Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry
2015-01-01
Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions. PMID:25902355
ABSTRACT The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus ass...
Rancan, F; Nazemi, B; Rautenberg, S; Ryll, M; Hadam, S; Gao, Q; Hackbarth, S; Haag, S F; Graf, C; Rühl, E; Blume-Peytavi, U; Lademann, J; Vogt, A; Meinke, M C
2014-05-01
Several nanoparticle-based formulations used in cosmetics and dermatology are exposed to sunlight once applied to the skin. Therefore, it is important to study possible synergistic effects of nanoparticles and ultraviolet radiation. Electron paramagnetic resonance spectroscopy (EPR) was used to detect intracellular free radicals induced by ultraviolet B (UVB) radiation and amorphous silica nanoparticle and to evaluate the influence of nanoparticle surface chemistry on particle cytotoxicity toward HaCaT cells. Uncoated titanium dioxide nanoparticles served as positive control. In addition, particle intracellular uptake, viability, and induction of interleukin-6 were measured. We found that photo-activated titanium dioxide particles induced a significant amount of intracellular free radicals. On the contrary, no intracellular free radicals were generated by the investigated silica nanoparticles in the dark as well as under UVB radiation. However, under UVB exposure, the non-functionalized silica nanoparticles altered the release of IL-6. At the same concentrations, the amino-functionalized silica nanoparticles had no influence on UVB-induced IL-6 release. EPR spectroscopy is a useful technique to measure nanoparticle-induced intracellular free radicals. Non-toxic concentrations of silica particles enhanced the toxicity of UVB radiation. This synergistic effect was not mediated by particle-generated free radicals and correlated with particle surface charge and intracellular distribution. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells
NASA Astrophysics Data System (ADS)
Ribeiro, A. R.; Gemini-Piperni, S.; Travassos, R.; Lemgruber, L.; C. Silva, R.; Rossi, A. L.; Farina, M.; Anselme, K.; Shokuhfar, T.; Shahbazian-Yassar, R.; Borojevic, R.; Rocha, L. A.; Werckmann, J.; Granjeiro, J. M.
2016-03-01
Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of ‘Trojan-horse’ internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.
Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells.
Ribeiro, A R; Gemini-Piperni, S; Travassos, R; Lemgruber, L; Silva, R C; Rossi, A L; Farina, M; Anselme, K; Shokuhfar, T; Shahbazian-Yassar, R; Borojevic, R; Rocha, L A; Werckmann, J; Granjeiro, J M
2016-03-29
Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of 'Trojan-horse' internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.
NASA Astrophysics Data System (ADS)
Tanabe, Ichiro; Kurawaki, Yuji
2018-05-01
Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.
Titanium Dioxide Nanoparticles are not Cytotoxic or Clastogenic in Human Skin Cells
Browning, Cynthia L; The, Therry; Mason, Michael D; Wise, John Pierce
2015-01-01
The application of nanoparticle technology is rapidly expanding. The reduced dimensionality of nanoparticles can give rise to changes in chemical and physical properties, often resulting in altered toxicity. People are exposed dermally to titanium dioxide (TiO2) nanoparticles in industrial and residential settings. The general public is increasingly exposed to these nanoparticles as their use in cosmetics, sunscreens and lotions expands. The toxicity of TiO2 nanoparticles towards human skin cells is unclear and understudied. We used a human skin fibroblast cell line to investigate the cytotoxicity and clastogenicity of TiO2 nanoparticles after 24 h exposure. In a clonogenic survival assay, treatments of 10, 50 and 100 μg/cm2 induced 97.8, 88.8 and 84.7% relative survival, respectively. Clastogenicity was assessed using a chromosomal aberration assay in order to determine whether TiO2 nanoparticles induced serious forms of DNA damage such as chromatid breaks, isochromatid lesions or chromatid exchanges. Treatments of 0, 10, 50 and 100 μg/cm2 induced 3.3, 3.0, 3.0 and 2.7% metaphases with damage, respectively. No isochromatid lesions or chromatid exchanges were detected. These data show that TiO2 nanoparticles are not cytotoxic or clastogenic to human skin cells. PMID:26568896
Titanium Dioxide Nanoparticles are not Cytotoxic or Clastogenic in Human Skin Cells.
Browning, Cynthia L; The, Therry; Mason, Michael D; Wise, John Pierce
2014-11-01
The application of nanoparticle technology is rapidly expanding. The reduced dimensionality of nanoparticles can give rise to changes in chemical and physical properties, often resulting in altered toxicity. People are exposed dermally to titanium dioxide (TiO 2 ) nanoparticles in industrial and residential settings. The general public is increasingly exposed to these nanoparticles as their use in cosmetics, sunscreens and lotions expands. The toxicity of TiO 2 nanoparticles towards human skin cells is unclear and understudied. We used a human skin fibroblast cell line to investigate the cytotoxicity and clastogenicity of TiO 2 nanoparticles after 24 h exposure. In a clonogenic survival assay, treatments of 10, 50 and 100 μg/cm 2 induced 97.8, 88.8 and 84.7% relative survival, respectively. Clastogenicity was assessed using a chromosomal aberration assay in order to determine whether TiO 2 nanoparticles induced serious forms of DNA damage such as chromatid breaks, isochromatid lesions or chromatid exchanges. Treatments of 0, 10, 50 and 100 μg/cm 2 induced 3.3, 3.0, 3.0 and 2.7% metaphases with damage, respectively. No isochromatid lesions or chromatid exchanges were detected. These data show that TiO 2 nanoparticles are not cytotoxic or clastogenic to human skin cells.
Tanabe, Ichiro; Kurawaki, Yuji
2018-05-15
Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤200nm) region of titanium dioxide (TiO 2 ) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO 2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO 2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO 2 under visible light, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
The widespread use of titanium dioxide (Ti02) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although Ti02 nanoparticles have been shown to induce DNA damage and micronuclei in vitro, no study has systematically assessed th...
Molecular and physiological responses to titanium dioxide ...
- Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes (DEGs) found under nano-titania exposure. Nano-titania induced more DEGs in rosette leaves, whereas roots had more DEGs under nano-ceria exposure. MapMan analyses indicated that while nano-titania up-regulated overall and secondary metabolism in both tissues, metabolic processes under nano-ceria remained mostly unchanged. Gene enrichment analysis indicated that both nanoparticles mainly enriched ontology groups such as responses to stress (abiotic and biotic), and defense responses (pathogens), and responses to endogenous stimuli (hormones). Nano-titania specifically induced genes associated with photosynthesis, whereas nano-ceria induced expression of genes related to activating transcription factors, most notably those belonging to the ethylene responsive element binding protein family. Interestingly, there were also increased numbers of rosette leaves and plant biomass under nano-ceria exposure, but not under nano-titania. Other transcriptomic responses did not clearly relate to responses observed at the organism level. This may b
Toxicity of food-relevant nanoparticles in intestinal epithelial models
NASA Astrophysics Data System (ADS)
McCracken, Christie
Nanoparticles are increasingly being incorporated into common consumer products, including in foods and food packaging, for their unique properties at the nanoscale. Food-grade silica and titania are used as anti-caking and whitening agents, respectively, and these particle size distributions are composed of approximately one-third nanoparticles. Zinc oxide and silver nanoparticles can be used for their antimicrobial properties. However, little is known about the interactions of nanoparticles in the body upon ingestion. This study was performed to investigate the role of nanoparticle characteristics including surface chemistry, dissolution, and material type on toxicity to the intestinal epithelium. Only mild acute toxicity of zinc oxide nanoparticles was observed after 24-hour treatment of intestinal epithelial C2BBe1 cells based on the results of toxicity assays measuring necrosis, apoptosis, membrane damage, and mitochondrial activity. Silica and titanium dioxide nanoparticles were not observed to be toxic although all nanoparticles were internalized by cells. In vitro digestion of nanoparticles in solutions representing the stomach and intestines prior to treatment of cells did not alter nanoparticle toxicity. Long-term repeated treatment of cells weekly for 24 hours with nanoparticles did not change nanoparticle cytotoxicity or the growth rate of the treated cell populations. Thus, silica, titanium dioxide, and zinc oxide nanoparticles were found to induce little toxicity in intestinal epithelial cells. Fluorescent silica nanoparticles were synthesized as a model for silica used in foods that could be tracked in vitro and in vivo. To maintain an exterior of pure silica, a silica shell was hydrolyzed around a core particle of quantum dots or a fluorescent dye electrostatically associated with a commercial silica particle. The quantum dots used were optimized from a previously reported microwave quantum dot synthesis to a quantum yield of 40%. Characterization of the silica particles showed that the surface properties resembled pure silica. These particles were able to be detected in vitro as well as in vivo after oral administration of nanoparticles to mice by gavage. After four daily administrations, nanoparticles were detected by fluorescence confocal microscopy in intestines as well as liver, kidney, spleen, lung, and brain. Thus, silica nanoparticles were able to traverse the intestinal epithelium. Further investigation is needed to determine nanoparticle accumulation and potential functional consequences throughout the body. Silver nanoparticles were particularly toxic to proliferating (subconfluent) C2BBe1 cells plated at low density, inducing 15% necrosis and a 76% decrease in mitochondrial activity. Silver nanoparticle treatment induced oxidative stress in cells based on increased GSH/GSSG ratios. In addition, silver nanoparticles induced G2/M phase cell cycle arrest and inhibited cell proliferation at doses forty times lower than those at which silica, titanium dioxide, and zinc oxide nanoparticles had inhibitory effects. Silver nanoparticles subjected to in vitro digestion before cell exposure required higher doses to induce toxicity, likely due to slower dissolution because of greater surface species adsorption. Silver nanoparticles did not cause toxicity or oxidative stress in confluent (stationary) cells. Thus, upon ingestion, silver nanoparticles may be especially toxic to proliferating stem cells in intestinal crypts, particularly in disease states with a compromised epithelium.
A novel muffle furnace (MF)-based potassium hydroxide (KOH) fusion digestion technique was developed and its comparative digestion and dissolution efficacy for different titanium dioxide nanoparticles (TiO2-NPs)/environmental matrices was evaluated. Digestion of different enviro...
The Effects of Toxic Particles in Human Lung Cells - Research Area 8. Life Sciences
2016-01-05
Characterization of Metal Nanoparticles 2.1. Synthesis and Characterization of Nanoparticles We generated and tested a silver colloid solution with a mean... silver and gold nanoparticle -induced effects; and 6) Assess metal levels in whale skin biopsies in the Gulf of Mexico. The first five aims focused...We found that silver , gold and titanium dioxide nanoparticles were relatively non-toxic. Only silver 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND
NASA Astrophysics Data System (ADS)
Bolvardi, Beleta; Seyfi, Javad; Hejazi, Iman; Otadi, Maryam; Khonakdar, Hossein Ali; Drechsler, Astrid; Holzschuh, Matthias
2017-02-01
In this study, polystyrene (PS)/titanium dioxide (TiO2) films were fabricated through simple solution casting technique via a modified phase separation process. The presented approach resulted in a remarkable reduction in the required amount of nanoparticles for achieving superhydrophobicity. Scanning electron microscopy (SEM) and 3D confocal microscopy were utilized to characterize surface morphology and topography of samples, respectively. An attempt was made to give an in-depth analysis on the surface rough structure using 3D roughness profiles. It was found that high inclusions of non-solvent and nanoparticles resulted in a stable self-cleaning behavior due to the strong presence of hydrophobic TiO2 nanoparticles on the surface. Quite unexpectedly, low inclusions of nanoparticles and non-solvent also resulted in superhydrophobic property mainly due to the proper level of induced surface roughness. XPS analysis was also utilized to determine the chemical composition of the films' surfaces. The results of falling drop experiments showed that the sample containing a higher level of nanoparticles had a much lower mechanical resistance against the induced harsh conditions. All in all, the presented method has shown promising potential in fabrication of superhydrophobic surfaces with self-cleaning behavior using the lowest content of nanoparticles.
Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka
2016-01-01
Summary An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches. PMID:27826514
Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa Del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka; Scotognella, Francesco
2016-01-01
An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches.
NASA Astrophysics Data System (ADS)
Sankar, Renu; Rizwana, Kadarmohideen; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan
2015-08-01
Titanium dioxide nanoparticles were effectively synthesized from aqueous leaf extract of Azadirachta indica under pH and temperature-dependent condition. 5 mM titanium isopropoxide solution worked as a primary source for the synthesis of titanium dioxide nanoparticles. The green synthesized titanium dioxide nanoparticles were confirmed by UV-Vis spectroscopy. Fourier transform infrared spectrum of synthesized titanium dioxide nanoparticles authorized the presence of bioactive compounds in the leaf extract, which may play a role as capping and reducing agent. The high-resolution scanning electron microscopy and dynamic light scattering analyses results showed the interconnected spherical in shape titanium dioxide nanoparticles having a mean particle size of 124 nm and a zeta potential of -24 mV. Besides, the colloidal titanium dioxide nanoparticles energetically degrade the industrially harmful methyl red dye under bright sunlight.
Effect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton
NASA Astrophysics Data System (ADS)
Chiu, Meng-Hsuen; Khan, Zafir A.; Garcia, Santiago G.; Le, Andre D.; Kagiri, Agnes; Ramos, Javier; Tsai, Shih-Ming; Drobenaire, Hunter W.; Santschi, Peter H.; Quigg, Antonietta; Chin, Wei-Chun
2017-12-01
Engineered nanoparticles (ENPs), products from modern nanotechnologies, can potentially impact the marine environment to pose serious threats to marine ecosystems. However, the cellular responses of marine phytoplankton to ENPs are still not well established. Here, we investigate four different diatom species ( Odontella mobiliensis, Skeletonema grethae, Phaeodactylum tricornutum, Thalassiosira pseudonana) and one green algae ( Dunaliella tertiolecta) for their extracellular polymeric substances (EPS) release under model ENP treatments: 25 nm titanium dioxide (TiO2), 10-20 nm silicon dioxide (SiO2), and 15-30 nm cerium dioxide (CeO2). We found SiO2 ENPs can significantly stimulate EPS release from these algae (200-800%), while TiO2 ENP exposure induced the lowest release. Furthermore, the increase of intracellular Ca2+ concentration can be triggered by ENPs, suggesting that the EPS release process is mediated through Ca2+ signal pathways. With better understanding of the cellular mechanism mediated ENP-induced EPS release, potential preventative and safety measures can be developed to mitigate negative impact on the marine ecosystem.
Knuckles, Travis L.; Yi, Jinghai; Frazer, David G.; Leonard, Howard D.; Chen, Bean T.; Castranova, Vince; Nurkiewicz, Timothy R.
2016-01-01
The widespread increase in the production and use of nanomaterials has increased the potential for nanoparticle exposure; however, the biological effects of nanoparticle inhalation are poorly understood. Rats were exposed to nanosized titanium dioxide aerosols (10 µg lung burden); at 24 h post-exposure, the spinotrapezius muscle was prepared for intravital microscopy. Nanoparticle exposure did not alter perivascular nerve stimulation (PVNS)-induced arteriolar constriction under normal conditions; however, adrenergic receptor inhibition revealed a more robust effect. Nanoparticle inhalation reduced arteriolar dilation in response to active hyperaemia (AH). In both PVNS and AH experiments, nitric oxide synthase (NOS) inhibition affected only controls. Whereas cyclooxygenase (COX) inhibition only attenuated AH-induced arteriolar dilation in nanoparticle-exposed animals. This group displayed an enhanced U46619 constriction and attenuated iloprost-induced dilation. Collectively, these studies indicate that nanoparticle exposure reduces microvascular NO bioavailability and alters COX-mediated vasoreactivity. Furthermore, the enhanced adrenergic receptor sensitivity suggests an augmented sympathetic responsiveness. PMID:21830860
Cerium dioxide (CeO2) engineered nanoparticles (NP) are used as fuel-borne catalysts in off-road diesel engines, which can lead to exhaust emissions of respirable CeO2 NP. Other metal oxides may act as photo-catalysts which induce the generation of free radicals upon exposure to ...
The influence of competing, similarly charged, inorganic ions on the size and charge behavior of suspended titanium-dioxide (nTiO2), silver (nAg) and fullerene (nC60) nanoparticles (NPs) was investigated. Under pH and ionic conditions similar to natural water bodies, Ca2+ induced...
NASA Astrophysics Data System (ADS)
Yoshiura, Yukiko; Izumi, Hiroto; Oyabu, Takako; Hashiba, Masayoshi; Kambara, Tatsunori; Mizuguchi, Yohei; Lee, Byeong Woo; Okada, Takami; Tomonaga, Taisuke; Myojo, Toshihiko; Yamamoto, Kazuhiro; Kitajima, Shinichi; Horie, Masanori; Kuroda, Etsushi; Morimoto, Yasuo
2015-06-01
In order to investigate the pulmonary toxicity of titanium dioxide (TiO2) nanoparticles, we performed an intratracheal instillation study with rats of well-dispersed TiO2 nanoparticles and examined the pulmonary inflammation and histopathological changes in the lung. Wistar Hannover rats were intratracheally administered 0.2 mg (0.66 mg/kg) and 1.0 mg (3.3 mg/kg) of well-dispersed TiO2 nanoparticles (P90; diameter of agglomerates: 25 nm), then the pulmonary inflammation responses were examined from 3 days to 6 months after the instillation, and the pathological features were examined up to 24 months. Transient inflammation and the upregulation of chemokines in the broncho-alveolar lavage fluid were observed for 1 month. No respiratory tumors or severe fibrosis were observed during the recovery time. These data suggest that transient inflammation induced by TiO2 may not lead to chronic, irreversible legions in the lung, and that TiO2 nanoparticles may not have a high potential for lung disorder.
Histologic and apoptotic changes induced by titanium dioxide nanoparticles in the livers of rats
Alarifi, Saud; Ali, Daoud; Al-Doaiss, Amin A; Ali, Bahy A; Ahmed, Mukhtar; Al-Khedhairy, Abdulaziz A
2013-01-01
Titanium dioxide (TiO2) nanoparticles are among the top five nanoparticles used in consumer products, paints, and pharmaceutical preparations. Given that exposure to such nanoparticles is mainly via the skin and inhalation, the present study was conducted in male Wistar albino rats (Rattus norvegicus). Our aim was to investigate the effect of TiO2 nanoparticles on hepatic tissue in an attempt to understand their toxicity and the potential effect of their therapeutic and diagnostic use. To investigate the effects of TiO2 nanoparticles on liver tissue, 30 healthy male Wistar albino rats were exposed to TiO2 nanoparticles at doses of 63 mg, 126 mg, and 252 mg per animal for 24 and 48 hours. Serum glutamate oxaloacetate transaminase and alkaline phosphatase activity was altered. Changes in hepatocytes can be summarized as hydropic degeneration, cloudy swelling, fatty degeneration, portal and lobular infiltration by chronic inflammatory cells, and congested dilated central veins. The histologic alterations observed might be an indication of hepatocyte injury due to the toxicity of TiO2 nanoparticles, resulting in an inability to deal with accumulated residues from the metabolic and structural disturbances caused by these nanoparticles. The appearance of cytoplasmic degeneration and destruction of nuclei in hepatocytes suggests that TiO2 nanoparticles interact with proteins and enzymes in hepatic tissue, interfering with antioxidant defense mechanisms and leading to generation of reactive oxygen species which, in turn, may induce stress in hepatocytes, promoting atrophy, apoptosis, and necrosis. More immunohistochemical and ultrastructural investigations are needed in relation to TiO2 nanoparticles and their potential effects when used as therapeutic and diagnostic tools. PMID:24143098
Effect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton.
Chiu, Meng-Hsuen; Khan, Zafir A; Garcia, Santiago G; Le, Andre D; Kagiri, Agnes; Ramos, Javier; Tsai, Shih-Ming; Drobenaire, Hunter W; Santschi, Peter H; Quigg, Antonietta; Chin, Wei-Chun
2017-12-13
Engineered nanoparticles (ENPs), products from modern nanotechnologies, can potentially impact the marine environment to pose serious threats to marine ecosystems. However, the cellular responses of marine phytoplankton to ENPs are still not well established. Here, we investigate four different diatom species (Odontella mobiliensis, Skeletonema grethae, Phaeodactylum tricornutum, Thalassiosira pseudonana) and one green algae (Dunaliella tertiolecta) for their extracellular polymeric substances (EPS) release under model ENP treatments: 25 nm titanium dioxide (TiO 2 ), 10-20 nm silicon dioxide (SiO 2 ), and 15-30 nm cerium dioxide (CeO 2 ). We found SiO 2 ENPs can significantly stimulate EPS release from these algae (200-800%), while TiO 2 ENP exposure induced the lowest release. Furthermore, the increase of intracellular Ca 2+ concentration can be triggered by ENPs, suggesting that the EPS release process is mediated through Ca 2+ signal pathways. With better understanding of the cellular mechanism mediated ENP-induced EPS release, potential preventative and safety measures can be developed to mitigate negative impact on the marine ecosystem.
NASA Astrophysics Data System (ADS)
Aduev, B. P.; Nurmukhametov, D. R.; Belokurov, G. M.; Nelyubina, N. V.; Gudilin, A. V.
2017-03-01
Spectral-kinetic characteristics of luminescence of tetranitropentaeritrite with inclusions of iron nanoparticles upon an explosion induced by laser pulses are measured with high temporal resolution. It is shown that the luminescence occurring during exposure to the laser pulse is a result of initiating a chemical reaction in tetranitropentaeritrite and is chemiluminescence. The glow is presumably associated with the excited nitrogen dioxide, NO2, which is formed by the rupture of O-NO2 bond in the tetranitropentaeritrite molecule.
In Vitro Therapeutic Potential of Tio2 Nanoparticles Against Human Cervical Carcinoma Cells.
