Science.gov

Sample records for dioxide nanoparticles assembled

  1. Self-Assembled Enzyme Nanoparticles for Carbon Dioxide Capture.

    PubMed

    Shanbhag, Bhuvana Kamath; Liu, Boyin; Fu, Jing; Haritos, Victoria S; He, Lizhong

    2016-05-11

    Enzyme-based processes have shown promise as a sustainable alternative to amine-based processes for carbon dioxide capture. In this work, we have engineered carbonic anhydrase nanoparticles that retain 98% of hydratase activity in comparison to their free counterparts. Carbonic anhydrase was fused with a self-assembling peptide that facilitates the noncovalent assembly of the particle and together were recombinantly expressed from a single gene construct in Escherichia coli. The purified enzymes, when subjected to a reduced pH, form 50-200 nm nanoparticles. The CO2 capture capability of enzyme nanoparticles was demonstrated at ambient (22 ± 2 °C) and higher (50 °C) temperatures, under which the nanoparticles maintain their assembled state. The carrier-free enzymatic nanoparticles demonstrated here offer a new approach to stabilize and reuse enzymes in a simple and cost-effective manner.

  2. Biomolecule-directed assembly of binary gold and titanium dioxide nanoparticles.

    PubMed

    Zhu, Xiaoli; Chen, Zhenyu; Zhang, Xin; Zhu, Zhiqiang; Li, Genxi

    2010-02-01

    We report in this paper a novel strategy for "bottom-up" assembly of two types of metallic and semiconductor nanoparticles. By only using a small biomolecule, coenzyme A, as a "linker" to direct the assembly of metallic gold and semiconductor titanium dioxide nanoparticles, the usual biomolecule-directed system can be greatly simplified. Effects of experimental conditions on the formation of binary nanoparticles are studied. This strategy using single small biomolecule to direct assembly of nanoparticles is proven to be efficient, facile and non-toxic and should be extendable to other building blocks.

  3. Directed Self-assembly of Nanoparticles at the Polymer Surface by Highly Compressible Supercritical Carbon Dioxide

    SciTech Connect

    M Asada; P Gin; M Endoh; S Satija; T Taniguchi; T Koga

    2011-12-31

    We report a versatile route for self-assembly of polymer-soluble nanoparticles at the polymer surface using highly compressible supercritical carbon dioxide (scCO{sub 2}). Polystyrene and poly(methyl methacrylate)-based nanocomposite thin films with functionalized polyhedral oligomeric silsesquioxane and phenyl C{sub 61} butyric acid methyl ester nanoparticles were prepared on Si substrates and exposed to scCO{sub 2} at different pressures under the isothermal condition of 36 C. The resultant structures could be then preserved by the vitrification process of the glassy polymers via quick pressure quench to atmospheric pressure and subsequently characterized by using various surface sensitive experimental techniques in air. We found that the surface segregation of these nanoparticles is induced in the close vicinity of P = 8.2 MPa where the excess absorption of the fluid into the polymers maximizes. However, when the film thickness becomes less than about 4R{sub g} thick (where R{sub g} is the radius of polymer gyration), the uniform dispersion of the nanoparticles is favorable instead even at the same CO{sub 2} conditions. We clarify that the phase transition is correlated with the emergence of a concentration gradient of the fluid at the polymer/CO{sub 2} interface and is a general phenomenon for different polymer-nanoparticle interactions.

  4. Pd-Pt and Fe-Ni nanoparticles formed by covalent molecular assembly in supercritical carbon dioxide.

    PubMed

    Puniredd, Sreenivasa Reddy; Weiyi, Seah; Srinivasan, M P

    2008-04-01

    We report the formation of Pd-Pt nanoparticles within a dendrimer-laden ultrathin film matrix immobilized on a solid support and constructed by covalent layer-by-layer (LbL) assembly using supercritical carbon dioxide (SCCO2) as the processing medium. Particle size distribution and composition were controlled by precursor composition. The precursor compositions are optimized for Pd-Pt nanoparticles and later extended to the formation of Fe-Ni nanoparticles. As an example of the application of nanoparticles in tribology, Fe-Ni nanoparticle-laden films were observed to exhibit better tribological properties than those containing the monometallic species, thereby suggesting that combination of nanoparticles can be used to derive greater benefits.

  5. Titantium Dioxide Nanoparticles Assembled by DNA Molecules Hybridization and Loading of DNA Interacting Proteins.

    PubMed

    Wu, Aiguo; Paunesku, Tatjana; Brown, Eric M B; Babbo, Angela; Cruz, Cecille; Aslam, Mohamed; Dravid, Vinayak; Woloschak, Gayle E

    2008-02-01

    This work demonstrates the assembly of TiO(2) nanoparticles with attached DNA oligonucleotides into a 3D mesh structure by allowing base pairing between oligonucleotides. A change of the ratio of DNA oligonucleotide molecules and TiO(2) nanoparticles regulates the size of the mesh as characterized by UV-visible light spectra, transmission electron microscopy and atomic force microscopy images. This type of 3D mesh, based on TiO(2)-DNA oligonucleotide nanoconjugates, can be used for studies of nanoparticle assemblies in material science, energy science related to dye-sensitized solar cells, environmental science as well as characterization of DNA interacting proteins in the field of molecular biology. As an example of one such assembly, proliferating cell nuclear antigen protein (PCNA) was cloned, its activity verified, and the protein was purified, loaded onto double strand DNA oligonucleotide-TiO(2) nanoconjugates, and imaged by atomic force microscopy. This type of approach may be used to sample and perhaps quantify and/or extract specific cellular proteins from complex cellular protein mixtures affinity based on their affinity for chosen DNA segments assembled into the 3D matrix.

  6. Responses of Pseudokirchneriella subcapitata and algal assembly to photocatalytic titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Metzler, David M.

    Development and use of nanomaterials has increased significantly over the past decade. This trend is expected to continue for the foreseeable future, which have led some to call this new industrial revolution. One aspect of these materials that make them special is their unique properties that are different from the bulk material. These unique properties have not been investigated to determine to what extent they will impact the environment. This work was undertaken to understand how nanoparticles could impact algae. For the determination of nanoparticle toxicity, dose-response experiments were run for similar sized Al2O3, TiO2, and SiO2. Additional, a wide range of nanoparticle sizes (d1) were tested at 100 and 1000 mg/L for Al2O3, TiO 2, and SiO2. Results of different nanoparticles and similar d1 dose-response data show increased toxicity with increased surface charge of the nanoparticle. Various d1 of Al2O 3 effect the population and chlorophyll a but not lipid peroxidation. Various d1 of SiO2 and TiO2 effect the population, chlorophyll a, and lipid peroxidation. Of all TiO2 d1 tested 42 nm had the greatest effect on population, chlorophyll a, and lipid peroxidation. The effect of light intensity, algal age, and body burden was examined. The body burden was adjusted by varying the initial algal cell population while keeping the nanoparticle concentration constant. Decreased body burden decreased the effect on population. The chlorophyll a and lipid peroxidation varied with the initial decreased with decreased body burden. This trend was reversed at low body burden, the chlorophyll a and lipid peroxidation increased 3 -- 4 times greater than control values. The algal cell age was controlled by the hydraulic retention time of the pre-exposure continuously stirred tank reactors. As the age of the algae increased the effect of population increased. At algae age great then 10 days the effect on population reminded constant. Titanium dioxide effect on chlorophyll a

  7. Dynamic Nanoparticles Assemblies

    PubMed Central

    WANG, LIBING; XU, LIGUANG; KUANG, HUA; XU, CHUANLAI; KOTOV, NICHOLAS A.

    2012-01-01

    CONSPECTUS Importance Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple sizes of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously formed superstructures containing more than two inorganic nanoscale particles that display ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the ‘bottom-up’ fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Classification Superstructures of NPs (and those held together by similar intrinsic forces) are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable superstructures with a nearly constant number same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation and/or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of a molecule from atoms. Finer classification of NP assemblies in accord with established conventions

  8. Direct hierarchical assembly of nanoparticles

    DOEpatents

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  9. Appropriate salt concentration of nanodiamond colloids for electrostatic self-assembly seeding of monosized individual diamond nanoparticles on silicon dioxide surfaces.

    PubMed

    Yoshikawa, Taro; Zuerbig, Verena; Gao, Fang; Hoffmann, René; Nebel, Christoph E; Ambacher, Oliver; Lebedev, Vadim

    2015-05-19

    Monosized (∼4 nm) diamond nanoparticles arranged on substrate surfaces are exciting candidates for single-photon sources and nucleation sites for ultrathin nanocrystalline diamond film growth. The most commonly used technique to obtain substrate-supported diamond nanoparticles is electrostatic self-assembly seeding using nanodiamond colloidal suspensions. Currently, monodisperse nanodiamond colloids, which have a narrow distribution of particle sizes centering on the core particle size (∼4 nm), are available for the seeding technique on different substrate materials such as Si, SiO2, Cu, and AlN. However, the self-assembled nanoparticles tend to form small (typically a few tens of nanometers or even larger) aggregates on all of those substrate materials. In this study, this major weakness of self-assembled diamond nanoparticles was solved by modifying the salt concentration of nanodiamond colloidal suspensions. Several salt concentrations of colloidal suspensions were prepared using potassium chloride as an inserted electrolyte and were examined with respect to seeding on SiO2 surfaces. The colloidal suspensions and the seeded surfaces were characterized by dynamic light scattering and atomic force microscopy, respectively. Also, the interaction energies between diamond nanoparticles in each of the examined colloidal suspensions were compared on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. From these investigations, it became clear that the appropriate salt concentration suppresses the formation of small aggregates during the seeding process owing to the modified electrostatic repulsive interaction between nanoparticles. Finally, monosized (<10 nm) individual diamond nanoparticles arranged on SiO2 surfaces have been successfully obtained.

  10. Silver Nanoparticle Generators: Silicon Dioxide Microspheres.

    PubMed

    Liu, Yan; Li, Yingdi; Kang, Yanlei; Shen, Qihui; Liu, Xiaoyang; Zhou, Jianguang

    2017-02-24

    A green and simple approach has been developed to synthesize un-coated Ag nanoparticles (AgNPs) in situ on the surface of thiol-group-functionalized silica dioxide microspheres (TSMs) in the aqueous solution. As soon as the Ag(+) ions attach onto the surface of TSMs, nucleation and growth of AgNPs can spontaneously complete within one minute without other reducing agents or capping agents. The main reason is that the self-assembled silane-layer formed by mercaptosilane molecules could reduce the Ag(0) formation energy, transport electrons efficiently, improve the nucleation density, and protect AgNPs against oxidation. Thus, the supported AgNPs show excellent chemical/photochemical stability in air and solution. Meanwhile, the size of as-prepared AgNPs could be controlled by tuning the concentration of Ag(+) ions. This process provides a general route to generate bare AgNPs on the surface of silica dioxide in situ, which might be extended to other materials and is promising in developing novel methodologies for making supported noble metal NPs with desired structure and properties.

  11. DNA-guided nanoparticle assemblies

    DOEpatents

    Gang, Oleg; Nykypanchuk, Dmytro; Maye, Mathew; van der Lelie, Daniel

    2013-07-16

    In some embodiments, DNA-capped nanoparticles are used to define a degree of crystalline order in assemblies thereof. In some embodiments, thermodynamically reversible and stable body-centered cubic (bcc) structures, with particles occupying <.about.10% of the unit cell, are formed. Designs and pathways amenable to the crystallization of particle assemblies are identified. In some embodiments, a plasmonic crystal is provided. In some aspects, a method for controlling the properties of particle assemblages is provided. In some embodiments a catalyst is formed from nanoparticles linked by nucleic acid sequences and forming an open crystal structure with catalytically active agents attached to the crystal on its surface or in interstices.

  12. Genotoxicity of titanium dioxide nanoparticles.

    PubMed

    Chen, Tao; Yan, Jian; Li, Yan

    2014-03-01

    Titanium dioxide nanoparticles (TiO(2)-NPs, <100 nm) are increasingly being used in pharmaceuticals and cosmetics due to the unique properties derived from their small sizes. However, their large surface-area to mass ratio and high redox potential may negatively impact human health and the environment. TiO(2)-NPs can cause inflammation, pulmonary damage, fibrosis, and lung tumors and they are possibly carcinogenic to humans. Because cancer is a disease involving mutation, there are a large number of studies on the genotoxicity of TiO(2)-NPs. In this article, we review the results that have been reported in the literature, with a focus on data generated from the standard genotoxicity assays. The data include genotoxicity results from the Ames test, in vitro and in vivo Comet assay, in vitro and in vivo micronucleus assay, sister chromatid exchange assay, mammalian cell hypoxanthine-guanine phosphoribosyl transferase gene assay, the wing somatic mutation and recombination assay, and the mouse phosphatidylinositol glycan, class A gene assay. Inconsistent results have been found in these assays, with both positive and negative responses being reported. The in vitro systems for assessing the genotoxicity of TiO(2)-NPs have generated a greater number of positive results than the in vivo systems, and tests for DNA and chromosome damage have produced more positive results than the assays measuring gene mutation. Nearly all tests for measuring the mutagenicity of TiO(2)-NPs were negative. The current data indicate that the genotoxicity of TiO(2)-NPs is mediated mainly through the generation of oxidative stress in cells.

  13. Spatially confined assembly of nanoparticles.

    PubMed

    Jiang, Lin; Chen, Xiaodong; Lu, Nan; Chi, Lifeng

    2014-10-21

    The ability to assemble NPs into ordered structures that are expected to yield collective physical or chemical properties has afforded new and exciting opportunities in the field of nanotechnology. Among the various configurations of nanoparticle assemblies, two-dimensional (2D) NP patterns and one-dimensional (1D) NP arrays on surfaces are regarded as the ideal assembly configurations for many technological devices, for example, solar cells, magnetic memory, switching devices, and sensing devices, due to their unique transport phenomena and the cooperative properties of NPs in assemblies. To realize the potential applications of NP assemblies, especially in nanodevice-related applications, certain key issues must still be resolved, for example, ordering and alignment, manipulating and positioning in nanodevices, and multicomponent or hierarchical structures of NP assemblies for device integration. Additionally, the assembly of NPs with high precision and high levels of integration and uniformity for devices with scaled-down dimensions has become a key and challenging issue. Two-dimensional NP patterns and 1D NP arrays are obtained using traditional lithography techniques (top-down strategies) or interfacial assembly techniques (bottom-up strategies). However, a formidable challenge that persists is the controllable assembly of NPs in desired locations over large areas with high precision and high levels of integration. The difficulty of this assembly is due to the low efficiency of small features over large areas in lithography techniques or the inevitable structural defects that occur during the assembly process. The combination of self-assembly strategies with existing nanofabrication techniques could potentially provide effective and distinctive solutions for fabricating NPs with precise position control and high resolution. Furthermore, the synergistic combination of spatially mediated interactions between nanoparticles and prestructures on surfaces may play

  14. International Space Station Carbon Dioxide Removal Assembly Testing

    NASA Technical Reports Server (NTRS)

    Knox, James C.

    2000-01-01

    Performance testing of the International Space Station Carbon Dioxide Removal Assembly flight hardware in the United States Laboratory during 1999 is described. The CDRA exceeded carbon dioxide performance specifications and operated flawlessly. Data from this test is presented.

  15. [Titanium dioxide nanoparticles: occupational exposure limits].

    PubMed

    Swidwińska-Gajewska, Anna Maria; Czerczak, Sławomir

    2014-01-01

    Titanium dioxide (TiO2) is produced in Poland as a high production volume chemical (HPVC). It is used mainly as a pigment for paints and coatings, plastics, paper, and also as additives to food and pharmaceuticals. Titanium dioxide nanoparticles are increasingly applied in cosmetics, textiles and plastics as the ultraviolet light blocker. This contributes to a growing occupational exposure to TiO2 nanoparticles. Nanoparticles are potentially responsible for the most adverse effects of titanium dioxide. Due to the absence of separate fraction of nanoobjects and appropriate measurement methods the maximum admissible concentrations (MAC) for particles < 100 nm and nano-TiO2 cannot be established. In the world there are 2 proposals of occupational exposure levels for titanium dioxide nanoparticles: 0.3 mg/m3, proposed by the National Institute for Occupational Safety and Health (NIOSH), and 0.6 mg/m3, proposed by experts of the New Energy and Industrial Technology Development Organization (NEDO). The authors of this article, based on the available data and existing methods for hygiene standards binding in Poland, concluded that the MAC value of 0.3 mg/m3 for nanoparticles TiO2 in the workplace air can be accepted.

  16. [Titanium dioxide nanoparticles--biological effects].

    PubMed

    Świdwińska-Gajewska, Anna Maria; Czerczak, Sławomir

    2014-01-01

    Titanium dioxide occurs as particles of various sizes. Particles of up to 100 nm, corresponding to nanoparticles, and in the size range of 0.1-3 mm are the most frequently used. Titanium dioxide in a bulk form is not classified as dangerous substance, nevertheless nanoparticles may cause adverse health effects. Inhalation exposure to nano-TiO2, causes pulmonary inflammation that may lead to fibrotic and proliferative changes in the lungs. Many studies confirm the genotoxic effect of TiO2, especially in the form of nanoparticles, on mammal and human cells. In rats exposed to TiO2-nanoparticles by inhalation the development of tumors has been observed. However, there is no evidence of additional lung cancer risk or mortality in workers exposed to TiO2 dust. There are some studies demonstrating the adverse effect of TiO2-nanoparticles on fetal development, as well as on reproduction of animals. TiO2 nanoparticles find a still wider application and thus the risk of occupational exposure to this substance increases as well. Considering such alarming data on the biological activity of TiO2 nanoparticles, more attention should be paid to occupational exposure and its health effects. Properties of the nanoparticles, due to their larger surface area and reactivity, differ significantly from the inhalable dust of TiO2, for which the hygiene standards are mandatory in Poland.

  17. Titanium dioxide nanoparticles cause genotoxicity in human lung epithelial cells

    EPA Science Inventory

    The use of engineered nanoparticles in consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. This study investigated the genotoxicity of six titanium dioxide and two cerium oxide nanoparticles of va...

  18. Titanium dioxide nanoparticles cause genotoxicity in human lung epithelial cells

    EPA Science Inventory

    The use of engineered nanoparticles in consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. This study investigated the genotoxicity of six titanium dioxide and two cerium oxide nanoparticles of va...

  19. Deterministic nanoparticle assemblies: from substrate to solution

    NASA Astrophysics Data System (ADS)

    Barcelo, Steven J.; Kim, Ansoon; Gibson, Gary A.; Norris, Kate J.; Yamakawa, Mineo; Li, Zhiyong

    2014-04-01

    The deterministic assembly of metallic nanoparticles is an exciting field with many potential benefits. Many promising techniques have been developed, but challenges remain, particularly for the assembly of larger nanoparticles which often have more interesting plasmonic properties. Here we present a scalable process combining the strengths of top down and bottom up fabrication to generate deterministic 2D assemblies of metallic nanoparticles and demonstrate their stable transfer to solution. Scanning electron and high-resolution transmission electron microscopy studies of these assemblies suggested the formation of nanobridges between touching nanoparticles that hold them together so as to maintain the integrity of the assembly throughout the transfer process. The application of these nanoparticle assemblies as solution-based surface-enhanced Raman scattering (SERS) materials is demonstrated by trapping analyte molecules in the nanoparticle gaps during assembly, yielding uniformly high enhancement factors at all stages of the fabrication process.

  20. Lipid nanoparticle interactions and assemblies

    NASA Astrophysics Data System (ADS)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  1. Liquid-liquid interfacial nanoparticle assemblies

    DOEpatents

    Emrick, Todd S.; Russell, Thomas P.; Dinsmore, Anthony; Skaff, Habib; Lin, Yao

    2008-12-30

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  2. Self-assembling nanoparticles into holographic nanopatterns

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Heon; Diana, Frédéric S.; Badolato, Antonio; Petroff, Pierre M.; Kramer, Edward J.

    2004-05-01

    We demonstrate a method to self-assemble metal nanoparticles into two-dimensional lattices. Monodisperse cobalt nanoparticles were synthesized within inverse micelles of polystyrene-block-poly(2-vinylpyridine) copolymer in toluene. A periodic hole pattern of photoresist (PR) was fabricated on a GaAs substrate by holographic lithography. The nanoparticles as prepared above were self-assembled onto the PR nanopatterns by dip or spin casting. They were selectively positioned in the holes due to the capillary forces related to the pattern geometry. Our study reveals that self-assembled nanoparticles in two-dimensional lattices can be obtained with a controllable number of particles per lattice point.

  3. Node-3 CDRA (Carbon Dioxide Removal Assembly) R&R

    NASA Image and Video Library

    2012-09-25

    ISS033-E-007246 (24 Sept. 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 33 flight engineer, works on replacing valves in an International Space Station’s Carbon Dioxide Removal Assembly.

  4. Demagnetization effects in dense nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Normile, P. S.; Andersson, M. S.; Mathieu, R.; Lee, S. S.; Singh, G.; De Toro, J. A.

    2016-10-01

    We highlight the relevance of demagnetizing-field corrections in the characterization of dense magnetic nanoparticle assemblies. By an analysis that employs in-plane and out-of-plane magnetometry on cylindrical assemblies, we demonstrate the suitability of a simple analytical formula-based correction method. This allows us to identify artifacts of the demagnetizing field in temperature-dependent susceptibility curves (e.g., shoulder peaks in curves from a disordered assembly of essentially bare magnetic nanoparticles). The same analysis approach is shown to be a straightforward procedure for determining the magnetic nanoparticle packing fraction in dense, disordered assemblies.

  5. Nanoparticle interfacial assembly in liquid crystal droplets

    NASA Astrophysics Data System (ADS)

    Rahimi, Mohammad; Roberts, Tyler; Armas-Perez, Julio; Wang, Xiaoguang; Bukusoglu, Emre; Abbott, Nicholas L.; de Pablo, Juan J.

    2015-03-01

    Controlled assembly of nanoparticles at liquid crystal interfaces could lead to easily manufacturable building blocks for assembly of materials with tunable mechanical, optical, and electronic properties. Past work has examined nanoparticle assembly at planar liquid crystal interfaces. In this work we show that nanoparticle assembly on curved interfaces is drastically different, and arises for conditions under which assembly is too weak to occur on planar interfaces. We also demonstrate that LC-mediated nanoparticle interactions are strong, are remarkably sensitive to surface anchoring, and lead to hexagonal arrangements that do not arise in bulk systems. All these elements form the basis for a highly tunable, predictable, and versatile platform for hierarchical materials assembly. National Science Foundation through the UW MRSEC.

  6. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles.

    PubMed

    Yang, Yongkun; Burkhard, Peter

    2012-10-31

    Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs) to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold nanoparticles into SAPNs can provide a useful platform to

  7. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    PubMed Central

    2012-01-01

    Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs) to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. Results We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. Conclusions The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold nanoparticles into SAPNs can

  8. Nanoparticle Array Assembly Using Chemical Templates

    NASA Astrophysics Data System (ADS)

    Adams, Sarah Marie

    This dissertation demonstrates chemically-driven self-assembly techniques to produce assemblies of closely-spaced metal nanoparticles from colloidal nanoparticle solution in order to engineer enhanced optical fields. Planar nanoparticle assemblies provide a platform for a multitude of applications and material architectures. With nanoscale inter-particle spacing, metallic nanoparticles enable increased efficiency of photovoltaic devices due to light focusing and enhancement of electromagnetic fields useful for optical sensing of molecules due to coupling of the plasmon resonance in nanoparticle gaps. For molecular sensors, development of self-assembled two-dimensional assemblies of closely-spaced nanoparticles is useful for producing surface plasmon resonance sensors and surface-enhanced Raman spectroscopy (SERS) based sensing. Using chemical self-assembly, monodisperse, colloidal gold nanoparticles were attached on self-organized polymer templates in order to pattern assemblies of nanoparticle clusters with sub-10 nanometer inter-particle spacing. First citrate-stabilized Au nanoparticles were functionalized with thioctic acid ligands in solution. Then poly(methyl methacrylate) domains in phase-separated poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films were chemically modified with surface amine functional groups. Au nanoparticles were preferentially attached to the functionalized PMMA surface domains using cross-linking chemistry. This method allows for versatility of size, shape, and composition. In this dissertation, we demonstrated attachment of 5, 10, and 20 nm Au and 20 nm Ag nanoparticles. PS-b-PMMA thin films also exhibit versatility of domain size and morphology by varying polymer molecular weights. The nanoparticle diameter to PMMA domain size ratio influenced the cluster size. As the ratio decreased, larger clusters were observed on PMMA domains with increased frequency. SERS measurement of nanoparticle assemblies showed uniform signal

  9. Nanoparticle Assemblies at Fluid Interfaces

    SciTech Connect

    Russell, Thomas P.

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  10. Interparticle Forces Underlying Nanoparticle Self-Assemblies.

    PubMed

    Luo, Dan; Yan, Cong; Wang, Tie

    2015-12-02

    Studies on the self-assembly of nanoparticles have been a hot topic in nanotechnology for decades and still remain relevant for the present and future due to their tunable collective properties as well as their remarkable applications to a wide range of fields. The novel properties of nanoparticle assemblies arise from their internal interactions and assemblies with the desired architecture key to constructing novel nanodevices. Therefore, a comprehensive understanding of the interparticle forces of nanoparticle self-assemblies is a pre-requisite to the design and control of the assembly processes, so as to fabricate the ideal nanomaterial and nanoproducts. Here, different categories of interparticle forces are classified and discussed according to their origins, behaviors and functions during the assembly processes, and the induced collective properties of the corresponding nanoparticle assemblies. Common interparticle forces, such as van der Waals forces, electrostatic interactions, electromagnetic dipole-dipole interactions, hydrogen bonds, solvophonic interactions, and depletion interactions are discussed in detail. In addition, new categories of assembly principles are summarized and introduced. These are termed template-mediated interactions and shape-complementary interactions. A deep understanding of the interactions inside self-assembled nanoparticles, and a broader perspective for the future synthesis and fabrication of these promising nanomaterials is provided.

  11. Directed assembly of nanoparticles for hybrid photovoltaic

    NASA Astrophysics Data System (ADS)

    Chuang, Vivian; Mastroianni, Alexander; Thokelsson, Kari; Ma, Wanli; Alivisatos, Paul; Xu, Ting

    2010-03-01

    Nanoparticles have unique optical and electronic properties. Be able to control the hierarchical assembly of nanoparticles in thin films may lead to devices for energy harvest and storage. Recently it was shown that nanoparticles can be assembled with high precision using block copolymer-based supramolecules.1 Here we present detailed studies on nanoparticle assembly in thin films. Effects of varies parameters including: small molecular loading, supramolecular morphology, film thickness, nanoparticle loading, interfacial interaction and solvent annealing condition on the macroscopic alignment of nanoparticle assembly as well as inter-particle ordering within the copolymer microdomain have been systematic investigated. We show that nanoparticle assembly can be readily aligned either parallel or perpendicular to the substrate. In addition, inter-particle distances can be tailored. A Schottky barrier type solar cell has been fabricated to correlate the structure and device performance and cell efficiency. 1. Zhao, Y.; Thorkelsson, K.; Mastroianni, A. J.; Schilling, T.; Luther, J. M.; Rancatore, B. J.; Matsunaga, K.; Jinnai, H.; Wu, Y.; Poulsen, D.; Frechet, J. M. J.; Paul Alivisatos, A.; Xu, T. Nat Mater 2009, advance online publication.

  12. The immunomodulatory effects of titanium dioxide and silver nanoparticles.

    PubMed

    Lappas, Courtney M

    2015-11-01

    Due to their characteristic physical, chemical and optical properties, titanium dioxide and silver nanoparticles are attractive tools for use in a wide range of applications. The use of nanoparticles for biological applications is, however, dependent upon their biocompatibility with living cells. Because of the importance of inflammation as a modulator of human health, the safe and efficacious in vivo use of titanium dioxide and silver nanoparticles is inherently linked to a favorable interaction with immune system cells. However, both titanium dioxide and silver nanoparticles have demonstrated potential to exert immunomodulatory and immunotoxic effects. Titanium dioxide and silver nanoparticles are readily internalized by immune system cells, may accumulate in peripheral lymphoid organs, and can influence multiple manifestations of immune cell activity. Although the factors influencing the biocompatibility of titanium dioxide and silver nanoparticles with immune system cells have not been fully elucidated, nanoparticle core composition, size, concentration and the duration of cell exposure seem to be important. Because titanium dioxide and silver nanoparticles are widely utilized in pharmaceutical, commercial and industrial products, it is vital that their effects on human health and immune system function be more thoroughly evaluated.

  13. Dynamic Nanoparticle Assemblies for Biomedical Applications.

    PubMed

    Li, Fangyuan; Lu, Jingxiong; Kong, Xueqian; Hyeon, Taeghwan; Ling, Daishun

    2017-02-22

    Designed synthesis and assembly of nanoparticles assisted by their surface ligands can create "smart" materials with programmed responses to external stimuli for biomedical applications. These assemblies can be designed to respond either exogenously (for example, to magnetic field, temperature, ultrasound, light, or electric pulses) or endogenously (to pH, enzymatic activity, or redox gradients) and play an increasingly important role in a diverse range of biomedical applications, such as biosensors, drug delivery, molecular imaging, and novel theranostic systems. In this review, the recent advances and challenges in the development of stimuli-responsive nanoparticle assemblies are summarized; in particular, the application-driven design of surface ligands for stimuli-responsive nanoparticle assemblies that are capable of sensing small changes in the disease microenvironment, which induce the related changes in their physico-chemical properties, is described. Finally, possible future research directions and problems that have to be addressed are briefly discussed.

  14. Layer-by-layer assembly of copper nanoparticles and manganese dioxide-multiwalled carbon nanotubes film: A new nonenzymatic electrochemical sensor for glucose.

    PubMed

    Wang, Yan; Zhang, Sai; Bai, Wushuang; Zheng, Jianbin

    2016-01-01

    A nonenzymatic glucose sensor based on Cu/MnO2/MWCNTs nanocomposite modified glass carbon electrode was fabricated by an electrochemical method. Transmission electron microscopic (TEM) measurement showed that MnO2 in the nanocomposite held a nanostructure of three-dimension (3D) spheres assembled by many densely arranged nanosheets. The electrocatalytic activity of the present sensor toward the oxidation of glucose was investigated by amperometry. The current response was linearly related to glucose concentration in a range from 6.4×10(-7)-2.0×10(-3)molL(-1) with a sensitivity of 494μA mM(-1)cm(-2) and a correlation coefficient of 0.9990, and another range from 10 to 1000μM with a sensitivity of 1302μA mM(-1)cm(-2) and a correlation coefficient of 0.9990. The detection limit was estimated to be 0.17μM at a signal-to-noise ratio of 3, and the response time was found to be 3s.

  15. Cytotoxicity of titanium and silicon dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wagner, Stefanie; Münzer, Simon; Behrens, Peter; Scheper, Thomas; Bahnemann, Detlef; Kasper, Cornelia

    2009-05-01

    Different TiO2 and SiO2 nanoparticles have been tested concerning their toxicity on selected mammalian cell lines. Various powders and suspensions, all of which consist of titanium or silicon dioxide nanoparticles have been examined. These particles differ in the crystal structure, the size and the BET-surface area. There was also a classification in fixed particles and in particles easily accessible in solution. With focus on the possible adsorption of the nanoparticles into the human organism, via skin and via respiratory tract, the effects on fibroblasts (NIH-3T3) and on a human lung adenocarcinoma epithelial cell line were examined. Additionally, the particles were tested with HEP-G2 cells, which are often used as model cell line for biocompatibility tests, and PC-12 cells, a rat adrenal pheochromocytoma cell line. The viability of the cells was examined by the MTT-test. The viability results were found to partly depend on the type of cells used. The experimental results show that the adhesion of the cells on the different powders strongly depends on the type of cell lines as well as on the type of powder. It was found that the lower viability of some cells on the powder coatings is not only caused by a cytotoxicity effect of the powders, but is also due to a lower adhesion of the cells on the particle surfaces. Furthermore, it could be shown that the physical properties of the powders cannot be easily correlated to any observed biological effect. While some powders show a significant suppression of the cell growth, others with similar physical properties indicate no toxic effect.

  16. Magnetic nanoparticle assembly arrays prepared by hierarchical self-assembly on a patterned surface.

    PubMed

    Wen, Tianlong; Zhang, Dainan; Wen, Qiye; Zhang, Huaiwu; Liao, Yulong; Li, Qiang; Yang, Qinghui; Bai, Feiming; Zhong, Zhiyong

    2015-03-21

    Inverted pyramid hole arrays were fabricated by photolithography and used as templates to direct the growth of colloidal nanoparticle assemblies. Cobalt ferrite nanoparticles deposit in the holes to yield high quality pyramid magnetic nanoparticle assembly arrays by carefully controlling the evaporation of the carrier fluid. Magnetic measurements indicate that the pyramid magnetic nanoparticle assembly arrays preferentially magnetize perpendicular to the substrate.

  17. Resistive switching characteristics of maghemite nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Hu, Quanli; Jung, Sung Mok; Lee, Hyun Ho; Kim, Yong-Sang; Choi, Young Jin; Kang, Dae-Hwan; Kim, Ki-Bum; Yoon, Tae-Sik

    2011-03-01

    The resistive switching characteristics of the assembly of maghemite (γ-Fe2O3) nanoparticles having a diameter of ~10 nm were investigated in the structure of Al/γ-Fe2O3 nanoparticle multilayer (~300 nm thick)/Al-plate. The nanoparticle multilayer on Al plate was formed by repeating dip-coating processes. The multilevel (five states) resistive switching was observed with the resistance values ranging from ~4.8 × 105 to 2.7 × 103 Ω depending on the externally applied voltage. The multilevel switching is thought to originate from the repetitive and reversible formation and rupture of multiple conducting filaments. It demonstrates the potential application of the γ-Fe2O3 nanoparticle assembly for resistive switching devices.

  18. Anisotropic Self-Assembly of Nanoparticle Amphiphiles

    NASA Astrophysics Data System (ADS)

    Kumar, Sanat

    2009-03-01

    It is easy to understand the self-assembly of particles having anisotropic shapes or interactions, such as Co nanoparticles or proteins, into highly extended structures. However, there is no experimentally established strategy for creating anisotropic structures from common spherical nanoparticles. We demonstrate that spherical nanoparticles, uniformly grafted with macromolecules, robustly self-assemble into a range of anisotropic superstructures when they are dispersed in the corresponding homopolymer matrix. This phenomenon is driven by the microphase separation between the inorganic nanoparticles and the (organic) polymeric chains grafted to their surfaces in a fashion similar to block copolymers. This microphase separation driven particle self-assembly provides a unique means of controlling the global nanoparticle dispersion state in polymer nanocomposites. The relationship between the state of particle dispersion and nanocomposite properties can thus be critically examined, and in particular we focus on the mechanical reinforcement afforded when particles are added to polymers. Grafted nanoparticles are thus versatile building blocks for creating tunable and functional particle superstructures with significant practical applications. With Pinar Akcora, Hongjun Liu, Yu Li, Brian Benicewicz, Linda Schadler, Thanos Panagiotopoulos, Jack Douglas, P. Thiyagarajan and Ralph Colby.

  19. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice

    NASA Astrophysics Data System (ADS)

    Yamashita, Kohei; Yoshioka, Yasuo; Higashisaka, Kazuma; Mimura, Kazuya; Morishita, Yuki; Nozaki, Masatoshi; Yoshida, Tokuyuki; Ogura, Toshinobu; Nabeshi, Hiromi; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Monobe, Youko; Imazawa, Takayoshi; Aoshima, Hisae; Shishido, Kiyoshi; Kawai, Yuichi; Mayumi, Tadanori; Tsunoda, Shin-Ichi; Itoh, Norio; Yoshikawa, Tomoaki; Yanagihara, Itaru; Saito, Shigeru; Tsutsumi, Yasuo

    2011-05-01

    The increasing use of nanomaterials has raised concerns about their potential risks to human health. Recent studies have shown that nanoparticles can cross the placenta barrier in pregnant mice and cause neurotoxicity in their offspring, but a more detailed understanding of the effects of nanoparticles on pregnant animals remains elusive. Here, we show that silica and titanium dioxide nanoparticles with diameters of 70 nm and 35 nm, respectively, can cause pregnancy complications when injected intravenously into pregnant mice. The silica and titanium dioxide nanoparticles were found in the placenta, fetal liver and fetal brain. Mice treated with these nanoparticles had smaller uteri and smaller fetuses than untreated controls. Fullerene molecules and larger (300 and 1,000 nm) silica particles did not induce these complications. These detrimental effects are linked to structural and functional abnormalities in the placenta on the maternal side, and are abolished when the surfaces of the silica nanoparticles are modified with carboxyl and amine groups.

  20. Growth of carbon nanotubes from titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Cai, Qiran; Hu, Yali; Liu, Yunyun; Huang, Shaoming

    2012-08-01

    We have demonstrated that titanium dioxide (TiO2) nanoparticle is an efficient catalyst for the growth of carbon nanotubes (CNTs). TiO2 nanoparticles can be generated either by sol-gel method or sputtering. Highly dense single-walled carbon nanotubes (SWNTs) and/or multi-walled CNTs can be produced by ethanol-chemical vapor deposition (EtOH-CVD) using those TiO2 nanoparticles as catalysts. XPS measurements further prove that the TiO2 nanoparticles are responsible for the nanotube growth. Sputtering approach for generating TiO2 nanoparticles provide a facile way for patterning SWNTs for various applications.

  1. Interaction Effects in Assembly of Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Usov, N. A.; Serebryakova, O. N.; Tarasov, V. P.

    2017-08-01

    A specific absorption rate of a dilute assembly of various random clusters of iron oxide nanoparticles in alternating magnetic field has been calculated using Landau-Lifshitz stochastic equation. This approach simultaneously takes into account both the presence of thermal fluctuations of the nanoparticle magnetic moments and magneto-dipole interaction between the nanoparticles of the clusters. It is shown that for usual 3D clusters, the intensity of the magneto-dipole interaction is determined mainly by the cluster packing density η = N p V/ V cl , where N p is the average number of the particles in the cluster, V is the nanoparticle volume, and V cl is the cluster volume. The area of the low frequency hysteresis loop and the assembly-specific absorption rate have been found to be considerably reduced when the packing density of the clusters increases in the range of 0.005 ≤ η < 0.4. The dependence of the specific absorption rate on the mean nanoparticle diameter is retained with an increase of η, but becomes less pronounced. For fractal clusters of nanoparticles, which arise in biological media, in addition to a considerable reduction of the absorption rate, the absorption maximum is shifted to smaller particle diameters. It is found also that the specific absorption rate of fractal clusters increases appreciably with an increase of the thickness of nonmagnetic shells at the nanoparticle surfaces.

  2. Interaction Effects in Assembly of Magnetic Nanoparticles.

    PubMed

    Usov, N A; Serebryakova, O N; Tarasov, V P

    2017-08-14

    A specific absorption rate of a dilute assembly of various random clusters of iron oxide nanoparticles in alternating magnetic field has been calculated using Landau-Lifshitz stochastic equation. This approach simultaneously takes into account both the presence of thermal fluctuations of the nanoparticle magnetic moments and magneto-dipole interaction between the nanoparticles of the clusters. It is shown that for usual 3D clusters, the intensity of the magneto-dipole interaction is determined mainly by the cluster packing density η = N p V/V cl , where N p is the average number of the particles in the cluster, V is the nanoparticle volume, and V cl is the cluster volume. The area of the low frequency hysteresis loop and the assembly-specific absorption rate have been found to be considerably reduced when the packing density of the clusters increases in the range of 0.005 ≤ η < 0.4. The dependence of the specific absorption rate on the mean nanoparticle diameter is retained with an increase of η, but becomes less pronounced. For fractal clusters of nanoparticles, which arise in biological media, in addition to a considerable reduction of the absorption rate, the absorption maximum is shifted to smaller particle diameters. It is found also that the specific absorption rate of fractal clusters increases appreciably with an increase of the thickness of nonmagnetic shells at the nanoparticle surfaces.

  3. Triggered self-assembly of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-03-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles.

  4. Triggered self-assembly of magnetic nanoparticles.

    PubMed

    Ye, L; Pearson, T; Cordeau, Y; Mefford, O T; Crawford, T M

    2016-03-15

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufacturing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles.

  5. Triggered self-assembly of magnetic nanoparticles

    PubMed Central

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-01-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles. PMID:26975332

  6. Light controlled assembly of silver nanoparticles

    PubMed Central

    Polywka, Andreas; Tückmantel, Christian; Görrn, Patrick

    2017-01-01

    Metal nanoparticles show a particularly strong interaction with light, which is the basis for nanoparticle plasmonics. One of the main goals of this emerging research field is the alignment of nanoparticles and their integration into sophisticated nanostructures providing a tailored interaction with light. This assembly of nanoparticles at well-controlled substrate sites often involves expensive technological approaches, such as electron beam lithography in order to fabricate the nanoparticle structures. Furthermore difficult numerical simulations are needed to predict their optical properties. Both requirements, fabrication and prediction, complicate a cost-efficient exploitation of nanoparticle plasmonics in optoelectronic devices. Here we show that silver nanoparticles deposited under exposure to visible light arrange in a way that the resulting structure shows an optimized interaction with that light. This way, the light not only controls the nanoparticle alignment with an estimated accuracy of well below 20 nm during deposition from the liquid phase, but also defines the optical properties of the growing structure, and therefore complicated prediction is not needed. PMID:28332582

  7. Light controlled assembly of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Polywka, Andreas; Tückmantel, Christian; Görrn, Patrick

    2017-03-01

    Metal nanoparticles show a particularly strong interaction with light, which is the basis for nanoparticle plasmonics. One of the main goals of this emerging research field is the alignment of nanoparticles and their integration into sophisticated nanostructures providing a tailored interaction with light. This assembly of nanoparticles at well-controlled substrate sites often involves expensive technological approaches, such as electron beam lithography in order to fabricate the nanoparticle structures. Furthermore difficult numerical simulations are needed to predict their optical properties. Both requirements, fabrication and prediction, complicate a cost-efficient exploitation of nanoparticle plasmonics in optoelectronic devices. Here we show that silver nanoparticles deposited under exposure to visible light arrange in a way that the resulting structure shows an optimized interaction with that light. This way, the light not only controls the nanoparticle alignment with an estimated accuracy of well below 20 nm during deposition from the liquid phase, but also defines the optical properties of the growing structure, and therefore complicated prediction is not needed.

  8. Light controlled assembly of silver nanoparticles.

    PubMed

    Polywka, Andreas; Tückmantel, Christian; Görrn, Patrick

    2017-03-23

    Metal nanoparticles show a particularly strong interaction with light, which is the basis for nanoparticle plasmonics. One of the main goals of this emerging research field is the alignment of nanoparticles and their integration into sophisticated nanostructures providing a tailored interaction with light. This assembly of nanoparticles at well-controlled substrate sites often involves expensive technological approaches, such as electron beam lithography in order to fabricate the nanoparticle structures. Furthermore difficult numerical simulations are needed to predict their optical properties. Both requirements, fabrication and prediction, complicate a cost-efficient exploitation of nanoparticle plasmonics in optoelectronic devices. Here we show that silver nanoparticles deposited under exposure to visible light arrange in a way that the resulting structure shows an optimized interaction with that light. This way, the light not only controls the nanoparticle alignment with an estimated accuracy of well below 20 nm during deposition from the liquid phase, but also defines the optical properties of the growing structure, and therefore complicated prediction is not needed.

  9. Dynamic assembly of molecularly imprinted polymer nanoparticles.

    PubMed

    Gong, Haiyue; Hajizadeh, Solmaz; Jiang, Lingdong; Ma, Huiting; Ye, Lei

    2017-09-11

    Manipulation of specific binding and recycling of materials are two important aspects for practical applications of molecularly imprinted polymers. In this work, we developed a new approach to control the dynamic assembly of molecularly imprinted nanoparticles by surface functionalization. Molecularly imprinted polymer nanoparticles with a well-controlled core-shell structure were synthesized using precipitation polymerization. The specific binding sites were created in the core during the first step imprinting reaction. In the second polymerization step, epoxide groups were introduced into the particle shell to act asan intermediate linker to immobilize phenylboronic acids, as well as to introduce cis-diol structures on surface. The imprinted polymer nanoparticles modified with boronic acid and cis-diol structures maintained high molecular binding specificity, and the nanoparticles could be induced to form dynamic particle aggregation that responded to pH variation and chemical stimuli. The possibility of modulating molecular binding and nanoparticle assembly in a mutually independent fashion can be exploited in a number of applications where repeated use of precious nanoparticles is needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Nanoparticles in Polymers: Assembly, Rheology and Properties

    NASA Astrophysics Data System (ADS)

    Rao, Yuanqiao

    Inorganic nanoparticles have the potential of providing functionalities that are difficult to realize using organic materials; and nanocomposites is an effective mean to impart processibility and construct bulk materials with breakthrough properties. The dispersion and assembly of nanoparticles are critical to both processibility and properties of the resulting product. In this talk, we will discuss several methods to control the hierarchical structure of nanoparticles in polymers and resulting rheological, mechanical and optical properties. In one example, polymer-particle interaction and secondary microstructure were designed to provide a low viscosity composition comprising exfoliated high aspect ratio clay nanoparticles; in another example, the microstructure control through templates was shown to enable unique thermal mechanical and optical properties. Jeff Munro, Stephanie Potisek, Phillip Hustad; all of the Dow Chemical Company are co-authors.

  11. Oriented assembly of polyhedral plasmonic nanoparticle clusters

    PubMed Central

    Henzie, Joel; Andrews, Sean C.; Ling, Xing Yi; Li, Zhiyong; Yang, Peidong

    2013-01-01

    Shaped colloids can be used as nanoscale building blocks for the construction of composite, functional materials that are completely assembled from the bottom up. Assemblies of noble metal nanostructures have unique optical properties that depend on key structural features requiring precise control of both position and connectivity spanning nanometer to micrometer length scales. Identifying and optimizing structures that strongly couple to light is important for understanding the behavior of surface plasmons in small nanoparticle clusters, and can result in highly sensitive chemical and biochemical sensors using surface-enhanced Raman spectroscopy (SERS). We use experiment and simulation to examine the local surface plasmon resonances of different arrangements of Ag polyhedral clusters. High-resolution transmission electron microscopy shows that monodisperse, atomically smooth Ag polyhedra can self-assemble into uniform interparticle gaps that result in reproducible SERS enhancement factors from assembly to assembly. We introduce a large-scale, gravity-driven assembly method that can generate arbitrary nanoparticle clusters based on the size and shape of a patterned template. These templates enable the systematic examination of different cluster arrangements and provide a means of constructing scalable and reliable SERS sensors. PMID:23569275

  12. Cascade biocatalysis by multienzyme-nanoparticle assemblies.

    PubMed

    Kang, Wei; Liu, Jiahui; Wang, Jianpeng; Nie, Yunyu; Guo, Zhihong; Xia, Jiang

    2014-08-20

    Multienzyme complexes are of paramount importance in biosynthesis in cells. Yet, how sequential enzymes of cascade catalytic reactions synergize their activities through spatial organization remains elusive. Recent development of site-specific protein-nanoparticle conjugation techniques enables us to construct multienzyme assemblies using nanoparticles as the template. Sequential enzymes in menaquinone biosynthetic pathway were conjugated to CdSe-ZnS quantum dots (QDs, a nanosized particulate material) through metal-affinity driven self-assembly. The assemblies were characterized by electrophoretic methods, the catalytic activities were monitored by reverse-phase chromatography, and the composition of the multienzyme-QD assemblies was optimized through a progressive approach to achieve highly efficient catalytic conversion. Shorter enzyme-enzyme distance was discovered to facilitate intermediate transfer, and a fine control on the stoichiometric ratio of the assembly was found to be critical for the maximal synergy between the enzymes. Multienzyme-QD assemblies thereby provide an effective model to scrutinize the synergy of cascade enzymes in multienzyme complexes.

  13. Nanodroplet-Mediated Assembly of Platinum Nanoparticle Rings in Solution.

    PubMed

    Lin, Guanhua; Zhu, Xi; Anand, Utkarsh; Liu, Qi; Lu, Jingyu; Aabdin, Zainul; Su, Haibin; Mirsaidov, Utkur

    2016-02-10

    Soft fluidlike nanoscale objects can drive nanoparticle assembly by serving as a scaffold for nanoparticle organization. The intermediate steps in these template-directed nanoscale assemblies are important but remain unresolved. We used real-time in situ transmission electron microscopy to follow the assembly dynamics of platinum nanoparticles into flexible ringlike chains around ethylenediaminetetraacetic acid nanodroplets dispersed in solution. In solution, these nanoring assemblies form via sequential attachment of the nanoparticles to binding sites located along the circumference of the nanodroplets, followed by the rearrangement and reorientation of the attached nanoparticles. Additionally, larger nanoparticle ring assemblies form via the coalescence of smaller ring assemblies. The intermediate steps of assembly reported here reveal how fluidlike nanotemplates drive nanoparticle organization, which can aid the future design of new nanomaterials.

  14. Studies of photokilling of bacteria using titanium dioxide nanoparticles.

    PubMed

    Tsuang, Yang-Hwei; Sun, Jui-Sheng; Huang, Yu-Chen; Lu, Chung-Hsin; Chang, Walter Hong-Shong; Wang, Chien-Che

    2008-02-01

    Metal pins used to apply skeletal traction or external fixation devices protruding through skin are susceptible to the increased incidence of pin site infection. In this work, we tried to establish the photokilling effects of titanium dioxide (TiO2) nanoparticles on an orthopedic implant with an in vitro study. In these photocatalytic experiments, aqueous TiO2 was added to the tested microorganism. The time effect of TiO2 photoactivation was evaluated, and the loss of viability of five different bacteria suspensions (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus hirae, and Bacteroides fragilis) was examined by the viable count procedure. The bactericidal effect of TiO2 nanoparticle-coated metal plates was also tested. The ultraviolet (UV) dosage used in this experiment did not affect the viability of bacteria, and all bacteria survived well in the absence of TiO2 nanoparticles. The survival curve of microorganisms in the presence of TiO2 nanoparticles showed that nearly complete killing was achieved after 50 min of UV illumination. The formation of bacterial colonies above the TiO2 nanoparticle-coated metal plates also decreased significantly. In this study, we clearly demonstrated the bactericidal effects of titanium dioxide nanoparticles. In the presence of UV light, the titanium dioxide nanoparticles can be applicable to medical facilities where the potential for infection should be controlled.

  15. SERS investigation of coatings on thermal modified titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Amininejad, Sayed; Niessner, Reinhard; Baumann, Thomas

    2017-04-01

    Titanium dioxide nanoparticles (TiO2) are progressively manufactured and used in a wide variety of products such as sunscreens, papers, paints and toothpastes. The increase in the production and use of Titanium dioxide nanoparticles would escalate the risk for exposure of the natural environments to these compounds. There are several techniques for identifying and quantifying nanoparticles and Surface-Enhanced Raman Scattering (SERS) is an emerging technique which combines raman spectroscopy with nanotechnology. SERS can also be used to investigate the changes of natural coatings on nanoparticles as an important factor regarding their environmental fate and biological effects. In this work, TiO2 P25 nanoparticles are thermally modified at different temperatures to study the effects of thermal shock on the crystal structure, surface properties and subsequently the Surface-Enhanced Raman Scattering from 4-Mercaptobenzoic acid molecules coated on TiO2 nanoparticles has been observed. The results show that 4-Mercaptobenzoic acid molecules coated on nanoparticles exhibit different degree SERS enhancement on the surface of different nanoparticles modified at different temperatures by thermal modification method. This research work is expected to be important for improving SERS performance of TiO2 nanoparticles for characterization of natural coatings. Keywords: SERS, TiO2, 4-Mercaptobenzoic acid

  16. Functional membranes via nanoparticle self-assembly.

    PubMed

    Green, Erica; Fullwood, Emily; Selden, Julieann; Zharov, Ilya

    2015-05-07

    This article summarizes a recently developed approach for the preparation of membrane materials by the self-assembly of inorganic, polymeric or hybrid nanoparticles, with the focus on functional membranes possessing permselectivity. Two types of such membranes are discussed, those possessing size and charge selectivity suitable for ultra- and nanofiltration and chemoselective separation, and those possessing proton or lithium transport properties suitable for fuel cell and lithium battery applications, respectively. This article describes the preparation methods of nanoparticle membranes, as well as their mechanical, molecular, and ionic transport properties.

  17. Assembly of metals and nanoparticles into novel nanocomposite superstructures

    PubMed Central

    Xu, Jiaquan; Chen, Lianyi; Choi, Hongseok; Konish, Hiromi; Li, Xiaochun

    2013-01-01

    Controlled assembly of nanoscale objects into superstructures is of tremendous interests. Many approaches have been developed to fabricate organic-nanoparticle superstructures. However, effective fabrication of inorganic-nanoparticle superstructures (such as nanoparticles linked by metals) remains a difficult challenge. Here we show a novel, general method to assemble metals and nanoparticles rationally into nanocomposite superstructures. Novel metal-nanoparticle superstructures are achieved by self-assembly of liquid metals and nanoparticles in immiscible liquids driven by reduction of free energy. Superstructures with various architectures, such as metal-core/nanoparticle-shell, nanocomposite-core/nanoparticle-shell, network of metal-linked core/shell nanostructures, and network of metal-linked nanoparticles, were successfully fabricated by simply tuning the volume ratio between nanoparticles and liquid metals. Our approach provides a simple, general way for fabrication of numerous metal-nanoparticle superstructures and enables a rational design of these novel superstructures with desired architectures for exciting applications.

  18. DNA-bridged Chiroplasmonic Assemblies of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kotov, Nicholas

    2015-03-01

    Chirality at nanoscale attracts a lot of attention during the last decade. A number of chiral nanoscale systems had been discovered ranging from individual nanoparticles to helical nanowires and from lithographically defined substrates. DNA bridges make possible in-silico engineering and practical construction of complex assemblies of nanoparticles with of both plasmonic and excitonic nature. In this presentation, expected and unexpected optical effects that we observed in chiral plasmonic and excitonic systems will be demonstrated. Special effort will be placed on the transitioning of theoretical and experimental knowledge about chiral nanoscale systems to applications. The most obvious direction for practical targets was so far, the design of metamaterials for negative refractive index optics. The results describing the 3D materials with the highest experimentally observed chiral anisotropy factor will be presented. It will be followed by the discussion of the recent developments in analytical application of chiral assemblies for detection of cancer and bacterial contamination.

  19. FeCo nanoparticles assembled film

    SciTech Connect

    Xu Yunhao; Qiu Jiaoming; Bai Jianmin; Judy, Jack H.; Wang Jianping

    2005-05-15

    FeCo is a material attracting the interest of many because its very high saturation magnetization (up to 2.45 T). In this study, FeCo nanoparticles assembled films with a matrix (carbon) were prepared by an integrated nanocluster deposition system with a gas aggregation cluster source and dc magnetron co-sputtering guns. The nanoparticles are produced from a Fe{sub 65}Co{sub 35} alloy target. The average particle size is controlled to vary from 5 to 12 nm. The size distribution is less than 10%. Transmission electron microscope images show the change of crystallinity upon online heating. FeCo nanoparticles with cubic shape are formed with online heating. H{sub c} is found to increase with the carbon matrix deposited.

  20. Peptide-Assembled Optically Responsive Nanoparticle Complexes (Preprint)

    DTIC Science & Technology

    2007-03-01

    resulting from the assembly of photothermally responsive plasmonic nanoparticles with thermally labile bimolecular linkers. Au nanoshells (NS) and quantum...of the nanoparticle-peptide complex. 15. SUBJECT TERMS Au Nanoshells (NS), Quantum Dots (QD), Peptide 16. SECURITY CLASSIFICATION OF: 19a...resulting from the assembly of photothermally responsive plasmonic nanoparticles with thermally labile biomolecular linkers. Au nanoshells (NS) and

  1. Biocompatibility of cerium dioxide and silicon dioxide nanoparticles with endothelial cells.

    PubMed

    Strobel, Claudia; Förster, Martin; Hilger, Ingrid

    2014-01-01

    Cerium dioxide (CeO2) and silicon dioxide (SiO2) nanoparticles are of widespread use in modern life. This means that human beings are markedly exposed to them in their everyday life. Once passing biological barriers, these nanoparticles are expected to interact with endothelial cells, leading to systemic alterations with distinct influences on human health. In the present study we observed the metabolic impact of differently sized CeO2 (8 nm; 35 nm) and SiO2 nanoparticles (117 nm; 315 nm) on immortalized human microvascular (HMEC-1) and primary macrovascular endothelial cells (HUVEC), with particular focus on the CeO2 nanoparticles. The characterization of the CeO2 nanoparticles in cell culture media with varying serum content indicated a steric stabilization of nanoparticles due to interaction with proteins. After cellular uptake, the CeO2 nanoparticles were localized around the nucleus in a ring-shaped manner. The nanoparticles revealed concentration and time, but no size-dependent effects on the cellular adenosine triphosphate levels. HUVEC reacted more sensitively to CeO2 nanoparticle exposure than HMEC-1. This effect was also observed in relation to cytokine release after nanoparticle treatment. The CeO2 nanoparticles exhibited a specific impact on the release of diverse proteins. Namely, a slight trend towards pro-inflammatory effects, a slight pro-thrombotic impact, and an increase of reactive oxygen species after nanoparticle exposure were observed with increasing incubation time. For SiO2 nanoparticles, concentration- and time-dependent effects on the metabolic activity as well as pro-inflammatory reactions were detectable. In general, the effects of the investigated nanoparticles on endothelial cells were rather insignificant, since the alterations on the metabolic cell activity became visible at a nanoparticle concentration that is by far higher than those expected to occur in the in vivo situation (CeO2 nanoparticles: 100 µg/mL; SiO2 nanoparticles: 10

  2. Biocompatibility of cerium dioxide and silicon dioxide nanoparticles with endothelial cells

    PubMed Central

    Strobel, Claudia; Förster, Martin

    2014-01-01

    Summary Cerium dioxide (CeO2) and silicon dioxide (SiO2) nanoparticles are of widespread use in modern life. This means that human beings are markedly exposed to them in their everyday life. Once passing biological barriers, these nanoparticles are expected to interact with endothelial cells, leading to systemic alterations with distinct influences on human health. In the present study we observed the metabolic impact of differently sized CeO2 (8 nm; 35 nm) and SiO2 nanoparticles (117 nm; 315 nm) on immortalized human microvascular (HMEC-1) and primary macrovascular endothelial cells (HUVEC), with particular focus on the CeO2 nanoparticles. The characterization of the CeO2 nanoparticles in cell culture media with varying serum content indicated a steric stabilization of nanoparticles due to interaction with proteins. After cellular uptake, the CeO2 nanoparticles were localized around the nucleus in a ring-shaped manner. The nanoparticles revealed concentration and time, but no size-dependent effects on the cellular adenosine triphosphate levels. HUVEC reacted more sensitively to CeO2 nanoparticle exposure than HMEC-1. This effect was also observed in relation to cytokine release after nanoparticle treatment. The CeO2 nanoparticles exhibited a specific impact on the release of diverse proteins. Namely, a slight trend towards pro-inflammatory effects, a slight pro-thrombotic impact, and an increase of reactive oxygen species after nanoparticle exposure were observed with increasing incubation time. For SiO2 nanoparticles, concentration- and time-dependent effects on the metabolic activity as well as pro-inflammatory reactions were detectable. In general, the effects of the investigated nanoparticles on endothelial cells were rather insignificant, since the alterations on the metabolic cell activity became visible at a nanoparticle concentration that is by far higher than those expected to occur in the in vivo situation (CeO2 nanoparticles: 100 µg/mL; SiO2

  3. Nanoparticle-directed self-assembly of amphiphilic block copolymers.

    PubMed

    Kamps, Amanda C; Sanchez-Gaytan, Brenda L; Hickey, Robert J; Clarke, Nigel; Fryd, Michael; Park, So-Jung

    2010-09-07

    Nanoparticles can form unique cavity-like structures in core-shell type assemblies of block copolymers through the cooperative self-assembly of nanoparticles and block copolymers. We show that the self-assembly behavior is general for common as-synthesized alkyl-terminated nanoparticles for a range of nanoparticle sizes. We examined various self-assembly conditions such as solvent compositions, nanoparticle coordinating ligands, volume fraction of nanoparticles, and nanoparticle sizes in order to elucidate the mechanism of the radial assembly formation. These experiments along with strong segregation theory calculations indicated that both the enthalpic interaction and the polymer stretching energy are important factors in the coassembly formation. The slightly unfavorable interaction between the hydrophobic segment of polymers and alkyl-terminated nanoparticles causes the accumulation of nanoparticles at the interface between the polymer core and the shell, forming the unique cavity-like structure. The coassemblies were stabilized for a limited range of nanoparticle volume fractions within which the inclusion of nanoparticle layers reduces the polymer stretching. The volume fraction range yielding the well-defined radial coassembly structure was mapped out with varying nanoparticle sizes. The experimental and theoretical phase map provides the guideline for the coassembly formation of as-synthesized alkyl-terminated nanoparticles and amphiphilic block copolymers.

  4. Electrolyte-Mediated Assembly of Charged Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kewalramani, Sumit; Bedzyk, Michael; Guerrero-García, Guillermo; Moreau, Liane; Zwanikken, Jos; Mirkin, Chad; Olvera de La Cruz, Monica

    Solutions at high salt concentrations are used to crystallize or segregate colloids, proteins and polyelectrolytes via an unknown mechanism referred to as ``salting-out''. Here, we show salting-out is a long-range interaction controlled by electrolyte concentration and nanoparticle charge density. Small-angle X-ray scattering (SAXS) shows that DNA-coated Au nanoparticles designed to prevent inter-particle assembly via Watson-Crick hybridization undergo ``gas'' to FCC to ``glass-like'' transitions with increasing NaCl or CaCl2 concentration. Simulations reveal that the crystallization is concomitant with inter-particle interactions changing from purely repulsive to a long-range potential well condition. Liquid-state theory explains this attraction as a sum of cohesive and depletion forces. Our work reveals the mechanism behind salting-out and suggests new routes for the successful crystallization of colloids and proteins using concentrated salts.

  5. Dynamics of magnetic nano-particle assembly

    NASA Astrophysics Data System (ADS)

    Kondratyev, V. N.

    2010-11-01

    Ferromagnetically coupled nano-particle assembly is analyzed accounting for inter- and intra- particle electronic structures within the randomly jumping interacting moments model including quantum fluctuations due to the discrete levels and disorder. At the magnetic jump anomalies caused by quantization the magnetic state equation and phase diagram are found to indicate an existence of spinodal regions and critical points. Arrays of magnetized nano-particles with multiple magnetic response anomalies are predicted to display some specific features. In a case of weak coupling such arrays exhibit the well-separated instability regions surrounding the anomaly positions. With increasing coupling we observe further structure modification, plausibly, of bifurcation type. At strong coupling the dynamical instability region become wide while the stable regime arises as a narrow islands at small disorders. It is shown that exploring correlations of magnetic noise amplitudes represents convenient analytical tool for quantitative definition, description and study of supermagnetism, as well as self-organized criticality.

