm, the full width at half maximum of photoluminescence spectra of ZnO layer on the p-GaN layer was about 106 and 133 meV, respectively. Also, the ratio of deep level emission to near band edge emission was dramatically increased as increasing the rotation rate from 5 to 15 rpm. The n-ZnO/p-GaN hetero-junction diode grown at 5 rpm has a higher ratio of forward to reverse currents than the diode grown at 15 rpm. Also, the 600 degrees C-annealed diodes with 5 rpm showed good rectifying behavior with the barrier height of 0.74 eV, the ideality factor of 12.2, and the forward to reverse current ratio of 614 at +/- 8 V.
Study and modeling of the transport mechanism in a semi insulating GaAs Schottky diode
NASA Astrophysics Data System (ADS)
Resfa, A.; Smahi, Bourzig Y.; Menezla, Brahimi. R.
2012-09-01
The current through a metal-semiconductor junction is mainly due to the majority carriers. Three distinctly different mechanisms exist in a Schottky diode: diffusion of carriers from the semiconductor into the metal, thermionic emission-diffusion (TED) of carriers across the Schottky barrier and quantum-mechanical tunneling through the barrier. The insulating layer converts the MS device in an MIS device and has a strong influence on its current-voltage (I-V) and the parameters of a Schottky barrier from 3.7 to 15 eV. There are several possible reasons for the error that causes a deviation of the ideal behavior of Schottky diodes with and without an interfacial insulator layer. These include the particular distribution of interface states, the series resistance, bias voltage and temperature. The GaAs and its large concentration values of trap centers will participate in an increase of the process of thermionic electrons and holes, which will in turn the IV characteristic of the diode, and an overflow maximum value [NT = 3 × 1020] is obtained. The I-V characteristics of Schottky diodes are in the hypothesis of a parabolic summit.
Two-wavelength laser-diode heterodyne interferometry with one phasemeter
NASA Astrophysics Data System (ADS)
Onodera, Ribun; Ishii, Yukihiro
1995-12-01
A two-wavelength laser-diode interferometer that is based on heterodyne detection with one phasemeter has been constructed. Two laser diodes are frequency modulated by mutually inverted sawtooth currents on an unbalanced interferometer. One can measure the tested phase at a synthetic wavelength from the sum of the interference beat signals by synchronizing them with the modulation frequency. The experimental result presented shows a phase-measurement range with a 4.7- mu m synthetic wavelength.
1988-10-26
concentrated into this off- axis peak is then considered. Estimates of the source brightness ( extraction ion diode source current density divided by the square...radioactive contamination of the accelerator. One possible scheme for avoiding this problem is to use extraction geometry ion diodes to focus the ion beams...annular region. These results will be coupled to two simple models of extraction ion diodes to determihe the ion source brightness requirements. These
2000W high beam quality diode laser for direct materials processing
NASA Astrophysics Data System (ADS)
Qin, Wen-bin; Liu, You-qiang; Cao, Yin-hua; Gao, Jing; Pan, Fei; Wang, Zhi-yong
2011-11-01
This article describes high beam quality and kilowatt-class diode laser system for direct materials processing, using optical design software ZEMAX® to simulate the diode laser optical path, including the beam shaping, collimation, coupling, focus, etc.. In the experiment, the diode laser stack of 808nm and the diode laser stack of 915nm were used for the wavelength coupling, which were built vertical stacks up to 16 bars. The threshold current of the stack is 6.4A, the operating current is 85A and the output power is 1280W. Through experiments, after collimating the diode laser beam with micro-lenses, the fast axis BPP of the stack is less than 60mm.mrad, and the slow-axis BPP of the stack is less than 75mm.mrad. After shaping the laser beam and improving the beam quality, the fast axis BPP of the stack is still 60mm.mrad, and the slow-axis BPP of the stack is less than 19mm.mrad. After wavelength coupling and focusing, ultimately the power of 2150W was obtained, focal spot size of 1.5mm * 1.2mm with focal length 300mm. The laser power density is 1.2×105W/cm2, and that can be used for metal remelting, alloying, cladding and welding. The total optical coupling conversion efficiency is 84%, and the total electrical - optical conversion efficiency is 50%.