Pandurangan, Muthuraman; Enkhtaivan, Gansukh; Young, Jung A; Hoon, Hur Ji; Lee, Hannah; Lee, SooBin; Kim, Doo Hwan
2016-06-01
Cellular and physiological responses to the degradation products of titanium implants are key indicators to determine the quality of biocompatibility of implant devices. The present study investigated titanium dioxide (TiO2) nanoparticle-induced cytotoxicity, apoptotic morphological modification, and apoptotic-related gene expressions in the human cervical carcinoma cells. TiO2 nanoparticle-induced cytotoxicity on cancer cells was determined by the sulphorhodamine-B assay. Apoptotic morphological modification such as nuclear fragmentation, rounding, cytoplasm shrinkage, loss of adhesion, and reduced cell volume were observed by an inverted, fluorescence, and confocal laser scanning microscope (CLSM). The DNA fragmentation study showed the occurrence of necrosis and apoptosis in nanoparticle-treated cells. The qPCR study showed the increased p53 and bax mRNA expression in the nanoparticle-treated cells compared to control. In addition, caspase 3 activity was increased in nanoparticle-treated cells, which indicates the increased auto-catalysis. Taking all these data together, it may suggest that TiO2 nanoparticle could inhibit the growth of HeLa cells.
Controlled functionalization of nanoparticles & practical applications
NASA Astrophysics Data System (ADS)
Rashwan, Khaled
With the increasing use of nanoparticles in both science and industry, their chemical modification became a significant part of nanotechnology. Unfortunately, most commonly used procedures provide just randomly functionalized materials. The long-term objective of our work is site- and stoichiometrically-controlled functionalization of nanoparticles with the utilization of solid supports and other nanostructures. On the examples of silica nanoparticles and titanium dioxide nanorods, we have obtained results on the solid-phase chemistry, method development, and modeling, which advanced us toward this goal. At the same time, we explored several applications of nanoparticles that will benefit from the controlled functionalization: imaging of titanium-dioxide-based photocatalysts, bioimaging by fluorescent nanoparticles, drug delivery, assembling of bone implants, and dental compositions. Titanium dioxide-based catalysts are known for their catalytic activity and their application in solar energy utilization such as photosplitting of water. Functionalization of titanium dioxide is essential for enhancing bone-titanium dioxide nanotube adhesion, and, therefore, for its application as an interface between titanium implants and bones. Controlled functionalization of nanoparticles should enhance sensitivity and selectivity of nanoassemblies for imaging and drug delivery applications. Along those lines, we studied the relationship between morphology and surface chemistry of nanoparticles, and their affinity to organic molecules (salicylic and caffeic acid) using Langmuir adsorption isotherms, and toward material surfaces using SEM- and TEM-imaging. We focused on commercial samples of titanium dioxide, titanium dioxide nanorods with and without oleic acid ligands, and differently functionalized silica nanoparticles. My work included synthesis, functionalization, and characterization of several types of nanoparticles, exploring their application in imaging, dentistry, and bone implant construction. Significant part of my experimental efforts was devoted to the solid-phase method development using model organic molecules, as well as affinity of nanoparticles to the functional groups and surfaces that can be used as linkages for constructing functional nanodevices.
NASA Astrophysics Data System (ADS)
Krüger, Kristin; Cossais, François; Neve, Horst; Klempt, Martin
2014-05-01
Nanosized titanium dioxide (TiO2) particles are widely used as food additive or coating material in products of the food and pharmaceutical industry. Studies on various cell lines have shown that TiO2 nanoparticles (NPs) induced the inflammatory response and cytotoxicity. However, the influences of TiO2 NPs' exposure on inflammatory pathways in intestinal epithelial cells and their differentiation have not been investigated so far. This study demonstrates that TiO2 NPs with particle sizes ranging between 5 and 10 nm do not affect enterocyte differentiation but cause an activation of inflammatory pathways in the human colon adenocarcinoma cell line Caco-2. 5 and 10 nm NPs' exposures transiently induce the expression of ICAM1, CCL20, COX2 and IL8, as determined by quantitative PCR, whereas larger particles (490 nm) do not. Further, using nuclear factor (NF)-κB reporter gene assays, we show that NP-induced IL8 mRNA expression occurs, in part, through activation of NF-κB and p38 mitogen-activated protein kinase pathways.
NASA Astrophysics Data System (ADS)
Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan
2015-11-01
Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03646a
Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome
Ruiz, Pedro A; Morón, Belen; Becker, Helen M; Lang, Silvia; Atrott, Kirstin; Spalinger, Marianne R; Scharl, Michael; Wojtal, Kacper A; Fischbeck-Terhalle, Anne; Frey-Wagner, Isabelle; Hausmann, Martin; Kraemer, Thomas; Rogler, Gerhard
2017-01-01
Objective Western lifestyle and diet are major environmental factors playing a role in the development of IBD. Titanium dioxide (TiO2) nanoparticles are widely used as food additives or in pharmaceutical formulations and are consumed by millions of people on a daily basis. We investigated the effects of TiO2 in the development of colitis and the role of the nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 inflammasome. Design Wild-type and NLRP3-deficient mice with dextran sodium sulfate-induced colitis were orally administered with TiO2 nanoparticles. The proinflammatory effects of TiO2 particles in cultured human intestinal epithelial cells (IECs) and macrophages were also studied, as well as the ability of TiO2 crystals to traverse IEC monolayers and accumulate in the blood of patients with IBD using inductively coupled plasma mass spectrometry. Results Oral administration of TiO2 nanoparticles worsened acute colitis through a mechanism involving the NLRP3 inflammasome. Importantly, crystals were found to accumulate in spleen of TiO2-administered mice. In vitro, TiO2 particles were taken up by IECs and macrophages and triggered NLRP3-ASC-caspase-1 assembly, caspase-1 cleavage and the release of NLRP3-associated interleukin (IL)-1β and IL-18. TiO2 also induced reactive oxygen species generation and increased epithelial permeability in IEC monolayers. Increased levels of titanium were found in blood of patients with UC having active disease. Conclusion These findings indicate that individuals with a defective intestinal barrier function and pre-existing inflammatory condition, such as IBD, might be negatively impacted by the use of TiO2 nanoparticles. PMID:26848183
Titanium dioxide nanoparticles cause genotoxicity in human lung epithelial cells
The use of engineered nanoparticles in consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. This study investigated the genotoxicity of six titanium dioxide and two cerium oxide nanoparticles of va...
Khan, Razia; Fulekar, M H
2016-08-01
The present study aims at exploiting Bacillus amyloliquefaciens for the biosynthesis of titanium dioxide nanoparticles and also investigates role of bacterial enzymes in the biosynthesis of titanium dioxide nanoparticles. Bacterial synthesized as well as metal doped titanium dioxide nanoparticles were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDAX). Amylase activity (43.37IU) in culture supernatant evinced a potential involvement of extracellular enzyme in TiO2 nanoparticle biosynthesis. Crystallite size of bio-synthesized nanoparticles was found to be in the range of 15.23-87.6nm. FTIR spectroscopy and native-PAGE (Polyacrylamide Gel Electrophoresis) clearly indicated involvement of alpha amylase in biosynthesis of TiO2 nanoparticles and in their stabilization. TEM micrographs of the synthesized titanium dioxide nanoparticles revealed the formation of spherical nanoparticles with a size range of 22.11-97.28nm. Photocatalytic degradation of Reactive Red 31 (RR31) dye was carried out using bio-synthesized TiO2 nanoparticles under UV radiation. Photocatalytic activity of synthesized nanoparticles was enhanced by Ag, La, Zn and Pt doping. Platinum doped TiO2 showed highest potential (90.98%) in RR31 degradation as compared to undoped (75.83%). Copyright © 2016 Elsevier Inc. All rights reserved.
Arora, Sumit; Omar, Yousef; Ijaz, Zohaib Mohammad; AL-Ghadhban, Ahmed; Deshmukh, Sachin K.; Carter, James E.; Singh, Ajay P.; Singh, Seema
2016-01-01
Sunscreen formulations containing UVB filters, such as Zinc-oxide (ZnO) and titanium-dioxide (TiO2) nanoparticles (NPs) have been developed to limit the exposure of human skin to UV-radiations. Unfortunately, these UVB protective agents have failed in controlling the skin cancer incidence. We recently demonstrated that silver nanoparticles (Ag-NPs) could serve as novel protective agents against UVB-radiations. Here our goal was to perform comparative analysis of direct and indirect UVB-protection efficacy of ZnO-, TiO2- and Ag-NPs. Sun-protection-factor calculated based on their UVB-reflective/absorption abilities was the highest for TiO2-NPs followed by Ag- and ZnO-NPs. This was further confirmed by studying indirect protection of UVB radiation-induced death of HaCaT cells. However, only Ag-NPs were active in protecting HaCaT cells against direct UVB-induced DNA-damage by repairing bulky-DNA lesions through nucleotide-excision-repair mechanism. Moreover, Ag-NPs were also effective in protecting HaCaT cells from UVB-induced oxidative DNA damage by enhancing SOD/CAT/GPx activity. In contrast, ZnO- and TiO2-NPs not only failed in providing any direct protection from DNA-damage, but rather enhanced oxidative DNA-damage by increasing ROS production. Together, these findings raise concerns about safety of ZnO- and TiO2-NPs and establish superior protective efficacy of Ag-NPs. PMID:27693632
Interaction of titanium dioxide nanoparticles with glucose on young rats after oral administration.
Chen, Zhangjian; Wang, Yun; Zhuo, Lin; Chen, Shi; Zhao, Lin; Chen, Tian; Li, Yang; Zhang, Wenxiao; Gao, Xin; Li, Ping; Wang, Haifang; Jia, Guang
2015-10-01
Titanium dioxide nanoparticles (TiO2 NPs) have a broad application prospect in replace with TiO2 used as a food additive, especially used in sweets. Understanding the interaction of TiO2 NPs with sugar is meaningful for health promotion. We used a young animal model to study the toxicological effect of orally administrated TiO2 NPs at doses of 0, 2, 10 and 50 mg/kg per day with or without daily consumption of 1.8 g/kg glucose for 30 days and 90 days. The results showed that oral exposure to TiO2 NPs and TiO2 NPs+glucose both induced liver, kidney, and heart injuries as well as changes in the count of white and red blood cells in a dose, time and gender-dependent manner. The toxicological interactions between orally-administrated TiO2 NPs and glucose were evident, but differed among target organs. These results suggest that it is necessary to limit dietary co-exposure to TiO2 NPs and sugar. Nanotechnology has gained entrance in the food industry, with the presence of nanoparticles now in many food items. Despite this increasing trend, the potential toxic effects of these nanoparticles to human remain unknown. In this article, the authors studied titanium dioxide nanoparticles (TiO2 NPs), which are commonly used as food additive, together with glucose. The findings of possible adverse effects on liver, kidney, and heart might point to a rethink of using glucose and TiO2 NPs combination. Copyright © 2015 Elsevier Inc. All rights reserved.
A series of six titanium dioxide and two cerium oxide engineered nanomaterials were assessed for their ability to induce cytotoxicity, reactive oxygen species (ROS), various types of DNA damage, and transcriptional changes in human respiratory BEAS-2B cells exposed in vitro at se...
Oxidative stress is known to play important roles in engineered nanomaterial induced cellular toxicity. However, the proteins and signaling pathways associated with the engineered nanomaterial mediated oxidative stress and toxicity are largely unknown. To identify these toxicity ...
TiO2 nanoparticle-induced ROS correlates with modulated immune cell function
NASA Astrophysics Data System (ADS)
Maurer-Jones, Melissa A.; Christenson, Jenna R.; Haynes, Christy L.
2012-12-01
Design of non-toxic nanoparticles will be greatly facilitated by understanding the nanoparticle-cell interaction mechanism on a cell function level. Mast cells are important cells for the immune system's first line of defense, and we can utilize their exocytotic behavior as a model cellular function as it is a conserved process across cell types and species. Perturbations in exocytosis can also have implications for whole organism health. One proposed mode of toxicity is nanoparticle-induced reactive oxygen species (ROS), particularly for titanium dioxide (TiO2) nanoparticles. Herein, we have correlated changes in ROS with the perturbation of the critical cell function of exocytosis, using UV light to induce greater levels of ROS in TiO2 exposed cells. The primary culture mouse peritoneal mast cells (MPMCs) were exposed to varying concentrations of TiO2 nanoparticles for 24 h. ROS content was determined using 2,7-dihydrodichlorofluorescein diacetate (DCFDA). Cellular viability was determined with the MTT and Trypan blue assays, and exocytosis was measured by the analytical electrochemistry technique of carbon-fiber microelectrode amperometry. MPMCs exposed to TiO2 nanoparticles experienced a dose-dependent increase in total ROS content. While there was minimal impact of ROS on cellular viability, there is a correlation between ROS amount and exocytosis perturbation. As nanoparticle-induced ROS increases, there is a significant decrease (45 %) in the number of serotonin molecules being released during exocytosis, increase (26 %) in the amount of time for each exocytotic granule to release, and decrease (28 %) in the efficiency of granule trafficking and docking. This is the first evidence that nanoparticle-induced ROS correlates with chemical messenger molecule secretion, possibly making a critical connection between functional impairment and mechanisms contributing to that impairment.
- Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...
An Enhanced Soft Vibrotactile Actuator Based on ePVC Gel with Silicon Dioxide Nanoparticles.
Park, Won-Hyeong; Shin, Eun-Jae; Yun, Sungryul; Kim, Sang-Youn
2018-01-01
In this paper, we propose a soft vibrotactile actuator made by mixing silicon dioxide nanoparticles and plasticized PVC gel. The effect of the silicon dioxide nanoparticles in the plasticized PVC gel for the haptic performance is investigated in terms of electric, dielectric, and mechanical properties. Furthermore, eight soft vibrotactile actuators are prepared as a function of the content. Experiments are conducted to examine the haptic performance of the prepared eight soft vibrotactile actuators and to find the best weight ratio of the plasticized PVC gel to the nanoparticles. The experiments should show that the plasticized PVC gel with silicon dioxide nanoparticles improves the haptic performance of the plasticized PVC gel-based vibrotactile actuator, and the proposed vibrotactile actuator can create a variety of haptic sensations in a wide frequency range.
Xu, Yan; Hadjiargyrou, M; Rafailovich, Miriam; Mironava, Tatsiana
2017-07-11
Increasing production of nanomaterials requires fast and proper assessment of its potential toxicity. Therefore, there is a need to develop new assays that can be performed in vitro, be cost effective, and allow faster screening of engineered nanomaterials (ENMs). Herein, we report that titanium dioxide (TiO 2 ) nanoparticles (NPs) can induce damage to adipose derived stromal cells (ADSCs) at concentrations which are rated as safe by standard assays such as measuring proliferation, reactive oxygen species (ROS), and lactate dehydrogenase (LDH) levels. Specifically, we demonstrated that low concentrations of TiO 2 NPs, at which cellular LDH, ROS, or proliferation profiles were not affected, induced changes in the ADSCs secretory function and differentiation capability. These two functions are essential for ADSCs in wound healing, energy expenditure, and metabolism with serious health implications in vivo. We demonstrated that cytotoxicity assays based on specialized cell functions exhibit greater sensitivity and reveal damage induced by ENMs that was not otherwise detected by traditional ROS, LDH, and proliferation assays. For proper toxicological assessment of ENMs standard ROS, LDH, and proliferation assays should be combined with assays that investigate cellular functions relevant to the specific cell type.
Liu, Yinghan; Ye, Nan; Fang, Hao; Wang, Degao
2018-01-01
Metal-based nanoparticles (NPs) are the most widely used engineered nanomaterials. The individual toxicities of metal-based NPs have been plentifully studied. However, the mixture toxicity of multiple NP systems (n ≥ 3) remains much less understood. Herein, the toxicity of titanium dioxide (TiO2) nanoparticles (NPs), silicon dioxide (SiO2) NPs and zirconium dioxide (ZrO2) NPs to unicellular freshwater algae Scenedesmus obliquus was investigated individually and in binary and ternary combination. Results show that the ternary combination systems of TiO2, SiO2 and ZrO2 NPs at a mixture concentration of 1 mg/L significantly enhanced mitochondrial membrane potential and intracellular reactive oxygen species level in the algae. Moreover, the ternary NP systems remarkably increased the activity of the antioxidant defense enzymes superoxide dismutase and catalase, together with an increase in lipid peroxidation products and small molecule metabolites. Furthermore, the observation of superficial structures of S. obliquus revealed obvious oxidative damage induced by the ternary mixtures. Taken together, the ternary NP systems exerted more severe oxidative stress in the algae than the individual and the binary NP systems. Thus, our findings highlight the importance of the assessment of the synergistic toxicity of multi-nanomaterial systems. PMID:29419775
Osborne, Olivia J; Johnston, Blair D; Moger, Julian; Balousha, Mohammed; Lead, Jamie R; Kudoh, Tetsuhiro; Tyler, Charles R
2013-12-01
Manufactured metal (oxide) nanoparticles are entering the aquatic environment with little understanding on their potential health impacts for exposed organisms. Adopting an integrative approach, we investigated effects of particle size and coating on biological responses for two of the most commonly used metal (oxide) nanoscale particles, silver (Ag) and titanium dioxide (TiO₂) in zebrafish embryos. Titanium dioxide nanoparticles (nominally, 4 nm, 10 nm, 30 nm and 134 nm) had little or no toxicity on the endpoints measured. Ag both in nano form (10 nm and 35 nm) and its larger counterpart (600-1600 nm) induced dose-dependent lethality and morphological defects, occurring predominantly during gastrula stage. Of the silver material tested 10 nm nanoparticles appeared to be the most toxic. Coating Ag nanoparticles with citrate or fulvic acid decreased toxicity significantly. In situ hybridisation analysis identified the yolk syncytial layer (YSL) as a target tissue for Ag-nano toxicity where there was a significant induction of the heavy metal stress response gene, metallothionein 2 (Mt2) at sub-lethal exposures. Coherent Anti-stroke Raman Scattering (CARS) microscopy provided no evidence for silver particles crossing the chorionic membrane in exposed embryos. Collectively, our data suggest that silver ions play a major role in the toxicity of Ag nanoparticles.
Tyagi, Nikhil; Srivastava, Sanjeev K; Arora, Sumit; Omar, Yousef; Ijaz, Zohaib Mohammad; Al-Ghadhban, Ahmed; Deshmukh, Sachin K; Carter, James E; Singh, Ajay P; Singh, Seema
2016-12-01
Sunscreen formulations containing UVB filters, such as Zinc-oxide (ZnO) and titanium-dioxide (TiO 2 ) nanoparticles (NPs) have been developed to limit the exposure of human skin to UV-radiations. Unfortunately, these UVB protective agents have failed in controlling the skin cancer incidence. We recently demonstrated that silver nanoparticles (Ag-NPs) could serve as novel protective agents against UVB-radiations. Here our goal was to perform comparative analysis of direct and indirect UVB-protection efficacy of ZnO-, TiO 2 - and Ag-NPs. Sun-protection-factor calculated based on their UVB-reflective/absorption abilities was the highest for TiO 2 -NPs followed by Ag- and ZnO-NPs. This was further confirmed by studying indirect protection of UVB radiation-induced death of HaCaT cells. However, only Ag-NPs were active in protecting HaCaT cells against direct UVB-induced DNA-damage by repairing bulky-DNA lesions through nucleotide-excision-repair mechanism. Moreover, Ag-NPs were also effective in protecting HaCaT cells from UVB-induced oxidative DNA damage by enhancing SOD/CAT/GPx activity. In contrast, ZnO- and TiO 2 -NPs not only failed in providing any direct protection from DNA-damage, but rather enhanced oxidative DNA-damage by increasing ROS production. Together, these findings raise concerns about safety of ZnO- and TiO 2 -NPs and establish superior protective efficacy of Ag-NPs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Guo, Zhongyuan; Martucci, Nicole J.; Moreno-Olivas, Fabiola; Tako, Elad; Mahler, Gretchen J.
2017-01-01
Ingestion of titanium dioxide (TiO2) nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface between the body and the external environment, and is the site of essential nutrient absorption. The goal of this study was to examine the effects of ingesting the 30 nm TiO2 nanoparticles with an in vitro cell culture model of the small intestinal epithelium, and to determine how acute or chronic exposure to nano-TiO2 influences intestinal barrier function, reactive oxygen species generation, proinflammatory signaling, nutrient absorption (iron, zinc, fatty acids), and brush border membrane enzyme function (intestinal alkaline phosphatase). A Caco-2/HT29-MTX cell culture model was exposed to physiologically relevant doses of TiO2 nanoparticles for acute (four hours) or chronic (five days) time periods. Exposure to TiO2 nanoparticles significantly decreased intestinal barrier function following chronic exposure. Reactive oxygen species (ROS) generation, proinflammatory signaling, and intestinal alkaline phosphatase activity all showed increases in response to nano-TiO2. Iron, zinc, and fatty acid transport were significantly decreased following exposure to TiO2 nanoparticles. This is because nanoparticle exposure induced a decrease in absorptive microvilli in the intestinal epithelial cells. Nutrient transporter protein gene expression was also altered, suggesting that cells are working to regulate the transport mechanisms disturbed by nanoparticle ingestion. Overall, these results show that intestinal epithelial cells are affected at a functional level by physiologically relevant exposure to nanoparticles commonly ingested from food. PMID:28944308
Mohamed, Bashir M; Verma, Navin K; Davies, Anthony M; McGowan, Aoife; Crosbie-Staunton, Kieran; Prina-Mello, Adriele; Kelleher, Dermot; Botting, Catherine H; Causey, Corey P; Thompson, Paul R; Pruijn, Ger JM; Kisin, Elena R; Tkach, Alexey V; Shvedova, Anna A; Volkov, Yuri
2012-01-01
Aim Rapidly expanding manufacture and use of nanomaterials emphasize the requirements for thorough assessment of health outcomes associated with novel applications. Post-translational protein modifications catalyzed by Ca2+-dependent peptidylargininedeiminases have been shown to trigger immune responses including autoantibody generation, a hallmark of immune complexes deposition in rheumatoid arthritis. Therefore, the aim of the study was to assess if nanoparticles are able to promote protein citrullination. Materials & methods Human A549 and THP-1 cells were exposed to silicon dioxide, carbon black or single-walled carbon nanotubes. C57BL/6 mice were exposed to respirable single-walled carbon nanotubes. Protein citrullination, peptidylargininedeiminases activity and target proteins were evaluated. Results The studied nanoparticles induced protein citrullination both in cultured human cells and mouse lung tissues. Citrullination occurred via the peptidylargininedeiminase-dependent mechanism. Cytokeratines 7, 8, 18 and plectins were identified as intracellular citrullination targets. Conclusion Nanoparticle exposure facilitated post-translational citrullination of proteins. PMID:22625207
Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes
Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes Nanoparticle uptake in cells may be an important determinant of their potential cytotoxic and inflammatory effects. Six commercial TiO2 NP (A=Alfa Aesar,10nm, A*=Alfa Aesar 32nm, B=P25 27...