  6. DNA Linker Mediated Assembly of Colloidal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Xiong, Huiming; van der Lelie, Daniel; Gang, Oleg

    2009-03-01

    When flexible ssDNA linkers are added to the mixture of two types of dispersed, ssDNAs capped gold nanocolloids which are mutually non-complementary but complementary to the respective ends of the linker DNA, a crystalline phase of body-centered-cubic unit cell forms. The phase diagram of DNA linker mediated nanoparticle assemblies has been experimentally investigated and constructed by using in-situ small angle x-ray scattering. The influence of linkage defects on crystalline structure was also examined.

  7. Self-assembly of magnetic biofunctional nanoparticles

    SciTech Connect

    Sun Xiangcheng; Thode, C.J.; Mabry, J.K.; Harrell, J.W.; Nikles, D.E.; Sun, K.; Wang, L.M.

    2005-05-15

    Spherical, ferromagnetic FePt nanoparticles with a particle size of 3 nm were prepared by the simultaneous polyol reduction of Fe(acac){sub 3} and Pt(acac){sub 2} in phenyl ether in the presence of oleic acid and oleylamine. The oleic acid ligands can be replaced with 11-mercaptoundecanoic acid, giving particles that can be dispersed in water. Both x-ray diffraction and transmission electron microscopy indicated that FePt particles were not affected by ligands replacement. Dispersions of the FePt particles with 11-mercaptoundecanoic acid ligands and ammonium counter ions gave self-assembled films consisting of highly ordered hexagonal arrays of particles.

  8. Supra-Nanoparticle Functional Assemblies through Programmable Stacking.

    PubMed

    Tian, Cheng; Cordeiro, Marco Aurelio L; Lhermitte, Julien; Xin, Huolin L; Shani, Lior; Liu, Mingzhao; Ma, Chunli; Yeshurun, Yosef; DiMarzio, Donald; Gang, Oleg

    2017-07-25

    The quest for the by-design assembly of material and devices from nanoscale inorganic components is well recognized. Conventional self-assembly is often limited in its ability to control material morphology and structure simultaneously. Here, we report a general method of assembling nanoparticles in a linear "pillar" morphology with regulated internal configurations. Our approach is inspired by supramolecular systems, where intermolecular stacking guides the assembly process to form diverse linear morphologies. Programmable stacking interactions were realized through incorporation of DNA coded recognition between the designed planar nanoparticle clusters. This resulted in the formation of multilayered pillar architectures with a well-defined internal nanoparticle organization. By controlling the number, position, size, and composition of the nanoparticles in each layer, a broad range of nanoparticle pillars were assembled and characterized in detail. In addition, we demonstrated the utility of this stacking assembly strategy for investigating plasmonic and electrical transport properties.

  9. Cobalt-substituted magnetite nanoparticles and their assembly into ferrimagnetic nanoparticle arrays.

    PubMed

    Yu, Yongsheng; Mendoza-Garcia, Adriana; Ning, Bo; Sun, Shouheng

    2013-06-11

    A simple process to prepare monodisperse ferrimagnetic cobalt-substituted magnetite Co(x)Fe(3-x)O4 nanoparticles is reported. These ferrimagnetic nanoparticles are readily dispersed in hexane, forming a stable ferrimagnetic nanoparticle dispersion, and allowing easy nanoparticle self-assembly. When assembled under an external magnetic field (5.5 kOe), these nanoparticles show preferred magnetic alignment with their H(c) reaching 2.49 kOe.

  10. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis

    NASA Astrophysics Data System (ADS)

    Strobel, Claudia; Oehring, Hartmut; Herrmann, Rudolf; Förster, Martin; Reller, Armin; Hilger, Ingrid

    2015-05-01

    Although cytotoxicity and endocytosis of nanoparticles have been the subject of numerous studies, investigations regarding exocytosis as an important mechanism to reduce intracellular nanoparticle accumulation are rather rare and there is a distinct lack of knowledge. The current study investigated the behavior of human microvascular endothelial cells to exocytose cerium dioxide (CeO2) nanoparticles (18.8 nm) by utilization of specific inhibitors [brefeldin A; nocodazole; methyl-β-cyclodextrin (MβcD)] and different analytical methods (flow cytometry, transmission electron microscopy, inductively coupled plasma mass spectrometry). Overall, it was found that endothelial cells were able to release CeO2 nanoparticles via exocytosis after the migration of nanoparticle containing endosomes toward the plasma membrane. The exocytosis process occurred mainly by fusion of vesicular membranes with plasma membrane resulting in the discharge of vesicular content to extracellular environment. Nevertheless, it seems to be likely that nanoparticles present in the cytosol could leave the cells in a direct manner. MβcD treatment led to the strongest inhibition of the nanoparticle exocytosis indicating a significant role of the plasma membrane cholesterol content in the exocytosis process. Brefeldin A (inhibitor of Golgi-to-cell-surface-transport) caused a higher inhibitory effect on exocytosis than nocodazole (inhibitor of microtubules). Thus, the transfer from distal Golgi compartments to the cell surface influenced the exocytosis process of the CeO2 nanoparticles more than the microtubule-associated transport. In conclusion, endothelial cells, which came in contact with nanoparticles, e.g., after intravenously applied nano-based drugs, can regulate their intracellular nanoparticle amount, which is necessary to avoid adverse nanoparticle effects on cells.

  11. Automated quantitative image analysis of nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Murthy, Chaitanya R.; Gao, Bo; Tao, Andrea R.; Arya, Gaurav

    2015-05-01

    The ability to characterize higher-order structures formed by nanoparticle (NP) assembly is critical for predicting and engineering the properties of advanced nanocomposite materials. Here we develop a quantitative image analysis software to characterize key structural properties of NP clusters from experimental images of nanocomposites. This analysis can be carried out on images captured at intermittent times during assembly to monitor the time evolution of NP clusters in a highly automated manner. The software outputs averages and distributions in the size, radius of gyration, fractal dimension, backbone length, end-to-end distance, anisotropic ratio, and aspect ratio of NP clusters as a function of time along with bootstrapped error bounds for all calculated properties. The polydispersity in the NP building blocks and biases in the sampling of NP clusters are accounted for through the use of probabilistic weights. This software, named Particle Image Characterization Tool (PICT), has been made publicly available and could be an invaluable resource for researchers studying NP assembly. To demonstrate its practical utility, we used PICT to analyze scanning electron microscopy images taken during the assembly of surface-functionalized metal NPs of differing shapes and sizes within a polymer matrix. PICT is used to characterize and analyze the morphology of NP clusters, providing quantitative information that can be used to elucidate the physical mechanisms governing NP assembly.The ability to characterize higher-order structures formed by nanoparticle (NP) assembly is critical for predicting and engineering the properties of advanced nanocomposite materials. Here we develop a quantitative image analysis software to characterize key structural properties of NP clusters from experimental images of nanocomposites. This analysis can be carried out on images captured at intermittent times during assembly to monitor the time evolution of NP clusters in a highly automated

  12. Electrolyte-Mediated Assembly of Charged Nanoparticles

    PubMed Central

    2016-01-01

    Solutions at high salt concentrations are used to crystallize or segregate charged colloids, including proteins and polyelectrolytes via a complex mechanism referred to as “salting-out”. Here, we combine small-angle X-ray scattering (SAXS), molecular dynamics (MD) simulations, and liquid-state theory to show that salting-out is a long-range interaction, which is controlled by electrolyte concentration and colloid charge density. As a model system, we analyze Au nanoparticles coated with noncomplementary DNA designed to prevent interparticle assembly via Watson–Crick hybridization. SAXS shows that these highly charged nanoparticles undergo “gas” to face-centered cubic (FCC) to “glass-like” transitions with increasing NaCl or CaCl2 concentration. MD simulations reveal that the crystallization is concomitant with interparticle interactions changing from purely repulsive to a “long-range potential well” condition. Liquid-state theory explains this attraction as a sum of cohesive and depletion forces that originate from the interelectrolyte ion and electrolyte–ion–nanoparticle positional correlations. Our work provides fundamental insights into the effect of ionic correlations in the salting-out mechanism and suggests new routes for the crystallization of colloids and proteins using concentrated salts. PMID:27163052

  13. Electrolyte-Mediated Assembly of Charged Nanoparticles.

    PubMed

    Kewalramani, Sumit; Guerrero-García, Guillermo I; Moreau, Liane M; Zwanikken, Jos W; Mirkin, Chad A; Olvera de la Cruz, Monica; Bedzyk, Michael J

    2016-04-27

    Solutions at high salt concentrations are used to crystallize or segregate charged colloids, including proteins and polyelectrolytes via a complex mechanism referred to as "salting-out". Here, we combine small-angle X-ray scattering (SAXS), molecular dynamics (MD) simulations, and liquid-state theory to show that salting-out is a long-range interaction, which is controlled by electrolyte concentration and colloid charge density. As a model system, we analyze Au nanoparticles coated with noncomplementary DNA designed to prevent interparticle assembly via Watson-Crick hybridization. SAXS shows that these highly charged nanoparticles undergo "gas" to face-centered cubic (FCC) to "glass-like" transitions with increasing NaCl or CaCl2 concentration. MD simulations reveal that the crystallization is concomitant with interparticle interactions changing from purely repulsive to a "long-range potential well" condition. Liquid-state theory explains this attraction as a sum of cohesive and depletion forces that originate from the interelectrolyte ion and electrolyte-ion-nanoparticle positional correlations. Our work provides fundamental insights into the effect of ionic correlations in the salting-out mechanism and suggests new routes for the crystallization of colloids and proteins using concentrated salts.

  14. Optical Properties of Controlled Nanoscale Assemblies of Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Westcott, S. L.; Oldenburg, S. J.; Lee, T. R.; Halas, N. J.

    1998-03-01

    The optical response of a metal nanoparticle in an assembly of nanoparticles is affected by scattering from the other nanoparticles in the assembly. In general, this interaction leads to the appearance of lower energy peaks in the absorption spectrum with their location dependent on the geometry of the assembly(M. Quinten and U. Kreibig, Surface Science 172), 557 (1986).. We construct two types of assemblies using functionalized silica nanoparticles as substrates for the immobilization of metal nanoparticles. First, surprisingly monodisperse clusters of small gold nanoparticles spontaneously form and attach to the silica nanoparticles under appropriate solvent conditions. Second, controlled aggregates of metal nanoparticles are synthesized using bifunctional molecular linkers in a step-by-step procedure. The distances between the constituent metallic nanoparticles, as well as the electronic properties of the region between the nanoparticles, are controlled by the choice of bifunctional molecular linker. As a result of either assembly method, metallic nanoparticles can be brought sufficiently close to each other so that interactions may be observed.

  15. Assembly of Acircular SnO2 Rod Using Optical Tweezers and Laser Curing of Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nam, Chanhyuk; Hong, Daehie; Chung, Jaeik; Chung, Jaewon; Hwang, Insung; Lee, Jongheun; Ko, Seunghwan; Grigoropoulos, Costas P.

    2010-05-01

    Acicular tin dioxide (SnO2) rods (1-2 µm in diameter, 5-20 µm long) were assembled and fused on the patterned gold electrode by an optical tweezer. In addition, the electrical contact between the assembled SnO2 rod and the gold electrode was improved by laser curing of gold nanoparticles and the subsequent sintering in the oven. Here, the nanoparticles covered the entire area of the assembled SnO2 rod by evaporating a droplet of nanoparticle solution dripped on the assembled SnO2 rod. Subsequently, nanoparticles near the contact area between the rod and electrode were locally cured by direct heating with a focused infrared laser beam, which induced desorption of the surface monolayer. Therefore, the cured gold nanoparticles could be sintered after the non-laser irradiated nanoparticles were cleaned by the initial solvent application. Without sintering of the nanoparticles, the resistance of the assembled SnO2 rod was measured over several MΩ. After the nanoparticle sintering it could be reduced to a few hundred kΩ, which was in agreement with the resistance of the assembled SnO2 rod.

  16. Assembly of Acircular SnO2 Rod Using Optical Tweezers and Laser Curing of Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chanhyuk Nam,; Daehie Hong,; Jaeik Chung,; Jaewon Chung,; Insung Hwang,; Jongheun Lee,; Seunghwan Ko,; Costas P. Grigoropoulos,

    2010-05-01

    Acicular tin dioxide (SnO2) rods (1-2 μm in diameter, 5-20 μm long) were assembled and fused on the patterned gold electrode by an optical tweezer. In addition, the electrical contact between the assembled SnO2 rod and the gold electrode was improved by laser curing of gold nanoparticles and the subsequent sintering in the oven. Here, the nanoparticles covered the entire area of the assembled SnO2 rod by evaporating a droplet of nanoparticle solution dripped on the assembled SnO2 rod. Subsequently, nanoparticles near the contact area between the rod and electrode were locally cured by direct heating with a focused infrared laser beam, which induced desorption of the surface monolayer. Therefore, the cured gold nanoparticles could be sintered after the non-laser irradiated nanoparticles were cleaned by the initial solvent application. Without sintering of the nanoparticles, the resistance of the assembled SnO2 rod was measured over several MΩ. After the nanoparticle sintering it could be reduced to a few hundred kΩ, which was in agreement with the resistance of the assembled SnO2 rod.

  17. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in arabidopsis

    EPA Science Inventory

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  18. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in arabidopsis

    EPA Science Inventory

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  19. Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sankar, Renu; Rizwana, Kadarmohideen; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2015-08-01

    Titanium dioxide nanoparticles were effectively synthesized from aqueous leaf extract of Azadirachta indica under pH and temperature-dependent condition. 5 mM titanium isopropoxide solution worked as a primary source for the synthesis of titanium dioxide nanoparticles. The green synthesized titanium dioxide nanoparticles were confirmed by UV-Vis spectroscopy. Fourier transform infrared spectrum of synthesized titanium dioxide nanoparticles authorized the presence of bioactive compounds in the leaf extract, which may play a role as capping and reducing agent. The high-resolution scanning electron microscopy and dynamic light scattering analyses results showed the interconnected spherical in shape titanium dioxide nanoparticles having a mean particle size of 124 nm and a zeta potential of -24 mV. Besides, the colloidal titanium dioxide nanoparticles energetically degrade the industrially harmful methyl red dye under bright sunlight.

  20. Hazardous Effects of Titanium Dioxide Nanoparticles in Ecosystem

    PubMed Central

    Hussain, Muzammal; Khan, Muzaffar

    2017-01-01

    Although nanoparticles (NPs) have made incredible progress in the field of nanotechnology and biomedical research and their applications are demanded throughout industrial world particularly over the past decades, little is known about the fate of nanoparticles in ecosystem. Concerning the biosafety of nanotechnology, nanotoxicity is going to be the second most priority of nanotechnology that needs to be properly addressed. This review covers the chemical as well as the biological concerns about nanoparticles particularly titanium dioxide (TiO2) NPs and emphasizes the toxicological profile of TiO2 at the molecular level in both in vitro and in vivo systems. In addition, the challenges and future prospects of nanotoxicology are discussed that may provide better understanding and new insights into ongoing and future research in this field. PMID:28373829

  1. Nanoparticle Assemblies: Nanoparticle Clusters: Assembly and Control Over Internal Order, Current Capabilities, and Future Potential (Adv. Mater. 27/2016).

    PubMed

    Stolarczyk, Jacek K; Deak, Andras; Brougham, Dermot F

    2016-07-01

    Clusters or assemblies of nanoparticles exhibit unique features which arise from the enhancement of properties of single nanoparticles or due to new collective properties. On page 5400, D. F. Brougham and co-workers review the role of nanoparticle interactions in controlling cluster formation, and classify the assembly mechanisms. Emerging applications for surface-enhanced Raman scattering (SERS), optical labeling, light harvesting, magnetic resonance imaging (MRI), hyperthermia, photocatalysis, enrichment, and separation are presented. Cover image by Christoph Hohmann, Nanosystems Initiative Munich (NIM).

  2. Assembly of surface engineered nanoparticles for functional materials

    NASA Astrophysics Data System (ADS)

    Yu, Xi

    Nanoparticles are regarded as exciting new building blocks for functional materials due to their fascinating physical properties because of the nano-confinement. Organizing nanoparticles into ordered hierarchical structures are highly desired for constructing novel optical and electrical artificial materials that are different from their isolated state or thermodynamics random ensembles. My research integrates the surface chemistry of nanoparticles, interfacial assembly and lithography techniques to construct nanoparticle based functional structures. We designed and synthesized tailor-made ligands for gold, semiconductor and magnetic nanoparticle, to modulate the assembly process and collective properties of the assembled structures, by controlling the key parameters such as particle-interface interaction, dielectric environments and inter-particle coupling etc. Top-down technologies such as micro contact printing, photolithography and nanoimprint lithography are used to guide the assembly into arbitrarily predesigned structures for potential device applications.

  3. Nanoparticle assembly: from fundamentals to applications: concluding remarks.

    PubMed

    Gang, Oleg

    2016-01-01

    Nanoparticles, due to their broadly tunable functions, are major building blocks for generating new materials. However, building such materials for practical applications by self-assembly is quite challenging. Following the Faraday Discussion on "Nanoparticle Assembly: from Fundamentals to Applications" we discuss here the current trends in the field of self-assembly, including: understanding the unique interplay of molecular and nanoscale effects, a development of novel approaches for the creation of targeted nanoparticle architectures, advances in controlling dynamic behavior of systems and enabling new functions through specifically formed structures.

  4. Metal Nanoparticles Preparation In Supercritical Carbon Dioxide Solutions

    SciTech Connect

    Harry W. Rollins

    2004-04-01

    The novel optical, electronic, and/or magnetic properties of metal and semiconductor nanoparticles have resulted in extensive research on new methods for their preparation. An ideal preparation method would allow the particle size, size distribution, crystallinity, and particle shape to be easily controlled, and would be applicable to a wide variety of material systems. Numerous preparation methods have been reported, each with its inherent advantages and disadvantages; however, an ideal method has yet to emerge. The most widely applied methods for nanoparticle preparation include the sonochemical reduction of organometallic reagents,(1&2) the solvothermal method of Alivisatos,(3) reactions in microemulsions,(4-6) the polyol method (reduction by alcohols),(7-9) and the use of polymer and solgel materials as hosts.(10-13) In addition to these methods, there are a variety of methods that take advantage of the unique properties of a supercritical fluid.(14&15) Through simple variations of temperature and pressure, the properties of a supercritical fluid can be continuously tuned from gas-like to liquid-like without undergoing a phase change. Nanoparticle preparation methods that utilize supercritical fluids are briefly reviewed below using the following categories: Rapid Expansion of Supercritical Solutions (RESS), Reactive Supercritical Fluid Processing, and Supercritical Fluid Microemulsions. Because of its easily accessible critical temperature and pressure and environmentally benign nature, carbon dioxide is the most widely used supercritical solvent. Supercritical CO2 is unfortunately a poor solvent for many polar or ionic species, which has impeded its use in the preparation of metal and semiconductor nanoparticles. We have developed a reactive supercritical fluid processing method using supercritical carbon dioxide for the preparation of metal and metal sulfide particles and used it to prepare narrowly distributed nanoparticles of silver (Ag) and silver sulfide

  5. Effects of titanium dioxide nanoparticles derived from ...

    EPA Pesticide Factsheets

    Increased manufacture of TiO2 nano-products has caused concern about the potential toxicity of these products to the environment and in public health. Identification and confirmation of the presence of TiO2 nanoparticles derived from consumer products as opposed to industrial TiO2 NPs warrants examination in exploring the significance of their release and resultant impacts on the environment. To this end we examined the significance of the release of these particles and their toxic effect on the marine diatom algae Thalassiosira pseudonana. Our results indicate that nano-TiO2 sunscreen and toothpaste exhibit more toxicity in comparison to industrial TiO2, and inhibited the growth of the marine diatom Thalassiosira pseudonana. This inhibition was proportional to the exposure time and concentrations of nano-TiO2. Our findings indicate a significant effect, and therefore further research is warranted in evaluation and assessment of the toxicity of modified nano-TiO2 derived from consumer products and their physicochemical properties. Submit to journal Environmental Science and Pollution Research.

  6. Controlled Synthesis and Assembly of FePt Nanoparticles

    SciTech Connect

    Toney, Michael F

    2003-06-20

    Monodisperse 4 nm FePt magnetic nanoparticles were synthesized by superhydride reduction of FeCl{sub 2} and Pt(acac){sub 2} at high temperature, and thin assemblies of FePt nanoparticles with controlled thickness were formed through polymer mediated self-assembly. Adding superhydride (LiBEt{sub 3}H) to the organic solution of FeCl{sub 2} and Pt(acac){sub 2} in the presence of oleic acid, oleylamine and 1,2-hexadecanediol at 200 C, followed by refluxing at 263 C led to monodisperse 4 nm FePt nanoparticles. The initial molar ratio of the metal precursors was retained during the synthesis; and the final FePt composition of the particles was readily tuned. Alternatively absorbing a layer of polyethylenimine (PEI) and the FePt nanoparticles onto a solid substrate resulted in nanoparticle assemblies with tunable thickness. Chemical analysis of the assemblies revealed that more iron oxide was present in the thinner assemblies annealed at lower temperature or for shorter time. Thermal annealing induced the internal particle structure change from chemically disordered fee to chemically ordered fct and transformed the thin assembly from superparamagnetic to ferromagnetic. This controlled synthesis and assembly can be used to fabricate FePt nanoparticle-based functional devices for future nanomagnetic applications.

  7. Disorder in DNA-Linked Gold Nanoparticle Assemblies

    NASA Astrophysics Data System (ADS)

    Harris, Nolan

    2005-03-01

    We report experimental observations of the effects of disorder on the phase behavior of DNA-linked nanoparticle networks. Variation in DNA linker lengths results in different melting temperatures, and hence stabilities, of DNA-linked nanoparticle assemblies. We discovered an unusual trend in the melting temperatures, resulting from the introduction of linker DNA which produced unequal DNA duplex lengths between particles. Comparison with DNA thermodynamics proves that such an anomaly does not exist for free DNA duplex melting, and suggests the influence of disorder on the collective behavior of DNA-linked nanoparticle assemblies. This disorder, brought about by the presence of two duplexes of different length and energy between each particle pair lowers the overall stability of the network formed. 1. C.-H. Kiang, ``Phase Transition of DNA-Linked Gold Nanoparticles,'' Physica A 321 (2003) 164--169.2. N. C. Harris and C. H. Kiang, ``Disorder in DNA-Linked Gold Nanoparticle Assemblies,'' submitted (2004).

  8. Emergence of hierarchical structural complexities in nanoparticles and their assembly

    NASA Astrophysics Data System (ADS)

    Zeng, Chenjie; Chen, Yuxiang; Kirschbaum, Kristin; Lambright, Kelly J.; Jin, Rongchao

    2016-12-01

    We demonstrate that nanoparticle self-assembly can reach the same level of hierarchy, complexity, and accuracy as biomolecules. The precise assembly structures of gold nanoparticles (246 gold core atoms with 80 p-methylbenzenethiolate surface ligands) at the atomic, molecular, and nanoscale levels were determined from x-ray diffraction studies. We identified the driving forces and rules that guide the multiscale assembly behavior. The protecting ligands self-organize into rotational and parallel patterns on the nanoparticle surface via C-Hṡṡṡπ interaction, and the symmetry and density of surface patterns dictate directional packing of nanoparticles into crystals with orientational, rotational, and translational orders. Through hierarchical interactions and symmetry matching, the simple building blocks evolve into complex structures, representing an emergent phenomenon in the nanoparticle system.

  9. Linear-chain assemblies of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhak, Prasanta; Kim, Min-Kwan; Lee, Jae Hyeok; Kim, Miyoung; Kim, Sang-Koog

    2017-07-01

    We synthesized iron oxide nanoparticles using a simple hydrothermal approach and found several types of segments of their linear-chain self-assemblies as observed by field emission scanning electron microscopy. X-ray diffraction and transmission electron microscopy measurements confirm a well-defined single-phase FCC structure. Vibrating sample magnetometry measurements exhibit a ferromagnetic behavior. Micromagnetic numerical simulations show magnetic vortex states in the nanosphere model. Also, calculations of binding energies for different numbers of particles in the linear-chain assemblies explain a possible mechanism responsible for the self-assemblies of segments of the linear chains of nanoparticles. This work offers a step towards linear-chain self-assemblies of iron oxide nanoparticles and the effect of magnetic vortex states in individual nanoparticles on their binding energy.

  10. Cobalt ferrite nanoparticles in a mesoporous silicon dioxide matrix

    NASA Astrophysics Data System (ADS)

    Komogortsev, S. V.; Patrusheva, T. N.; Balaev, D. A.; Denisova, E. A.; Ponomarenko, I. V.

    2009-10-01

    We have studied magnetic nanoparticles of cobalt ferrite obtained by the extraction-pyrolysis method in a mesoporous silicon dioxide (MSM-41) molecular sieve matrix. The X-ray diffraction data show evidence for the formation of CoFe2O4 particles with a coherent scattering domain size of ˜40 nm. Measurements of the magnetization curves showed that powders consisting of these nanoparticles are magnetically hard materials with a coercive field of H c(4.2 K) = 9.0 kOe and H c(300 K) = 1.8 kOe and a reduced remanent magnetization of M r/ M s(4.2 K) = 0.83 and M r/ M s(300 K) = 0.49. The shape of the low-temperature (4.2 K) magnetization curves is adequately described in terms of the Stoner-Wohlfarth model for randomly oriented single-domain particles with a cubic magnetic anisotropy.

  11. Terminal Supraparticle Assemblies from Similarly Charged Protein Molecules and Nanoparticles

    PubMed Central

    Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Sun, Kai; Zhao, Gongpu; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.

    2015-01-01

    Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle. PMID:24845400

  12. Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles

    NASA Astrophysics Data System (ADS)

    Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Zhao, Gongpu; Sun, Kai; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.

    2014-05-01

    Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles and bionic combination of properties as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle.

  13. Assembly of responsive-shape coated nanoparticles at water surfaces

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Grest, Gary S.

    2014-04-01

    Nanoparticle (NP) assembly and aggregation can be controlled using a variety of organic coatings that bind to the nanoparticle surface and alter its affinity for solvent and other particles. We show that surprisingly simple short chain polymer coatings can be effectively used to selectively control the aggregation of very small nanoparticles by taking advantage of the environment-responsive shape produced by the coating's spontaneous asymmetry on high-curvature nanoparticles. Using extremely long molecular dynamics simulations of alkanethiol coated Au nanoparticles, we show that varying the terminal groups of a nanoparticle coating dramatically alters the coating shape at the water liquid-vapor interface, producing very different assembly morphologies. NPs with CH3-terminated coatings assemble into short linear groupings with a highly aligned structure at early time and then form more disordered clusters as these linear groupings further assemble. NPs with COOH-terminated coatings assemble into dimers and disordered clumps with no preferred alignment at short time and longer disordered chains of particles at longer times. We also find that the responsive shape of the coating continues to adapt to local environment during assembly. The orientations of chains within NP coatings are significantly different when the NPs are arranged in aggregates than when they are isolated.

  14. Polymer and biopolymer mediated self-assembly of gold nanoparticles.

    PubMed

    Ofir, Yuval; Samanta, Bappaditya; Rotello, Vincent M

    2008-09-01

    Gold nanoparticle-polymer composites are versatile and diverse functional materials, with applications in optical, electronic and sensing devices. This tutorial review focuses on the use of polymers to control the assembly of gold nanoparticles. Examples of synthetic polymers and biopolymers are provided, as well as applications of the composite materials in sensing and memory devices.

  15. Synthetic Approach to Controlled Assembly of Metal Nanoparticles

    DTIC Science & Technology

    2016-12-01

    surfactant-assisted seed growth method, where polymer particles decorated with small metal nanoparticles are used as seed-decorated templates to grow metal... nanoparticles of varying sizes and shapes. Of particular interest in this study is closely packed gold nanobeads assembled on a polymer core, which...based on the templated surfactant-assisted seed growth method, where polymer particles decorated with small metal nanoparticles are used as seed

  16. Disorder in DNA-Linked Gold Nanoparticle Assemblies

    NASA Astrophysics Data System (ADS)

    Harris, Nolan C.; Kiang, Ching-Hwa

    2005-07-01

    We report experimental observations on the effect of disorder on the phase behavior of DNA-linked nanoparticle assemblies. Variation in DNA linker lengths results in different melting temperatures of the DNA-linked nanoparticle assemblies. We observed an unusual trend of a nonmonotonic “zigzag” pattern in the melting temperature as a function of DNA linker length. Linker DNA resulting in unequal DNA duplex lengths introduces disorder and lowers the melting temperature of the nanoparticle system. Comparison with free DNA thermodynamics shows that such an anomalous zigzag pattern does not exist for free DNA duplex melting, which suggests that the disorder introduced by unequal DNA duplex lengths results in this unusual collective behavior of DNA-linked nanoparticle assemblies.

  17. Directed assembly of discrete gold nanoparticle groupings usingbranched DNA scaffolds

    SciTech Connect

    Claridge, Shelley A.; Goh, Sarah L.; Frechet, Jean M.J.; Williams, Shara C.; Micheel, Christine M.; Alivisatos, A. Paul

    2004-09-14

    The concept of self-assembled dendrimers is explored for the creation of discrete nanoparticle assemblies. Hybridization of branched DNA trimers and nanoparticle-DNA conjugates results in the synthesis of nanoparticle trimer and tetramer complexes. Multiple tetramer architectures are investigated, utilizing Au-DNA conjugates with varying secondary structural motifs. Hybridization products are analyzed by gel electrophoresis, and discrete bands are observed corresponding to structures with increasing numbers of hybridization events. Samples extracted from each band are analyzed by transmission electron microscopy, and statistics compiled from micrographs are used to compare assembly characteristics for each architecture. Asymmetric structures are also produced in which both 5 and 10 nm Au particles are assembled on branched scaffolds.

  18. Electrostatic assembly of binary nanoparticle superlattices using protein cages.

    PubMed

    Kostiainen, Mauri A; Hiekkataipale, Panu; Laiho, Ari; Lemieux, Vincent; Seitsonen, Jani; Ruokolainen, Janne; Ceci, Pierpaolo

    2013-01-01

    Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light and could be used to prepare multifunctional metamaterials. Such superlattices are typically made from synthetic nanoparticles, and although biohybrid structures have been developed, incorporating biological building blocks into binary nanoparticle superlattices remains challenging. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals and superlattices at interfaces or in solution. Here, we show that electrostatically patchy protein cages--cowpea chlorotic mottle virus and ferritin cages--can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB(8)(fcc) crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.

  19. Electrostatic assembly of binary nanoparticle superlattices using protein cages

    NASA Astrophysics Data System (ADS)

    Kostiainen, Mauri A.; Hiekkataipale, Panu; Laiho, Ari; Lemieux, Vincent; Seitsonen, Jani; Ruokolainen, Janne; Ceci, Pierpaolo

    2013-01-01

    Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light and could be used to prepare multifunctional metamaterials. Such superlattices are typically made from synthetic nanoparticles, and although biohybrid structures have been developed, incorporating biological building blocks into binary nanoparticle superlattices remains challenging. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals and superlattices at interfaces or in solution. Here, we show that electrostatically patchy protein cages--cowpea chlorotic mottle virus and ferritin cages--can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB8fcc crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.

  20. Layer-by-Layer assembly of TiO2 nanoparticles for stable hydrophilic biocompatible coatings.

    PubMed

    Kommireddy, Dinesh S; Patel, Amish A; Shutava, Tatsiana G; Mills, David K; Lvov, Yuri M

    2005-07-01

    Stable, super-hydrophilic (water contact angle approximately equal to 0 degrees) titanium dioxide nanoparticle thin films have been obtained on substrates with different initial wettability such as glass, poly(methyl methacrylate) and poly(dimethyl siloxane) using layer-by-layer nano-assembly method. Titanium dioxide nanoparticles were alternated with poly(styrene sulfonate) to form films of thickness ranging from 11 nm to 220 nm. The hydrophilicity of these thin films increases with increasing number of deposited PSS/TiO2 bilayers. It was found that 2, 5 and 20 layers were needed to form super-hydrophilic TiO2 coating on glass, PMMA and PDMS respectively. Oxygen plasma treatment of substrate surfaces enhanced the formation of homogeneous TiO2 films and accelerated the formation of hydrophilic layers. Super-hydrophilicity has been shown to be unique to PSS/TiO2 films as compared with other polyelectrolyte/nanoparticle layers, and UV irradiation may restore hydrophilicity even after months of storing of the samples. Biocompatibility of TiO2 nanoparticle films has been demonstrated by the successful cell culture of human dermal fibroblast.

  1. [Research progress about the relationship between nanoparticles silicon dioxide and lung cancer].

    PubMed

    Dai, Chun; Huang, Yunchao; Zhou, Yongchun

    2014-10-20

    Nano-silicon dioxide widely distributed in plastic, rubber, ceramics, paint, adhesives, and many other fields, and it is the product of coal combustion. A growing evidence shows that nano-silicon dioxide has certain correlation with respiratory system disease. In this paper, we synthesized existing researches of domestic and abroad, summarized the lung toxicity of nanoparticles. This article are reviewed from the physical and chemical properties of nanoparticles silicon dioxide, exposure conditions and environment, and the pathogenic mechanism of nano-silicon dioxide.

  2. Low temperature synthesis of iron containing carbon nanoparticles in critical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hasumura, Takashi; Fukuda, Takahiro; Whitby, Raymond L. D.; Aschenbrenner, Ortrud; Maekawa, Toru

    2011-01-01

    We develop a low temperature, organic solvent-free method of producing iron containing carbon (Fe@C) nanoparticles. We show that Fe@C nanoparticles are self-assembled by mixing ferrocene with sub-critical (25.0 °C), near-critical (31.0 °C) and super-critical (41.0 °C) carbon dioxide and irradiating the solutions with UV laser of 266-nm wavelength. The diameter of the iron particles varies from 1 to 100 nm, whereas that of Fe@C particles ranges from 200 nm to 1 μm. Bamboo-shaped structures are also formed by iron particles and carbon layers. There is no appreciable effect of the temperature on the quantity and diameter distributions of the particles produced. The Fe@C nanoparticles show soft ferromagnetic characteristics. Iron particles are crystallised, composed of bcc and fcc lattice structures, and the carbon shells are graphitised after irradiation of electron beams.

  3. Concentric rings of polystyrene and titanium dioxide nanoparticles patterned by alternating current signal guided coffee ring effect

    NASA Astrophysics Data System (ADS)

    Mu, Jinhua; Lin, Peng; Xia, Qiangfei

    2014-06-01

    The authors studied the surface deposition of nanoparticles by introducing an alternating current (AC) signal into the millimeter-sized nanoparticle droplet. For both polystyrene (PS) in deionized (DI) water and titanium dioxide (TiO2) in toluene, the nanoparticles self-assembled into regular concentric rings over a larger area on the substrate during the droplet drying process. The patterned area decreased, and the inter-ring spacing increased with higher AC frequencies for the TiO2/toluene system, while those for the PS/DI water system only changed slightly. The frequency dependent pattern formation was interpreted by the interaction between different factors such as capillary flow and the AC signal introduced dielectrophoresis force.

  4. Synthesis, purification and assembly of gold and iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Qiu, Penghe

    The aims of the current research include developing new synthetic strategies to prepare structurally complex gold nanoparticles and new size sorting methods to separate nanoparticles of larger size, as well as studying the assembly of nanoparticles into novel hierarchical structures through both template-assisted and template-free strategies. In the synthesis section of this dissertation (Chapters 2 & 3), a size controllable synthesis of dendritic gold nanoparticles through a seed-mediated process in ethanol is described. The effect of seeds size and shape as well as the carbon chain length of alkylamines on the formation of dendritic structure was investigated. The synthetic strategy developed is capable of forming dendritic structure on various substrates, like flat or rod-like gold particles. In another work, the shape evolution of gold nanoparticles in a seed-mediated growth as well as the kinetics of reduction of HAuCl4 in the presence of seeds was studied. The reduction of the gold precursor by sodium citrate could be greatly accelerated in the presence of seed nanoparticles. Along with the enhanced reaction kinetics, dramatic shape evolution of gold nanoparticles was observed by changing ratios of precursors. In the purification section (Chapter 4), a novel method of separating nanoparticles of different sizes in a viscosity gradient was developed. The viscosity gradient was created with polyvinylpyrrolidone (PVP) aqueous solutions. Previously, such size separation was all achieved in the density gradient, while the hidden contribution of viscosity difference inside the density gradient was not well recognized. Through this work, it is clarified that the viscosity can contribute as importantly as density in the size sorting of nanoparticles through rate zonal centrifuge. It was also demonstrated both experimentally and mathematically that the viscosity gradient is more effective in separation of larger sized nanoparticles. In the assembly section (Chapter 5

  5. Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Hoffmann, Céline; Mazari, Elsa; Lallet, Sylvie; Le Borgne, Roland; Marchi, Valérie; Gosse, Charlie; Gueroui, Zoher

    2013-03-01

    Decisions on the fate of cells and their functions are dictated by the spatiotemporal dynamics of molecular signalling networks. However, techniques to examine the dynamics of these intracellular processes remain limited. Here, we show that magnetic nanoparticles conjugated with key regulatory proteins can artificially control, in time and space, the Ran/RCC1 signalling pathway that regulates the cell cytoskeleton. In the presence of a magnetic field, RanGTP proteins conjugated to superparamagnetic nanoparticles can induce microtubule fibres to assemble into asymmetric arrays of polarized fibres in Xenopus laevis egg extracts. The orientation of the fibres is dictated by the direction of the magnetic force. When we locally concentrated nanoparticles conjugated with the upstream guanine nucleotide exchange factor RCC1, the assembly of microtubule fibres could be induced over a greater range of distances than RanGTP particles. The method shows how bioactive nanoparticles can be used to engineer signalling networks and spatial self-organization inside a cell environment.

  6. Assembly of citrate gold nanoparticles on hydrophilic monolayers

    NASA Astrophysics Data System (ADS)

    Vikholm-Lundin, Inger; Rosqvist, Emil; Ihalainen, Petri; Munter, Tony; Honkimaa, Anni; Marjomäki, Varpu; Albers, Willem M.; Peltonen, Jouko

    2016-08-01

    Self-assembled monolayers (SAMs) as model surfaces were linked onto planar gold films thorough lipoic acid or disulfide groups. The molecules used were polyethylene glycol (EG-S-S), N-[tris-(hydroxymethyl)methyl]acrylamide polymers with and without lipoic acid (Lipa-pTHMMAA and pTHMMAA) and a lipoic acid triazine derivative (Lipa-MF). All the layers, but Lipa-MF with a primary amino group were hydroxyl terminated. The layers were characterized by contact angle measurements and atomic force microscopy, AFM. Citrate stabilized nanoparticles, AuNPs in water and phosphate buffer were allowed to assemble on the layers for 10 min and the binding was followed in real-time with surface plasmon resonance, SPR. The SPR resonance curves were observed to shift to higher angles and become increasingly damped, while also the peaks strongly broaden when large nanoparticles assembled on the surface. Both the angular shift and the damping of the curve was largest for nanoparticles assembling on the EG-S-S monolayer. High amounts of particles were also assembled on the pTHMMAA layer without the lipoic acid group, but the damping of the curve was considerably lower with a more even distribution of the particles. Topographical images confirmed that the highest number of particles were assembled on the polyethylene glycol monolayer. By increasing the interaction time more particles could be assembled on the surface.

  7. Tunable longitudinal modes in extended silver nanoparticle assemblies

    PubMed Central

    Bayram, Serene S; Lindfors, Klas

    2016-01-01

    Summary Nanostructured materials with tunable properties are of great interest for a wide range of applications. The self-assembly of simple nanoparticle building blocks could provide an inexpensive means to achieve this goal. Here, we generate extended anisotropic silver nanoparticle assemblies in solution using controlled amounts of one of three inexpensive, widely available, and environmentally benign short ditopic ligands: cysteamine, dithiothreitol and cysteine in aqueous solution. The self-assembly of our extended structures is enforced by hydrogen bonding. Varying the ligand concentration modulates the extent and density of these unprecedented anisotropic structures. Our results show a correlation between the chain nature of the assembly and the generation of spectral anisotropy. Deuterating the ligand further enhances the anisotropic signal by triggering more compact aggregates and reveals the importance of solvent interactions in assembly size and morphology. Spectral and morphological evolutions of the AgNPs assemblies are followed via UV–visible spectroscopy and transmission electron microscopy (TEM). Spectroscopic measurements are compared to calculations of the absorption spectra of randomly assembled silver chains and aggregates based on the discrete dipole approximation. The models support the experimental findings and reveal the importance of aggregate size and shape as well as particle polarizability in the plasmon coupling between nanoparticles. PMID:27826496

  8. Surface modification: how nanoparticles assemble to molecular imaging probes

    NASA Astrophysics Data System (ADS)

    Tan, Huilong; Yu, Lun; Gao, Feng; Liao, Weihua; Wang, Wei; Zeng, Wenbin

    2013-12-01

    Nanomaterials have attracted widespread attention due to their unique chemical and physical properties, such as size-dependent optical, magnetic, or catalytic properties, thus have the great potential application, especially in the fields of new materials and devices. The emergence of nanoparticle-based probe has led to important innovations in molecular imaging field. Several types of nanoparticles have been employed for molecular imaging application, including Au/Ag nanoparticles, upconversion nanoparticles (UCNPs), quantum dots, dye-doped nanoparticles, magnetic nanoparticles (MNPs), etc. The preparation of nanoparticle-based probe for molecular imaging routinely includes three steps: synthesis, surface modification, and bioconjugation, among which surface modification plays an important role for the whole procedure. Surface modification usually possesses the safety, biocompatibility, stability, hydrophilicity, and terminal functional groups for further conjugation. This review aims to outline the surface modification of how nanoparticles assemble to probes, focusing on the developments of two widely used nanoparticles, UCNPs and MNPs. Recent advances of different types of linkers, a core component for surface modification, are summarized. It shows the intimate relationship between chemistry and nanoscience. Finally, perspectives and challenges of nanoparticle-based probe in the field of molecular imaging are expected.

  9. Investigation of titanium dioxide nanoparticles toxicity and uptake by plants

    NASA Astrophysics Data System (ADS)

    Larue, C.; Khodja, H.; Herlin-Boime, N.; Brisset, F.; Flank, A. M.; Fayard, B.; Chaillou, S.; Carrière, M.

    2011-07-01

    Nanoparticles (NP) are introduced in a growing number of commercial products and their production may lead to their release in the environment. Plants may be a potential entry point for NP in the food chain. Up to now, results describing NP phytotoxical effects and plant accumulation are scarce and contradictory. To increase knowledge on titanium dioxide NP (TiO2-NPs) accumulation and impact on plants, we designed a study on three plant species, namely wheat (Triticum aestivum), oilseed rape (Brassica napus) and Arabidopsis thaliana. These plants were exposed in hydroponics to a panel of well-characterized TiO2-NPs, with diameters ranging from 12 to 140 nm, either anatase or rutile. Their accumulation in plant tissues is currently being assessed by complementary imaging techniques: scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-X-ray fluorescence (SR-μ-XRF) imaging and micro-particle induced X-ray emission (μ-PIXE) imaging. Moreover, the impact of TiO2-NP exposure on germination rate, root elongation, dry biomass and evapotranspiration is evaluated. Preliminary results are presented here, with data collected on wheat plants exposed to 12 nm and 25 nm anatase TiO2-NPs. These results show that TiO2-NPs are taken up by plants, and do not significantly alter their germination and root elongation. These results underline the necessity of deeper evaluation of nanoparticle ecotoxicity, and particularly on their interaction with plants.

  10. Mitochondrial dysfunction in titanium dioxide nanoparticle-induced neurotoxicity.

    PubMed

    Nalika, Nandini; Parvez, Suhel

    2015-01-01

    Nanotechnology has emerged as a field of scientific innovation which has opened up a plethora of concerns for the potential impact on human and environment. Various toxicological studies have confirmed that nanoparticles (NPs) can be potentially hazardous because of their unique small size and physico-chemical properties. With the wide applications of titanium dioxide nanoparticles (TNPs) in day-to-day life in form of cosmetics, paints, sterilization and so on, there is growing concern regarding the deleterious effects of TNPs on central nervous system. Mitochondria is an important origin for generation of energy as well as free radicals and these free radicals can lead to mitochondrial damage and finally lead to apoptosis. The objective of our study was to elucidate the potential neurotoxic effect of TNPs in anatase form. Oxidative stress was determined by measuring lipid peroxidation and protein carbonyl content which was found to be significantly increased. Reduced glutathione content and major glutathione metabolizing enzymes were also modulated signifying the role of glutathione redox cycle in the pathophysiology of TNPs. Mitochondrial complexes were also modulated from the exposure to TNPs. The present study indicates that nanosize TNPs may pose a health risk to mitochondrial brain with the generation of reactive oxygen species, and thus NPs should be carefully used.

  11. A 1-D Model of the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, Jim

    2015-01-01

    Developments to improve system efficiency and reliability for water and carbon dioxide separation systems on crewed vehicles combine sub-scale systems testing and multi-physics simulations. This paper describes the development of COMSOL simulations in support of the Life Support Systems (LSS) project within NASA's Advanced Exploration Systems (AES) program. Specifically, we model the 4 Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) operating on the International Space Station (ISS).

  12. Self-Assembling Protein Materials for Metal Nanoparticle Templation

    DTIC Science & Technology

    2015-05-01

    form nanoporous , durable frameworks upon which cells can be conditioned to grow.8,99,100 The remarkable feature of synthetic protein materials is... Materials for Metal Nanoparticle Templation The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued...Polytechnic Institute of New York University Brooklyn, NY 11201 -3840 ABSTRACT Self-assembling Protein Materials for Metal Nanoparticle Templation Report Title

  13. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene.

    PubMed

    Xia, Guanglin; Tan, Yingbin; Chen, Xiaowei; Sun, Dalin; Guo, Zaiping; Liu, Huakun; Ouyang, Liuzhang; Zhu, Min; Yu, Xuebin

    2015-10-21

    Monodisperse MgH2 nanoparticles with homogeneous distribution and a high loading percent are developed through hydrogenation-induced self-assembly under the structure-directing role of graphene. Graphene acts not only as a structural support, but also as a space barrier to prevent the growth of MgH2 nanoparticles and as a thermally conductive pathway, leading to outstanding performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Molecular dynamics simulations of evaporation-induced nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng; Grest, Gary S.

    2013-02-01

    While evaporating solvent is a widely used technique to assemble nano-sized objects into desired superstructures, there has been limited work on how the assembled structures are affected by the physical aspects of the process. We present large scale molecular dynamics simulations of the evaporation-induced assembly of nanoparticles suspended in a liquid that evaporates in a controlled fashion. The quality of the nanoparticle crystal formed just below the liquid/vapor interface is found to be better at relatively slower evaporation rates, as less defects and grain boundaries appear. This trend is understood as the result of the competition between the accumulation and diffusion times of nanoparticles at the liquid/vapor interface. When the former is smaller, nanoparticles are deposited so fast at the interface that they do not have sufficient time to arrange through diffusion, which leads to the prevalence of defects and grain boundaries. Our results have important implications in understanding assembly of nanoparticles and colloids in non-equilibrium liquid environments.

  15. Liquid Cell Electron Microscopy of Nanoparticle Self-Assembly Driven by Solvent Drying.

    PubMed

    Lee, Won Chul; Kim, Byung Hyo; Choi, Sun; Takeuchi, Shoji; Park, Jungwon

    2017-02-02

    Drying a colloidal solution of nanoparticles is a versatile method to construct self-assembled structures of nanoparticles. However, mechanistic understanding has mostly relied on empirical knowledge obtained from the final structures of self-assembly as relevant processes during solvent drying are likely kinetic and far from equilibrium. Here, we present in situ TEM studies of nanoparticle self-assembly under various conditions, including the concentrations of the initial solution and the types of nanoparticles and substrates. The capability of tracking trajectories of individual nanoparticles enables us to understand the mechanisms of drying-mediated self-assembly at the single-nanoparticle level. Our results consistently show that a solvent boundary primarily affects nanoparticle motions and the resulting self-assembly processes regardless of different conditions. The solvent boundary drives nanoparticles to form two-dimensional assembly mainly through two pathways, transporting scattered nanoparticles by lateral dragging and flattening aggregated nanoparticles by vertical pressing.

  16. Integrated dataset of impact of dissolved organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles

    EPA Pesticide Factsheets

    This dataset is generated to both qualitatively and quantitatively examine the interactions between nano-TiO2 and natural organic matter (NOM). This integrated dataset assemble all data generated in this project through a series of experiments. This dataset is associated with the following publication:Li , S., H. Ma, L. Wallis, M. Etterson , B. Riley , D. Hoff , and S. Diamond. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles. SCIENCE OF THE TOTAL ENVIRONMENT. Elsevier BV, AMSTERDAM, NETHERLANDS, 542: 324-333, (2016).

  17. Low temperature synthesis of fibres composed of carbon-nickel nanoparticles in super-critical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hasumura, Takashi; Fukuda, Takahiro; Whitby, Raymond L. D.; Aschenbrenner, Ortrud; Maekawa, Toru

    2010-06-01

    We show that fibres composed of carbon-nickel nanoparticles are self-assembled by mixing nickelocene and oxygen with super-critical carbon dioxide in a dc electric field. The fibres grow in the direction of the electric field and the growth rate increases with an increase in the strength of the electric field. We also irradiate the fibres with electron beams and find that crystallized nickel particles are captured by carbon particles. The present result suggests that a low temperature method of creating carbon-metal hybrid nanostructures may be developed by mixing metallocene and trigger molecules with super-critical fluids subjected to a dc electric field.

  18. Real time monitoring of superparamagnetic nanoparticle self-assembly on surfaces of magnetic recording media

    SciTech Connect

    Ye, L.; Pearson, T.; Crawford, T. M.; Qi, B.; Cordeau, Y.; Mefford, O. T.

    2014-05-07

    Nanoparticle self-assembly dynamics are monitored in real-time by detecting optical diffraction from an all-nanoparticle grating as it self-assembles on a grating pattern recorded on a magnetic medium. The diffraction efficiency strongly depends on concentration, pH, and colloidal stability of nanoparticle suspensions, demonstrating the nanoparticle self-assembly process is highly tunable. This metrology could provide an alternative for detecting nanoparticle properties such as colloidal stability.

  19. Effects of titanium dioxide nanoparticles on small intestinal mucosa in rats.

    PubMed

    Onishchenko, G E; Erokhina, M V; Abramchuk, S S; Shaitan, K V; Raspopov, R V; Smirnova, V V; Vasilevskaya, L S; Gmoshinski, I V; Kirpichnikov, M P; Tutelyan, V A

    2012-12-01

    Penetration of titanium dioxide nanoparticles into enterocytes after their administration into isolated loop of rat small intestine was shown in vivo by transmission electron microscopy. Using electron diffraction, titanium dioxide nanoparticles were identified in the apical regions of the cells under plasma membranes and in deeper parts of the cytoplasm as solitary objects or small aggregations. Water dispersions of nanoparticles (3-h exposure to high concentrations) caused no appreciable morphological changes in enterocyte ultrastructure. A 28-day subacute intragastric administration of water dispersion of nanoparticles to rats led to titanium accumulation in the liver, their level was significantly higher than in the control group, which was shown by mass spectrometry with inductive-bound plasma. These data indicated the possibility of penetration of titanium dioxide nanoparticles through the gastrointestinal barrier under near-physiological conditions.

  20. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome.

    PubMed

    Ruiz, Pedro A; Morón, Belen; Becker, Helen M; Lang, Silvia; Atrott, Kirstin; Spalinger, Marianne R; Scharl, Michael; Wojtal, Kacper A; Fischbeck-Terhalle, Anne; Frey-Wagner, Isabelle; Hausmann, Martin; Kraemer, Thomas; Rogler, Gerhard

    2017-07-01

    Western lifestyle and diet are major environmental factors playing a role in the development of IBD. Titanium dioxide (TiO2) nanoparticles are widely used as food additives or in pharmaceutical formulations and are consumed by millions of people on a daily basis. We investigated the effects of TiO2 in the development of colitis and the role of the nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 inflammasome. Wild-type and NLRP3-deficient mice with dextran sodium sulfate-induced colitis were orally administered with TiO2 nanoparticles. The proinflammatory effects of TiO2 particles in cultured human intestinal epithelial cells (IECs) and macrophages were also studied, as well as the ability of TiO2 crystals to traverse IEC monolayers and accumulate in the blood of patients with IBD using inductively coupled plasma mass spectrometry. Oral administration of TiO2 nanoparticles worsened acute colitis through a mechanism involving the NLRP3 inflammasome. Importantly, crystals were found to accumulate in spleen of TiO2-administered mice. In vitro, TiO2 particles were taken up by IECs and macrophages and triggered NLRP3-ASC-caspase-1 assembly, caspase-1 cleavage and the release of NLRP3-associated interleukin (IL)-1β and IL-18. TiO2 also induced reactive oxygen species generation and increased epithelial permeability in IEC monolayers. Increased levels of titanium were found in blood of patients with UC having active disease. These findings indicate that individuals with a defective intestinal barrier function and pre-existing inflammatory condition, such as IBD, might be negatively impacted by the use of TiO2 nanoparticles. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome

    PubMed Central

    Ruiz, Pedro A; Morón, Belen; Becker, Helen M; Lang, Silvia; Atrott, Kirstin; Spalinger, Marianne R; Scharl, Michael; Wojtal, Kacper A; Fischbeck-Terhalle, Anne; Frey-Wagner, Isabelle; Hausmann, Martin; Kraemer, Thomas; Rogler, Gerhard

    2017-01-01

    Objective Western lifestyle and diet are major environmental factors playing a role in the development of IBD. Titanium dioxide (TiO2) nanoparticles are widely used as food additives or in pharmaceutical formulations and are consumed by millions of people on a daily basis. We investigated the effects of TiO2 in the development of colitis and the role of the nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 inflammasome. Design Wild-type and NLRP3-deficient mice with dextran sodium sulfate-induced colitis were orally administered with TiO2 nanoparticles. The proinflammatory effects of TiO2 particles in cultured human intestinal epithelial cells (IECs) and macrophages were also studied, as well as the ability of TiO2 crystals to traverse IEC monolayers and accumulate in the blood of patients with IBD using inductively coupled plasma mass spectrometry. Results Oral administration of TiO2 nanoparticles worsened acute colitis through a mechanism involving the NLRP3 inflammasome. Importantly, crystals were found to accumulate in spleen of TiO2-administered mice. In vitro, TiO2 particles were taken up by IECs and macrophages and triggered NLRP3-ASC-caspase-1 assembly, caspase-1 cleavage and the release of NLRP3-associated interleukin (IL)-1β and IL-18. TiO2 also induced reactive oxygen species generation and increased epithelial permeability in IEC monolayers. Increased levels of titanium were found in blood of patients with UC having active disease. Conclusion These findings indicate that individuals with a defective intestinal barrier function and pre-existing inflammatory condition, such as IBD, might be negatively impacted by the use of TiO2 nanoparticles. PMID:26848183

  2. Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes

    EPA Science Inventory

    Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes Nanoparticle uptake in cells may be an important determinant of their potential cytotoxic and inflammatory effects. Six commercial TiO2 NP (A=Alfa Aesar,10nm, A*=Alfa Aesar 32nm, B=P25 27...

  3. Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes

    EPA Science Inventory

    Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes Nanoparticle uptake in cells may be an important determinant of their potential cytotoxic and inflammatory effects. Six commercial TiO2 NP (A=Alfa Aesar,10nm, A*=Alfa Aesar 32nm, B=P25 27...

  4. Effects of titanium dioxide nanoparticles on human keratinocytes.

    PubMed

    Wright, Clayton; Iyer, Anand Krishnan V; Wang, Liying; Wu, Nianqiang; Yakisich, Juan S; Rojanasakul, Yon; Azad, Neelam

    2017-01-01

    Titanium dioxide (TiO2) is a ubiquitous whitening compound widely used in topical products such as sunscreens, lotions and facial creams. The damaging health effects of TiO2 inhalation has been widely studied in rats, mice and humans showing oxidative stress increase, DNA damage, cell death and inflammatory gene upregulation in lung and throat cells; however, the effects on skin cells from long-term topical use of various products remain largely unknown. In this study, we assessed the effect of specific TiO2 nanoparticles (H2TiO7) on a human keratinocyte cell line (HaCaT). We performed a comparative analysis using three TiO2 particles varying in size (Fine, Ultrafine and H2TiO7) and analyzed their effects on HaCaTs. There is a clear dose-dependent increase in superoxide production, caspase 8 and 9 activity, and apoptosis in HaCaTs after treatment with all three forms of TiO2; however, there is no consistent effect on cell viability and proliferation with either of these TiO2 particles. While there is data suggesting UV exposure can enhance the carcinogenic effects of TiO2, we did not observe any significant effect of UV-C exposure combined with TiO2 treatment on HaCaTs. Furthermore, TiO2-treated cells showed minimal effects on VEGF upregulation and Wnt signaling pathway thereby showing no potential effect on angiogenesis and malignant transformation. Overall, we report here an increase in apoptosis, which may be caspase 8/Fas-dependent, and that the H2TiO7 nanoparticles, despite their smaller particle size, had no significant enhanced effect on HaCaT cells as compared to Fine and Ultrafine forms of TiO2.

  5. Effects of titanium dioxide nanoparticles on human keratinocytes

    PubMed Central

    Wright, Clayton; Iyer, Anand Krishnan V.; Wang, Liying; Wu, Nianqiang; Yakisich, Juan S.; Rojanasakul, Yon; Azad, Neelam

    2016-01-01

    Titanium dioxide (TiO2) is a ubiquitous whitening compound widely used in topical products such as sunscreens, lotions and facial creams. The damaging health effects of TiO2 inhalation has been widely studied in rats, mice and humans showing oxidative stress increase, DNA damage, cell death and inflammatory gene upregulation in lung and throat cells; however, the effects on skin cells from long-term topical use of various products remain largely unknown. In this study, we assessed the effect of specific TiO2 nanoparticles (H2TiO7) on a human keratinocyte cell line (HaCaT). We performed a comparative analysis using three TiO2 particles varying in size (Fine, Ultrafine and H2TiO7) and analyzed their effects on HaCaTs. There is a clear dose-dependent increase in superoxide production, caspase 8 and 9 activity, and apoptosis in HaCaTs after treatment with all three forms of TiO2; however, there is no consistent effect on cell viability and proliferation with either of these TiO2 particles. While there is data suggesting UV exposure can enhance the carcinogenic effects of TiO2, we did not observe any significant effect of UV-C exposure combined with TiO2 treatment on HaCaTs. Furthermore, TiO2-treated cells showed minimal effects on VEGF upregulation and Wnt signaling pathway thereby showing no potential effect on angiogenesis and malignant transformation. Overall, we report here an increase in apoptosis, which may be caspase 8/Fas-dependent, and that the H2TiO7 nanoparticles, despite their smaller particle size, had no significant enhanced effect on HaCaT cells as compared to Fine and Ultrafine forms of TiO2. PMID:27310834

  6. Directed liquid phase assembly of highly ordered metallic nanoparticle arrays

    SciTech Connect

    Wu, Yueying; Dong, Nanyi; Fu, Shaofang; Fowlkes, Jason D.; Kondic, Lou; Vincenti, Maria A.; de Ceglia, Domenico; Rack, Philip D.

    2014-04-01

    Directed assembly of nanomaterials is a promising route for the synthesis of advanced materials and devices. We demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal–solid substrate interaction potential drives the directed assembly. Lastly, as an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.

  7. Directed liquid phase assembly of highly ordered metallic nanoparticle arrays

    DOE PAGES

    Wu, Yueying; Dong, Nanyi; Fu, Shaofang; ...

    2014-04-01

    Directed assembly of nanomaterials is a promising route for the synthesis of advanced materials and devices. We demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal–solid substrate interaction potential drives the directed assembly. Lastly, asmore » an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.« less

  8. Nanoscale topographical control of capillary assembly of nanoparticles

    NASA Astrophysics Data System (ADS)

    Flauraud, Valentin; Mastrangeli, Massimo; Bernasconi, Gabriel D.; Butet, Jeremy; Alexander, Duncan T. L.; Shahrabi, Elmira; Martin, Olivier J. F.; Brugger, Juergen

    2017-01-01

    Predetermined and selective placement of nanoparticles onto large-area substrates with nanometre-scale precision is essential to harness the unique properties of nanoparticle assemblies, in particular for functional optical and electro-optical nanodevices. Unfortunately, such high spatial organization is currently beyond the reach of top-down nanofabrication techniques alone. Here, we demonstrate that topographic features comprising lithographed funnelled traps and auxiliary sidewalls on a solid substrate can deterministically direct the capillary assembly of Au nanorods to attain simultaneous control of position, orientation and interparticle distance at the nanometre level. We report up to 100% assembly yield over centimetre-scale substrates. We achieve this by optimizing the three sequential stages of capillary nanoparticle assembly: insertion of nanorods into the traps, resilience against the receding suspension front and drying of the residual solvent. Finally, using electron energy-loss spectroscopy we characterize the spectral response and near-field properties of spatially programmable Au nanorod dimers, highlighting the opportunities for precise tunability of the plasmonic modes in larger assemblies.

  9. Biomimetic assembly of polypeptide-stabilized CaCO(3) nanoparticles.

    PubMed

    Zhang, Zhongping; Gao, Daming; Zhao, Hui; Xie, Chenggen; Guan, Guijian; Wang, Dapeng; Yu, Shu-Hong

    2006-05-04

    In this paper, we report a simple polypeptide-directed strategy for fabricating large spherical assembly of CaCO(3) nanoparticles. Stepwise growth and assembly of a large number of nanoparticles have been observed, from the formation of an amorphous liquidlike CaCO(3)-polypeptide precursor, to the crystallization and stabilization of polypeptide-capped nanoparticles, and eventually, the spherical assembly of nanoparticles. The "soft" poly(aspartate)-capping layer binding on a nanoparticle surface resulted in the unusual soft nature of nanoparticle assembly, providing a reservoir of primary nanoparticles with a moderate mobility, which is the basis of a new strategy for reconstructing nanoparticle assembly into complex nanoparticle architectures. Moreover, the findings of the secondary assembly of nanoparticle microspheres and the morphology transformation of nanoparticle assembly demonstrate a flexible and controllable pathway for manipulating the shapes and structures of nanoparticle assembly. In addition, the combination of the polypeptide with a double hydrophilic block copolymer (DHBC) allows it to possibly further control the shape and complexity of the nanoparticle assembly. A clear perspective is shown here that more complex nanoparticle materials could be created by using "soft" biological proteins or peptides as a mediating template at the organic-inorganic interface.

  10. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles.

    PubMed

    Araujo, J F D F; Bruno, A C; Louro, S R W

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10(-8) Am(2) was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  11. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    SciTech Connect

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-15

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer’s sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10{sup −8} Am{sup 2} was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  12. Self-assembled liposomal nanoparticles in photodynamic therapy

    PubMed Central

    Sadasivam, Magesh; Avci, Pinar; Gupta, Gaurav K.; Lakshmanan, Shanmugamurthy; Chandran, Rakkiyappan; Huang, Ying-Ying; Kumar, Raj; Hamblin, Michael R.