NASA Astrophysics Data System (ADS)
Wyss, J.; Bisello, D.; Candelori, A.; Kaminsky, A.; Pantano, D.
2001-01-01
First measurement of the energy dependence of the radiation damage induced by low-energy protons on standard and oxygen enriched diodes is presented. The current damage constant α is always insensitive to the oxygen content and increases for lower energy protons, whereas the acceptor creation rate β for both types of diodes slowly decreases for lower proton energies, this effect being amplified when the fluences are normalized to their 1 MeV neutron equivalent values. The dependence from the proton energy of the normalized β values is in open disagreement with the currently accepted NIEL hypothesis. Irradiations and measurements have been performed at the INFN Laboratorio Nazionale di Legnaro.
A Fabry-Pérot electro-optic sensing system using a drive-current-tuned wavelength laser diode.
Kuo, Wen-Kai; Wu, Pei-Yu; Lee, Chang-Ching
2010-05-01
A Fabry-Pérot enhanced electro-optic sensing system that utilizes a drive-current-tuned wavelength laser diode is presented. An electro-optic prober made of LiNbO(3) crystal with an asymmetric Fabry-Pérot cavity is used in this system. To lock the wavelength of the laser diode at resonant condition, a closed-loop power control scheme is proposed. Experiment results show that the system can keep the electro-optic prober at high sensitivity for a long working time when the closed-loop control function is on. If this function is off, the sensitivity may be fluctuated and only one-third of the best level in the worst case.
NASA Astrophysics Data System (ADS)
Qamar, Afzaal; Veit Dao, Dzung; Tanner, Philip; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima
2015-06-01
This article reports for the first time the electrical properties of fabricated n-3C-SiC/p-Si heterojunction diodes under external mechanical stress in the [110] direction. An anisotype heterojunction diode of n-3C-SiC/p-Si was fabricated by depositing 3C-SiC onto the Si substrate by low-pressure chemical vapor deposition. The mechanical stress significantly affected the scaling current density of the heterojunction. The scaling current density increases with stress and is explained in terms of a band offset reduction at the SiC/Si interface under applied stress. A reduction in the barrier height across the junction owing to applied stress is also explained quantitatively.
An overview of self-switching diode rectifiers using green materials
NASA Astrophysics Data System (ADS)
Kasjoo, Shahrir Rizal; Zailan, Zarimawaty; Zakaria, Nor Farhani; Isa, Muammar Mohamad; Arshad, Mohd Khairuddin Md; Taking, Sanna
2017-09-01
A unipolar two-terminal nanodevice, known as the self-switching diode (SSD), has recently been demonstrated as a room-temperature rectifier at microwave and terahertz frequencies due to its nonlinear current-voltage characteristic. The planar architecture of SSD not only makes the fabrication process of the device faster, simpler and at a lower cost when compared with other rectifying diodes, but also allows the use of various materials to realize and fabricate SSDs. This includes the utilization of `green' materials such as organic and graphene thin films for environmental sustainability. This paper reviews the properties of current `green' SSD rectifiers with respect to their operating frequencies and rectifying performances, including responsivity and noise-equivalent power of the devices, along with the applications.
Voltage stress induced reversible diode behavior in pentacene thin films
NASA Astrophysics Data System (ADS)
Murdey, Richard; Sato, Naoki
2012-12-01
The current-voltage characteristics of a vacuum-deposited 100 nm pentacene thin film have been measured in situ under ultrahigh vacuum. Despite using bottom contact geometry with titanium for both electrodes, the I-V curves are asymmetric and the direction and degree of the diode-like behavior vary with sample and measurement history. After careful examination we have found that applying a high positive or negative bias voltage for about 24 h at elevated temperatures was sufficient to completely switch the diode forward direction. The switching action is fully reversible and the diode behavior, once switched, remains stable to repeated measurements at least over a period of several weeks.