NASA Astrophysics Data System (ADS)
Singh, S. C.; Kotnala, R. K.; Gopal, R.
2015-08-01
Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, S. C., E-mail: subhash.laserlab@gmail.com; Gopal, R.; Kotnala, R. K.
2015-08-14
Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, relatedmore » to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.« less
Preparation of Heat Treated Titanium Dioxide (TiO2) Nanoparticles for Water Purification
NASA Astrophysics Data System (ADS)
Araoyinbo, A. O.; Abdullah, M. M. A. B.; Rahmat, A.; Azmi, A. I.; Vizureanu, P.; Rahim, W. M. F. Wan Abd
2018-06-01
Photocatalysis using the semiconductor titanium dioxide (TiO2) has proven to be a successful technology for waste water purification. The photocatalytic treatment is an alternative method for the removal of soluble organic compounds in waste water. In this research, titanium dioxide nanoparticles were synthesized by sol-gel method using titanium tetraisopropoxide (TTIP) as a precursor. The sol was dried in the oven at 120°C after aging for 24 hours. The dried powder was then calcined at 400°C and 700°C with a heating rate of 10°C/min. The phase transformation of the heat treated titanium dioxide nanoparticles were characterized by X-Ray Diffraction (XRD, and the surface morphology by Scanning Electron Microscopy (SEM). The photocatalytic activity of the heat treated titanium dioxide nanoparticles in the degradation of methyl orange (MO) dye under ultraviolet (UV) light irradiation has been studied. At calcination temperature of 400°C, only anatase phase was observed, as the calcination temperature increases to 700°C, the rutile phase was present. The SEM images show the irregular shape of titanium dioxide particles and the agglomeration which tends to be more significant at calcined temperature of 700°C. Degradation of methyl orange by 5 mg heat treated titanium dioxide nanoparticles gives the highest percentage of degradation after irradiation by UV lamp for 4 hours.
Nanoparticle-Cell Interactions: Relevance for Public Health.
Runa, Sabiha; Hussey, Michael; Payne, Christine K
2018-01-25
Nanoparticles, especially metal oxide nanoparticles, are used in a wide range of commercial and industrial applications that result in direct human contact, such as titanium dioxide nanoparticles in paints, food colorings, and cosmetics, or indirectly through release of nanoparticle-containing materials into the environment. Workers who process nanoparticles for downstream applications are exposed to especially high concentrations of nanoparticles. For physical chemists, nanoparticles present an interesting area of study as the small size of nanoparticles changes the properties from that of the bulk material, leading to novel properties and reactivity. For the public health community, this reduction in particle size means that exposure limits and outcomes that were determined from bulk material properties are not necessarily valid. Informed determination of exposure limits requires a fundamental understanding of how nanoparticles interact with cells. This Feature Article highlights the areas of intersection between physical chemistry and public health in understanding nanoparticle-cell interactions, with a focus on titanium dioxide nanoparticles. It provides an overview of recent research examining the interaction of titanium dioxide nanoparticles with cells in the absence of UV light and provides recommendations for additional nanoparticle-cell research in which physical chemistry expertise could help to inform the public health community.
The photocatalytic and cytotoxic effects of titanium dioxide particles used in sunscreen
NASA Astrophysics Data System (ADS)
Rampaul, Ashti
Titanium dioxide nanoparticles are used in sunscreens to reflect UV radiation from the skin. However, titanium dioxide as anatase and rutile crystal forms is a well-known photocatalyst. The nanoparticles are surface coated with inert inorganic oxides such as silica and alumina or organics such as organosilanes or silicone polymers and more recently, have been doped with manganese oxide. These modifications to the titanium dioxide particles are purported to prevent the production of harmful reactive oxygen species. A range of sunscreens was tested with crystal form and modification type identified via XRD, Raman Spectroscopy, XPS and SSNMR. The particle modification and crystal form determined whether the particles were inert or rapidly degraded methylene blue dye, and killed or protected cultured human epithelium cells. Novel solid state Electron Paramagnetic Resonance analysis showed that the greatest amount of superoxide anions was formed during UVA irradiation of the mixed anatase and rutile crystal forms coated with an organosilane. These particles also degraded methylene blue at a similar rate to Degussa P25, a standard uncoated titanium dioxide powder and produced an increase in UVA induced apoptosis of human keratinocytes. Double Stranded Breaks were observed extensively in cells exposed to UVA irradiated mixed anatase and rutile titanium dioxide with organosilane. A new apoptotic-like cell death mechanism may have been recognised during the UVA irradiation of animal and human cells in the presence of titanium dioxide. This research concludes that mixed anatase and rutile crystal forms of titanium dioxide coated with organosilane or dimethicone may not be safe to use in sunscreen lotions. A less harmful alternative for sunscreen formulations is the manganese doped rutile particles or the alumina coated rutile powders, both of which exhibited a protective effect on cultured epithelial cells.
Biotemplated Synthesis of Anatase Titanium Dioxide Nanoparticles via Lignocellulosic Waste Material
Bagheri, Samira; Abd Hamid, Sharifah Bee
2014-01-01
Anatase titanium dioxide nanoparticles (TiO2-NPs) were synthesized by sol-gel method using rice straw as a soft biotemplate. Rice straw, as a lignocellulosic waste material, is a biomass feedstock which is globally produced in high rate and could be utilized in an innovative approach to manufacture a value-added product. Rice straw as a reliable biotemplate has been used in the sol-gel method to synthesize ultrasmall sizes of TiO2-NPs with high potential application in photocatalysis. The physicochemical properties of titanium dioxide nanoparticles were investigated by a number of techniques such as X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), ultraviolet visible spectra (UV-Vis), and surface area and pore size analysis. All results consensually confirmed that particle sizes of synthesized titanium dioxide were template-dependent, representing decrease in the nanoparticles sizes with increase of biotemplate concentration. Titanium dioxide nanoparticles as small as 13.0 ± 3.3 nm were obtained under our experimental conditions. Additionally, surface area and porosity of synthesized TiO2-NPs have been enhanced by increasing rice straw amount which results in surface modification of nanoparticles and potential application in photocatalysis. PMID:25126547
NASA Astrophysics Data System (ADS)
Samal, Sneha
2017-11-01
Synthesis of nanoparticles of TiO2 was carried out by non-transferred arc thermal plasma reactor using ilmenite as the precursor material. The powder ilmenite was vaporized at high temperature in plasma flame and converted to a gaseous state of ions in the metastable phase. On cooling, chamber condensation process takes place on recombination of ions for the formation of nanoparticles. The top-to-bottom approach induces the disintegration of complex ilmenite phases into simpler compounds of iron oxide and titanium dioxide phases. The vapor-phase reaction mechanism was carried out in thermal plasma zone for the synthesis of nanoparticles from ilmenite compound in a plasma reactor. The easy separation of iron particles from TiO2 was taken place in the plasma chamber with deposition of light TiO2 particles at the top of the cooling chamber and iron particles at the bottom. The dissociation and combination process of mechanism and synthesis are studied briefly in this article. The product TiO2 nanoparticle shows the purity with a major phase of rutile content. TiO2 nanoparticles produced in vapor-phase reaction process shows more photo-induced capacity.
NASA Astrophysics Data System (ADS)
Cho, Mi Hyeon; Choi, Eun-Seok; Kim, Sehee; Goh, Sung-Ho; Choi, Yongdoo
2017-12-01
In this study, we synthesized manganese dioxide nanoparticles (MnO2 NPs) stabilized with biocompatible polymers (polyvinylpyrrolidone and polyacrylic acid) and analyzed their effect on non-small cell lung cancer (NSCLC) cells with or without gefitinib resistance in vitro. MnO2 NPs showed glutathione (GSH)-responsive dissolution and subsequent enhancement in magnetic resonance (MR) imaging. Of note, treatment with MnO2 NPs induced significant cytotoxic effects on NSCLC cells, and additional dose-dependent therapeutic effects were obtained upon X-ray irradiation. Normal cells treated with MnO2 NPs were viable at the tested concentrations. In addition, increased therapeutic efficacy could be achieved when the cells were treated with MnO2 NPs in hypoxic conditions. Therefore, we conclude that the use of MnO2 NPs in MR imaging and combination radiotherapy may be an efficient strategy for the imaging and therapy of NSCLC.
NASA Astrophysics Data System (ADS)
Buzby, Scott Edward
Nanosized titanium dioxide has a variety of important applications in everyday life including a photocatalyst for pollution remediation, photovoltaic devices, sunscreen, etc. This study focuses on the various properties of titanium dioxide nanoparticles doped with various cation and anion species. Samples were produced by various methods including metalorganic chemical vapor deposition (MOCVD), plasma assisted metalorganic chemical vapor deposition (PA-MOCVD) and sol-gel. Numerous techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy both scanning (SEM) and transmission (TEM) were used for physical characterization. Photocatalytic properties were determined by the oxidation of methylene blue dye and 2-chlorophenol in water as well as gaseous formic acid with results analyzed by high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR) and ultra violet - visible spectroscopy (UV-VIS). For the purpose of enhancement of the photocatalytic activity of titanium dioxide nanoparticles, the effect of anion doping and the anatase-rutile phase ratio were studied. Although anatase, rutile and mixed crystallite phases all show some degree of activity in photocatalytic reactions, these results show that anatase is better suited for the degradation of organic compounds in an aqueous medium any advantage in photocatalytic activity gained through the enhancement in optical response from the smaller band gap by addition of rutile was overcome by the negatives associated with the rutile phase. Furthermore substitutional nitrogen doping showed significant improvement in UV photocatalysis as well as allowing for visible light activation of the catalyst. Further studies on the phase transitions in titanium dioxide nanoparticles were carried out by synthesizing various cation doped samples by sol-gel. Analysis of the phases by XRD showed an inverse relationship between dopant size and rutile percentage. Dopant ions with larger radii than titanium stress the crystal lattice promoting anatase formation, since it has a larger c/a ratio than rutile does. The cation dopants were also found to decrease the average particle size of the titanium dioxide nanoparticles. The defect sites caused by the doping prevent the nucleation and retard particle growth of titanium dioxide particles. Cation doping of titanium dioxide nanoparticles affect other properties of the nanoparticles besides the phase transitions. For example titanium dioxide doped with magnetic materials such as Fe, Ni, Co or Cr has been shown to display room temperature ferromagnetism which are currently being studied for use in spintronic devices. The antibacterial studies of silver doped titanium dioxide nanoparticles were carried out against Escherichia coli, both in nutrient solution and on agar-plates. Both studies show that while pure titanium dioxide has no antibacterial effect, when doped with as little as 0.72 atomic % silver becomes more effective than pure silver nanoparticles of similar size. It has been observed that with concentrations as low as 25mug/cm 2 of silver doped titanium dioxide, completely antibacterial surfaces may be synthesized.
NASA Astrophysics Data System (ADS)
Mishin, Maxim V.; Vorobyev, Alexander A.; Kondrateva, Anastasia S.; Koroleva, Ekaterina Y.; Karaseov, Platon A.; Bespalova, Polina G.; Shakhmin, Alexander L.; Glukhovskoy, Anatoly V.; Wurz, Marc Christopher; Filimonov, Alexey V.
2018-07-01
Photo-induced current through nanocomposite heterojunction structures consisting of a TiO2 coating activated with embedded gold nanoparticles on top of Si, SiO2, and columnar structured SiO2 is studied. The highest photo-activity in the visible part of the spectrum is found in the composite containing pillar-like silicon dioxide nanostructures. Experimental results were qualitatively explained on the basis of Franz-Keldysh effect taking into account the effects of electrical inhomogeneities appearing at charged nanoparticles. It is established that processes at the interface between silicon and noble metal nanoparticles play an important role in charge carrier photo-generation which opens a new opportunity to tune the photo-response of a nanocomposite via changing heterostructure topology.
A series of six titanium dioxide and two cerium oxide engineered nanomaterials were assessed for their ability to induce cytotoxicity, reactive oxygen species (ROS), and various types of DNA and protein damage in human respiratory BEAS-2B cells exposed in vitro for 72 hours at se...
Nanoparticle–Cell Interactions: Relevance for Public Health
2017-01-01
Nanoparticles, especially metal oxide nanoparticles, are used in a wide range of commercial and industrial applications that result in direct human contact, such as titanium dioxide nanoparticles in paints, food colorings, and cosmetics, or indirectly through release of nanoparticle-containing materials into the environment. Workers who process nanoparticles for downstream applications are exposed to especially high concentrations of nanoparticles. For physical chemists, nanoparticles present an interesting area of study as the small size of nanoparticles changes the properties from that of the bulk material, leading to novel properties and reactivity. For the public health community, this reduction in particle size means that exposure limits and outcomes that were determined from bulk material properties are not necessarily valid. Informed determination of exposure limits requires a fundamental understanding of how nanoparticles interact with cells. This Feature Article highlights the areas of intersection between physical chemistry and public health in understanding nanoparticle–cell interactions, with a focus on titanium dioxide nanoparticles. It provides an overview of recent research examining the interaction of titanium dioxide nanoparticles with cells in the absence of UV light and provides recommendations for additional nanoparticle–cell research in which physical chemistry expertise could help to inform the public health community. PMID:29111728
NASA Astrophysics Data System (ADS)
Hamdy, Mohamed S.
2016-02-01
Siliceous TUD-1 mesoporous material was bi-functionalized by titanium dioxide nanoparticles and hexavalent chromium ions. The synthesis was carried out by one-pot procedure based on sol-gel technique. The photocatalytic performance of the prepared material was evaluated in the oxidation of propane under the illumination of ultraviolet light (wavelength = 360 nm) and monitored by in situ Fourier transform infrared spectroscopy. The photocatalytic activity of the prepared material exhibited an extra-ordinary activity than the reference samples that contain either hexavalent chromium ions or titanium dioxide nanoparticles only, confirming the true synergy between hexavalent chromium and tetravalent titanium ions of titanium dioxide nanoparticles.
NASA Astrophysics Data System (ADS)
Pinheiro, T.; Pallon, J.; Alves, L. C.; Veríssimo, A.; Filipe, P.; Silva, J. N.; Silva, R.
2007-07-01
The permeability of skin to nanoparticles of titanium dioxide (TiO 2) used in sunscreens as a reflector of the UV wavelengths of sunlight, was examined using nuclear microscopy techniques. Special attention was given to the permeation characteristics of these nanoparticles across the outer layers of skin, the stratum corneum, in healthy and psoriatic skin condition. Aspects that may influence the interpretation of results such as sample preparation difficulties and skin condition were focused. Sample preparation can damage the integrity of the corneocyte layers inducing unwanted artefacts that may bias the evaluation of results. Irradiation conditions may also introduce distortions in the labile structures of human skin. Skin condition, such as loss of corneocyte cohesion occurring in psoriasis also influence the permeation profile of the nanoparticles. Weighing and accounting for these features in the examination of skin by nuclear microscopy is crucial to accurately assess the TiO 2 nanoparticles permeation depth.
De Matteis, Valeria; Cascione, Mariafrancesca; Brunetti, Virgilio; Toma, Chiara Cristina; Rinaldi, Rosaria
2016-12-01
Titanium dioxide nanoparticles (TiO 2 NPs), in the two crystalline forms, rutile and anatase, have been widely used in many industrial fields, especially in cosmetics. Therefore, a lot of details about their safety issues have been discussed by the scientific community. Many studies have led to a general agreement about TiO 2 NPs toxicity, in particular for anatase form, but no mechanism details have been proved yet. In this study, data confirm the different toxic potential of rutile and anatase TiO 2 NPs in two cell lines up to 5nM nanoparticles concentration. Moreover, we evaluated the role of titanium ions released by TiO 2 NPs in different conditions, at pH=4.5 (the typical lysosomal compartment pH) and at pH=5.5 (the skin physiological pH) in conditions of darkness and light, to mimic the dermal exposure of cosmetics. Anatase nanoparticles were proner to degradation both in the acidic conditions and at skin pH. Our study demonstrates that pH and sunlight are dominant factors to induce oxidative stress, TiO 2 NPs degradation and toxicity effects. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Morimoto, Yasuo; Izumi, Hiroto; Yoshiura, Yukiko; Tomonaga, Taisuke; Oyabu, Takako; Myojo, Toshihiko; Kawai, Kazuaki; Yatera, Kazuhiro; Shimada, Manabu; Kubo, Masaru; Yamamoto, Kazuhiro; Kitajima, Shinichi; Kuroda, Etsushi; Kawaguchi, Kenji; Sasaki, Takeshi
2015-11-01
We performed inhalation and intratracheal instillation studies of cerium dioxide (CeO2) nanoparticles in order to investigate their pulmonary toxicity, and observed pulmonary inflammation not only in the acute and but also in the chronic phases. In the intratracheal instillation study, F344 rats were exposed to 0.2 mg or 1 mg of CeO2 nanoparticles. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed from 3 days to 6 months following the instillation. In the inhalation study, rats were exposed to the maximum concentration of inhaled CeO2 nanoparticles (2, 10 mg/m3, respectively) for 4 weeks (6 h/day, 5 days/week). The same endpoints as in the intratracheal instillation study were examined from 3 days to 3 months after the end of the exposure. The intratracheal instillation of CeO2 nanoparticles caused a persistent increase in the total and neutrophil number in BALF and in the concentration of cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, chemokine for neutrophil, and heme oxygenase-1 (HO-1), an oxidative stress marker, in BALF during the observation time. The inhalation of CeO2 nanoparticles also induced a persistent influx of neutrophils and expression of CINC-1, CINC-2, and HO-1 in BALF. Pathological features revealed that inflammatory cells, including macrophages and neutrophils, invaded the alveolar space in both studies. Taken together, the CeO2 nanoparticles induced not only acute but also chronic inflammation in the lung, suggesting that CeO2 nanoparticles have a pulmonary toxicity that can lead to irreversible lesions.
NASA Astrophysics Data System (ADS)
Jesline, A.; John, Neetu P.; Narayanan, P. M.; Vani, C.; Murugan, Sevanan
2015-02-01
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major nosocomial pathogens responsible for a wide spectrum of infections and the emergence of bacterial resistance to antibiotics has lead to treatment drawbacks towards large number of drugs. Formation of biofilms is the main contributing factor to antibiotic resistance. The development of reliable processes for the synthesis of zinc oxide nanoparticles is an important aspect of nanotechnology today. Zinc oxide and titanium dioxide nanoparticles comprise well-known inhibitory and bactericidal effects. Emergence of antimicrobial resistance by pathogenic bacteria is a major health problem in recent years. This study was designed to determine the efficacy of zinc and titanium dioxide nanoparticles against biofilm producing methicillin-resistant S. aureus. Biofilm production was detected by tissue culture plate method. Out of 30 MRSA isolates, 22 isolates showed strong biofilm production and 2 showed weak and moderate biofilm formation. Two strong and weak biofilm-producing methicillin-resistant S. aureus isolates were subjected to antimicrobial activity using commercially available zinc and titanium dioxide nanoparticles. Thus, the nanoparticles showed considerably good activity against the isolates, and it can be concluded that they may act as promising, antibacterial agents in the coming years.
Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite
Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua
2012-01-01
A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166
Phase-selective vanadium dioxide (VO2) nanostructured thin films by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Masina, B. N.; Lafane, S.; Wu, L.; Akande, A. A.; Mwakikunga, B.; Abdelli-Messaci, S.; Kerdja, T.; Forbes, A.
2015-10-01
Thin films of monoclinic nanostructured vanadium dioxide are notoriously difficult to produce in a selective manner. To date, post-annealing, after pulsed laser deposition (PLD), has been used to revert the crystal phase or to remove impurities, and non-glass substrates have been employed, thus reducing the efficacy of the transparency switching. Here, we overcome these limitations in PLD by optimizing a laser-ablation and deposition process through optical imaging of the laser-induced plasma. We report high quality monoclinic rutile-type vanadium dioxide (VO2) (M1) nanoparticles without post-annealing, and on a glass substrate. Our samples demonstrate a reversible metal-to-insulator transition at ˜43 °C, without any doping, paving the way to switchable transparency in optical materials at room temperature.
Pd-Pt and Fe-Ni nanoparticles formed by covalent molecular assembly in supercritical carbon dioxide.