    2013-01-01

    Photodynamic therapy (PDT) employs the combination of non-toxic photosensitizers (PS) together with harmless visible light of the appropriate wavelength to produce reactive oxygen species that kill unwanted cells. Because many PS are hydrophobic molecules prone to aggregation, numerous drug delivery vehicles have been tested to solubilize these molecules, render them biocompatible and enhance the ease of administration after intravenous injection. The recent rise in nanotechnology has markedly expanded the range of these nanoparticulate delivery vehicles beyond the well-established liposomes and micelles. Self-assembled nanoparticles are formed by judicious choice of monomer building blocks that spontaneously form a well-oriented 3-dimensional structure that incorporates the PS when subjected to the appropriate conditions. This self-assembly process is governed by a subtle interplay of forces on the molecular level. This review will cover the state of the art in the preparation and use of self-assembled liposomal nanoparticles within the context of PDT. PMID:24348377

  13. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10-8 Am2 was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  14. Synthesis and characterization of biocompatible antimicrobial N-halamine-functionalized titanium dioxide core-shell nanoparticles.

    PubMed

    Li, Lin; Ma, Wei; Cheng, Xiaoli; Ren, Xuehong; Xie, Zhiwei; Liang, Jie

    2016-12-01

    As one of the most powerful biocides, N-halamine based antimicrobial materials have attracted much interest due to their non-toxicity, rechargeability, and rapid inactivation against a broad range of microorganisms. In this study, novel titanium dioxide-ADMH core-shell nanoparticles [TiO2@poly (ADMH-co-MMA) NPs] were prepared via miniemulsion polymerization using 3-allyl-5,5-dimethylhydantoin (ADMH) and methyl methacrylate (MMA) with nano-TiO2. The produced nanoparticles were characterized by FT-IR, TEM, TGA, and XPS. The UV stability of N-halamine nanoparticles has been improved with the addition of titanium dioxide. After chlorination treatment by sodium hypochlorite, biocidal efficacies of the chlorinated nanoparticles against S. aureus (ATCC 6538) and E. coli O157:H7 (ATCC 43895) were determined. The nanoparticles showed excellent antimicrobial properties against bacteria within brief contact time. In addition, in vitro cell cytocompatibility tests showed that the antibacterial nanoparticles had good biocompatibility.

  15. Photoacoustic Signals in Methylene Blue Solutions in Water/Glycerol Mixture Containing Titanium Dioxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zvekov, A. A.; Nurmukhametov, D. R.; Korzh, M. G.; Kalenskii, A. V.; Aduev, B. P.

    2017-07-01

    In this paper, we investigated the features of photoacoustic phenomena induced by the second harmonic of YAG:Nd3+ laser pulses (532 nm) in a methylene blue solution in a water/glycerol (1:1) mixture containing titanium dioxide nanoparticles as the light-scattering component. Using stationary spectroscopy, it was found that the dimerization degree of methylene blue is substantially lower in this solvent than in water. The dependencies of the signal amplitude normalized to the pulse energy density and of the effective signal rise constant on the methylene blue and titanium dioxide nanoparticle concentrations were obtained. It is shown that the signal rise constant depends linearly on the concentration of titanium dioxide nanoparticles, while the amplitude is almost independent. A method is suggested for simultaneous photoacoustic determination of concentrations of both components. For testing samples, the uncertainty of the determination of the components concentration is less than 5% for methylene blue and less than 37% for titanium dioxide.

  16. Self-assembly of hydrophobic gold nanoparticles and adhesion property of their assembled monolayer films.

    PubMed

    Lin, Guanhua; Lu, Wensheng

    2017-09-01

    Monodispersed gold nanoparticles had been successfully fabricated and they could form highly ordered two-dimensional (2D) film beyond a critical surface pressure by using Langmuir-Blodgett (LB) technology. To study adhesion property of these AuNPs films, atomic force microscope (AFM) has been used in measuring the interaction force between AFM tip and the gold nanoparticle films deposited on the silicon wafer, and defined the force at the breaking point as the adhesive force between nanoparticle films and the substrate. It has been found that the adhesive force was an exponential function of the packing density of the AuNPs in the film. When the packing density is near to the saturated value, the adhesive force of gold nanoparticle monolayer could reach 675nN which is approximately 30-fold of that for the nanoparticles on the substrate at low surface pressure (5mN/m). It shows that the adhesive force of assembled nanoparticle films is quantitative sensitive with their packing density and our method could be used to detect defact of assembled nanoparticle films, which presents great potential application. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Biologically controlled synthesis and assembly of magnetite nanoparticles.

    PubMed

    Bennet, Mathieu; Bertinetti, Luca; Neely, Robert K; Schertel, Andreas; Körnig, André; Flors, Cristina; Müller, Frank D; Schüler, Dirk; Klumpp, Stefan; Faivre, Damien

    2015-01-01

    Magnetite nanoparticles have size- and shape-dependent magnetic properties. In addition, assemblies of magnetite nanoparticles forming one-dimensional nanostructures have magnetic properties distinct from zero-dimensional or non-organized materials due to strong uniaxial shape anisotropy. However, assemblies of free-standing magnetic nanoparticles tend to collapse and form closed-ring structures rather than chains in order to minimize their energy. Magnetotactic bacteria, ubiquitous microorganisms, have the capability to mineralize magnetite nanoparticles, the so-called magnetosomes, and to direct their assembly in stable chains via biological macromolecules. In this contribution, the synthesis and assembly of biological magnetite to obtain functional magnetic dipoles in magnetotactic bacteria are presented, with a focus on the assembly. We present tomographic reconstructions based on cryo-FIB sectioning and SEM imaging of a magnetotactic bacterium to exemplify that the magnetosome chain is indeed a paradigm of a 1D magnetic nanostructure, based on the assembly of several individual particles. We show that the biological forces are a major player in the formation of the magnetosome chain. Finally, we demonstrate by super resolution fluorescence microscopy that MamK, a protein of the actin family necessary to form the chain backbone in the bacteria, forms a bundle of filaments that are not only found in the vicinity of the magnetosome chain but are widespread within the cytoplasm, illustrating the dynamic localization of the protein within the cells. These very simple microorganisms have thus much to teach us with regards to controlling the design of functional 1D magnetic nanoassembly.

  18. Titanium Dioxide Nanoparticle-Biomolecule Interactions Influence Oral Absorption.

    PubMed

    Jo, Mi-Rae; Yu, Jin; Kim, Hyoung-Jun; Song, Jae Ho; Kim, Kyoung-Min; Oh, Jae-Min; Choi, Soo-Jin

    2016-11-29

    Titanium dioxide (TiO₂) nanoparticles (NPs) have been widely applied in various industrial fields, such as electronics, packaging, food, and cosmetics. Accordingly, concerns about the potential toxicity of TiO₂ NPs have increased. In order to comprehend their in vivo behavior and potential toxicity, we must evaluate the interactions between TiO₂ NPs and biomolecules, which can alter the physicochemical properties and the fate of NPs under physiological conditions. In the present study, in vivo solubility, oral absorption, tissue distribution, and excretion kinetics of food grade TiO₂ (f-TiO₂) NPs were evaluated following a single-dose oral administration to rats and were compared to those of general grade TiO₂ (g-TiO₂) NPs. The effect of the interactions between the TiO₂ NPs and biomolecules, such as glucose and albumin, on oral absorption was also investigated, with the aim of determining the surface interactions between them. The intestinal transport pathway was also assessed using 3-dimensional culture systems. The results demonstrate that slightly higher oral absorption of f-TiO₂ NPs compared to g-TiO₂ NPs could be related to their intestinal transport mechanism by microfold (M) cells, however, most of the NPs were eliminated through the feces. Moreover, the biokinetics of f-TiO₂ NPs was highly dependent on their interaction with biomolecules, and the dispersibility was affected by modified surface chemistry.

  19. Titanium Dioxide Nanoparticle-Biomolecule Interactions Influence Oral Absorption

    PubMed Central

    Jo, Mi-Rae; Yu, Jin; Kim, Hyoung-Jun; Song, Jae Ho; Kim, Kyoung-Min; Oh, Jae-Min; Choi, Soo-Jin

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) have been widely applied in various industrial fields, such as electronics, packaging, food, and cosmetics. Accordingly, concerns about the potential toxicity of TiO2 NPs have increased. In order to comprehend their in vivo behavior and potential toxicity, we must evaluate the interactions between TiO2 NPs and biomolecules, which can alter the physicochemical properties and the fate of NPs under physiological conditions. In the present study, in vivo solubility, oral absorption, tissue distribution, and excretion kinetics of food grade TiO2 (f-TiO2) NPs were evaluated following a single-dose oral administration to rats and were compared to those of general grade TiO2 (g-TiO2) NPs. The effect of the interactions between the TiO2 NPs and biomolecules, such as glucose and albumin, on oral absorption was also investigated, with the aim of determining the surface interactions between them. The intestinal transport pathway was also assessed using 3-dimensional culture systems. The results demonstrate that slightly higher oral absorption of f-TiO2 NPs compared to g-TiO2 NPs could be related to their intestinal transport mechanism by microfold (M) cells, however, most of the NPs were eliminated through the feces. Moreover, the biokinetics of f-TiO2 NPs was highly dependent on their interaction with biomolecules, and the dispersibility was affected by modified surface chemistry. PMID:28335354

  20. Cell uptake and oral absorption of titanium dioxide nanoparticles.

    PubMed

    Janer, G; Mas del Molino, E; Fernández-Rosas, E; Fernández, A; Vázquez-Campos, S

    2014-07-15

    Large efforts are invested on the development of in vitro tests to evaluate nanomaterial (NM) toxicity. In order to assess the relevance of the adverse effects identified in in vitro toxicity tests a thorough understanding of the biokinetics of NMs is critical. We used different in vitro and in vivo test methods to evaluate cell uptake and oral absorption of titanium dioxide nanoparticles (TiO2 NPs). These NPs were readily uptaken by A549 cells (carcinomic human alveolar basal epithelial cells) in vitro. Such rapid uptake contrasted with a very low oral absorption in a differentiated Caco-2 monolayer system (human epithelial colorectal adenocarcinoma cells) and after oral gavage administration to rats. In this oral study, no significant increase in the levels of titanium was recorded by ICP-MS in any of the tissues evaluated (including among other: small intestine, Peyer's patches, mesenteric lymph nodes, liver, and spleen). No NPs were observed by TEM in sections of the small intestine, except for several particles in the cytoplasm of a cell from a Peyer's Patch area. The observation of NPs in Peyer's Patch suggests that the Caco-2 monolayer system is likely to underestimate the potential for oral absorption of NPs and that the model could be improved by including M-cells in co-culture.

  1. Cerium dioxide nanoparticles increase immunogenicity of the influenza vaccine.

    PubMed

    Zholobak, Nadezhda M; Mironenko, Alla P; Shcherbakov, Alexander B; Shydlovska, Olga A; Spivak, Mykola Ya; Radchenko, Larysa V; Marinin, Andrey I; Ivanova, Olga S; Baranchikov, Alexander E; Ivanov, Vladimir K

    2016-03-01

    We have demonstrated the influence of cerium dioxide nanoparticles on the immunogenicity of the influenza vaccine on an example of liquid split inactivated Vaxigrip vaccine. Antibody titers were analyzed using the hemagglutination inhibition (HI) assay. Seroprotection, seroconversion, the geometric mean titers (GMTs) and the factor increase (FI) in the GMTs were calculated. The effect of nano-ceria surface stabilizer on the enhancement of immunogenicity was shown. The vaccine modified by citrate-stabilized nano-ceria, in contrast to a non-modified Vaxigrip vaccine, did not provide an adequate level of seroprotection, and seroconversion after vaccination was 66.7% on days 49-63 for virus strain А(H1N1) and 100% on day 49 for virus strain B/Yamagata. For the low immunogenic influenza B virus, the rise in antibody titers (GMT/IF) was 24.38/3.28 after the first injection and 50.40/6.79 on day 49. For the vaccine modified by non-stabilized nano-ceria, for all virus strains under study, on day 63, upon immunization notable levels of seroprotection, seroconversion and GMT/IF were registered (higher than for the non-modified Vaxigrip vaccine). The successful attempt to modify the influenza vaccine demonstrates the possible ways of increasing the specific activity of vaccines using nano-ceria.

  2. Characterizing titanium dioxide and zinc oxide nanoparticles in sunscreen spray.

    PubMed

    Lu, P J; Cheng, W L; Huang, S C; Chen, Y P; Chou, H K; Cheng, H F

    2015-12-01

    Numerous commercial products contain titanium dioxide (TiO2 ) and zinc oxide (ZnO) nanoparticles (NPs); however, many of these are not labelled as containing NPs. This study sought to develop an effective means of characterizing TiO2 and ZnO NPs in sunscreen sprays, including the size, shape and composition of the particles as well as their aggregation/agglomeration characteristics. Transmission electron microscopy (TEM) coupled with a window-type microchip K-kit/copper grid and X-ray diffraction (XRD) was used to characterize the oxide NPs. TME pre-treatment was performed using two approaches: using a conventional copper grid (requiring dilution) and using a K-kit (not requiring dilution). The use of K-kit in conjunction with XRD makes it possible to obtain direct measurements from samples that have not undergone pre-treatment, which could otherwise alter the nature of the samples, such as the degree of agglomeration. XRD was used to obtain information related to particle size and crystal structure. A strong correlation was observed between XRD and TEM measurements. The proposed measurement methods were shown to be highly effective in the characterization of oxide NPs in sunscreen sprays, providing consistent information related to NPs and their interactions in the formulations. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  3. Self-assembly of patterned nanoparticles on cellular membranes: effect of charge distribution.

    PubMed

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-06-06

    Nanoparticle-assisted drug delivery has been emerging as an active research area. Achieving high drug loading is only one facet of drug delivery issues; it is also important to investigate the effect of surface charge distribution on self-assembly of nanoparticles on cellular membranes. By considering the electrostatic distribution of patterned nanoparticles, we used dissipative particle dynamics simulations to investigate the self-assembly of pattern charged nanoparticles with five different surface charged patterns. It is found that both surface charged pattern and nanoparticle size significantly affect the self-assembly of nanoparticles on cellular membranes. Results indicate that 1/2 pattern charged small nanoparticles can self-assemble into dendritic structures, while those with a 1/4 pattern self-assemble into clusters. As the nanoparticle size increases, 1/2 pattern charged medium nanoparticles can self-assemble into linear structures, while those with a 1/4 pattern self-assemble into clusters. For very large nanoparticles, both 1/2 pattern and 1/4 pattern charged nanoparticles self-assemble into flaky structures with different connections. By considering the effects of surface charged pattern and nanoparticle size on self-assembly, we found that nanoparticle self-assembly requires a minimum effective charged area. When the local charged area of nanoparticles is less than the threshold, surface charge cannot induce nanoparticle self-assembly; that is, the surface charged pattern of a nanoparticle would determine effectively the self-assembly structure. It is expected that this work will provide guidance for nanoparticle-assisted drug delivery.

  4. GISAXS analysis of 3D nanoparticle assemblies--effect of vertical nanoparticle ordering.

    PubMed

    Vegso, K; Siffalovic, P; Benkovicova, M; Jergel, M; Luby, S; Majkova, E; Capek, I; Kocsis, T; Perlich, J; Roth, S V

    2012-02-03

    We report on grazing-incidence small-angle x-ray scattering (GISAXS) study of 3D nanoparticle arrays prepared by two different methods from colloidal solutions-layer-by-layer Langmuir-Schaefer deposition and spontaneous self-assembling during the solvent evaporation. GISAXS results are evaluated within the distorted wave Born approximation (DWBA) considering the multiple scattering effects and employing a simplified multilayer model to reduce the computing time. In the model, particular layers are represented by nanoparticle chains where the positions of individual nanoparticles are generated following a model of cumulative disorder. The nanoparticle size dispersion is considered as well. Three model cases are distinguished-no shift between the neighboring chains (AA stacking), a shift equal to half of the mean interparticle distance (AB stacking) and random shift between the chains. The first two cases correspond to vertically correlated nanoparticle positions across different chains. A comparison of the experimental GISAXS patterns with the model cases enabled us to distinguish important differences between the 3D arrays prepared by the two methods. In particular, laterally ordered layers without vertical correlation of the nanoparticle positions were found in the nanoparticle multilayers prepared by the Langmuir-Schaefer method. On the other hand, the solvent evaporation under particular conditions produced highly ordered 3D nanoparticle assemblies where both laterally and vertically correlated nanoparticle positions were found.

  5. Nanoparticle flow, ordering and self-assembly.

    SciTech Connect

    Schunk, Peter Randall; Brown, William Michael; Plimpton, Steven James; Lechman, Jeremy B.; Grest, Gary Stephen; Petersen, Matthew K.; in't Veld, Pieter J.

    2008-10-01

    Nanoparticles are now more than ever being used to tailor materials function and performance in differentiating technologies because of their profound effect on thermo-physical, mechanical and optical properties. The most feasible way to disperse particles in a bulk material or control their packing at a substrate is through fluidization in a carrier, followed by solidification through solvent evaporation/drying/curing/sintering. Unfortunately processing particles as concentrated, fluidized suspensions into useful products remains an art largely because the effect of particle shape and volume fraction on fluidic properties and suspension stability remains unexplored in a regime where particle-particle interaction mechanics is prevalent. To achieve a stronger scientific understanding of the factors that control nanoparticle dispersion and rheology we have developed a multiscale modeling approach to bridge scales between atomistic and molecular-level forces active in dense nanoparticle suspensions. At the largest length scale, two 'coarse-grained' numerical techniques have been developed and implemented to provide for high-fidelity numerical simulations of the rheological response and dispersion characteristics typical in a processing flow. The first is a coupled Navier-Stokes/discrete element method in which the background solvent is treated by finite element methods. The second is a particle based method known as stochastic rotational dynamics. These two methods provide a new capability representing a 'bridge' between the molecular scale and the engineering scale, allowing the study of fluid-nanoparticle systems over a wide range of length and timescales as well as particle concentrations. To validate these new methodologies, multi-million atoms simulations explicitly including the solvent have been carried out. These simulations have been vital in establishing the necessary 'subgrid' models for accurate prediction at a larger scale and refining the two coarse

  6. Guided hierarchical co-assembly of soft patchy nanoparticles

    NASA Astrophysics Data System (ADS)

    Gröschel, André H.; Walther, Andreas; Löbling, Tina I.; Schacher, Felix H.; Schmalz, Holger; Müller, Axel H. E.

    2013-11-01

    The concept of hierarchical bottom-up structuring commonly encountered in natural materials provides inspiration for the design of complex artificial materials with advanced functionalities. Natural processes have achieved the orchestration of multicomponent systems across many length scales with very high precision, but man-made self-assemblies still face obstacles in realizing well-defined hierarchical structures. In particle-based self-assembly, the challenge is to program symmetries and periodicities of superstructures by providing monodisperse building blocks with suitable shape anisotropy or anisotropic interaction patterns (`patches'). Irregularities in particle architecture are intolerable because they generate defects that amplify throughout the hierarchical levels. For patchy microscopic hard colloids, this challenge has been approached by using top-down methods (such as metal shading or microcontact printing), enabling molecule-like directionality during aggregation. However, both top-down procedures and particulate systems based on molecular assembly struggle to fabricate patchy particles controllably in the desired size regime (10-100nm). Here we introduce the co-assembly of dynamic patchy nanoparticles--that is, soft patchy nanoparticles that are intrinsically self-assembled and monodisperse--as a modular approach for producing well-ordered binary and ternary supracolloidal hierarchical assemblies. We bridge up to three hierarchical levels by guiding triblock terpolymers (length scale ~10nm) to form soft patchy nanoparticles (20-50nm) of different symmetries that, in combination, co-assemble into substructured, compartmentalized materials (>10μm) with predictable and tunable nanoscale periodicities. We establish how molecular control over polymer composition programs the building block symmetries and regulates particle positioning, offering a route to well-ordered mixed mesostructures of high complexity.

  7. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells

    PubMed Central

    Ribeiro, A. R.; Gemini-Piperni, S.; Travassos, R.; Lemgruber, L.; C. Silva, R.; Rossi, A. L.; Farina, M.; Anselme, K.; Shokuhfar, T.; Shahbazian-Yassar, R.; Borojevic, R.; Rocha, L. A.; Werckmann, J.; Granjeiro, J. M.

    2016-01-01

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of ‘Trojan-horse’ internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies. PMID:27021687

  8. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells.

    PubMed

    Ribeiro, A R; Gemini-Piperni, S; Travassos, R; Lemgruber, L; Silva, R C; Rossi, A L; Farina, M; Anselme, K; Shokuhfar, T; Shahbazian-Yassar, R; Borojevic, R; Rocha, L A; Werckmann, J; Granjeiro, J M

    2016-03-29

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of 'Trojan-horse' internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.

  9. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. R.; Gemini-Piperni, S.; Travassos, R.; Lemgruber, L.; C. Silva, R.; Rossi, A. L.; Farina, M.; Anselme, K.; Shokuhfar, T.; Shahbazian-Yassar, R.; Borojevic, R.; Rocha, L. A.; Werckmann, J.; Granjeiro, J. M.

    2016-03-01

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of ‘Trojan-horse’ internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.

  10. Controlled Assembly of Viral Surface Proteins into Biological Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nakatani-Webster, Eri

    In recent years, therapeutic use of engineered particles on the 1-1,000 nm scale has gained popularity; these nanoparticles have been developed for use in drug delivery, gene therapy, vaccine preparation, and diagnostics. Often, viral proteins are utilized in the design of such species, and outlined here are completed studies on the in vitro assembly of nanoparticles derived from two very different viral systems. The incorporation of the human immunodeficiency virus (HIV) envelope glycoprotein precursor gp160 into phospholipid bilayer nanodiscs is discussed as a potential platform for vaccine design; efforts were successful, however yield currently limits the practical application of this approach. The utility of bacteriophage lambda procapsids and virus-like particles in therapeutic nanoparticle design is also outlined, as are efforts toward the structural and thermodynamic characterization of a urea-triggered capsid maturation event. It is demonstrated that lambda virus-like particles can be assembled from purified capsid and scaffolding proteins, and that these particles undergo urea-triggered maturation and in vitro decoration protein addition similar to that seen in lambda procapsids. The studies on lambda provided materials for the further development of nanoparticles potentially useful in a clinical setting, as well as shedding light on critical viral assembly and maturation events as they may take place in vivo.

  11. Insights of Mixing on the Assembly of DNA Nanoparticles

    NASA Astrophysics Data System (ADS)

    Williams, Manda S.

    Size is a crucial parameter in the delivery of nanoparticle therapeutics, affecting mechanisms such as tissue delivery, clearance, and cellular uptake. The morphology of nanoparticles is dependent both upon chemistry and the physical process of assembly. Polyplexes, a major class of non-viral gene delivery vectors, are conventionally prepared by vortex mixing, resulting in non-uniform nanoparticles and poor reproducibility. Better understanding and control of the physical process of assembly, and mixing in particular, will produce polyplexes of a more uniform and reliable size, optimizing their efficiency for laboratory and clinical use. "Mixing" is the reduction of length scale of a system to accelerate diffusion until a uniform concentration is achieved. Vortex mixing is poorly characterized and sensitive to protocols. Microfluidic systems are notable for predictable fluid behavior, and are ideal for analyzing and controlling the physical interaction of reagents on the microscale, realm where mixing occurs. Several microdevices for the preparation of DNA polyplexes are explored here. Firstly, the staggered herringbone mixer, a chaotic advection micromixer, is used to observe the effects of mixing time on nanoparticle size. Next, a novel device to surround the reagent flows with a sheath of buffer, preventing interaction with the walls and confining the complexation to a zone of lower, less variable shear and residence time, is used to demonstrate the role of shear in nanoparticle assembly. Lastly, uneven diffusion between ion pairs produces a small separation of charge at fluid interfaces; this short-lived electric field has a significant impact on the transport of DNA over the time scales of mixing and complexation. The effects of common buffers on the transport of DNA are examined for possible applications to mixing and complexation. These three investigations demonstrate the importance of the physical process in polyplex assembly, and indicate several

  12. Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles.

    PubMed

    Zhou, Yunlong; Marson, Ryan L; van Anders, Greg; Zhu, Jian; Ma, Guanxiang; Ercius, Peter; Sun, Kai; Yeom, Bongjun; Glotzer, Sharon C; Kotov, Nicholas A

    2016-03-22

    Chiroptical materials found in butterflies, beetles, stomatopod crustaceans, and other creatures are attributed to biocomposites with helical motifs and multiscale hierarchical organization. These structurally sophisticated materials self-assemble from primitive nanoscale building blocks, a process that is simpler and more energy efficient than many top-down methods currently used to produce similarly sized three-dimensional materials. Here, we report that molecular-scale chirality of a CdTe nanoparticle surface can be translated to nanoscale helical assemblies, leading to chiroptical activity in the visible electromagnetic range. Chiral CdTe nanoparticles coated with cysteine self-organize around Te cores to produce helical supraparticles. D-/L-Form of the amino acid determines the dominant left/right helicity of the supraparticles. Coarse-grained molecular dynamics simulations with a helical pair-potential confirm the assembly mechanism and the origin of its enantioselectivity, providing a framework for engineering three-dimensional chiral materials by self-assembly. The helical supraparticles further self-organize into lamellar crystals with liquid crystalline order, demonstrating the possibility of hierarchical organization and with multiple structural motifs and length scales determined by molecular-scale asymmetry of nanoparticle interactions.

  13. Self-assembly of nanoparticles into periodic nanopatterns

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Heon; Diana, Frederic S.; Badolato, Antonio; Petroff, Pierre M.; Kramer, Edward J.

    2003-03-01

    Self-assembly of metal nanoparticles into periodic nanopatterns have been investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Periodic hole or mesa nanopatterns with variable periodicities and sizes were fabricated on GaAs or Si substrates by holographic interference exposure of a photoresist (PR). Monodisperse cobalt nanoparticles were synthesized within inverse micelles of polystyrene-poly(2-vinylpyridine) (PS-PVP) diblock copolymer in toluene by partial pyrolysis of dicobalt octacarbonyl at 115^oC. Monodisperse gold nanoparticles were also prepared by hydrolysis of gold salts in PS-PVP inverse micelles in toluene. The nanoparticles prepared above were dip-coated onto the PR nanopatterns. It was found that they are selectively deposited on the area without PR. Such selectivity is probably caused by the combined effects of the gradients of capillary forces (related to the pattern geometry) and the dewetting effects of toluene on PR. Our study reveals that self-assembled nanoparticles in 2D lattices can be successfully obtained with a controllable number of particles per lattice point.

  14. Nanoparticle Assemblies into Luminescent Dendrites in Shrinking Microdroplets.

    PubMed

    Kojima, Taisuke; Hirai, Kenji; Zhou, Yunlong; Weerappuli, Priyan; Takayama, Shuichi; Kotov, Nicholas A

    2016-11-29

    The self-assembly of nanoparticles (NPs) is essential for emerging dispersion-based energy-conscious technologies. Of particular interest are micro- and macro-scale self-organizing superstructures that can bridge 2D/3D processing scales. Here we report the spontaneous assembly of CdTe NPs within an aqueous microdroplet suspended in soybean oil. The gradual diffusion of the water into the surrounding medium results in shrinking of the microdroplet, and a concomitant formation of branched assemblies from CdTe NPs that evolve in size from ∼50 μm to ∼1000 μm. The fractal dimension of NP assemblies increases from ∼1.7 to ∼1.9 during the assembly process. We found that constituents of the soybean oil enter the aqueous solution across the microdroplet interface and affect NP assembly. The obtained NP dendrites can be further altered morphologically by illumination with light that results in the disassembly of the NP dendrites. The use of this microheterogeneous dispersion platform with partially soluble hydrophilic and hydrophobic solvents highlights the sensitivity of the NP assembly process to environment and presents an opportunity to explore droplet-confined NP assembly.

  15. CO2 Compressor Requirements for Integration of Space Station Carbon Dioxide Removal and Carbon Dioxide Reduction Assemblies

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Lewis, John F.; Graf, John; LaFuse, Sharon; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    This paper describes the analysis on integration requirements, CO2 compressor in particular, for integration of Carbon Dioxide Removal Assembly (CDRA) and CO2 Reduction Assembly (CRA) as a part of the Node 3 project previously conducted at JSC/NASA. A system analysis on the volume and operation pressure range of the CO2 accumulator was conducted. The hardware and operational configurations of the CO2 compressor were developed. The performance and interface requirements of the compressor were specified. An existing Four-Bed Molecular Sieve CO2 removal computer model was modified into a CDRA model and used in analyzing the requirements of the CDRA CO2 compressor. This CDRA model was also used in analyzing CDRA operation parameters that dictate CO2 pump sizing. Strategy for the pump activation was also analyzed.

  16. CO2 Compressor Requirements for Integration of Space Station Carbon Dioxide Removal and Carbon Dioxide Reduction Assemblies

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Lewis, John F.; Graf, John; LaFuse, Sharon; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    This paper describes the analysis on integration requirements, CO2 compressor in particular, for integration of Carbon Dioxide Removal Assembly (CDRA) and CO2 Reduction Assembly (CRA) as a part of the Node 3 project previously conducted at JSC/NASA. A system analysis on the volume and operation pressure range of the CO2 accumulator was conducted. The hardware and operational configurations of the CO2 compressor were developed. The performance and interface requirements of the compressor were specified. An existing Four-Bed Molecular Sieve CO2 removal computer model was modified into a CDRA model and used in analyzing the requirements of the CDRA CO2 compressor. This CDRA model was also used in analyzing CDRA operation parameters that dictate CO2 pump sizing. Strategy for the pump activation was also analyzed.

  17. Analyses of the Integration of Carbon Dioxide Removal Assembly, Compressor, Accumulator and Sabatier Carbon Dioxide Reduction Assembly

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Lafuse, Sharon; Smith, Frederick D.; Lu, Sao-Dung; Knox, James C.; Campbell, Mellssa L.; Scull, Timothy D.; Green Steve

    2010-01-01

    A tool has been developed by the Sabatier Team for analyzing/optimizing CO2 removal assembly, CO2 compressor size, its operation logic, water generation from Sabatier, utilization of CO2 from crew metabolic output, and Hz from oxygen generation assembly. Tests had been conducted using CDRA/Simulation compressor set-up at MSFC in 2003. Analysis of test data has validated CO2 desorption rate profile, CO2 compressor performance, CO2 recovery and CO2 vacuum vent in CDRA desorption. Optimizing the compressor size and compressor operation logic for an integrated closed air revitalization system Is being conducted by the Sabatier Team.

  18. Self-reproduction of nanoparticles through synergistic self-assembly.

    PubMed

    Ikeda, Keisuke; Nakano, Minoru

    2015-01-01

    We describe a self-reproduction mechanism of nanometer-sized particles (i.e., nanodiscs) through chemical ligation of the precursors and self-assembly of the building blocks. The ligation reaction was accelerated on lipid bilayer surfaces, and the products spontaneously assembled into nanodiscs with lipid molecules. With the increase in the number of nanodiscs, a rapid proliferation of the nanodiscs occurred through the spatial rearrangements of the molecules between the pre-existing nanodiscs and the unreacted materials, rather than template- or complex-enhanced ligation of the precursors. The subsequent process of surface-enhanced ligation of integrated precursors matured the nanoparticles into identical copies of the pre-existing assembly. Our study showed that the synergistic self-assembly mechanism probably underlie the self-replication principles for heterogeneous multimolecular systems.

  19. Control of nanoparticle self-assemblies using distorted liquid crystals

    NASA Astrophysics Data System (ADS)

    Lacaze, Emmanuelle; Coursault, Delphine

    This chapter concerns the structure and the optical properties of nanoparticle (NP)/liquid crystal (LC) composites in the presence of LC distortion. After a first description of the general behaviour of NPs at the proximity of distorted LC areas, the first section of the chapter discusses the stabilization of the LC phases, characterized by the presence of topological defects in presence of NPs. The assemblies of NPs induced by distorted LC films is addressed in the second section. The last section then extensively develops the structure and optical properties of NP assemblies created within topological defects. Specific localisation and orientations of the NPs will be discussed, but also possible control of the size and shape of the NP assemblies, together with control of the distances between NPs in the assemblies, leading to original optical properties of the composites as far as uorescent or gold NPs are concerned.

  20. Quantitative 3D analysis of huge nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Zanaga, Daniele; Bleichrodt, Folkert; Altantzis, Thomas; Winckelmans, Naomi; Palenstijn, Willem Jan; Sijbers, Jan; de Nijs, Bart; van Huis, Marijn A.; Sánchez-Iglesias, Ana; Liz-Marzán, Luis M.; van Blaaderen, Alfons; Joost Batenburg, K.; Bals, Sara; van Tendeloo, Gustaaf

    2015-12-01

    Nanoparticle assemblies can be investigated in 3 dimensions using electron tomography. However, it is not straightforward to obtain quantitative information such as the number of particles or their relative position. This becomes particularly difficult when the number of particles increases. We propose a novel approach in which prior information on the shape of the individual particles is exploited. It improves the quality of the reconstruction of these complex assemblies significantly. Moreover, this quantitative Sparse Sphere Reconstruction approach yields directly the number of particles and their position as an output of the reconstruction technique, enabling a detailed 3D analysis of assemblies with as many as 10 000 particles. The approach can also be used to reconstruct objects based on a very limited number of projections, which opens up possibilities to investigate beam sensitive assemblies where previous reconstructions with the available electron tomography techniques failed.Nanoparticle assemblies can be investigated in 3 dimensions using electron tomography. However, it is not straightforward to obtain quantitative information such as the number of particles or their relative position. This becomes particularly difficult when the number of particles increases. We propose a novel approach in which prior information on the shape of the individual particles is exploited. It improves the quality of the reconstruction of these complex assemblies significantly. Moreover, this quantitative Sparse Sphere Reconstruction approach yields directly the number of particles and their position as an output of the reconstruction technique, enabling a detailed 3D analysis of assemblies with as many as 10 000 particles. The approach can also be used to reconstruct objects based on a very limited number of projections, which opens up possibilities to investigate beam sensitive assemblies where previous reconstructions with the available electron tomography techniques

  1. Assembly and magnetic properties of nickel nanoparticles on silicon nanowires

    SciTech Connect

    Picraux, Samuel T; Manandhar, Pradeep; Nazaretski, E; Thompson, J

    2009-01-01

    The directed assembly of magnetic Ni nanoparticles at the tips of silicon nanowires is reported. Using electrodeposition Ni shells of thickness from 10 to 100 nm were selectively deposited on Au catalytic seeds at the ends of nanowires. Magnetic characterization confirms a low coercivity ({approx}115 Oe) ferromagnetic behavior at 300 K. This approach to multifunctional magnetic-semiconducting nanostructure assembly could be extended to electrodeposition of other materials on the nanowire ends, opening up novel ways of device integration. Such magnetically functionalized nanowires offer a new approach to developing novel highly localized magnetic probes for high resolution magnetic resonance force microscopy.

  2. A review on potential neurotoxicity of titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, Bin; Liu, Jia; Feng, Xiaoli; Wei, Limin; Shao, Longquan

    2015-08-01

    As the rapid development of nanotechnology in the past three decades, titanium dioxide nanoparticles (TiO2 NPs), for their peculiar physicochemical properties, are widely applied in consumer products, food additives, cosmetics, drug carriers, and so on. However, little is known about their potential exposure and neurotoxic effects. Once NPs are unintentionally exposed to human beings, they could be absorbed, and then accumulated in the brain regions by passing through the blood-brain barrier (BBB) or through the nose-to-brain pathway, potentially leading to dysfunctions of central nerve system (CNS). Besides, NPs may affect the brain development of embryo by crossing the placental barrier. A few in vivo and in vitro researches have demonstrated that the morphology and function of neuronal or glial cells could be impaired by TiO2 NPs which might induce cell necrosis. Cellular components, such as mitochondrial, lysosome, and cytoskeleton, could also be influenced as well. The recognition ability, spatial memory, and learning ability of TiO2 NPs-treated rodents were significantly impaired, which meant that accumulation of TiO2 NPs in the brain could lead to neurodegeneration. However, conclusions obtained from those studies were not consistent with each other as researchers may choose different experimental parameters, including administration ways, dosage, size, and crystal structure of TiO2 NPs. Therefore, in order to fully understand the potential risks of TiO2 NPs to brain health, figure out research areas where further studies are required, and improve its bio-safety for applications in the near future, how TiO2 NPs interact with the brain is investigated in this review by summarizing the current researches on neurotoxicity induced by TiO2 NPs.

  3. Titanium dioxide nanoparticles: a review of current toxicological data

    PubMed Central

    2013-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed. PMID:23587290

  4. Photoinduced Electron Accumulation of Titanium Dioxide Nanoparticles Modified Electrodes

    NASA Astrophysics Data System (ADS)

    Miyoshi, Hirokazu; Sakamoto, Kensho; Kurashina, Masaru; Kanezaki, Eiji

    Titanium dioxide (TiO2) nanoparticles (Nps) were prepared by the hydrolysis of titanium tetraisopropoxide (TTIP) in 2-propanol with different water contents (0.5 vol% to 7.2 vol%) at 45 °C. The diameter of the Nps was estimated to be 1.5±0.5 nm (L-TiO2) and 3.0±0.6 nm (S-TiO2) from the onset wavelength in the absorption spectra and by transmission electron microscopy (TEM). A modified Pt electrode with a three-layered sandwich structure was prepared; the outermost and innermost layers were composed of S-TiO2 and L-TiO2, respectively, and the middle layer contained 1, 1'-dimethyl-4,4'-bipyridyl (MV2+)/Nafion®. Irradiation by a 500 W superhigh-pressure mercury lamp produced electrons in the conduction band of TiO2. An anodic current was observed after turning off the light. The mechanism by which anodic current is generated after turning off the radiation involves the reduction of MV2+ to MV+. by photogenerated electrons on the Nps and the diffusion of MV+. in the middle layer. After turning off the irradiation, MV+. transferred an electron to the Pt electrode via holes in the innermost layer or the conduction band of S-TiO2 coincidentally localized on the Pt electrode, resulting in the generation of the anodic current. The generation of MV+. was confirmed by the absorption spectra of MV+.. As a sacrificial reagent, 2-propanol (0.1 M) was used.

  5. Porous TiO2 Assembled from Monodispersed Nanoparticles.

    PubMed

    Liu, Xu; Duan, Weijie; Chen, Yan; Jiao, Shihui; Zhao, Yue; Kang, Yutang; Li, Lu; Fang, Zhenxing; Xu, Wei; Pang, Guangsheng

    2016-12-01

    Porous TiO2 were assembled by evaporating or refluxing TiO2 colloid, which was obtained by dispersing the TiO2 nanoparticles with a crystallite size (d XRD) of 3.2 nm into water or ethanol without any additives. Porous transparent bulk TiO2 was obtained by evaporating the TiO2-C2H5OH colloid at room temperature for 2 weeks, while porous TiO2 nanospheres were assembled by refluxing the TiO2-H2O colloid at 80 °C for 36 h. Both of the porous TiO2 architectures were pore-size-adjustable depending on the further treating temperature. Porous TiO2 nanospheres exhibited enhanced photocatalysis activity compared to the nanoparticles.

  6. Self assembled nanoparticle aggregates from line focused femtosecond laser ablation.

    PubMed

    Zuhlke, Craig A; Alexander, Dennis R; Bruce, John C; Ianno, Natale J; Kamler, Chad A; Yang, Weiqing

    2010-03-01

    In this paper we present the use of a line focused femtosecond laser beam that is rastered across a 2024 T3 aluminum surface to produce nanoparticles that self assemble into 5-60 micron diameter domed and in some cases sphere-shaped aggregate structures. Each time the laser is rastered over initial aggregates their diameter increases as new layers of nanoparticles self assemble on the surface. The aggregates are thus composed of layers of particles forming discrete layered shells inside of them. When micron size aggregates are removed, using an ultrasonic bath, rings are revealed that have been permanently formed in the sample surface. These rings appear underneath, and extend beyond the physical boundary of the aggregates. The surface is blackened by the formation of these structures and exhibits high light absorption.

  7. Thermomechanical Response of Self-Assembled Nanoparticle Membranes.

    PubMed

    Wang, Yifan; Chan, Henry; Narayanan, Badri; McBride, Sean P; Sankaranarayanan, Subramanian K R S; Lin, Xiao-Min; Jaeger, Heinrich M

    2017-08-22

    Monolayers composed of colloidal nanoparticles, with a thickness of less than 10 nm, have remarkable mechanical moduli and can suspend over micrometer-sized holes to form free-standing membranes. In this paper, we discuss experiments and coarse-grained molecular dynamics simulations characterizing the thermomechanical properties of these self-assembled nanoparticle membranes. These membranes remain strong and resilient up to temperatures much higher than previous simulation predictions and exhibit an unexpected hysteretic behavior during the first heating-cooling cycle. We show this hysteretic behavior can be explained by an asymmetric ligand configuration from the self-assembly process and can be controlled by changing the ligand coverage or cross-linking the ligand molecules. Finally, we show the screening effect of water molecules on the ligand interactions can strongly affect the moduli and thermomechanical behavior.

  8. Enhancing magnetoresistance in tetrathiafulvalene carboxylate modified iron oxide nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Lv, Zhong-Peng; Luan, Zhong-Zhi; Cai, Pei-Yu; Wang, Tao; Li, Cheng-Hui; Wu, Di; Zuo, Jing-Lin; Sun, Shouheng

    2016-06-01

    We report a facile approach to stabilize Fe3O4 nanoparticles (NPs) by using tetrathiafulvalene carboxylate (TTF-COO-) and to control electron transport with an enhanced magnetoresistance (MR) effect in TTF-COO-Fe3O4 NP assemblies. This TTF-COO-coating is advantageous over other conventional organic coatings, making it possible to develop stable Fe3O4 NP arrays for sensitive spintronics applications.We report a facile approach to stabilize Fe3O4 nanoparticles (NPs) by using tetrathiafulvalene carboxylate (TTF-COO-) and to control electron transport with an enhanced magnetoresistance (MR) effect in TTF-COO-Fe3O4 NP assemblies. This TTF-COO-coating is advantageous over other conventional organic coatings, making it possible to develop stable Fe3O4 NP arrays for sensitive spintronics applications. Electronic supplementary information (ESI) available: Experimental details; supplementary figures and tables. See DOI: 10.1039/c6nr03311c

  9. Exchange-Coupled FePt Nanoparticle Assembly

    NASA Astrophysics Data System (ADS)

    Zeng, Hao; Vedantam, T.; Dai, Z. R.; Wang, Z. L.; Liu, J. P.; Sun, Shouheng

    2002-03-01

    High-performance permanent magnetic materials for energy-related applications need large energy-products. A permanent magnet with large (BH) products should exhibit both a high saturation magnetization , M_s, and a large coercive field, H_c. L10 ordered FePt has high Ms ( ~ 1100 emu/cm^3) and large magnetocrystalline anisotropy constant Ku (> 5e10^7 erg/cm^3), therefore may be a suitable candidates for permanent magnetic materials. We report synthesis of exchange-coupled FePt nanoparticle assemblies via solution phase deposition and controlled thermal annealing. FePt nanoparticles are prepared by high temperature solution phase decomposition of Fe(CO)_5and reduction of Pt(acac)2 in the presence of oleic acid and oleyl amine. The Fe and Pt composition of the nanoparticles is tuned by adjusting the molar ratio of Fe(CO)5 to Pt(acac)_2. The nanoparticles are easily dispersed into alkane solvent. Depositing particle dispersion on a solid substrate and controlling solvent evaporation yield self-organized magnetic nanoparticle assemblies. Magnetic hysteresis loops, remanence curves, and δM measurements show that annealing for short time under nitrogen yields isolated particle assemblies with random crystalline orientations. Prolonged annealing under reducing atmosphere leads to the evaporation of the organic surfactants, and results in grain agglomeration and inter grain exchange coupling. The degree of coupling can be readily controlled by annealing conditions. Changes in the magnetization reversal behavior have also been observed.This work is supported by DARPA No. DAAD 19-01-1-0546.

  10. Virus-mediated FCC iron nanoparticle induced synthesis of uranium dioxide nanocrystals.

    PubMed

    Ling, Tao; Yu, Huimin; Shen, Zhongyao; Wang, Hui; Zhu, Jing

    2008-03-19

    A reducing system involving M13 virus-mediated FCC Fe nanoparticles was employed to achieve uranium reduction and synthesize uranium dioxide nanocrystals. Here we show that metastable face-centered cubic (FCC) Fe nanoparticles were fabricated around the surface of the M13 virus during the specific adsorption of the virus towards Fe ions under a reduced environment. The FCC phase of these Fe nanoparticles was confirmed by careful TEM characterization. Moreover, this virus-mediated FCC Fe nanoparticle system successfully reduced contaminable U(VI) into UO(2) crystals with diameters of 2-5 nm by a green and convenient route.

  11. Nanoparticle-directed self-assembly of amphiphilic block-copolymers

    NASA Astrophysics Data System (ADS)

    Park, So-Jung

    2011-03-01

    The self-assembly of nanoparticles and amphiphilic polymers provides a powerful tool for the fabrication of functional composite materials for a range of applications spanning from nanofabrication to medicine. Here, we present how the incorporation of nanoparticles affects the self-assembly behavior of amphiphilic block-copolymers and how to control the morphology of nanoparticle-encapsulating polymer assemblies. Based on the approach, we have prepared various types of well-defined nanoparticle-encapsulating polymeric nanostructures, including polymersomes packed with magnetic nanoparticles and unique cavity-like quantum dot assembles. We found that the incorporation of nanoparticles drastically affects the self-assembly structure of block-copolymers by modifying the relative volume ratio between the hydrophobic block and the hydrophilic block. In addition, the nanoparticle-polymer and nanoparticle-solvent interactions impact the arrangement and the hybridization of nanoparticles in polymer matrix. These findings should form the basis for the design rules of the self-assembly of nanoparticles and polymer amphiphiles, which will allow one to create new hybrid structures with predesigned morphology and properties. Furthermore, we demonstrated that the morphology of nanoparticle-encapsulating polymer assemblies significantly affects their properties such as magnetic relaxation properties, underscoring the importance of the overall self-assembly structure and the nanoparticle arrangement in polymer matrixes. This work was supported by the NSF career award, the ARO young investigator award, and the MRSEC seed award (University of Pennsylvania).

  12. Multigeometry Nanoparticle Engineering via Kinetic Control through Multistep assembly

    NASA Astrophysics Data System (ADS)

    Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Zhang, Fuwu; Mays, Jimmy; Wooley, Karen; Pochan, Darrin

    2014-03-01

    Organization of block copolymers into complicated multicompartment (MCM) and multigeometry (MGM) nanostructures is of increasing interest. Multistep, co-assembly methods resulting in kinetic control processing was used to produce complex nanoparticles that are not obtained via other assembly methods. Vesicle-cylinder, separate vesicle and cylinder, disk-cylinder, and mixed vesicle nanoparticles were constructed by binary blends of distinct diblock copolymers. Initially, the vesicle former polyacrylic acid-polyisoprene and cylinder former polyacrylic acid-polystyrene which share the same hydrophilic domain but immiscible hydrophobic domain were blended in THF. Secondly, dimaine molecules are added to associate with the common hydrophilic PAA. Importantly, and lastly, by tuning the kinetic addition rate of selective, miscible solvent water, the unlike hydrophobic blocks are kinetically trapped into one particle and eventually nanophase separate to form multiple compartments and multigeometries. The effective bottom-up multistep assembly strategies can be applied in other binary/ternary blends, in which new vesicle-sphere, disk-disk and cylinder-cylinder MCM/MGM nanoparticles were programed. We are grateful for the financial support from the National Science Funding DMR-0906815 (D.J.P. and K.L.W.) and NIST METROLOGY POCHAN 2012.

  13. Nonisotropic Assembly of Single-Component Hairy Nanoparticles

    NASA Astrophysics Data System (ADS)

    Vaia, R.; Koerner, H.; Drummy, L.; Benicewicz, B.; Li, Y.; U Of South Carolina Collaboration; Afrl-Wpafb Team

    2014-03-01

    Solvent-free assemblies of hairy nanoparticles (HNPs) are providing avenues to avoid issues of mixing, agglomeration and limited inorganic content that plague traditional nanocomposites that are based on polymer-nanoparticle blending. We demonstrate that for a range of graft densities, depletion forces acting on high molecular weight poly(styrene) (120kDa) grafted to SiO2 (r0 = 8nm) lead to non-isotropic organization of the nanoparticle center of mass. The order within the neat HNP assembly (aHNP) and its elongational characteristics evolve as the architecture of the polymeric corona in solution transitions from concentrated (CBP) to semidilute (SDPB) polymer brush regimes. Specifically, local HNP packing adopts a non-isotropic arrangement at intermediate graft densities (σ = 0.01 - 0.1 chains/nm2) where the CPB-to-SDPB transition in solution is approximately r0. In concert, the neat HNP assembly responds to elongational deformation in a manner analogous to semi-crystalline elastomers. The correlation between the corona architecture of the HNP and the physical characteristics of the solvent free aHNP point toward a possible approach to tune mechanical, optical and electrical properties of single component hybrids in a manner analogous to block-copolymer mesoscale morphology.

  14. Facile self-assembly and stabilization of metal oxide nanoparticles.

    PubMed

    Charbonneau, Cecile; Holliman, Peter J; Davies, Matthew L; Watson, Trystan M; Worsley, David A

    2015-03-15

    This paper describes a facile method of self-assembling different metal oxide nanoparticles into nanostructured materials via di-carboxylate linkers (oxalic acid) using TiO2 as an example. In this method, the di-carboxylate linkers react with surface hydroxyls on metal oxide nanoparticles forming covalent, ester-like bonds, which enable the binding of two metal oxide particles, one at either end of the linker and facilitates efficient self-assembly of one group of metal oxide nanoparticles homogeneously distributed onto the surface of another group. The oxalate linkers can then be removed by thermal decomposition. This approach is shown to be effective using differently-sized TiO2 nanoparticles, namely in-house synthesized 3-5nm anatase nanocrystals and Degussa P25 titania particles (mean 21nm particle size). Our data show that the application of a high temperature heat treatment (450°C for 30min), conventionally applied to achieve a stable porous structure by thermal decomposition of the linker molecules and by inducing inter-particle necking, damages the surface area of the nanostructured material. However, here we show that sintering at 300°C for 30min or by flash near infrared radiation sintering for 12s efficiently decomposes the oxalate linkers and stabilizes the nanostructure of the material whilst maintaining its high surface area. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Peptide-capped nanoparticles for catalysis and assembly

    NASA Astrophysics Data System (ADS)

    Briggs, Beverly D.

    Nature possesses methods for the formation and manipulation of inorganic materials with controlled size, shape, and compositions. Biomolecules, such as peptides, are known to be responsible for the generation of such inorganic materials on the nanoscale, where the enhanced properties can be exploited for various applications. Pd nanoparticles, capped with the Pd-specific Pd4 peptide (TSNAVHPTLRHL), were found to be active catalysts for Stille coupling, where the debated mechanism of oxidative addition was explored. Furthermore, the same Pd4-capped nanoparticles were found to be active in Suzuki coupling, another C-C coupling reaction that undergoes catalysis following a similar mechanism. Other considerations with peptide-capped metal catalysis involved the role of the reductant and the subsequent effects on morphology and reactivity, as seen by use of Au nanoparticles capped with a library of peptides. The role of the reductant was studied using varied reductants and was found to directly affect the catalytic activity. Additionally, such Au and Ag materials-binding peptides were expanded to generate multi-domain biomolecules capable of metal-specific binding and nanoparticle assembly. Such in-depth studies of peptide-capped nanomaterials and their uses in catalysis and assembly is important for optimized functionality and application.

  16. A Virtual Laboratory for the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, James; O'Connor, Brian

    2016-01-01

    Ongoing work to improve water and carbon dioxide separation systems to be used on crewed space vehicles combines sub-scale systems testing and multi-physics simulations. Thus, as part of NASA's Advanced Exploration Systems (AES) program and the Life Support Systems Project (LSSP), fully predictive COMSOL Multiphysics models of the Four Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) on the International Space Station (ISS) have been developed. This Virtual Laboratory is being used to help reduce mass, power, and volume requirements for exploration missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future missions as well as the resolution of anomalies observed in the ISS CDRA.

  17. New derivative of carnosine for nanoparticle assemblies.

    PubMed

    Bellia, Francesco; Oliveri, Valentina; Rizzarelli, Enrico; Vecchio, Graziella

    2013-01-01

    Carnosine (β-alanyl-l-histidine) is an endogenous dipeptide, extensively studied owing to its multifunctional activity exhibited in tissues of several animal species. This natural compound may act as a physiological buffer, ion-chelating agent (especially for copper(II) and zinc(II)), antioxidant and antiglycating agent. The main limit for the therapeutical uses of carnosine is the rapid hydrolysis mostly in human plasma by carnosinase. The chemical derivatization of carnosine is a promising strategy to improve the bioavailability of the dipeptide and facilitating the site-specific transport to different tissues. On this basis, a new carnosine derivative with biotin was synthesized and structurally characterized by NMR and MS measurements, with aim of exploiting the avidin-biotin technology that offers a universal system for selective delivery of any biotinylated agent. The stability of the new carnosine derivative towards the hydrolytic action of serum carnosinase as well as the copper(II) binding ability of the carnosine-biotin conjugate were also assessed. The binding affinity of the new molecular entity to avidin and streptavidin, investigated by a spectrophotometric assay, was exploited to functionalize avidin- and streptavidin-gold nanoparticles with the carnosine-biotin conjugate. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Magnetic self-assembly of gold nanoparticle chains using dipolar core-shell colloids.

    PubMed

    Kim, Bo Yun; Shim, In-Bo; Monti, Oliver L A; Pyun, Jeffrey

    2011-01-21

    The preparation of gold nanoparticle (AuNP) assemblies was conducted by the synthesis and dipolar assembly of ferromagnetic core-shell nanoparticles composed of AuNP cores and cobalt NP shells. Dissolution of metallic Co phases with mineral acids afforded self-assembled AuNP chains and bracelets.

  19. Overview of International Space Station Carbon Dioxide Removal Assembly On-Orbit Operations and Performance

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.

    2013-01-01

    Controlling Carbon Dioxide (CO2) partial pressure in the habitable vehicle environment is a critical part of operations on the International Space Station (ISS). On the United States segment of ISS, CO2 levels are primarily controlled by the Carbon Dioxide Removal Assembly (CDRA). There are two CDRAs on ISS; one in the United States Laboratory module, and one in the Node3 module. CDRA has been through several significant operational issues, performance issues and subsequent re-design of various components, primarily involving the Desiccant Adsorbent Bed (DAB) assembly and Air Selector Valves (ASV). This paper will focus on significant operational and performance issues experienced by the CDRA team from 2008-2012.

  20. Reversible assembly of tunable nanoporous materials from "hairy" silica nanoparticles.

    PubMed

    Khabibullin, Amir; Fullwood, Emily; Kolbay, Patrick; Zharov, Ilya

    2014-10-08

    Membranes with 1-100 nm nanopores are widely used in water purification and in biotechnology, but are prone to blockage and fouling. Reversibly assembled nanoporous membranes may be advantageous due to recyclability, cleaning, and retentate recovery, as well as the ability to tune the pore size. We report the preparation and characterization of size-selective nanoporous membranes with controlled thickness, area, and pore size via reversible assembly of polymer brush-grafted ("hairy") silica nanoparticles. We describe membranes reversibly assembled from silica particles grafted with (1) polymer brushes carrying acidic and basic groups, and (2) polymer brushes carrying neutral groups. The former are stable in most organic solvents and easily disassemble in water, whereas the latter are water-stable and disassemble in organic solvents.

  1. Controlling plasmon coupling in biomolecule-linked metal nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Sebba, David S.

    Molecular control of plasmon coupling is investigated in biomolecule-linked nanoparticle assemblies in two-particle, small cluster, and extended network formats. The relationship between structure and optical properties is explored through comparison of measured spectra with simulated spectra calculated using structural models based upon measured structural parameters. A variety of techniques are used to characterize nanoparticle assemblies, including ensemble extinction and elastic scattering spectroscopy, single-assembly scattering spectroscopy, transmission electron microscopy, and dynamic light scattering. Initially, molecular control of plasmon coupling is investigated in ˜100 nm assemblies composed of 13 nm gold "satellite" particles tethered by duplex DNA to a 50 nm gold "core" particle. Comparison of core-satellite assemblies formed with duplex DNA tethers of varying length demonstrates that, while core-satellite separation is controlled by the number of base pairs in the DNA tether, structural properties such as core:satellite ratio and yield are independent of DNA tether length. Thus, plasmon coupling within these assemblies is determined by the number of base pairs in the duplex DNA tether; compact assemblies in which tethers are composed of fewer base pairs exhibit plasmon bands that are red-shifted relative to the bands of extended assemblies, indicating increased plasmon coupling in the compact assemblies. Subsequently, core-satellite assemblies are formed with reconfigurable DNA nanostructure tethers that modulate interparticle separation in response to a molecular stimulus. Assembly reconfiguration from a compact to an extended state results in blue-shifting of the assembly plasmon resonance, indicating reduced interparticle coupling and lengthening of the core-satellite tether. Comparison between measured and simulated spectra revealed a close correspondence and provided validation of the structural models that link assembly plasmonic properties

  2. Biotemplated Synthesis of Anatase Titanium Dioxide Nanoparticles via Lignocellulosic Waste Material

    PubMed Central

    Bagheri, Samira; Abd Hamid, Sharifah Bee

    2014-01-01

    Anatase titanium dioxide nanoparticles (TiO2-NPs) were synthesized by sol-gel method using rice straw as a soft biotemplate. Rice straw, as a lignocellulosic waste material, is a biomass feedstock which is globally produced in high rate and could be utilized in an innovative approach to manufacture a value-added product. Rice straw as a reliable biotemplate has been used in the sol-gel method to synthesize ultrasmall sizes of TiO2-NPs with high potential application in photocatalysis. The physicochemical properties of titanium dioxide nanoparticles were investigated by a number of techniques such as X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), ultraviolet visible spectra (UV-Vis), and surface area and pore size analysis. All results consensually confirmed that particle sizes of synthesized titanium dioxide were template-dependent, representing decrease in the nanoparticles sizes with increase of biotemplate concentration. Titanium dioxide nanoparticles as small as 13.0 ± 3.3 nm were obtained under our experimental conditions. Additionally, surface area and porosity of synthesized TiO2-NPs have been enhanced by increasing rice straw amount which results in surface modification of nanoparticles and potential application in photocatalysis. PMID:25126547

  3. Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material.

    PubMed

    Ramimoghadam, Donya; Bagheri, Samira; Abd Hamid, Sharifah Bee

    2014-01-01

    Anatase titanium dioxide nanoparticles (TiO2-NPs) were synthesized by sol-gel method using rice straw as a soft biotemplate. Rice straw, as a lignocellulosic waste material, is a biomass feedstock which is globally produced in high rate and could be utilized in an innovative approach to manufacture a value-added product. Rice straw as a reliable biotemplate has been used in the sol-gel method to synthesize ultrasmall sizes of TiO2-NPs with high potential application in photocatalysis. The physicochemical properties of titanium dioxide nanoparticles were investigated by a number of techniques such as X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), ultraviolet visible spectra (UV-Vis), and surface area and pore size analysis. All results consensually confirmed that particle sizes of synthesized titanium dioxide were template-dependent, representing decrease in the nanoparticles sizes with increase of biotemplate concentration. Titanium dioxide nanoparticles as small as 13.0 ± 3.3 nm were obtained under our experimental conditions. Additionally, surface area and porosity of synthesized TiO2-NPs have been enhanced by increasing rice straw amount which results in surface modification of nanoparticles and potential application in photocatalysis.

  4. Model-based diagnosis of a carbon dioxide removal assembly

    NASA Astrophysics Data System (ADS)

    Throop, David R.; Scarl, Ethan A.

    1992-03-01

    Model-based diagnosis (MBD) has been applied to a variety of mechanisms, but few of these have been in fluid flow domains. Important mechanism variables in these domains are continuous, and the mechanisms commonly contain complex recycle patterns. These properties violate some of the common assumptions for MBD. The CO2 removal assembly (CDRA) for the cabin atmosphere aboard NASA's Space Station Freedom is such a mechanism. Early work on diagnosing similar mechanisms showed that purely associative diagnostic systems could not adequately handle these mechanisms' frequent reconfigurations. This suggested a model-based approach and KATE was adapted to the domain. KATE is a constraint-based MBD shell. It has been successfully applied to liquid flow problems in handling liquid oxygen. However, that domain does not involve complex recycle streams, but the CDRA does. KATE had solved constraint sets by propagating parameter values through constraints; this method often fails on constraints sets which describe recycle systems. KATE was therefore extended to allow it to use external algebraic programs to solve its constraint sets. This paper describes the representational challenges involved in that extension, and describes adaptions which allowed KATE to work within the representational limitations imposed by those algebraic programs. It also presents preliminary results of the CDRA modeling.

  5. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.

  6. Electrical Properties of a Thermoplastic Polyurethane Filled with Titanium Dioxide Nanoparticles

    SciTech Connect

    Polyzos, Georgios; Tuncer, Enis; Koerner, Hilmar; Kidder, Michelle; Vaia, Richard; Sauers, Isidor; James, David Randy; Ellis, Alvin R

    2010-01-01

    In this study we report a nanodielectric system composed of pre-synthesized nanoparticles embedded in an elastomer. Nanoparticles of titanium dioxide were synthesized in an aqueous solution of titanium chloride and polyethylene glycol. The nanoparticles were blended in a twin screw extruder with a thermoplastic, polyurethane (Morthane PS455-203), to form nanodielectrics at three different weight fractions of titanium dioxide. Impedance spectroscopy was employed to study polymer dynamics and the influence of nanoparticles on relaxation. The segmental relaxation associated with the glass transition of the polyurethane matrix, and the local relaxations associated with short range motions of polar groups were investigated at wide ranges of frequency (20 Hz-1 MHz) and temperature (300-20 K). The dielectric breakdown strength of the nanodielectrics was also measured to characterize their insulating properties and their potential for use in high voltage applications.

  7. Self-assembly and nanomechanics of freestanding nanoparticle thin films

    NASA Astrophysics Data System (ADS)

    Kanjanaboos, Pongsakorn

    The thesis investigates a class of novel materials: freestanding nanoparticle films. The films were self-assembled from man-made "atoms," a hybrid material consisting of inorganic nanoparticle cores surrounded by a shell of capping ligands. As freestanding films that are supported by a substrate only along their edge and contain a single layer of nanoparticles, these systems represent the ultimate two-dimensional limit of nanoparticle-based solids. The main focus is on nanomechanics of ultrathin films (monolayers up to few layers) comprised of close-packed metal nanocrystals (Au, Fe/Fe3O 4, Co). Due to strong interactions between interdigitated ligands, the system exhibits remarkable tensile stiffness (Young's modulus in the range of several GPa) and high flexibility. The overall mechanical properties depend on characteristics of the nanoparticles, such as their size, and of the ligands, such as their length and organization inside the interstices between the particles. Exposing freestanding nanoparticle films to electron beams introduces strain in a highly controlled way. This process can be used to deliberately introduce strain gradients and create a variety of nanoscale patterns in the films by first cutting the films surgically with ion beams and subsequently exposing them to electron-beams. Tracking the local particle displacements during such controlled straining allowed for the first direct measurement for Poisson's ratio in nanoparticle films. Finally, we explored the performance of such ultrathin, freestanding films as nanomechanical drumhead resonators. A high-frequency scanning laser interferometer system was constructed that was capable of detecting the very small, thermally induced drumhead motion. Using this system, the spatial drumhead mode patterns were imaged for the first time.