Single Frequency, Pulsed Laser Diode Transmitter for Dial Water Vapor Measurements at 935nm
NASA Technical Reports Server (NTRS)
Switzer, Gregg W.; Cornwell, Donald M., Jr.; Krainak, Michael A.; Abshire, James B.; Rall, Johnathan A. R.
1998-01-01
We report a tunable, single frequency, narrow linewidth, pulsed laser diode transmitter at 935.68nm for remote sensing of atmospheric water vapor. The transmitter consists of a CW, tunable, external cavity diode laser whose output is amplified 2OdB using a tapered diode amplifier. The output is pulsed for range resolved DIAL lidar by pulsing the drive current to the diode amplifier at 4kHz with a .5% duty cycle. The output from the transmitter is 36OnJ/pulse and is single spatial mode. It maintains a linewidth of less than 25MHz as its wavelength is tuned across the water vapor absorption line at 935.68nm. The transmitter design and its use in a water vapor measurement will be discussed.
Active stabilization of a diode laser injection lock.
Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep
2016-06-01
We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.
A new fabrication technique for back-to-back varactor diodes
NASA Technical Reports Server (NTRS)
Smith, R. Peter; Choudhury, Debabani; Martin, Suzanne; Frerking, Margaret A.; Liu, John K.; Grunthaner, Frank A.
1992-01-01
A new varactor diode process has been developed in which much of the processing is done from the back of an extremely thin semiconductor wafer laminated to a low-dielectric substrate. Back-to-back BNN diodes were fabricated with this technique; excellent DC and low-frequency capacitance measurements were obtained. Advantages of the new technique relative to other techniques include greatly reduced frontside wafer damage from exposure to process chemicals, improved capability to integrate devices (e.g. for antenna patterns, transmission lines, or wafer-scale grids), and higher line yield. BNN diodes fabricated with this technique exhibit approximately the expected capacitance-voltage characteristics while showing leakage currents under 10 mA at voltages three times that needed to deplete the varactor. This leakage is many orders of magnitude better than comparable Schottky diodes.
NASA Astrophysics Data System (ADS)
Kwak, Bong-Choon; Lim, Han-Sin; Kwon, Oh-Kyong
2011-03-01
In this paper, we propose a pixel circuit immune to the electrical characteristic variation of organic light-emitting diodes (OLEDs) for organic light-emitting diode-on-silicon (OLEDoS) microdisplays with a 0.4 inch video graphics array (VGA) resolution and a 6-bit gray scale. The proposed pixel circuit is implemented using five p-channel metal oxide semiconductor field-effect transistors (MOSFETs) and one storage capacitor. The proposed pixel circuit has a source follower with a diode-connected transistor as an active load for improving the immunity against the electrical characteristic variation of OLEDs. The deviation in the measured emission current ranges from -0.165 to 0.212 least significant bit (LSB) among 11 samples while the anode voltage of OLED is 0 V. Also, the deviation in the measured emission current ranges from -0.262 to 0.272 LSB in pixel samples, while the anode voltage of OLED varies from 0 to 2.5 V owing to the electrical characteristic variation of OLEDs.
Near-infrared tunable laser diode spectroscopy: an easy way for gas sensing
NASA Astrophysics Data System (ADS)
Larive, Marc; Henriot, V.
1997-05-01
A gas sensor using optical spectrometry and dedicated to a specific gas is studied. It should be able to operate out of laboratories with a very long life and a low maintenance requirement. It is based on TLDS (tunable laser diode spectroscopy) and uses a standard Perot-Fabry laser diode already developed for telecommunications. The mode selection is realized by a passband filter and the wavelength tuning is performed via the diode temperature or its injection current. A PIN photodiode is used for detection, however a rough photoacoustic solution is intended for the future. Absorptions as low as 3.10-3 are detected with this rough system and a limit detection of 10-3 is available with a signal to noise ratio of unity. Experiments have shown that this system is strongly selective for the specified gas (currently the methane). A simulation has been performed which very well fits the experiment and allows us to extrapolate the performances of the system for other gases.