Puniredd, Sreenivasa Reddy; Weiyi, Seah; Srinivasan, M P
2008-04-01
We report the formation of Pd-Pt nanoparticles within a dendrimer-laden ultrathin film matrix immobilized on a solid support and constructed by covalent layer-by-layer (LbL) assembly using supercritical carbon dioxide (SCCO2) as the processing medium. Particle size distribution and composition were controlled by precursor composition. The precursor compositions are optimized for Pd-Pt nanoparticles and later extended to the formation of Fe-Ni nanoparticles. As an example of the application of nanoparticles in tribology, Fe-Ni nanoparticle-laden films were observed to exhibit better tribological properties than those containing the monometallic species, thereby suggesting that combination of nanoparticles can be used to derive greater benefits.
Polymorph-dependent titanium dioxide nanoparticle dissolution in acidic and alkali digestions
Multiple polymorphs (anatase, brookite and rutile) of titanium dioxide nanoparticles (TiO2-NPs) with variable structures were quantified in environmental matrices via microwave-based hydrofluoric (HF) and nitric (HNO3) mixed acid digestion and muffle furnace (MF)-based potassium ...
Titanium dioxide in our everyday life; is it safe?
Skocaj, Matej; Filipic, Metka; Petkovic, Jana; Novak, Sasa
2011-01-01
Background Titanium dioxide (TiO2) is considered as an inert and safe material and has been used in many applications for decades. However, with the development of nanotechnologies TiO2 nanoparticles, with numerous novel and useful properties, are increasingly manufactured and used. Therefore increased human and environmental exposure can be expected, which has put TiO2 nanoparticles under toxicological scrutiny. Mechanistic toxicological studies show that TiO2 nanoparticles predominantly cause adverse effects via induction of oxidative stress resulting in cell damage, genotoxicity, inflammation, immune response etc. The extent and type of damage strongly depends on physical and chemical characteristics of TiO2 nanoparticles, which govern their bioavailability and reactivity. Based on the experimental evidence from animal inhalation studies TiO2 nanoparticles are classified as “possible carcinogenic to humans” by the International Agency for Research on Cancer and as occupational carcinogen by the National Institute for Occupational Safety and Health. The studies on dermal exposure to TiO2 nanoparticles, which is in humans substantial through the use of sunscreens, generally indicate negligible transdermal penetration; however data are needed on long-term exposure and potential adverse effects of photo-oxidation products. Although TiO2 is permitted as an additive (E171) in food and pharmaceutical products we do not have reliable data on its absorption, distribution, excretion and toxicity on oral exposure. TiO2 may also enter environment, and while it exerts low acute toxicity to aquatic organisms, upon long-term exposure it induces a range of sub-lethal effects. Conclusions Until relevant toxicological and human exposure data that would enable reliable risk assessment are obtained, TiO2 nanoparticles should be used with great care. PMID:22933961
NASA Astrophysics Data System (ADS)
Zhou, Yingjun; Hong, Fashui; Wang, Ling
2017-11-01
Exposure to fine particulate matter (PM) is known to cause cardiovascular disease. While extensive research has focused on the risk of atmospheric PM to public health, particularly heart disease, limited studies to date have attempted to clarify the molecular mechanisms underlying myocardial cell damage caused by exposure to titanium dioxide nanoparticles (TiO2 NPs). Data from the current investigation showed that TiO2 NPs are deposited in myocardial mitochondria via the blood circulation accompanied by obvious ultrastructural changes and impairment of mitochondrial structure and function in mouse myocardial cells, including reduction in mitochondrial membrane potential and ATP production, aggravation of oxidative stress along with increased levels of reactive oxygen species, malondialdehyde and protein carbonyl, and decreased glutathione content and enzymatic activities, including superoxide dismutase and glutathione peroxidase. Furthermore, TiO2 NPs induced a significant decrease in the activities of complex I, complex II, complex III, complex IV, succinate dehydrogenase, NADH oxidase, Ca2+-ATPase, Na+/K+-ATPase, and Ca2+/Mg2+-ATPase, and upregulation of cytokine expression (including cytochrome c, caspase-3, and p-JNK) in mitochondria-mediated apoptosis while downregulating Bcl-2 expression in mouse myocardial cells. Our results collectively indicate that chronic exposure to TiO2 NPs induces damage in mitochondrial structure and function as well as mitochondria-mediated apoptosis in mouse myocardial cells, which may be closely associated with heart disease in animals and humans.
Photo-induced toxicity of titanium dioxide nanoparticles to Daphnia magna under natural sunlight.
Mansfield, C M; Alloy, M M; Hamilton, J; Verbeck, G F; Newton, K; Klaine, S J; Roberts, A P
2015-02-01
Titanium dioxide nanoparticles (TiO2 NP) are one of the most abundantly utilized nanoparticles in the world. Studies have demonstrated the ability of the anatase crystal of TiO2 NP to produce reactive oxygen species (ROS) in the presence of ultraviolet radiation (UVR), a co-exposure likely to occur in aquatic ecosystems. The goal of this study was to examine the photo-induced toxicity of anatase TiO2 NP under natural sunlight to Daphnia magna. D. magna were exposed to a range of UVR intensities and anatase TiO2 concentrations in an outdoor exposure system using the sun as the source of UVR. Different UVR intensities were achieved using UVR opaque and transparent plastics. AnataseTiO2-NP demonstrated the reciprocal relationship seen in other phototoxic compounds such as polycyclic aromatic hydrocarbons (PAHs) at higher UVR treatments. The calculated 8h LC50 of anatase TiO2 NP was 139 ppb under full intensity ambient natural sunlight, 778 ppb under 50% natural sunlight, and >500 ppm under 10% natural sunlight. Mortality was also compared between animals allowed to accumulate a body burden of anatase TiO2 for 1h and organisms whose first exposure to anatase TiO2 aqueous suspensions occurred under UVR. A significantly greater toxic effect was observed in aqueous, low body burden suspensions than that of TiO2 1h body burdens, which is dissimilar from the model presented in PAHs. Anatase TiO2 presents a unique photo-induced toxic model that is different than that of established phototoxic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.
Treatment-Induced Autophagy Associated with Tumor Dormancy and Relapse
2015-07-01
Food Sciences, Sultan Zainal Abidin University, Tembila Campus, 22200 Besut, Terengganu, Malaysia , 71Planet Biotechnologies Inc, St Albert, Canada...characterization results and/or relevant low-dose research evidence that might exist. The term ‘low dose’ was defined using the European Food Safety...redox signaling (193,221). Titanium dioxide nanoparticles are also common in many consumer prod- ucts and foods and have been reported to disrupt
NASA Astrophysics Data System (ADS)
Rajamanickam, Govindaraj; Narendhiran, Santhosh; Muthu, Senthil Pandian; Mukhopadhyay, Sumita; Perumalsamy, Ramasamy
2017-12-01
Titanium dioxide is a promising wide band gap semiconducting material for dye-sensitized solar cell. The poor electron transport properties still remain a challenge with conventional nanoparticles. Here, we synthesized TiO2 nanorods/nanoparticles by hydrothermal method to improve the charge transport properties. The structural and morphological information of the prepared nanorods/nanoparticles was analysed with X-ray diffraction and electron microscopy analysis, respectively. A high power conversion efficiency of 7.7% is achieved with nanorods/nanoparticles employed device under 100 mW/cm2. From the electrochemical impedance analysis, superior electron transport properties have been found for synthesized TiO2 nanorods/nanoparticles employed device than commercial P25 nanoparticles based device.
Haynes, Vena N; Ward, J Evan; Russell, Brandon J; Agrios, Alexander G
2017-04-01
Nanoparticles are entering natural systems through product usage, industrial waste and post-consumer material degradation. As the production of nanoparticles is expected to increase in the next decade, so too are predicted environmental loads. Engineered metal-oxide nanomaterials, such as titanium dioxide, are known for their photocatalytic capabilities. When these nanoparticles are exposed to ultraviolet radiation in the environment, however, they can produce radicals that are harmful to aquatic organisms. There have been a number of studies that have reported the toxicity of titanium dioxide nanoparticles in the absence of light. An increasing number of studies are assessing the interactive effects of nanoparticles and ultraviolet light. However, most of these studies neglect environmentally-relevant experimental conditions. For example, researchers are using nanoparticle concentrations and light intensities that are too high for natural systems, and are ignoring water constituents that can alter the light field. The purpose of this review is to summarize the current knowledge of the photocatalytic effects of TiO 2 nanoparticles on aquatic organisms, discuss the limitations of these studies, and outline environmentally-relevant factors that need to be considered in future experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions.
Zholobak, N M; Ivanov, V K; Shcherbakov, A B; Shaporev, A S; Polezhaeva, O S; Baranchikov, A Ye; Spivak, N Ya; Tretyakov, Yu D
2011-01-10
UV-shielding property, photocatalytic activity and cytotoxicity (including photocytotoxicity) of citrate-stabilized ceria colloid solutions were studied. It was established that UV-shielding property (namely, the sun protection factor, the critical absorption wavelength and the UVA/UVB-ratio) of ceria nanoparticles are as good as those of titanium dioxide and zinc oxide nanoparticles. It was further demonstrated that ceria nanoparticles possesses substantially lower photocatalytic activity, which additionally decreases upon decrease in ceria particle size. It was found that colloid ceria solutions are non-toxic to mouse fibroblasts (L929) and fibroblast-like cells of African Green monkey (VERO). Moreover, ceria nanoparticles are capable to protect these cells from UV-irradiation-induced damage. It was proposed that nanocrystalline ceria could be used not only as UV-blocking material, but also as prophylactic and even therapeutic compound for sunburns treatment. Copyright © 2010 Elsevier B.V. All rights reserved.
The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...
The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...
Due to their inherent phototoxicity and inevitable environmental release, titanium dioxide nanoparticles (nano-TiO2) are increasingly studied in the field of aquatic toxicology. One of the particular interests is the interactions between nano-TiO2 and natural organic matter (NOM)...
Phase-selective vanadium dioxide (VO{sub 2}) nanostructured thin films by pulsed laser deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masina, B. N., E-mail: BMasina@csir.co.za, E-mail: slafane@cdta.dz; School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000; Lafane, S., E-mail: BMasina@csir.co.za, E-mail: slafane@cdta.dz
2015-10-28
Thin films of monoclinic nanostructured vanadium dioxide are notoriously difficult to produce in a selective manner. To date, post-annealing, after pulsed laser deposition (PLD), has been used to revert the crystal phase or to remove impurities, and non-glass substrates have been employed, thus reducing the efficacy of the transparency switching. Here, we overcome these limitations in PLD by optimizing a laser-ablation and deposition process through optical imaging of the laser-induced plasma. We report high quality monoclinic rutile-type vanadium dioxide (VO{sub 2}) (M1) nanoparticles without post-annealing, and on a glass substrate. Our samples demonstrate a reversible metal-to-insulator transition at ∼43 °C, withoutmore » any doping, paving the way to switchable transparency in optical materials at room temperature.« less
Wang, Yanli; Yao, Chenjie; Li, Chenchen; Ding, Lin; Liu, Jian; Dong, Peng; Fang, Haiping; Lei, Zhendong; Shi, Guosheng; Wu, Minghong
2015-08-14
To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials. We studied the effect of nano-TiO2, nano-Al2O3 and nano-SiO2 deposition films on the ion concentration on a cell-free system simulating the cell membrane. The results showed that the ion concentration of K(+), Ca(2+), Na(+), Mg(2+) and SO4(2-) decreased significantly following filtration of the prepared deposition films. More specifically, at a high nano-TiO2 concentration (200 mg L(-1)) and a long nano-TiO2 deposition time (48 h), the concentration of Na(+) decreased from 2958.01 to 2775.72, 2749.86, 2757.36, and 2719.82 mg L(-1), respectively, for the four types of nano-TiO2 studied. Likewise, the concentration of SO4(2-) decreased from 38.83 to 35.00, 35.80, 35.40, and 35.27 mg L(-1), respectively. The other two kinds of typical low toxicity nanomaterials (nano-Al2O3 and nano-SiO2) have a similar impact on the ion concentration change trend. Adsorption of ions on nanoparticles and the hydrated shell around the ions strongly hindered the ions through the nanoparticle films. The endocytosed nanoparticles could be released from the cells without inducing cytotoxicity. Hindering the ion exchange and disrupting the exocytosis process are the main factors that induce cytotoxicity in the presence of excess nano-TiO2 on the cell surface. The current findings may offer a universal principle for understanding the mechanism of cytotoxicity induced by low toxicity nanomaterials.
NASA Astrophysics Data System (ADS)
Mehrpouya, Fahimeh; Tavanai, Hossein; Morshed, Mohammad; Ghiaci, Mehran
2012-08-01
Activated carbon (AC) can act as an important carrier for TiO2 nanoparticles. TiO2 nanoparticle can be fabricated by the hydrolysis and condensation of titanium alkoxides like titanium isopropoxide. This study showed that the formation of titanium dioxide crystallite nanoparticle during activation of PAN nanofibers containing titanium isopropoxide leads to the formation of mainly anatase crystal TiO2 nanoparticle in AC nanofibers, with a good dispersion in both the longitude and cross section of nanofibers. The TiO2 crystallite size lies in the range of 7.3-11.3 nm. The dispersion of TiO2 nanoparticles in the matrix of AC nanofibers is far superior to the direct mixing of TiO2 nanoparticles in the original electrospinning solution.
Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation
Caricato, Anna Paola; Luches, Armando; Rella, Roberto
2009-01-01
The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO2, SnO2) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented. PMID:22574039
Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation.
Caricato, Anna Paola; Luches, Armando; Rella, Roberto
2009-01-01
The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO(2), SnO(2)) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al(2)O(3) substrates. A rather uniform distribution of TiO(2) nanoparticles with an average size of about 10 nm and of SnO(2) nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented.
NASA Astrophysics Data System (ADS)
Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng
2015-01-01
A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.
This study investigated the sedimentation and aggregation kinetics of titanium dioxide (TiO2) nanoparticles with varying material properties (i.e., crystallinity, morphology, and chemical compositions). Used in the study were various types of commercially available TiO2 nanoparti...
Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO2) and its consequent phototoxicity to Daphnia magna were measured under different solar UV radiation spectrum by applying a series of optical filters in a solar simulator. Removing UVB (280-32...
Deposition of gold nanoparticles from colloid on TiO2 surface
NASA Astrophysics Data System (ADS)
Rehacek, Vlastimil; Hotovy, Ivan
2017-11-01
In this paper, experimental results are presented on the deposition of colloidal gold nanoparticles on the surfaces of TiO2 prepared on silicon/silicon dioxide. Important procedures, such as titanium dioxide surface hydrophilization as well as functionalization by an organosilane coupling agent (3-aminopropyl) trimethoxysilane and (3-mercaptopropyl) trimethoxysilane were investigated in order to obtain a metal oxide surface with the most convenient properties for immobilization of gold nanoparticles having a dense and uniform distribution. TiO2 nanotips prepared by reactive ion etching of oxide surface covered with self-mask gold nanoparticles are demonstrated.
TiO2 nanocomposite for the controlled release of drugs against pathogens causing wound infections
NASA Astrophysics Data System (ADS)
Devanand Venkatasubbu, G.; Nagamuthu, S.; Anusuya, T.; Kumar, J.; Chelliah, Ramachandran; Rani Ramakrishnan, Sudha; Antony, Usha; Khan, Imran; Oh, Deog-Hwan
2018-02-01
Chitosan titanium dioxide nanocomposite has been used for wound healing. Titanium dioxide (TiO2) nanoparticles are synthesised and made in to nanocomposite along with chitosan. Curcumin nanoparticles are synthesised. Three different drugs with antimicrobial activity are incorporated into the chitosan/TiO2nanocomposite. Ciprofloxacin, amoxicillin and curcumin nanoparticles are incorporated within the chitosan/TiO2 nanoparticles. The nanoparticles and nanocomposite are characterized with XRD, FTIR, TEM and SEM. Drug loading was found to be around 45% for all the three drug molecules. The drug release profile shows a controlled release of drug molecules from the nanocomposite. Antibacterial studies shows a good inhibition of bacterial species by the nanocomposites.
Seo, Hyeon Jin; Hwang, Ki-Hwan; Na, Young Hoon; Boo, Jin-Hyo
2018-09-01
This study focused on the photocatalytic degradation effect of the μ-dielectric barrier discharge (μ-DBD) plasma treated titanium dioxide (TiO2) nanoparticles on environmental contaminant such as formaldehyde. TiO2 nanoparticles were treated by a μ-DBD plasma source with nitrogen gas. We analyzed the degradation of formaldehyde with the plasma treated TiO2 nanoparticles by UV-visible spectrophotometer (UV-VIS), and demonstrated that the photocatalytic activity of the μ-DBD plasma-treated TiO2 nanoparticles showed significantly high catalytic efficiency rather than without plasma treated TiO2 nanoparticles. Field emission scanning electron microscopes (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and water contact angle analyzer were used to measure the effects of photocatalytic degradation for the plasma treated TiO2 nanoparticles.
The deposition behavior of cerium dioxide (CeO2) nanoparticles (NPs) in dilute NaCl solutions was investigated as a function of collector surface composition, pH, ionic strength, and organic matter (OM). Sensors coated separately with silica, iron oxide, and alumina were applied ...
Lankoff, Anna; Sandberg, Wiggo J; Wegierek-Ciuk, Aneta; Lisowska, Halina; Refsnes, Magne; Sartowska, Bożena; Schwarze, Per E; Meczynska-Wielgosz, Sylwia; Wojewodzka, Maria; Kruszewski, Marcin
2012-02-05
Nanoparticles (NPs) occurring in the environment rapidly agglomerate and form particles of larger diameters. The extent to which this abates the effects of NPs has not been clarified. The motivation of this study was to examine how the agglomeration/aggregation state of silver (20nm and 200nm) and titanium dioxide (21nm) nanoparticles may affect the kinetics of cellular binding/uptake and ability to induce cytotoxic responses in THP1, HepG2 and A549 cells. Cellular binding/uptake, metabolic activation and cell death were assessed by the SSC flow cytometry measurements, the MTT-test and the propidium iodide assay. The three types of particles were efficiently taken up by the cells, decreasing metabolic activation and increasing cell death in all the cell lines. The magnitude of the studied endpoints depended on the agglomeration/aggregation state of particles, their size, time-point and cell type. Among the three cell lines tested, A549 cells were the most sensitive to these particles in relation to cellular binding/uptake. HepG2 cells showed a tendency to be more sensitive in relation to metabolic activation. THP-1 cells were the most resistant to all three types of particles in relation to all endpoints tested. Our findings suggest that particle features such as size and agglomeration status as well as the type of cells may contribute to nanoparticles biological impact. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Ananth, S; Vivek, P; Arumanayagam, T; Murugakoothan, P
2014-07-15
Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC. Copyright © 2014 Elsevier B.V. All rights reserved.
Villalobos-Hernández, J R; Müller-Goymann, C C
2007-01-01
This paper describes the in vitro photoprotection in the UV-A range, i.e. 320-400 nm obtained by the use of carnauba wax-decyl oleate nanoparticles either as encapsulation systems or as accompanying vehicles for inorganic sunscreens such as barium sulfate, strontium carbonate and titanium dioxide. Lipid-free inorganic sunscreen nanosuspensions, inorganic sunscreen-free wax-oil nanoparticle suspensions and wax-oil nanoparticle suspensions containing inorganic sunscreens dispersed either in their oil phase or their aqueous phase were prepared by high pressure homogenization. The in vitro erythemal UV-A protection factors (EUV-A PFs) of the nanosuspensions were calculated by means of a sun protection analyzer. EUV-A PFs being no higher than 4 were obtained by the encapsulation of barium sulfate and strontium carbonate, meanwhile by the distribution of titanium dioxide in presence of wax-oil nanoparticles, the EUV-A PFs varied between 2 and 19. The increase in the EUV-A PFs of the titanium dioxide obtained by the use of wax-oil nanoparticles demonstrated a better performance of the sun protection properties of this pigment in the UV-A region.
ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...
NASA Astrophysics Data System (ADS)
Vinogradova, O. P.; Ostrosablina, A. A.; Sidorov, A. I.
2006-02-01
This paper presents the experimental and theoretical results of a study of the interaction of pulsed laser radiation with thick composite media containing nanoparticles of vanadium dioxide (VO2). It is established that the reversible semiconductor-metal phase transition that occurs in the VO2 nanoparticles under the action of radiation can produce self-focusing of the mid-IR radiation by the formation of a photoinduced dynamic lens. An analysis is carried out of how the radiation intensity affects the dynamics of the given process.
Bronchiolitis obliterans organizing pneumonia due to titanium nanoparticles in paint.