  8. Orthogonal light-induced self-assembly of nanoparticles using differently substituted azobenzenes.

    PubMed

    Manna, Debasish; Udayabhaskararao, Thumu; Zhao, Hui; Klajn, Rafal

    2015-10-12

    Precise control of the self-assembly of selected components within complex mixtures is a challenging goal whose realization is important for fabricating novel nanomaterials. Herein we show that by decorating the surfaces of metallic nanoparticles with differently substituted azobenzenes, it is possible to modulate the wavelength of light at which the self-assembly of these nanoparticles is induced. Exposing a mixture of two types of nanoparticles, each functionalized with a different azobenzene, to UV or blue light induces the selective self-assembly of only one type of nanoparticles. Irradiation with the other wavelength triggers the disassembly of the aggregates, and the simultaneous self-assembly of nanoparticles of the other type. By placing both types of azobenzenes on the same nanoparticles, we created unique materials ("frustrated" nanoparticles) whose self-assembly is induced irrespective of the wavelength of the incident light.

  9. DNA damaging potential of photoactivated p25 titanium dioxide nanoparticles.

    PubMed

    Petersen, Elijah J; Reipa, Vytas; Watson, Stephanie S; Stanley, Deborah L; Rabb, Savelas A; Nelson, Bryant C

    2014-10-20

    Titanium dioxide nanoparticles (TiO2 NPs) are found in numerous commercial and personal care products. Thus, it is necessary to understand and characterize their potential environmental health and safety risks. It is well-known that photoactivated TiO2 NPs in aerated aqueous solutions can generate highly reactive hydroxyl radicals ((•)OH), which can damage DNA. Surprisingly, recent in vitro studies utilizing the comet assay have shown that nonphotoactivated TiO2 NPs kept in the dark can also induce DNA damage. In this work, we utilize stable isotope-dilution gas chromatography/tandem mass spectrometry to quantitatively characterize the levels and types of oxidatively generated base lesions in genomic DNA exposed to NIST Standard Reference Material TiO2 NPs (Degussa P25) under precisely controlled illumination conditions. We show that DNA samples incubated in the dark for 24 h with TiO2 NPs (0.5-50 μg/mL) do not lead to the formation of base lesions. However, when the same DNA is exposed to either visible light from 400 to 800 nm (energy dose of ∼14.5 kJ/m(2)) for 24 h or UVA light at 370 nm for 30 min (energy dose of ∼10 kJ/m(2)), there is a significant formation of lesions at the 50 μg/mL dose for the visible light exposure and a significant formation of lesions at the 5 and 50 μg/mL doses for the UVA light exposure. These findings suggest that commercial P25 TiO2 NPs do not have an inherent capacity to oxidatively damage DNA bases in the absence of sufficient photoactivation; however, TiO2 NPs exposed to electromagnetic radiation within the visible portion of the light spectrum can induce the formation of DNA lesions. On the basis of these findings, comet assay processing of cells exposed to TiO2 should be performed in the dark to minimize potential artifacts from laboratory light.

  10. Phototoxic effects of titanium dioxide nanoparticles on Daphnia magna

    NASA Astrophysics Data System (ADS)

    Mansfield, Charles M.

    Titanium dioxide nanoparticles (TiO2-NP) are one of the most abundantly utilized nanomaterials in the world. Studies have demonstrated the mechanism of acute toxicity in TiO2-NP to be the production of reactive oxygen species (ROS) leading to oxidative stress and mortality in exposed organisms. It has also been demonstrated that the anatase crystalline conformation is capable of catalyzing the cleavage of water molecules to further increase the concentration of ROS in the presence of ultraviolet radiation. This photoenhanced toxicity significantly lowers the toxicity threshold of TiO2-NP to environmentally relevant concentrations (ppb). The goal of this study was to determine whether dietary uptake and accumulation of TiO2-NP in the aquatic filter feeder Daphnia magna resulted in photoenhanced toxicity. D. magna and S. caprincornatum were exposed to aqueous solutions of 20ppm and 200ppm TiO2-NP for 24hrs and then transferred to clean moderately hard water. Samples were taken at various time points, dried, and TiO 2 quantified using ICP-MS. Toxicity assays were run on D. magna using three TiO2-NP (20ppm, 200ppm) exposure protocols and two ultraviolet radiation treatments. The first exposure group was exposed to aqueous solutions of TiO2-NP for the duration of the test. The second exposure group was exposed to TiO2-NP for an hour and then transferred to clean water. The third exposure group was fed S. capricornatum that had been allowed to adsorb TiO2-NP. All samples were then placed in an outdoor UV exposure system and exposed to either full spectrum sunlight (with UV) or filtered sunlight (no UV). Here we show that TiO2 uptake peaked at one hour of exposure likely due to sedimentation of the particles out of suspension, thus decreasing bioavailability for the duration of the test. Interestingly, when D. magna were moved to clean water, aqueous concentrations of TiO2 increase as a result of depuration from the gut tract. Data also suggests these excreted particles

  11. Synthesis and Thin Film Assembly of Copper Nanoparticles for Sensing Contaminants in Aircraft Cabins

    DTIC Science & Technology

    2008-03-01

    assembly of gold, platinum, silver, and bimetallic /trimetallic alloy nanoparticles , and lead to cost-effective production of novel sensing...AFRL-RH-BR-TR-2008-0041 SYNTHESIS AND THIN FILM ASSEMBLY OF COPPER NANOPARTICLES FOR SENSING CONTAMINANTS IN AIRCRAFT CABINS...To) 11 Apr 07 – 31 Mar 08 August 2006 – January 2007 4. TITLE AND SUBTITLE Synthesis and Thin Film Assembly of Copper Nanoparticles for Sensing

  12. Polarized neutron reflectivity from monolayers of self-assembled magnetic nanoparticles.

    PubMed

    Mishra, D; Petracic, O; Devishvili, A; Theis-Bröhl, K; Toperverg, B P; Zabel, H

    2015-04-10

    We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.

  13. Harnessing self-assembled peptide nanoparticles in epitope vaccine design.

    PubMed

    Negahdaripour, Manica; Golkar, Nasim; Hajighahramani, Nasim; Kianpour, Sedigheh; Nezafat, Navid; Ghasemi, Younes

    2017-09-01

    Vaccination has been one of the most successful breakthroughs in medical history. In recent years, epitope-based subunit vaccines have been introduced as a safer alternative to traditional vaccines. However, they suffer from limited immunogenicity. Nanotechnology has shown value in solving this issue. Different kinds of nanovaccines have been employed, among which virus-like nanoparticles (VLPs) and self-assembled peptide nanoparticles (SAPNs) seem very promising. Recently, SAPNs have attracted special interest due to their unique properties, including molecular specificity, biodegradability, and biocompatibility. They also resemble pathogens in terms of their size. Their multivalency allows an orderly repetitive display of antigens on their surface, which induces a stronger immune response than single immunogens. In vaccine design, SAPN self-adjuvanticity is regarded an outstanding advantage, since the use of toxic adjuvants is no longer required. SAPNs are usually composed of helical or β-sheet secondary structures and are tailored from natural peptides or de novo structures. Flexibility in subunit selection opens the door to a wide variety of molecules with different characteristics. SAPN engineering is an emerging area, and more novel structures are expected to be generated in the future, particularly with the rapid progress in related computational tools. The aim of this review is to provide a state-of-the-art overview of self-assembled peptide nanoparticles and their use in vaccine design in recent studies. Additionally, principles for their design and the application of computational approaches to vaccine design are summarized. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Self-assembled nanoparticle arrays for multiphase trace analyte detection

    NASA Astrophysics Data System (ADS)

    Cecchini, Michael P.; Turek, Vladimir A.; Paget, Jack; Kornyshev, Alexei A.; Edel, Joshua B.

    2013-02-01

    Nanoplasmonic structures designed for trace analyte detection using surface-enhanced Raman spectroscopy typically require sophisticated nanofabrication techniques. An alternative to fabricating such substrates is to rely on self-assembly of nanoparticles into close-packed arrays at liquid/liquid or liquid/air interfaces. The density of the arrays can be controlled by modifying the nanoparticle functionality, pH of the solution and salt concentration. Importantly, these arrays are robust, self-healing, reproducible and extremely easy to handle. Here, we report on the use of such platforms formed by Au nanoparticles for the detection of multi-analytes from the aqueous, organic or air phases. The interfacial area of the Au array in our system is ≈25 mm2 and can be made smaller, making this platform ideal for small-volume samples, low concentrations and trace analytes. Importantly, the ease of assembly and rapid detection make this platform ideal for in-the-field sample testing of toxins, explosives, narcotics or other hazardous chemicals.

  15. Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids.

    PubMed

    Labille, Jérôme; Harns, Carrie; Bottero, Jean-Yves; Brant, Jonathan

    2015-06-02

    To better understand and predict the fate of engineered nanoparticles in the water column, we assessed the heteroaggregation of TiO2 nanoparticles with a smectite clay as analogues for natural colloids. Heteroaggregation was evaluated as a function of water salinity (10(-3) and 10(-1) M NaCl), pH (5 and 8), and selected nanoparticle concentration (0-4 mg/L). Time-resolved laser diffraction was used, coupled to an aggregation model, to identify the key mechanisms and variables that drive the heteroaggregation of the nanoparticles with colloids. Our data show that, at a relevant concentration, nanoparticle behavior is mainly driven by heteroaggregation with colloids, while homoaggregation remains negligible. The affinity of TiO2 nanoparticles for clay is driven by electrostatic interactions. Opposite surface charges and/or high ionic strength favored the formation of primary heteroaggregates via the attachment of nanoparticles to the clay. The initial shape and dispersion state of the clay as well as the nanoparticle/clay concentration ratio also affected the nature of the heteroaggregation mechanism. With dispersed clay platelets (10(-3) M NaCl), secondary heteroaggregation driven by bridging nanoparticles occurred at a nanoparticle/clay number ratio of greater than 0.5. In 10(-1) M NaCl, the clay was preaggregated into larger and more spherical units. This favored secondary heteroaggregation at lower nanoparticle concentration that correlated to the nanoparticle/clay surface area ratio. In this latter case, a nanoparticle to clay sticking efficiency could be determined.

  16. Peptide Directed 3D Assembly of Nanoparticles through Biomolecular Interaction

    NASA Astrophysics Data System (ADS)

    Kaur, Prerna

    The current challenge of the 'bottom up' process is the programmed self-assembly of nanoscale building blocks into complex and larger-scale superstructures with unique properties that can be integrated as components in solar cells, microelectronics, meta materials, catalysis, and sensors. Recent trends in the complexity of device design demand the fabrication of three-dimensional (3D) superstructures from multi-nanomaterial components in precise configurations. Bio mimetic assembly is an emerging technique for building hybrid materials because living organisms are efficient, inexpensive, and environmentally benign material generators, allowing low temperature fabrication. Using this approach, a novel peptide-directed nanomaterial assembly technology based on bio molecular interaction of streptavidin and biotin is presented for assembling nanomaterials with peptides for the construction of 3D peptide-inorganic superlattices with defined 3D shape. We took advantage of robust natural collagen triple-helix peptides and used them as nanowire building blocks for 3D peptide-gold nanoparticles superlattice generation. The type of 3D peptide superlattice assembly with hybrid NP building blocks described herein shows potential for the fabrication of complex functional device which demands precise long-range arrangement and periodicity of NPs.

  17. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis.

    PubMed

    Lin, Linhan; Peng, Xiaolei; Wang, Mingsong; Scarabelli, Leonardo; Mao, Zhangming; Liz-Marzán, Luis M; Becker, Michael F; Zheng, Yuebing

    2016-09-21

    Reversible assembly of plasmonic nanoparticles can be used to modulate their structural, electrical, and optical properties. Common and versatile tools in nanoparticle manipulation and assembly are optical tweezers, but these require tightly focused and high-power (10-100 mW/μm(2)) laser beams with precise optical alignment, which significantly hinders their applications. Here we present light-directed reversible assembly of plasmonic nanoparticles with a power intensity below 0.1 mW/μm(2). Our experiments and simulations reveal that such a low-power assembly is enabled by thermophoretic migration of nanoparticles due to the plasmon-enhanced photothermal effect and the associated enhanced local electric field over a plasmonic substrate. With software-controlled laser beams, we demonstrate parallel and dynamic manipulation of multiple nanoparticle assemblies. Interestingly, the assemblies formed over plasmonic substrates can be subsequently transported to nonplasmonic substrates. As an example application, we selected surface-enhanced Raman scattering spectroscopy, with tunable sensitivity. The advantages provided by plasmonic assembly of nanoparticles are the following: (1) low-power, reversible nanoparticle assembly, (2) applicability to nanoparticles with arbitrary morphology, and (3) use of simple optics. Our plasmon-enhanced thermophoretic technique will facilitate further development and application of dynamic nanoparticle assemblies, including biomolecular analyses in their native environment and smart drug delivery.

  18. Size-selective template-assisted electrophoretic assembly of nanoparticles for biosensing applications.

    PubMed

    Siavoshi, Salome; Yilmaz, Cihan; Somu, Sivasubramanian; Musacchio, Tiziana; Upponi, Jaydev R; Torchilin, Vladimir P; Busnaina, Ahmed

    2011-06-07

    The precise, size-selective assembly of nanoparticles gives rise to many applications where the assembly of nano building blocks with different biological or chemical functionalizations is necessary. We introduce a simple, fast, reproducible-directed assembly technique that enables a complete sorting of nanoparticles with single-particle resolution. Nanoparticles are size-selectively assembled into prefabricated via arrays using a sequential template-directed electrophoretic assembly method. Polystyrene latex (PSL) nanoparticles with diameters ranging from 200 to 50 nm are selectively assembled into vias comparable to nanoparticle diameter. We investigate the effects of particle size and via size on the sorting efficiency. We show that complete sorting can be achieved when the size of the vias is close to the diameter of the nanoparticles and the size distribution of the chosen nanoparticles does not overlap. The results also show that it is necessary to keep the electric field on during the insertion and removal of the template. To elucidate the versatility and nil effects that the electrophoresis assembly technique has on the assembled nanoparticle characteristics, we have assembled cancer-specific monoclonal antibody-2C5-coated nanoparticles and have also shown that they can successfully measure low concentrations of the nucleosome (NS) antigen.

  19. Assembly, Engineering and Applications of Virus-Based Protein Nanoparticles.

    PubMed

    Mateu, Mauricio G

    Viruses and their protein capsids can be regarded as biologically evolved nanomachines able to perform multiple, complex biological functions through coordinated mechano-chemical actions during the infectious cycle. The advent of nanoscience and nanotechnology has opened up, in the last 10 years or so, a vast number of novel possibilities to exploit engineered viral capsids as protein-based nanoparticles for multiple biomedical, biotechnological or nanotechnological applications. This chapter attempts to provide a broad, updated overview on the self-assembly and engineering of virus capsids, and on applications of virus-based nanoparticles. Different sections provide outlines on: (i) the structure, functions and properties of virus capsids; (ii) general approaches for obtaining assembled virus particles; (iii) basic principles and events related to virus capsid self-assembly; (iv) genetic and chemical strategies for engineering virus particles; (v) some applications of engineered virus particles being developed; and (vi) some examples on the engineering of virus particles to modify their physical properties, in order to improve their suitability for different uses.

  20. Optically Evolved Assembly Formation in Laser Trapping of Polystyrene Nanoparticles at Solution Surface.

    PubMed

    Wang, Shun-Fa; Kudo, Tetsuhiro; Yuyama, Ken-Ichi; Sugiyama, Teruki; Masuhara, Hiroshi

    2016-11-29

    Assembling dynamics of polystyrene nanoparticles by optical trapping is studied with utilizing transmission/reflection microscopy and reflection microspectroscopy. A single nanoparticle assembly with periodic structure is formed upon the focused laser irradiation at solution surface layer and continuously grows up to a steady state within few minutes. By controlling nanoparticle and salt concentrations in the colloidal solution, the assembling behavior is obviously changed. In the high concentration of nanoparticles, the assembly formation exhibits fast growth, gives large saturation size, and leads to dense packing structure. In the presence of salt, one assembly with the elongated aggregates was generated from the focal spot and 1064 nm trapping light was scattered outwardly with directions, while a small circular assembly and symmetrical expansion of the 1064 nm light were found without salt. The present nanoparticle assembling in optical trapping is driven through multiple scattering in gathered nanoparticles and directional scattering along the elongated aggregates derived from optical association of nanoparticles, which dynamic phenomenon is called optically evolved assembling. Repetitive trapping and release processes of nanoparticles between the assembly and the surrounding solution always proceed, and the steady state at the circular assembly formed by laser trapping is determined under optical and chemical equilibrium.

  1. Opto-electronic devices with nanoparticles and their assemblies

    NASA Astrophysics Data System (ADS)

    Nguyen, Chieu Van

    Nanotechnology is a fast growing field; engineering matters at the nano-meter scale. A key nanomaterial is nanoparticles (NPs). These sub-wavelength (< 100nm) particles provide tremendous possibilities due to their unique electrical, optical, and mechanical properties. Plethora of NPs with various chemical composition, size and shape has been synthesized. Clever designs of sub-wavelength structures enable observation of unusual properties of materials, and have led to new areas of research such as metamaterials. This dissertation describes two self-assemblies of gold nanoparticles, leading to an ultra-soft thin film and multi-functional single electron device at room temperature. First, the layer-by-layer self-assembly of 10nm Au nanoparticles and polyelectrolytes is shown to behave like a cellular-foam with modulus below 100 kPa. As a result, the composite thin film (˜ 100nm) is 5 orders of magnitude softer than an equally thin typical polymer film. The thin film can be compressed reversibly to 60% strain. The extraordinarily low modulus and high compressibility are advantageous in pressure sensing applications. The unique mechanical properties of the composite film lead to development of an ultra-sensitive tactile imaging device capable of screening for breast cancer. On par with human finger sensitivity, the tactile device can detect a 5mm imbedded object up to 20mm below the surface with low background noise. The second device is based on a one-dimensional (1-D) self-directed self-assembly of Au NPs mediated by dielectric materials. Depending on the coverage density of the Au NPs assembly deposited on the device, electronic emission was observed at ultra-low bias of 40V, leading to low-power plasma generation in air at atmospheric pressure. Light emitted from the plasma is apparent to the naked eyes. Similarly, 1-D self-assembly of Au NPs mediated by iron oxide was fabricated and exhibits ferro-magnetic behavior. The multi-functional 1-D self-assembly of Au

  2. Antimicrobial properties of poly (methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria

    PubMed Central

    Sodagar, Ahmad; Khalil, Soufia; Kassaee, Mohammad Zaman; Shahroudi, Atefe Saffar; Pourakbari, Babak; Bahador, Abbas

    2016-01-01

    Aim: To assess the effects of adding nano-titanium dioxide (nano-TiO2) and nano-silicon dioxide (nano-SiO2) and their mixture to poly (methyl methacrylate) (PMMA) to induce antimicrobial activity in acrylic resins. Materials and Methods: Acrylic specimens in size of 20 mm × 20 mm × 1 mm of 0.5% and 1% of nano-TiO2 (21 nm) and nano-SiO2 (20 nm) and their mixture (TiO2/SiO2 nanoparticles) (1:1 w/w) were prepared from the mixture of acrylic liquid containing nanoparticles and acrylic powder. To obtain 0.5% and 1% concentration, 0.02 g and 0.04 g of the nanoparticles was added to each milliliter of the acrylic monomer, respectively. Antimicrobial properties of six specimens of these preparations, as prepared, were assessed against planktonic Lactobacillus acidophilus and Streptococcus mutans at 0, 15, 30, 45, 60, 75, and 90 min follow-up by broth dilution assay. The specimens of each group were divided into three subgroups: Dark, daylight, or ultraviolet A (UVA). The percent of bacterial reduction is found out from the counts taken at each time point. Statistical Analysis: Data were analyzed using one-way analysis of variance and Tukey's post hoc analysis. Results: Exposure to PMMA containing the nanoparticles reduced the bacterial count by 3.2–99%, depending on the nanoparticles, bacterial types, and light conditions. Planktonic cultures of S. mutans and L. acidophilus exposed to PMMA containing 1% of TiO2/SiO2 nanoparticles showed a significant decrease (P < 0.001) (98% and 99%, respectively) in a time-dependent manner under UVA. The S. mutans and L. acidophilus counts did not significantly decrease in PMMA containing 0.5% nano-TiO2 and PMMA containing 0.5% nano-SiO2 in the dark. No statistically significant reduction (P > 0.05) was observed in the counts of S. mutans and L. acidophilus in PMMA without the nanoparticles exposed to UVA. Conclusions: PMMA resins incorporated with TiO2/SiO2 nanoparticles showed strong antimicrobial activity against the cariogenic

  3. Antimicrobial properties of poly (methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria.

    PubMed

    Sodagar, Ahmad; Khalil, Soufia; Kassaee, Mohammad Zaman; Shahroudi, Atefe Saffar; Pourakbari, Babak; Bahador, Abbas

    2016-01-01

    To assess the effects of adding nano-titanium dioxide (nano-TiO2) and nano-silicon dioxide (nano-SiO2) and their mixture to poly (methyl methacrylate) (PMMA) to induce antimicrobial activity in acrylic resins. Acrylic specimens in size of 20 mm × 20 mm × 1 mm of 0.5% and 1% of nano-TiO2 (21 nm) and nano-SiO2 (20 nm) and their mixture (TiO2/SiO2 nanoparticles) (1:1 w/w) were prepared from the mixture of acrylic liquid containing nanoparticles and acrylic powder. To obtain 0.5% and 1% concentration, 0.02 g and 0.04 g of the nanoparticles was added to each milliliter of the acrylic monomer, respectively. Antimicrobial properties of six specimens of these preparations, as prepared, were assessed against planktonic Lactobacillus acidophilus and Streptococcus mutans at 0, 15, 30, 45, 60, 75, and 90 min follow-up by broth dilution assay. The specimens of each group were divided into three subgroups: Dark, daylight, or ultraviolet A (UVA). The percent of bacterial reduction is found out from the counts taken at each time point. Data were analyzed using one-way analysis of variance and Tukey's post hoc analysis. Exposure to PMMA containing the nanoparticles reduced the bacterial count by 3.2-99%, depending on the nanoparticles, bacterial types, and light conditions. Planktonic cultures of S. mutans and L. acidophilus exposed to PMMA containing 1% of TiO2/SiO2 nanoparticles showed a significant decrease (P < 0.001) (98% and 99%, respectively) in a time-dependent manner under UVA. The S. mutans and L. acidophilus counts did not significantly decrease in PMMA containing 0.5% nano-TiO2 and PMMA containing 0.5% nano-SiO2 in the dark. No statistically significant reduction (P > 0.05) was observed in the counts of S. mutans and L. acidophilus in PMMA without the nanoparticles exposed to UVA. PMMA resins incorporated with TiO2/SiO2 nanoparticles showed strong antimicrobial activity against the cariogenic bacteria.

  4. The stress caused by nitrite with titanium dioxide nanoparticles under UVA irradiation in human keratinocyte cell.

    PubMed

    Tu, Min; Huang, Yi; Li, Hai-Ling; Gao, Zhong-Hong

    2012-09-04

    Our previous work found that in the presence of nitrite, titanium dioxide nanoparticles can cause protein tyrosine nitration under UVA irradiation in vivo. In this paper, the human keratinocyte cells was used as a skin cell model to further study the photo-toxicity of titanium dioxide nanoparticles when nitrite was present. The results showed that nitrite increased the photo-toxicity of titanium dioxide in a dose-dependant manner, and generated protein tyrosine nitration in keratinocyte cells. Morphological study of keratinocyte cells suggested a specific apoptosis mediated by apoptosis inducing factor. It was also found the main target nitrated in cells was cystatin-A, which expressed abundantly in cytoplasm and functioned as a cysteine protease inhibitor. The stress induced by titanium dioxide with nitrite under UVA irradiation in human keratinocyte cells appeared to trigger the apoptosis inducing factor mediated cell death and lose the inhibition of active caspase by cystatin-A. We conclude that nitrite can bring new damage and stress to human keratinocyte cells with titanium dioxide nanoparticles under UVA irradiation.

  5. Self-Assembled Hydrogels Utilising Polymer-Nanoparticle Interactions

    PubMed Central

    Appel, Eric A.; Tibbitt, Mark W.; Webber, Matthew J.; Mattix, Bradley A.; Veiseh, Omid

    2015-01-01

    Mouldable hydrogels that flow upon applied stress and rapidly self-heal are increasingly utilised as they afford minimally invasive delivery and conformal application. Here we report a new paradigm for the fabrication of self-assembled hydrogels with shear-thinning and self-healing properties employing rationally engineered polymer-nanoparticle interactions. Biopolymer derivatives are linked together by selective adsorption to nanoparticles. The transient and reversible interactions between biopolymers and nanoparticles enable flow under applied shear stress, followed by rapid self-healing when the stress is relaxed. We develop a physical description of polymer-nanoparticle gel formation that is utilised to design biocompatible gels for minimally-invasive drug delivery. Owing to the hierarchical structure of the gel, both hydrophilic and hydrophobic drugs can be entrapped and delivered with differential release profiles, both in vitro and in vivo. The work introduces a facile and generalizable class of mouldable hydrogels amenable to a range of biomedical and industrial applications. PMID:25695516

  6. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    EPA Science Inventory

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  7. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles

    EPA Science Inventory

    Due to their inherent phototoxicity and inevitable environmental release, titanium dioxide nanoparticles (nano-TiO2) are increasingly studied in the field of aquatic toxicology. One of the particular interests is the interactions between nano-TiO2 and natural organic matter (NOM)...

  8. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    EPA Science Inventory

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  9. Polymorph-dependent titanium dioxide nanoparticle dissolution in acidic and alkali digestions

    EPA Science Inventory

    Multiple polymorphs (anatase, brookite and rutile) of titanium dioxide nanoparticles (TiO2-NPs) with variable structures were quantified in environmental matrices via microwave-based hydrofluoric (HF) and nitric (HNO3) mixed acid digestion and muffle furnace (MF)-based potassium ...

  10. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles

    EPA Science Inventory

    Due to their inherent phototoxicity and inevitable environmental release, titanium dioxide nanoparticles (nano-TiO2) are increasingly studied in the field of aquatic toxicology. One of the particular interests is the interactions between nano-TiO2 and natural organic matter (NOM)...

  11. Polymorph-dependent titanium dioxide nanoparticle dissolution in acidic and alkali digestions

    EPA Science Inventory

    Multiple polymorphs (anatase, brookite and rutile) of titanium dioxide nanoparticles (TiO2-NPs) with variable structures were quantified in environmental matrices via microwave-based hydrofluoric (HF) and nitric (HNO3) mixed acid digestion and muffle furnace (MF)-based potassium ...

  12. Photocatalytic ROS production and phototoxicity of titanium dioxide nanoparticles is dependent on solar UV radiation spectrum

    EPA Science Inventory

    Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO2) and its consequent phototoxicity to Daphnia magna were measured under different solar UV radiation spectrum by applying a series of optical filters in a solar simulator. Removing UVB (280-32...

  13. Photocatalytic ROS production and phototoxicity of titanium dioxide nanoparticles is dependent on solar UV radiation spectrum

    EPA Science Inventory

    Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO2) and its consequent phototoxicity to Daphnia magna were measured under different solar UV radiation spectrum by applying a series of optical filters in a solar simulator. Removing UVB (280-32...

  14. Mechanism for Rapid Self-Assembly of Block Copolymer Nanoparticles

    NASA Astrophysics Data System (ADS)

    Johnson, Brian K.; Prud'Homme, Robert K.

    2003-09-01

    Amphiphilic block copolymers in solution spontaneously self-assemble when the solvent quality for one block is selectively decreased. We demonstrate that, for supersaturation ratio changes [d(S)/dt] over 105 per second from equilibrium, nanoparticles are obtained with a formation mechanism and size dependent on the jumping rate and magnitude. The threshold rate for homogeneous precipitation is determined by the induction time of a particle, equivalent to the diffusion limited fusion of copolymer chains to form a corona of overlapping soluble brushes. Via determination of the induction time with a novel confined impinging jets mixer and use of a scaling relation, the interfacial free energy of a block copolymer nanoparticle was measured for the first time.

  15. Ferromagnetism in assemblies of superparamagnetic nanoparticles: theory and applications

    NASA Astrophysics Data System (ADS)

    Singh, Vanchna; Banerjee, Varsha

    2014-09-01

    We develop a theoretical framework to create an effectual ferromagnet from aggregates of superparamagnetic nanoparticles. In the limit of strong anisotropy, the super moments can be treated as a collection of two-state Ising spins. When adequate in number, they interact via dipole-dipole coupling to produce a dipolar field and subsequently a permanent dipole moment. As a result, these assemblies exhibit hysteresis on the application of an oscillating magnetic field. Their important physical application is in remedial procedures for destroying tumor and cancer cells. Our framework provides procedures for heat manipulation in them and imparts a basis to the often used ad-hoc methodologies in this subject. Further, it explains experimental observations reporting manifestations of ferromagnetism in aggregates of superparamagnetic nanoparticles which have puzzled experimentalists in the recent years.

  16. Enhanced magnetorheological response of magnetic chromium dioxide nanoparticle added carbonyl iron suspension

    NASA Astrophysics Data System (ADS)

    Kim, Min Hwan; Choi, Kisuk; Do Nam, Jae; Choi, Hyoung Jin

    2017-09-01

    Hard-magnetic chromium dioxide nanoparticles with a rod-like shape were introduced as an additive to a soft-magnetic carbonyl iron (CI)-based magnetorheological (MR) fluid. The magnetic stimuli-response of the MR fluid in terms of the steady shear and dynamic oscillation tests was examined using a rotational rheometer. While the Bingham fluid model fitted the flow curves, the dynamic yield stress followed the universal yield stress scale function quite well. Compared to the CI-based MR fluid without chromium dioxide nanoparticles, the MR fluid with the chromium dioxide additive exhibited remarkably higher yield behavior with increasing magnetic field strength, enhancing its MR performance and dispersion stability.

  17. Programmable nanoparticle ensembles via high-throughput directed self-assembly.

    PubMed

    Dai, Qiu; Chen, Yingyu; Liu, Chi-Chun; Rettner, Charles T; Holmdahl, Bryan; Gleixner, Stacy; Chung, Richard; Pitera, Jed W; Cheng, Joy; Nelson, Alshakim

    2013-03-19

    We present a simple and facile strategy for the directed self-assembly of nanoparticles into complex geometries using a minimal set of post guiding features patterned on a substrate. This understanding is based on extensive studies of nanoparticle self-assembly into linear, dense-packed, circular, and star-shaped ensembles when coated onto patterned substrates of predefined post arrays. We determined the conditions under which nanoparticles assemble and "connect" two adjacent post features, thereby forming the desired shapes. We demonstrate that with rational design of the post patterns to enforce the required pairwise interactions with posts, we can create arbitrary arrangements of nanoparticles-for example, to write "IBM" in a deterministic manner. This demonstration of programmable, high-throughput directed self-assembly of nanoparticles shows an alternative route to generate functional nanoparticle assemblies.

  18. Dispersion and stability of titanium dioxide nanoparticles in aqueous suspension: effects of ultrasonication and concentration.

    PubMed

    Qi, J; Ye, Y Y; Wu, J J; Wang, H T; Li, F T

    2013-01-01

    The increasing applications of titanium dioxide (TiO(2)) nanoparticles raise concerns about their potential environmental impacts. To investigate the fate and transport of TiO(2) nanoparticles in aqueous suspension, ultrasonication is widely used for the dispersion of TiO(2) nanoparticles in laboratory-scale studies. There is a pressing need for detailed information on the dispersion and stability of TiO(2) nanoparticles. This study investigated the change of size, zeta potential, and pH of TiO(2) nanoparticles aqueous suspension under different conditions of ultrasonication and concentrations. It was found that the hydrodynamic diameter of TiO(2) nanoparticles decreased with increasing suspension concentration and remained stable for more than 1 hour after sonication, which is enough for experimental research. The pH decreased with increasing nanoparticles concentration. Ultrasonication remarkably improved zeta potential to be above 15 mV for all the samples. Therefore, 20 minutes of ultrasonication (180 W) is sufficient for the dispersion of this rutile TiO(2) nanoparticles suspension, which can remain stable for more than 1 hour. However, the optimum sonication time for TiO(2) nanoparticles dispersion is influenced by many factors, such as TiO(2) nanoparticles concentration, solution chemistry, and sonicator parameters.

  19. Malaria vaccine based on self-assembling protein nanoparticles.

    PubMed

    Burkhard, Peter; Lanar, David E

    2015-01-01

    Despite recent progress with GSK's RTS,S malaria vaccine, there remains a desperate need for an efficient malaria vaccine. We have used a repetitive antigen display technology to display malaria specific B cell and T cell epitopes in an effort to design a vaccine against Plasmodium falciparum malaria. Our protein sequence when assembled into a nanoparticle induces strong, long-lived and protective immune responses against infection with the parasite. We are confident that the clinical trials with our most developed vaccine candidate will show good protection in a controlled human malaria infection trial.

  20. Optical Properties of Gold Nanoparticle Assemblies on a Glass Surface

    NASA Astrophysics Data System (ADS)

    Stetsenko, M. O.; Rudenko, S. P.; Maksimenko, L. S.; Serdega, B. K.; Pluchery, O.; Snegir, S. V.

    2017-05-01

    The assemblies of cross-linked gold nanoparticles (AuNP) attract lot of scientific attention due to feasible perspectives of their use for development of scaled contact electrodes. Here, we developed and tested method of solid-state formation of dimers created from small AuNP ( 18 nm) cross-linked with 1.9-nonadithiol (NDT) molecules. The morphology of created coating of a glass surface and its optical-polarization properties have been studied in detail by combination of scanning electron microscopy, atomic force microscopy, UV-visible spectroscopy, and modulation-polarization spectroscopy.

  1. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles.

    PubMed

    Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena; Schiøtz, Jakob; Kasama, Takeshi; Puntes, Victor F; Frandsen, Cathrine

    2015-09-29

    Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100-400 nm and lengths of up to some hundred microns. Lorenz microscopy and electron holography reveal collective magnetic ordering in these structures. However, in contrast to continuous ferromagnetic thin films of comparable dimensions, domain walls appear preferentially as longitudinal, i.e., oriented parallel to the long axis of the nanoparticle assemblies. We explain this unusual domain structure as the result of dipolar interactions and shape anisotropy, in the absence of inter-particle exchange coupling.

  2. Malaria vaccine based on Self-Assembling Protein Nanoparticles

    PubMed Central

    Burkhard, Peter; Lanar, David E

    2016-01-01

    Summary Despite recent progress with GSK’s RTS’S malaria vaccine, there remains a desperate need for an efficient malaria vaccine. We have used a repetitive antigen display technology to display malaria specific B cell and T cell epitopes in an effort to design a vaccine against Plasmodium falciparum malaria. Our protein sequence when assembled into a nanoparticle induces strong, long-lived and protective immune responses against infection with the parasite. We are confident that the clinical trials with our most developed vaccine candidate will show good protection in a controlled human malaria infection trial. PMID:26468608

  3. Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity.

    PubMed

    Jo, Dong Hyun; Kim, Jin Hyoung; Son, Jin Gyeong; Song, Nam Woong; Kim, Yong-Il; Yu, Young Suk; Lee, Tae Geol; Kim, Jeong Hun

    2014-07-01

    Local application requires fewer nanoparticles than systemic delivery to achieve effective concentration. In this study, we investigated the potential toxicity and efficacy of bare titanium dioxide (TiO2) nanoparticles by local administration into the eye. Mono-disperse, 20nm-size TiO2 nanoparticles did not affect the viability of retinal constituent cells within certain range of concentrations (~1.30μg/mL). Furthermore, local delivery of TiO2 nanoparticles did not induce any significant toxicity at the level of gene expression and histologic integrity in the retina of C57BL/6 mice. Interestingly, at the low concentration (130ng/mL) without definite toxicity, these nanoparticles suppressed in vitro angiogenesis processes and in vivo retinal neovascularization in oxygen-induced retinopathy mice when they are administered intravitreally. Taken together, our results demonstrate that even TiO2 nanoparticles can be safely utilized for the treatment of retinal diseases at the adequate concentration levels, especially through local administration. In this paper the local application of titanium dioxide is described as a local treatment for retinal diseases associated with neovascularization. While these nanoparticles have known systemic toxicity, this work demonstrates that when applied locally in a mouse model, they can be used without observable toxicity even in their native forms. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Optical properties of vanadium dioxide thin film in nanoparticle structure

    NASA Astrophysics Data System (ADS)

    Fang, Baoying; Li, Yi; Tong, Guoxiang; Wang, Xiaohua; Yan, Meng; Liang, Qian; Wang, Feng; Qin, Yuan; Ding, Jie; Chen, Shaojuan; Chen, Jiankun; Zheng, Hongzhu; Yuan, Wenrui

    2015-09-01

    The thermo-optic effect and infrared optical properties of VO2 nanoparticles were studied to obtain an optical material with special property that can be used in smart windows. The reflectance and transmittance spectra of the VO2 nanoparticles with different duty cycles at different temperatures were simulated with a specific dispersion relation. Vanadium metal nanoparticles were deposited on glass substrate by magnetic reactive sputtering with porous alumina template (AAO) mask, and the VO2 nanoparticles were prepared by thermal oxidation. The nanostructure and optical properties of the VO2 nanoparticles were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and spectrophotometry. The method of preparation of the sample is economical and the phase transition temperature is observed to drop to 43 °C. The transmission at 1700 nm exhibits a variation of 29% between the metallic and semiconducting states. The VO2 nanoparticles exhibit a significant thermochromic property. The transmittance of the VO2 nanoparticles is improved compared with the VO2 film. The decrease in phase transition temperature and the enhancement of optical properties demonstrate that VO2 film in nanoparticle structure is a viable candidate material for smart windows.

  5. Nanoparticle string formation on self-assembled copolymer films

    NASA Astrophysics Data System (ADS)

    Jenczyk, J.; Woźniak-Budych, M.; Jarek, M.; Grzeszkowiak, M.; Nowaczyk, G.; Jurga, S.

    2017-06-01

    Nanoparticles (NP) string formations on self-assembled copolymeric substrates has been observed. These ;thread of beads; like structures develop via simple colloidal droplet evaporation during meniscus rim withdrawal on polystyrene-block-poly(ethylene oxide) (PS-PEO) copolymer surfaces. It is shown that the process is triggered by the presence of the substrate impurities, which lead to NP aggregate formations serving as string initiation sites. The growth mechanism of these linear structures seems to be capillarity-driven. Moreover, there is an exceptional alignment coupling between NP strips and the block copolymer (BC) domains observed. BC directed NP assembly stems from a gold nanocrystal surface functionalization, which introduces selective affinity for one particular type of BC domain. The presented results reveal a potential fabrication method of NP wires characterized by remarkably low width and thickness comparable with the size of the individual constituent NP.

  6. Assembly of designed protein scaffolds into monolayers for nanoparticle patterning.

    PubMed

    Mejias, Sara H; Couleaud, Pierre; Casado, Santiago; Granados, Daniel; Garcia, Miguel Angel; Abad, Jose M; Cortajarena, Aitziber L

    2016-05-01

    The controlled assembly of building blocks to achieve new nanostructured materials with defined properties at different length scales through rational design is the basis and future of bottom-up nanofabrication. This work describes the assembly of the idealized protein building block, the consensus tetratricopeptide repeat (CTPR), into monolayers by oriented immobilization of the blocks. The selectivity of thiol-gold interaction for an oriented immobilization has been verified by comparing a non-thiolated protein building block. The physical properties of the CTPR protein thin biomolecular films including topography, thickness, and viscoelasticity, are characterized. Finally, the ability of these scaffolds to act as templates for inorganic nanostructures has been demonstrated by the formation of well-packed gold nanoparticles (GNPs) monolayer patterned by the CTPR monolayer. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. International Space Station Carbon Dioxide Removal Assembly (ISS CDRA) Concepts and Advancements

    NASA Technical Reports Server (NTRS)

    ElSherif, Dina; Knox, James C.

    2005-01-01

    An important aspect of air revitalization for life support in spacecraft is the removal of carbon dioxide from cabin air. Several types of carbon dioxide removal systems are in use in spacecraft life support. These systems rely on various removal techniques that employ different architectures and media for scrubbing CO2, such as permeable membranes, liquid amine, adsorbents, and absorbents. Sorbent systems have been used since the first manned missions. The current state of key technology is the existing International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA), a system that selectively removes carbon dioxide from the cabin atmosphere. The CDRA system was launched aboard UF-2 in February 2001 and resides in the U.S. Destiny Laboratory module. During the past four years, the CDRA system has operated with varying degrees of success. There have been several approaches to troubleshooting the CDRA system aimed at developing work-around solutions that would minimize the impact on astronaut time required to implement interim solutions. The paper discusses some of the short-term fixes applied to promote hardware life and restore functionality, as well as long-term plans and solutions for improving operability and reliability. The CDRA is a critical piece of life support equipment in the air revitalization system of the ISS, and is demonstrated technology that may ultimately prove well-suited for use in lunar or Mars base, and Mars transit life support applications.

  8. Cerium dioxide nanoparticles do not modulate the lipopolysaccharide-induced inflammatory response in human monocytes

    PubMed Central

    Hussain, Salik; Al-Nsour, Faris; Rice, Annette B; Marshburn, Jamie; Ji, Zhaoxia; Zink, Jeffery I; Yingling, Brenda; Walker, Nigel J; Garantziotis, Stavros

    2012-01-01

    Background Cerium dioxide (CeO2) nanoparticles have potential therapeutic applications and are widely used for industrial purposes. However, the effects of these nanoparticles on primary human cells are largely unknown. The ability of nanoparticles to exacerbate pre-existing inflammatory disorders is not well documented for engineered nanoparticles, and is certainly lacking for CeO2 nanoparticles. We investigated the inflammation-modulating effects of CeO2 nanoparticles at noncytotoxic concentrations in human peripheral blood monocytes. Methods CD14+ cells were isolated from peripheral blood samples of human volunteers. Cells were exposed to either 0.5 or 1 μg/mL of CeO2 nanoparticles over a period of 24 or 48 hours with or without lipopolysaccharide (10 ng/mL) prestimulation. Modulation of the inflammatory response was studied by measuring secreted tumor necrosis factor-alpha, interleukin-1beta, macrophage chemotactic protein-1, interferon-gamma, and interferon gamma-induced protein 10. Results CeO2 nanoparticle suspensions were thoroughly characterized using dynamic light scattering analysis (194 nm hydrodynamic diameter), zeta potential analysis (−14 mV), and transmission electron microscopy (irregular-shaped particles). Transmission electron microscopy of CD14+ cells exposed to CeO2 nanoparticles revealed that these nanoparticles were efficiently internalized by monocytes and were found either in vesicles or free in the cytoplasm. However, no significant differences in secreted cytokine profiles were observed between CeO2 nanoparticle-treated cells and control cells at noncytotoxic doses. No significant effects of CeO2 nanoparticle exposure subsequent to lipopolysaccharide priming was observed on cytokine secretion. Moreover, no significant difference in lipopolysaccharide-induced cytokine production was observed after exposure to CeO2 nanoparticles followed by lipopolysaccharide exposure. Conclusion CeO2 nanoparticles at noncytotoxic concentrations neither

  9. Dynamics of nanoparticle assembly from disjointed images of nanoparticle-polymer composites

    NASA Astrophysics Data System (ADS)

    Murthy, Chaitanya R.; Gao, Bo; Tao, Andrea R.; Arya, Gaurav

    2016-02-01

    Understanding how nanoparticles (NPs) diffuse, stick, and assemble into larger structures within polymers is key to the design and fabrication of NP-polymer composites. Here we describe an approach for inferring the dynamic parameters of NP assembly from spatially and temporally disjointed images of composites. The approach involves iterative adjustment of the parameters of a kinetic model of assembly until the computed size statistics of NP clusters match those obtained from high-throughput analysis of the experimental images. Application of this approach to the assembly of shaped, metal NPs in polymer films suggests that NP structures grow via a cluster-cluster aggregation mechanism, where NPs and their clusters diffuse with approximately Stokes-Einstein diffusivity and stick to other NPs or clusters with a probability that depends strongly on the size and shape of the NPs and the molecular weight of the polymer.

  10. Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro.

    PubMed

    Botelho, Monica Catarina; Costa, Carla; Silva, Susana; Costa, Solange; Dhawan, Alok; Oliveira, Paula A; Teixeira, João P

    2014-02-01

    Manufacturing or using nanomaterials may result in exposure of workers to nanoparticles. Potential routes of exposure include skin, lung and gastrointestinal tract. The lack of health-based standards for nanomaterials combined with their increasing use in many different workplaces and products emphasize the need for a reliable temporary risk assessment tool. Therefore, the aim of this work was to explore the effects of different doses of titanium dioxide nanoparticles on human gastric epithelial cells in vitro. We analyzed proliferation by MTT assay, apoptosis by Tunel, migration by injury assay, oxidative stress by determining GSH/GSSG ratio and DNA damage by Comet assay on nanoparticle-treated AGS human gastric epithelial cell line in comparison to controls. We show and discuss the tumor-like phenotypes of nanoparticles-exposed AGS cells in vitro, as increased proliferation and decreased apoptosis. Our results demonstrate for the first time that nanoparticles induce tumor-like phenotypes in human gastric epithelial cells.

  11. Keplerate cluster (Mo-132) mediated electrostatic assembly of nanoparticles.

    PubMed

    Gooch, Jonathan; Jalan, Abhishek A; Jones, Stephanie; Hine, Corey R; Alam, Rabeka; Garai, Somenath; Maye, Mathew M; Müller, Achim; Zubieta, Jon

    2014-10-15

    The electrostatic assembly between a series of differently charged Mo-132-type Keplerates present in the compounds (NH4)42[{(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(CH3COO)}30].ca. {300 H2O+10 CH3COONH4} (Mo-132a), (NH4)72-n[{(H2O)81-n+(NH4)n} {(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(SO4)}30].ca. 200 H2O (Mo-132b), and Na10(NH4)62[{(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(HPO4)}30]. ca. {300H2O+2Na(+)+2NH4(+)+4H2PO4(-)} (Mo-132c) with cationic gold nanoparticles (AuNPs) was investigated for the first time. The rapid electrostatic assembly from nanoscopic entities to micron scale aggregates was observed upon precipitation, which closely matched the point of aggregate electroneutrality. Successful assembly was demonstrated using UV-vis, DLS, TEM, and zeta-potential analysis. Results indicate that the point at which precipitation occurs is related to charge balance or electroneutrality, and that counterions at both the Mo-132 and AuNP play a significant role in assembly.

  12. Acetanilide mediated reversible assembly and disassembly of Au nanoparticles.

    PubMed

    Murugadoss, A; Kar, Manoranjan; Chattopadhyay, Arun

    2008-08-01

    Herein we report the generation of Au nanoparticles (NPs) by sparingly soluble acetanilide in water. We also report the formation of linear chain-like superstructures of self-assembled Au NPs, in the presence of excess acetanilide. This was achieved in two different ways. In the first method, acetanilide was added, with increasing concentration, into aqueous HAuCl(4) to produce Au NPs as well as for the formation of assembly, which varied according to the concentration of acetanilide. The other route involved formation of spherical Au NPs at the lowest concentration of acetanilide, which was followed by the formation of assembly of various lengths upon further addition of variable amount of acetanilide. The assemblies were stable in aqueous solution for days with characteristic UV-vis absorption spectra consisting of two peaks. While the wavelength of the first peak remained the same, the position of the second peak changed to longer wavelength with increasing acetanilide concentration. Interestingly, the linear chain-like arrays could be broken into individual particles by first dilution of the solution concentration followed by treatment with ultrasonic waves. The individual Au NPs again formed linear chain-like arrays upon addition of excess acetanilide.

  13. Anisotropic Self-Assembly of Hairy Inorganic Nanoparticles.

    PubMed

    Yi, Chenglin; Zhang, Shaoyi; Webb, Kyle Thomas; Nie, Zhihong

    2017-01-17

    Current interest in functional assemblies of inorganic nanoparticles (NPs) stems from their collective properties and diverse applications ranging from nanomedicines to optically active metamaterials. Coating the surface of NPs with polymers allows for tailoring of the interactions between NPs to assemble them into hybrid nanocomposites with targeted architectures. This class of building blocks is termed "hairy" inorganic NPs (HINPs). Regiospecific attachment of polymers has been used to achieve directional interactions for HINP assembly. However, to date anisotropic surface functionalization of NPs still remains a challenge. This Account provides a review of the recent progress in the self-assembly of isotropically functionalized HINPs in both the condensed state and aqueous solution as well as the applications of assembled structures in such areas as biomedical imaging and therapy. It aims to provide fundamental mechanistic insights into the correlation between structural characteristics and self-assembly behaviors of HINPs, with an emphasis on HINPs made from NPs grafted with linear block copolymer (BCP) brushes. The key to the anisotropic self-assembly of these HINPs is the generation of directional interactions between HINPs by designing the surrounding medium (e.g., polymer matrix) or engineering the surface chemistry of the HINPs. First, HINPs can self-assemble into a variety of 1D, 2D, or 3D nanostructures with a nonisotropic local arrangement of NPs in films. Although a template is not always required, a polymer matrix (BCPs or supramolecules) can be used to assist the assembly of HINPs to form hybrid architectures. The interactions between brushes of neighboring HINPs or between HINPs and the polymer matrix can be modulated by varying the grafting density and length of one or multiple types of polymers on the surface of the NPs. Second, the rational design of deformable brushes of BCP or mixed homopolymer tethers on HINPs enables the anisotropic assembly

  14. Self-assembled dynamics of silver nanoparticles and self-assembled dynamics of 1,4-benzenedithiol adsorbed on silver nanoparticles: Surface-enhanced Raman scattering study.

    PubMed

    Sun, Mengtao; Xia, Lixin; Chen, Maodu

    2009-10-01

    Self-assembled dynamics of silver nanoparticles and self-assembled dynamics of 1,4-benzenedithiol (1,4-BDT) adsorbed on silver nanoparticles were investigated experimentally with surface-enhanced Raman scattering (SERS) and theoretically with density functional theory (DFT) and finite difference time domain (FDTD) method. The absorption spectroscopy of 1,4-BDT in silver sol at different time intervals was measured, which give the indirect evidence of self-assembled dynamics of silver nanoparticles and self-assembled dynamics of 1,4-benzenedithiol (1,4-BDT) adsorbed on silver nanoparticles. To obtain the direct evidence of self-assembled dynamics of silver nanoparticles and self-assembled dynamics of 1,4-benzenedithiol (1,4-BDT) adsorbed on silver nanoparticles, the SERS of 1,4-BDT were measured experimentally and investigated theoretically. The appearances of S-S stretching band (revealing the formation of multilayers of 1,4-BDT), and strongly enhanced S-C stretching, C-C ring stretching vibrational modes clearly show self-assembled dynamics of 1,4-BDT.

  15. Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

    NASA Technical Reports Server (NTRS)

    Wormhoudt, Joda; Shorter, Joanne H.; McManus, J. Barry; Nelson, David D.; Zahniser, Mark S.; Freedman, Andrew; Campbell, Melissa; Chang, Clarence T.; Smith, Frederick D.

    2004-01-01

    The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (COP) from cabin air. Product water vapor measurements from a CDRA test bed at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the COP desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of approx. 40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact. Measured values of total water vapor evolved during a single desorption cycle were as low as 1 mg.

  16. Peptide-directed self-assembly of functionalized polymeric nanoparticles. Part II: effects of nanoparticle composition on assembly behavior and multiple drug loading ability.

    PubMed

    Xiang, Xu; Ding, Xiaochu; Moser, Trevor; Gao, Qi; Shokuhfar, Tolou; Heiden, Patricia A

    2015-04-01

    Peptide-functionalized polymeric nanoparticles were designed and self-assembled into continuous nanoparticle fibers and three-dimensional scaffolds via ionic complementary peptide interaction. Different nanoparticle compositions can be designed to be appropriate for each desired drug, so that the release of each drug is individually controlled and the simultaneous sustainable release of multiple drugs is achieved in a single scaffold. A self-assembled scaffold membrane was incubated with NIH3T3 fibroblast cells in a culture dish that demonstrated non-toxicity and non-inhibition on cell proliferation. This type of nanoparticle scaffold combines the advantages of peptide self-assembly and the versatility of polymeric nanoparticle controlled release systems for tissue engineering.

  17. Comparative toxicity of silicon dioxide, silver and iron oxide nanoparticles after repeated oral administration to rats.

    PubMed

    Yun, Jun-Won; Kim, Seung-Hyun; You, Ji-Ran; Kim, Woo Ho; Jang, Ja-June; Min, Seung-Kee; Kim, Hee Chan; Chung, Doo Hyun; Jeong, Jayoung; Kang, Byeong-Cheol; Che, Jeong-Hwan

    2015-06-01

    Although silicon dioxide (SiO2), silver (Ag) and iron oxide (Fe2O3) nanoparticles are widely used in diverse applications from food to biomedicine, in vivo toxicities of these nanoparticles exposed via the oral route remain highly controversial. To examine the systemic toxicity of these nanoparticles, well-dispersed nanoparticles were orally administered to Sprague-Dawley rats daily over a 13-week period. Based on the results of an acute toxicity and a 14-day repeated toxicity study, 975.9, 1030.5 and 1000 mg kg(-1) were selected as the highest dose of the SiO2 , Ag and Fe2O3 nanoparticles, respectively, for the 13-week repeated oral toxicity study. The SiO2 and Fe2O3 nanoparticles did not induce dose-related changes in a number of parameters associated with the systemic toxicity up to 975.9 and 1000 mg kg(-1) , respectively, whereas the Ag nanoparticles resulted in increases in serum alkaline phosphatase and calcium as well as lymphocyte infiltration in liver and kidney, raising the possibility of liver and kidney toxicity induced by the Ag nanoparticles. Compared with the SiO2 and Fe2O3 nanoparticles showing no systemic distribution in all tissues tested, the Ag concentration in sampled blood and organs in the Ag nanoparticle-treated group significantly increased with a positive and/or dose-related trend, meaning that the systemic toxicity of the Ag nanoparticles, including liver and kidney toxicity, might be explained by extensive systemic distribution of Ag originating from the Ag nanoparticles. Our current results suggest that further study is required to identify that Ag detected outside the gastrointestinal tract were indeed a nanoparticle form or ionized form. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Nanoparticle-stabilized carbon dioxide-in-water foams with fine texture.

    PubMed

    Worthen, Andrew J; Bagaria, Hitesh G; Chen, Yunshen; Bryant, Steven L; Huh, Chun; Johnston, Keith P

    2013-02-01

    The concept of hydrophilic/CO(2)-philic balance (HCB) was extended to describe stabilization of carbon dioxide-in-water (C/W) foams (also called emulsions) with silica nanoparticles adsorbed at the CO(2)-water interface. Opaque, white C/W foams (bubble diameter <100 μm) were generated with either PEG-coated silica or methylsilyl modified silica nanoparticles in a beadpack with CO(2) densities between 0.2 and 0.9 g mL(-1). For methylsilyl modified silica nanoparticles, 50% SiOH modification provided an optimal HCB for generation and stabilization of viscous C/W foams with high stability. The apparent viscosity measured with a capillary tube viscometer reached 120-fold that of a CO(2)-water mixture without nanoparticles, a consequence of the small bubble size and the energy required to deform a high density of aqueous lamellae between CO(2) bubbles. Air-in-water (A/W) foams stabilized with nanoparticles were used to gain insight into the relationship between nanoparticle surface properties and adsorption of the nanoparticles at various types of interfaces. With suitable nanoparticles, A/W foams were stable for at least 7 days and C/W foams were stable for at least 23 h. The ability to achieve long term stability for nanoparticle stabilized C/W foams could offer an alternative to conventional surfactants, which are known to have much lower adsorption energies. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Labeled magnetic nanoparticles assembly on polypyrrole film for biosensor applications.

    PubMed

    Fredj, H Ben; Helali, S; Esseghaier, C; Vonna, L; Vidal, L; Abdelghani, A

    2008-05-15

    In recent years, conducting polymers combined with metallic nanoparticles have been paid more attention due to their potential applications in microelectronics, microsystems, optical sensors and photoelectronic chemistry. The work presented in this paper describes the preparation and characterization of a nanocomposite composed by a thin polypyrrole (PPy) film covered with an assembly of magnetic nanoparticles (NPs). The magnetic particles were immobilized on PPy films under appropriate magnetic field in order to control their organization on the PPy film and finally to improve the sensitivity of the system in potential sensing applications. The electrical properties and morphology of the resulting PPy film and the PPy film/NPs composite were characterized with cyclic voltammetry, impedance spectroscopy (IS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and infra-red spectroscopy (IR). By using streptavidin labeled magnetic particles it was possible to functionalize the NPs assembly with biotin-Fab fragment K47 antibody. The designed biosensor had been successfully applied in rapid, simple, and accurate measurements of atrazine concentrations, with a significantly low detection limit of 5 ng/ml.

  20. Tailor-made hollow silver nanoparticle cages assembled with silver nanoparticles: an efficient catalyst for epoxidation.

    PubMed

    Anandhakumar, S; Sasidharan, M; Tsao, Cheng-Wen; Raichur, Ashok M

    2014-03-12

    A novel approach toward the synthesis of hollow silver nanoparticle (NP) cages built with building blocks of silver NPs by layer-by-layer (LbL) assembly is demonstrated. The size of the NP cage depends on the size of template used for the LbL assembly. The microcages showed a uniform distribution of spherical silver nanoparticles with an average diameter of 20 ± 5 nm, which increased to 40 ± 5 nm when the AgNO3 concentration was increased from 25 to 50 mM. Heat treatment of the polyelectrolyte capsules at 80 °C near their pKa values yielded intact nano/micro cages. These cages produced a higher conversion for the epoxidation of olefins and maintained their catalytic activity even after four successive uses. The nanocages exhibited unique and attractive characteristics for metal catalytic systems, thus offering the scope for further development as heterogeneous catalysts.

  1. Principles Governing the Self Assembly of Polypeptide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wahome, Newton

    Self assembling systems on the nanometer scale afford the advantage of being able to control submicron level events. In this study, we focus on the self-assembling polypeptide nanoparticles (SAPN). The SAPN scaffold is made up of oligomerizing domains that align along the principle rotational axes of icosahedral symmetry. By aligning them along these axes, a particle with spherical geometry can be achieved. This particle can be utilized as a vaccine, as a drug delivery vehicle, or as a biomedical imaging device. This research will try to answer why the SAPN self-assembles into distinct molecular weight ranges while mostly maintaining a spherical morphology. The first means will be theoretical and computational, where we will utilize a mathematical formalism to find out how the packing of SAPN's monomeric units can occur within symmetric space. Then molecular dynamics will be run within this symmetric space to test the per amino acid residue susceptibility of SAPN towards becoming polymorphic in nature. Means for examining the aggregation propensity of SAPN will be also be tested. Specifically, the relationship of different sequences of SAPN with pH will be elucidated. Co-assembly of SAPN to reduce the surface density of an aggregation prone epitope will be tested. Also, aggregation reduction consisting of the exchange of an anionic denaturant with a positively charged suppressor in order to mitigate a priori peptide association and misfolding, will also be attempted. SAPN has been shown to be an immunogenic platform for the presentation of pathogen derived antigens. We will attempt to show the efficacy of presenting an antigen from HIV-1 which is structurally restrained to best match the native conformation on the virus. Immunological studies will be performed to test the effect of this approach, as well testing the antigenicity of the nanoparticle in the absence of adjuvant. Finally, the antigen presenting nanoparticles will undergo formulation testing, to measure

  2. Titanium dioxide nanoparticles increase sensitivity in the next generation of the water flea Daphnia magna.

    PubMed

    Bundschuh, Mirco; Seitz, Frank; Rosenfeldt, Ricki R; Schulz, Ralf

    2012-01-01

    The nanoparticle industry is expected to become a trillion dollar business in the near future. Therefore, the unintentional introduction of nanoparticles into the environment is increasingly likely. However, currently applied risk-assessment practices require further adaptation to accommodate the intrinsic nature of engineered nanoparticles. Combining a chronic flow-through exposure system with subsequent acute toxicity tests for the standard test organism Daphnia magna, we found that juvenile offspring of adults that were previously exposed to titanium dioxide nanoparticles exhibit a significantly increased sensitivity to titanium dioxide nanoparticles compared with the offspring of unexposed adults, as displayed by lower 96 h-EC(50) values. This observation is particularly remarkable because adults exhibited no differences among treatments in terms of typically assessed endpoints, such as sensitivity, number of offspring, or energy reserves. Hence, the present study suggests that ecotoxicological research requires further development to include the assessment of the environmental risks of nanoparticles for the next and hence not directly exposed generation, which is currently not included in standard test protocols.

  3. Tunneling mechanism and contact mechanics of colloidal nanoparticle assemblies.

    PubMed

    Biaye, Moussa; Zbydniewska, Ewa; Mélin, Thierry; Deresmes, Dominique; Copie, Guillaume; Cleri, Fabrizio; Sangeetha, Neralagatta; Decorde, Nicolas; Viallet, Benoit; Grisolia, Jérémie; Ressier, Laurence; Diesinger, Heinrich

    2016-11-25

    Nanoparticle assemblies with thiol-terminated alkyl chains are studied by conducting atomic force microscopy (c-AFM) regarding their use as strain gauges for touch-sensitive panels. Current-force spectroscopy is used as a characterization tool complementary to the macroscopic setup since it allows a bias to be applied to a limited number of junctions, overcoming the Coulomb blockade energy and focusing on the contact electromechanics and the transport mechanism across the ligand. First, transition voltage spectroscopy is applied with varying force to target the underlying tunneling mechanism by observing whether the transition between the ohmic and exponential current-voltage behavior is force-dependent. Secondly, current-force spectroscopy in the ohmic range below the transition voltage is performed. The current-force behavior of the AFM probe in contact with a nanoparticle multilayer is associated with the spread of force and current within the nanoparticle lattice and at the level of adjacent particles by detailed contact mechanics treatment. The result is twofold: concerning the architecture of sensors, this work is a sample case of contact electromechanics at scales ranging from the device scale down to the individual ligand molecule. Regarding transport across the molecule, the vacuum tunneling mechanism is favored over the conduction by coherent molecular states, which is a decision-making aid for the choice of ligand in applications.

  4. Assembly and in vitro characterization of thiomeric nanoparticles.

    PubMed

    Deutel, Britta; Laffleur, Flavia; Thaurer, Michael; Thaler, Marlene; Bernkop-Schnürch, Andreas

    2016-01-01

    The present study focused on the assembly of an insulin exhibiting, nanoparticulate formulation and the characterization thereof regarding particle size, zeta potential and stability of nanoparticles as well as mucoadhesion indicating, turbidity measurements and drug release studies after particle purification. The preparation was performed in the presence of insulin due to the formation of hydrogen bonds between poly(vinyl pyrrolidone) (PVP) and poly(acrylic acid) (PAA) or its conjugate poly(acrylic acid)-cysteine (PAA-Cys) with a molecular mass of 100 as well as 450 kDa. Stable suspensions, displaying nanoparticles with a mean particle size in the range of 200 nm as well as a negative zeta potential, were achieved with 100 kDa poly(acrylic acid) (PAA100) or poly(acrylic acid)-cysteine (PAA100-Cys). Turbidity measurements displayed a pH dependent interaction of nanoparticulate material and mucin leading to a greater and earlier interference at pH 3.9 compared to pH 7.4. Moreover a 1.2-fold increase of the absorbance of nanoparticle-mucin dispersions compared to mucin control was observed after 3 h. The introduced particulate drug delivery system might in conclusion display a sophisticated vehicle for the non-invasive delivery of insulin and other peptide drugs.