Stochastic approach and fluctuation theorem for charge transport in diodes
NASA Astrophysics Data System (ADS)
Gu, Jiayin; Gaspard, Pierre
2018-05-01
A stochastic approach for charge transport in diodes is developed in consistency with the laws of electricity, thermodynamics, and microreversibility. In this approach, the electron and hole densities are ruled by diffusion-reaction stochastic partial differential equations and the electric field generated by the charges is determined with the Poisson equation. These equations are discretized in space for the numerical simulations of the mean density profiles, the mean electric potential, and the current-voltage characteristics. Moreover, the full counting statistics of the carrier current and the measured total current including the contribution of the displacement current are investigated. On the basis of local detailed balance, the fluctuation theorem is shown to hold for both currents.
Microwave generation enhancement of X-band CRBWO by use of coaxial dual annular cathodes
NASA Astrophysics Data System (ADS)
Teng, Yan; Sun, Jun; Chen, Changhua; Shao, Hao
2013-07-01
This paper presents an approach that greatly enhances both the output power and the conversion efficiency of the coaxial relativistic backward wave oscillator (CRBWO) by using coaxial dual annular cathodes, which increases the diode current rather than the diode voltage. The reasons for the maladjustment of CRBWO under a high diode voltage are analyzed theoretically. It is found that by optimization of the diode structure, the shielding effect of the space charge of the outer beams on the inner cathode can be alleviated effectively and dual annular beams with the same kinetic energy can be explosively emitted in parallel. The coaxial reflector can enhance the conversion efficiency by improving the premodulation of the beams. The electron dump on the inner conductor ensures that the electron beams continue to provide kinetic energy to the microwave output until they vanish. Particle-in-cell (PIC) simulation results show that generation can be enhanced up to an output power level of 3.63 GW and conversion efficiency of 45% at 8.97 GHz under a diode voltage of 659 kV and current of 12.27 kA. The conversion efficiency remains above 40% and the output frequency variation is less than 100 MHz over a voltage range of more than 150 kV. Also, the application of the coaxial dual annular cathodes means that the diode impedance is matched to that of the transmission line of the accelerators. This impedance matching can effectively eliminate power reflection at the diode, and thus increase the energy efficiency of the entire system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanekamp, S. B.; Ottinger, P. F.
In this Comment, it is shown that no modification of the Child-Langmuir law [Phys. Rev.32, 492 (1911); Phys. Rev. 2, 450 (1913)] is necessary to treat the space-charge-limited flow from a diode with an open boundary as reported in Phys. Plasmas 12, 093102 (2005). The open boundary condition in their simulations can be represented by a voltage source and a resistor whose value is the vacuum-wave impedance of the opening. The diode can be represented as a variable resistor whose value depends on the voltage drop across the diode (as measured by the line integral of E across the diodemore » gap). This is a simple voltage-divider circuit whose analysis shows that the real diode voltage drops as the vacuum-wave impedance increases. Furthermore, it is shown that in equilibrium, the voltage drop between the anode and cathode is independent of the path chosen for the line integral of the electric field so that E=-{nabla}{phi} is valid. In this case, the equations of electrostatics are applicable. This clearly demonstrates that the electric field is electrostatic and static fields DO NOT RADIATE. It is shown that the diode voltage drops as the vacuum wave impedance increases and the current drops according to the Child-Langmuir law. Therefore, the observed drop in circuit current can be explained by a real drop in voltage across the diode and not an effective drop as claimed by the authors.« less
Temperature dependent charge transport in poly(3-hexylthiophene) diodes
NASA Astrophysics Data System (ADS)
Rahaman, Abdulla Bin; Sarkar, Atri; Banerjee, Debamalya
2018-04-01
In this work, we present charge transport properties of poly(3-hexylthiophene) (P3HT) diodes under dark conditions. Temperature dependent current-voltage (J-V) characteristics shows that charge transport represents a transition from ohomic to trap limited current. The forward current density obeys a power law J˜Vm, m>2 represents the space charge limited current region in presence of traps within the band gap. Frequency dependent conductivity has been studied in a temperature range 150K-473K. The dc conductivity values show Arrhenius like behavior and it gives conductivity activation energy 223 meV. Temperature dependent conductivity indicates a thermodynamic transition of our system.