Cheng, Tong-Hong; Ko, Fu-Chang; Chang, Junn-Liang; Wu, Kuo-An
2012-02-01
We present a case of a 58-year-old man who experienced Bronchiolitis obliterans organizing pneumonia after a 3-month exposure to polyester powder paint. Mineralogical analysis by transmission electron microscopy of a pulmonary sample and the polyester powder paint he was exposed to showed the presence of titanium dioxide nanoparticles in both. We suggest that exposure to titanium dioxide nanoparticles should be added to the etiology of Bronchiolitis obliterans organizing pneumonia. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Anand, Madhu
Nanoparticles have received significant attention because of their unusual characteristics including high surface area to volume ratios. Materials built from nanoparticles possess unique chemical, physical, mechanical and optical properties. Due to these properties, they hold potential in application areas such as catalysts, sensors, semiconductors and optics. At the same time, CO 2 in the form of supercritical fluid or CO2 gas-expanded liquid mixtures has gained significant attention in the area of processing nanostructures. This dissertation focuses on the synthesis and processing of nanoparticles using CO2 tunable solvent systems. Nanoparticle properties depend heavily on their size and, as such, the ability to finely control the size and uniformity of nanoparticles is of utmost importance. Solution based nanoparticle formation techniques are attractive due to their simplicity, but they often result in the synthesis of particles with a wide size range. To address this limitation, a post-synthesis technique has been developed in this dissertation to fractionate polydisperse nanoparticles ( s . = 30%) into monodisperse fractions ( s . = 8%) using tunable physicochemical properties of CO 2 expanded liquids, where CO2 is employed as an antisolvent. This work demonstrates that by controlling the addition of CO2 (pressurization) to an organic dispersion of nanoparticles, the ligand stabilized nanoparticles can be size selectively precipitated within a novel high pressure apparatus that confines the particle precipitation to a specified location on a surface. Unlike current techniques, this CO2 expanded liquid approach provides faster and more efficient particle size separation, reduction in organic solvent usage, and pressure tunable size selection in a single process. To improve our fundamental understanding and to further refine the size separation process, a detailed study has been performed to identify the key parameters enabling size separation of various nanoparticle populations. This study details the influence of various factors on the size separation process, such as the types of nanoparticles, ligand type and solvent type as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. This size selective precipitation technique was also applied to fractionate and separate polydisperse dispersions of CdSe/ZnS semiconductor nanocrystals into very distinct size and color fractions based solely on the pressure tunable solvent properties of CO2 expanded liquids. This size selective precipitation of nanoparticles is achieved by finely tuning the solvent strength of the CO2/organic solvent medium by simply adjusting the applied CO2 pressure. These subtle changes affect the balance between osmotic repulsive and van der Waals attractive forces thereby allowing fractionation of the nanocrystals into multiple narrow size populations. Thermodynamic analysis of nanoparticle size selective fractionation was performed to develop a theoretical model based on the thermodynamic properties of gas expanded liquids. We have used the general phenomenon of nanoparticle precipitation with CO2 expanded liquids to create dodecanethiol stabilized gold nanoparticle thin films. This method utilizes CO2 as an anti-solvent for low defect, wide area gold nanoparticle film formation employing monodisperse gold nanoparticles. Dodecanethiol stabilized gold particles are precipitated from hexane by controllably expanding the solution with carbon dioxide. Subsequent addition of carbon dioxide as a dense supercritical fluid then provides for removal of the organic solvent while avoiding the dewetting effects common to evaporating solvents. Unfortunately, the use of carbon dioxide as a neat solvent in nanoparticles synthesis and processing is limited by the very poor solvent strength of dense phase CO2. As a result, most current techniques employed to synthesize and disperse nanoparticles in neat carbon dioxide require the use of environmentally persistent fluorinated compounds as metal precursors and/or stabilizing ligands. This dissertation presents the first report of the simultaneous synthesis and stabilization of metallic nanoparticles in carbon dioxide solvent without the use of any fluorinated compounds thereby further enabling the use of CO 2 as a green solvent medium in nanomaterials synthesis and processing.
Modified surface of titanium dioxide nanoparticles-based biosensor for DNA detection
NASA Astrophysics Data System (ADS)
Nadzirah, Sh.; Hashim, U.; Rusop, M.
2018-05-01
A new technique was used to develop a simple and selective picoammeter DNA biosensor for identification of E. coli O157:H7. This biosensor was fabricated from titanium dioxide nanoparticles that was synthesized by sol-gel method and spin-coated on silicon dioxide substrate via spinner. 3-Aminopropyl triethoxy silane (APTES) was used to modify the surface of TiO2. Simple surface modification approach has been applied; which is single dropping of APTES onto the TiO2 nanoparticles surface. Carboxyl modified probe DNA has been bind onto the surface of APTES/TiO2 without any amplifier element. Electrical signal has been used as the indicator to differentiate each step (surface modification of TiO2 and probe DNA immobilization). The I-V measurements indicate extremely low current (pico-ampere) flow through the device which is 2.8138E-10 A for pure TiO2 nanoparticles, 2.8124E-10 A after APTES modification and 3.5949E-10 A after probe DNA immobilization.
Hu, Hailong; Li, Li; Guo, Qian; Jin, Sanli; Zhou, Ying; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning
2016-09-01
Titanium dioxide nanoparticle (TiO2 NP) is an authorized food additive. Previous studies determined oral administration of TiO2 NPs increases plasma glucose in mice via inducing insulin resistance. An increase in reactive oxygen species (ROS) has been considered the possible mechanism of increasing plasma glucose. However, persistently high plasma glucose is also a mechanism of increasing ROS. This study aims to explore whether TiO2 NPs increase plasma glucose via ROS. We found after oral administration of TiO2 NPs, an increase in ROS preceded an increase in plasma glucose. Subsequently, mice were treated with two antioxidants (resveratrol and vitamin E) at the same time as oral administration of TiO2 NPs. Results showed resveratrol and vitamin E reduced TiO2 NPs-increased ROS. An increase in plasma glucose was also inhibited. Further research showed resveratrol and vitamin E inhibited the secretion of TNF-α and IL-6, and the phosphorylation of JNK and p38 MAPK, resulting in improved insulin resistance. These results suggest TiO2 NPs increased ROS levels, and then ROS activated inflammatory cytokines and phosphokinases, and thus induced insulin resistance, resulting in an increase in plasma glucose. Resveratrol and vitamin E can reduce TiO2 NPs-increased ROS and thereby inhibit an increase in plasma glucose in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.
Giovanni, Marcella; Tay, Chor Yong; Setyawati, Magdiel Inggrid; Xie, Jianping; Ong, Choon Nam; Fan, Rongli; Yue, Junqi; Zhang, Lifeng; Leong, David Tai
2015-12-01
Engineered nanoparticles (ENPs) are increasingly detected in water supply due to environmental release of ENPs as the by-products contained within the effluent of domestic and industrial run-off. The partial recycling of water laden with ENPs, albeit at ultra-low concentrations, may pose an uncharacterized threat to human health. In this study, we investigated the toxicity of three prevalent ENPs: zinc oxide, silver, and titanium dioxide over a wide range of concentrations that encompasses drinking water-relevant concentrations, to cellular systems representing oral and gastrointestinal tissues. Based on published in silico-predicted water-relevant ENPs concentration range from 100 pg/L to 100 µg/L, we detected no cytotoxicity to all the cellular systems. Significant cytotoxicity due to the NPs set in around 100 mg/L with decreasing extent of toxicity from zinc oxide to silver to titanium dioxide NPs. We also found that noncytotoxic zinc oxide NPs level of 10 mg/L could elevate the intracellular oxidative stress. The threshold concentrations of NPs that induced cytotoxic effect are at least two to five orders of magnitude higher than the permissible concentrations of the respective metals and metal oxides in drinking water. Based on these findings, the current estimated levels of NPs in potable water pose little cytotoxic threat to the human oral and gastrointestinal systems within our experimental boundaries. © 2014 Wiley Periodicals, Inc.
TiO2 Nanoparticle-Induced Oxidation of the Plasma Membrane: Importance of the Protein Corona.
Runa, Sabiha; Lakadamyali, Melike; Kemp, Melissa L; Payne, Christine K
2017-09-21
Titanium dioxide (TiO 2 ) nanoparticles, used as pigments and photocatalysts, are widely present in modern society. Inhalation or ingestion of these nanoparticles can lead to cellular-level interactions. We examined the very first step in this cellular interaction, the effect of TiO 2 nanoparticles on the lipids of the plasma membrane. Within 12 h of TiO 2 nanoparticle exposure, the lipids of the plasma membrane were oxidized, determined with a malondialdehyde assay. Lipid peroxidation was inhibited by surface passivation of the TiO 2 nanoparticles, incubation with an antioxidant (Trolox), and the presence of serum proteins in solution. Subsequent experiments determined that serum proteins adsorbed on the surface of the TiO 2 nanoparticles, forming a protein corona, inhibit lipid peroxidation. Super-resolution fluorescence microscopy showed that these serum proteins were clustered on the nanoparticle surface. These protein clusters slow lipid peroxidation, but by 24 h, the level of lipid peroxidation is similar, independent of the protein corona or free serum proteins. Additionally, over 24 h, this corona of proteins was displaced from the nanoparticle surface by free proteins in solution. Overall, these experiments provide the first mechanistic investigation of plasma membrane oxidation by TiO 2 nanoparticles, in the absence of UV light and as a function of the protein corona, approximating a physiological environment.
Phase study of titanium dioxide nanoparticle prepared via sol-gel process
NASA Astrophysics Data System (ADS)
Oladeji Araoyinbo, Alaba; Bakri Abdullah, Mohd Mustafa Al; Salleh, Mohd Arif Anuar Mohd; Aziz, Nurul Nadia Abdul; Iskandar Azmi, Azwan
2018-03-01
In this study, titanium dioxide nanoparticles have been prepared via sol-gel process using titanium tetraisopropoxide as a precursor with hydrochloric acid as a catalyst, and ethanol with deionized water as solvents. The value of pH used is set to 3, 7 and 8. The sols obtained were dried at 100 °C for 1 hr and calcined at 350, 550, and 750 °C for 3 hrs to observe the phase transformation of titanium dioxide nanoparticle. The samples were characterized by x-ray diffraction and field emission scanning electron microscope. The morphology analysis is obtained from field emission scanning electron microscope. The phase transformation was investigated by x-ray diffraction. It was found that the pH of the solution affect the agglomeration of titanium dioxide particle. The x-ray diffraction pattern of titanium dioxide shows the anatase phase most abundant at temperature of 350 °C. At temperature of 550 °C the anatase and rutile phase were present. At temperature of 750 °C the rutile phase was the most abundant for pH 3, 7 and 8. It was confirmed that at higher temperature the rutile phase which is the stable phase are mostly present.
Bai, Wenlin; Chen, Yujiao; Gao, Ai
2015-01-01
Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2'-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2'-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs.
There are challenges associated with performing research on titanium dioxide NPs in aquatic environments particularly marine systems. A critical focus for current titanium dioxide NP research in aquatic environments needs to be on optimizing methods for differentiating naturally...
Investigation of titanium dioxide nanoparticles toxicity and uptake by plants
NASA Astrophysics Data System (ADS)
Larue, C.; Khodja, H.; Herlin-Boime, N.; Brisset, F.; Flank, A. M.; Fayard, B.; Chaillou, S.; Carrière, M.
2011-07-01
Nanoparticles (NP) are introduced in a growing number of commercial products and their production may lead to their release in the environment. Plants may be a potential entry point for NP in the food chain. Up to now, results describing NP phytotoxical effects and plant accumulation are scarce and contradictory. To increase knowledge on titanium dioxide NP (TiO2-NPs) accumulation and impact on plants, we designed a study on three plant species, namely wheat (Triticum aestivum), oilseed rape (Brassica napus) and Arabidopsis thaliana. These plants were exposed in hydroponics to a panel of well-characterized TiO2-NPs, with diameters ranging from 12 to 140 nm, either anatase or rutile. Their accumulation in plant tissues is currently being assessed by complementary imaging techniques: scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-X-ray fluorescence (SR-μ-XRF) imaging and micro-particle induced X-ray emission (μ-PIXE) imaging. Moreover, the impact of TiO2-NP exposure on germination rate, root elongation, dry biomass and evapotranspiration is evaluated. Preliminary results are presented here, with data collected on wheat plants exposed to 12 nm and 25 nm anatase TiO2-NPs. These results show that TiO2-NPs are taken up by plants, and do not significantly alter their germination and root elongation. These results underline the necessity of deeper evaluation of nanoparticle ecotoxicity, and particularly on their interaction with plants.
Freyre-Fonseca, Verónica; Medina-Reyes, Estefany I; Téllez-Medina, Darío I; Paniagua-Contreras, Gloria L; Monroy-Pérez, Eric; Vaca-Paniagua, Felipe; Delgado-Buenrostro, Norma L; Flores-Flores, José O; López-Villegas, Edgar O; Gutiérrez-López, Gustavo F; Chirino, Yolanda I
2018-02-01
Titanium dioxide nanoparticles (TiO 2 NPs) production has been used for pigment, food and cosmetic industry and more recently, shaped as belts for treatment of contaminated water, self-cleaning windows and biomedical applications. However, the toxicological data have demonstrated that TiO 2 NPs inhalation induce inflammation in in vivo models and in vitro exposure leads to cytotoxicity and DNA damage. Dermal exposure has limited adverse effects and the possible risks for implants used for tissue regeneration is still under research. Then, it has been difficult to establish a straight statement about TiO 2 NPs toxicity since route of exposure and shapes of nanoparticles play an important role in the effects. In this study we aimed to investigate the effect of three different types of TiO 2 NPs (industrial, food-grade and belts) dispersed in fetal bovine serum (FBS) and saline solution (SS) on microvessel network, angiogenesis gene expression and femur ossification using a chick embryo model after an acute exposure of NPs on the day 7 after eggs fertilization. Microvascular density of chorioallantoic membrane (CAM) was analyzed after 7days of NPs injection and vehicles induced biological effects per se. NPs dispersed in FBS or SS have slight differences in microvascular density, mainly opposite effect on angiogenesis gene expression and no effects on femur ossification for NPs dispersed in SS. Interestingly, NPs shaped as belts dramatically prevented the alterations in ossification induced by FBS used as vehicle. Copyright © 2017 Elsevier B.V. All rights reserved.
Mercier-Bonin, Muriel; Despax, Bernard; Raynaud, Patrice; Houdeau, Eric; Thomas, Muriel
2018-04-13
Given the growing use of nanotechnology in many common consumer products, including foods, evaluation of the consequences of chronic exposure to nanoparticles in humans has become a major public health issue. The oral route of exposure has been poorly explored, despite the presence of a fraction of nanosized particles in certain food additives/supplements and the incorporation of such particles into packaging in contact with foods. After their ingestion, these nanoparticles pass through the digestive tract, where they may undergo physicochemical transformations, with consequences for the luminal environment, before crossing the epithelial barrier to reach the systemic compartment. In this review, we consider two examples, nanosilver and nanotitanium dioxide. Despite the specific features of these particles and the differences between them, both display a close relationship between physicochemical reactivity and bioavailability/biopersistence in the gastrointestinal tract. Few studies have focused on the interactions of nanoparticles of silver or titanium dioxide with the microbiota and mucus. However, the microbiota and mucus play key roles in intestinal homeostasis and host health and are undoubtedly involved in controlling the distribution of nanoparticles in the systemic compartment.
Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide
NASA Astrophysics Data System (ADS)
Saquib, Mohammad; Halder, Aditi
2018-02-01
Electrochemical reduction of carbon dioxide is one of the methods which have the capability to recycle CO2 into valuable products for energy and industrial applications. This research article describes about a new electrocatalyst "reduced graphene oxide supported gold nanoparticles" for selective electrochemical conversion of carbon dioxide to carbon monoxide. The main aim for conversion of CO2 to CO lies in the fact that the latter is an important component of syn gas (a mixture of hydrogen and carbon monoxide), which is then converted into liquid fuel via well-known industrial process called Fischer-Tropsch process. In this work, we have synthesized different composites of the gold nanoparticles supported on defective reduced graphene oxide to evaluate the catalytic activity of reduced graphene oxide (RGO)-supported gold nanoparticles and the role of defective RGO support towards the electrochemical reduction of CO2. Electrochemical and impedance measurements demonstrate that higher concentration of gold nanoparticles on the graphene support led to remarkable decrease in the onset potential of 240 mV and increase in the current density for CO2 reduction. Lower impedance and Tafel slope values also clearly support our findings for the better performance of RGOAu than bare Au for CO2 reduction.
Planchon, Mariane; Léger, Thibaut; Spalla, Olivier
2017-01-01
In a previous study, it was demonstrated that the toxic impact of titanium dioxide nanoparticles on Escherichia coli starts at 10 ppm and is closely related to the presence of little aggregates. It was also assumed that only a part of the bacterial population is able to adapt to this stress and attempts to survive. Proteomic analyses, supported by results from metabolomics, reveal that exposure of E. coli to nano-TiO2 induces two main effects on bacterial metabolism: firstly, the up-regulation of proteins and the increase of metabolites related to energy and growth metabolism; secondly, the down-regulation of other proteins resulting in an increase of metabolites, particularly amino acids. Some proteins, e.g. chaperonin 1 or isocitrate dehydrogenase, and some metabolites, e.g. phenylalanine or valine, might be used as biomarkers of nanoparticles stress. Astonishingly, the ATP content gradually rises in relation with the nano-TiO2 concentration in the medium, indicating a dramatic release of ATP by the damaged cells. These apparently contradictory results accredit the thesis of a heterogeneity of the bacterial population. This heterogeneity is also confirmed by SEM images which show that while some bacteria are fully covered by nano-TiO2, the major part of the bacterial population remains free from nanoparticles, resulting in a difference of proteome and metabolome. The use of combined–omics has allowed to better understand the heterogeneous bacterial response to nano-TiO2 stress due to heterogeneous contacts between the protagonists under environmental conditions. PMID:28570583
NASA Astrophysics Data System (ADS)
Kulkarni, Swati S.; Bodkhe, Gajanan A.; Shirsat, Sumedh M.; Hussaini, S. S.; Shejwal, N. N.; Shirsat, Mahendra D.
2018-03-01
Present communication deals with the development of cost effective dye sensitized solar cell (DSSC) with eco-friendly materials. Eco-friendly Eosin Y dye was used to sensitize photo anode which was fabricated using undoped and Aluminium doped titanium dioxide (TiO2) nanoparticles. Undoped and Aluminium doped TiO2 nanoparticles were synthesized by simple and cost effective sol-gel method. Aluminium doped and undoped TiO2 nanoparticles were characterized using UV-visible, FT-IR spectroscopy, x-ray Diffraction, and Scanning Electron Micrograph with EDX. The photo-voltaic activity of the cell was studied under light irradiation of 100 milliwatt cm-2. Aluminium doped TiO2 nanoparticle photo electrode exhibits more than 60% increase in cell efficiency as compared to the undoped TiO2 nanoparticle photo electrode.
2008-03-01
the cupric form is most prevalent (Linder and Hazegh-Azam, 1996:797S). Cupric compounds are blue-green in color and highly soluble in water...reduced clearance of particles due to macrophage damage after exposure to various doses of titanium dioxide ( TiO2 )(5, 50, and 250 mg/m3) (Warheit, et al...viability. The assay measures cell viability when the tetrazolium compound is bioreduced by viable cells to a colored formazan product (see Figure 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina-Reyes, Estefany I.; Déciga-Alcaraz, Alejandro; Freyre-Fonseca, Verónica
Titanium dioxide nanoparticles (TiO{sub 2} NPs) studies have been performed using relatively high NPs concentration under acute exposure and limited studies have compared shape effects. We hypothesized that midterm exposure to low TiO{sub 2} NPs concentration in lung epithelial cells induces carcinogenic characteristics modulated partially by NPs shape. To test our hypothesis we synthesized NPs shaped as belts (TiO{sub 2}-B) using TiO{sub 2} spheres (TiO{sub 2}-SP) purchased from Sigma Aldrich Co. Then, lung epithelial A549 cells were low-exposed (10 µg/cm{sup 2}) to both shapes during 7 days and internalization, cytokine release and invasive potential were determined. Results showed greater TiO{submore » 2}-B effect on agglomerates size, cell size and granularity than TiO{sub 2}-SP. Agglomerates size in cell culture medium was 310 nm and 454 nm for TiO{sub 2}-SP and TiO{sub 2}-B, respectively; TiO{sub 2}-SP and TiO{sub 2}-B induced 23% and 70% cell size decrease, respectively, whilst TiO{sub 2}-SP and TiO{sub 2}-B induced 7 and 14-fold of granularity increase. NO{sub x} production was down-regulated (31%) by TiO{sub 2}-SP and up-regulated (70%) by TiO{sub 2}-B. Both NPs induced a transient cytokine release (IL-2, IL-6, IL-8, IL-4, IFN-γ, and TNF-α) after 4 days, but cytokines returned to basal levels in TiO{sub 2}-SP exposed cells while TiO{sub 2}-B induced a down-regulation after 7 days. Midterm exposure to both shapes of NPs induced capability to degrade cellular extracellular matrix components from chorioallantoic membrane and Ki-67 marker showed that TiO{sub 2}-B had higher proliferative potential than TiO{sub 2}-SP. We conclude that midterm exposure to low NPs concentration of NPs has an impact in the acquisition of new characteristics of exposed cells and NPs shape influences cellular outcome. - Graphical abstract: (A) Lung epithelial cells were low exposed (below 10 µg/cm{sup 2}) to titanium dioxide nanoparticles (TiO{sub 2}-NPs) shaped as spheres (TiO{sub 2}-SP) and belts (TiO{sub 2}-B) for midterm (7 continuous days) separately. (B) Then, cells from each cell culture were harvested and seeded on the top of the chorioallantoic membrane (CAM) for 5 days and (C) invasion and proliferation of cells were analyzed in CAM sections. - Highlights: • Hydrodynamic size of TiO2- SP was smaller than TiO2-B in cell culture media • TiO2- SP induced higher decrease in cell size than TiO2-B • TiO2-SP induced a transient cytokine release and TiO2-B a downregulation • TiO2-B caused higher proliferative capability than TiO2-SP.« less
The genotoxicity of titanium dioxide and cerium oxide nanoparticles in vitro
The use ofengineered nanoparticles in both current and future consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. Recently, particular emphasis has been placed on particle characterization and the...