  5. Tunneling mechanism and contact mechanics of colloidal nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Biaye, Moussa; Zbydniewska, Ewa; Mélin, Thierry; Deresmes, Dominique; Copie, Guillaume; Cleri, Fabrizio; Sangeetha, Neralagatta; Decorde, Nicolas; Viallet, Benoit; Grisolia, Jérémie; Ressier, Laurence; Diesinger, Heinrich

    2016-11-01

    Nanoparticle assemblies with thiol-terminated alkyl chains are studied by conducting atomic force microscopy (c-AFM) regarding their use as strain gauges for touch-sensitive panels. Current-force spectroscopy is used as a characterization tool complementary to the macroscopic setup since it allows a bias to be applied to a limited number of junctions, overcoming the Coulomb blockade energy and focusing on the contact electromechanics and the transport mechanism across the ligand. First, transition voltage spectroscopy is applied with varying force to target the underlying tunneling mechanism by observing whether the transition between the ohmic and exponential current-voltage behavior is force-dependent. Secondly, current-force spectroscopy in the ohmic range below the transition voltage is performed. The current-force behavior of the AFM probe in contact with a nanoparticle multilayer is associated with the spread of force and current within the nanoparticle lattice and at the level of adjacent particles by detailed contact mechanics treatment. The result is twofold: concerning the architecture of sensors, this work is a sample case of contact electromechanics at scales ranging from the device scale down to the individual ligand molecule. Regarding transport across the molecule, the vacuum tunneling mechanism is favored over the conduction by coherent molecular states, which is a decision-making aid for the choice of ligand in applications.

  6. Shear-induced failure in jammed nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Srivastava, Ishan; Smith, Kyle C.; Fisher, Timothy S.

    2013-06-01

    The state of stress during the bottom-up assembly of nanoparticles strongly correlates with the microstructure of dense nanoparticle aggregates therein. A range of interaction length scales exists in these dry granular systems spanning from particle-scale elastic repulsion to aggregate van der Waals cohesion; the competition among these interactions dominates athermal microstructural evolution under applied stress. In this work, structural optimization is employed to simulate the nano-mechanical physics of athermal densification and jamming. The translational and rotational motions of nanoparticles are optimized to static equilibrium. An initially sparse and random configuration of particles is compacted into a mechanically stable (i.e., jammed) state by densifying the system under various external-loading paths (e.g., hydrostatic, uniaxial, and shear). The resultant jammed structures and their responses to shear exhibit strong correlation with the strength of interactions in addition to particle shape [see Smith et al., Phys. Rev. E, 82, 051304 (2011)]. The structural information, such as particleparticle contact types and pore geometry of the heterogeneous media in these densified systems will aid in understanding energy transport for functional applications such as thermoelectric elements and battery electrodes.

  7. Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles.

    PubMed

    Jones, Kate; Morton, Jackie; Smith, Ian; Jurkschat, Kerstin; Harding, Anne-Helen; Evans, Gareth

    2015-03-04

    The study was designed to conduct human in vivo and in vitro studies on the gastrointestinal absorption of nanoparticles, using titanium dioxide as a model compound, and to compare nanoparticle behaviour with that of larger particles. A supplier's characterisation data may not fully describe a particle formulation. Most particles tested agreed with their supplied characterisation when assessed by particle number but significant proportions of 'nanoparticle formulations' were particles >100nm when assessed by particle weight. Oral doses are measured by weight and it is therefore important that the weight characterisation is taken into consideration. The human volunteer studies demonstrated that very little titanium dioxide is absorbed gastrointestinally after an oral challenge. There was no demonstrable difference in absorption for any of the three particle sizes tested. All tested formulations were shown to agglomerate in simulated gastric fluid, particularly in the smaller particle formulations. Further agglomeration was observed when dispersing formulations in polymeric or elemental foods. Virtually no translocation of titanium dioxide particles across the cell layer was demonstrated. This study found no evidence that nanoparticulate titanium dioxide is more likely to be absorbed in the gut than micron-sized particles.

  8. Full System Modeling and Validation of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, James; Gauto, Hernando; Gomez, Carlos

    2014-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of various subsystems of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development. The development of the CO2 removal and associated air-drying subsystem hardware under the ARREM project is discussed in a companion paper.

  9. Space Station Freedom carbon dioxide removal assembly two-stage rotary sliding vane pump

    NASA Astrophysics Data System (ADS)

    Matteau, Dennis

    1992-07-01

    The design and development of a positive displacement pump selected to operate as an essential part of the carbon dioxide removal assembly (CDRA) are described. An oilless two-stage rotary sliding vane pump was selected as the optimum concept to meet the CDRA application requirements. This positive displacement pump is characterized by low weight and small envelope per unit flow, ability to pump saturated gases and moderate amount of liquid, small clearance volumes, and low vibration. It is easily modified to accommodate several stages on a single shaft optimizing space and weight, which makes the concept ideal for a range of demanding space applications.

  10. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications

    NASA Astrophysics Data System (ADS)

    Heinz, Hendrik; Pramanik, Chandrani; Heinz, Ozge; Ding, Yifu; Mishra, Ratan K.; Marchon, Delphine; Flatt, Robert J.; Estrela-Lopis, Irina; Llop, Jordi; Moya, Sergio; Ziolo, Ronald F.

    2017-02-01

    Nanostructures of diverse chemical nature are used as biomarkers, therapeutics, catalysts, and structural reinforcements. The decoration with surfactants has a long history and is essential to introduce specific functions. The definition of surfactants in this review is very broad, following its lexical meaning ;surface active agents;, and therefore includes traditional alkyl modifiers, biological ligands, polymers, and other surface active molecules. The review systematically covers covalent and non-covalent interactions of such surfactants with various types of nanomaterials, including metals, oxides, layered materials, and polymers as well as their applications. The major themes are (i) molecular recognition and noncovalent assembly mechanisms of surfactants on the nanoparticle and nanocrystal surfaces, (ii) covalent grafting techniques and multi-step surface modification, (iii) dispersion properties and surface reactions, (iv) the use of surfactants to influence crystal growth, as well as (v) the incorporation of biorecognition and other material-targeting functionality. For the diverse materials classes, similarities and differences in surfactant assembly, function, as well as materials performance in specific applications are described in a comparative way. Major factors that lead to differentiation are the surface energy, surface chemistry and pH sensitivity, as well as the degree of surface regularity and defects in the nanoparticle cores and in the surfactant shell. The review covers a broad range of surface modifications and applications in biological recognition and therapeutics, sensors, nanomaterials for catalysis, energy conversion and storage, the dispersion properties of nanoparticles in structural composites and cement, as well as purification systems and classical detergents. Design principles for surfactants to optimize the performance of specific nanostructures are discussed. The review concludes with challenges and opportunities.

  11. Study of DNA coated nanoparticles as possible programmable self-assembly building blocks

    NASA Astrophysics Data System (ADS)

    Högberg, Björn; Helmersson, Jing; Holm, Svante; Olin, Håkan

    2006-05-01

    Nanoparticles coated with single stranded DNA have been shown to efficiently hybridize to targets of complementary DNA. This property might be used to implement programmable (or algorithmic) self-assembly to build nanoparticle structures. However, we argue that a DNA coated nanoparticle by itself cannot be used as a programmable self-assembly building block since it does not have directed bonds. A general scheme for assembling and purifying nanoparticle eight-mers with eight geometrically well-directed bonds is presented together with some preliminary experimental work.

  12. Silicium dioxide nanoparticles as carriers for photoactivatable CO-releasing molecules (PhotoCORMs).

    PubMed

    Dördelmann, Gregor; Pfeiffer, Hendrik; Birkner, Alexander; Schatzschneider, Ulrich

    2011-05-16

    Silicium dioxide nanoparticles of about 20 nm diameter containing azido groups at the surface were prepared by emulsion copolymerization of trimethoxymethylsilane and (3-azidopropyl)triethoxysilane and studied by transmission electron microscopy (TEM). A photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)(3)(tpm)](+) (tpm = tris(pyrazolyl)methane) containing an alkyne-functionalized tpm ligand was covalently linked to the silicium dioxide nanoparticles via the copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC "click" reaction). The surface functionalization of the particles with azido groups and manganese CORMs was analyzed by UV-vis, IR, (1)H and (13)C CP-MAS NMR spectroscopies as well as energy-dispersive X-ray spectroscopy (EDX). The myoglobin assay was used to demonstrate that the CORM-functionalized nanoparticles have photoinducible CO-release properties very similar to the free complex. In the future, such functionalized silicium dioxide nanoparticles might be utilized as delivery agents for CORMs in solid tumors.

  13. Protein Viability on Au Nanoparticles during an Electrospray and Electrostatic-Force-Directed Assembly Process

    DOE PAGES

    Mao, Shun; Lu, Ganhua; Yu, Kehan; ...

    2010-01-01

    We study the protein viability on Au nanoparticles during an electrospray and electrostatic-force-directed assembly process, through which Au nanoparticle-antibody conjugates are assembled onto the surface of carbon nanotubes (CNTs) to fabricate carbon nanotube field-effect transistor (CNTFET) biosensors. Enzyme-linked immunosorbent assay (ELISA) and field-effect transistor (FET) measurements have been used to investigate the antibody activity after the nanoparticle assembly. Upon the introduction of matching antigens, the colored reaction from the ELISA and the change in the electrical characteristic of the CNTFET device confirm that the antibody activity is preserved during the assembly process.

  14. Layer-by-layer assembly of charged nanoparticles on porous substrates: molecular dynamics simulations.

    PubMed

    Carrillo, Jan-Michael Y; Dobrynin, Andrey V

    2011-04-26

    We performed molecular dynamics simulations of a multilayer assembly of oppositely charged nanoparticles on porous substrates with cylindrical pores. The film was constructed by sequential adsorption of oppositely charged nanoparticles in layer-by-layer fashion from dilute solutions. The multilayer assembly proceeds through surface overcharging after completion of each deposition step. There is almost linear growth in the surface coverage and film thickness during the deposition process. The multilayer assembly also occurs inside cylindrical pores. The adsorption of nanoparticles inside pores is hindered by the electrostatic interactions of newly adsorbing nanoparticles with the multilayer film forming inside the pores and on the substrate. This is manifested in the saturation of the average thickness of the nanoparticle layers formed on the pore walls with an increasing number of deposition steps. The distribution of nanoparticles inside the cylindrical pore was nonuniform with a significant excess of nanoparticles at the pore entrance.

  15. Influence Of Carboxymethyl Cellulose For The Transport Of Titanium Dioxide Nanoparticles In Clean Silica And Mineral-Coated Sands

    EPA Science Inventory

    The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...

  16. Aggregation of titanium dioxide nanoparticles: role of a fulvic acid.

    PubMed

    Domingos, Rute F; Tufenkji, Nathalie; Wilkinson, Kevin I

    2009-03-01

    The increasing use of nanomaterials in consumer products has led to increased concerns abouttheir potential environmental and health impacts. To better understand the transport, fate, and behavior of nanoparticles in aquatic systems, it is essential to understand their interactions with different components of natural waters including natural organic matter over a broad range of physicochemical conditions. Fluorescence correlation spectroscopy was used to determine the diffusion coefficients of TiO2 nanoparticles having a nominal size of 5 nm. The effects of a various concentrations of the Suwannee River Fulvic Acid (SRFA) and the roles of pH and ionic strength were evaluated. Aggregation of the bare TiO2 nanoparticles increased for pH values near the zero point of charge. At any given pH, an increase in ionic strength generally resulted in increased aggregation. Furthermore, conditions which favored adsorption of the SRFA resulted in less aggregation of the TiO2 nanoparticles, presumably due to increased steric repulsion. Under the conditions studied here, nanoparticle dispersions were often stable for environmentally relevant conditions of SRFA, pH, and ionic strength, suggesting that in the natural environment, TiO2 dispersion might occur to a greater extent than expected.

  17. Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings

    NASA Astrophysics Data System (ADS)

    Piwoński, Ireneusz; Spilarewicz-Stanek, Kaja; Kisielewska, Aneta; Kądzioła, Kinga; Cichomski, Michał; Ginter, Joanna

    2016-06-01

    Silver nanoparticles (AgNPs) were grown on the surface of titanium dioxide coating (TiO2) using a photochemical method. The size and number of AgNPs were monitored using scanning electron microscopy (SEM) after 20, 30, 180 and 300 s of UV illumination. It was found that for short illumination times (20 s) a significant number of small nanoparticles were grown. However, after an additional 10 s of illumination, small nanoparticles were subject to decomposition and the released Ag+ ions were utilized for the growth of the existing larger nanoparticles, causing an increase in their dimensions. The observed results indicate that the nucleation and further growth of AgNPs proceed according to Ostwald ripening. For longer illumination times (180, 300 s) a coalescence of closely located particles was observed.

  18. Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications.

    PubMed

    Paz, Yaron

    2011-01-01

    The ability to control the properties of self-assembled monolayers (SAMs) attached to solid surfaces and the rare photocatalytic properties of titanium dioxide provide a rationale for the study of systems comprising both. Such systems can be realized in the form of SAMs grown on TiO(2) or, in a complementary manner, as TiO(2) grown on SAMs. Accordingly, the current status of knowledge regarding SAMs on TiO(2) is described. Photocatalytic phenomena that are of specific relevance to SAMs, such as remote degradation, and cases where SAMs were used to study photocatalytic phenomena, are discussed as well. Mastering of micro-patterning is a key issue en route to a successful assimilation of a variety of titanium dioxide based devices. Accordingly, particular attention is given to the description of a variety of methods and techniques aimed at utilizing the photocatalytic properties of titanium dioxide for patterning. Reports on a variety of applications are discussed. These examples, representing the areas of photovoltaics, microelectronics, microelectromechanics, photocatalysis, corrosion prevention and even biomedicine should be regarded as appetizers paving the way for further studies to be performed.

  19. Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

    PubMed Central

    2011-01-01

    Summary The ability to control the properties of self-assembled monolayers (SAMs) attached to solid surfaces and the rare photocatalytic properties of titanium dioxide provide a rationale for the study of systems comprising both. Such systems can be realized in the form of SAMs grown on TiO2 or, in a complementary manner, as TiO2 grown on SAMs. Accordingly, the current status of knowledge regarding SAMs on TiO2 is described. Photocatalytic phenomena that are of specific relevance to SAMs, such as remote degradation, and cases where SAMs were used to study photocatalytic phenomena, are discussed as well. Mastering of micro-patterning is a key issue en route to a successful assimilation of a variety of titanium dioxide based devices. Accordingly, particular attention is given to the description of a variety of methods and techniques aimed at utilizing the photocatalytic properties of titanium dioxide for patterning. Reports on a variety of applications are discussed. These examples, representing the areas of photovoltaics, microelectronics, microelectromechanics, photocatalysis, corrosion prevention and even biomedicine should be regarded as appetizers paving the way for further studies to be performed. PMID:22259769

  20. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (Ti

  1. Zwitterionic supramolecular nanoparticles: self-assembly and responsive properties

    NASA Astrophysics Data System (ADS)

    Stoffelen, Carmen; Huskens, Jurriaan

    2015-04-01

    Supramolecular nanoparticles (SNPs) are of high interest in both nanoscience and molecular diagnostics and therapeutics, because of their reversible and designable properties. To ensure colloidal stabilization and biocompatibility, most reported strategies require the use of hydrophilic long-chain polymers such as poly(ethylene glycol). Here, we show the formation of zwitterionic supramolecular nanoparticles (ZSNPs) from appropriately functionalized mono- and multivalent components, based on the hetero-ternary host-guest complexation between cucurbit[8]uril (CB[8]), methyl viologen (MV), and azobenzene (Azo), while using the monovalent, small-molecule, non-fouling Azo-carboxybetaine analog (Azo-Zwit) as the shell-forming component. Even though steric shell stabilization is absent, the zwitterionic Azo-Zwit ensures stability of the ZSNPs in water, in PBS (pH 7.4) at ionic strengths ranging from 0-700 mM, and in PBS containing BSA. Size tuning by control over the stoichiometry of the components, as well as reversible assembly and disassembly by photoisomerization of the Azo moieties were observed. Surprisingly, the ZSNPs exhibited aggregation at the narrow pH range of 6.2-6.8.Supramolecular nanoparticles (SNPs) are of high interest in both nanoscience and molecular diagnostics and therapeutics, because of their reversible and designable properties. To ensure colloidal stabilization and biocompatibility, most reported strategies require the use of hydrophilic long-chain polymers such as poly(ethylene glycol). Here, we show the formation of zwitterionic supramolecular nanoparticles (ZSNPs) from appropriately functionalized mono- and multivalent components, based on the hetero-ternary host-guest complexation between cucurbit[8]uril (CB[8]), methyl viologen (MV), and azobenzene (Azo), while using the monovalent, small-molecule, non-fouling Azo-carboxybetaine analog (Azo-Zwit) as the shell-forming component. Even though steric shell stabilization is absent, the

  2. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles.

    PubMed

    Wilson, Christina L; Natarajan, Vaishaali; Hayward, Stephen L; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-28

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 ± 10.56 ppm, 136.0 ± 31.73 ppm and 62.37 ± 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.

  3. ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES

    EPA Science Inventory

    In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...

  4. Characterization of silver nanoparticles synthesized on titanium dioxide fine particles

    NASA Astrophysics Data System (ADS)

    Niño-Martínez, N.; Martínez-Castañón, G. A.; Aragón-Piña, A.; Martínez-Gutierrez, F.; Martínez-Mendoza, J. R.; Ruiz, Facundo

    2008-02-01

    Silver nanoparticles with a narrow size distribution were synthesized over the surface of two different commercial TiO2 particles using a simple aqueous reduction method. The reducing agent used was NaBH4; different molar ratios TiO2:Ag were also used. The nanocomposites thus prepared were characterized using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), dynamic light scattering (DLS) and UV-visible (UV-vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopy studies (TEM and STEM) we observed that the silver nanoparticles are homogeneously distributed over the surface of TiO2 particles and that the TiO2:Ag molar ratio plays an important role. We used three different TiO2Ag molar ratios and the size of the silver nanoparticles is 10, 20 and 80 nm, respectively. It was found that the antibacterial activity of the nanocomposites increases considerably comparing with separated silver nanoparticles and TiO2 particles.

  5. ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES

    EPA Science Inventory

    In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...

  6. Characterization of silver nanoparticles synthesized on titanium dioxide fine particles.

    PubMed

    Niño-Martínez, N; Martínez-Castañón, G A; Aragón-Piña, A; Martínez-Gutierrez, F; Martínez-Mendoza, J R; Ruiz, Facundo

    2008-02-13

    Silver nanoparticles with a narrow size distribution were synthesized over the surface of two different commercial TiO(2) particles using a simple aqueous reduction method. The reducing agent used was NaBH(4); different molar ratios TiO(2):Ag were also used. The nanocomposites thus prepared were characterized using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), dynamic light scattering (DLS) and UV-visible (UV-vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopy studies (TEM and STEM) we observed that the silver nanoparticles are homogeneously distributed over the surface of TiO(2) particles and that the TiO(2):Ag molar ratio plays an important role. We used three different TiO(2)Ag molar ratios and the size of the silver nanoparticles is 10, 20 and 80 nm, respectively. It was found that the antibacterial activity of the nanocomposites increases considerably comparing with separated silver nanoparticles and TiO(2) particles.

  7. ELECTRICAL AND MECHANICAL PROPERTIES OF TITANIUM DIOXIDE NANOPARTICLE FILLED EPOXY RESIN COMPOSITES

    SciTech Connect

    Polizos, G.; Tuncer, E.; Sauers, I.; James, D. R.; Ellis, A. R.; More, K. L.

    2010-01-01

    Titanium dioxide nanoparticles were synthesized in an aqueous solution. They were dispersed into an epoxy polymer matrix (commercially available under the trade name Araldite 5808) using a planetary mixer. Nanocomposite materials were prepared with several weight loadings of nanoparticles In this work we Investigate the effects of the particle agglomeration on the mechanical and electrical properties of the composites. The structure of the composites was probed by transmission electron microscopy (TEM). For investigating the mechanical properties, a dynamical mechanical analysis (DMA) was employed. The dielectric breakdown strength and the impedance response were also measured in order to characterize the insulating properties of the nanocomposites and their potential use in high voltage applications.

  8. Electrical and Mechanical Properties of Titanium Dioxide Nanoparticle Filled Epoxy Resin Composites

    NASA Astrophysics Data System (ADS)

    Polizos, G.; Tuncer, E.; Sauers, I.; James, D. R.; Ellis, A. R.; More, K. L.

    2010-04-01

    Titanium dioxide nanoparticles were synthesized in an aqueous solution. They were dispersed into an epoxy polymer matrix (commercially available under the trade name Araldite 5808) using a planetary mixer. Nanocomposite materials were prepared with several weight loadings of nanoparticles. In this work we investigate the effects of the particle agglomeration on the mechanical and electrical properties of the composites. The structure of the composites was probed by transmission electron microscopy (TEM). For investigating the mechanical properties, a dynamical mechanical analysis (DMA) was employed. The dielectric breakdown strength and the impedance response were also measured in order to characterize the insulating properties of the nanocomposites and their potential use in high voltage applications.

  9. Electrical and mechanical properties of titanium dioxide nanoparticle filled epoxy resin composites

    SciTech Connect

    Polyzos, Georgios; Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R; More, Karren Leslie

    2009-01-01

    Titanium dioxide nanoparticles were synthesized in an aqueous solution. They were dispersed into an epoxy polymer matrix (commercially available under the trade name Araldite 5808) using a planetary mixer. Nanocomposite materials were prepared with several weight loadings of nanoparticles. In this work we investigate the effects of the particle agglomeration on the mechanical and electrical properties of the composites. The structure of the composites was probed by transmission electron microscopy (TEM). For investigating the mechanical properties, a dynamical mechanical analysis (DMA) was employed. The dielectric breakdown strength and the impedance response were also measured in order to characterize the insulating properties of the nanocomposites and their potential use in high voltage applications.

  10. Oxidative potential of ultraviolet-A irradiated or nonirradiated suspensions of titanium dioxide or silicon dioxide nanoparticles on Allium cepa roots.

    PubMed

    Koce, Jasna Dolenc; Drobne, Damjana; Klančnik, Katja; Makovec, Darko; Novak, Sara; Hočevar, Matej

    2014-04-01

    The effect of ultraviolet-A irradiated or nonirradiated suspensions of agglomerates of titanium dioxide (TiO(2)) or silicon dioxide (SiO(2)) nanoparticles on roots of the onion (Allium cepa) has been studied. The reactive potential of TiO(2) nanoparticles, which have photocatalytic potential, and the nonphotocatalytic SiO(2) nanoparticles with the same size of agglomerates was compared. The authors measured the activity of antioxidant enzymes glutathione reductase, ascorbate peroxidase, guaiacol peroxidase, and catalase as well as lipid peroxidation to assess the oxidative stress in exposed A. cepa roots. A wide range of concentrations of nanoparticles was tested (0.1-1000 µg/mL). The sizes of agglomerates ranged in both cases from 300 nm to 600 nm, and the exposure time was 24 h. Adsorption of SiO(2) nanoparticles on the root surface was minimal but became significant when roots were exposed to TiO(2) agglomerates. No significant biological effects were observed even at high exposure concentrations of SiO(2) and TiO(2) nanoparticles individually. Plants appear to be protected against nanoparticles by the cell wall, which shields the cell membrane from direct contact with the nanoparticles. The authors discuss the need to supplement conventional phytotoxicity and stress end points with measures of plant physiological state when evaluating the safety of nanoparticles.

  11. Multilayers of oppositely charged SiO2 nanoparticles: effect of surface charge on multilayer assembly.

    PubMed

    Lee, Daeyeon; Gemici, Zekeriyya; Rubner, Michael F; Cohen, Robert E

    2007-08-14

    The growth behavior of all-silica nanoparticle multilayer thin films assembled via layer-by-layer deposition of oppositely charged SiO2 nanoparticles was studied as a function of assembly conditions. Amine-functionalized SiO2 nanoparticles were assembled into multilayers through the use of three different sizes of negatively charged SiO2 nanoparticles. The assembly pH of the nanoparticle suspensions needed to achieve maximum growth for each system was found to be different. However, the surface charge /z/ of the negatively charged silica nanoparticles at the optimal assembly pH was approximately the same, indicating the importance of this parameter in determining the growth behavior of all-nanoparticle multilayers. When /z/ of the negatively charged nanoparticles lies between 0.6z(0) and 1.2z(0) (where z(0) is the pH-independent value of the zeta-potential of the positively charged nanoparticles used in this study), the multilayers show maximum growth for each system. The effect of particle size on the film structure was also investigated. Although nanoparticle size significantly influenced the average bilayer thickness of the multilayers, the porosity and refractive index of multilayers made from nanoparticles of different sizes varied by a small amount. For example, the porosity of the different multilayer systems ranged from 42 to 49%. This study further demonstrates that one-component all-nanoparticle multilayers can be assembled successfully by depositing nanoparticles of the same material but with opposite surface charge.

  12. Self-assembled hydrogels utilizing polymer-nanoparticle interactions

    NASA Astrophysics Data System (ADS)

    Appel, Eric A.; Tibbitt, Mark W.; Webber, Matthew J.; Mattix, Bradley A.; Veiseh, Omid; Langer, Robert

    2015-02-01

    Mouldable hydrogels that flow on applied stress and rapidly self-heal are increasingly utilized as they afford minimally invasive delivery and conformal application. Here we report a new paradigm for the fabrication of self-assembled hydrogels with shear-thinning and self-healing properties employing rationally engineered polymer-nanoparticle (NP) interactions. Biopolymer derivatives are linked together by selective adsorption to NPs. The transient and reversible interactions between biopolymers and NPs enable flow under applied shear stress, followed by rapid self-healing when the stress is relaxed. We develop a physical description of polymer-NP gel formation that is utilized to design biocompatible gels for drug delivery. Owing to the hierarchical structure of the gel, both hydrophilic and hydrophobic drugs can be entrapped and delivered with differential release profiles, both in vitro and in vivo. The work introduces a facile and generalizable class of mouldable hydrogels amenable to a range of biomedical and industrial applications.

  13. Assembling Bare Au Nanoparticles at Positively Charged Templates

    SciTech Connect

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; Mallapragada, Surya; Vaknin, David

    2016-05-26

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), display less in-plane regular packing compared to bare AuNPs.

  14. Assembling Bare Au Nanoparticles at Positively Charged Templates

    DOE PAGES

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; ...

    2016-05-26

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), displaymore » less in-plane regular packing compared to bare AuNPs.« less

  15. Dual stimuli-responsive self-assembled supramolecular nanoparticles.

    PubMed

    Stoffelen, Carmen; Voskuhl, Jens; Jonkheijm, Pascal; Huskens, Jurriaan

    2014-03-24

    Supramolecular nanoparticles (SNPs) encompass multiple copies of different building blocks brought together by specific noncovalent interactions. The inherently multivalent nature of these systems allows control of their size as well as their assembly and disassembly, thus promising potential as biomedical delivery vehicles. Here, dual responsive SNPs have been based on the ternary host-guest complexation between cucurbit[8]uril (CB[8]), a methyl viologen (MV) polymer, and mono- and multivalent azobenzene (Azo) functionalized molecules. UV switching of the Azo groups led to fast disruption of the ternary complexes, but to a relatively slow disintegration of the SNPs. Alternating UV and Vis photoisomerization of the Azo groups led to fully reversible SNP disassembly and reassembly. SNPs were only formed with the Azo moieties in the trans and the MV units in the oxidized states, respectively, thus constituting a supramolecular AND logic gate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Assembling Bare Au Nanoparticles at Positively Charged Templates

    PubMed Central

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; Mallapragada, Surya; Vaknin, David

    2016-01-01

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), display less in-plane regular packing compared to bare AuNPs. PMID:27225047

  17. Assembling Bare Au Nanoparticles at Positively Charged Templates

    SciTech Connect

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; Mallapragada, Surya; Vaknin, David

    2016-05-26

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the chargedinterfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits shortrange in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), display less in-plane regular packing compared to bare AuNPs.

  18. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles

    PubMed Central

    Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena; Schiøtz, Jakob; Kasama, Takeshi; Puntes, Victor F.; Frandsen, Cathrine

    2015-01-01

    Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100–400 nm and lengths of up to some hundred microns. Lorenz microscopy and electron holography reveal collective magnetic ordering in these structures. However, in contrast to continuous ferromagnetic thin films of comparable dimensions, domain walls appear preferentially as longitudinal, i.e., oriented parallel to the long axis of the nanoparticle assemblies. We explain this unusual domain structure as the result of dipolar interactions and shape anisotropy, in the absence of inter-particle exchange coupling. PMID:26416297

  19. A self-assembling lanthanide molecular nanoparticle for optical imaging†

    PubMed Central

    Brown, Katherine A.; Yang, Xiaoping; Schipper, Desmond; Hall, Justin W.; DePue, Lauren J.; Gnanam, Annie J.; Arambula, Jonathan F.; Jones, Jessica N.; Swaminathan, Jagannath; Dieye, Yakhya; Vadivelu, Jamuna; Chandler, Don J.; Marcotte, Edward M.; Sessler, Jonathan L.; Ehrlich, Lauren I. R.; Jones, Richard A.

    2015-01-01

    Chromophores that incorporate f-block elements have considerable potential for use in bioimaging applications because of their advantageous photophysical properties compared to organic dye, which are currently widely used. We are developing new classes of lanthanide-based self-assembling molecular nanoparticles as reporters for imaging and as multi-functional nanoprobes or nanosensors for use with biological samples. One class of these materials, which we call lanthanide “nano-drums”, are homogeneous 4d–4f clusters approximately 25 to 30 Å in diameter. These are capable of emitting from the visible to near-infrared wavelengths. Here, we present the synthesis, crystal structure, photophysical properties and comparative cytotoxicity data for a 32 metal Eu-Cd nano-drum [Eu8Cd24L12(OAc)48] (1). We also explored the imaging capabilities of this nano-drum using epifluorescence, TIRF, and two-photon microscopy platforms. PMID:25512085

  20. DNA Linker Mediated Assembly of Gold Nanoparticles Superlattice

    NASA Astrophysics Data System (ADS)

    Xiong, Huiming; Sfeir, Mattew Y.; van der Lelie, Daniel; Gang, Oleg

    2011-03-01

    A BCC (body-centered-cubic) crystalline phase forms when flexible ssDNA linkers are added to the mixture of two types of dispersed, ssDNAs capped gold nanocolloids which are mutually non-complementary but complementary to the respective ends of the linker DNA. The state diagram of DNA linker mediated nanoparticle assemblies has been experimentally investigated and constructed by using in-situ small angle x-ray scattering. The optically active three-dimensional superlattice containing plasmonic particles and DNA-encoded chromophors were further fabricated using this approach. We investigated structural tunability and corresponding optical response of the multicomponent superlattices. Support from the U. S. DOE Office of Science and Office of Basic Energy Sciences under contract No. DE-AC-02-98CH10886 and Shanghai Pujiang Program (10PJ1405400) is appreciated.

  1. Assembling Bare Au Nanoparticles at Positively Charged Templates

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; Mallapragada, Surya; Vaknin, David

    2016-05-01

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), display less in-plane regular packing compared to bare AuNPs.

  2. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    SciTech Connect

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate the effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.

  3. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    DOE PAGES

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate themore » effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.« less

  4. Bioavailability of Silica, Titanium Dioxide, and Zinc Oxide Nanoparticles in Rats.

    PubMed

    Kim, Mi-Kyung; Lee, Jeong-A; Jo, Mi-Rae; Choi, Soo-Jin

    2016-06-01

    Inorganic nanoparticles have been widely applied to various industrial fields and biological applications. However, the question as to whether nanoparticles are more efficiently absorbed into the systemic circulation than bulk-sized materials remains to be unclear. In the present study, the physico-chemical and dissolution properties of the most extensively developed inorganic nanoparticles, such as silica (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO), were analyzed, as compared with bulk-sized particles. Furthermore, the bioavailability of nanoparticles versus their bulk counterparts was evaluated in rats after a single oral administration and intravenous injection, respectively. The results demonstrated that all bulk materials had slightly higher crystallinity than nanoparticles, however, their dissolution properties were not affected by particle size. No significant difference in oral absorption and bioavailability of both SiO2 and TiO2 was found between nano- and bulk-sized materials, while bulk ZnO particles were more bioavailable in the body than ZnO nanoparticles. These finding will provide critical information to apply nanoparticles with high efficiency as well as to predict their toxicity potential.

  5. Surface passivation of semiconducting oxides by self-assembled nanoparticles

    PubMed Central

    Park, Dae-Sung; Wang, Haiyuan; Vasheghani Farahani, Sepehr K.; Walker, Marc; Bhatnagar, Akash; Seghier, Djelloul; Choi, Chel-Jong; Kang, Jie-Hun; McConville, Chris F.

    2016-01-01

    Physiochemical interactions which occur at the surfaces of oxide materials can significantly impair their performance in many device applications. As a result, surface passivation of oxide materials has been attempted via several deposition methods and with a number of different inert materials. Here, we demonstrate a novel approach to passivate the surface of a versatile semiconducting oxide, zinc oxide (ZnO), evoking a self-assembly methodology. This is achieved via thermodynamic phase transformation, to passivate the surface of ZnO thin films with BeO nanoparticles. Our unique approach involves the use of BexZn1-xO (BZO) alloy as a starting material that ultimately yields the required coverage of secondary phase BeO nanoparticles, and prevents thermally-induced lattice dissociation and defect-mediated chemisorption, which are undesirable features observed at the surface of undoped ZnO. This approach to surface passivation will allow the use of semiconducting oxides in a variety of different electronic applications, while maintaining the inherent properties of the materials. PMID:26757827

  6. Core loss and magnetic susceptibility of superparamagnetic Fe nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Kin, Masane; Kura, Hiroaki; Ogawa, Tomoyuki

    2016-12-01

    Toroidal-shaped high-density Fe nanoparticle assemblies (FNAs) were fabricated by molding different sized Fe nanoparticles (NPs), and the effect of the magnetic behavior of the FNAs on the core loss and the magnetic susceptibility was investigated. An FNA with 4.3 nm diameter Fe NPs exhibits superparamagnetism at room temperature while an FNA with 6.4 nm diameter Fe NPs doesn't exhibit superparamagnetism at room temperature. AC magnetization curves at 1, 10 and 100 kHz were measured to evaluate the core loss of the toroidal-shaped FNAs. Both FNAs exhibited no significant eddy current loss, which suggests that surfactants on the NP surface effectively act to electrically insulate the NPs, and the NPs are not sintered together when the FNAs are molded. The AC magnetization curves had no hysteresis for the FNA with 4.3 nm diameter Fe NPs, i.e., the core loss was minimal for the superparamagnetic FNA. The magnetic susceptibility of the superparamagnetic FNA with 4.3 nm Fe NPs was 12 times higher than that estimated from Langevin theory due to the effect of strong magnetic dipole interaction. These results suggest that the superparamagnetic FNA has potential as a magnetic core material that exhibits low core loss and high magnetic susceptibility, even at high frequency.

  7. [Assemble of magnetic nanoparticles into the structure of cisplatin liposome].

    PubMed

    Wang, Lu; Yang, Cai-qin; Wang, Jing

    2011-05-01

    Effects of different procedures of magnetic nanoparticles into the liposome structure on the distribution of magnetic particles in the liposome were investigated. Magnetic liposomes with high-encapsulating rate of cisplatin (CDDP) were obtained. Fe3O4 magnetic nanoparticles which was modified by organic functional group on surface was synthesized by an one-step modified hydrothermal method. The CDDP magnetic liposomes were prepared by a film scattering-ultrasonic technique and the concentrations of CDDP in the liposomes were measured by graphite furnace atomic absorbance spectroscopy. Magnetic liposomes with different microstructure were prepared by the two different procedures, where the magnetic particles were combined with phospholipid before the film preparation to form liposome in procedure I, and drug solution and the magnetic particles were mixed before hydrating the lipids film to form liposome in procedure II. The liposome structure was observed by transmission electron microscope (TEM). The CDDP magnetic liposomes were prepared by the optimized method which was selected by orthogonal test. Encapsulation rate of the magnetic particles distributed in the phospholipid bilayer through the procedure I was 34.90%. While liposome, produced by the procedure II technique, contained magnetic particles in the interior aqueous compartment, which encapsulation rate was 28.34%. Encapsulation rates of both I and II were higher than that of conventional liposome. The release profile of all the three different liposomes in vitro fitted with a first-order equation. Because of distribution of magnetic particles in the phospholipid bilayer, the skeleton of phospholipid bilayer was changed. The releasing tl/2 of magnetic liposomes produced by the procedure I technique is 9 h, which is shorter than that of the other two liposomes. Assemble of magnetic nanoparticles into the structure of liposome was succeeded by the procedure I, which showed superiority than by procedure II

  8. Plasmonic hysteresis: temperature dependent resonance of vanadium-dioxide coated gold nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Ferrara, Davon; Nag, Joyeeta; Donev, Eugene; Suh, Jae; Haglund, Richard

    2009-03-01

    The optical properties of metal nanostructures are dominated by the free-electron, or plasmonic, response of the material. In the case of metal nanoparticles, this leads to a resonant extinction with wavelength determined by the particles' size, shape, material, and surrounding dielectric. Vanadium-dioxide has a hysteretic transition from a semiconductor to a metal about 68C accompanied by a change in its structural, electrical and optical properties. Using vanadium dioxide as a thermochromic dielectric switch, we map out the hysteresis of the plasmonic resonance of gold nanoparticle arrays coated with the metal-oxide as a function of temperature. To study this plasmonic dependence on temperature, a sample of 20nm thick Au nanoparticle arrays with various particle sizes and grating constants were coated with a 60nm thick vanadium dioxide film. We find that near the transition, the particle plasmon resonance can shift position over 250nm. Measurements of the line shape show the effects of strong correlation in the vicinity of the switching temperatures.

  9. Kinetics of colloidal gold nanoparticle chain assembly via in situ liquid cell electron microscopy observations

    NASA Astrophysics Data System (ADS)

    Woehl, Taylor; Prozorov, Tanya; Emergent Atomic; Magnetic Structures Team

    2014-11-01

    Various types of colloidal nanoparticles are known to self-assemble into hierarchical mesostructures via anisotropic interparticle interactions. Previous modeling and experiments have suggested that dipolar interactions may be responsible for assembly of one dimensional nanoparticle chain structures; however, due to a lack of in situobservations little is known about the kinetics of the self-assembly. Here we use real-time nanoscale observations to measure the self-assembly kinetics of colloidal gold nanoparticles into one dimensional chains. Gold nanoparticles suspended in acetate buffer were observed viain situ liquid electron microscopy to self-assemble into chains of 5--10 nanoparticles over a time of minutes. Self-assembly is initiated upon irradiation of the nanoparticles with the imaging electron beam. Measurements of the self-assembly kinetics revealed that the chains formed via second order aggregation kinetics during the first tens of seconds. We investigate the effects of the electron beam current and ionic strength of the buffer solution on the effective aggregation rate and chain formation mechanism. Our observations suggest that the aggregation rate increases with the effective diffusivity of the nanoparticles. T.P. acknowledges support from the Department of Energy Office of Science Early Career Research Award, Biomolecular Materials Program. This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences.

  10. Nucleic Acid-directed Self-assembly of Multifunctional Gold Nanoparticle Imaging Agents1

    PubMed Central

    Zhang, Ziyan; Liu, Yongjian; Jarreau, Chad; Welch, Michael J.; Taylor, John-Stephen A.

    2013-01-01

    Gold nanoparticles have attracted much interest as a platform for development of multifunctional imaging and therapeutic agents. Multifunctionalized gold nanoparticles are generally constructed by covalent assembly of a gold core with thiolated ligands. In this study, we have assembled multifunctionalized gold nanoparticles in one step by nucleic acid hybridization of ODN (oligodeoxynucleotide)-derivatized gold nanoparticles with a library of pre-functionalized complementary PNAs (peptide nucleic acids). The PNAs were functionalized by conjugation with DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) for chelating 64Cu for PET imaging, PEG (polyethylene glycol) for conferring stealth properties, and Cy5 for fluorescent imaging. The resulting nanoparticles showed good stability both in vitro and in vivo showing biodistribution behavior in a mouse that would be expected for a PEGylated gold nanoparticle rather than that for the radiolabelled PNA used in its assembly. PMID:24058728

  11. Formulation effects on the release of silica dioxide nanoparticles from paint debris to water.

    PubMed

    Zuin, Stefano; Massari, Andrea; Ferrari, Arlen; Golanski, Luana

    2014-04-01

    Waterborne paints with integrated nanoparticles have been recently introduced into the market as nanoparticles offer improved or novel functionalities to paints. However, the release of nanoparticles during the life cycle of nano-enhanced paint has only been studied to a very limited extent. The paint composition could determine in what quantities and forms the nanoparticles are released. In this work, paint formulations containing the same amount of silicon dioxide (SiO2) nanoparticles but differing in the pigment volume concentration (PVC) and in amount and type of binder and pigment, were studied through leaching test to investigate the influence of these parameters on release of Si from paint. The results indicate greater release of Si, about 1.7 wt.% of the SiO2 nanoparticles in the paint, for paint formulated with higher PVC value (63%), suggesting that the PVC is a crucial factor for release of SiO2 nanoparticles from paints. This hypothesis was also based on the fact that agglomerates of SiO2 nanoparticles were only found in leachates from paint with higher PVC. A paint sample with the higher amount of binder and less calcite filler exhibited a lower release of Si among the paints with a low PVC value (35%), and no SiO2 particles were detected in leachates collected from this paint. This could be due to the fact that a high portion of binder forms a suitable matrix to hold the SiO2 ENPs in paint. The paint sample in which the amount of calcite was partially substituted with TiO2 pigment did not show an important reduction on Si release. Our work suggests that paint debris containing SiO2 nanoparticles may release a limited amount of Si into the environment, and that by adjusting the properties of the binder in combination with common pigments it is possible to reduce the release of SiO2 nanoparticles.

  12. Laser trapping and assembling of nanoparticles at solution surface studied by reflection micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Shun-Fa; Yuyama, Ken-ichi; Suigiyama, Teruki; Masuhara, Hiroshi

    2015-08-01

    We present the laser power dependent behavior of optical trapping assembling of 208-nm polystyrene (PS) nanoparticles at the solution surface layer. The assembling dynamics is examined by reflection microspectroscopy as well as transmission and backscattering imaging. The transmission imaging shows that the laser irradiation at the solution surface layer forms a nanoparticle assembly, whose diameter becomes large with the increase in the laser power. The backscattering image of the assembly gives structural color, meaning that nanoparticles are periodically arranged over the whole assembly region. In reflection microspectroscopy, one band appears at long wavelength and is gradually shifted to the short wavelength with the irradiation. After the blue shift, the reflection band is located at the shorter wavelength under the laser irradiation at the higher power. We discuss these spectral changes from the viewpoint of the inter-particle distance determined by the dynamic balance between attractive optical force and repulsive electrostatic force among nanoparticles.

  13. Nanoparticles Self-Assembly Driven by High Affinity Repeat Protein Pairing.

    PubMed

    Gurunatha, Kargal L; Fournier, Agathe C; Urvoas, Agathe; Valerio-Lepiniec, Marie; Marchi, Valérie; Minard, Philippe; Dujardin, Erik

    2016-03-22

    Proteins are the most specific yet versatile biological self-assembling agents with a rich chemistry. Nevertheless, the design of new proteins with recognition capacities is still in its infancy and has seldom been exploited for the self-assembly of functional inorganic nanoparticles. Here, we report on the protein-directed assembly of gold nanoparticles using purpose-designed artificial repeat proteins having a rigid but modular 3D architecture. αRep protein pairs are selected for their high mutual affinity from a library of 10(9) variants. Their conjugation onto gold nanoparticles drives the massive colloidal assembly of free-standing, one-particle thick films. When the average number of proteins per nanoparticle is lowered, the extent of self-assembly is limited to oligomeric particle clusters. Finally, we demonstrate that the aggregates are reversibly disassembled by an excess of one free protein. Our approach could be optimized for applications in biosensing, cell targeting, or functional nanomaterials engineering.

  14. Preparation of Aromatic Polycarbonate Nanoparticles using Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Lee, Jun-Young; Song, Cheong-Hun; Kim, Joong-In; Kim, Jung-Hyun

    2002-04-01

    A novel synthetic process for producing aromatic polycarbonate (PC) nanoparticles using supercritical CO2 was developed. The objective of the present research work was to synthesize high molecular weight PC nanoparticles using transesterification between bisphenol-A (BPA) and diphenyl carbonate (DPC) in supercritical CO2 which is an excellent plasticizing agent and a good solvent for phenol, a by-product of the reaction. Poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) tri-block copolymer with CO2-phobic anchor and CO2-philic tail group was used as a stabilizer for the preparation of stable dispersions of BPA-DPC mixture in a CO2 continuous phase. As the reaction was proceeding, phenol formed from the reaction was dissolved and diffused into supercritical CO2 phase. The PC nanoparticles were isolated by simple venting of the supercritical CO2 from the reactor. Spherical morphology of PC particles was confirmed by scanning electron microscopy. Particle size and morphology of PC particles were modified upon variation of the process conditions. The resulting PC particles with a nano-size of 30-140 nm have a high molecular weight ( M w) of 3.1×105 (g/mol).

  15. Titanium Dioxide Nanoparticles: a Risk for Human Health?

    PubMed

    Grande, Fedora; Tucci, Paola

    2016-01-01

    Titanium dioxide (TiO2) is a natural oxide of the element titanium with low toxicity, and negligible biological effects. The classification as bio-inert material has given the possibility to normal-sized (>100 nm) titanium dioxide particles (TiO2-NPs) to be extensively used in food products and as ingredients in a wide range of pharmaceutical products and cosmetics, such as sunscreens and toothpastes. Therefore, human exposure may occur through ingestion and dermal penetration, or through inhalation route, during both the manufacturing process and use. In spite of the extensively use of TiO2-NPs, the biological effects and the cellular response mechanisms are still not completely elucidated and thus a deep understanding of the toxicological profile of this compound is required. The main mechanism underlining the toxicity potentially triggered by TiO2-NPs seems to involve the reactive oxygen species (ROS) production, resulting in oxidative stress, inflammation, genotoxicity, metabolic change and potentially carcinogenesis. The extent and type of cell damage strongly depend on chemical and physical characteristics of TiO2-NPs, including size, crystal structure and photo-activation. In this mini-review, we would like to discuss the latest findings on the adverse effects and on potential human health risks induced by TiO2-NPs exposure.

  16. Chemically directed assembly of nanoparticles for material and biological applications

    NASA Astrophysics Data System (ADS)

    Park, Myoung-Hwan

    The unique electronic, magnetic, and optical properties of nanoparticles (NPs) make them useful building blocks for nanodevices and biofabrication. Site-selective immobilization/deposition of NPs on surfaces at desired positions is an important fabrication step in realizing the potential of nanomaterials in these applications. In this thesis, my research has focused on developing new strategies for mono- and multilayered-NP deposition on surfaces, increasing the stability of NP-assembles upon various surfaces for practical use of NP-based devices. Chemically directed dithiocarbamate binding of amine groups to NPs in the presence of CS2 was used for enhancing the robustness of NP assembles. Such patterning methodologies have allowed me to use site-directed NP immobilization in applications as diverse as microcontact printing, nanomolding in capillaries, nanoimprint lithography, and photolithography. Also, I have developed a simple and reliable one-step technique to form robust dendrimer-NP nanocomposites using dithiocarbamate-based chemistry. These composites are able to encapsulate and release various therapeutics, providing controllable sustained release and to separate small molecules and biomacromolecules.

  17. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly

    PubMed Central

    Li, Zihui; Sai, Hiroaki; Warren, Scott C.; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M.; Wiesner, Ulrich

    2010-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm Pt NPs was confirmed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. Estimations of the Pt NP ligand head group density based on HAADF-STEM images and thermogravimetric analysis (TGA) data yielded results comparable to what has been found for alkanethiol self-assembled monolayers (SAMs) on flat Pt {111} surfaces. Changing the volume fraction of Pt NPs in block copolymer-NP composites yielded hybrids with spherical micellar, wormlike micellar, lamellar and inverse hexagonal morphologies. Disassembly of hybrids with spherical, wormlike micellar, and lamellar morphologies generated isolated metal-NP based nano-spheres, cylinders and sheets, respectively. Results suggest the existence of powerful design criteria for the formation of metal-based nanostructures from designer blocked macromolecules. PMID:21103025

  18. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly.

    PubMed

    Li, Zihui; Sai, Hiroaki; Warren, Scott C; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M; Wiesner, Ulrich

    2009-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm Pt NPs was confirmed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. Estimations of the Pt NP ligand head group density based on HAADF-STEM images and thermogravimetric analysis (TGA) data yielded results comparable to what has been found for alkanethiol self-assembled monolayers (SAMs) on flat Pt {111} surfaces. Changing the volume fraction of Pt NPs in block copolymer-NP composites yielded hybrids with spherical micellar, wormlike micellar, lamellar and inverse hexagonal morphologies. Disassembly of hybrids with spherical, wormlike micellar, and lamellar morphologies generated isolated metal-NP based nano-spheres, cylinders and sheets, respectively. Results suggest the existence of powerful design criteria for the formation of metal-based nanostructures from designer blocked macromolecules.

  19. Effect of Treatment Media on the Agglomeration of Titanium Dioxide Nanoparticles: Impact on Genotoxicity, Cellular Interaction, and Cell Cycle

    EPA Science Inventory

    ABSTRACT The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus ass...

  20. Effect of Treatment Media on the Agglomeration of Titanium Dioxide Nanoparticles: Impact on Genotoxicity, Cellular Interaction, and Cell Cycle

    EPA Science Inventory

    ABSTRACT The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus ass...

  1. Nanoparticle self-assembly as a model system for crystal growth and epitaxy

    NASA Astrophysics Data System (ADS)

    Rupich, Sara Michelle

    As the size of features in modern technological devices become increasingly smaller, the bottom-up approach to materials design is becoming more important. One class of materials for which bottom-up assembly is being actively studied is "soft" materials such as polymers, micelles, and nanoparticles. These materials are playing an increasingly important role in materials design and device fabrication, thus understanding the forces controlling their assembly is essential. Once the techniques are properly mastered and the driving forces are fully understood, the bottom-up assembly of "soft" materials will be a valuable tool for materials design. In this thesis, nanoparticle self-assembly is utilized as a model system to study the crystallization of "soft" materials. This approach allows for differences and similarities in the behavior in hard and soft matter systems to be systematically explored. The size, shape, and composition of nanoparticles can be carefully tuned, allowing for the independent characterization of the different parameters. The effect of size on the crystallization behavior of nanoparticles is explored in Chapter 2 by examining the twinning probability in nanoparticle superlattices. In Chapters 3-5, we study nanoparticle epitaxial growth by using self-assembled nanoparticle monolayers as substrates to control the self-assembly of deposited nanoparticles. This model system allows comparisons with atomic systems. Nanoparticle epitaxial growth has many similarities with traditional atomic systems; however, there are discrete differences between the systems due to the soft nature of the nanoparticles. These differences are explored and expanded upon by studying extreme lattice misfit and non-planar surfaces. The physical (electronic and thermoelectric) properties of these systems are examined in Chapter 6. The role of nanoparticle size and composition on the thermal conductivity of nanoparticle arrays is studied in depth. By understanding the factors

  2. Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver-doped manganese dioxide nanoparticles and their antibacterial activity against food- and water-borne pathogens.

    PubMed

    Krishnaraj, Chandran; Ji, Byoung-Jun; Harper, Stacey L; Yun, Soon-Il

    2016-05-01

    Silver nanoparticles (AgNPs), manganese dioxide nanoparticles (MnO₂NPs) and silver-doped manganese dioxide nanoparticles (Ag-doped MnO₂NPs) were synthesized by simultaneous green chemistry reduction approach. Aqueous extract from the leaves of medicinally important plant Cucurbita pepo was used as reducing and capping agents. Various characterization techniques were carried out to affirm the formation of nanoparticles. HR-TEM analysis confirmed the size of nanoparticles in the range of 15-70 nm and also metal doping was confirmed through XRD and EDS analyses. FT-IR analysis confirmed that the presence of biomolecules in the aqueous leaves extract was responsible for nanoparticles synthesis. Further, the concentration of metals and their doping in the reaction mixture was achieved by ICP-MS. The growth curve and well diffusion study of synthesized nanoparticles were performed against food- and water-borne Gram-positive and Gram-negative bacterial pathogens. The mode of interaction of nanoparticles on bacterial cells was demonstrated through Bio-TEM analysis. Interestingly, AgNPs and Ag-doped MnO₂NPs showed better antibacterial activity against all the tested bacterial pathogens; however, MnO₂NPs alone did not show any antibacterial properties. Hence, AgNPs and Ag-doped MnO₂NPs synthesized from aqueous plant leaves extract may have important role in controlling various food spoilage caused by bacteria.

  3. Magnetic properties of self-assembled iron nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Farrell, Dorothy

    Nanoparticles of Fe were synthesized via thermal decomposition of iron pentacarbonyl, Fe(CO)5, in the presence of surfactants. Heterogeneously nucleating particles from Pt seeds led to high moment, minimally oxidized Fe particles 4.5--9 nm in diameter. Homogeneous nucleation of particles in the presence of an excess of oleic acid led to formation of partially oxidized particles, consisting of an Fe core and an oxide shell, 9--19 nm in diameter. Once synthesized, the particles were dispersed in hexane, and the hexane evaporated from the dispersion. During the evaporation, the particles self-assembled to form particle superlattices. The size and quality of the particle arrays depended on particle and surfactant concentration and drying conditions. Transmission electron microscopy (TEM) was used to characterize the size and structure of both particles and particle superlattices. Structural evidence for magnetic interactions between particles in the arrays was observed. Samples of hcp superlattices of 6.6 nm, high moment Fe particles displayed a preference for odd numbers of layers. This was not observed in arrays of low moment particles, and has not been reported for non-magnetic particles. The magnetic properties of dilute particle suspensions and dried particle arrays were measured using a Quantum Design MPMS magnetometer. The hysteretic and remanent behavior of both the dispersions and dried assemblies were indicative of the existence of dipole interactions between particles. Differences in the magnetic behavior of dispersions and arrays indicated that dipole interaction effects depend on the size and structure of particle assemblies. Magnetizing interactions play a larger role in the large, close-packed arrays than in the smaller, loosely-associated clusters contained in the dispersions. The magnetizing effects in the arrays can be enhanced by decreasing the interparticle spacing. The arrays were also magnetically anisotropic, with magnetic properties depending on

  4. Enzymatic Ligation Creates Discrete Multi-Nanoparticle Building Blocks for Self-Assembly

    SciTech Connect

    Claridge, Shelley A.; Mastroianni, Alexander J.; Au, Yeung B.; Liang, Huiyang W.; Micheel, Christine M.; Frechet, Jean M.J.; Alivisatos, A. Paul

    2008-05-27

    Enzymatic ligation of discrete nanoparticle?DNA conjugates creates nanoparticle dimer and trimer structures in which the nanoparticles are linked by single-stranded DNA, rather than double-stranded DNA as in previous experiments. Ligation is verified by agarose gel and small-angle X-ray scattering. This capability is utilized in two ways: first to create a new class of multiparticle building blocks for nanoscale self-assembly; second to develop a system which can amplify a population of discrete nanoparticle assemblies.

  5. Two-dimensional nanoparticle self-assembly using plasma-induced Ostwald ripening.

    PubMed

    Tang, J; Photopoulos, P; Tserepi, A; Tsoukalas, D

    2011-06-10

    In this work, a novel Ag nanoparticle self-assembly process based on plasma-induced two-dimensional Ostwald ripening is demonstrated. Ag nanoparticles are deposited on p-doped Si substrates using a DC magnetron sputtering process. With the assistance of O(2)/Ar plasma treatment, different sizes and patterns of Ag nanoparticles are formed, due to the Ostwald ripening. The evolution of plasma-induced nanoparticle ripening is studied and a clear increase in particle size and a decrease in particle density are observed with increasing plasma treatment. From the experiments, it is concluded that the initial nanoparticle density and the plasma gas mixture (Ar/O(2) ratio) are important factors that affect the ripening process. The proposed plasma-directed Ag nanoparticle self-assembly provides a rapid method of tailoring the nanoparticle distribution on substrates, with potential applications in the fields of solar cells, biosensors, and catalysis.

  6. Self-assembly of polytetrafluoroethylene nanoparticle films using repulsive electrostatic interactions.

    PubMed

    Du, Chuan; Wang, Jiadao; Chen, Darong

    2014-02-04

    An approach for manufacturing polytetrafluoroethylene nanoparticle films using repulsive electrostatic interactions was developed. This approach used the strong repulsive force between colloidal nanoparticles and a substrate surface to cause the colloidal nanoparticles to suspend and self-assemble at a near-wall equilibrium position. A suspended monolayer was formed and was subsequently deposited on the substrate surface. A relatively large-area (3 × 3 cm(2)), close-packed unordered monolayer of polytetrafluoroethylene nanoparticles was observed. Multilayer nanoparticle films were also generated by increasing the particle concentration and deposition time. This work confirms the feasibility of nanoparticle self-assembly under repulsive electrostatic interactions and provides new routes for the large-area fabrication of monolayer and multilayer close-packed nanoparticle films.

  7. [Influence of silver and titanium dioxide nanoparticles on the expression of genes of biomarkers of inflammatory responses and apoptosis].

    PubMed

    Baranova, L A; Zhornik, E V; Volotovski, I D

    2015-01-01

    In order to evaluate the toxic effect of silver (AgNP) and titanium dioxide (TiO2) nanoparticles their influence on the expression of genes of biomarkers of inflammatory responses and apoptosis in human lymphocytes was studied. An increase in the IL-6, IL-8, TNF-α and p53 genes expression in the concentration range of silver and titanium dioxide nanoparticles of 10-40 μk g/ml was found. Increased expression of IL-6, IL-8, TNF-α and p53 genes under the nanoparticles action indicates the stimulation of the immune system and of apoptosis, respectively.

  8. Immunotoxicology of titanium dioxide and hydroxylated fullerenes engineered nanoparticles in fish models

    NASA Astrophysics Data System (ADS)

    Jovanovic, Boris

    2011-12-01

    Nanoparticles have the potential to cause adverse effects on the fish health, but the understanding of the underlying mechanisms is limited. Major task of this dissertation was to connect gaps in current knowledge with a comprehensive sequence of molecular, cellular and organismal responses toward environmentally relevant concentrations of engineered nanoparticles (titanium dioxide -- TiO2 and hydroxylated fullerenes), outlining the interaction with the innate immune system of fish. The research was divided into following steps: 1) create cDNA libraries for the species of fathead minnow (Pimephales promelas); 2) evaluate whether, and how can nanoparticles modulate neutrophil function in P. promelas; 3) determine the changes in expression of standard biomarker genes as a result of nanoparticle treatment; 4) expose the P. promelas to nanoparticles and appraise their survival rate in a bacterial challenge study; 5) assess the impact of nanoparticles on neuro-immunological interface during the early embryogenesis of zebrafish (Danio rerio). It was hypothesized that engineered nanoparticles can cause measurable changes in fish transcriptome, immune response, and disease resistance. The results of this dissertation are: 1) application of environmentally relevant concentration of nanoparticles changed function of fish neutrophils; 2) fish exposed to nano-TiO2 had significantly increased expression of interleukin 11, macrophage stimulating factor 1, and neutrophil cytosolic factor 2, while expression of interleukin 11 and myeloperoxidase was significantly increased and expression of elastase 2 was significantly decreased in fish exposed to hydroxylated fullerenes; 3) exposure to environmental estimated concentration of nano-TiO2 significantly increased fish mortality during Aeromonas hydrophila challenge. Analysis of nano-TiO 2 distribution in fish organism outlined that the nano-TiO2 is concentrating in the fish kidney and spleen; 4) during the early embryogenesis of D

  9. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile.

  10. Targeting thyroid cancer with acid-triggered release of doxorubicin from silicon dioxide nanoparticles.

    PubMed

    Li, Shijie; Zhang, Daqi; Sheng, Shihou; Sun, Hui

    2017-01-01

    Currently, therapy for thyroid cancer mainly involves surgery and radioiodine therapy. However, chemotherapy can be used in advanced and aggressive thyroid cancer that cannot be treated by other options. Nevertheless, a major obstacle to the successful treatment of thyroid cancer is the delivery of drugs to the thyroid gland. Here, we present an example of the construction of silicon dioxide nanoparticles with thyroid-stimulating-hormone receptor-targeting ligand that can specifically target the thyroid cancer. Doxorubicin nanoparticles can be triggered by acid to release the drug payload for cancer therapy. These nanoparticles shrink the tumor size in vivo with less toxic side effects. This research paves the way toward effective chemotherapy for thyroid cancer.

  11. Interactions between amino-phosphonates pesticides and titanium dioxide nanoparticle in water: consequences on their mobility

    NASA Astrophysics Data System (ADS)

    Ilina, Svetlana; Baran, Nicole; Slomberg, Danielle; Devau, Nicolas; Pariat, Anne; Sani-Kast, Nicole; Scheringer, Martin; Labille, Jérôme; Ollivier, patrick

    2017-04-01

    Water quality is increasingly monitored worldwide, where various levels of nitrate and pesticide and/or metabolite contamination have been confirmed. Glyphosate [N-(phosphonomethyl)glycine] is probably the most widely used herbicide in the world. AMPA [aminomethylphosphonic acid] is its main degradation product. Although glyphosate mobility in the environment is supposed to be limited because of its high adsorption capacity in soils several studies show that glyphosate may reach both surface and ground-waters either by transport in dissolved form, or particle bonded onto soil colloids. At the same time, in recent years, rapid development of new technologies has resulted in a significant increase in the production and uses of products containing nanoparticles, notably dioxide titanium nanoparticles. This enthusiasm for nanotechnology is however accompanied by awareness about the potential release and impact of the nanoparticles in the environment. The aim of the study is to increase the knowledge on pesticide and nanoparticles interactions that may be present as contaminant cocktail in waters. Thanks to lab-experiments conducted with glyphosate or AMPA and rutile or anatase under different water chemistry conditions (pH, ionic strength, presence and concentrations of mono- and bivalent cations), we were able to describe the colloidal stability of nanoparticles that control their mobility and to characterize the sorption of pesticide on these nanoparticles and their transformation.

  12. Peptide-Directed Assembly of Single-Helical Gold Nanoparticle Superstructures Exhibiting Intense Chiroptical Activity.