Rectifying the Optical-Field-Induced Current in Dielectrics: Petahertz Diode.
Lee, J D; Yun, Won Seok; Park, Noejung
2016-02-05
Investigating a theoretical model of the optical-field-induced current in dielectrics driven by strong few-cycle laser pulses, we propose an asymmetric conducting of the current by forming a heterojunction made of two distinct dielectrics with a low hole mass (m_{h}^{*}≪m_{e}^{*}) and low electron mass (m_{e}^{*}≪m_{h}^{*}), respectively. This proposition introduces the novel concept of a petahertz (10^{15} Hz) diode to rectify the current in the petahertz domain, which should be a key ingredient for the electric signal manipulation of future light-wave electronics. Further, we suggest the candidate dielectrics for the heterojunction.
GUARD RING SEMICONDUCTOR JUNCTION
Goulding, F.S.; Hansen, W.L.
1963-12-01
A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)
NASA Astrophysics Data System (ADS)
Wang, Tao; Tong, Cunzhu; Wang, Lijie; Zeng, Yugang; Tian, Sicong; Shu, Shili; Zhang, Jian; Wang, Lijun
2016-11-01
High-power broad-area (BA) diode lasers often suffer from low beam quality, broad linewidth, and a widened slow-axis far field with increasing current. In this paper, a two-dimensional current-modulated structure is proposed and it is demonstrated that it can reduce not only the far-field sensitivity to the injection current but also the linewidth of the lasing spectra. Injection-insensitive lateral divergence was realized, and the beam parameter product (BPP) was improved by 36.5%. At the same time, the linewidth was decreased by about 45% without significant degradations of emission power and conversion efficiency.
NASA Astrophysics Data System (ADS)
Li, Chi-Shing; Su, Shui-Hsiang; Chi, Hsiang-Yu; Yokoyama, Meiso
2009-01-01
An anodic aluminum oxide (AAO) template was formed by a two-step anodization process. Carbon nanotubes (CNTs) were successfully synthesized along with AAO pores and the diameters of CNTs equaled those of AAO pores. The lengths of CNTs during a chemical vapor deposition synthesized process on the AAO template were effectively controlled. These AAO-CNTs exhibit excellent field emission with a low turn-on field (0.7 V/μm) and a low threshold field (1.4 V/μm). The field enhancement factor, calculated from the non-saturated region of the Fowler-Nordheim (F-N) plot, is about 8237. A novel field-emission organic light-emitting diode (FEOLED) combining AAO-CNTs cathodes as electron source with organic electroluminescent (EL) light-emitting layers coated on indium-tin-oxide (ITO) is produced. The uniform and dense luminescence image is obtained in the FEOLEDs. Organic EL light-emitting materials have lower working voltage than inorganic phosphor-coated fluorescent screens.