Zhang, Rui; Liu, Xiupeng; Zhou, Tingting; Wang, Lili; Zhang, Tong
2018-08-15
Carbon (C) materials, which process excellent electrical conductivity and high carrier mobility, are promising sensing materials as active units for gas sensors. However, structural agglomeration caused by chemical processes results in a small resistance change and low sensing response. To address the above issues, structure-derived carbon-coated tin dioxide (SnO 2 ) nanoparticles having distinct core-shell morphology with a 3D net-like structure and highly uniform size are prepared by careful synthesis and fine structural design. The optimum carbon-coated SnO 2 nanoparticles (SnO 2 /C)-based gas sensor exhibits a low working temperature, excellent selectivity and fast response-recovery properties. In addition, the SnO 2 /C-based gas sensor can maintain a sensitivity to nitrogen dioxide (NO 2 ) of 3 after being cycled 4 times at 140 °C for, suggesting its good long-term stability. The structural integrity, good synergistic properties, and high gas-sensing performance of SnO 2 /C render it a promising sensing material for advanced gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.
Nanoparticles in paints: A new strategy to protect façades and surfaces?
NASA Astrophysics Data System (ADS)
Kaiser, J.-P.; Diener, L.; Wick, P.
2013-04-01
The paint and lacquer industries consider the use of nanosilver, photocatalytic active nanotitanium dioxide or nanosilica dioxide as additives for the protection of surfaces, against microbial, physical and chemical deterioration, as alternative to conventional organic based additives. Nowadays it is not clear, if nanoparticles in paints will achieve the proposed effects, since there are no long time studies available. Another fact is that the potential risks of nanoparticles for the environment and the human health is still controversial discussed. The most sensitive entry port for nanomaterials is the lung. However other human organs/systems may also be affected by nanoparticles. Therefore the aim of the study was to assess the potential hazard effects of the three most interesting particles for paints on the gastro-intestinal tract and the immune system in vitro. In our study we could show that: i) Nanosilver (TEM size 25 nm) was far less toxic than silver ions of comparable concentrations tested with cells representing the gastro-intestinal tract (CaCo-2) and immune cells (Jurkat, T-lymphocytes). A significant amount of necrotic cells could be observed after exposure of CaCo-2 cells to 27 μg/ml nanosilver for 48 h. ii) Nanotitanium dioxide can adsorb UV-light and in the presence of water hydroxyl radicals are generated photocatalytically. The exposure of CaCo-2 cells and Jurkat cells to photocatalytically active nanotitanium dioxide (Hombikat UV 100, TEM-size 15 nm) under dark conditions, didn't affected the cells significantly. However, the cells were able to incorporate nanotitanium dioxide, especially when cells were exposed to higher concentrations. iii) Nanosilica dioxide improves the properties of the paints by increasing the water repellence. When cells were exposed to 243 μg/ml nanosilica dioxide (TEM-size 19 nm) for up to 48 h no cytotoxic effect could be observed.
NASA Astrophysics Data System (ADS)
Contreras, Carolina
2011-12-01
Engineered nanoparticles have enhanced products and services in the fields of medicine, energy, engineering, communications, personal care, environmental treatment, and many others. The increased use of engineered nanoparticles in consumer products will lead to these materials in natural systems, inevitably becoming a potential source of pollution. The study of the stability and mobility of these materials is fundamental to understand their behavior in natural systems and predict possible health and environmental implications. In addition, the use of probabilistic methods such as sensitivity analysis applied to the parameters controlling their behavior is useful in providing support in performing a risk assessment. This research investigated the stability and mobility of two types of metal oxide nanoparticles (aluminum oxide and titanium dioxide). The stability studies tested the effect of sand, pH 4, 7, and 10, and the NaCl in concentrations of 10mM, 25mM, 50mM, and 75mM. The mobility was tested using saturated quartz sand columns and nanoparticles suspension at pH 4 and 7 and in the presence of NaCl and CaCl2 in concentrations of 0.1mM, 1mM, and 10mM. Additionally, this work performed a sensitivity analysis of physical parameters used in mobility experiment performed for titanium dioxide and in mobility experiments taken from the literature for zero valent iron nanoparticles and fluorescent colloids to determine their effect on the value C/Co of by applying qualitative and quantitative methods. The results from the stability studies showed that titanium dioxide nanoparticles (TiO2) could remain suspended in solution for up to seven days at pH 10 and pH 7 even after settling of the sand; while for pH 4 solutions titanium settled along with the sand and after seven days no particles were observed in suspension. Other stability studies showed that nanoparticle aluminum oxide (Al2O3) and titanium dioxide (TiO2) size increased with increasing ionic strength (10 to 75 mM NaCl). The results from the mobility experiments showed that ionic strength has more effect on aluminum oxide nanoparticles mobility than on titanium oxide nanoparticles mobility. For Al2O3 25% of the initial concentration was obtained in the effluent whereas for TiO2 less than the 10% of the initial concentration was observed. In general, when the ionic strength was increased the effluent of nanoparticles decreased. Collision efficiencies calculated base on the colloid filtration theory were consistent with the mobility experiments. Results from sensitivity analysis showed that for zero valent iron nanoparticles and fluorescent colloids porous medium diameter and porosity were the parameters that most influenced the variability of C/Co whereas for titanium dioxide nanoparticles C/Co was more sensitive to column length and pore water velocity.
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Sasaki, Wataru; Kubodera, Shoichi
2006-05-01
We demonstrated a low-debris, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO2) nanoparticles. By using a low SnO2 concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris.
NASA Astrophysics Data System (ADS)
Kaszewski, Jarosław; Borgstrom, Emanuel; Witkowski, Bartłomiej S.; Wachnicki, Łukasz; Kiełbik, Paula; Slonska, Anna; Domino, Malgorzata A.; Narkiewicz, Urszula; Gajewski, Zdzislaw; Hochepied, Jean-François; Godlewski, Michał M.; Godlewski, Marek
2017-12-01
The use of nanoparticles in medicine is a rapidly growing research field with numerous potential applications, especially in the field of cancer diagnosis and therapy. Nanoparticles can be intrinsically diagnostic of therapeutic, or they can be conjugated with diagnostic or therapeutic compounds. Nanoparticles may also passively or actively target tumor cells specifically using the enhanced permeation and retention (EPR) effect, or the addition of targeting ligands to their surface. This may provide a diagnostic or/and therapeutic tools to target primary as well as metastatic tumors. The transport, distribution and toxicity of nanoparticles depends greatly on their size and composition, thus every new formulation needs to be extensively researched. This work was focused on the development of Tb-doped ZrO2 nanoparticles (NPs) for application in cancer imaging. Obtained nanoparticles were below 10 nm with very low influence of Tb concentration on size. Terbium stabilization of ZrO2 had influence on the luminescence properties of obtained material. Partially stabilized zirconium dioxide exhibited broad host related emission peaking at 500 nm, disappearing with the terbium content. We confirmed alimentary absorption and wide distribution of luminescent ZrO2:Tb nanoparticles in mice with their gradual accumulation in the experimentally induced mammary cancers. Furthermore, a high concentration of NPs was found within the lung metastases as opposed to healthy lung tissue, where no NPs-related signal was observed.
Shrivastava, Rupal; Raza, Saimah; Yadav, Abhishek; Kushwaha, Pramod; Flora, Swaran J S
2014-07-01
Nanomaterials are at the leading edge of the rapidly developing field of nanotechnology. However the information regarding toxicity of these nanoparticles on humans and environment is still deficient. The present study investigated the toxic effects of three metal oxide nanoparticles, TiO2, ZnO and Al2O3 on mouse erythrocytes, brain and liver. Male mice were administered a single oral dose of 500 mg/kg of each nanoparticles for 21 consecutive days. The results suggest that exposure to these nano metallic particles produced a significant oxidative stress in erythrocyte, liver and brain as evident from enhanced levels of Reactive Oxygen Species (ROS) and altered antioxidant enzymes activities. A significant increase in dopamine and norepinephrine levels in brain cerebral cortex and increased brain oxidative stress suggest neurotoxic potential of these nanoparticles. Transmission electron microscopic (TEM) analysis indicated the presence of these nanoparticles inside the cytoplasm and nucleus. These changes were also supported by the inhibition of CuZnSOD and MnSOD, considered as important biomarkers of oxidative stress. The toxic effects produced by these nanoparticles were more pronounced in the case of zinc oxide, followed by aluminum oxide and titanium dioxide, respectively. The present results further suggest the involvement of oxidative stress as one of the main mechanisms involved in nanoparticles induced toxic manifestations.
Lizundia, Erlantz; Goikuria, Uribarri; Vilas, José Luis; Cristofaro, Francesco; Bruni, Giovanna; Fortunati, Elena; Armentano, Ilaria; Visai, Livia; Torre, Luigi
2018-04-25
The dispersion of nanoparticles having different size-, shape-, and composition-dependent properties is an exciting approach to design and synthesize multifunctional materials and devices. This work shows a detailed investigation of the preparation and properties of free-standing nanocomposite films based on cellulose nanocrystals (CNC) loaded with three different types of metal nanoparticles. CNC-based nanocomposites having zinc oxide (ZnO), titanium dioxide (TiO 2 ), and silver oxide (Ag 2 O) have been obtained through evaporation-induced self-assembly (EISA) in acqueous solution. Morphological and optical characteristics, chemical properties, wettability, and antimicrobial assays of the produced films were conducted. Furthermore, disintegrability in composting condition of CNC based nanocomposites was here investigated for the first time. The morphological observations revealed the formation of a chiral nematic structure with uniformly distributed nanoparticles. The bionanocomposite films based on the metal nanoparticles had effective antimicrobial activity, killing both Escherichia coli RB ( E. coli RB) and Staphylococcus aureus 8325-4 ( S. aureus 8325-4). The simplicity method of film preparation, the large quantity of cellulose in the world, and the free-standing nature of the nanocomposite films offer highly advantageous characteristics that can for the new development of multifunctional materials.
Potential for metal contamination by direct sonication of nanoparticle suspensions
There is a growing need to examine the potential toxicity of engineered nanoparticles (ENPs) to establish regulations protective of environmental health and safety. During a series of experiments to evaluate the toxicity of titanium dioxide (TiO2) nanoparticles on terrestrial pla...
The emergence of nanotechnology and incorporation of nanoparticles in consumer products necessitates risk assessment from an environmental and health safety standpoint. To date, very few studies have examined nanoparticle effects on terrestrial species, especially plants. In ...
NASA Astrophysics Data System (ADS)
Krasnikov, I. V.; Seteikin, A. Yu.; Popov, A. P.
2015-04-01
The thermal response of skin covered with a mixture of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles of optimal sizes and irradiated by sunlight has been calculated. The nanoparticles were rubbed into the skin for maximum protection against the incident radiation. The dependences of the temperature dynamics in different skin layers (corneal layer, epidermis, dermis) have been obtained and analyzed upon skin irradiation with light at a wavelength of 310-800 nm. It has been found that increasing light scattering and absorption due to the nanoparticles introduced into the corneal layer resulted in a decrease in the thermal load and penetration depth of the incident radiation.
Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J
2015-01-01
Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile.
Hazardous Effects of Titanium Dioxide Nanoparticles in Ecosystem
Hussain, Muzammal; Khan, Muzaffar
2017-01-01
Although nanoparticles (NPs) have made incredible progress in the field of nanotechnology and biomedical research and their applications are demanded throughout industrial world particularly over the past decades, little is known about the fate of nanoparticles in ecosystem. Concerning the biosafety of nanotechnology, nanotoxicity is going to be the second most priority of nanotechnology that needs to be properly addressed. This review covers the chemical as well as the biological concerns about nanoparticles particularly titanium dioxide (TiO2) NPs and emphasizes the toxicological profile of TiO2 at the molecular level in both in vitro and in vivo systems. In addition, the challenges and future prospects of nanotoxicology are discussed that may provide better understanding and new insights into ongoing and future research in this field. PMID:28373829
Zane, Andrew; Zuo, Ranfang; Villamena, Frederick A; Rockenbauer, Antal; Digeorge Foushee, Ann Marie; Flores, Kristin; Dutta, Prabir K; Nagy, Amber
2016-01-01
The addition of antibacterial functionality to dental resins presents an opportunity to extend their useful lifetime by reducing secondary caries caused by bacterial recolonization. In this study, the potential efficacy of nitrogen-doped titanium dioxide nanoparticles for this purpose was determined. Nitrogen doping was carried out to extend the ultraviolet absorbance into longer wavelength blue light for increased biocompatibility. Titanium dioxide nanoparticles (approximately 20–30 nm) were synthesized with and without nitrogen doping using a sol–gel method. Ultraviolet–Visible spectroscopy indicated a band of trap states, with increasing blue light absorbance as the concentration of the nitrogen dopant increased. Electron paramagnetic resonance measurements indicated the formation of superoxide and hydroxyl radicals upon particle exposure to visible light and oxygen. The particles were significantly toxic to Escherichia coli in a dose-dependent manner after a 1-hour exposure to a blue light source (480 nm). Intracellular reactive oxygen species assay demonstrated that the particles caused a stress response in human gingival epithelial cells when exposed to 1 hour of blue light, though this did not result in detectable release of cytokines. No decrease in cell viability was observed by water-soluble tetrazolium dye assay. The results show that nitrogen-doped titanium dioxide nanoparticles have antibacterial activity when exposed to blue light, and are biocompatible at these concentrations. PMID:27980404
Zane, Andrew; Zuo, Ranfang; Villamena, Frederick A; Rockenbauer, Antal; Digeorge Foushee, Ann Marie; Flores, Kristin; Dutta, Prabir K; Nagy, Amber
The addition of antibacterial functionality to dental resins presents an opportunity to extend their useful lifetime by reducing secondary caries caused by bacterial recolonization. In this study, the potential efficacy of nitrogen-doped titanium dioxide nanoparticles for this purpose was determined. Nitrogen doping was carried out to extend the ultraviolet absorbance into longer wavelength blue light for increased biocompatibility. Titanium dioxide nanoparticles (approximately 20-30 nm) were synthesized with and without nitrogen doping using a sol-gel method. Ultraviolet-Visible spectroscopy indicated a band of trap states, with increasing blue light absorbance as the concentration of the nitrogen dopant increased. Electron paramagnetic resonance measurements indicated the formation of superoxide and hydroxyl radicals upon particle exposure to visible light and oxygen. The particles were significantly toxic to Escherichia coli in a dose-dependent manner after a 1-hour exposure to a blue light source (480 nm). Intracellular reactive oxygen species assay demonstrated that the particles caused a stress response in human gingival epithelial cells when exposed to 1 hour of blue light, though this did not result in detectable release of cytokines. No decrease in cell viability was observed by water-soluble tetrazolium dye assay. The results show that nitrogen-doped titanium dioxide nanoparticles have antibacterial activity when exposed to blue light, and are biocompatible at these concentrations.
Montiel-Dávalos, Angélica; Silva Sánchez, Guadalupe Jazmin; Huerta-García, Elizabeth; Rueda-Romero, Cristhiam; Soca Chafre, Giovanny; Mitre-Aguilar, Irma B.; Alfaro-Moreno, Ernesto; Pedraza-Chaverri, José
2017-01-01
Curcumin has protective effects against toxic agents and shows preventive properties for various diseases. Particulate material with an aerodynamic diameter of ≤10 μm (PM10) and titanium dioxide nanoparticles (TiO2-NPs) induce endothelial dysfunction and activation. We explored whether curcumin is able to attenuate different events related to endothelial activation. This includes adhesion, expression of adhesion molecules and oxidative stress induced by PM10 and TiO2-NPs. Human umbilical vein endothelial cells (HUVEC) were treated with 1, 10 and 100 μM curcumin for 1 h and then exposed to PM10 at 3 μg/cm2 or TiO2-NPs at 10 μg/cm2. Cell adhesion was evaluated by co-culture with U937 human myelomonocytic cells. Adhesion molecules expression was measured by flow cytometry after 3 or 24 h of exposure. Oxidative stress was determined by 2,7-dichlorodihydrofluorescein (H2DCF) oxidation. PM10 and TiO2-NPs induced the adhesion of U937 cells and the expression of E- and P-selectins, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1). The expression of E- and P-selectins matched the adhesion of monocytes to HUVEC after 3 h. In HUVEC treated with 1 or 10 μM curcumin, the expression of adhesion molecules and monocytes adhesion was significantly diminished. Curcumin also partially reduced the H2DCF oxidation induced by PM10 and TiO2-NPs. Our results suggest an anti-inflammatory and antioxidant role by curcumin attenuating the activation caused on endothelial cells by exposure to particles. Therefore, curcumin could be useful in the treatment of diseases where an inflammatory process and endothelial activation are involved. PMID:29244817
SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses.
Tsugita, Misato; Morimoto, Nobuyuki; Nakayama, Masafumi
2017-04-11
Silicon dioxide (SiO 2 ) nanoparticles (NPs) and titanium dioxide (TiO 2 ) NPs are the most widely used inorganic nanomaterials. Although the individual toxicities of SiO 2 and TiO 2 NPs have been extensively studied, the combined toxicity of these NPs is much less understood. In this study, we observed unexpected and drastic activation of the caspase-1 inflammasome and production of IL-1β in mouse bone marrow-derived macrophages stimulated simultaneously with SiO 2 and TiO 2 NPs at concentrations at which these NPs individually do not cause macrophage activation. Consistent with this, marked lung inflammation was observed in mice treated intratracheally with both SiO 2 and TiO 2 NPs. In macrophages, SiO 2 NPs localized in lysosomes and TiO 2 NPs did not; while only TiO 2 NPs produced ROS, suggesting that these NPs induce distinct cellular damage leading to caspase-1 inflammasome activation. Intriguingly, dynamic light scattering measurements revealed that, although individual SiO 2 and TiO 2 NPs immediately aggregated to be micrometer size, the mixture of these NPs formed a stable and relatively monodisperse complex with a size of ~250 nm in the presence of divalent cations. Taken together, these results suggest that SiO 2 and TiO 2 NPs synergistically induce macrophage inflammatory responses and subsequent lung inflammation. Thus, we propose that it is important to assess the synergistic toxicity of various combinations of nanomaterials.
Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo.
Fröhlich, Eleonore
2015-01-01
Nanoparticles (NPs) present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs.
Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo
Fröhlich, Eleonore
2015-01-01
Nanoparticles (NPs) present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs. PMID:26060398
Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles
Dahle, Jessica T.; Arai, Yuji
2015-01-01
Cerium is the most abundant of rare-earth metals found in the Earth’s crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment. PMID:25625406
Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles.
Dahle, Jessica T; Arai, Yuji
2015-01-23
Cerium is the most abundant of rare-earth metals found in the Earth's crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment.
Li, Bing; Yu, Xiaohong; Gui, Suxin; Xie, Yi; Hong, Jie; Zhao, Xiaoyang; Sheng, Lei; Sang, Xuezi; Sun, Qingqing; Wang, Ling; Shen, Weide; Hong, Fashui
2013-12-18
Organophosphate pesticides are applied widely in the world for agricultural purposes, and their exposures often resulted in non-cocooning of Bombyx mori in China. TiO2 nanoparticles have been demonstrated to increase pesticide resistance of Bombyx mori. While the toxicity of phoxim is well-documented, very limited information exists on the mechanisms of TiO2 nanoparticles improving the cocooning function of Bombyx mori following exposure to phoxim. The present study was, therefore, undertaken to determine whether TiO2 nanoparticles attenuate silk gland injury and elevate cocooning of B. mori following exposure to phoxim. The findings suggested that phoxim exposure resulted in severe damages of the silk gland structure and significantly decreased the cocooning in the silk gland of Bombyx mori. Furthermore, phoxim exposure significantly resulted in reductions of total protein concentrations and suppressed expressions of silk protein synthesis-related genes, including Fib-L, Fib-H, P25, Ser-2, and Ser-3, in the silk gland. TiO2 nanoparticle pretreatment, however, could significantly relieve silk gland injury of Bombyx mori. Importantly, TiO2 nanoparticles could remarkably elevate cocooning and total protein contents and promote expressions of Fib-L, Fib-H, P25, Ser-2, and Ser-3 in the silk gland following exposure to phoxim.
Srivastava, Ritesh Kumar; Rahman, Qamar; Kashyap, Mahendra Pratap; Lohani, Mohtashim; Pant, Aditya Bhushan
2011-01-01
We study the ameliorative potential of dimetylthiourea (DMTU), an OH• radical trapper and N-acetylcysteine (NAC), a glutathione precursor/H2O2 scavenger against titanium dioxide nanoparticles (TiO2-NPs) and multi-walled carbon nanotubes (MWCNTs) induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml) of either of TiO2-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure), while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure). Investigations were carried out for cell viability, generation of reactive oxygen species (ROS), micronuclei (MN), and expression of markers of oxidative stress (HSP27, CYP2E1), genotoxicity (P53) and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d) activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO2-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO2-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages. PMID:21980536
Synthesis and Characterization of Titanium Dioxide Thin Film for Sensor Applications
NASA Astrophysics Data System (ADS)
Latha, H. K. E.; Lalithamba, H. S.
2018-03-01
Titanium oxide (TiO2) nanoparticles (metal oxide semiconductor) are successfully synthesized using hydrothermal method for sensor application. Titanium dioxide and Sodium hydroxide are used as precursors. These reactants are mixed and calcinated at 400 °C to produce TiO2 nanoparticles. The crystalline structure, morphology of synthesized TiO2 nanoparticles are studied using x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) analysis and scanning electron microscopy (SEM). XRD results revealed that the prepared TiO2 sample is highly crystalline, having Anatase crystal structure. FT-IR spectra peak at 475 cm‑1 indicated characteristic absorption bands of TiO2 nanoparticles. The XRD and FTIR result confirmed the formation of high purity of TiO2 nanoparticles. The SEM image shows that TiO2 nanoparticles prepared in this study are spherical in shape. Synthesized TiO2 nanoparticles are deposited on glass substrate at room temperature using E beam evaporation method to determine gauge factor and found to be 4.7. The deposited TiO2 thin films offer tremendous potential in the applications of electronic and magneto–electric devices.