    PubMed

    Merg, Andrea D; Boatz, Jennifer C; Mandal, Abhishek; Zhao, Gongpu; Mokashi-Punekar, Soumitra; Liu, Chong; Wang, Xianting; Zhang, Peijun; van der Wel, Patrick C A; Rosi, Nathaniel L

    2016-10-11

    Chiral nanoparticle assemblies are an interesting class of materials whose chiroptical properties make them attractive for a variety of applications. Here, C18-(PEPAu(M-ox))2 (PEPAu(M-ox) = AYSSGAPPM(ox)PPF) is shown to direct the assembly of single-helical gold nanoparticle superstructures that exhibit exceptionally strong chiroptical activity at the plasmon frequency with absolute g-factor values up to 0.04. Transmission electron microscopy (TEM) and cryogenic electron tomography (cryo-ET) results indicate that the single helices have a periodic pitch of approximately 100 nm and consist of oblong gold nanoparticles. The morphology and assembled structure of C18-(PEPAu(M-ox))2 are studied using TEM, atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD) spectroscopy, X-ray diffraction (XRD), and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. TEM and AFM reveal that C18-(PEPAu(M-ox))2 assembles into linear amyloid-like 1D helical ribbons having structural parameters that correlate to those of the single-helical gold nanoparticle superstructures. FTIR, CD, XRD, and ssNMR indicate the presence of cross-β and polyproline II secondary structures. A molecular assembly model is presented that takes into account all experimental observations and that supports the single-helical nanoparticle assembly architecture. This model provides the basis for the design of future nanoparticle assemblies having programmable structures and properties.

  13. Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells

    NASA Astrophysics Data System (ADS)

    Devanand Venkatasubbu, G.; Ramasamy, S.; Avadhani, G. S.; Palanikumar, L.; Kumar, J.

    2012-03-01

    Nanoparticles are highly used in biological applications including nanomedicine. In this present study, the interaction of HepG2 hepatocellular carcinoma cells (HCC) with hydroxyapatite (HAp), zinc-doped hydroxyapatite, and titanium dioxide (TiO2) nanoparticles were investigated. Hydroxyapatite, zinc-doped hydroxyapatite and titanium dioxide nanoparticles were prepared by wet precipitation method. They were subjected to isochronal annealing at different temperatures. Particle morphology and size distribution were characterized by X-ray diffraction and transmission electron microscope. The nanoparticles were co-cultured with HepG2 cells. MTT assay was employed to evaluate the proliferation of tumor cells. The DNA damaging effect of HAp, Zn-doped HAp, and TiO2 nanoparticles in human hepatoma cells (HepG2) were evaluated using DNA fragmentation studies. The results showed that in HepG2 cells, the anti-tumor activity strongly depend on the size of nanoparticles in HCC cells. Cell cycle arrest analysis for HAp, zinc-doped HAp, and TiO2 nanoparticles revealed the influence of HAp, zinc-doped HAp, and titanium dioxide nanoparticles on the apoptosis of HepG2 cells. The results imply that the novel nano nature effect plays an important role in the biomedicinal application of nanoparticles.

  14. Comparative Proteomic Analysis of the Molecular Responses of Mouse Macrophages to Titanium Dioxide and Copper Oxide Nanoparticles Unravels Some Toxic Mechanisms for Copper Oxide Nanoparticles in Macrophages

    PubMed Central

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions. PMID:25902355

  15. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    PubMed

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  16. Peptide-directed self-assembly of functionalized polymeric nanoparticles part I: design and self-assembly of peptide-copolymer conjugates into nanoparticle fibers and 3D scaffolds.

    PubMed

    Ding, Xiaochu; Janjanam, Jagadeesh; Tiwari, Ashutosh; Thompson, Martin; Heiden, Patricia A

    2014-06-01

    A robust self-assembly of nanoparticles into fibers and 3D scaffolds is designed and fabricated by functionalizing a RAFT-polymerized amphiphilic triblock copolymer with designer ionic complementary peptides so that the assembled core-shell polymeric nanoparticles are directed by peptide assembly into continuous "nanoparticle fibers," ultimately leading to 3D fiber scaffolds. The assembled nanostructure is confirmed by FESEM and optical microscopy. The assembly is not hindered when a protein (insulin) is incorporated within the nanoparticles as an active ingredient. MTS cytotoxicity tests on SW-620 cell lines show that the peptides, copolymers, and peptide-copolymer conjugates are biocompatible. The methodology of self-assembled nanoparticle fibers and 3D scaffolds is intended to combine the advantages of a flexible hydrogel scaffold with the versatility of controlled release nanoparticles to offer unprecedented ability to incorporate desired drug(s) within a self-assembled scaffold system with individual control over the release of each drug.

  17. Self-assembled nanoparticle-stabilized photocatalytic reactors

    NASA Astrophysics Data System (ADS)

    Burdyny, Thomas; Riordon, Jason; Dinh, Cao-Thang; Sargent, Edward H.; Sinton, David

    2016-01-01

    The efficiency of nanostructured photocatalysts continues to improve at an impressive pace and is closing in on those needed for commercial applications; however, present-day reactor strategies used to deploy these nanostructures fail to achieve the sufficient areas (>1 m2) needed for solar application. Here we report the Self-assembled Nanoparticle-stabilized Photocatalytic Reactor (SNPR), a fully-scalable reactor strategy comprised only of nanoparticles adsorbed at the fluid-fluid interfaces of oil-in-water emulsions, water-in-oil emulsions, and CO2-in-water foams. We show that SNPRs naturally disperse over open water and need no physical substrate, requiring only photocatalysts and fluid. In environmental applications the SNPR provides more than double the reaction rate of a comparable single-phase reactor. In continuous mode, the SNPR achieves 100% photocatalyst retention and processes 96% of the stream over 20 hours; in contrast, the performance of a comparable aqueous suspension declines to zero over this interval, losing all photocatalyst to the outlet stream. We further characterize the photoactivity of individual photocatalytic droplets, with reactants in both the continuous and dispersed phases. These results demonstrate SNPRs as a robust and flexible reactor strategy and a route-to-scale for nanomaterials.The efficiency of nanostructured photocatalysts continues to improve at an impressive pace and is closing in on those needed for commercial applications; however, present-day reactor strategies used to deploy these nanostructures fail to achieve the sufficient areas (>1 m2) needed for solar application. Here we report the Self-assembled Nanoparticle-stabilized Photocatalytic Reactor (SNPR), a fully-scalable reactor strategy comprised only of nanoparticles adsorbed at the fluid-fluid interfaces of oil-in-water emulsions, water-in-oil emulsions, and CO2-in-water foams. We show that SNPRs naturally disperse over open water and need no physical substrate

  18. Peptide conjugates for directing the morphology and assembly of 1D nanoparticle superstructures.

    PubMed

    Zhang, Chen; Song, Chengyi; Fry, H Christopher; Rosi, Nathaniel L

    2014-01-20

    Designed peptide conjugates molecules are used to direct the synthesis and assembly of gold nanoparticles into complex 1D nanoparticle superstructures with various morphologies. Four peptide conjugates, each based on the gold-binding peptide (AYSSGAPPMPPF; PEPAu ), are prepared: C12H23O-AYSSGAPPMPP (1), C12H23O-AYSSGAPPMPPF (2), C12H23O-AYSSGAPPMPPFF (3), and C12H23O-AYSSGAPPMPPFFF (4). The affect that C-terminal hydrophobic F residues have on both the soft-assembly of the peptide conjugates and the resulting assembly of gold nanoparticle superstructures is examined. It is shown that the addition of two C-terminal F residues (3) leads to thick, branched 1D gold nanoparticle superstructures, whereas the addition of three C-terminal F residues (4) leads to bundling of thin 1D nanoparticle superstructures.

  19. Stabilization of 2D assemblies of silver nanoparticles by spin-coating polymers

    NASA Astrophysics Data System (ADS)

    Hu, Longyu; Pfirman, Aubrie; Chumanov, George

    2015-12-01

    Silver nanoparticles self-assembled on poly(4-vinylpyridine) modified surfaces were spin-coated with poly(methyl methacrylate), poly(butyl methacrylate) and polystyrene from anisole and toluene solutions. The polymers filled the space between the particles thereby providing stabilization of the assemblies against particle aggregation when dried or chemically modified. The polymers did not coat the top surface of the nanoparticles offering the chemical accessibility to the metal surface. This was confirmed by converting the stabilized nanoparticles into silver sulfide and gold clusters. Etching the nanoparticles resulted in crater-like polymeric structures with the cavities extending down to the underlying substrate. Electrochemical reduction of silver inside the craters was performed. The approach can be extended to other nanoparticle assemblies and polymers.

  20. Evaluation of cellular effects of silicon dioxide nanoparticles.

    PubMed

    Horie, Masanori; Nishio, Keiko; Kato, Haruhisa; Endoh, Shigehisa; Fujita, Katsuhide; Nakamura, Ayako; Hagihara, Yoshihisa; Yoshida, Yasukazu; Iwahashi, Hitoshi

    2014-03-01

    Silica nanoparticles (nSiO2s) are an important type of manufactured nanoparticles. Although there are some reports about the cytotoxicity of nSiO2, the association between physical and chemical properties of nSiO2s and their cellular effects is still unclear. In this study, we examined the correlation between the physiochemical properties and cellular effects of three kinds of amorphous nSiO2s; sub-micro-scale amorphous SiO2, and micro-scale amorphous and crystalline SiO2 particles. The SiO2 particles were dispersed in culture medium and applied to HaCaT human keratinocytes and A549 human lung carcinoma cells. nSiO2s showed stronger protein adsorption than larger SiO2 particles. Moreover, the cellular effects of SiO2 particles were independent of the particle size and crystalline phase. The extent of cell membrane damage and intracellular ROS levels were different among nSiO2s. Upon exposure to nSiO2s, some cells released lactate dehydrogenase (LDH), whereas another nSiO2 did not induce LDH release. nSiO2s caused a slight increase in intracellular ROS levels. These cellular effects were independent of the specific surface area and primary particle size of the nSiO2s. Additionally, association of solubility and protein adsorption ability of nSiO2 to its cellular effects seemed to be small. Taken together, our data suggest that nSiO2s do not exert potent cytotoxic effects on cells in culture, especially compared to the effects of micro-scale SiO2 particles. Further studies are needed to address the role of surface properties of nSiO2s on cellular processes and cytotoxicity.

  1. Layer-by-Layer Assembly Onto Gold Nanoparticles of Various Size

    NASA Astrophysics Data System (ADS)

    Kilroy, Andrew; Kessler, Sarah; Dobbins, Tabbetha

    This research focuses on the potential applications of coated gold nanoparticles in medicine. By coating gold nanoparticles in layers of polyelectrolytes, with a final layer of antibodies which targets chemicals uniquely exhibited by cancer cells, we eventually hope to selectively attach the nanoparticles to the cancer cells. The coated nanoparticles are assembled through layer-by-layer coulombic attraction due to the passive zeta potential of the particle and the charged nature of the polyelectrolytes. This poster will explore the potential usefulness of variously sized nanoparticles with various thickness of polyelectrolyte layers.

  2. Plasmonic and Catalytic Properties of Shape-Controlled Metal Nanoparticles and their Assemblies

    NASA Astrophysics Data System (ADS)

    Klinkova, Anna

    This work explores the effect of the shape of metal nanoscale building blocks on the structural, optical, and plasmonic properties of their assemblies, as well as on the catalytic performance and hydrogen interactions of individual nanoparticles with specific shapes. In Chapter 3, I describe the linear self-assembly of bifunctional metal nanoparticles in the presence of monofunctional nanoscale chain stoppers. Chain stoppers with controlled reactivity were synthesized allowing control over the morphology of the self-assembled structures. Analysis of the degree of polymerization of linear nanostructures provided information about self-assembly kinetics, side reactions, and the distribution of species in the reaction. This work facilitated testing of theoretical models developed for molecular polymerization and fabrication of linear nanoparticle assemblies with controllable properties. In Chapter 4, I developed linear solution-based self-assembly of cubic metal nanoparticles, examined the morphology of the nanocube chains and their optical characteristics. In comparison with chains of nanospheres with similar dimensions, compositions, and surface chemistry, predominant face-to-face assembly of nanocubes leads to a larger volume of plasmonic hot spots, uniform electromagnetic field enhancement in the gaps between nanocubes, and a new coupling mode for nanocube chains, associated with Fabry-Perot structure. In Chapter 5, I investigated plasmon-mediated enhancement of the catalysis by palladium-based nanoparticles with different shapes and composition, bearing surface plasmon resonance in visible range. The photocatalytic activity of palladium-based nanoparticles depended more on their shape than internal structure. These findings pave the way for the design of palladium nanocatalysts with enhanced performance acting under visible light illumination. In Chapter 6, I developed a facile scaled-up synthesis of monodisperse palladium nanoparticles with various shapes

  3. Kinetically Assembled Nanoparticles of Bioactive Macromolecules Exhibit Enhanced Stability and Cell-Targeted Biological Efficacy

    PubMed Central

    York, Adam W.; Zablocki, Kyle R.; Lewis, Daniel R.; Gu, Li; Uhrich, Kathryn E.; Prud’homme, Robert K.

    2012-01-01

    Kinetically assembled nanoparticles are fabricated from an advanced class of bioactive macromolecules that have potential utility in counteracting atherosclerotic plaque development via receptor-level blockage of inflammatory cells. In contrast to micellar analogs that exhibit poor potency and structural integrity under physiologic conditions, these kinetic nanoparticle assemblies maintain structural stability and demonstrate superior bioactivity in mediating oxidized low-density lipoprotein (oxLDL) uptake in inflammatory cells. PMID:22223224

  4. High Frequency Magneto Dielectric Effects In Self Assembled Ferrite Ferroelectric Core Shell Nanoparticles

    DTIC Science & Technology

    2014-09-10

    SECURITY CLASSIFICATION OF: Magneto-dielectric effects in self-assembled core -shell nanoparticles of nickel ferrite (NFO) and barium titanate (BTO) have...been investigated in the millimeter wave frequencies. The core -shell nano-composites were synthesized by coating 100 nm nickel ferrite and 50 nm...distribution is unlimited. High frequency magneto-dielectric effects in self-assembled ferrite -ferroelectric core -shell nanoparticles The views, opinions

  5. Superstructures of self assembled multiferroic core shell nanoparticles and studies on magneto electric interactions

    DTIC Science & Technology

    2014-08-19

    SECURITY CLASSIFICATION OF: Superstructures of linear chains and arrays of chemically self-assembled core -shell nanoparticles of nickel ferrite and...interactions Report Title Superstructures of linear chains and arrays of chemically self-assembled core -shell nanoparticles of nickel ferrite and barium...of ferrite -ferroelectric core -shell nanofibers and studies on magneto- electric interactions Appl. Phys. Lett. 104, 052910 (2014); 10.1063/1.4864113

  6. Polymer Directed Self-Assembly of pH-Responsive Antioxidant Nanoparticles

    PubMed Central

    Tang, Christina; Amin, Devang; Messersmith, Phillip B.; Anthony, John E.; Prud’homme, Robert K.

    2015-01-01

    We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using Flash NanoPrecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e. stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants. PMID:25760226

  7. Polymer directed self-assembly of pH-responsive antioxidant nanoparticles.

    PubMed

    Tang, Christina; Amin, Devang; Messersmith, Phillip B; Anthony, John E; Prud'homme, Robert K

    2015-03-31

    We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using flash nanoprecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e., stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity and show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants.

  8. A new view for nanoparticle assemblies: from crystalline to binary cooperative complementarity.

    PubMed

    Yan, Cong; Wang, Tie

    2017-03-06

    Studies on nanoparticle assemblies and their applications have been research frontiers in nanoscience in the past few decades and remarkable progress has been made in the synthetic strategies and techniques. Recently, the design and fabrication of the nanoparticle-based nanomaterials or nanodevices with integrated and enhanced properties compared to those of the individual components have gradually become the mainstream. However, a systematic solution to provide a big picture for future development and guide the investigation of different aspects of the study of nanoparticle assemblies remains a challenge. The binary cooperative complementary principle could be an answer. The binary cooperative complementary principle is a universal discipline and can describe the fundamental properties of matter from the subatomic particles to the universe. According to its definition, a variety of nanoparticle assemblies, which represent the cutting-edge work in the nanoparticle studies, are naturally binary cooperative complementary materials. Therefore, the introduction of the binary cooperative complementary principle in the studies of nanoparticle assemblies could provide a unique perspective for reviewing this field and help in the design and fabrication of novel functional nanoparticle assemblies.

  9. Titanium Dioxide Nanoparticles Produced in Water-in-oil Emulsion

    NASA Astrophysics Data System (ADS)

    Mori, Yasushige; Okastu, Yasuhiro; Tsujimoto, Yuki

    2001-06-01

    Titanium dioxide (titania) particles were prepared by a water-in-oil emulsion system, and studied for the photodecomposition property of methylene blue. Microemulsion (ME) consisted of water, cyclohexane or octane, and surfactant, such as polyoxyethylene (10) octylphenyl ether (TX-100), polyoxyethylene lauryl ether, or bis (2-ethylhexyl) sodium sulfosuccinate. Titanium tetraisopropoxide (TTIP) was dropped into the ME solution and then titania particles were formed by the hydrolysis reaction between TTIP in the organic solvent and the water in the core of ME. It was found that ME could be classified to the reversed micelle (RM) region and the swelling reversed micelle (SM) region according to the water content. The water droplets in RM were almost monodispersed, where the water content was small. On the other hand, the water droplets in SM had a size distribution, although most of the water molecules associated with surfactant molecules. The size of the particles prepared in the RM region was smaller than the ME size. In contrast, the size of the particles formed in the SM region was larger than the ME size, and coagulation of the particles was observed within a few hours. The smallest diameter of the particles was 2 nm in the system of cyclohexane with TX-100 surfactant when the molar ratio of water to surfactant was 2. Titania particles prepared in this condition were collected as amorphous powder, and converted to anatase phase at less than 500 K, which is lower than the ordinal phase transition temperature. These anatase phase titania particles only showed a significant photodecomposition of methylene blue by illumination with a Xenon lamp.

  10. Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions.

    PubMed

    Weng, Ziqing; Wang, Hongbin; Vongsvivut, Jitraporn; Li, Runqing; Glushenkov, Alexey M; He, Jin; Chen, Ying; Barrow, Colin J; Yang, Wenrong

    2013-11-25

    Molecule-coated nanoparticles are hybrid materials which can be engineered with novel properties. The molecular coating of metal nanoparticles can provide chemical functionality, enabling assembly of the nanoparticles that are important for applications, such as biosensing devices. Herein, we report a new self-assembly of core-satellite gold nanoparticles linked by a simple amino acid l-Cysteine for biosensing of Cu(2+). The plasmonic properties of core-satellite nano-assemblies were investigated, a new red shifted absorbance peak from about 600 to 800 nm was found, with specific wavelength depending on ratios with assembly of large and small gold nanoparticles. The spectral features obtained using surface-enhanced Raman spectroscopy (SERS) provided strong evidence for the assembly of the Cu(2+) ions to the L-Cysteine molecules leading to the successful formation of the core-satellite Cu(l-Cysteine) complex on the gold surfaces. In addition, a linear relationship between the concentration of mediating Cu(2+) and absorbance of self-assembled gold nanoparticles (GNPs) at 680 nm was obtained. These results strongly address the potential strategy for applying the functionalized GNPs as novel biosensing tools in trace detections of certain metal ions.

  11. Self-Assembly of Ferritin Nanoparticles into an Enzyme Nanocomposite with Tunable Size for Ultrasensitive Immunoassay.

    PubMed

    Men, Dong; Zhang, Ting-Ting; Hou, Li-Wei; Zhou, Juan; Zhang, Zhi-Ping; Shi, Yuan-Yuan; Zhang, Jin-Li; Cui, Zong-Qiang; Deng, Jiao-Yu; Wang, Dian-Bing; Zhang, Xian-En

    2015-11-24

    The self-assembly of nanoparticles into larger superstructures is a powerful strategy to develop novel functional nanomaterials, as these superstructures display collective properties that are different to those displayed by individual nanoparticles or bulk samples. However, there are increasing bottlenecks in terms of size control and multifunctionalization of nanoparticle assemblies. In this study, we developed a self-assembly strategy for construction of multifunctional nanoparticle assemblies of tunable size, through rational regulation of the number of self-assembling interaction sites on each nanoparticle. As proof-of-principle, a size-controlled enzyme nanocomposite (ENC) was constructed by self-assembly of streptavidin-labeled horseradish peroxidase (SA-HRP) and autobiotinylated ferritin nanoparticles (bFNP). Our ENC integrates a large number of enzyme molecules, together with a streptavidin-coated surface, allowing for a drastic increase in enzymatic signal when the SA is bound to a biotinylated target molecule. As result, a 10 000-fold increase in sensitivity over conventional enzyme-linked immunosorbent assays (ELISA) methods was achieved in a cardiac troponin immunoassay. Our method presented here should provide a feasible approach for constructing elaborate multifunctional superstructures of tunable size useful for a broad range of biomedical applications.

  12. In vitro and in vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, G Devanand; Ramasamy, S; Reddy, G Pramod; Kumar, J

    2013-08-01

    Targeted drug delivery using nanocrystalline materials delivers the drug at the diseased site. This increases the efficacy of the drug in killing the cancer cells. Surface modifications were done to target the drug to a particular receptor on the cell surface. This paper reports synthesis of hydroxyapatite and titanium dioxide nanoparticles and modification of their surface with polyethylene glycol (PEG) followed by folic acid (FA). Paclitaxel, an anticancer drug, is attached to functionalized hydroxyapatite and titanium dioxide nanoparticles. The pure and functionalised nanoparticles are characterised with XRD, TEM and UV spectroscopy. Anticancer analysis was carried out in DEN induced hepatocarcinoma animals. Biochemical, hematological and histopathological analysis show that the surface modified paclitaxel attached nanoparticles have an higher anticancer activity than the pure paclitaxel and surface modified nanoparticles without paclitaxel. This is due to the targeting of the drug to the folate receptor in the cancer cells.

  13. Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly.

    PubMed

    Adams, Sarah M; Campione, Salvatore; Caldwell, Joshua D; Bezares, Francisco J; Culbertson, James C; Capolino, Filippo; Ragan, Regina

    2012-07-23

    Near-field plasmonic coupling and local field enhancement in metal nanoarchitectures, such as arrangements of nanoparticle clusters, have application in many technologies from medical diagnostics, solar cells, to sensors. Although nanoparticle-based cluster assemblies have exhibited signal enhancements in surface-enhanced Raman scattering (SERS) sensors, it is challenging to achieve high reproducibility in SERS response using low-cost fabrication methods. Here an innovative method is developed for fabricating self-organized clusters of metal nanoparticles on diblock copolymer thin films as SERS-active structures. Monodisperse, colloidal gold nanoparticles are attached via a crosslinking reaction on self-organized chemically functionalized poly(methyl methacrylate) domains on polystyrene-block-poly(methyl methacrylate) templates. Thereby nanoparticle clusters with sub-10-nanometer interparticle spacing are achieved. Varying the molar concentration of functional chemical groups and crosslinking agent during the assembly process is found to affect the agglomeration of Au nanoparticles into clusters. Samples with a high surface coverage of nanoparticle cluster assemblies yield relative enhancement factors on the order of 10⁹ while simultaneously producing uniform signal enhancements in point-to-point measurements across each sample. High enhancement factors are associated with the narrow gap between nanoparticles assembled in clusters in full-wave electromagnetic simulations. Reusability for small-molecule detection is also demonstrated. Thus it is shown that the combination of high signal enhancement and reproducibility is achievable using a completely non-lithographic fabrication process, thereby producing SERS substrates having high performance at low cost.

  14. Probing of the Assembly Structure and Dynamics within Nanoparticles during Interaction with Blood Proteins

    PubMed Central

    Li, Yuanpei; Budamagunta, Madhu S.; Luo, Juntao; Xiao, Wenwu; Voss, John C.; Lam, Kit S.

    2012-01-01

    Fully understanding the influence of blood proteins on the assembly structure and dynamics within nanoparticles is difficult because of the complexity of the system and the difficulty in probing the diverse elements and milieus involved. Here we show the use of site-specific labeling with spin probes and fluorophores combined with electron paramagnetic resonance (EPR) spectroscopy and fluorescence resonance energy transfer (FRET) measurements to provide insights into the molecular architecture and dynamics within nanoparticles. These tools are especially useful for determining nanoparticle stability in the context of blood proteins and lipoproteins, and have allowed us to quantitatively analyze the dynamic changes in assembly structure, local stability and cargo diffusion of a class of novel telodendrimer-based micellar nanoparticles. When combined with human plasma and individual plasma components, we find that non-crosslinked nanoparticles immediately lose their original assembly structure and release their payload upon interaction with lipoproteins. In contrast, serum albumins and immunoglobulin gamma have moderate affects on the integrity of the nanoparticles. Disulfide crosslinked nanoparticles show minimal interaction with lipoproteins, and can better retain their assembly structure and payload in vitro and in vivo. We further demonstrate how the enhanced stability and release property of disulfide crosslinked nanoparticles can be reversed in reductive conditions. These findings identify factors are crucial to the performance of nanomedicines and provide design modes to control their interplay with blood factors. PMID:23106540

  15. Self-assembly of gold nanoparticles on deep eutectic solvent (DES) surfaces.

    PubMed

    Raghuwanshi, V S; Ochmann, M; Polzer, F; Hoell, A; Rademann, K

    2014-08-14

    Self-assembly of gold nanoparticles was obtained by sputter deposition on DES. SAXS and TEM investigations reveal the formation of spherical nanoparticles with a mean diameter of 5 ± 0.5 nm. For extended sputtering times, the number density of AuNPs increases linearly and a very pronounced 1st and 2nd shell ordering is observed.

  16. Probing of the assembly structure and dynamics within nanoparticles during interaction with blood proteins.

    PubMed

    Li, Yuanpei; Budamagunta, Madhu S; Luo, Juntao; Xiao, Wenwu; Voss, John C; Lam, Kit S

    2012-11-27

    Fully understanding the influence of blood proteins on the assembly structure and dynamics within nanoparticles is difficult because of the complexity of the system and the difficulty in probing the diverse elements and milieus involved. Here we show the use of site-specific labeling with spin probes and fluorophores combined with electron paramagnetic resonance (EPR) spectroscopy and fluorescence resonance energy transfer (FRET) measurements to provide insights into the molecular architecture and dynamics within nanoparticles. These tools are especially useful for determining nanoparticle stability in the context of blood proteins and lipoproteins and have allowed us to quantitatively analyze the dynamic changes in assembly structure, local stability, and cargo diffusion of a class of novel telodendrimer-based micellar nanoparticles. When combined with human plasma and individual plasma components, we find that non-cross-linked nanoparticles immediately lose their original assembly structure and release their payload upon interaction with lipoproteins. In contrast, serum albumins and immunoglobulin gamma have moderate affects on the integrity of the nanoparticles. Disulfide cross-linked nanoparticles show minimal interaction with lipoproteins and can better retain their assembly structure and payload in vitro and in vivo. We further demonstrate how the enhanced stability and release property of disulfide cross-linked nanoparticles can be reversed in reductive conditions. These findings identify factors that are crucial to the performance of nanomedicines and provide design modes to control their interplay with blood factors.

  17. Potassium iodate assisted synthesis of titanium dioxide nanoparticles with superior water-dispersibility.

    PubMed

    Wang, Yawen; Duo, Fangfang; Peng, Shiqi; Jia, Falong; Fan, Caimei

    2014-09-15

    In this paper, we report a novel polyol process to synthesize highly water-dispersible anatase titanium dioxide (TiO2) nanoparticles (∼5 nm) by the introduction of inorganic oxidizing agent--KIO3. The obtained TiO2 nanoparticles are well dispersible in water at pH≥5.0 and the resulting aqueous dispersion remains stable over months. The superior water-dispersibility of as-formed TiO2 is ascribed to the electrostatic repulsion from carboxylic acid group modified on TiO2 nanoparticles, which is the oxidation product of solvent diethylene glycol (DEG) by KIO3. Based on the characterization results, the formation processes of water-dispersibility TiO2 nanoparticles are proposed. Meanwhile, the synthesized TiO2 nanoparticles are found to be doped by iodine and exhibit excellent photocatalytic activity on degradation of rhodamine-B (RhB) under visible-light irradiation. The further tests demonstrate that the O(2-) is the main active species during photodegradation of RhB.

  18. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants.

    PubMed

    Tumburu, Laxminath; Andersen, Christian P; Rygiewicz, Paul T; Reichman, Jay R

    2015-01-01

    The effects of exposure to nanoparticles of titanium dioxide (nano-titanium) and cerium oxide (nano-cerium) on gene expression and growth in Arabidopsis thaliana germinants were studied by using microarrays and quantitative real-time polymerase chain reaction (qPCR), and by evaluating germinant phenotypic plasticity. Exposure to 12 d of either nano-titania or nano-ceria altered the regulation of 204 and 142 genes, respectively. Genes induced by the nanoparticles mainly include ontology groups annotated as stimuli responsive, including both abiotic (oxidative stress, salt stress, water transport) and biotic (respiratory burst as a defense against pathogens) stimuli. Further analysis of the differentially expressed genes indicates that both nanoparticles affected a range of metabolic processes (deoxyribonucleic acid [DNA] metabolism, hormone metabolism, tetrapyrrole synthesis, and photosynthesis). Individual exposures to the nanoparticles increased percentages of seeds with emergent radicles, early development of hypocotyls and cotyledons, and those with fully grown leaves. Although there were distinct differences between the nanoparticles in their affect on molecular mechanisms attributable to enhancing germinant growth, both particles altered similar suites of genes related to various pathways and processes related to enhanced growth.

  19. Biosynthesis of titanium dioxide nanoparticles using a probiotic from coal fly ash effluent

    SciTech Connect

    Babitha, S; Korrapati, Purna Sai

    2013-11-15

    Graphical abstract: - Highlights: • Metal resistant probiotic species was isolated from coal fly ash effluent site. • Uniform sized anatase form of TiO{sub 2} nanoparticles were synthesized using Propionibacterium jensenii. • Diffraction patterns confirmed the anatase – TiO{sub 2} NPs with average size <80 nm. • TiO{sub 2} nanoparticle incorporated wound dressing exhibits better wound healing. - Abstract: The synthesis of titanium dioxide nanoparticle (TiO{sub 2} NP) has gained importance in the recent years owing to its wide range of potential biological applications. The present study demonstrates the synthesis of TiO{sub 2} NPs by a metal resistant bacterium isolated from the coal fly ash effluent. This bacterial strain was identified on the basis of morphology and 16s rDNA gene sequence [KC545833]. The physico-chemical characterization of the synthesized nanoparticles is completely elucidated by energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmission and scanning electron microscopy (TEM, SEM). The crystalline nature of the nanoparticles was confirmed by X-RD pattern. Further, cell viability and haemolytic assays confirmed the biocompatible and non toxic nature of the NPs. The TiO{sub 2} NPs was found to enhance the collagen stabilization and thereby enabling the preparation of collagen based biological wound dressing. The paper essentially provides scope for an easy bioprocess for the synthesis of TiO{sub 2} NPs from the metal oxide enriched effluent sample for future biological applications.

  20. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles.

    PubMed

    Lovern, Sarah B; Klaper, Rebecca

    2006-04-01

    Nanoparticles (1-100 nm) comprise the latest technological advances designed to do everything from absorb environmental toxins to deliver drugs to a target organ. Recently, however, they have come under scrutiny for the potential to cause environmental damage. Because compounds in this miniature size range have chemical properties that differ from those of their larger counterparts, nanoparticles deserve special attention. Our main objective was to assess the potential impact that nanoparticles may have on release into aquatic environments. We prepared titanium dioxide (TiO2) and fullerene (C60) nanoparticles by filtration in tetrahydrofuran or by sonication. Daphnia magna were exposed to the four solutions using U.S. Environmental Protection Agency 48-h acute toxicity tests. Images of the particle solutions were recorded using transmission-electron microscopy, and the median lethal concentration, lowest-observable-effect concentration, and no-observable-effect concentration were determined. Exposure to filtered C60 and filtered TiO2 caused an increase in mortality with an increase in concentration, whereas fullerenes show higher levels of toxicity at lower concentrations. Exposure to the sonicated solutions caused varied mortality. Understanding the potential impacts of nanoparticles will help to identify the most appropriate nanotechnology to preserve the aquatic environment while advancing medical and environmental technology.

  1. Effect of Surface Treated Silicon Dioxide Nanoparticles on Some Mechanical Properties of Maxillofacial Silicone Elastomer

    PubMed Central

    Zayed, Sara M.; Alshimy, Ahmad M.; Fahmy, Amal E.

    2014-01-01

    Current materials used for maxillofacial prostheses are far from ideal and there is a need for novel improved materials which mimic as close as possible the natural behavior of facial soft tissues. This study aimed to evaluate the effect of adding different concentrations of surface treated silicon dioxide nanoparticles (SiO2) on clinically important mechanical properties of a maxillofacial silicone elastomer. 147 specimens of the silicone elastomer were prepared and divided into seven groups (n = 21). One control group was prepared without nanoparticles and six study groups with different concentrations of nanoparticles, from 0.5% to 3% by weight. Specimens were tested for tear strength (ASTM D624), tensile strength (ASTM D412), percent elongation, and shore A hardness. SEM was used to assess the dispersion of nano-SiO2 within the elastomer matrix. Data were analyzed by one-way ANOVA and Scheffe test (α = 0.05). Results revealed significant improvement in all mechanical properties tested, as the concentration of the nanoparticles increased. This was supported by the results of the SEM. Hence, it can be concluded that the incorporation of surface treated SiO2 nanoparticles at concentration of 3% enhanced the overall mechanical properties of A-2186 silicone elastomer. PMID:25574170

  2. Titanium Dioxide Nanofibers and Microparticles Containing Nickel Nanoparticles

    PubMed Central

    Sheikh, Faheem A.; Macossay, Javier; Kanjwal, Muzafar A.; Abdal-hay, Abdalla; Tantry, Mudasir A.; Kim, Hern

    2013-01-01

    The present study reports on the introduction of various nanocatalysts containing nickel (Ni) nanoparticles (NPs) embedded within TiO2 nanofibers and TiO2 microparticles. Typically, a sol-gel consisting of titanium isopropoxide and Ni NPs was prepared to produce TiO2 nanofibers by the electrospinning process. Similarly, TiO2 microparticles containing Ni were prepared using a sol-gel syntheses process. The resultant structures were studied by SEM analyses, which confirmed well-obtained nanofibers and microparticles. Further, the XRD results demonstrated the crystalline feature of both TiO2 and Ni in the obtained composites. Internal morphology of prepared nanofibers and microparticles containing Ni NPs was characterized by TEM, which demonstrated characteristic structures with good dispersion of Ni NPs. In addition, the prepared structures were studied as a model for hydrogen production applications. The catalytic activity of the prepared materials was studied by in situ hydrolysis of NaBH4, which indicated that the nanofibers containing Ni NPs can lead to produce higher amounts of hydrogen when compared to other microparticles, also reported in this paper. Overall, these results confirm the potential use of these materials in hydrogen production systems. PMID:24436780

  3. Titanium dioxide nanoparticles in advanced imaging and nanotherapeutics.

    PubMed

    Rajh, Tijana; Dimitrijevic, Nada M; Rozhkova, Elena A

    2011-01-01

    Semiconductor photocatalysis using nanoparticulate TiO(2) has proven to be a promising technology for use in catalytic reactions, in the cleanup of water contaminated with hazardous industrial by-products, and in nanocrystalline solar cells as a photoactive material. Metal oxide semiconductor colloids are of considerable interest because of their photocatalytic properties. The coordination sphere of the surface metal atoms is incomplete and thus traps light-induced charges, but also exhibits high affinity for oxygen-containing ligands and gives the opportunity for chemical modification. We use enediol linkers, such as dopamine and its analogs, to bridge the semiconductors to biomolecules such as DNA or proteins. Nanobio hybrids that combine the physical robustness and chemical reactivity of nanoscale metal oxides with the molecular recognition and selectivity of biomolecules were developed. Control of chemical processes within living cells was achieved using TiO(2) nanocomposites in order to develop new tools for advanced nanotherapeutics. Here, we describe general experimental approaches for synthesis and characterization of high crystallinity, water soluble 5 nm TiO(2) particles and their nanobio composites, methods of cellular sample preparation for advanced Synchrotron-based imaging of nanoparticles in single cell X-ray fluorescence, and a detailed experimental setup for application of the high-performance TiO(2)-based nanobio photocatalyst for targeted lysis of cancerous or other disordered cells.

  4. Pressure-driven assembly of spherical nanoparticles and formation of 1D nanostructure arrays.

    SciTech Connect

    Wu, Huimeng

    2010-08-01

    External pressure was used to engineer nanoparticle assembly. Reversible manipulation of the unit-cell dimensions of a 3D ordered nanoparticle array under a hydrostatic pressure field enabled the fine-tuning of the interparticle distance. Under a uniaxial pressure field, nanoparticles were forced to contact and coalesce into nanorods or nanowires and ordered ultrahigh-density arrays (see picture; small arrows denote pressure).

  5. Gold nanoparticles assembled with dithiocarbamate-anchored molecular wires

    PubMed Central

    Reeler, Nini E. A.; Lerstrup, Knud A.; Somerville, Walter; Speder, Jozsef; Petersen, Søren V.; Laursen, Bo W.; Arenz, Matthias; Qiu, Xiaohui; Vosch, Tom; Nørgaard, Kasper

    2015-01-01

    A protocol for the bottom-up self-assembly of nanogaps is developed through molecular linking of gold nanoparticles (AuNPs). Two π-conjugated oligo(phenylene ethynylene) molecules (OPE) with dithiocarbamate anchoring groups are used as ligands for the AuNPs. OPE-4S with a dithiocarbamate in each end of the molecule and a reference molecule OPE-2S with only a single dithiocarbamate end group. The linking mechanism of OPE-4S is investigated by using a combination of TEM, UV-Vis absorption and surface enhanced Raman spectroscopy (SERS) as well as studying the effect of varying the OPE-4S to AuNP concentration ratio. UV-Vis absorption confirms the formation of AuNP aggregates by the appearance of an extended plasmon band (EPB) for which the red shift and intensity depend on the OPE-4S:AuNP ratio. SERS confirms the presence of OPE-4S and shows a gradual increase of the signal intensity with increasing OPE-4S:AuNP ratios up to a ratio of about 4000, after which the SERS intensity does not increase significantly. For OPE-2S, no linking is observed below full coverage of the AuNPs indicating that the observed aggregate formation at high OPE-2S:AuNP ratios, above full AuNP coverage, is most likely of a physical nature (van der Waals forces or π-π interactions). PMID:26471461

  6. Photodynamic Therapy: One Step Ahead with Self-Assembled Nanoparticles

    PubMed Central

    Avci, Pinar; Erdem, S. Sibel; Hamblin, Michael R.

    2014-01-01

    Photodynamic therapy (PDT) is a promising treatment modality for cancer with possible advantages over current treatment alternatives. It involves combination of light and a photosensitizer (PS), which is activated by absorption of specific wavelength light and creates local tissue damage through generation of reactive oxygen species (ROS) that induce a cascade of cellular and molecular events. However, as of today, PDT is still in need of improvement and nanotechnology may play a role. PDT frequently employs PS with molecular structures that are highly hydrophobic, water insoluble and prone to aggregation. Aggregation of PS leads to reduced ROS generation and thus lowers the PDT activity. Some PS such as 5-aminolevulinic acid (ALA) cannot penetrate through the stratum corneum of the skin and systemic administration is not an option due to frequently encountered side effects. Therefore PS are often encapsulated or conjugated in/on nano-drug delivery vehicles to allow them to be better taken up by cells and to more selectively deliver them to tumors or other target tissues. Several nano-drug delivery vehicles including liposomes, fullerosomes and nanocells have been tested and reviewed. Here we cover non-liposomal self-assembled nanoparticles consisting of polymeric micelles including block co-polymers, polymeric micelles, dendrimers and porphysomes. PMID:25580097

  7. Assembled viral-like nanoparticles from elastic capsomers and polyion

    NASA Astrophysics Data System (ADS)

    Angelescu, Daniel G.

    2017-04-01

    Molecular dynamics simulations are carried out on a coarse-grained model to describe the polyion driven co-assembly of elastic capsomers as viral-like aggregates. The kinetics and structural properties of the complexes are examined using cationic capsomers, an anionic polyion, both modelled using beads connected by springs, and counterions neutralizing separately the two charged species. Polyion overcharging the capsid is encapsulated owing to combined effects of the capsomer-capsomer short-range interactions, the polyion ability to follow a Hamiltonian path, and Donnan equilibrium. Conditions leading to a high yield of viral-like nanoparticles are found, and the simulations demonstrate that the capsomer elasticity provides mechanisms that improve the reliability toward correctly formed capsids. These mechanisms are related to a highly irregular capsomer cluster growth followed by the appearance of two stable capsomer clusters with the polyion acting as a tether between them. Elevated capsomeric flexibility provides an additional pathway to anneal the kinetically trapped structures by the ejection of a capsomeric monomer from a malformed complex followed by a rebinding step to form a correct capsid.

  8. Critical role of wettability in assembly of zirconia nanoparticles on a self-assembled monolayer-patterned substrate

    NASA Astrophysics Data System (ADS)

    Yang, Mi-Sun; Lee, Seung-Hoon; Moon, Byung Kee; Yoo, Seung Ryul; Hwang, Seongpil; Jang, Jae-Won

    2016-08-01

    This study investigated which factors decisively influence colloidal nanoparticle (NP) assembly on a self-assembled monolayer (SAM)-patterned substrate. Zirconia (ZrO2) NP assembly on a poly(dimethylsiloxane) (PDMS)-stamped SAM-patterned Au substrate was carried out while the size and surface charge state of the NPs and the substrate wettability were altered. ZrO2 particles with diameters of 350 nm, 560 nm, and 1100 nm were employed to examine the effect of NP size on the assembly. Bare ZrO2 NPs with a negatively charged surface and ZrO2 NPs with a positively charged surface through 3-aminopropyltriethoxysilane encapsulation were prepared for the NP assembly. Moreover, the substrate wettability effect on the NP assembly was evaluated by comparing the assembly on substrates with the PDMS-patterned SAMs of thiols with polar and non-polar functional groups. From the characterization of the number of NPs in a pattern and the effective area of assembled NPs (Aeff), positively charged ZrO2 NP assembly on negatively charged patterns showed the highest number density of particles in a pattern compared with the other combinations in both 350-nm and 560-nm ZrO2 NPs. This observation can be attributed to negatively charged 16-mercaptohexadecanoic acid SAMs having greater polarity (more polar groups) than positively charged 11-amino-1-undecanethiol SAMs within the condition of the colloidal ZrO2 NP assembly.

  9. Nanoparticle assembly on topographical polymer templates: effects of spin rate, nanoparticle size, ligand, and concentration.

    PubMed

    Pavan, Mariela J; Ploshnik, Elina; Shenhar, Roy

    2012-11-29

    The ability to assemble nanoparticles (NPs) into desired patterns in a controlled fashion is crucial for the study of collective properties and for the fabrication of a variety of NP-based devices. Drying-mediated assembly directed by a template provides a facile route for organizing NPs in predefined patterns. We utilize the branched topographical landscapes displayed by partially crystallized poly(ethylene glycol) (PEG) films as a generic template for studying the drying-mediated organization of dodecanethiol- and polystyrene thiol-protected gold NPs (Au-DT and Au-PS), and explore the combined effects of NP size and ligand, concentration, and spin rate on the distribution of NPs inside the channels. We show how NP concentration and the spin rate applied during NP deposition can be used to influence the tendency of NPs either to fill the channel uniformly or to localize near the channel edges, explain the important role of the enhanced aggregation tendency of larger NPs on the resulting morphologies, and demonstrate how this tendency can be tuned by the proper choice of ligands. The different effects are explained in the context of possible scenarios of drying-mediated assembly by analyzing the relevant interactions and forces acting on the NPs during solvent evaporation.

  10. Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Chen, Zhe; Wang, Yiting; Zhang, Jun; Liao, Guozhen; Tian, Zhengwen; Yu, Jianhui; Tang, Jieyuan; Luo, Yunhan; Lu, Huihui

    2015-07-01

    A temperature fiber sensor with nanostructured cladding composed ted by titanium dioxide (TiO2) nanoparticles was demonstrated. The nanoparticles self-assembled onto a side polished optical fiber (SPF). The enhancement of interaction between the propagating light and the TiO2 nanoparticles (TN) can be obtained via strong evanescent field of the SPF. The strong light-TN interaction gives rise to temperature sensing with a optical power variation of ~4dB in SPF experimentally for an environment temperature ranging from -7.8°C to 77.6°C. The novel temperature sensor shows a sensitivity of ~0.044 dB/°C. The TN-based fiber-optic temperature sensor is facile to manufactured, compatible with fiber-optic interconnections and high potential in photonics applications.

  11. Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes

    PubMed Central

    Natarajan, Vaishaali; Wilson, Christina L.; Hayward, Stephen L.; Kidambi, Srivatsan

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or indirectly through unintentional ingestion via water, food or animals and increased environmental contamination. Growing concerns over the current usage of TiO2 coupled with the lack of mechanistic understanding of its potential health risk is the motivation for this study. Here we determined the toxic effect of three different TiO2 nanoparticles (commercially available rutile, anatase and P25) on primary rat hepatocytes. Specifically, we evaluated events related to hepatocyte functions and mitochondrial dynamics: (1) urea and albumin synthesis using colorimetric and ELISA assays, respectively; (2) redox signaling mechanisms by measuring reactive oxygen species (ROS) production, manganese superoxide dismutase (MnSOD) activity and mitochondrial membrane potential (MMP); (3) OPA1 and Mfn-1 expression that mediates the mitochondrial dynamics by PCR; and (4) mitochondrial morphology by MitoTracker Green FM staining. All three TiO2 nanoparticles induced a significant loss (p < 0.05) in hepatocyte functions even at concentrations as low as 50 ppm with commercially used P25 causing maximum damage. TiO2 nanoparticles induced a strong oxidative stress in primary hepatocytes. TiO2 nanoparticles exposure also resulted in morphological changes in mitochondria and substantial loss in the fusion process, thus impairing the mitochondrial dynamics. Although this study demonstrated that TiO2 nanoparticles exposure resulted in substantial damage to primary hepatocytes, more in vitro and in vivo studies are required to determine the complete toxicological mechanism in primary hepatocytes and subsequently liver function. PMID:26247363

  12. Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes.

    PubMed

    Natarajan, Vaishaali; Wilson, Christina L; Hayward, Stephen L; Kidambi, Srivatsan

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or indirectly through unintentional ingestion via water, food or animals and increased environmental contamination. Growing concerns over the current usage of TiO2 coupled with the lack of mechanistic understanding of its potential health risk is the motivation for this study. Here we determined the toxic effect of three different TiO2 nanoparticles (commercially available rutile, anatase and P25) on primary rat hepatocytes. Specifically, we evaluated events related to hepatocyte functions and mitochondrial dynamics: (1) urea and albumin synthesis using colorimetric and ELISA assays, respectively; (2) redox signaling mechanisms by measuring reactive oxygen species (ROS) production, manganese superoxide dismutase (MnSOD) activity and mitochondrial membrane potential (MMP); (3) OPA1 and Mfn-1 expression that mediates the mitochondrial dynamics by PCR; and (4) mitochondrial morphology by MitoTracker Green FM staining. All three TiO2 nanoparticles induced a significant loss (p < 0.05) in hepatocyte functions even at concentrations as low as 50 ppm with commercially used P25 causing maximum damage. TiO2 nanoparticles induced a strong oxidative stress in primary hepatocytes. TiO2 nanoparticles exposure also resulted in morphological changes in mitochondria and substantial loss in the fusion process, thus impairing the mitochondrial dynamics. Although this study demonstrated that TiO2 nanoparticles exposure resulted in substantial damage to primary hepatocytes, more in vitro and in vivo studies are required to determine the complete toxicological mechanism in primary hepatocytes and subsequently liver function.

  13. Salt concentration-induced dehybridisation of DNA-gold nanoparticle conjugate assemblies for diagnostic applications.

    PubMed

    Oh, Ju-Hwan; Lee, Jae-Seung

    2010-09-14

    We present the cooperative dehybridisation of DNA-gold nanoparticle conjugate (DNA-AuNP) assemblies induced by reduced salt concentration ([salt]), which can be precisely controlled by various conditions. The detection of Ag(+) based upon the [salt]-induced dehybridisation of DNA-AuNP assemblies is five times more sensitive than that achieved under conventional thermal melting conditions.

  14. Supramolecular Assembly of Gold Nanoparticles on Carbon Nanotubes: Application to the Catalytic Oxidation of Hydroxylamines

    PubMed Central

    Shah, Nimesh; Basu, Pallabita; Prakash, Praveen; Donck, Simon; Gravel, Edmond; Namboothiri, Irishi N. N.; Doris, Eric

    2016-01-01

    A supramolecular heterogeneous catalyst was developed by assembly and stabilization of gold nanoparticles on the surface of carbon nanotubes. A layer-by-layer assembly strategy was used and the resulting nanohybrid was involved in the catalytic oxidation of hydroxylamines under mild conditions. The nanohybrid demonstrated high efficiency and selectivity on hydroxylamine substrates. PMID:28344294

  15. Titanium Dioxide Nanoparticles in Food and Personal Care Products

    PubMed Central

    Weir, Alex; Westerhoff, Paul; Fabricius, Lars

    2012-01-01

    Titanium dioxide is a common additive in many food, personal care, and other consumer products used by people, which after use can enter the sewage system, and subsequently enter the environment as treated effluent discharged to surface waters or biosolids applied to agricultural land, incinerated wastes, or landfill solids. This study quantifies the amount of titanium in common food products, derives estimates of human exposure to dietary (nano-) TiO2, and discusses the impact of the nanoscale fraction of TiO2 entering the environment. The foods with the highest content of TiO2 included candies, sweets and chewing gums. Among personal care products, toothpastes and select sunscreens contained 1% to >10% titanium by weight. While some other crèmes contained titanium, despite being colored white, most shampoos, deodorants, and shaving creams contained the lowest levels of titanium (<0.01 μg/mg). For several high-consumption pharmaceuticals, the titanium content ranged from below the instrument detection limit (0.0001 μg Ti/mg) to a high of 0.014 μg Ti/mg. Electron microscopy and stability testing of food-grade TiO2 (E171) suggests that approximately 36% of the particles are less than 100 nm in at least one dimension and that it readily disperses in water as fairly stable colloids. However, filtration of water solubilized consumer products and personal care products indicated that less than 5% of the titanium was able to pass through 0.45 or 0.7 μm pores. Two white paints contained 110 μg Ti/mg while three sealants (i.e., prime coat paint) contained less titanium (25 to 40 μg Ti/mg). This research showed that while many white-colored products contained titanium, it was not a prerequisite. Although several of these product classes contained low amounts of titanium, their widespread use and disposal down the drain and eventually to WWTPs deserves attention. A Monte Carlo human exposure analysis to TiO2 through foods identified children as having the highest

  16. Titanium dioxide nanoparticles in food and personal care products.

    PubMed

    Weir, Alex; Westerhoff, Paul; Fabricius, Lars; Hristovski, Kiril; von Goetz, Natalie

    2012-02-21

    Titanium dioxide is a common additive in many food, personal care, and other consumer products used by people, which after use can enter the sewage system and, subsequently, enter the environment as treated effluent discharged to surface waters or biosolids applied to agricultural land, incinerated wastes, or landfill solids. This study quantifies the amount of titanium in common food products, derives estimates of human exposure to dietary (nano-) TiO(2), and discusses the impact of the nanoscale fraction of TiO(2) entering the environment. The foods with the highest content of TiO(2) included candies, sweets, and chewing gums. Among personal care products, toothpastes and select sunscreens contained 1% to >10% titanium by weight. While some other crèmes contained titanium, despite being colored white, most shampoos, deodorants, and shaving creams contained the lowest levels of titanium (<0.01 μg/mg). For several high-consumption pharmaceuticals, the titanium content ranged from below the instrument detection limit (0.0001 μg Ti/mg) to a high of 0.014 μg Ti/mg. Electron microscopy and stability testing of food-grade TiO(2) (E171) suggests that approximately 36% of the particles are less than 100 nm in at least one dimension and that it readily disperses in water as fairly stable colloids. However, filtration of water solubilized consumer products and personal care products indicated that less than 5% of the titanium was able to pass through 0.45 or 0.7 μm pores. Two white paints contained 110 μg Ti/mg while three sealants (i.e., prime coat paint) contained less titanium (25 to 40 μg Ti/mg). This research showed that, while many white-colored products contained titanium, it was not a prerequisite. Although several of these product classes contained low amounts of titanium, their widespread use and disposal down the drain and eventually to wastewater treatment plants (WWTPs) deserves attention. A Monte Carlo human exposure analysis to TiO(2) through foods

  17. Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid.

    PubMed

    Melo, Catarina I; Szczepańska, Anna; Bogel-Łukasik, Ewa; Nunes da Ponte, Manuel; Branco, Luís C

    2016-05-23

    The efficient transformation of carbon dioxide into fuels can be an excellent alternative to sequestration. In this work, we describe CO2 hydrogenation to methane in imidazolium-based ionic liquid media, using ruthenium nanoparticles prepared in situ as catalyst. The best yield of methane (69 %) was achieved using 0.24 mol % ruthenium catalyst (in [omim][NTf2 ], 1-octyl-3-methylimidazolium bistrifluoromethanesulfonylimide, at 40 bar of hydrogen pressure plus 40 bar of CO2 pressure, and at 150 °C. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Interaction of Schiff base ligand with tin dioxide nanoparticles: optical studies.

    PubMed

    Rani, J Suvetha; Ramakrishnan, V

    2013-10-01

    Interaction between 1,4 Bis ((2-Methyl) thio) Phenylamino methyl benzene (BMTPMB) Schiff base with tin dioxide nanoparticles (SnO2 NPs) of various concentrations in methanol have been studied using UV-Visible and Fluorescence spectroscopic techniques. The low value of Stern-Volmer quenching constant and non-linear plot of Benesi-Hildebrand equation suggests the less affinity of SnO2 NPs towards the adsorption of BMTPMB Schiff base. The Scott equation has been employed to determine molar absorptivity of the Schiff base-NPs system.

  19. Anisotropic Self-Assembly of Citrate-Coated Gold Nanoparticles on Fluidic Liposomes.

    PubMed

    Sugikawa, Kouta; Kadota, Tatsuya; Yasuhara, Kazuma; Ikeda, Atsushi

    2016-03-14

    The behavior of self-assembly processes of nanoscale particles on plasma membranes can reveal mechanisms of important biofunctions and/or intractable diseases. Self-assembly of citrate-coated gold nanoparticles (cAuNPs) on liposomes was investigated. The adsorbed cAuNPs were initially fixed on the liposome surfaces and did not self-assemble below the phospholipid phase transition temperature (Tm ). In contrast, anisotropic cAuNP self-assembly was observed upon heating of the composite above the Tm, where the phospholipids became fluid. The number of self-assembled NPs is conveniently controlled by the initial mixing ratio of cAuNPs and liposomes. Gold nanoparticle protecting agents strongly affected the self-assembly process on the fluidic membrane.

  20. Appreciating the role of thermodynamics in LCA improvement analysis via an application to titanium dioxide nanoparticles.

    PubMed

    Grubb, Geoffrey F; Bakshi, Bhavik R

    2011-04-01

    Although many regard it as the most important step of life cycle assessment, improvement analysis is given relatively little attention in the literature. Most available improvement approaches are highly subjective, and traditional LCA methods often do not account for resources other than fossil fuels. In this work exergy is evaluated as a thermodynamically rigorous way of identifying process improvement opportunities. As a case study, a novel process for producing titanium dioxide nanoparticles is considered. A traditional impact assessment, a first law energy analysis, and an exergy analysis are done at both the process and life cycle scales. The results indicate that exergy analysis provides insights not available via other methods, especially for identifying unit operations with the greatest potential for improvement. Exergetic resource accounting at the life cycle scale shows that other materials are at least as significant as fossil fuels for the production of TiO2 nanoparticles in this process.

  1. [Studies on nano-particle sols of hydroxyaptite and titanium dioxide for haemo-compatibility].

    PubMed

    Chen, Xiao; Feng, Lingyun; Peng, Renxiu; Cao, Xianying

    2002-06-01

    A biological evaluation is conducted for two types of nano-particle sols, hydroxyaptite(HAP) and titanium dioxide(TiO2). The results show that HAP sol significnatly prolongs the bleeding time and coagulation time of mice as well as the prothrombin time(PT) and partial thromboplastin time(PTT) of rats while TiO2 sol exhibits no such effects. Neither HAP sol nor TiO2 sol instigated in-vitro hemolysis of rabbit erythrocyte. However, both of the materials caused in-vitro aggregation of rabbit erythrocytes. The reason underlying the different results as to the two types of material is their specific stabilizer, heparin for HAP sol and PVC for TiO2 sol. We came to the conclusion that a biologically inert stablizer has no less significance than the nano-particle's very own nature in a nano-material's application prospect.

  2. Colloidal Assembly of Hierarchically Structured Porous Supraparticles from Flower-Shaped Protein-Inorganic Hybrid Nanoparticles.

    PubMed

    Park, Won Min; Champion, Julie A

    2016-09-27

    Mimicry of biomineralization is an attractive strategy to fabricate nanostructured hybrid materials. While biomineralization involves processes that organize hybrid clusters into complex structures with hierarchy, arrangement of artificial components in biomimetic approaches has been challenging. Here, we demonstrate self-assembly of hierarchically structured porous supraparticles from protein-inorganic hybrid flower-shaped (FS) nanoparticle building blocks. In our strategy, the FS nanoparticles self-assemble via high valency interactions in combination with interfacial adsorption and compression. The flower-like shape directed robust assembly of the FS nanoparticles into chain-like clusters in solution, which were further assembled into spherical supraparticles during rotation of FS nanoparticle solution. Continuously expanding and contracting the air-water interface during rotation catalyzed assembly of FS nanoparticle clusters, indicating that adsorption and compression of the building blocks at the interface were critical. The resulting supraparticles contain hierarchical pores which are translated from the structural characteristics of individual FS nanoparticle building blocks. The protein-inorganic supraparticles are protein-compatible, have large surface area, and provide specific affinity recognition for robust protein immobilization. A variety of functional proteins could be immobilized to the porous supraparticles, making it a general platform that could provide benefits for many applications.

  3. Enhancing surface coverage and growth in layer-by-layer assembly of protein nanoparticles.

    PubMed

    Mohanta, Vaishakhi; Patil, Satish

    2013-10-29

    Thin films of bovine serum albumin (BSA) nanoparticles are fabricated via layer-by-layer assembly. The surface of BSA nanoparticles have two oppositely acting functional groups on the surface: amine (NH2) and carboxylate (COO(-)). The protonation and deprotonation of these functional groups at different pH vary the charge density on the particle surface, and entirely different growth can be observed by varying the nature of the complementary polymer and the pH of the particles. The complementary polymers used in this study are poly(dimethyldiallylammonium chloride) (PDDAC) and poly(acrylic acid) (PAA). The assembly of BSA nanoparticles based on electrostatic interaction with PDDAC suffers from the poor loading of the nanoparticles. The assembly with PAA aided by a hydrogen bonding interaction shows tremendous improvement in the growth of the assembly over PDDAC. Moreover, the pH of the BSA nanoparticles was observed to affect the loading of nanoparticles in the LbL assembly with PAA significantly.

  4. Cross-linked block copolymer templated assembly of nanoparticle arrays with high density and position selectivity

    NASA Astrophysics Data System (ADS)

    Liu, Zhicheng; Chang, Tongxin; Huang, Haiying; Bai, Lu

    2016-10-01

    Patterning ordered nanoparticle arrays is crucial for the fascinating collective properties of nanoparticles. Block copolymer template provides us a platform for the simple and efficient assembly of nanoparticle arrays. In this work, cylinder-forming poly(styrene-block-2-vinylpyridine) thin film was firstly plasma-etched to expose poly(2-vinylpyridine) cylinders. Then the templates were cross-linked by small molecules so as to access gold nanoparticle arrays with both high density and excellent position selectivity. The cross-linking process significantly restrains the unfavorable surface reconstruction of the thin film. It is demonstrated that the quality of the nanoparticle array was affected by the degree of the cross-linking and the immersion time in nanoparticle solution. The highly ordered gold nanoparticle arrays are promising in several fields such as optics and surface enhanced Raman scattering (SERS).

  5. Growth and assembly of cobalt oxide nanoparticle rings at liquid nanodroplets with solid junction.

    PubMed

    Zhou, Yilong; Powers, Alexander S; Zhang, Xiaowei; Xu, Tao; Bustillo, Karen; Sun, Litao; Zheng, Haimei

    2017-09-13

    Using liquid cell TEM, we imaged the formation of CoO nanoparticle rings. Nanoparticles nucleated and grew tracing the perimeter of droplets sitting on the SiNx solid substrate, and finally formed necklace-like rings. By tracking single nanoparticle trajectories during the ring formation and an estimation of the forces between droplets and nanoparticles using a simplified model, we found the junction of liquid nanodroplets with a solid substrate is the attractive site for CoO nanoparticles. Coalescing droplets were capable of pushing nanoparticles to the perimeter of the new droplet and nanoparticles on top of the droplets rolled off toward the perimeter. We propose that the curved surface morphology of the droplets created a force gradient that contributed to the assembly of nanoparticles at the droplet perimeter. Revealing the dynamics of nanoparticle movements and the interactions of nanoparticles with the liquid nanodroplet provides insights on developing novel self-assembly strategies for building precisely defined nanostructures on solid substrates.

  6. Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum).

    PubMed

    Frazier, Taylor P; Burklew, Caitlin E; Zhang, Baohong

    2014-03-01

    Titanium dioxide (TiO(2)) is one of the most widely used pigments in the world. Due to its heavy use in industry and daily life, such as food additives, cosmetics, pharmaceuticals, and paints, many residues are released into the environment and currently TiO(2) nanoparticles are considered an emerging environmental contaminant. Although several studies have shown the effect of TiO(2) nanoparticles on a wide range of organisms including bacteria, algae, plankton, fish, mice, and rats, little research has been performed on land plants. In this study, we investigated the effect of TiO(2) nanoparticles on the growth, development, and gene expression of tobacco, an important economic and agricultural crop in the southeastern USA as well as around the world. We found that TiO(2) nanoparticles significantly inhibited the germination rates, root lengths, and biomasses of tobacco seedlings after 3 weeks of exposure to 0.1, 1, 2.5, and 5 % TiO(2) nanoparticles and that overall growth and development of the tobacco seedlings significantly decreased as TiO(2) nanoparticle concentrations increased. Overall, tobacco roots were the most sensitive to TiO(2) nanoparticle exposure. Nano-TiO(2) also significantly influenced the expression profiles of microRNAs (miRNAs), a recently discovered class of small endogenous noncoding RNAs (∼20-22 nt) that are considered important gene regulators and have been shown to play an important role in plant development as well as plant tolerance to abiotic stresses such as drought, salinity, cold, and heavy metal. Low concentrations (0.1 and 1 %) of TiO(2) nanoparticles dramatically induced miRNA expression in tobacco seedlings with miR395 and miR399 exhibiting the greatest fold changes of 285-fold and 143-fold, respectively. The results of this study show that TiO(2) nanoparticles have a negative impact on tobacco growth and development and that miRNAs may play an important role in tobacco response to heavy metals/nanoparticles by regulating

  7. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures

    PubMed Central

    Klajn, Rafal; Bishop, Kyle J. M.; Grzybowski, Bartosz A.