Dual-wavelength mid-infrared CW and Q-switched laser in diode end-pumped Tm,Ho:GdYTaO4 crystal
NASA Astrophysics Data System (ADS)
Wang, Beibei; Gao, Congcong; Dou, Renqin; Nie, Hongkun; Sun, Guihua; Liu, Wenpeng; Yu, Haijuan; Wang, Guoju; Zhang, Qingli; Lin, Xuechun; He, Jingliang; Wang, Wenjun; Zhang, Bingyuan
2018-02-01
Dual-wavelength continuous-wave and Q-switched lasers are demonstrated in a Tm,Ho:GdYTaO4 crystal under 790 nm laser diode end pumping for the first time to the best of our knowledge. The laser operates with a dual wavelength at 1949.677 nm and 2070 nm for continuous-wave with a spacing of about 120 nm. The maximum output power is 0.332 W with a pump power of 3 W. By using graphene as the saturable absorber, a passively Q-switched operation is performed with a dual-wavelength at 1950.323 nm and 2068.064 nm with a wavelength interval of about 118 nm. The maximum average output power of the Q-switched laser goes up to 200 mW with a minimum pulse duration of 1.2 µs and a maximum repetition rate of 34.72 kHz.
Low-cost, single-mode diode-pumped Cr:Colquiriite lasers.
Demirbas, Umit; Li, Duo; Birge, Jonathan R; Sennaroglu, Alphan; Petrich, Gale S; Kolodziejski, Leslie A; Kaertner, Franz X; Fujimoto, James G
2009-08-03
We present three Cr3+:Colquiriite lasers as low-cost alternatives to Ti:Sapphire laser technology. Single-mode laser diodes, which cost only $150 each, were used as pump sources. In cw operation, with approximately 520 mW of absorbed pump power, up to 257, 269 and 266 mW of output power and slope efficiencies of 53%, 62% and 54% were demonstrated for Cr:LiSAF, Cr:LiSGaF and Cr:LiCAF, respectively. Record cw tuning ranges from 782 to 1042 nm for Cr:LiSAF, 777 to 977 nm for Cr:LiSGaF, and 754 to 871 nm for Cr:LiCAF were demonstrated. In cw mode-locking experiments using semiconductor saturable absorber mirrors at 800 and 850 nm, Cr:Colquiriite lasers produced approximately 50-100 fs pulses with approximately 1-2.5 nJ pulse energies at approximately 100 MHz repetition rate. Electrical-to-optical conversion efficiencies of 8% in mode-locked operation and 12% in cw operation were achieved.
Kinetics of transient electroluminescence in organic light emitting diodes
NASA Astrophysics Data System (ADS)
Shukla, Manju; Kumar, Pankaj; Chand, Suresh; Brahme, Nameeta; Kher, R. S.; Khokhar, M. S. K.
2008-08-01
Mathematical simulation on the rise and decay kinetics of transient electroluminescence (EL) in organic light emitting diodes (OLEDs) is presented. The transient EL is studied with respect to a step voltage pulse. While rising, for lower values of time, the EL intensity shows a quadratic dependence on (t - tdel), where tdel is the time delay observed in the onset of EL, and finally attains saturation at a sufficiently large time. When the applied voltage is switched off, the initial EL decay shows an exponential dependence on (t - tdec), where tdec is the time when the voltage is switched off. The simulated results are compared with the transient EL performance of a bilayer OLED based on small molecular bis(2-methyl 8-hydroxyquinoline)(triphenyl siloxy) aluminium (SAlq). Transient EL studies have been carried out at different voltage pulse amplitudes. The simulated results show good agreement with experimental data. Using these simulated results the lifetime of the excitons in SAlq has also been calculated.
NASA Astrophysics Data System (ADS)
Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro
2018-01-01
We thoroughly explored the physical origin of the efficiency decrease with increasing injection current and current crowding effect in 280 nm AlGaN-based flip-chip deep-ultraviolet (DUV) light-emitting diodes (LEDs). The current spreading length was experimentally determined to be much smaller in DUV LEDs than that in conventional InGaN-based visible LEDs. The severe self-heating caused by the low power conversion efficiency of DUV LEDs should be mainly responsible for the considerable decrease of efficiency when current crowding is present. The wall-plug efficiency of the DUV LEDs was markedly enhanced by using a well-designed p-electrode pattern to improve the current distribution.