Krüger, Kristin; Schrader, Katrin; Klempt, Martin
2017-01-01
Titanium dioxide (TiO2) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO2 nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2nfkb-RE), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO2 NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO2 NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO2 NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO2 NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO2 particles. PMID:28387727
Smith, Michelle A; Michael, Rowan; Aravindan, Rolands G; Dash, Soma; Shah, Syed I; Galileo, Deni S; Martin-DeLeon, Patricia A
2015-01-01
Titanium dioxide (TiO2) nanoparticles (TNPs) are widely used commercially and exist in a variety of products. To determine if anatase TNPs (ATNPs) in doses smaller than previously used reach the scrotum after entry in the body at a distant location and induce sperm defects, 100% ATNP (2.5 or 5 mg kg−1 body weight) was administered intraperitoneally to adult males for three consecutive days, followed by sacrifice 1, 2, 3, or 5 weeks later (long-) or 24, 48 or 120 h (short-term exposure). Transmission electron microscopy revealed the presence of ANTP in scrotal adipose tissues collected 120 h postinjection when cytokine evaluation showed an inflammatory response in epididymal tissues and fluid. At 120 h and up to 3 weeks postinjection, testicular histology revealed enlarged interstitial spaces. Significantly increased numbers of terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling-positive (apoptotic) germ (P = 0.002) and interstitial space cells (P = 0.04) were detected in treated males. Caudal epididymal sperm from the short-term, but not a long-term, arm showed significantly (P < 0.001) increased frequencies of flagellar abnormalities, excess residual cytoplasm (ERC), and unreacted acrosomes in treated versus controls (dose-response relationship). A novel correlation between ERC and unreacted acrosomes was uncovered. At 120 h, there were significant decreases in hyperactivated motility (P < 0.001) and mitochondrial membrane potential (P < 0.05), and increased reactive oxygen species levels (P < 0.00001) in treated versus control sperm. These results indicate that at 4–8 days postinjection, ANTP induce structural and functional sperm defects associated with infertility, and DNA damage via oxidative stress. Sperm defects were transient as they were not detected 10 days to 5 weeks postinjection. PMID:25370207
Krüger, Kristin; Schrader, Katrin; Klempt, Martin
2017-04-07
Titanium dioxide (TiO₂) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO₂ nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2 nfkb-RE ), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO₂ NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO₂ NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO₂ NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO₂ NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO₂ particles.
Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells
Tada-Oikawa, Saeko; Ichihara, Gaku; Fukatsu, Hitomi; Shimanuki, Yuka; Tanaka, Natsuki; Watanabe, Eri; Suzuki, Yuka; Murakami, Masahiko; Izuoka, Kiyora; Chang, Jie; Wu, Wenting; Yamada, Yoshiji; Ichihara, Sahoko
2016-01-01
Titanium dioxide (TiO2) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO2 particles increased interleukin (IL)-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles. PMID:27092499
Liang, Ruijing; Liu, Lanlan; He, Huamei; Chen, Zhikuan; Han, Zhiqun; Luo, Zhenyu; Wu, Zhihao; Zheng, Mingbin; Ma, Yifan; Cai, Lintao
2018-09-01
Metastatic triple-negative breast cancer (mTNBC) is an aggressive disease among women worldwide, characterized by high mortality and poor prognosis despite systemic therapy with radiation and chemotherapies. Photodynamic therapy (PDT) is an important strategy to eliminate the primary tumor, however its therapeutic efficacy against metastases and recurrence is still limited. Here, we employed a template method to develop the core-shell gold nanocage@manganese dioxide (AuNC@MnO 2 , AM) nanoparticles as tumor microenvironment responsive oxygen producers and near-infrared (NIR)-triggered reactive oxygen species (ROS) generators for oxygen-boosted immunogenic PDT against mTNBC. In this platform, MnO 2 shell degrades in acidic tumor microenvironment pH/H 2 O 2 conditions and generates massive oxygen to boost PDT effect of AM nanoparticles under laser irradiation. Fluorescence (FL)/photoacoustic (PA)/magnetic resonance (MR) multimodal imaging confirms the effective accumulation of AM nanoparticles with sufficient oxygenation in tumor site to ameliorate local hypoxia. Moreover, the oxygen-boosted PDT effect of AM not only destroys primary tumor effectively but also elicits immunogenic cell death (ICD) with damage-associated molecular patterns (DAMPs) release, which subsequently induces DC maturation and effector cells activation, thereby robustly evoking systematic antitumor immune responses against mTNBC. Hence, this oxygen-boosted immunogenic PDT nanosystem offers a promising approach to ablate primary tumor and simultaneously prevent tumor metastases via immunogenic abscopal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dauda, Suleiman; Chia, Mathias Ahii; Bako, Sunday Paul
2017-06-01
The broad application of titanium dioxide nanoparticles (n-TiO 2 ) in many consumer products has resulted in the release of substantial quantities into aquatic systems. While n-TiO 2 have been shown to induce some unexpected toxic effects on aquatic organisms such as microalgae, the influence of changing nutrient conditions on the toxicity of the metal has not been investigated. We evaluated the toxicity of n-TiO 2 to Chlorella vulgaris under varying nitrogen conditions. Limited nitrogen (2.2μM) decreased growth and biomass (dry weight and pigment content), while lipid peroxidation (malondialdehyde content), glutathione S-transferase activity (GST) and peroxidase (POD) activity were increased. Similarly, exposure to n-TiO 2 under replete nitrogen condition resulted in a general decrease in growth and biomass, while GST and POD activities were significantly increased. The combination of limited nitrogen with n-TiO 2 exposure further decreased growth and biomass, and increased GST and POD activities of the microalga. These results suggest that in addition to the individual effects of each investigated condition, nitrogen limitation makes C. vulgaris more susceptible to the effects of n-TiO 2 with regard to some physiological parameters. This implies that the exposure of C. vulgaris and possibly other green algae to this nanoparticle under limited or low nitrogen conditions may negatively affect their contribution to primary production in oligotrophic aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
Yin, Ge; Sako, Hiroshi; Gubbala, Ramesh V; Ueda, Shigenori; Yamaguchi, Akira; Abe, Hideki; Miyauchi, Masahiro
2018-04-17
Selective carbon dioxide photoreduction to produce formic acid was achieved under visible light irradiation using water molecules as electron donors, similar to natural plants, based on the construction of a Z-scheme light harvesting system modified with a Cu-Zn alloy nanoparticle co-catalyst. The faradaic efficiency of our Z-scheme system for HCOOH generation was over 50% under visible light irradiation.
Thurn, Kenneth T; Paunesku, Tatjana; Wu, Aiguo; Brown, Eric M B; Lai, Barry; Vogt, Stefan; Maser, Jörg; Aslam, Mohammed; Dravid, Vinayak; Bergan, Raymond; Woloschak, Gayle E
2009-06-01
Visualization of nanoparticles without intrinsic optical fluorescence properties is a significant problem when performing intracellular studies. Such is the case with titanium dioxide (TiO2) nanoparticles. These nanoparticles, when electronically linked to single-stranded DNA oligonucleotides, have been proposed to be used both as gene knockout devices and as possible tumor imaging agents. By interacting with complementary target sequences in living cells, these photoinducible TiO2-DNA nanoconjugates have the potential to cleave intracellular genomic DNA in a sequence specific and inducible manner. The nanoconjugates also become detectable by magnetic resonance imaging with the addition of gadolinium Gd(III) contrast agents. Herein two approaches for labeling TiO2 nanoparticles and TiO2-DNA nanoconjugates with optically fluorescent agents are described. This permits direct quantification of fluorescently labeled TiO2 nanoparticle uptake in a large population of living cells (>10(4) cells). X-ray fluorescence microscopy (XFM) is combined with fluorescent microscopy to determine the relative intracellular stability of the nanoconjugates and used to quantify intracellular nanoparticles. Imaging the DNA component of the TiO2-DNA nanoconjugate by fluorescent confocal microscopy within the same cell shows an overlap with the titanium signal as mapped by XFM. This strongly implies the intracellular integrity of the TiO2-DNA nanoconjugates in malignant cells.
Nazıroğlu, Mustafa; Muhamad, Salina; Pecze, Laszlo
2017-07-01
In etiology of Alzheimer's disease (AD), involvement of amyloid β (Aβ) plaque accumulation and oxidative stress in the brain have important roles. Several nanoparticles such as titanium dioxide, silica dioxide, silver and zinc oxide have been experimentally using for treatment of neurological disease. In the last decade, there has been a great interest on combination of antioxidant bioactive compounds such as selenium (Se) and flavonoids with the oxidant nanoparticles in AD. We evaluated the most current data available on the physiological effects of oxidant and antioxidant nanoparticles. Areas covered: Oxidative nanoparticles decreased the activities of reactive oxygen species (ROS) scavenging enzymes such as glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase in the brain of rats and mice. However, Se-rich nanoparticles in small size (5-15 nm) depleted Aβ formation through decreasing ROS production. Reports on low levels of Se in blood and tissue samples and the low activities of GSH-Px, catalase and SOD enzymes in AD patients and animal models support the proposed crucial role of oxidative stress in the pathogenesis of AD. Expert commentary: In conclusion, present literature suggests that Se-rich nanoparticles appeared to be a potential therapeutic compound for the treatment of AD.
Lee, Woo-Mi; An, Youn-Joo
2013-04-01
Some metal oxide nanoparticles are photoreactive, thus raising concerns regarding phototoxicity. This study evaluated ecotoxic effects of zinc oxide nanoparticles and titanium dioxide nanoparticles to the green algae Pseudokirchneriella subcapitata under visible, UVA, and UVB irradiation conditions. The nanoparticles were prepared in algal test medium, and the test units were pre-irradiated by UV light in a photoreactor. Algal assays were also conducted with visible, UVA or UVB lights only without nanoparticles. Algal growth was found to be inhibited as the nanoparticle concentration increased, and ZnO NPs caused destabilization of the cell membranes. We also noted that the inhibitory effects on the growth of algae were not enhanced under UV pre-irradiation conditions. This phenomenon was attributed to the photocatalytic activities of ZnO NPs and TiO2 NPs in both the visible and UV regions. The toxicity of ZnO NPs was almost entirely the consequence of the dissolved free zinc ions. This study provides us with an improved understanding of toxicity of photoreactive nanoparticles as related to the effects of visible and UV lights. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ostrosablina, A. A.; Sidorov, A. I.
2005-07-01
This paper presents the experimental and theoretical results of a study of the interaction of pulsed laser radiation with thick composite media containing nanoparticles of vanadium dioxide (VO2). It establishes that the reversible semiconductor-metal phase transition that occurs in VO2 nanoparticles under the action of radiation can produce self-defocusing of radiation in the visible and near-IR regions because of the formation of a photoinduced dynamic lens. An analysis is carried out of how the radiation intensity affects the dynamics of these processes. It is shown that photoinduced absorption and scattering play a role in forming the nonlinear optical response.
Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J
2015-01-01
Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315
Ajiboye, Adejumoke Lara; Trivedi, Vivek; Mitchell, John C
2017-08-21
Polycaprolactone (PCL) nanoparticles were produced via supercritical fluid extraction of emulsions (SFEE) using supercritical carbon dioxide (scCO 2 ). The efficiency of the scCO 2 extraction was investigated and compared to that of solvent extraction at atmospheric pressure. The effects of process parameters including polymer concentration (0.6-10% w/w in acetone), surfactant concentration (0.07 and 0.14% w/w) and polymer-to-surfactant weight ratio (1:1-16:1 w/w) on the particle size and surface morphology were also investigated. Spherical PCL nanoparticles with mean particle sizes between 190 and 350 nm were obtained depending on the polymer concentration, which was the most important factor where increase in the particle size was directly related to total polymer content in the formulation. Nanoparticles produced were analysed using dynamic light scattering and scanning electron microscopy. The results indicated that SFEE can be applied for the preparation of PCL nanoparticles without agglomeration and in a comparatively short duration of only 1 h.
Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens.
Venkatasubbu, G Devanand; Baskar, R; Anusuya, T; Seshan, C Arun; Chelliah, Ramachandran
2016-12-01
Food preservation is an important field of research. It extends the shelf life of major food products. Our current study is based on food preservation through TiO 2 and ZnO nanoparticles. TiO 2 and ZnO are biocompatible nanomaterial. The biocompatibility of the materials were established through toxicity studies on cell lines. Titanium dioxide and Zinc Oxide nanoparticle were synthesized by wet chemical process. They are characterized by X-Ray diffraction and TEM. The antibacterial activities of both the materials were analysed to ensure their effectiveness as food preservative against Salmonella typhi, Klebsiella pneumoniae and Shigella flexneri. The results indicates that TiO 2 and ZnO nanoparticle inhibits Salmonella, Klebsiella and Shigella. The mode of action is by the generation of ROS in cases of Salmonella, Klebsiella. Mode of action in Shigella is still unclear. It was also proved that TiO 2 and ZnO nanoparticle are biocompatible materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Removal of Trichloroethylene by Activated Carbon in the Presence and Absence of TiO2 Nanoparticles
Nanoparticles (NPs) are emerging as a new type of contaminant in water and wastewater. The fate of titanium dioxide nanoparticles (TiO2NPs) in a granular activated carbon (GAC) adsorber and their impact on the removal of trichloroethylene (TCE) by GAC was investigated...
Titanium Dioxide (Ti02) and Silver (Ag) nanoparticles are used in many domestic applications, including sunscreens and paints. Evaluation of the potential hazard of manmade nanomaterials has been hampered by a limited ability to detect and measure nanoparticles in cells. In the p...
Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; de Vries, Tjerk; Portugal-Cohen, Meital; Antonio, Diana C; Cascio, Claudia; Calzolai, Luigi; Gilliland, Douglas; de Mello, Andrew
2016-04-01
We demonstrate the use of inverse supercritical carbon dioxide (scCO2) extraction as a novel method of sample preparation for the analysis of complex nanoparticle-containing samples, in our case a model sunscreen agent with titanium dioxide nanoparticles. The sample was prepared for analysis in a simplified process using a lab scale supercritical fluid extraction system. The residual material was easily dispersed in an aqueous solution and analyzed by Asymmetrical Flow Field-Flow Fractionation (AF4) hyphenated with UV- and Multi-Angle Light Scattering detection. The obtained results allowed an unambiguous determination of the presence of nanoparticles within the sample, with almost no background from the matrix itself, and showed that the size distribution of the nanoparticles is essentially maintained. These results are especially relevant in view of recently introduced regulatory requirements concerning the labeling of nanoparticle-containing products. The novel sample preparation method is potentially applicable to commercial sunscreens or other emulsion-based cosmetic products and has important ecological advantages over currently used sample preparation techniques involving organic solvents. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Babonneau, D.; Diop, D. K.; Simonot, L.; Lamongie, B.; Blanc, N.; Boudet, N.; Vocanson, F.; Destouches, N.
2018-03-01
Photochromic reaction dynamics in silver nanoparticles embedded in mesoporous titanium dioxide thin films is investigated by combining real-time grazing incidence small-angle x-ray scattering (GISAXS) and optical transmission measurements during UV-visible laser exposure cycles. While GISAXS probes changes in the particle size distribution, transmittance measurements are sensitive to spectral changes induced by photo-activated processes. Our results reveal a repeatable photochromic behavior with a good correlation in terms of kinetics between the morphological and optical fluctuations. Visible laser irradiation at 532 nm induces a preferential photo-dissolution of small silver particles, which in turn causes an increase in transmittance near the excitation wavelength. Furthermore, the photo-dissolution process can be significantly accelerated and amplified by associating visible laser with x-ray irradiation. Under UV laser irradiation at 360 nm, the bleaching process can be reverted by photocatalytic reduction with the mesopores in the TiO2 film acting as molds, which have the ability to confine the nanoparticle growth. However, in the irradiation conditions used in the present study, it appears that the photocatalytic growth of silver nanoparticles is slower than the photo-dissolution process, whereas its efficiency gradually degrades throughout the exposures to UV light.
Sabziparvar, Negin; Saeedi, Yosra; Nouri, Mina; Najafi Bozorgi, Atefeh Sadat; Alizadeh, Elahe; Attar, Farnoosh; Akhtari, Keivan; Mousavi, Seyyedeh Elaheh; Falahati, Mojtaba
2018-04-19
Nanoparticles (NPs) have received great attention in biological and medical applications because of their unique features. However, their induced adverse effects on the biological system are not well-explored. Herein, the interaction of silicon dioxide nanoparticles (SiO 2 NPs) with human hemoglobin (Hb) and lymphocyte cell line was evaluated under physiological conditions by multispectroscopic [intrinsic and synchronous fluorescence spectroscopy and circular dichrosim (CD)], molecular docking, and cellular [3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) and acridine orange/ethidium bromide (AO/EB) staining] methods. Transmission electron microscopy and dynamic light scattering revealed the nanosized and spherical shaped SiO 2 particle. The fluorescence and lifetime decay results indicated that SiO 2 NPs quenched the intrinsic intensity of Hb through a static quenching mechanism. The binding affinity of SiO 2 NPs toward Hb was directly correlated with temperature. The sign of thermodynamic parameters demonstrated that hydrophobic forces played a pivotal role in the interaction of SiO 2 NPs with Hb. The results of synchronous fluorescence experiments displayed that Tyr residues are moved to a more hydrophilic microenvironment. Molecular docking studies exhibited that SiO 2 and Si NPs were bound to Hb primarily by hydrophobic residues. The findings from CD data verified no alteration in the secondary structure of Hb upon binding to SiO 2 NPs. The human lymphocyte cell line was treated with SiO 2 NPs at varying concentrations and time intervals and the cytotoxicity assays by MTT and AO/EB staining showed that cell viability was reduced by the SiO 2 NP-induced apoptosis mechanism in a dose and time-dependent manner. Therefore, it may be suggested that comprehensive details regarding the interaction of NPs and biological systems such as cells and proteins can provide useful information in the development of NP-based systems.
NASA Astrophysics Data System (ADS)
Zimnyakov, D. A.; Yuvchenko, S. A.; Volchkov, S. S.; Samorodina, T. V.
2018-04-01
Dielectric function of wide-zone semiconductor nanoparticles (titanium dioxide) was studied under the condition of laser pumping at various wavelengths. A closed-aperture z-scan method with simultaneous measurements of the right-anglescattered intensity was used to retrieve the real and imaginary parts of dielectric function in the dependence on the pump intensity. It was found that the efficiency of dielectric function modulation by pumping light strongly depends on detuning of the wavelength of pumping light with respect to the fundamental absorption band of nanoparticles. The ColeCole diagrammatic technique was applied for interpretation of the pump-induced changes of the dielectric function in the optical range. Applicability of the Kramers-Kronig relations for description of the observed behavior of the dielectric function is discussed.
Aueviriyavit, Sasitorn; Phummiratch, Duangkamol; Kulthong, Kornphimol; Maniratanachote, Rawiwan
2012-10-01
Titanium dioxide nanoparticles (TiO(2)NPs) are increasingly being used in various industrial applications including the production of paper, plastics, cosmetics and paints. With the increasing number of nano-related products, the concern of governments and the general public about the health and environmental risks, especially with regard to occupational and other environmental exposure, are gradually increasing. However, there is insufficient knowledge about the actual affects upon human health and the environment, as well as a lack of suitable biomarkers for assessing TiO(2)NP-induced cytotoxicity. Since the respiratory tract is likely to be the main exposure route of industrial workers to TiO(2)NPs, we investigated the cytotoxicity of the anatase and rutile crystalline forms of TiO(2)NPs in A549 cells, a human alveolar type II-like epithelial cell line. In addition, we evaluated the transcript and protein expression levels of two heat shock protein (HSP) members, Grp78 and Hsp70, to ascertain their suitability as biomarkers of TiO(2)NP-induced toxicity in the respiratory system. Ultrastructural observations confirmed the presence of TiO(2)NPs inside cells. In vitro exposure of A549 cells to the anatase or rutile forms of TiO(2)NPs led to cell death and induced intracellular ROS generation in a dose-dependent manner, as determined by the MTS and dichlorofluorescein (DCF) assays, respectively. In contrast, the transcript and protein expression levels of Hsp70 and Grp78 did not change within the same TiO(2)NPs dose range (25-500 μg/ml). Thus, whilst TiO(2)NPs can cause cytotoxicity in A549 cells, and thus potentially in respiratory cells, Hsp70 and Grp78 are not suitable biomarkers for evaluating the acute toxicological effects of TiO(2)NPs in the respiratory system.
Synthesis, characterization and thermodynamic study of carbon dioxide adsorption on akaganéite
Roque-Malherbe, R.; Lugo, F.; Rivera-Maldonado, C.; ...
2015-04-01
A mixture of akaganeite nanoparticles and sodium salts was synthesized and modi fied, first by washing, and then by Li exchange. The structural characterization of the produced materials was performed with: powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, thermogravimetric analysis, diffuse reflectance infrared Fourier transform spectrometry, Mossbauer spectros- € copy and magnetization measurements. Additionally low pressure nitrogen and high pressure carbon dioxide adsorption experiments were performed. The sum of the characterization information made possible to conclude that the produced akaganeite phases crystallized in a structure exhibiting the symmetry of the I2/m space group, where the measured equivalentmore » spherical diameter of the akaganeite crystallites yielded 9 nm, as well, the tested phases exhibited a standard behaviour under heating and displayed a superparamagnetic behaviour. Finally the high pressure carbon dioxide adsorption experiments demonstrated a pressure-responsive framework opening event due to a structural transformation of the adsorbent framework induced by the guest molecules. This fact opens new applications for akaganeite as a high pressure adsorbent.« less
Bio-camouflage of anatase nanoparticles explored by in situ high-resolution electron microscopy.