    2007-01-01

    Nanoparticles (NPs) decorated with ligands combining photoswitchable dipoles and covalent cross-linkers can be assembled by light into organized, three-dimensional suprastructures of various types and sizes. NPs covered with only few photoactive ligands form metastable crystals that can be assembled and disassembled “on demand” by using light of different wavelengths. For higher surface concentrations, self-assembly is irreversible, and the NPs organize into permanently cross-linked structures including robust supracrystals and plastic spherical aggregates. PMID:17563381

  8. Self-assembled nanoparticles of acetylated cashew gum: characterization and evaluation as potential drug carrier.

    PubMed

    Pitombeira, Nadia A O; Veras Neto, José Guilherme; Silva, Durcilene A; Feitosa, Judith P A; Paula, Haroldo C B; de Paula, Regina C M

    2015-03-06

    Acetylated cashew gum (ACG) was synthesized and self-assembled nanoparticles were obtained through the dialysis of an organic solution (DMSO) against a non-solvent (water). The ACG was characterized by infrared spectroscopy. The degree of substitution was 2.8 as determined by NMR spectroscopy. The physicochemical properties of the self-assembled nanoparticles in aqueous media were characterized by DLS, SEM and fluorescence spectroscopy. The mean diameter of the self-assembled nanoparticles obtained was 179 nm and the critical aggregation concentration (CAC) in water was 2.1×10(-3) g/L. Indomethacin (IND) was used as a hydrophobic model drug and was incorporated into the hydrophobized polysaccharide. Both loaded and unloaded nanoparticles were found to be spherical with diameters in the ranges of 70-170 nm and 108-314 nm (determined by SEM), respectively. Controlled drug release was observed for up to 72 h. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Self-assembly of magnetic Ni nanoparticles into 1D arrays with antiferromagnetic order

    NASA Astrophysics Data System (ADS)

    Bliznyuk, V.; Singamaneni, S.; Sahoo, S.; Polisetty, S.; He, Xi; Binek, Ch

    2009-03-01

    In this paper, we report on the magnetic properties of isolated nanoparticles and interacting nanochains formed by the self-assembly of Ni nanoparticles. The magnetic properties were studied using superconducting quantum interference device (SQUID) magnetometry and magnetic force microscopy (MFM). We demonstrate that single-domain Ni nanoparticles spontaneously form one-dimensional (1D) chains under the influence of an external magnetic field. Furthermore, such magnetic field-driven self-assembly in conjunction with surface templating produces regular arrays of 1D nanochains with antiferromagnetic intra-chain order. The antiferromagnetic order, which is in striking contrast to what is found for non-interacting nanoparticle assemblies within the chains, can be evidenced from MFM and SQUID measurements.

  10. Self-assembly of magnetic Ni nanoparticles into 1D arrays with antiferromagnetic order.

    PubMed

    Bliznyuk, V; Singamaneni, S; Sahoo, S; Polisetty, S; He, Xi; Binek, Ch

    2009-03-11

    In this paper, we report on the magnetic properties of isolated nanoparticles and interacting nanochains formed by the self-assembly of Ni nanoparticles. The magnetic properties were studied using superconducting quantum interference device (SQUID) magnetometry and magnetic force microscopy (MFM). We demonstrate that single-domain Ni nanoparticles spontaneously form one-dimensional (1D) chains under the influence of an external magnetic field. Furthermore, such magnetic field-driven self-assembly in conjunction with surface templating produces regular arrays of 1D nanochains with antiferromagnetic intra-chain order. The antiferromagnetic order, which is in striking contrast to what is found for non-interacting nanoparticle assemblies within the chains, can be evidenced from MFM and SQUID measurements.

  11. Tracking Nanoparticle Diffusion and Interaction during Self-Assembly in a Liquid Cell.

    PubMed

    Powers, Alexander S; Liao, Hong-Gang; Raja, Shilpa N; Bronstein, Noah D; Alivisatos, A Paul; Zheng, Haimei

    2017-01-11

    Nanoparticle self-assembly has been well studied theoretically, but it remains challenging to directly observe and quantify individual nanoparticle interactions. With our custom image analysis method, we track the trajectories of nanoparticle movement with high precision from a stack of relatively noisy images obtained using liquid cell transmission electron microscopy. In a time frame of minutes, Pt-Fe nanoparticles self-assembled into a loosely packed hcp lattice. The energetics and stability of the dynamic assembly were studied quantitatively. From velocity and diffusion measurements, we experimentally determined the magnitude of forces between single particles and the related physical properties. The results illustrate that long-range anisotropic forces drive the formation of chains, which then clump and fold to maximize close range van der Waals interactions.

  12. Self-assembly of 4-ferrocene thiophenol capped electroactive gold nanoparticles onto gold electrode

    NASA Astrophysics Data System (ADS)

    Li, Di; Li, Jinghong

    2003-01-01

    Gold nanoparticles capped by 4-ferrocene thiophenol with an average core size of 2.5 nm and surface plasmon absorbance at 522 nm were place-exchanged with 1,8-octanedithiol, and then self-assembled onto the gold electrode via tail SH group. The self-assembly was characterized by X-ray photoelectron spectroscopy. Cyclic voltammograms examined the coverage fraction of the self-assembled monolayers of the electroactive gold nanoparticles and the formal potential of the indicated SAMs. Further experiments exhibited that the electrode process was controlled by surface confined faradic reactions.

  13. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells.

    PubMed

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-12-08

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.

  14. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    NASA Astrophysics Data System (ADS)

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-12-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.

  15. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    PubMed Central

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  16. Tensile strength and impact strength of color modified acrylic resin reinforced with titanium dioxide nanoparticles.

    PubMed

    Ghahremani, Loghman; Shirkavand, Saeed; Akbari, Faezeh; Sabzikari, Niloofar

    2017-05-01

    Poor mechanical properties are among the main limitations of acrylic resins. Addition of titanium dioxide (TiO2) nanoparticles to acrylic resin has been shown to improve its mechanical properties with an adverse effect on its color. Thus, this study sought to assess the tensile and impact strength of a color modified heat cure acrylic resin reinforced with TiO2 nanoparticles. In this in vitroexperimental study, 1wt% TiO2 nanoparticles were added to SR Triplex Hot heat-cure acrylic resin powder and mixed. Pigments and color fibers were also added and 18 samples were fabricated of this paste for tensile and impact strength testing (n=9) according to ISO5271. Eighteen control samples were also fabricated from the acrylic powder without any modification. Independent t-test was used for data analysis (P< 0.05). The mean tensile strength of the reinforced group was found to be significantly higher (difference of 11 MPa) than that of the control group (P=0.001). The mean impact strength of the reinforced group was 7 MPa higher than that of the control group and this difference was statistically significant as well (P=0.001). The color modified acrylic resin reinforced with 1wt% TiO2 showed significantly higher tensile and impact strength compared to the conventional acrylic resin. Thus, TiO2 nanoparticles may be incorporated into color-modified acrylic resin powder to enhance its tensile and impact strength, given that they have no adverse effect on other properties. Key words:Tensile strength, acrylic resins, titanium dioxide, impact strength.

  17. Assembly/Disassembly of DNA-Au Nanoparticles: A Strategy of Intervention

    DOE PAGES

    Lim, I-Im S.; Wang, Lingyan; Chandrachud, Uma; ...

    2008-01-01

    This report describes the viability of a strategy for manipulating the assembly/disassembly processes of DNA-Au nanoparticles by molecular intervention. Using the temperature-induced assembly and disassembly processes of DNAs and gold nanoparticles as a model system, the introduction of a molecular recognition probe is demonstrated to lead to the intervention of the assembly/disassembly processes depending on its specific biorecognition. This process can be detected by monitoring the change in the optical properties of gold nanoparticles and their DNA assemblies. Implications of the preliminary results to exploration of the resulting nanostructures for fine-tuning of the interfacial reactivities in DNA-based bioassays and biomaterialmore » engineering are also discussed.« less

  18. Controlling the self-assembly structure of magnetic nanoparticles and amphiphilic block-copolymers: from micelles to vesicles.

    PubMed

    Hickey, Robert J; Haynes, Alyssa S; Kikkawa, James M; Park, So-Jung

    2011-02-09

    We report how to control the self-assembly of magnetic nanoparticles and a prototypical amphiphilic block-copolymer composed of poly(acrylic acid) and polystyrene (PAA-b-PS). Three distinct structures were obtained by controlling the solvent-nanoparticle and polymer-nanoparticle interactions: (1) polymersomes densely packed with nanoparticles (magneto-polymersomes), (2) core-shell type polymer assemblies where nanoparticles are radially arranged at the interface between the polymer core and the shell (magneto-core shell), and (3) polymer micelles where nanoparticles are homogeneously incorporated (magneto-micelles). Importantly, we show that the incorporation of nanoparticles drastically affects the self-assembly structure of block-copolymers by modifying the relative volume ratio between the hydrophobic block and the hydrophilic block. As a consequence, the self-assembly of micelle-forming block-copolymers typically produces magneto-polymersomes instead of magneto-micelles. On the other hand, vesicle-forming polymers tend to form magneto-micelles due to the solubilization of nanoparticles in polymer assemblies. The nanoparticle-polymer interaction also controls the nanoparticle arrangement in the polymer matrix. In N,N-dimethylformamide (DMF) where PS is not well-solvated, nanoparticles segregate from PS and form unique radial assemblies. In tetrahydrofuran (THF), which is a good solvent for both nanoparticles and PS, nanoparticles are homogeneously distributed in the polymer matrix. Furthermore, we demonstrated that the morphology of nanoparticle-encapsulating polymer assemblies significantly affects their magnetic relaxation properties, emphasizing the importance of the self-assembly structure and nanoparticle arrangement as well as the size of the assemblies.

  19. Pre- and postfunctionalized self-assembled π-conjugated fluorescent organic nanoparticles for dual targeting.

    PubMed

    Petkau, Katja; Kaeser, Adrien; Fischer, Irén; Brunsveld, Luc; Schenning, Albertus P H J

    2011-10-26

    There is currently a high demand for novel approaches to engineer fluorescent nanoparticles with precise surface properties suitable for various applications, including imaging and sensing. To this end, we report a facile and highly reproducible one-step method for generating functionalized fluorescent organic nanoparticles via self-assembly of prefunctionalized π-conjugated oligomers. The engineered design of the nonionic amphiphilic oligomers enables the introduction of different ligands at the extremities of inert ethylene glycol side chains without interfering with the self-assembly process. The intrinsic fluorescence of the nanoparticles permits the measurement of their surface properties and binding to dye-labeled target molecules via Förster resonance energy transfer (FRET). Co-assembly of differently functionalized oligomers is also demonstrated, which enables the tuning of ligand composition and density. Furthermore, nanoparticle prefunctionalization has been combined with subsequent postmodification of azide-bearing oligomers via click chemistry. This allows for expanding ligand diversity at two independent stages in the nanoparticle fabrication process. The practicability of the different methods entails greater control over surface functionality. Through labeling with different ligands, selective binding of proteins, bacteria, and functionalized beads to the nanoparticles has been achieved. This, in combination with the absence of unspecific adsorption, clearly demonstrates the broad potential of these nanoparticles for selective targeting and sequestration. Therefore, controlled bifunctionalization of fluorescent π-conjugated oligomer nanoparticles represents a novel approach with high applicability to multitargeted imaging and sensing in biology and medicine.

  20. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens.

    PubMed

    Venkatasubbu, G Devanand; Baskar, R; Anusuya, T; Seshan, C Arun; Chelliah, Ramachandran

    2016-12-01

    Food preservation is an important field of research. It extends the shelf life of major food products. Our current study is based on food preservation through TiO2 and ZnO nanoparticles. TiO2 and ZnO are biocompatible nanomaterial. The biocompatibility of the materials were established through toxicity studies on cell lines. Titanium dioxide and Zinc Oxide nanoparticle were synthesized by wet chemical process. They are characterized by X-Ray diffraction and TEM. The antibacterial activities of both the materials were analysed to ensure their effectiveness as food preservative against Salmonella typhi, Klebsiella pneumoniae and Shigella flexneri. The results indicates that TiO2 and ZnO nanoparticle inhibits Salmonella, Klebsiella and Shigella. The mode of action is by the generation of ROS in cases of Salmonella, Klebsiella. Mode of action in Shigella is still unclear. It was also proved that TiO2 and ZnO nanoparticle are biocompatible materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electron beam induced synthesis of uranium dioxide nanoparticles: Effect of solvent composition

    NASA Astrophysics Data System (ADS)

    Rath, M. C.; Keny, S. J.; Naik, D. B.

    2016-09-01

    The effect of various compositions of solvents was investigated on the electron beam induced synthesis of uranium dioxide, UO2 nanoparticles. The synthesis was carried out at different pHs from 2 to 7 in the aqueous solutions containing 10 mM uranyl nitrate and 10% 2-propanol. The formation of UO2 nanoparticles was found to occur only in the pH range from 2.5 to 3.7. Experiments were also carried out in the aqueous solutions containing various other alcohols (10% v/v) such as methanol, ethanol, 1-propanol, 1-butanol or tert-butanol as well as in solutions containing 10 mM sodium formate at pH 3.4. The formation of UO2 nanoparticles in the aqueous solutions was found to occur only in the presence of ethanol, 1-propanol, 2-propanol or 1-butanol. It is therefore confirmed that the electron beam induced synthesis of UO2 nanoparticles strongly depends on the solvent compositions as well as the pH of the medium.

  2. Pulmonary toxicity of well-dispersed titanium dioxide nanoparticles following intratracheal instillation

    NASA Astrophysics Data System (ADS)

    Yoshiura, Yukiko; Izumi, Hiroto; Oyabu, Takako; Hashiba, Masayoshi; Kambara, Tatsunori; Mizuguchi, Yohei; Lee, Byeong Woo; Okada, Takami; Tomonaga, Taisuke; Myojo, Toshihiko; Yamamoto, Kazuhiro; Kitajima, Shinichi; Horie, Masanori; Kuroda, Etsushi; Morimoto, Yasuo

    2015-06-01

    In order to investigate the pulmonary toxicity of titanium dioxide (TiO2) nanoparticles, we performed an intratracheal instillation study with rats of well-dispersed TiO2 nanoparticles and examined the pulmonary inflammation and histopathological changes in the lung. Wistar Hannover rats were intratracheally administered 0.2 mg (0.66 mg/kg) and 1.0 mg (3.3 mg/kg) of well-dispersed TiO2 nanoparticles (P90; diameter of agglomerates: 25 nm), then the pulmonary inflammation responses were examined from 3 days to 6 months after the instillation, and the pathological features were examined up to 24 months. Transient inflammation and the upregulation of chemokines in the broncho-alveolar lavage fluid were observed for 1 month. No respiratory tumors or severe fibrosis were observed during the recovery time. These data suggest that transient inflammation induced by TiO2 may not lead to chronic, irreversible legions in the lung, and that TiO2 nanoparticles may not have a high potential for lung disorder.

  3. X-ray diffraction studies of the growth of vanadium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pauli, S. A.; Herger, R.; Willmott, P. R.; Donev, E. U.; Suh, J. Y.; Haglund, R. F.

    2007-10-01

    We have characterized for the first time in situ the growth of vanadium dioxide nanoparticulate films prepared by pulsed-laser deposition, using a five-circle x-ray diffractometer, in order to provide structural information as the films are grown. A vanadium metal target was ablated in the presence of a pulsed N2O reactive gas source, and films were grown on Si(001) and Al2O3(0001) substrates. Optical measurements confirmed that the films deposited in this way exhibit the well-known VO2 metal-insulator transition at approximately 70 °C. The VO2 films grown at room temperature on silicon substrates are amorphous and extremely smooth. These become considerably rougher upon thermal annealing, as the VO2 phase crystallizes out in the form of hemispherical islands. These films also contain traces of a V2O5 nanoparticle phase in the first few monolayers, although the degree of VO2 crystallinity in the nanoparticles is quite high. In contrast, the VO2 nanoparticles grown on the sapphire substrates are in the form of preferentially oriented rodlike islands, with a maximum rod width of about 100 nm. This in-plane texture is in keeping with the relatively good lattice match between film and substrate, indicating good potential for the growth of VO2 epitaxial films and single-crystal nanoparticles on such substrates.

  4. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex.

    PubMed

    Choi, Inhee; Song, Hyeon Don; Lee, Suseung; Yang, Young In; Kang, Taewook; Yi, Jongheop

    2012-07-25

    We report core-satellites (Au-Ag) coupled plasmonic nanoassemblies based on bottom-up, high-density assembly of molecular-scale silver nanoparticles on a single gold nanoparticle surface, and demonstrate direct observation and quantification of enhanced plasmon coupling (i.e., intensity amplification and apparent spectra shift) in a single particle level. We also explore metal ion sensing capability based on our coupled plasmonic core-satellites, which enabled at least 1000 times better detection limit as compared to that of a single plasmonic nanoparticle. Our results demonstrate and suggest substantial promise for the development of coupled plasmonic nanostructures for ultrasensitive detection of various biological and chemical analytes.

  5. Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice.

    PubMed

    Hu, Hailong; Guo, Qian; Wang, Changlin; Ma, Xiao; He, Hongjuan; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2015-10-01

    There have been few reports about the possible toxic effects of titanium dioxide (TiO2 ) nanoparticles on the endocrine system. We explored the endocrine effects of oral administration to mice of anatase TiO2 nanoparticles (0, 64 and 320 mg kg(-1) body weight per day to control, low-dose and high-dose groups, respectively, 7 days per week for 14 weeks). TiO2 nanoparticles were characterized by scanning and transmission electron microscopy (TEM) and dynamic light scattering (DLS), and their physiological distribution was investigated by inductively coupled plasma. Biochemical analyzes included plasma glucose, insulin, heart blood triglycerides (TG), free fatty acid (FFA), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and reactive oxygen species (ROS)-related markers (total SOD, GSH and MDA). Phosphorylation of IRS1, Akt, JNK1, and p38 MAPK were analyzed by western blotting. Increased titanium levels were found in the liver, spleen, small intestine, kidney and pancreas. Biochemical analyzes showed that plasma glucose significantly increased whereas there was no difference in plasma insulin secretion. Increased ROS levels were found in serum and the liver, as evidenced by reduced total SOD activity and GSH level and increased MDA content. Western blotting showed that oral administration of TiO2 nanoparticles induced insulin resistance (IR) in mouse liver, shown by increased phosphorylation of IRS1 (Ser307) and reduced phosphorylation of Akt (Ser473). The pathway by which TiO2 nanoparticles increase ROS-induced IR were included in the inflammatory response and phosphokinase, as shown by increased serum levels of TNF-α and IL-6 and increased phosphorylation of JNK1 and p38 MAPK in liver. These results show that oral administration of TiO2 nanoparticles increases ROS, resulting in IR and increasing plasma glucose in mice.

  6. Enhanced magnetic properties of self-assembled FePt nanoparticles with MnO shell.

    PubMed

    Kang, Shishou; Miao, G X; Shi, S; Jia, Z; Nikles, David E; Harrell, J W

    2006-02-01

    Self-assembled FePt/MnO nanoparticles with different morphology and size were synthesized with a polyol process. With the MnO coating, FePt nanoparticles exhibit a high blocking temperature and magnetic moment. The low-temperature hysteresis loop of FePt nanoparticles can be shifted through the AFM pinning of the MnO shell. The aggregation of FePt nanoparticles during the L10 phase transformation can be significantly decreased by coating with the MnO shell.

  7. Molecular linker-mediated self-assembly of gold nanoparticles: understanding and controlling the dynamics.

    PubMed

    Abbas, Abdennour; Kattumenu, Ramesh; Tian, Limei; Singamaneni, Srikanth

    2013-01-08

    This study sheds light on the mechanism and dynamics of self-assembly of gold nanoparticles (AuNPs) using molecular linkers such as aminothiols. An experimental model is established that enables a fine control and prediction of both assembly rate and degree. Furthermore, we have found that under certain conditions, the increase in the molar ratio of linker/AuNPs beyond a certain threshold unexpectedly and dramatically slows down the assembly rate by charge reversal of the surface of nanoparticles. As a result, the assembly rate can be easily tuned to reach a maximum growth within seconds to several days. The decrease of the same molar ratio (linker/AuNPs) below a certain value leads to self-termination of the reaction at different phases of the assembly process, thus providing nanoparticles chains of different length. This work introduces new handles for a rational design of novel self-assembled architectures in a very time-effective manner and contributes to the understanding of the effect of the assembly morphology on the optical properties of gold nanoparticles.

  8. Unconventional assembly of bimetallic Au-Ni janus nanoparticles on chemically modified silica spheres.

    PubMed

    Jia, Lei; Pei, Xiaowei; Zhou, Feng; Liu, Weimin

    2014-02-10

    This paper reports that Janus Au-Ni nanoparticles (JANNPs) can self-assemble onto silica spheres in a novel way, which is different from that of single-component isotropic nanoparticles. JANNPs modified with octadecylamine (ODA) assemble onto catechol-modified silica spheres (SiO2-OH) to form a very special core-loop complex structure and finally the core-loop assemblies link each other to form large assemblies through capillary force and the hydrophobic interaction of the alkyl chains of ODA. The nanocomposites disassemble in the presence of vanillin and oleic acid because of the breakage of the catechol-metal link. Vanillin-induced disassembly enables the JANNPs to reassemble into a core-loop structure upon ODA addition. The assembly of SiO2-OH and isotropic Ni or Fe3O4 particles generates traditional core-satellite structures. This unconventional self-assembly can be attributed to the synergistic effect of Janus specificity and capillary force, which is also confirmed by the assembly of thiol-terminated silica spheres (SH-SiO2) with anisotropic JANNPs, isotropic Au, and Ni nanoparticles. These results can guide the development of novel composite materials using Janus nanoparticles as the primary building blocks.

  9. Size-Selective Nanoparticle Assembly on Substrates by DNA Density Patterning.

    PubMed

    Myers, Benjamin D; Lin, Qing-Yuan; Wu, Huanxin; Luijten, Erik; Mirkin, Chad A; Dravid, Vinayak P

    2016-06-28

    The vision of nanoscale self-assembly research is the programmable synthesis of macroscale structures with controlled long and short-range order that exhibit a desired set of properties and functionality. However, strategies to reliably isolate and manipulate the nanoscale building blocks based on their size, shape, or chemistry are still in their infancy. Among the promising candidates, DNA-mediated self-assembly has enabled the programmable assembly of nanoparticles into complex architectures. In particular, two-dimensional assembly on substrates has potential for the development of integrated functional devices and analytical systems. Here, we combine the high-resolution patterning capabilities afforded by electron-beam lithography with the DNA-mediated assembly process to enable direct-write grayscale DNA density patterning. This method allows modulation of the functionally active DNA surface density to control the thermodynamics of interactions between nanoparticles and the substrate. We demonstrate that size-selective directed assembly of nanoparticle films from solutions containing a bimodal distribution of particles can be realized by exploiting the cooperativity of DNA binding in this system. To support this result, we study the temperature-dependence of nanoparticle assembly, analyze the DNA damage by X-ray photoelectron spectroscopy and fluorescence microscopy, and employ molecular dynamics simulations to explore the size-selection behavior.

  10. Application of carbon dioxide towards the development of smart materials, green reaction schemes and metallic nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Mohammed, Fiaz S.

    Global carbon dioxide (CO2) emissions have steadily risen over the last 50 years, with 34 billion tons of CO2 released in 2009 alone. Its potential as a greenhouse gas has negatively affected of our lives and environment by the resulting ocean acidification and climate change. To mitigate atmospheric CO2, various strategies have been implemented for CO2 separation, capture, storage and use as a chemical feedstock. The use of CO2 in various chemical industries is attractive as its non-flammable, non-toxic, and relatively inert properties have made it an inherently safer alternative to traditional organic solvents, as well as, a greener carbon feedstock. Also, the accessible critical properties, appreciable critical density, high diffusivity and tunable thermophysical properties make liquid and supercritical CO2 an attractive solvent for industrial applications. In recent years, significant progress has been made in the field of tunable solvent media by employing the reversible reaction of CO2 with amines to produce carbamates. This class of compounds possesses ionic properties that are significantly different from their amines resulting in a non-ionic to ionic switching mechanism that provides for switchable solvent properties, reversible surfactants, low molecular weight organogelators and stimuli responsive materials. The focus of this dissertation is therefore the implementation of the reversible CO2—amine reaction for the formation of smart surfaces, greener amine protection mechanisms, and cationic metallic nanoparticle synthesis. Chapter 2 of this dissertation demonstrates the reversible reaction of CO2 with amine-containing self-assembled monolayers to yield "smart" surfaces that undergo a reversible change in structure, charge, and wettability upon reaction with CO2. The formation carbamate esters are also a widely implemented mechanism for amine protection during organic synthesis. However, traditional methods of protection incur increased solvent use and

  11. Self-assembly of gibberellic amide assemblies and their applications in the growth and fabrication of ordered gold nanoparticles.

    PubMed

    Smoak, Evan M; Carlo, Andrew D; Fowles, Catherine C; Banerjee, Ipsita A

    2010-01-15

    Gibberellins are a group of naturally occurring diterpenoid based phytohormones that play a vital role in plant growth and development. In this work, we have studied the self-assembly of gibberellic acid, a phytohormone, which belongs to the family of gibberellins, and designed amide derivatives of gibberellic acid (GA(3)) for the facile, green synthesis of gold nanoparticles. It was found that the derivatives self-assembled into nanofibers and nanoribbons in aqueous solutions at varying pH. Further, upon incubation with tetrachloroaurate, the self-assembled GA(3)-amide derivatives efficiently nucleated and formed gold nanoparticles when heated to 60 degrees C. Energy dispersive x-ray spectroscopy, transmission electron microscopy and scanning electron microscopy analyses revealed that uniform coatings of gold nanoparticles in the 10-20 nm range were obtained at low pH on the nanowire surfaces without the assistance of additional reducing agents. This simple method for the development of morphology controlled gold nanoparticles using a plant hormone derivative opens doors for a new class of plant biomaterials which can efficiently yield gold nanoparticles in an environmentally friendly manner. The gold encrusted nanowires formed using biomimetic methods may lead on to the formation of conductive nanowires, which may be useful for a wide range of applications such as in optoelectronics and sensors. Further, the spontaneous formation of highly organized nanostructures obtained from plant phytohormone derivatives such as gibberellic acid is of particular interest as it might help in further understanding the supramolecular assembly mechanism of more highly organized biological structures.

  12. Self-assembly of gibberellic amide assemblies and their applications in the growth and fabrication of ordered gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Smoak, Evan M.; Carlo, Andrew D.; Fowles, Catherine C.; Banerjee, Ipsita A.

    2010-01-01

    Gibberellins are a group of naturally occurring diterpenoid based phytohormones that play a vital role in plant growth and development. In this work, we have studied the self-assembly of gibberellic acid, a phytohormone, which belongs to the family of gibberellins, and designed amide derivatives of gibberellic acid (GA3) for the facile, green synthesis of gold nanoparticles. It was found that the derivatives self-assembled into nanofibers and nanoribbons in aqueous solutions at varying pH. Further, upon incubation with tetrachloroaurate, the self-assembled GA3-amide derivatives efficiently nucleated and formed gold nanoparticles when heated to 60 °C. Energy dispersive x-ray spectroscopy, transmission electron microscopy and scanning electron microscopy analyses revealed that uniform coatings of gold nanoparticles in the 10-20 nm range were obtained at low pH on the nanowire surfaces without the assistance of additional reducing agents. This simple method for the development of morphology controlled gold nanoparticles using a plant hormone derivative opens doors for a new class of plant biomaterials which can efficiently yield gold nanoparticles in an environmentally friendly manner. The gold encrusted nanowires formed using biomimetic methods may lead on to the formation of conductive nanowires, which may be useful for a wide range of applications such as in optoelectronics and sensors. Further, the spontaneous formation of highly organized nanostructures obtained from plant phytohormone derivatives such as gibberellic acid is of particular interest as it might help in further understanding the supramolecular assembly mechanism of more highly organized biological structures.

  13. Assembly of functional gold nanoparticle on silica microsphere.

    PubMed

    Wang, Hsuan-Lan; Lee, Fu-Cheng; Tang, Tse-Yu; Zhou, Chenguang; Tsai, De-Hao

    2016-05-01

    We demonstrate a controlled synthesis of silica microsphere with the surface-decorated functional gold nanoparticles. Surface of silica microsphere was modified by 3-aminopropypltriethoxysilane and 3-aminopropyldimethylethoxysilane to generate a positive electric field, by which the gold nanoparticles with the negative charges (unconjugated, thiolated polyethylene glycol functionalized with the traceable packing density and conformation) were able to be attracted to the silica microsphere. Results show that both the molecular conjugation on gold nanoparticle and the uniformity in the amino-silanization of silica microsphere influenced the loading and the homogeneity of gold nanoparticles on silica microsphere. The 3-aminopropyldimethylethoxysilane-functionalized silica microsphere provided an uniform field to attract gold nanoparticles. Increasing the ethanol content in aminosilane solution significantly improved the homogeneity and the loading of gold nanoparticles on the surface of silica microsphere. For the gold nanoparticle, increasing the molecular mass of polyethylene glycol yielded a greater homogeneity but a lower loading on silica microsphere. Bovine serum albumin induced the desorption of gold nanoparticles from silica microsphere, where the extent of desorption was suppressed by the presence of high-molecular mass polyethylene glycol on gold nanoparticles. This work provides the fundamental understanding for the synthesis of gold nanoparticle-silica microsphere constructs useful to the applications in chemo-radioactive therapeutics.

  14. Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water.

    PubMed

    Siuzdak, K; Sawczak, M; Klein, M; Nowaczyk, G; Jurga, S; Cenian, A

    2014-08-07

    We report on the preparation method of nanocrystalline titanium dioxide modified with platinum by using nanosecond laser ablation in liquid (LAL). Titania in the form of anatase crystals has been prepared in a two-stage process. Initially, irradiation by laser beam of a titanium metal plate fixed in a glass container filled with deionized water was conducted. After that, the ablation process was continued, with the use of a platinum target placed in a freshly obtained titania colloid. In this work, characterization of the obtained nanoparticles, based on spectroscopic techniques--Raman, X-ray photoelectron and UV-vis reflectance spectroscopy--is given. High resolution transmission electron microscopy was used to describe particle morphology. On the basis of photocatalytic studies we observed the rate of degradation process of methylene blue (MB) (a model organic pollution) in the presence of Pt modified titania in comparison to pure TiO2--as a reference case. Physical and chemical mechanisms of the formation of platinum modified titania are also discussed here. Stable colloidal suspensions containing Pt modified titanium dioxide crystalline anatase particles show an almost perfect spherical shape with diameters ranging from 5 to 30 nm. The TiO2 nanoparticles decorated with platinum exhibit much higher (up to 30%) photocatalytic activity towards the degradation of MB under UV illumination than pure titania.

  15. A silicon dioxide modified magnetic nanoparticles-labeled lateral flow strips for HBs antigen.

    PubMed

    Zhang, Xueqing; Jiang, Lin; Zhang, Chunlei; Li, Ding; Wang, Can; Gao, Feng; Cui, Daxiang

    2011-12-01

    Herein we reported a new type of silicon dioxide wrapped magnetic nanoparticles-labeled lateral flow strip for detection of HBs antigen in sera. The SiO2 wrapped Fe3O4 nanocomposites were prepared and characterized by HR-TEM, FTIR and magnetometer. As-prepared nanocomposites were used to label anti-HBV surface monoclonal antibody, the lateral flow strips were constructed, and 100 specimens of sera were collected and tested. Results showed that the prepared SiO2 wrapped Fe3O4 nanocomposites were shell/core structure, well dispersed, with the size of 25 nm in diameter, the thickness of the shell was about 3 nm, their magnetic saturation intensity was 44.3 meu g(-1). Clinical sera specimens test results showed that the prepared lateral flow strips were with the detection limitation of 5 pg/mL by naked eye observation, and 0.1 pg/mL by CCD reader or MAR Analyzer, specificity was 100%. In conclusion, one kind of silicon dioxide wrapped magnetic nanoparticles-labeled lateral flow strip for ultrasensitive detection of HBs antigen was successfully developed, its ease of use, sensitiveness and low-cost make it well-suited for population-based on-the-site hepatitis B screening.

  16. Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions.

    PubMed

    Praetorius, Antonia; Labille, Jérôme; Scheringer, Martin; Thill, Antoine; Hungerbühler, Konrad; Bottero, Jean-Yves

    2014-09-16

    The heteroaggregation of engineered nanoparticles (ENPs) with natural colloids (NCs), which are ubiquitous in natural surface waters, is a crucial process affecting the environmental transport and fate of ENPs. Attachment efficiencies for heteroaggregation, α hetero, are required as input parameters in environmental fate models to predict ENP concentrations and contribute to ENP risk assessment. Here, we present a novel method for determining α hetero values by using a combination of laser diffraction measurements and aggregation modeling based on the Smoluchowski equation. Titanium dioxide nanoparticles (TiO2 NPs, 15 nm) were used to demonstrate this new approach together with larger silicon dioxide particles (SiO2, 0.5 μm) representing NCs. Heteroaggregation experiments were performed at different environmentally relevant solution conditions. At pH 5 the TiO2 NPs and the SiO2 particles are of opposite charge, resulting in α hetero values close to 1. At pH 8, where all particles are negatively charged, α hetero was strongly affected by the solution conditions, with α hetero ranging from <0.001 at low ionic strength to 1 at conditions with high NaCl or CaCl2 concentrations. The presence of humic acid stabilized the system against heteroaggregation.

  17. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery.

    PubMed

    Lee, Hyukjin; Lytton-Jean, Abigail K R; Chen, Yi; Love, Kevin T; Park, Angela I; Karagiannis, Emmanouil D; Sehgal, Alfica; Querbes, William; Zurenko, Christopher S; Jayaraman, Muthusamy; Peng, Chang G; Charisse, Klaus; Borodovsky, Anna; Manoharan, Muthiah; Donahoe, Jessica S; Truelove, Jessica; Nahrendorf, Matthias; Langer, Robert; Anderson, Daniel G

    2012-06-03

    Nanoparticles are used for delivering therapeutics into cells. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell-specific internalization, excretion, toxicity and efficacy. A variety of materials have been explored for delivering small interfering RNAs (siRNAs)--a therapeutic agent that suppresses the expression of targeted genes. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, a lack of tissue specificity and potential toxicity. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer-targeting ligands (such as peptides and folate) on the nanoparticle surface can be controlled precisely. We show that at least three folate molecules per nanoparticle are required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t(1/2) ≈ 24.2 min) than the parent siRNA (t(1/2) ≈ 6 min).

  18. Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery

    PubMed Central

    Lee, Hyukjin; Lytton-Jean, Abigail K. R.; Chen, Yi; Love, Kevin T.; Park, Angela I.; Karagiannis, Emmanouil D.; Sehgal, Alfica; Querbes, William; Zurenko, Christopher S.; Jayaraman, Muthusamy; Peng, Chang G.; Charisse, Klaus; Borodovsky, Anna; Manoharan, Muthiah; Donahoe, Jessica S.; Truelove, Jessica; Nahrendorf, Matthias; Langer, Robert; Anderson, Daniel G.

    2013-01-01

    Nanoparticles are employed for delivering therapeutics into cells1,2. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell specific internalization, excretion, toxicity, and efficacy3-7. A variety of materials have been explored for delivering small interfering RNAs (siRNAs) - a therapeutic agent that suppresses the expression of targeted genes8,9. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, lack of tissue specificity and potential toxicity10-12. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer targeting ligands (such as peptides and folate) on the nanoparticle surface can be precisely controlled. We show that at least three folate molecules per nanoparticle is required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t1/2 ∼ 24.2 min) than the parent siRNA (t1/2 ∼ 6 min). PMID:22659608

  19. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery

    NASA Astrophysics Data System (ADS)

    Lee, Hyukjin; Lytton-Jean, Abigail K. R.; Chen, Yi; Love, Kevin T.; Park, Angela I.; Karagiannis, Emmanouil D.; Sehgal, Alfica; Querbes, William; Zurenko, Christopher S.; Jayaraman, Muthusamy; Peng, Chang G.; Charisse, Klaus; Borodovsky, Anna; Manoharan, Muthiah; Donahoe, Jessica S.; Truelove, Jessica; Nahrendorf, Matthias; Langer, Robert; Anderson, Daniel G.

    2012-06-01

    Nanoparticles are used for delivering therapeutics into cells. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell-specific internalization, excretion, toxicity and efficacy. A variety of materials have been explored for delivering small interfering RNAs (siRNAs)--a therapeutic agent that suppresses the expression of targeted genes. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, a lack of tissue specificity and potential toxicity. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer-targeting ligands (such as peptides and folate) on the nanoparticle surface can be controlled precisely. We show that at least three folate molecules per nanoparticle are required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t1/2 ~ 24.2 min) than the parent siRNA (t1/2 ~ 6 min).

  20. 3D DNA Origami Cuboids as Monodisperse Patchy Nanoparticles for Switchable Hierarchical Self-Assembly.

    PubMed

    Tigges, Thomas; Heuser, Thomas; Tiwari, Rahul; Walther, Andreas

    2016-12-14

    The rational design of anisotropic interaction patterns is a key step for programming colloid and nanoparticle self-assembly and emergent functions. Herein, we demonstrate a concept for harnessing the capabilities of 3D DNA origami for extensive supracolloidal self-assembly and showcase its use for making truly monodisperse, patchy, divalent nanocuboids that can self-assemble into supracolloidal fibrils via programmable DNA hybridization. A change in the number of connector duplexes at the patches reveals that multivalency and cooperativity play crucial roles to enhance superstructure formation. We further show thermal and chemical switching of the superstructures as the first steps toward reconfigurable self-assemblies. This concept lays the groundwork for merging monodisperse 3D DNA origami, featuring programmable patchiness and interactions, with nanoparticle self-assembly.

  1. The effect of Au amount on size uniformity of self-assembled Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, S.-H.; Wang, D.-C.; Chen, G.-Y.; Chen, K.-Y.

    2008-03-01

    The self-assembled fabrication of nanostructure, a dreaming approach in the area of fabrication engineering, is the ultimate goal of this research. A finding was proved through previous research that the size of the self-assembled gold nanoparticles could be controlled with the mole ratio between AuCl4- and thiol. In this study, the moles of Au were fixed, only the moles of thiol were adjusted. Five different mole ratios of Au/S with their effect on size uniformity were investigated. The mole ratios were 1:1/16, 1:1/8, 1:1, 1:8, 1:16, respectively. The size distributions of the gold nanoparticles were analyzed by Mac-View analysis software. HR-TEM was used to derive images of self-assembled gold nanoparticles. The result reached was also the higher the mole ratio between AuCl4- and thiol the bigger the self-assembled gold nanoparticles. Under the condition of moles of Au fixed, the most homogeneous nanoparticles in size distribution derived with the mole ratio of 1:1/8 between AuCl4- and thiol. The obtained nanoparticles could be used, for example, in uniform surface nanofabrication, leading to the fabrication of ordered array of quantum dots.

  2. Recent Advances in Targeted, Self-Assembling Nanoparticles to Address Vascular Damage Due to Atherosclerosis

    PubMed Central

    Chung, Eun Ji; Tirrell, Matthew

    2016-01-01

    Self-assembling nanoparticles functionalized with targeting moieties have significant potential for atherosclerosis nanomedicine. While self-assembly allows for easy construction (and degradation) of nanoparticles with therapeutic or diagnostic functionality, or both, the targeting agent can direct them to a specific molecular marker within a given stage of the disease. Therefore, supramolecular nanoparticles have been investigated in the last decade as molecular imaging agents or explored as nanocarriers that can decrease the systemic toxicity of drugs by producing accumulation predominantly in specific tissues of interest. In this review, we first describe the pathogenesis of atherosclerosis and the damage caused to vascular tissue, as well as the current diagnostic and treatment options. Then we provide an overview of targeted strategies using self-assembling nanoparticles and include liposomes, high density lipoproteins, protein cages, micelles, proticles, and perfluorocarbon nanoparticles. Finally, we elaborate on and provide an overview of current challenges, limitations, and future applications for personalized medicine in the context of atherosclerosis of self-assembling nanoparticles. PMID:26085109

  3. Chemiresistive properties regulated by nanoscale curvature in molecularly-linked nanoparticle composite assembly.

    PubMed

    Cheng, Han-Wen; Yan, Shan; Han, Li; Chen, Yong; Kang, Ning; Skeete, Zakiya; Luo, Jin; Zhong, Chuan-Jian

    2017-03-17

    Interparticle spatial properties influence the electrical and functional properties of nanoparticle-structured assemblies. This report describes the nanoscale curvature-induced change in chemiresistive properties of molecularly-linked assemblies of gold nanoparticles on multiwalled carbon nanotubes, which are exploited for sensitive detection of volatile organic compounds. In addition to using linking/capping molecules to define interparticle spatial distances, the nanoscale curvature radius of the carbon nanotubes provides intriguing tunability of the interparticle spatial properties to influence electrical properties, which contrast with those observed for nanoparticle thin films assembled directly on chemiresistor devices. The electrical characteristics of the nanoparticle-nanotube composite give positive response profiles for the vapor molecules that are distinctively different to those observed for conventional nanoparticle thin-film assemblies. The dominant effect of electron coupling on overall chemiresistive properties is shown in relation to that of nanoscale curvature radius on the nanoparticle thin-film sensing properties. Sensing data are also further assessed in correlation with the solubility parameters of the vapor molecule. These findings have significant implications for the design of sensitive interfaces with nanocomposite-structured sensing materials and microfabricated chemiresistor devices.

  4. Dipolar Magnetism in Ordered and Disordered Low-Dimensional Nanoparticle Assemblies

    PubMed Central

    Varón, M.; Beleggia, M.; Kasama, T.; Harrison, R. J.; Dunin-Borkowski, R. E.; Puntes, V. F.; Frandsen, C.

    2013-01-01

    Magnetostatic (dipolar) interactions between nanoparticles promise to open new ways to design nanocrystalline magnetic materials and devices if the collective magnetic properties can be controlled at the nanoparticle level. Magnetic dipolar interactions are sufficiently strong to sustain magnetic order at ambient temperature in assemblies of closely-spaced nanoparticles with magnetic moments of ≥ 100 μB. Here we use electron holography with sub-particle resolution to reveal the correlation between particle arrangement and magnetic order in self-assembled 1D and quasi-2D arrangements of 15 nm cobalt nanoparticles. In the initial states, we observe dipolar ferromagnetism, antiferromagnetism and local flux closure, depending on the particle arrangement. Surprisingly, after magnetic saturation, measurements and numerical simulations show that overall ferromagnetic order exists in the present nanoparticle assemblies even when their arrangement is completely disordered. Such direct quantification of the correlation between topological and magnetic order is essential for the technological exploitation of magnetic quasi-2D nanoparticle assemblies. PMID:23390584

  5. Electric-Field-Directed Self-Assembly of Active Enzyme-Nanoparticle Structures

    PubMed Central

    Hsiao, Alexander P.; Heller, Michael J.

    2012-01-01

    A method is presented for the electric-field-directed self-assembly of higher-order structures composed of alternating layers of biotin nanoparticles and streptavidin-/avidin-conjugated enzymes carried out on a microelectrode array device. Enzymes included in the study were glucose oxidase (GOx), horseradish peroxidase (HRP), and alkaline phosphatase (AP); all of which could be used to form a light-emitting microscale glucose sensor. Directed assembly included fabricating multilayer structures with 200 nm or 40 nm GOx-avidin-biotin nanoparticles, with AP-streptavidin-biotin nanoparticles, and with HRP-streptavidin-biotin nanoparticles. Multilayered structures were also fabricated with alternate layering of HRP-streptavidin-biotin nanoparticles and GOx-avidin-biotin nanoparticles. Results showed that enzymatic activity was retained after the assembly process, indicating that substrates could still diffuse into the structures and that the electric-field-based fabrication process itself did not cause any significant loss of enzyme activity. These methods provide a solution to overcome the cumbersome passive layer-by-layer assembly methods to efficiently fabricate higher-order active biological and chemical hybrid structures that can be useful for creating novel biosensors and drug delivery nanostructures, as well as for diagnostic applications. PMID:22500078

  6. Structure of arginine overlayers at the aqueous gold interface: implications for nanoparticle assembly.

    PubMed

    Wright, Louise B; Merrill, Nicholas A; Knecht, Marc R; Walsh, Tiffany R

    2014-07-09

    Adsorption of small biomolecules onto the surface of nanoparticles offers a novel route to generation of nanoparticle assemblies with predictable architectures. Previously, ligand-exchange experiments on citrate-capped gold nanoparticles with the amino acid arginine were reported to support linear nanoparticle assemblies. Here, we use a combination of atomistic modeling with experimental characterization to explore aspects of the assembly hypothesis for these systems. Using molecular simulation, we probe the structural and energetic characteristics of arginine overlayers on the Au(111) surface under aqueous conditions at both low- and high-coverage regimes. In the low-density regime, the arginines lie flat on the surface. At constant composition, these overlayers are found to be lower in energy than the densely packed films, although the latter case appears kinetically stable when arginine is adsorbed via the zwitterion group, exposing the charged guanidinium group to the solvent. Our findings suggest that zwitterion-zwitterion hydrogen bonding at the gold surface and minimization of the electrostatic repulsion between adjacent guanidinium groups play key roles in determining arginine overlayer stability at the aqueous gold interface. Ligand-exchange experiments of citrate-capped gold nanoparticles with arginine derivatives agmatine and N-methyl-l-arginine reveal that modification at the guanidinium group significantly diminishes the propensity for linear assembly of the nanoparticles.

  7. Electric-field-directed self-assembly of active enzyme-nanoparticle structures.

    PubMed

    Hsiao, Alexander P; Heller, Michael J

    2012-01-01

    A method is presented for the electric-field-directed self-assembly of higher-order structures composed of alternating layers of biotin nanoparticles and streptavidin-/avidin-conjugated enzymes carried out on a microelectrode array device. Enzymes included in the study were glucose oxidase (GOx), horseradish peroxidase (HRP), and alkaline phosphatase (AP); all of which could be used to form a light-emitting microscale glucose sensor. Directed assembly included fabricating multilayer structures with 200 nm or 40 nm GOx-avidin-biotin nanoparticles, with AP-streptavidin-biotin nanoparticles, and with HRP-streptavidin-biotin nanoparticles. Multilayered structures were also fabricated with alternate layering of HRP-streptavidin-biotin nanoparticles and GOx-avidin-biotin nanoparticles. Results showed that enzymatic activity was retained after the assembly process, indicating that substrates could still diffuse into the structures and that the electric-field-based fabrication process itself did not cause any significant loss of enzyme activity. These methods provide a solution to overcome the cumbersome passive layer-by-layer assembly methods to efficiently fabricate higher-order active biological and chemical hybrid structures that can be useful for creating novel biosensors and drug delivery nanostructures, as well as for diagnostic applications.

  8. Meso-scale Modeling of Self-assembly of Polymer-Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Mancini, Derrick; Deshmukh, Sanket; Sankaranarayanan, Subramanian

    2015-03-01

    We develop meso-scale models to explore the self-assembly behavior of polymer-grafted nanoparticles. Specifically, we study nanoparticles with grafts of the thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAM), which undergoes a coil-to-globule transition across the LCST at around 305 K. The atomic-scale mechanism of the coil-to-globule transition of polymers grafted nanoparticles and their interactions (agglomeration, assembly behavior) with other particles that are in its vicinity is poorly understood, yet knowledge about these interactions would enable designing novel self-assembled materials with well-defined structural and dynamical properties. Additionally, the effects of chemical nature, geometry, and morphology of the nanoparticle surface on the conformational transition of thermo-sensitive polymers is also unknown. We report on 1) development of all-atom models of polymer-grafted nanoparticles to conduct MD simulations at atomic-levels and 2) perform mesoscopic scaling of the conformational dynamics resulting from the atomistic simulations with the aid of coarse-grained or meso-scale models of PNIPAM and its composites. Coarse-grained simulations allow modeling of larger assemblies of polymer-grafted nanoparticles over longer time scales. This research used resources of the Center for Nanoscale Materials and the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-06CH11357.

  9. Controllable self-assembly of NaREF4 upconversion nanoparticles and their distinctive fluorescence properties

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxia; Ni, Yaru; Zhu, Cheng; Fang, Liang; Kou, Jiahui; Lu, Chunhua; Xu, Zhongzi

    2016-07-01

    The paper presents the growth of hexagonal NaYF4:Yb3+, Tm3+ nanocrystals with tunable sizes induced by different contents of doped Yb3+ ions (10%-99.5%) using the thermal decomposition method. These nanoparticles, which have different sizes, are then self-assembled at the interface of cyclohexane and ethylene and transferred onto a normal glass slide. It is found that the size of nanoparticles directs their self-assembly. Due to the appropriate size of 40.5 nm, 15% Yb3+ ions doped nanoparticles are able to be self-assembled into an ordered inorganic monolayer membrane with a large area of about 10 × 10 μm2. More importantly, the obvious short-wave (300-500 nm) fluorescence improvement of the ordered 2D self-assembly structure is observed to be relative to disordered nanoparticles, which is because intrinsic absorption and scattering of upconversion nanoparticles leads to the self-loss of fluorescence, especially the short-wave fluorescence inside the disordered structure, and the relative emission of short-wave fluorescence is reduced. The construction of a 2D self-assembly structure can effectively avoid this and improve the radiated short-wave fluorescence, especially UV photons, and is able to direct the design of new types of solid-state optical materials in many fields.

  10. A Directional Entropic Force Approach to Assemble Anisotropic Nanoparticles into Superlattices

    NASA Astrophysics Data System (ADS)

    Lee, Byeongdu; Tao Li Team; Kaylie Young, George C. Schatz, Chad A. Mirkin Collaboration; Michael Engel, Pablo F. Damasceno, Sharon C. Glotzer Collaboration

    2015-03-01

    We introduce a directional entropic force approach (DEFA) for controlling the assembly of anisotropic nanoparticles into crystalline lattices. The method relies on surfactant micelle-induced depletion interactions to assemble anisotropic gold nanoparticles into reconfigurable, non-close-packed (open) superlattices in solution. The anisotropic nanoparticles align along their flat facets to maximize entropy, and therefore minimize the free energy of the system, leading to assemblies with long-range order. Importantly, our experimental work complements recent theoretical work that proposes directional entropic forces between nanoparticle facets as a viable means for thermodynamically assembling nanoparticle superlattices. The experimental work herein uses depletants to create strong attractive forces that can drive assembly of reversible superlattices with tunable spacing in solution. These directional entropic forces are analogous to the directional bonding between atoms in molecules. The resulting crystalline superlattices are therefore shape-dependent. We show that the electrostatic and depletion interactions combine to determine the lattice spacing, and can be tuned independently with surfactant concentration and ionic strength to reconfigure the lattice constant. . Work at the Argonne Natl Lab was supported by the Office of Basic Energy Sciences, US DOE under Contract DE-AC02-06CH11357.

  11. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications.

    PubMed

    Ling, Daishun; Lee, Nohyun; Hyeon, Taeghwan

    2015-05-19

    Magnetic iron oxide nanoparticles have been extensively investigated for their various biomedical applications including diagnostic imaging, biological sensing, drug, cell, and gene delivery, and cell tracking. Recent advances in the designed synthesis and assembly of uniformly sized iron oxide nanoparticles have brought innovation in the field of nanomedicine. This Account provides a review on the recent progresses in the controlled synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. In particular, it focuses on three topics: stringent control of particle size during synthesis via the "heat-up" process, surface modification for the high stability and biocompatibility of the nanoparticles for diagnostic purposes, and assembly of the nanoparticles within polymers or mesoporous silica matrices for theranostic applications. Using extremely small 3 nm sized iron oxide nanoparticles (ESION), a new nontoxic T1 MRI contrast agent was realized for high-resolution MRI of blood vessels down to 0.2 mm. Ferrimagnetic iron oxide nanoparticles (FION) that are larger than 20 nm exhibit extremely large magnetization and coercivity values. The cells labeled with FIONs showed very high T2 contrast effect so that even a single cell can be readily imaged. Designed assembly of iron oxide nanoparticles with mesoporous silica and polymers was conducted to fabricate multifunctional nanoparticles for theranostic applications. Mesoporous silica nanoparticles are excellent scaffolds for iron oxide nanoparticles, providing magnetic resonance and fluorescence imaging modalities as well as the functionality of the drug delivery vehicle. Polymeric ligands could be designed to respond to various biological stimuli such as pH, temperature, and enzymatic activity. For example, we fabricated tumor pH-sensitive magnetic nanogrenades (termed PMNs) composed of self-assembled iron oxide nanoparticles and pH-responsive ligands. They were utilized to visualize

  12. Pd nanoparticle concentration dependent self-assembly of Pd@SiO₂ nanoparticles into leaching resistant microcubes.

    PubMed

    Datta, Abheek; Sadhu, Anustup; Santra, Subhankar; Shivaprasad, S M; Mandal, Swadhin K; Bhattacharyya, Sayan

    2014-09-18

    Pd NP concentration guided the self-assembly of core-shell Pd@SiO2 nanoparticles (NPs) into microcubes. The Pd NPs were stacked by molten dodecyltrimethylammonium bromide (DTAB) to create the SiO2 envelope. The microcubes demonstrated improved leaching resistance in heterogeneous catalysis over a conventional porous support.

  13. In vivo assembly of nanoparticle components to improve targeted cancer imaging.

    PubMed

    Perrault, Steven D; Chan, Warren C W

    2010-06-22

    Many small molecular anticancer agents are often ineffective at detecting or treating cancer due to their poor pharmacokinetics. Using nanoparticles as carriers can improve this because their large size reduces clearance and improves retention within tumors, but it also slows their rate of transfer from circulation into the tumor interstitium. Here, we demonstrate an alternative strategy whereby a molecular contrast agent and engineered nanoparticle undergo in vivo molecular assembly within tumors, combining the rapid influx of the smaller and high retention of the larger component. This strategy provided rapid tumor accumulation of a fluorescent contrast agent, 16- and 8-fold faster than fluorescently labeled macromolecule or nanoparticle controls achieved. Diagnostic sensitivity was 3.0 times that of a passively targeting nanoparticle, and this improvement was achieved 3 h after injection. The advantage of the in vivo assembly approach for targeting is rapid accumulation of small molecular agents in tumors, shorter circulation time requirements, possible systemic clearance while maintaining imaging sensitivity in the tumor, and nanoparticle anchors in tumors can be utilized to alter the pharmacokinetics of contrast agents, therapeutics, and other nanoparticles. This study demonstrates molecular assembly of nanoparticles within tumors, and provides a new basis for the future design of nanomaterials for medical applications.

  14. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism.

    PubMed

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W T

    2016-12-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications.

  15. Kinetic and thermodynamic assessments of the mediator-template assembly of nanoparticles.

    PubMed

    Lim, I-Im Stephanie; Maye, Mathew M; Luo, Jin; Zhong, Chuan-Jian

    2005-02-24

    The understanding of kinetic and thermodynamic factors governing the assembly of nanoparticles is important for the design and control of functional nanostructures. This paper describes a study of the kinetic and thermodynamic factors governing the mediator-template assembly of gold nanoparticles into spherical assemblies in solutions. The study is based on spectrophotometric measurements of the surface plasmon (SP) resonance optical property. Gold nanoparticle cores ( approximately 5 nm) encapsulated with tetraoctylammonium bromide shells were studied as a model system. The mediator-template assembly involves a thioether-based multidentate ligand (e.g., MeSi(CH2SMe)3) which functions as a mediator, whereas the tetraoctylammonium bromide capping molecules function as template agents. On the basis of the temperature dependence of the SP optical property in the mediator-template assembly process, the kinetic and thermodynamic parameters such as the reaction rate constant and reaction enthalpy have been determined. The results led to two important findings. First, the mediator-template assembly of nanoparticles is an enthalpy-driven process. Second, the enthalpy change (-1.3 kcal/mol) is close to the magnitude of the van der Waals interaction energy for alkyl chains and the condensation energy of hydrocarbons. Implications of the findings to the understanding of the interparticle interactions have also been discussed.

  16. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis.

    PubMed

    Tumburu, Laxminath; Andersen, Christian P; Rygiewicz, Paul T; Reichman, Jay R

    2017-01-01

    Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to 2 widely used engineered metal oxide nanoparticles, titanium dioxide (nano-titania) and cerium dioxide (nano-ceria). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes found under nano-titania exposure. Nano-titania induced more differentially expressed genes in rosette leaves, whereas roots had more differentially expressed genes under nano-ceria exposure. MapMan analyses indicated that although nano-titania up-regulated overall metabolism in both tissues, metabolic processes under nano-ceria remained mostly unchanged. Gene enrichment analysis indicated that both nanoparticles mainly enriched ontology groups such as responses to stress (abiotic and biotic), and defense responses (pathogens), and responses to endogenous stimuli (hormones). Nano-titania specifically induced genes associated with photosynthesis, whereas nano-ceria induced expression of genes related to activating transcription factors, most notably those belonging to the ethylene responsive element binding protein family. Interestingly, there were also increased numbers of rosette leaves and plant biomass under nano-ceria exposure, but not under nano-titania. Other transcriptomic responses did not clearly relate to responses observed at the organism level, possibly because of functional and genomic redundancy in Arabidopsis, which may mask expression of morphological changes, despite discernable responses at the transcriptome level. In addition, transcriptomic changes often relate to transgenerational phenotypic development, and hence it may be productive to direct further experimental work to integrate high-throughput genomic results with longer term changes in subsequent generations. Environ Toxicol Chem 2017;36:71-82. Published 2016 Wiley

  17. Surface charge and interfacial potential of titanium dioxide nanoparticles: experimental and theoretical investigations.

    PubMed

    Holmberg, Jenny Perez; Ahlberg, Elisabet; Bergenholtz, Johan; Hassellöv, Martin; Abbas, Zareen

    2013-10-01

    Size dependent surface charging and interfacial potential of titanium dioxide (TiO2) nanoparticles are investigated by experimental and theoretical methods. Commercially available TiO2 (P25) nanoparticles were used for surface charge determinations by potentiometric titrations. Anatase particles, 10 and 22 nm in diameter, were synthesized by controlled hydrolysis of TiCl4, and electrophoretic mobilities were determined at a fixed pH but at increasing salt concentrations. Corrected Debye-Hückel theory of surface complexation (CDH-SC) was modified to model the size dependent surface charging behavior of TiO2 nanoparticles. Experimentally determined surface charge densities of rutile and P25 nanoparticles in different electrolytes were accurately modeled by the CDH-SC theory. Stern layer capacitances calculated by the CDH-SC theory were in good agreement with the values found by the classical surface complexation approach, and the interaction of protons with OH groups is found to be less exothermic than for iron oxide surfaces. Moreover, the CDH-SC theory predicts that the surface charge density of TiO2 nanoparticles of diameter <10nm is considerably higher than for larger particles, and pH at the point of zero charge (pHPZC) shifts to higher pH values as the particle size decreases. The importance of including the particle size in calculating the zeta potentials from mobilities is demonstrated. Smoluchowski theory showed that 10nm particles had lower zeta potential than 22 nm particles, whereas a reverse trend was seen when zeta potentials were calculated by Ohshima's theory in which particle size is included. Electrokinetic charge densities calculated from zeta potentials were found to be only one third of the true surface charge densities. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Carbon black and titanium dioxide nanoparticles induce distinct molecular mechanisms of toxicity.

    PubMed

    Boland, Sonja; Hussain, Salik; Baeza-Squiban, Armelle

    2014-01-01

    Increasing evidence link nanomaterials with adverse biological outcomes and due to the variety of applications and potential human exposures to nanoparticles, it is thus important to evaluate their toxicity for the risk assessment of workers and consumers. It is crucial to understand the underlying mechanisms of their toxicity as observation of similar effects after different nanomaterial exposures does not reflect similar intracellular processing and organelle interactions. A thorough understanding of mechanisms is needed not only for accurate prediction of potential toxicological impacts but also for the development of safer nanoapplications by modulating the physicochemical characteristics. Furthermore biomedical applications may also take advantage of an in depth knowledge about the mode of action of nanotoxicity to design new nanoparticle-derived drugs. In the present manuscript we discuss the similarities and differences in molecular pathways of toxicity after carbon black (CB) and titanium dioxide (TiO₂) nanoparticle exposures and identify the main toxicity mechanisms induced by these two nanoparticles which may also be indicative for the mode of action of other insoluble nanomaterials. We address the translocation, cell death induction, genotoxicity, and inflammation induced by TiO₂ and CB nanoparticles which depend on their internalization, reactive oxygen species (ROS) production capacities and/or protein interactions. We summarize their distinct cellular mechanisms of toxicity and the crucial steps which may be targeted to avoid adverse effects or to induce them for nanomedical purposes. Several physicochemical characteristics could influence these general toxicity pathways depicted here and the identification of common toxicity pathways could support the grouping of nanomaterials in terms of toxicity. © 2014 Wiley Periodicals, Inc.

  19. Algal testing of titanium dioxide nanoparticles--testing considerations, inhibitory effects and modification of cadmium bioavailability.

    PubMed

    Hartmann, N B; Von der Kammer, F; Hofmann, T; Baalousha, M; Ottofuelling, S; Baun, A

    2010-03-10

    The ecotoxicity of three different sizes of titanium dioxide (TiO(2)) particles (primary particles sizes: 10, 30, and 300nm) to the freshwater green alga Pseudokirchneriella subcapitata was investigated in this study. Algal growth inhibition was found for all three particle types, but the physiological mode of action is not yet clear. It was possible to establish a concentration/dose-response relationship for the three particle sizes. Reproducibility, however, was affected by concentration-dependent aggregation of the nanoparticles, subsequent sedimentation, and possible attachment to vessel surfaces. It is also believed that heteroaggregation, driven by algal exopolymeric exudates, is occurring and could influence the concentration-response relationship. The ecotoxicity of cadmium to algae was investigated both in the presence and absence of 2mg/L TiO(2). The presence of TiO(2) in algal tests reduced the observed toxicity due to decreased bioavailability of cadmium resulting from sorption/complexation of Cd(2+) ions to the TiO(2) surface. However, for the 30nm TiO(2) nanoparticles, the observed growth inhibition was greater than what could be explained by the concentration of dissolved Cd(II) species, indicating a possible carrier effect, or combined toxic effect of TiO(2) nanoparticles and cadmium. These results emphasize the importance of systematic studies of nanoecotoxicological effects of different sizes of nanoparticles and underline the fact that, in addition to particle toxicity, potential interactions with existing environmental contaminants are also of crucial importance in assessing the potential environmental risks of nanoparticles.

  20. Carbon Black and Titanium Dioxide Nanoparticles Induce Distinct Molecular Mechanisms of Toxicity

    PubMed Central

    Boland, Sonja; Hussain, Salik; Baeza-Squiban, Armelle

    2014-01-01

    Increasing evidence link nanomaterials with adverse biological outcomes and due to the variety of applications and potential human exposures to nanoparticles it is thus important to evaluate their toxicity for the risk assessment of workers and consumers. It is crucial to understand the underlying mechanisms of their toxicity as observation of similar effects after different nanomaterial exposures does not reflect similar intracellular processing and organelle interactions. A thorough understanding of mechanisms is not only needed for accurate prediction of potential toxicological impacts but also for the development of safer nanoapplications by modulating the physico-chemical characteristics. Furthermore biomedical applications may also take advantage of an in depth knowledge about the mode of action of nanotoxicity to design new nanoparticle-derived drugs. In the present manuscript we discuss the similarities and differences in molecular pathways of toxicity after carbon black and TiO2 nanoparticle exposures and identify the main toxicity mechanisms induced by these two nanoparticles which may also be indicative for the mode of action of other insoluble nanomaterials. We address the translocation, cell death induction, genotoxicity and inflammation induced by titanium dioxide and carbon black nanoparticles which depend on their internalisation, ROS production capacities and/or protein interactions. We summarise their distinct cellular mechanisms of toxicity and the crucial steps which may be targeted to avoid adverse effects or to induce them for nanomedical purposes. Several physico-chemical characteristics could influence these general toxicity pathways depicted here and the identification of common toxicity pathways could support the grouping of nanomaterials in terms of toxicity. PMID:25266826

  1. Construction and characterization of hybrid nanoparticles via block copolymer blends and kinetic control of solution assembly

    NASA Astrophysics Data System (ADS)

    Chen, Yingchao

    Amphiphilic block copolymers are able to self-assemble into well-defined nanostructures in aqueous solutions or aqueous/miscible organic solutions. These structures include traditional spheres, cylinders and vesicles, which mimic nanostructures formed by small molecule analogs like lipids and surfactants. The large molecular weight and complex macromolecular architectures provide several advantages over small molecule amphiphiles, including the large chemical versatility, control over the size and shape of the solution assemblies, unique slow chain exchange and exceptional increased versatility in possible nanostructures. These advantages have motivated the noteworthy study of constructing well-defined, controlled and, especially, multicompartment and multigeometry polymeric nanoobjects for potential multiple nanotechnology applications. To reach complexity and well-controlled nanostructures, the facile utility and fundamental understanding of the parameters that influence the effective construction of solution assemblies needs to be continued. Given these motivations, this dissertation demonstrated the design of block copolymers, manipulation of kinetic control parameters of solution assembly, and characterization of hybrid nanostructures with the aim of creating new, well-defined nanostructures. The first objective of this dissertation was to explore the effects of solvent processing rates in influencing multicompartment and multigeometry nanoparticle construction, structure evolution over long-time aging and nanoparticle formation mechanisms. The noticeable effects of water addition rates on the formation of various nanostructures were studied by cryogenic transmission electron microscopy, selective staining and small angle scattering. It was revealed that the water addition rate have significant influence over the final assemblies in block copolymer blends. New shapes of multicompartment and multigeometry nanoparticles have been constructed including hybrid

  2. Layer-by-Layer Self-Assembly of Plexcitonic Nanoparticles

    DTIC Science & Technology

    2013-08-12

    grating coupler ,” Anal. Chem. 80(13), 5246–5250 (2008). 1. Introduction Silver and gold nanoparticles have been studied extensively for their unique...phosphate buffer (pH = 6.0). Silver core – polyelectrolyte shell nanoparticles were prepared by exposing the silver sol to supersaturated

  3. Interface interaction induced ultra-dense nanoparticles assemblies.

    PubMed

    Song, Yujun; Wang, Yan; Li, Bin Bin; Fernandes, Carlos; Ruda, Harry E

    2013-08-07

    We demonstrate a simple and clean physical methodology for fabricating such nanoparticle assemblies (dense arrays and/or dendrites) related to the interfacial interaction between the constructed materials and the anodized aluminum oxide (AAO) porous templates. The interfacial interaction can be regulated by the surface tension of the constructed materials and the AAO membrane, and the AAO-template structure, such as pore size, membrane thickness and surface morphologies. Depending on the interfacial interaction between the constructed materials and the AAO templates, NP arrays with mean particle diameters from 3.8 ± 1.0 nm to 12.5 ± 2.9 nm, mean inter-edge spacings from 3.5 ± 1.4 nm to 7.9 ± 3.4 nm and areal densities from 5.6 × 10(11) NPs per cm(2) to 1.5 × 10(12) NPs per cm(2) are fabricated over large areas (currently ~2 cm × 3 cm). The fabrication process includes firstly thermal evaporation of metal layers no more than 10 nm thick on the pre-coated Si wafer by AAO templates with a thickness of less than 150 nm and mean pore sizes no more than 12 nm, and then removal of the AAO templates. The NP arrays can be stable for hours at a temperature slightly below the melting point of the constructed materials (e.g., ~800 °C for Au NPs for 4 hours) with little change in size and inter-particle separation. Using one of them (e.g., 11.8 nm Au NPs) as growth-oriented catalysts, ultra-thin (12.1 ± 2.3 nm) dense nanowires can be conveniently obtained. Furthermore, dendrite superstructures can be generated easily from eutectic alloy NPs with diameters of ~10 nm pre-formed by thermal evaporation of metal layers more than 20 nm thick on surface-patterned thick AAO templates (e.g., 500 nm). The resulting dendrites, dense arrays and other superstructures (i.e., nanorods and nanowires) formed using NP arrays as catalysts, should have broad applications in catalysis, information technology, photovoltaics and biomedical engineering.

  4. Effects of Material Properties on Sedimentation and Aggregation of Titanium Dioxide Nanoparticles of Anatase and Rutile in the Aqueous Phase

    EPA Science Inventory

    This study investigated the sedimentation and aggregation kinetics of titanium dioxide (TiO2) nanoparticles with varying material properties (i.e., crystallinity, morphology, and chemical compositions). Used in the study were various types of commercially available TiO2 nanoparti...

  5. Effects of Material Properties on Sedimentation and Aggregation of Titanium Dioxide Nanoparticles of Anatase and Rutile in the Aqueous Phase

    EPA Science Inventory

    This study investigated the sedimentation and aggregation kinetics of titanium dioxide (TiO2) nanoparticles with varying material properties (i.e., crystallinity, morphology, and chemical compositions). Used in the study were various types of commercially available TiO2 nanoparti...

  6. Controlling the process of titanium dioxide nanoparticle growth in a continuous-flow plasma-chemical reactor

    NASA Astrophysics Data System (ADS)

    Aul‧chenko, S. M.

    2013-09-01

    The formation and growth of titanium dioxide nanoparticles in the working zone of a plasma-chemical reactor were modeled and the effect of the hardening air jet parameters in the reactor on the size of the particles formed in it has been studied. The results of modeling were compared with relevant experimental data.

  7. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles.

    PubMed

    Hong, Jennifer S; Stavis, Samuel M; DePaoli Lacerda, Silvia H; Locascio, Laurie E; Raghavan, Srinivasa R; Gaitan, Michael

    2010-07-06

    We present a microfluidic method to direct the self-assembly of temperature-sensitive liposome-hydrogel hybrid nanoparticles. Our approach yields nanoparticles with structural properties and highly monodisperse size distributions precisely controlled across a broad range relevant to the targeted delivery and controlled release of encapsulated therapeutic agents. We used microfluidic hydrodynamic focusing to control the convective-diffusive mixing of two miscible nanoparticle precursor solutions (a DPPC:cholesterol:DCP phospholipid formulation in isopropanol and a photopolymerizable N-isopropylacrylamide mixture in aqueous buffer) to form nanoscale lipid vesicles with encapsulated hydrogel precursors. These precursor nanoparticles were collected off-chip and were irradiated with ultraviolet (UV) light in bulk to polymerize the nanoparticle interiors into hydrogel cores. Multiangle laser light scattering in conjunction with asymmetric flow field-flow fractionation was used to characterize nanoparticle size distributions, which spanned the approximately 150 to approximately 300 nm diameter range as controlled by microfluidic mixing conditions, with a polydispersity of approximately 3% to approximately 5% (relative standard deviation). Transmission electron microscopy was then used to confirm the spherical shape and core-shell composition of the hybrid nanoparticles. This method may be extended to the directed self-assembly of other similar cross-linked hybrid nanoparticle systems with engineered size/structure-function relationships for practical use in healthcare and life science applications.

  8. Surface functionalization of titanium dioxide nanoparticles with alkanephosphonic acids for transparent nanocomposites

    NASA Astrophysics Data System (ADS)

    Ruiterkamp, G. J.; Hempenius, M. A.; Wormeester, H.; Vancso, G. J.

    2011-07-01

    The surface functionalization of rutile titanium dioxide nanoparticles with 1-decylphosphonic acid and diethyl undec-10-enyl phosphonate in a two-stage process, involving a change in reaction medium, is described. Similarly, 1-decylphosphonic acid and diethyl 1-decylphosphonate were employed as surface modifiers. The nanoparticles coated in two successive steps formed stable, transparent dispersions in toluene. Surface functionalization was monitored using thermogravimetric analysis (TGA), which showed enhanced surface coverage after the second capping step. Incorporation of C=C-terminal surface coupling molecules in the second stage was directly proved using FTIR. Dynamic light scattering measurements showed that the dual-functionalized particles possessed a uniform size of around 13 nm. Particle dimensions were further analyzed using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Transparent nanocomposites were formed by introducing the functionalized nanoparticles into a poly(benzyl acrylate) matrix. The refractive index of poly(benzyl acrylate) composites, measured by spectroscopic ellipsometry, increased from 1.57 for the pure polymer to 1.63 for 14.0 vol.% TiO2 at λ = 586 nm. Nanocomposite films with particle weight percentages of up to 30% (9.5 vol.%) showed a high light transmittance of around 90% at wavelengths above λ = 400 nm.

  9. Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli.

    PubMed

    Pagnout, Christophe; Jomini, Stéphane; Dadhwal, Mandeep; Caillet, Céline; Thomas, Fabien; Bauda, Pascale

    2012-04-01

    The increasing production and use of titanium dioxide nanoparticles (NP-TiO(2)) has led to concerns about their possible impact on the environment. Bacteria play crucial roles in ecosystem processes and may be subject to the toxicity of these nanoparticles. In this study, we showed that at low ionic strength, the cell viability of Escherichia coli was more severely affected at pH 5.5 than at pH 7.0 and pH 9.5. At pH 5.5, nanoparticles (positively charged) strongly interacted with the bacterial cells (negatively charged) and accumulated on their surfaces. This phenomenon was observed in a much lower degree at pH 7.0 (NP-TiO(2) neutrally charged and cells negatively charged) and pH 9.5 (both NP-TiO(2) and cells negatively charged). It was also shown that the addition of electrolytes (NaCl, CaCl(2), Na(2)SO(4)) resulted in a gradual reduction of the NP-TiO(2) toxicity at pH 5.5 and an increase in this toxicity at pH 9.5, which was closely related to the reduction of the NP-TiO(2) and bacterial cell electrostatic charges.

  10. Modeling and simulation of titanium dioxide nanoparticle synthesis with finite-rate sintering in planar jets

    NASA Astrophysics Data System (ADS)

    Garrick, Sean C.; Wang, Guanghai

    2011-03-01

    Numerical simulations of titanium dioxide nanoparticle synthesis in planar, non-premixed diffusion flames are performed. Titania is produced by the oxidation of titanium tetrachloride using a methane-air flame. The flow field is obtained using the two-dimensional Navier-Stokes equations. The methane-air flame and oxidation of titanium tetrachloride are modeled via one-step reactions. Evolution of the particle field is obtained via a nodal method which accounts for nucleation, condensation, coagulation, and coalescence with finite-rate sintering. The modeling of finite-rate sintering is accomplished via the use of uniform primary-particle size distribution. Simulations are performed at two different jet-to-co-flow velocity ratios as well as with finite-rate and instantaneous sintering models. In doing so we elucidate the effect of fluid mixing and finite-rate sintering on the particle field. Results show that highly agglomerated particles are found on the periphery of the eddies, where the collisions leading to nanoparticle coagulation occur faster than nanoparticle coalescence.

  11. Photocatalytic degradation of furfural in aqueous solution by N-doped titanium dioxide nanoparticles.

    PubMed

    Veisi, Farzaneh; Zazouli, Mohammad Ali; Ebrahimzadeh, Mohammad Ali; Charati, Jamshid Yazdani; Dezfoli, Amin Shiralizadeh

    2016-11-01

    The photocatalytic degradation of furfural in aqueous solution was investigated using N-doped titanium dioxide nanoparticles under sunlight and ultraviolet radiation (N-TiO2/Sun and N-TiO2/UV) in a lab-scale batch photoreactor. The N-TiO2 nanoparticles prepared using a sol-gel method were characterized using XRD, X-ray photoelectron spectroscopy (XPS), and SEM analyses. Using HPLC to monitor the furfural concentration, the effect of catalyst dosage, contact time, initial solution pH, initial furfural concentration, and sunlight or ultraviolet radiation on the degradation efficiency was studied. The efficiency of furfural removal was found to increase with increased reaction time, nanoparticle loading, and pH for both processes, whereas the efficiency decreased with increased furfural concentration. The maximum removal efficiencies for the N-TiO2/UV and N-TiO2/Sun processes were 97 and 78 %, respectively, whereas the mean removal efficiencies were 80.71 ± 2.08 % and 62.85 ± 2.41 %, respectively. In general, the degradation and elimination rate of furfural using the N-TiO2/UV process was higher than that using the N-TiO2/Sun process.

  12. Biocompatibility Assessment of Titanium Dioxide Nanoparticles in Mice Feto-placental Unit.

    PubMed

    Naserzadeh, Parvaneh; Ghanbary, Fatemeh; Ashtari, Parviz; Seydi, Enayatollah; Ashtari, Khadijeh; Akbari, Mohsen

    2017-09-07

    As the applications of titanium dioxide nanomaterials (nTiO2 ) are growing with an ever-increasing speed, the hazardous risks of this material have become a major concern. Several recent studies have reported that nTiO2 can cross the placental barrier in pregnant mice and cause neurotoxicity in their offspring. However, the influence of these nanoparticles on the fetoplacental unit during the pregnancy is yet to be studied. The present study reports on the effects of nTiO2 on the anatomical structure of fetal brain and liver in a pregnant mice model. Moreover, changes in the size and weight of the fetus and placenta are investigated as markers of fetal growth. Lastly, the toxicity of TiO2 nanoparticles in primary brain and liver are quantified. Animals treated with nTiO2 showed a disrupted anatomical structure of the fetal brain and liver. Furthermore, the fetus and placental unit in the mice treated with these nanoparticles were smaller compared to untreated controls. Toxicity analyses revealed that nTiO2 was toxic to the brain and liver cells and the mechanism of cell death was mostly necrosis. This article is protected by copyright. All rights reserved. © 2017 Wiley Periodicals, Inc.

  13. Assembly, cross-linking and encapsulation using functionalized nanoparticles at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Tangirala, Ravisubhash

    The assembly of nanoparticles at the interface of immiscible fluids holds promise for the preparation of new materials that benefit from both the physical properties of the nanoparticles and the chemistry associated with the ligands. Shaking nanoparticle solutions in organic solvents with water, results in the formation of nanoparticle-coated droplets that range in size from 10 microm to 200 microm. A strategy to control the size of these emulsions is described, by passing the droplets through commercial track-etch membranes with known pore sizes. Extrusion reduces the droplet size by breaking the droplets while passing theough the membrane pores, and reforming in the presence of excess nanoparticles in solution to form droplets as small as 1-5 microm. Crosslinking of nanoparticles at a liquid interface lends greater stability to the interfacial assembly, leading to ultrathin nanoparticle-based capsules, which possess mechanical integrity even after removal of the interface. Two approaches towards crosslinking are used in this thesis. Norbornene-functionalized CdSe/ZnS are used to afford facile capsule visualization by fluorescence confocal microscopy, as well as ease of crosslinking in mild conditions by means of ring-opening metathesis polymerization (ROMP). The crosslinked capsules can be used to encapsulate materials, and display size-selective retention capability, governed by the interstitial spaces between the nanoparticles. In a second approach to making hybrid capsules and sheets, horse spleen ferritin bionanoparticles and aldehyde-functionalized CdSe quantum dots are co-assembled at an oil-water interface. The cross-linked materials formed by reaction of the aldehyde functionality on the quantum dots with the surface-available amines on the ferritin bionanoparticles can be disrupted by addition of acid, thus leading to pH-degradable capsules and sheets. The driving force for assembly of nanoparticles at liquid interfaces is the reduction of the

  14. Analysis of hole transport in thin films and nanoparticle assemblies of poly(3-hexylthiophene)

    NASA Astrophysics Data System (ADS)

    Han, Xu; Bag, Monojit; Gehan, Timothy S.; Venkataraman, Dhandapani; Maroudas, Dimitrios

    2014-08-01

    We report numerical simulation results on hole transport in layers of the organic polymer poly(3-hexylthiophene) (P3HT) of different nanostructures based on a deterministic, phenomenological drift-diffusion-reaction model that accounts for hole trapping-detrapping kinetics. The model is used to characterize the various P3HT layers examined in terms of their hole transport dispersivity. The model reproduces well experimental data of photocurrent evolution in P3HT samples ranging from drop cast thin films to surfactant-stabilized nanoparticle assemblies, explains the role of excess surfactant molecules in hole trapping for assemblies of P3HT nanoparticles, and demonstrates quantitatively the potential of using nanoparticle assemblies in organic photovoltaic devices.

  15. Directed assembly of Au nanoparticles onto planar surfaces via multiple hydrogen bonds.

    PubMed

    Zirbs, Ronald; Kienberger, Ferry; Hinterdorfer, Peter; Binder, Wolfgang H

    2005-08-30

    We have developed a new concept to effect nanoparticle binding on surfaces by use of directed, specific molecular interactions. Hamilton-type receptors displaying a binding strength of approximately 10(5) M(-)(1) were covalently fixed onto self-assembled monolayers via Sharpless-type "click" reactions, thus representing an efficient method to control the densities of ligands over a range from low to complete surface coverage. Au nanoparticles covered with the matching barbituric acid receptors bound with high selectivity onto this surface by a self-assembly process mediated by multiple hydrogen bonds. The binding process was investigated with atomic force microscopy. Moderate control of particle density was achieved by controlling the receptor density on the self-assembled monolayer surface. The method opens a general approach to nanoparticle and small object binding onto patterned surfaces.

  16. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection

    NASA Astrophysics Data System (ADS)

    Andrew Mackay, J.; Chen, Mingnan; McDaniel, Jonathan R.; Liu, Wenge; Simnick, Andrew J.; Chilkoti, Ashutosh

    2009-12-01

    New strategies to self-assemble biocompatible materials into nanoscale, drug-loaded packages with improved therapeutic efficacy are needed for nanomedicine. To address this need, we developed artificial recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into sub-100-nm-sized, near-monodisperse nanoparticles on conjugation of diverse hydrophobic molecules, including chemotherapeutics. These CPs consist of a biodegradable polypeptide that is attached to a short Cys-rich segment. Covalent modification of the Cys residues with a structurally diverse set of hydrophobic small molecules, including chemotherapeutics, leads to spontaneous formation of nanoparticles over a range of CP compositions and molecular weights. When used to deliver chemotherapeutics to a murine cancer model, CP nanoparticles have a fourfold higher maximum tolerated dose than free drug, and induce nearly complete tumour regression after a single dose. This simple strategy can promote co-assembly of drugs, imaging agents and targeting moieties into multifunctional nanomedicines.

  17. Controlling size and patchiness of soft nanoparticles via kinetically arrested co-assembly of block copolymers

    NASA Astrophysics Data System (ADS)

    Santos, Jose; Herrera-Alonso, Margarita

    2013-03-01

    Engineering patchy particles from block copolymers provides an effective route for the preparation of nanoparticles with surface heterogeneity and unique properties. In the current work, co-assembly of block copolymers amphiphiles with distinct macromolecular architectures under kinetically arrested conditions was used to control the size and patchiness of polymeric nanoparticles. The block copolymer mixture is composed of linear and linear-dendritic polymeric amphiphiles, the later of which provides pre-assembled ``patches'' with well-controlled dimensions and chemical functionality. Parameters including but not limited to the molecular diffusity of the amphiphiles and the kinetics of self-assembly were found to play an important role on the control of the particle size and formation of the patches. The patchy particles are stable for several months and its stability against protein/blood plasma solutions can be tuned. We will also discuss the use of these constructs to probe nanoparticle-cell interactions.

  18. Monitoring Early-Stage Nanoparticle Assembly in Microdroplets by Optical Spectroscopy and SERS.

    PubMed

    Salmon, Andrew R; Esteban, Ruben; Taylor, Richard W; Hugall, James T; Smith, Clive A; Whyte, Graeme; Scherman, Oren A; Aizpurua, Javier; Abell, Chris; Baumberg, Jeremy J

    2016-04-06

    Microfluidic microdroplets have increasingly found application in biomolecular sensing as well as nanomaterials growth. More recently the synthesis of plasmonic nanostructures in microdroplets has led to surface-enhanced Raman spectroscopy (SERS)-based sensing applications. However, the study of nanoassembly in microdroplets has previously been hindered by the lack of on-chip characterization tools, particularly at early timescales. Enabled by a refractive index matching microdroplet formulation, dark-field spectroscopy is exploited to directly track the formation of nanometer-spaced gold nanoparticle assemblies in microdroplets. Measurements in flow provide millisecond time resolution through the assembly process, allowing identification of a regime where dimer formation dominates the dark-field scattering and SERS. Furthermore, it is shown that small numbers of nanoparticles can be isolated in microdroplets, paving the way for simple high-yield assembly, isolation, and sorting of few nanoparticle structures.

  19. Chain Assemblies from Nanoparticles Synthesized by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition: The Computational View.

    PubMed

    Mishin, Maxim V; Zamotin, Kirill Y; Protopopova, Vera S; Alexandrov, Sergey E

    2015-12-01

    This article refers to the computational study of nanoparticle self-organization on the solid-state substrate surface with consideration of the experimental results, when nanoparticles were synthesised during atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD). The experimental study of silicon dioxide nanoparticle synthesis by AP-PECVD demonstrated that all deposit volume consists of tangled chains of nanoparticles. In certain cases, micron-sized fractals are formed from tangled chains due to deposit rearrangement. This work is focused on the study of tangled chain formation only. In order to reveal their formation mechanism, a physico-mathematical model was developed. The suggested model was based on the motion equation solution for charged and neutral nanoparticles in the potential fields with the use of the empirical interaction potentials. In addition, the computational simulation was carried out based on the suggested model. As a result, the influence of such experimental parameters as deposition duration, particle charge, gas flow velocity, and angle of gas flow was found. It was demonstrated that electrical charges carried by nanoparticles from the discharge area are not responsible for the formation of tangled chains from nanoparticles, whereas nanoparticle kinetic energy plays a crucial role in deposit morphology and density. The computational results were consistent with experimental results.

  20. Bio-Inspired Structural Colors Produced via Self-Assembly of Synthetic Melanin Nanoparticles.

    PubMed

    Xiao, Ming; Li, Yiwen; Allen, Michael C; Deheyn, Dimitri D; Yue, Xiujun; Zhao, Jiuzhou; Gianneschi, Nathan C; Shawkey, Matthew D; Dhinojwala, Ali

    2015-05-26

    Structural colors arising from interactions of light with submicron scale periodic structures have been found in many species across all taxa, serving multiple biological functions including sexual signaling, camouflage, and aposematism. Directly inspired by the extensive use of self-assembled melanosomes to produce colors in avian feathers, we set out to synthesize and assemble polydopamine-based synthetic melanin nanoparticles in an effort to fabricate colored films. We have quantitatively demonstrated that synthetic melanin nanoparticles have a high refractive index and broad absorption spanning across the UV-visible range, similar to natural melanins. Utilizing a thin-film interference model, we demonstrated the coloration mechanism of deposited films and showed that the unique optical properties of synthetic melanin nanoparticles provide advantages for structural colors over other polymeric nanoparticles (i.e., polystyrene colloidal particles).

  1. Controlling the Self-Assembly of Inorganic Nanoparticles within Conjugated Rod-Coil Block Copolymers

    NASA Astrophysics Data System (ADS)

    McCulloch, Bryan; Segalman, Rachel

    2011-03-01

    Blends of conjugated polymers and inorganic nanoparticles have been investigated for numerous applications however optimization relies on precise control over the nanoscale morphology. We have designed a conjugated rod-coil block copolymer consisting of poly(3-(2'-ethyl)hexylthiophene)-b-poly(2-vinyl pyridine) (P3EHT-b-P2VP) which self assembles into controllable morphologies. Inorganic nanoparticles reside within the P2VP domain due to the favorable interactions between P2VP and the nanoparticle surface as well as the exclusionary effects of the liquid crystalline P3EHT. The nanoparticle location can be tuned by altering nanocrystal surface chemistry. These findings are used to develop a comprehensive understanding of the self assembly processes in conjugated rod-coil block copolymer nanocomposites.

  2. Self-assembly of amphiphilic tripeptides into nanoparticles for drug delivery.

    PubMed

    Tu, Zhaoxu; Xu, Xianghui; Jian, Yeting; Zhong, Dan; He, Bin; Gu, Zhongwei

    2014-01-01

    Peptide-based nanomaterials are widely used as nanocarriers for catalysis, drug delivery, and gene delivery. In this paper, we designed and synthesized the amphiphilic tripeptides through solution phase synthesis. The tripeptides were purified by column chromatography and the molecular structures were confirmed by (1)H NMR and TOF-MS. The tripeptides could self-assemble into spherical nanoparticles in aqueous media with a low critical aggregation concentration. The size and morphology of the nanoparticles were performed by dynamic light scattering, scanning electron microscopy and transmission electron microscope. The peptide-based nanoparticles were used as biocompatible nanocarriers for encapsulating hydrophobic doxorubicin (DOX) to achieve controlled release. The CCK-8 assay indicated that the peptide-based nanocarriers could enhance cellular uptake and drug efficacy of DOX to A549 tumor cell line. These results showed that the self-assembly of amphiphilic tripeptides provided a facile strategy to fabricate nanoparticles for anti-tumor drug delivery.

  3. DC electric field induced phase array self-assembly of Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Yadavali, S.; Sachan, R.; Dyck, O.; Kalyanaraman, R.

    2014-11-01

    In this work we report the discovery of phase array self-assembly, a new way to spontaneously make periodic arrangements of metal nanoparticles. An initially random arrangement of gold (Au) or silver (Ag) nanoparticles on SiO2/Si substrates was irradiated with linearly polarized (P) laser light in the presence of a dc electric (E) field applied to the insulating substrate. For E fields parallel to the laser polarization (E \\parallel P), the resulting periodic ordering was single-crystal like with extremely low defect density and covered large macroscopic areas. The E field appears to be modifying the phase between radiation scattered by the individual nanoparticles thus leading to enhanced interference effects. While phase array behavior is widely known in antenna technology, this is the first evidence that it can also aid in nanoscale self-assembly. These results provide a simple way to produce periodic metal nanoparticles over large areas.

  4. Electrochemical determination of BCR/ABL fusion gene based on in situ synthesized gold nanoparticles and cerium dioxide nanoparticles.

    PubMed

    Li, Shenfeng; Wang, Li; Li, Yajuan; Zhu, Xiaoying; Zhong, Liang; Lu, Lingsong; Zhang, Wei; Liu, Bei; Xie, Guoming; Feng, Wenli

    2013-12-01

    An efficient DNA electrochemical biosensor, based on the gold nanoparticles (GNPs) in situ synthesized at the surface of multiwalled carbon nanotubes (MWCNTs), cerium dioxide (CeO2) and chitosan (Chits) composite membrane, was developed for the detection of BCR/ABL fusion gene in chronic myelogenous leukemia (CML). The capture probe was attached onto the nanocomposite membrane modified glassy carbon electrode (GCE) through the conjugated structure. Owing to the synergistic effects of CeO2 nanoparticles with a strong adsorption ability and MWCNTs with a large surface area and excellent electron transfer ability, the prepared composite membrane was demonstrated an efficient electron transfer ability. The biosensor was electrochemically characterized by cyclic voltammogram (CV) and differential pulse voltammetry (DPV), and the decrease of the peak currents upon hybridization was observed using methylene blue (MB) as the electroactive indicator. Under the optimized conditions, peak currents were linear over the range from 1 × 10(-9) M to 1 × 10(-)(12) M, with a detection limit of 5 × 10(-)(13) M (based on the 3σ). And the proposed method was successfully applied for the detection of PCR real samples with satisfactory results. Furthermore, the developed DNA biosensor was demonstrated a good selectivity, a reasonable stability and a favorable reproducibility, which could be regenerated easily.

  5. Controlling the hydrophilicity and contact resistance of fuel cell bipolar plate surfaces using layered nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Wang, Feng

    Hybrid nanostructured coatings exhibiting the combined properties of electrical conductivity and surface hydrophilicity were obtained by using Layer-by-Layer (LBL) assembly of cationic polymer, silica nanospheres, and carbon nanoplatelets. This work demonstrates that by controlling the nanoparticle zeta (zeta) potential through the suspension parameters (pH, organic solvent type and amount, and ionic content) as well as the assembly sequence, the nanostructure and composition of the coatings may be adjusted to optimize the desired properties. Two types of silica nanospheres were evaluated as the hydrophilic component: X-TecRTM 3408 from Nano-X Corporation, with a diameter of about 20 nm, and polishing silica from Electron Microscopy Supply, with diameter of about 65 nm. Graphite nanoplatelets with a thickness of 5~10nm (Aquadag RTM E from Acheson Industries) were used as electrically conductive filler. A cationic copolymer of acrylamide and a quaternary ammonium salt (SuperflocRTM C442 from Cytec Corporation) was used as the binder for the negatively charged nanoparticles. Coatings were applied to gold-coated stainless steel substrates presently used a bipolar plate material for proton exchange membrane (PEM) fuel cells. Coating thickness was found to vary nearly linearly with the number of polymer-nanoparticle layers deposited while a monotonic increase in coating contact resistance was observed for all heterogeneous and pure silica coatings. Thickness increased if the difference in the oppositely charged zeta potentials of the adsorbing components was enhanced through alcohol addition. Interestingly, an opposite effect was observed if the zeta potential difference was increased through pH variation. This previously undocumented difference in adsorption behavior is herein related to changes to the surface chemical heterogeneity of the nanoparticles. Coating contact resistance and surface wettability were found to have a more subtle dependence on the assembly

  6. Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms-Current knowledge and suggestions for future research.

    PubMed

    Haynes, Vena N; Ward, J Evan; Russell, Brandon J; Agrios, Alexander G

    2017-04-01

    Nanoparticles are entering natural systems through product usage, industrial waste and post-consumer material degradation. As the production of nanoparticles is expected to increase in the next decade, so too are predicted environmental loads. Engineered metal-oxide nanomaterials, such as titanium dioxide, are known for their photocatalytic capabilities. When these nanoparticles are exposed to ultraviolet radiation in the environment, however, they can produce radicals that are harmful to aquatic organisms. There have been a number of studies that have reported the toxicity of titanium dioxide nanoparticles in the absence of light. An increasing number of studies are assessing the interactive effects of nanoparticles and ultraviolet light. However, most of these studies neglect environmentally-relevant experimental conditions. For example, researchers are using nanoparticle concentrations and light intensities that are too high for natural systems, and are ignoring water constituents that can alter the light field. The purpose of this review is to summarize the current knowledge of the photocatalytic effects of TiO2 nanoparticles on aquatic organisms, discuss the limitations of these studies, and outline environmentally-relevant factors that need to be considered in future experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Interface interaction induced ultra-dense nanoparticles assemblies

    NASA Astrophysics Data System (ADS)

    Song, Yujun; Wang, Yan; Li, Bin Bin; Fernandes, Carlos; Ruda, Harry E.

    2013-07-01

    We demonstrate a simple and clean physical methodology for fabricating such nanoparticle assemblies (dense arrays and/or dendrites) related to the interfacial interaction between the constructed materials and the anodized aluminum oxide (AAO) porous templates. The interfacial interaction can be regulated by the surface tension of the constructed materials and the AAO membrane, and the AAO-template structure, such as pore size, membrane thickness and surface morphologies. Depending on the interfacial interaction between the constructed materials and the AAO templates, NP arrays with mean particle diameters from 3.8 +/- 1.0 nm to 12.5 +/- 2.9 nm, mean inter-edge spacings from 3.5 +/- 1.4 nm to 7.9 +/- 3.4 nm and areal densities from 5.6 × 1011 NPs per cm2 to 1.5 × 1012 NPs per cm2 are fabricated over large areas (currently ~2 cm × 3 cm). The fabrication process includes firstly thermal evaporation of metal layers no more than 10 nm thick on the pre-coated Si wafer by AAO templates with a thickness of less than 150 nm and mean pore sizes no more than 12 nm, and then removal of the AAO templates. The NP arrays can be stable for hours at a temperature slightly below the melting point of the constructed materials (e.g., ~800 °C for Au NPs for 4 hours) with little change in size and inter-particle separation. Using one of them (e.g., 11.8 nm Au NPs) as growth-oriented catalysts, ultra-thin (12.1 +/- 2.3 nm) dense nanowires can be conveniently obtained. Furthermore, dendrite superstructures can be generated easily from eutectic alloy NPs with diameters of ~10 nm pre-formed by thermal evaporation of metal layers more than 20 nm thick on surface-patterned thick AAO templates (e.g., 500 nm). The resulting dendrites, dense arrays and other superstructures (i.e., nanorods and nanowires) formed using NP arrays as catalysts, should have broad applications in catalysis, information technology, photovoltaics and biomedical engineering.We demonstrate a simple and clean physical

  8. Overcoming the Coupling Dilemma in DNA-Programmable Nanoparticle Assemblies by "Ag+ Soldering".

    PubMed

    Wang, Huiqiao; Li, Yulin; Liu, Miao; Gong, Ming; Deng, Zhaoxiang

    2015-05-20

    Strong coupling between nanoparticles is critical for facilitating charge and energy transfers. Despite the great success of DNA-programmable nanoparticle assemblies, the very weak interparticle coupling represents a key barrier to various applications. Here, an extremely simple, fast, and highly efficient process combining DNA-programming and molecular/ionic bonding is developed to address this challenge, which exhibits a seamless fusion with DNA nanotechnology.

  9. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Jesline, A.; John, Neetu P.; Narayanan, P. M.; Vani, C.; Murugan, Sevanan

    2015-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major nosocomial pathogens responsible for a wide spectrum of infections and the emergence of bacterial resistance to antibiotics has lead to treatment drawbacks towards large number of drugs. Formation of biofilms is the main contributing factor to antibiotic resistance. The development of reliable processes for the synthesis of zinc oxide nanoparticles is an important aspect of nanotechnology today. Zinc oxide and titanium dioxide nanoparticles comprise well-known inhibitory and bactericidal effects. Emergence of antimicrobial resistance by pathogenic bacteria is a major health problem in recent years. This study was designed to determine the efficacy of zinc and titanium dioxide nanoparticles against biofilm producing methicillin-resistant S. aureus. Biofilm production was detected by tissue culture plate method. Out of 30 MRSA isolates, 22 isolates showed strong biofilm production and 2 showed weak and moderate biofilm formation. Two strong and weak biofilm-producing methicillin-resistant S. aureus isolates were subjected to antimicrobial activity using commercially available zinc and titanium dioxide nanoparticles. Thus, the nanoparticles showed considerably good activity against the isolates, and it can be concluded that they may act as promising, antibacterial agents in the coming years.

  10. DNA as a Powerful Tool for Morphology Control, Spatial Positioning, and Dynamic Assembly of Nanoparticles

    PubMed Central

    2015-01-01

    Conspectus Several properties of nanomaterials, such as morphologies (e.g., shapes and surface structures) and distance dependent properties (e.g., plasmonic and quantum confinement effects), make nanomaterials uniquely qualified as potential choices for future applications from catalysis to biomedicine. To realize the full potential of these nanomaterials, it is important to demonstrate fine control of the morphology of individual nanoparticles, as well as precise spatial control of the position, orientation, and distances between multiple nanoparticles. In addition, dynamic control of nanomaterial assembly in response to multiple stimuli, with minimal or no error, and the reversibility of the assemblies are also required. In this Account, we summarize recent progress of using DNA as a powerful programmable tool to realize the above goals. First, inspired by the discovery of genetic codes in biology, we have discovered DNA sequence combinations to control different morphologies of nanoparticles during their growth process and have shown that these effects are synergistic or competitive, depending on the sequence combination. The DNA, which guides the growth of the nanomaterial, is stable and retains its biorecognition ability. Second, by taking advantage of different reactivities of phosphorothioate and phosphodiester backbone, we have placed phosphorothioate at selective positions on different DNA nanostructures including DNA tetrahedrons. Bifunctional linkers have been used to conjugate phosphorothioate on one end and bind nanoparticles or proteins on the other end. In doing so, precise control of distances between two or more nanoparticles or proteins with nanometer resolution can be achieved. Furthermore, by developing facile methods to functionalize two hemispheres of Janus nanoparticles with two different DNA sequences regioselectively, we have demonstrated directional control of nanomaterial assembly, where DNA strands with specific hybridization serve as

  11. DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles.

    PubMed

    Tan, Li Huey; Xing, Hang; Lu, Yi

    2014-06-17

    CONSPECTUS: Several properties of nanomaterials, such as morphologies (e.g., shapes and surface structures) and distance dependent properties (e.g., plasmonic and quantum confinement effects), make nanomaterials uniquely qualified as potential choices for future applications from catalysis to biomedicine. To realize the full potential of these nanomaterials, it is important to demonstrate fine control of the morphology of individual nanoparticles, as well as precise spatial control of the position, orientation, and distances between multiple nanoparticles. In addition, dynamic control of nanomaterial assembly in response to multiple stimuli, with minimal or no error, and the reversibility of the assemblies are also required. In this Account, we summarize recent progress of using DNA as a powerful programmable tool to realize the above goals. First, inspired by the discovery of genetic codes in biology, we have discovered DNA sequence combinations to control different morphologies of nanoparticles during their growth process and have shown that these effects are synergistic or competitive, depending on the sequence combination. The DNA, which guides the growth of the nanomaterial, is stable and retains its biorecognition ability. Second, by taking advantage of different reactivities of phosphorothioate and phosphodiester backbone, we have placed phosphorothioate at selective positions on different DNA nanostructures including DNA tetrahedrons. Bifunctional linkers have been used to conjugate phosphorothioate on one end and bind nanoparticles or proteins on the other end. In doing so, precise control of distances between two or more nanoparticles or proteins with nanometer resolution can be achieved. Furthermore, by developing facile methods to functionalize two hemispheres of Janus nanoparticles with two different DNA sequences regioselectively, we have demonstrated directional control of nanomaterial assembly, where DNA strands with specific hybridization serve as

  12. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    SciTech Connect

    Jordanovic, J.; Frandsen, C.; Beleggia, M.; Schiøtz, J.

    2015-07-28

    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the particles are small enough to consist of a single magnetic domain each, their magnetic interactions can be described by a spin model in which each particle is assigned a macroscopic “superspin.” Thus, the magnetic behaviour of these lattices may be compared to magnetic crystals with nanoparticle superspins taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder, which will always be present in realistic assemblies, pins longitudinal domain walls when the external field is reversed, and makes a gradual reversal of the magnetization by migration of longitudinal domain walls possible, in agreement with previous experimental results.

  13. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Jordanovic, J.; Beleggia, M.; Schiøtz, J.; Frandsen, C.

    2015-07-01

    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the particles are small enough to consist of a single magnetic domain each, their magnetic interactions can be described by a spin model in which each particle is assigned a macroscopic "superspin." Thus, the magnetic behaviour of these lattices may be compared to magnetic crystals with nanoparticle superspins taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder, which will always be present in realistic assemblies, pins longitudinal domain walls when the external field is reversed, and makes a gradual reversal of the magnetization by migration of longitudinal domain walls possible, in agreement with previous experimental results.

  14. Microchip-based immunoassays with application of silicon dioxide nanoparticle film.

    PubMed

    Li, Yun; Kang, Qin-Shu; Sun, Guo-Ping; Su, Li-Jin; Zheng, Zhen-Hua; Zhang, Zhen-Feng; Wang, Han-Zhong; He, Zhi-Ke; Huang, Wei-Hua

    2012-06-01

    Highly sensitive detection of proteins offers the possibility of early and rapid diagnosis of various diseases. Microchip-based immunoassay integrates the benefits from both immunoassays (high specificity of target sample) and microfluidics (fast analysis and low sample consumption). However, direct capture of proteins on bare microchannel surface suffers from low sensitivity due to the low capacity of microsystem. In this study, we demonstrated a microchip-based heterogeneous immunoassay using functionalized SiO(2) nanoparticles which were covalently assembled on the surface of microchannels via a liquid-phase deposition technique. The formation of covalent bonds between SiO(2) nanoparticles and polydimethylsiloxane substrate offered sufficient stability of the microfluidic surface, and furthermore, substantially enhanced the protein capturing capability, mainly due to the increased surface-area-to-volume ratio. IgG antigen and FITC-labeled anti-IgG antibody conjugates were adopted to compare protein-enrichment effect, and the fluorescence signals were increased by ~75-fold after introduction of functionalized SiO(2) nanoparticles film. Finally, a proof-of-concept experiment was performed by highly efficient capture and detection of inactivated H1N1 influenza virus using a microfluidic chip comprising highly ordered SiO(2) nanoparticles coated micropillars array. The detection limit of H1N1 virus antigen was 0.5 ng mL(-1), with a linear range from 20 to 1,000 ng mL(-1) and mean coefficient of variance of 4.71%.

  15. Room temperature Coulomb blockade mediated field emission via self-assembled gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Fang, Jingyue; Chang, Shengli; Qin, Shiqiao; Zhang, Xueao; Xu, Hui

    2017-02-01

    Coulomb blockade mediated field-emission current was observed in single-electron tunneling devices based on self-assembled gold nanoparticles at 300 K. According to Raichev's theoretical model, by fixing a proper geometric distribution of source, island and drain, the transfer characteristics can be well explained through a combination of Coulomb blockade and field emission. Coulomb blockade and field emission alternately happen in our self-assembled devices. The Coulomb island size derived from the experimental data is in good agreement with the average size of the gold nanoparticles used in the device. The integrated tunneling can be adjusted via a gate electrode.

  16. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Noda, Yuki; Noro, Shin-Ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros-Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours.

  17. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    PubMed Central

    Noda, Yuki; Noro, Shin-ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros–Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours. PMID:24441566

  18. The effects of exposure to titanium dioxide nanoparticles during lactation period on learning and memory of rat offspring.

    PubMed

    Mohammadipour, Abbas; Hosseini, Mahmoud; Fazel, Alireza; Haghir, Hossein; Rafatpanah, Houshang; Pourganji, Masoume; Bideskan, Alireza Ebrahimzadeh

    2016-02-01

    Nanoscale titanium dioxide (TiO2), which is massively produced and widely used in living environment, seems to have a potential risk on human health. The central nervous system (CNS) is the potential susceptible target of nanoparticles, but the studies on this aspect are limited so far. The aim of this study was to evaluate the effects of exposure to TiO2 nanoparticles during lactation period on learning and memory of offspring. Lactating Wistar rats were exposed to TiO2 nanoparticles (100 mg/kg; gavage) for 21 days. The Morris water maze and passive avoidance tests showed that the exposure to TiO2 nanoparticles could significantly impair the memory and learning in the offspring. Therefore, the application of TiO2 nanoparticles and the effects of their exposure, especially during developmental period on human brain should be cautious.

  19. Nanoparticle encapsidation of Flock house virus by auto assembly of Tobacco mosaic virus coat protein.

    PubMed

    Maharaj, Payal D; Mallajosyula, Jyothi K; Lee, Gloria; Thi, Phillip; Zhou, Yiyang; Kearney, Christopher M; McCormick, Alison A

    2014-10-14

    Tobacco Mosaic virus (TMV) coat protein is well known for its ability to self-assemble into supramolecular nanoparticles, either as protein discs or as rods originating from the ~300 bp genomic RNA origin-of-assembly (OA). We have utilized TMV self-assembly characteristics to create a novel Flock House virus (FHV) RNA nanoparticle. FHV encodes a viral polymerase supporting autonomous replication of the FHV genome, which makes it an attractive candidate for viral transgene expression studies and targeted RNA delivery into host cells. However, FHV viral genome size is strictly limited by native FHV capsid. To determine if this packaging restriction could be eliminated, FHV was adapted to express enhanced green fluorescent protein (GFP), to allow for monitoring of functional FHV RNA activity. Then TMV OA was introduced in six 3' insertion sites, with only site one supporting functional FHV GFP expression. To create nanoparticles, FHV GFP-OA modified genomic RNA was mixed in vitro with TMV coat protein and monitored for encapsidation by agarose electrophoresis and electron microscopy. The production of TMV-like rod shaped nanoparticles indicated that modified FHV RNA can be encapsidated by purified TMV coat protein by self-assembly. This is the first demonstration of replication-independent packaging of the FHV genome by protein self-assembly.

  20. Mussel-inspired bolaamphiphile sticky self-assemblies for the preparation of magnetic nanoparticles.

    PubMed

    Lee, Chaemyeong; Lee, Sang-Yup

    2015-03-01

    Adopting the strong metal binding moiety of a mussel protein, a novel bolaamphiphile molecule was prepared and applied to the fabrication of magnetic core-shell nanoparticles. The novel bolaamphiphile molecule with 3,4-dihydroxyphenylalanine (DOPA) end groups was synthesized and its self-assembly was used as a template to adsorb metal ions and subsequently to produce magnetic nanoparticles. The DOPA bolaamphiphile molecule self-assembled in aqueous solution to produce nanospherical structures that exposed the catechol moiety of DOPA to the outer surface. The catechol groups adsorbed cobalt and iron ions to create magnetic metal oxide clusters on the self-assembly. Spectroscopic analysis showed that the cobalt and iron ions were coordinated with quinone, an oxidized form of the catechol. Exploiting the strong metal-adsorbing and binding properties of DOPA, dense cobalt oxide and iron oxide shell layers were created on the nanospherical self-assembly to produce magnetic core-shell nanoparticles. This study demonstrated a simple method for creating magnetic metal oxide nanoparticles that exploits the molecular binding forces and self-assembly property of DOPA.

  1. Self-assembled thin films of Fe3O4-Ag composite nanoparticles for spintronic applications

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2017-10-01

    Controlled self-assembly of multi-component magnetic nanoparticles could lead to nanomaterial-based magnetic devices with novel structures and intriguing properties. Herein, self-assembled thin films of Fe3O4-Ag composite nanoparticles (CNPs) with hetero-dimeric shapes were fabricated using interfacial assembly method. The CNP-assembled thin films were further transferred to patterned silicon substrates followed by vacuum annealing, producing CNP-based magnetoresistive (MR) devices. Due to the presence of intra-particle interfaces and inter-particle barriers, an enhanced MR ratio and a non-linear current-voltage relation were observed in the device. The results of this work can potentially pave the way to the future exploration and development of spintronic devices built from composite nanomaterials.

  2. Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals

    PubMed Central

    Li, Yunfeng; Prince, Elisabeth; Cho, Sangho; Salari, Alinaghi; Mosaddeghian Golestani, Youssef; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2017-01-01

    An important goal of the modern soft matter science is to discover new self-assembly modalities to precisely control the placement of small particles in space. Spatial inhomogeneity of liquid crystals offers the capability to organize colloids in certain regions such as the cores of the topological defects. Here we report two self-assembly modes of nanoparticles in linear defects-disclinations in a lyotropic colloidal cholesteric liquid crystal: a continuous helicoidal thread and a periodic array of discrete beads. The beads form one-dimensional arrays with a periodicity that matches half a pitch of the cholesteric phase. The periodic assembly is governed by the anisotropic surface tension and elasticity at the interface of beads with the liquid crystal. This mode of self-assembly of nanoparticles in disclinations expands our ability to use topological defects in liquid crystals as templates for the organization of nanocolloids. PMID:28193865

  3. Self-assembly of molecule-like nanoparticle clusters directed by DNA nanocages.

    PubMed

    Li, Yulin; Liu, Zhiyu; Yu, Guimei; Jiang, Wen; Mao, Chengde

    2015-04-08

    Analogous to the atom-molecule relationship, nanoparticle (NP) clusters (or NP-molecules) with defined compositions and directional bonds could potentially integrate the properties of the component individual NPs, leading to emergent properties. Despite extensive efforts in this direction, no general approach is available for assembly of such NP-molecules. Here we report a general method for building this type of structures by encapsulating NPs into self-assembled DNA polyhedral wireframe nanocages, which serve as guiding agents for further assembly. As a demonstration, a series of NP-molecules have been assembled and validated. Such NP-molecules will, we believe, pave a way to explore new nanomaterials with emergent functions/properties that are related to, but do not belong to the individual component nanoparticles.

  4. Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals.

    PubMed

    Li, Yunfeng; Prince, Elisabeth; Cho, Sangho; Salari, Alinaghi; Mosaddeghian Golestani, Youssef; Lavrentovich, Oleg D; Kumacheva, Eugenia

    2017-02-28

    An important goal of the modern soft matter science is to discover new self-assembly modalities to precisely control the placement of small particles in space. Spatial inhomogeneity of liquid crystals offers the capability to organize colloids in certain regions such as the cores of the topological defects. Here we report two self-assembly modes of nanoparticles in linear defects-disclinations in a lyotropic colloidal cholesteric liquid crystal: a continuous helicoidal thread and a periodic array of discrete beads. The beads form one-dimensional arrays with a periodicity that matches half a pitch of the cholesteric phase. The periodic assembly is governed by the anisotropic surface tension and elasticity at the interface of beads with the liquid crystal. This mode of self-assembly of nanoparticles in disclinations expands our ability to use topological defects in liquid crystals as templates for the organization of nanocolloids.

  5. The effect of doping titanium dioxide nanoparticles on phase transformation, photocatalytic activity and anti-bacterial properties

    NASA Astrophysics Data System (ADS)

    Buzby, Scott Edward

    Nanosized titanium dioxide has a variety of important applications in everyday life including a photocatalyst for pollution remediation, photovoltaic devices, sunscreen, etc. This study focuses on the various properties of titanium dioxide nanoparticles doped with various cation and anion species. Samples were produced by various methods including metalorganic chemical vapor deposition (MOCVD), plasma assisted metalorganic chemical vapor deposition (PA-MOCVD) and sol-gel. Numerous techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy both scanning (SEM) and transmission (TEM) were used for physical characterization. Photocatalytic properties were determined by the oxidation of methylene blue dye and 2-chlorophenol in water as well as gaseous formic acid with results analyzed by high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR) and ultra violet - visible spectroscopy (UV-VIS). For the purpose of enhancement of the photocatalytic activity of titanium dioxide nanoparticles, the effect of anion doping and the anatase-rutile phase ratio were studied. Although anatase, rutile and mixed crystallite phases all show some degree of activity in photocatalytic reactions, these results show that anatase is better suited for the degradation of organic compounds in an aqueous medium any advantage in photocatalytic activity gained through the enhancement in optical response from the smaller band gap by addition of rutile was overcome by the negatives associated with the rutile phase. Furthermore substitutional nitrogen doping showed significant improvement in UV photocatalysis as well as allowing for visible light activation of the catalyst. Further studies on the phase transitions in titanium dioxide nanoparticles were carried out by synthesizing various cation doped samples by sol-gel. Analysis of the phases by XRD showed an inverse relationship between dopant size and rutile percentage

  6. Effect of the nano-bio interface on the genotoxicity of titanium dioxide nanoparticles and associated cellular responses

    NASA Astrophysics Data System (ADS)

    Prasad, Raju Yashaswi

    Several toxicological studies have shown that titanium dioxide nanoparticles (nano-TiO2), one of the most widely produced engineered nanoparticles, can induce genotoxicity; however, potential adverse health effects associated with their physicochemical properties are not fully understood. Proteins in a biological medium can adsorb to the surface of the nanoparticle resulting in the formation of a protein corona that can alter the physicochemical properties of the particle. Furthermore, the protein corona may impact the interaction between nanoparticles and cells, referred to as the nano-bio interface, effecting the uptake, distribution, and toxicity of the particles. Despite the potential influence of the composition of the biological medium on the physicochemical properties and genotoxicity of titanium dioxide nanoparticles, the majority of studies have not examined systematically the influence of medium composition on protein corona, genotoxicity, and cellular responses. In this dissertation we tested the overall hypothesis that titanium dioxide nanoparticles in medium that produces the smallest agglomerates would be taken up into cells and induce genotoxicity, and that exposure would initiate the signaling of key mediators of a DNA damage and inflammation response. Three major findings were shown in this study: 1) Protein corona formation on the surface of nano-TiO2 can impact the nano-bio interface and change cellular interaction. 2) Smaller agglomerates of nano-TiO2 are taken up more by cells without inducing cell cycle arrest, thereby allowing induced DNA damage to be processed into micronuclei in BEAS-2B cells. 3) Nano-TiO 2 in medium that facilitates increased cellular interaction induces the upregulation of the ATM-Chk2 DNA damage response (similar to ionizing radiation) and NF-kappaB inflammation pathways. Taken together, our research provides a systematic examination of the physicochemical properties, genotoxicity, and cellular responses induced by

  7. Electrically conductive properties of Ag/Si composite nanoparticle assembled films prepared with a plasma-gas-condensation cluster source

    NASA Astrophysics Data System (ADS)

    Kurokawa, Yuichiro; Hihara, Takehiko

    2014-11-01

    Ag1-x/Six composite nanoparticle assembled films were prepared using a plasma-gas-condensation cluster beam deposition apparatus. The electrical conductivity σ and Hall coefficient |RH| of Ag1-x/Six nanoparticle assembled films obey a power law of the volume fraction of Ag pAg. The marked change at around pAg = pc indicates that the percolation of Ag nanoparticles takes place at the threshold value pc. Moreover, we found that the |RH| at T = 5 K of the Ag1-x/Six nanoparticle assembled film with the closest pAg to pc is 20 times higher than that of the bulk Ag.

  8. Stepwise assembly of a cross-linked free-standing nanoparticle sheet with controllable shape

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Mei; Zhou, Tian; Dong, Bin; Li, Christopher Y.

    2015-06-01

    In this paper, we report a free-standing thin lamella consisting of nanoparticles with controllable shape. A self-assembly technique is utilized to obtain this sheet in a step by step fashion with nanoparticles and polymer single crystals as the basic building blocks. Inside the thin lamella, nanoparticles are not only immobilized on the surface of a polymer single crystal, which functions as a template, but also interconnected by a bifunctional crosslinker, i.e. 1,6-hexane dithiol. As a consequence, the nanoparticle lamella is crosslinked and cannot be destructed by solvent and heat treatment. This fabrication strategy is generally applicable and can be applied to a variety of different nanoparticles with various properties, including catalytically active platinum nanoparticles, superparamagnetic iron oxide nanoparticles or luminescent quantum dots, and different types of polymer single crystals, such as hexagonal polycaprolactone and square-shaped polyethylene glycol ones. Based on the abundant properties originating from both nanoparticles and polymer single crystals, we have demonstrated that the resulting ensemble can function as recyclable catalytically active materials or magnetically responsive luminescent materials.In this paper, we report a free-standing thin lamella consisting of nanoparticles with controllable shape. A self-assembly technique is utilized to obtain this sheet in a step by step fashion with nanoparticles and polymer single crystals as the basic building blocks. Inside the thin lamella, nanoparticles are not only immobilized on the surface of a polymer single crystal, which functions as a template, but also interconnected by a bifunctional crosslinker, i.e. 1,6-hexane dithiol. As a consequence, the nanoparticle lamella is crosslinked and cannot be destructed by solvent and heat treatment. This fabrication strategy is generally applicable and can be applied to a variety of different nanoparticles with various properties, including

  9. Influence of colloidal silver nanoparticles on the novel flower-like titanium dioxide oxygen sensor performances.

    PubMed

    Castañeda, L; López-Suárez, A; Tiburcio-Silver, A

    2010-02-01

    Titanium dioxide (TiO2-anatase phase) thin films, consisting of agglomerated flower-like nanoparticles, have been synthesized using an ultrasonic spray pyrolysis (USP) method in combination with titanium (IV) oxide acetylacetonate [TiO(acac)2], and methanol at 550 degrees C. These thin films were subsequently thermally treated in air, at 950 degrees C for six hours, and the flower-like particles were transformed into smooth surfaces mainly formed by the TiO2-rutile phase. In order to prepare oxygen sensors of good performance, TiO2 thin films were deposited on interdigitated gold electrodes with contacted alumina substrates. The silver colloidal solution was impregnated on the TiO2 thin film. Since the solvent in which the silver nanoparticles are suspended evaporates at 200 degrees C, the thin films were then annealed at this temperature in air for one hour. The effect of colloidal silver nanoparticles on the response of the thin films TiO2 oxygen sensors has been studied, in a mixture with zero-grade air. The gas-sensing properties of TiO2 sensors in an atmosphere of 10(4) ppm of oxygen were measured between 25 and 500 degrees C. The experimental results obtained with colloidal silver nanoparticles as surface additive show that the sensitivity to an O2 concentration of 100 ppm in zero grade air at 300 degrees C reaches a stationary value of 0.40, and 0.03, for TiO2-anatase and -rutile phase films, respectively. This values are as high as those reported for oxygen sensors prepared by more expensive techniques.

  10. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    PubMed Central

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P<0.05). No significant differences were found in cell viability percentages between the two groups on the other days (P>0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001). L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive. PMID:24578816

  11. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles.

    PubMed

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco's Modified Eagle's Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P<0.05). No significant differences were found in cell viability percentages between the two groups on the other days (P>0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001). L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  12. Formation of Mesostructured Nanoparticles through Self-Assembly and Aerosol Process

    SciTech Connect

    Brinker, C. Jeffrey; Fan, Hongyou; Lu, Yunfeng; Rieker, Thomas; Stump, Arron; Ward, Timothy L.

    1999-05-07

    Silica nanoparticles exhibiting hexagonal, cubic, and vesicular mesostructures have been prepared using aerosol assisted, self-assembled process. This process begins with homogennous aerosol droplets containing silica source, water, ethanol, and surfactant, in which surfactant concentration is far below the critical micelle concentration (cmc). Solvent evaporation enriches silica and surfactant inducing interfacial self-assembly confined to a spherical aerosol droplet and results in formation of completely solid, ordered spherical particles with stable hexagonal, cubic, or vesicular mesostructures.

  13. Chiral ionic liquid monolayer-stabilized gold nanoparticles: synthesis, self-assembly, and application to SERS.

    PubMed

    Bai, Xiangtao; Li, Xinwei; Zheng, Liqiang

    2010-07-20

    Chiral ionic liquid monolayer-stabilized gold nanoparticles were synthesized in a two-phase liquid-liquid system and found to self-assemble into ringlike structures at the air/water interface. Control experiments with long-chain ILs revealed that the molecular structure of the CIL significantly affects the formation of the gold nanoparticle ring structures. A possible mechanism based on Marangoni-Bénard convection in evaporating droplets was proposed. These gold nanoparticle structures were shown to yield a large SERS enhancement for Rhodamine 6G.

  14. Synthesis, self-assembly and potential applications of cobalt-based nanoparticles with tailored magnetic properties

    NASA Astrophysics Data System (ADS)

    Bao, Yuping

    This dissertation includes a comprehensive study of the wide range of issues involving the synthesis, self-assembly, magnetic behavior and bio-sensing applications of cobalt and related binary-element nanoparticles. We began with the development of a robust chemical method for the reproducible synthesis of monodispersed, metallic cobalt nanoparticles with good size control, narrow size distribution and well-defined shapes, including spheres and anisotropic nanodiscs with specific aspect ratios. We then investigated the controlled self-assembly behavior of the single component, cobalt nanoparticle system by a systematic variation of their size, shape and inter-particle interactions. It was discovered that the self-assembly of the arrays could be tuned to selectively achieve square packing, hexagonal close packing, linear chains, spatially segregated arrays as a function of particle size and lyotropic liquid-crystal-like arrays with orientation order. This richness in self-assembly behavior was obtained when one of the competing forces (steric, van der Waals, depletion, or magnetostatic) was chosen to dominate and determine their subsequent self-organization. Further, the strategies developed from the cobalt synthesis were successfully extended to fabricate binary-element nanoparticles. Using immiscible Co-Au and miscible Co-Pt systems, combined with a heterogeneous nucleation theory that we developed based on experimentally accessible parameters, Co-Au core-shell nanoparticles with dual magnetic/optical functionality and Co-Pt nanoparticles with controlled morphologies were synthesized. This methodology makes it possible to specifically engineer the chemical composition of the binary nanoparticles. As a result, binary nanoparticles with tailored magnetic properties (from soft to hard) were synthesized to meet the various needs for biological applications. For example, soft FeCo nanoparticles and hard FePt nanoparticles were fabricated for targeting, bio-sensing or

  15. Self-assembled patterns of iron oxide nanoparticles by hydrothermal chemical-vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengjun; Wei, B. Q.; Ajayan, P. M.

    2001-12-01

    Here, we report a hydrothermal chemical-vapor deposition process, which produces self-assembled patterns of iron oxide nanoparticles. By exposing a planar silica substrate to a prevaporized mixture of water, ferrocene [Fe(C5H5)2] and xylene (C8H10), at temperatures of ˜1000 °C, Fe2O3 nanoparticles are deposited on the substrate surface, in regular circular patterns. The particle sizes are less than 100 nm, and are organized into submicron-size patterns. The same process without water produces arrays of carbon nanotubes catalyzed by iron nanoparticles that are formed by the decomposition of ferrocene molecules.

  16. Magnetic field-directed self-assembly of FePt-based nanoparticles at the liquid-air interface

    NASA Astrophysics Data System (ADS)

    Chokprasombat, K.; Sirisathitkul, Y.; Sirisathitkul, C.

    2016-10-01

    The self-assembly of nanoparticles is a prominent strategy for fabricating nanomaterials and nanodevices. Herein, FePt-based nanoparticles are self-assembled at a diethylene glycol-air interface, under an applied in-plane static magnetic field. The effect of the field on the self-assembly is apparent at a field strength of 60 mT, whereby nanoparticles arranged into randomly oriented nanoparticle chains. Increasing the field strength to 90-120 mT resulted in the nanoparticle chains becoming increasingly disintegrated, and large islands form at the expense of the uniform nanoparticle monolayer. The pattern arising from self-assembly is described based on the drag force and ligand-ligand interactions, which compete with van der Waals forces and magnetic dipole interactions induced by the applied magnetic field.

  17. Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing.

    PubMed

    Lu, Huihui; Tian, Zhengwen; Yu, Haiping; Yang, Bing; Jing, Guangyin; Liao, Guozhen; Zhang, Jun; Yu, Jianhui; Tang, Jieyuan; Luo, Yunhan; Chen, Zhe

    2014-12-29

    We demonstrated temperature sensing of a fiber with nanostructured cladding, which was constructed by titanium dioxide TiO2 nanoparticles self-assembled onto a side polished optical fiber (SPF). Significantly enhanced interaction between the propagating light and the TiO2 nanoparticles (TN) can be obtained via strong evanescent field of the SPF. The strong light-TN interaction results in temperature sensing with a maximum optical power variation of ~4dB in SPF experimentally for an external environment temperature varying from -7.8°C to 77.6°C. The novel temperature sensing device shows a linear correlation coefficient of better than 99.4%, and a sensitivity of ~0.044 dB/°C. The TN-based all-fiber-optic temperature sensing characteristics was successfully demonstrated, and it is compatible with fiber-optic interconnections and high potential in photonics applications.

  18. Assembly of metal nanoparticle-carbon nanotube composite materials at the liquid/liquid interface.

    PubMed

    Lee, Kang Yeol; Kim, Minjung; Hahn, Joeoong; Suh, Jung Sang; Lee, Inhyung; Kim, Kwan; Han, Sang Woo

    2006-02-14

    Carbon nanotubes (CNTs)-mediated self-assembly of metal (Au and Ag) nanoparticles at the liquid/liquid interface in the form of a stable nanocomposite film is reported. The metallic luster results from the electronic coupling of nanoparticles, suggesting the formation of closely packed nanoparticle thin films. The interfacial film could be transferred to mica substrates and carbon-coated transmission electron microscopy (TEM) grids. The transfe