Ribeiro, Ana R; Mukherjee, Arijita; Hu, Xuan; Shafien, Shayan; Ghodsi, Reza; He, Kun; Gemini-Piperni, Sara; Wang, Canhui; Klie, Robert F; Shokuhfar, Tolou; Shahbazian-Yassar, Reza; Borojevic, Radovan; Rocha, Luis A; Granjeiro, José M
2017-08-03
While titanium is the metal of choice for most prosthetics and inner body devices due to its superior biocompatibility, the discovery of Ti-containing species in the adjacent tissue as a result of wear and corrosion has been associated with autoimmune diseases and premature implant failures. Here, we utilize the in situ liquid cell transmission electron microscopy (TEM) in a liquid flow holder and graphene liquid cells (GLCs) to investigate, for the first time, the in situ nano-bio interactions between titanium dioxide nanoparticles and biological medium. This imaging and spectroscopy methodology showed the process of formation of an ionic and proteic bio-camouflage surrounding Ti dioxide (anatase) nanoparticles that facilitates their internalization by bone cells. The in situ understanding of the mechanisms of the formation of the bio-camouflage of anatase nanoparticles may contribute to the definition of strategies aimed at the manipulation of these NPs for bone regenerative purposes.
Singh, P; Nanda, A
2014-06-01
A systematic and detailed study has been designed and conducted, taking into account some of the proposed benefits such as increased efficiency, transparency, unique texture, protection of active ingredient and higher consumer compliance of cosmetics containing nano-sized metal oxides. This study also presents an in vitro method to determine sun protection factor of the investigational sunscreen cream samples containing zinc oxide and titanium dioxide with a varied range of particle size. Finally, a comparative study has been conducted between metal oxide particles, conventional as well as nanoparticles. All the skin cosmetics formulated were thermally stable with a pH ranging from 7.9 to 8.2. Moreover, the fatty acid substance content and residue were found to be analogous to the standard values in each skin cosmetic. The skin cosmetics containing the titanium or zinc oxide nanoparticles were found to have improved spreadability as compared to skin cosmetics containing conventional titanium or zinc oxide particles, respectively. All skin cosmetics were found to have uniform distribution of the particles. The sunscreen creams containing zinc oxide nanoparticles and titanium dioxide nanoparticles were found to have higher in vitro sun protection factor (SPF of 3.65 for ZnO nanoparticles and 4.93 for TiO2 nanoparticles) as compared to that of sunscreen creams containing conventional zinc oxide particles (SPF = 2.90) and conventional titanium dioxide (SPF = 1.29), clearly indicating the effect of reduction in particles size, from micro to nano, on the sun protection factor. Good texture, better spreadability and enhanced in vitro SPF proved the advantageous role of nanoparticles in cosmetics. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Thompson, David; Kranbuehl, David; Espuche, Eliane
2016-10-18
This paper presents a continuous single-step route that permits preparation of a thermostable polymer/metal nanocomposite film and to combine different functional properties in a unique material. More precisely, palladium nanoparticles are in situ generated in a polyimide matrix thanks to a designed curing cycle which is applied to a polyamic acid/metal precursor solution cast on a glass plate. A metal-rich surface layer which is strongly bonded to the bulk film is formed in addition to homogeneously dispersed metal nanoparticles. This specific morphology leads to obtaining an optically reflective film. The metal nanoparticles act as gas diffusion barriers for helium, oxygen, and carbon dioxide; they induce a tortuosity effect which allows dividing the gas permeation coefficients by a factor near to 2 with respect to the neat polyimide matrix. Moreover, the ability of the in situ synthesized palladium nanoparticles to entrap hydrogen is evidenced. The nanocomposite film properties can be modulated as a function of the location of the film metal-rich surface with respect to the hydrogen feed. The synthesized nanocomposite could represent a major interest for a wide variety of applications, from specific coatings for aerospace or automotive industry, to catalysis applications or sensors.
Sharma, Atul; Hayat, Akhtar; Mishra, Rupesh K; Catanante, Gaëlle; Bhand, Sunil; Marty, Jean Louis
2015-09-22
We demonstrate for the first time, the development of titanium dioxide nanoparticles (TiO₂) quenching based aptasensing platform for detection of target molecules. TiO₂ quench the fluorescence of FAM-labeled aptamer (fluorescein labeled aptamer) upon the non-covalent adsorption of fluorescent labeled aptamer on TiO₂ surface. When OTA interacts with the aptamer, it induced aptamer G-quadruplex complex formation, weakens the interaction between FAM-labeled aptamer and TiO₂, resulting in fluorescence recovery. As a proof of concept, an assay was employed for detection of Ochratoxin A (OTA). At optimized experimental condition, the obtained limit of detection (LOD) was 1.5 nM with a good linearity in the range 1.5 nM to 1.0 µM for OTA. The obtained results showed the high selectivity of assay towards OTA without interference to structurally similar analogue Ochratoxin B (OTB). The developed aptamer assay was evaluated for detection of OTA in beer sample and recoveries were recorded in the range from 94.30%-99.20%. Analytical figures of the merits of the developed aptasensing platform confirmed its applicability to real samples analysis. However, this is a generic aptasensing platform and can be extended for detection of other toxins or target analyte.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Cole, Jacqueline M.; Liu, Xiaogang
2013-11-25
“Smart tuning” of optical properties in three azo dyes containing intramolecular hydrogen bonding is realized by the judicious control of solvents, when the dyes are in solution or adsorbed onto titanium dioxide nanoparticles. In solution, certain solvents destabilizing intramolecular hydrogen bonding induce a distinctive ≈70 nm “blue-shifted” absorption peak, compared with other solvents. In parallel, the optical properties of azo dye/TiO2 nanocomposites can be tuned using solvents with different hydrogen-bond accepting/donating abilities, giving insights into smart materials and dye-sensitized solar cell device design. It is proposed that intramolecular hydrogen bonding alone plays the leading role in such phenomena, which ismore » fundamentally different to other mechanisms, such as tautomerism and cis–trans isomerization, that explain the optical control of azo dyes. Hybrid density functional theory (DFT) is employed in order to trace the origin of this optical control, and these calculations support the mechanism involving intramolecular hydrogen bonding. Two complementary studies are also reported: 1H NMR spectroscopy is conducted in order to further understand the solvent effects on intramolecular hydrogen bonding; crystal structure analysis from associated research indicates the importance of intramolecular hydrogen bonding on intramolecular charge transfer.« less
Cui, Jianghu; Liang, You; Yang, Desong; Liu, Yingliang
2016-01-01
Bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice, leading to reduction in production by 10–50%. In order to control this disease, various chemical bactericides have been used. Wide and prolonged application of chemical bactericides resulted in the resistant strain of Xoo that was isolated from rice. To address this problem, we were searching for an environmentally friendly alternative to the commonly used chemical bactericides. In this work, we demonstrate that silicon dioxide nanospheres loaded with silver nanoparticles (SiO2-Ag) can be prepared by using rice husk as base material precursor. The results of the antibacterial tests showed that SiO2-Ag composites displayed antibacterial activity against Xoo. At cellular level, the cell wall/membrane was damaged and intercellular contents were leaked out by slow-releasing of silver ions from SiO2-Ag composites. At molecular level, this composite induced reactive oxygen species production and inhibited DNA replication. Based on the results above, we proposed the potential antibacterial mechanism of SiO2-Ag composites. Moreover, the cytotoxicity assay indicated that the composites showed mild toxicity with rice cells. Thus, this work provided a new strategy to develop biocide derived from residual biomass. PMID:26888152
NASA Astrophysics Data System (ADS)
Zamani, Naser; Hatef, Ali; Nadgaran, Hamid; Keshavarz, Alireza
2017-07-01
We numerically investigate the electromagnetically induced transparency (EIT) of a hybrid system consisting of a three-level quantum dot (QD) in the vicinity of vanadium dioxide nanoparticle (VO2NP). VO2NP has semiconductor and metallic phases where the transition between the two phases occurs around a critical temperature. When the QD-VO2NP hybrid system interacts with continuous wave laser fields in an infrared regime, it supports a coherent coupling of exciton-polariton and exciton-plasmon polariton in semiconductor and metal phases of VO2NP, respectively. In our calculations a filling fraction factor controls the VO2NP phase transition. A probe and control laser field configuration is studied for the hybrid system to measure the absorption of QD through the filling fraction factor manipulations. We show that for the VO2NP semiconductor phase and proper geometrical configuration, the absorption spectrum profile of the QD represents an EIT with two peaks and a clear minimum. These two peaks merge to one through the VO2NP phase transition to metal. We also show that the absorption spectrum profile is modified by different orientations of the laser fields with the axis of the QD-VO2NP hybrid system. The innovation in comparison to other research in the field is that robust variation in the absorption profile through EIT is due to the phase transition in VO2NP without any structural change in the QD-VO2NP hybrid system. Our results can be employed to design nanothermal sensors, optical nanoswitches, and energy transfer devices.
Tuomela, Soile; Autio, Reija; Buerki-Thurnherr, Tina; Arslan, Osman; Kunzmann, Andrea; Andersson-Willman, Britta; Wick, Peter; Mathur, Sanjay; Scheynius, Annika; Krug, Harald F; Fadeel, Bengt; Lahesmaa, Riitta
2013-01-01
A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn(2+) leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach.
Tuomela, Soile; Autio, Reija; Buerki-Thurnherr, Tina; Arslan, Osman; Kunzmann, Andrea; Andersson-Willman, Britta; Wick, Peter; Mathur, Sanjay; Scheynius, Annika; Krug, Harald F.; Fadeel, Bengt; Lahesmaa, Riitta
2013-01-01
A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn2+ leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach. PMID:23894303
Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells†
Jayaram, Dhanya T.; Runa, Sabiha; Kemp, Melissa L.
2017-01-01
Titanium dioxide nanoparticles (TiO2 NPs), used as pigments and photocatalysts, are ubiquitous in our daily lives. Previous work has observed cellular oxidative stress in response to the UV-excitation of photocatalytic TiO2 NPs. In comparison, most human exposure to TiO2 NPs takes place in the dark, in the lung following inhalation or in the gut following consumption of TiO2 NP food pigment. Our spectroscopic characterization shows that both photocatalytic and food grade TiO2 NPs, in the dark, generate low levels of reactive oxygen species (ROS), specifically hydroxyl radicals and superoxides. These ROS oxidize serum proteins that form a corona of proteins on the NP surface. This protein layer is the interface between the NP and the cell. An oxidized protein corona triggers an oxidative stress response, detected with PCR and western blotting. Surface modification of TiO2 NPs to increase or decrease surface defects correlates with ROS generation and oxidative stress, suggesting that NP surface defects, likely oxygen vacancies, are the underlying cause of TiO2 NP-induced oxidative stress. PMID:28537609
Givens, Brittany E; Diklich, Nina D; Fiegel, Jennifer; Grassian, Vicki H
2017-05-03
Bovine serum albumin (BSA) adsorbed on amorphous silicon dioxide (SiO 2 ) nanoparticles was studied as a function of pH across the range of 2 to 8. Aggregation, surface charge, surface coverage, and protein structure were investigated over this entire pH range. SiO 2 nanoparticle aggregation is found to depend upon pH and differs in the presence of adsorbed BSA. For SiO 2 nanoparticles truncated with hydroxyl groups, the largest aggregates were observed at pH 3, close to the isoelectric point of SiO 2 nanoparticles, whereas for SiO 2 nanoparticles with adsorbed BSA, the aggregate size was the greatest at pH 3.7, close to the isoelectric point of the BSA-SiO 2 complex. Surface coverage of BSA was also the greatest at the isoelectric point of the BSA-SiO 2 complex with a value of ca. 3 ± 1 × 10 11 molecules cm -2 . Furthermore, the secondary protein structure was modified when compared to the solution phase at all pH values, but the most significant differences were seen at pH 7.4 and below. It is concluded that protein-nanoparticle interactions vary with solution pH, which may have implications for nanoparticles in different biological fluids (e.g., blood, stomach, and lungs).
Effect of Nanoparticles on the Survival and Development of Vitrified Porcine GV Oocytes.
Li, W J; Zhou, X L; Liu, B L; Dai, J J; Song, P; Teng, Y
BACKGROUND: Some mammalian oocytes have been successfully cryopreserved by vitrification. However, the survival and developmental rate of vitrified oocytes is still low. The incorporation of nanoparticles into cryoprotectant (CPA) may improve the efficiency of vitrification by changing the properties of solutions. The toxicity of different concentrations of hydroxy apatite (HA), silica dioxide (SO 2 ), aluminum oxide (Al 2 O 3 ) and titanium dioxide (TiO 2 ) nanoparticles (20 nm in diameter) to oocytes was tested and the toxicity threshold value of each nanoparticle was determined. Porcine GV oocytes were vitrified in optimized nano-CPA, and effects of diameter and concentration of nanoparticles on the survival rate and developmental rate of porcine GV oocytes were compared. HA nanoparticles have demonstrated the least toxicity among four nanoparticles and the developmental rate of GV-stage porcine oocytes was 100% when its concentration was lower than 0.5%. By adding 0.1% HA into VS, the developmental rate of GV-stage porcine oocytes (22%) was significantly higher than other groups. The effect of vitrification in nano-CPA on oocytes was related to the concentration of HA nanoparticles rather than their size. By adding 0.05% HA nanoparticles (60nm in diameter), the developmental rate increased dramatically from 14.7% to 30.4%. Nano-cryopreservation offers a new way to improve the effect of survival and development of oocytes, but the limitation of this technology shall not be ignored.
Lee, Szu-Hsuan; Galstyan, Vardan; Ponzoni, Andrea; Gonzalo-Juan, Isabel; Riedel, Ralf; Dourges, Marie-Anne; Nicolas, Yohann; Toupance, Thierry
2018-03-28
Tin dioxide (SnO 2 ) nanoparticles were straightforwardly synthesized using an easily scaled-up liquid route that involves the hydrothermal treatment, either under acidic or basic conditions, of a commercial tin dioxide particle suspension including potassium counterions. After further thermal post-treatment, the nanomaterials have been thoroughly characterized by Fourier transform infrared and Raman spectroscopy, powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and nitrogen sorption porosimetry. Varying pH conditions and temperature of the thermal treatment provided cassiterite SnO 2 nanoparticles with crystallite sizes ranging from 7.3 to 9.7 nm and Brunauer-Emmett-Teller surface areas ranging from 61 to 106 m 2 ·g -1 , acidic conditions favoring potassium cation removal. Upon exposure to a reducing gas (H 2 , CO, and volatile organic compounds such as ethanol and acetone) or oxidizing gas (NO 2 ), layers of these SnO 2 nanoparticles led to highly sensitive, reversible, and reproducible responses. The sensing results were discussed in regard to the crystallite size, specific area, valence band energy, Debye length, and chemical composition. Results highlight the impact of the counterion residuals, which affect the gas-sensing performance to an extent much higher than that of size and surface area effects. Tin dioxide nanoparticles prepared under acidic conditions and calcined in air showed the best sensing performances because of lower amount of potassium cations and higher crystallinity, despite the lower surface area.
Due to the exponential growth of the nanomaterial industry, risk assessment of human exposure to nanomaterials in consumer products is of paramount importance. The genotoxicity of nanomaterials is an important aspect of hazard identification and regulatory guidance. However, this...
The nanomaterial industry has recently seen rapid growth, therefore, the risk assessment of human exposure to nanomaterials in consumer products is of paramount importance. The genotoxicity of nanomaterials is a fundamental aspect of hazard identification and regulatory guidance....
Ding, Shangjun; Liu, Zhanqiang; Li, Dezeng; Zhao, Wei; Wang, Yaoming; Wan, Dongyun; Huang, Fuqiang
2013-03-13
Nanoparticle-assembled vanadium dioxide (VO2) films have been easily prepared with the assistance of cetyltrimethylammonium vanadate (CTAV) precursor which exhibits self-assembly properties. The obtained VO2 film has a micro/nano hierarchical porous structure, so its visible-light transmittance is significantly improved (∼25% increased compared to continuous film). The VO2 particle density as well as the film porosity can be facilely controlled by adjusting experimental parameters such as dip-coating speed. Accordingly, film optical properties can also be tuned to a large extent, in particular the visible transmittance (Tvis) and near-infrared switching efficiency (ΔTnir). These VO2 nanoparticle-assembled films prepared by this novel method provide a useful model to research the balance between Tvis and ΔTnir.
Effects of TiO2 nano glass ionomer cements against normal and cancer oral cells.
Garcia-Contreras, Rene; Scougall-Vilchis, Rogelio J; Contreras-Bulnes, Rosalia; Kanda, Yumiko; Nakajima, Hiroshi; Sakagami, Hiroshi
2014-01-01
Incorporation of nanoparticles (NPs) into the glass ionomer cements (GICs) is known to improve their mechanical and antibacterial properties. The present study aimed to investigate the possible cytotoxicity and pro-inflammation effect of three different powdered GICs (base, core build and restorative) prepared with and without titanium dioxide (TiO2) nanoparticles. Each GIC was blended with TiO2 nanopowder, anatase phase, particle size <25 nm at 3% and 5% (w/w), and the GIC blocks of cements were prepared in a metal mold. The GICs/TiO2 nanoparticles cements were smashed up with a mortar and pestle to a fine powder, and then subjected to the sterilization by autoclaving. Human oral squamous cell carcinoma cell lines (HCS-2, HSC-3, HSC-4, Ca9-22) and human normal oral cells [gingival fibroblast (HGF), pulp (HPC) and periodontal ligament fibroblast (HPLF)] were incubated with different concentrations of GICs in the presence or absence of TiO2 nanoparticles, and the viable cell number was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Prostaglandin E2 was quantified by enzyme-linked immunosorbent assay (ELISA). Changes in fine cell structure were assessed by transmission electron microscopy. Cancer cells exhibited moderate cytotoxicity after 48 h of incubation, regardless of the type of GIC and the presence or absence of TiO2 NPs. GICs induced much lower cytotoxicity against normal cells, but induced prostaglandin E2 production, in a synergistic wanner with interleukin-1β. The present study shows acceptable to moderate biocompatibility of GICs impregnated with TiO2 nanoparticles, as well as its pro-inflammatory effects at higher concentrations. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Cho, Wan-Seob; Kang, Byeong-Cheol; Lee, Jong Kwon; Jeong, Jayoung; Che, Jeong-Hwan; Seok, Seung Hyeok
2013-03-26
The in vivo kinetics of nanoparticles is an essential to understand the hazard of nanoparticles. Here, the absorption, distribution, and excretion patterns of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles following oral administration were evaluated. Nanoparticles were orally administered to rats for 13 weeks (7 days/week). Samples of blood, tissues (liver, kidneys, spleen, and brain), urine, and feces were obtained at necropsy. The level of Ti or Zn in each sample was measured using inductively coupled plasma-mass spectrometry. TiO₂ nanoparticles had extremely low absorption, while ZnO nanoparticles had higher absorption and a clear dose-response curve. Tissue distribution data showed that TiO₂ nanoparticles were not significantly increased in sampled organs, even in the group receiving the highest dose (1041.5 mg/kg body weight). In contrast, Zn concentrations in the liver and kidney were significantly increased compared with the vehicle control. ZnO nanoparticles in the spleen and brain were minimally increased. Ti concentrations were not significantly increased in the urine, while Zn levels were significantly increased in the urine, again with a clear dose-response curve. Very high concentrations of Ti were detected in the feces, while much less Zn was detected in the feces. Compared with TiO₂ nanoparticles, ZnO nanoparticles demonstrated higher absorption and more extensive organ distribution when administered orally. The higher absorption of ZnO than TiO₂ nanoparticles might be due to the higher dissolution rate in acidic gastric fluid, although more thorough studies are needed.
Core-Shell Photonic Nanoparticles for Enhanced Solar-to-Fuel Photocatalytic Conversion
2017-10-11
photocatalytic activity of semiconducting materials. They synthesized and functionalized titanium dioxide nanoparticles with a partial shell of gold...Their research also characterized the photocatalytic activity . The second area was the tuning the dielectric environment of the nanoparticles with think...successful investigation of bimetallic nanoshells that enhance the photocatalytic activity of semiconducting materials. Our earlier work focused on the
Asymmetric organic-inorganic hybrid membrane formation via block copolymer-nanoparticle co-assembly.
Gu, Yibei; Dorin, Rachel M; Wiesner, Ulrich
2013-01-01
A facile method for forming asymmetric organic-inorganic hybrid membranes for selective separation applications is developed. This approach combines co-assembly of block copolymer (BCP) and inorganic nanoparticles (NPs) with non-solvent induced phase separation. The method is successfully applied to two distinct molar mass BCPs with different fractions of titanium dioxide (TiO2) NPs. The resulting hybrid membranes exhibit structural asymmetry with a thin nanoporous surface layer on top of a macroporous fingerlike support layer. Key parameters that dictate membrane surface morphology include the fraction of inorganics used and the length of time allowed for surface layer development. The resulting membranes exhibit both good selectivity and high permeability (3200 ± 500 Lm(-2) h(-1) bar(-1)). This fast and straightforward synthesis method for asymmetric hybrid membranes provides a new self-assembly platform upon which multifunctional and high-performance organic-inorganic hybrid membranes can be formed.
Synthesis of TiO2 Nanoparticle and its phase Transition
NASA Astrophysics Data System (ADS)
Mangrola, M. H.; Joshi, V. G.; Parmar, B. H.
2011-12-01
Here we report the synthesis of titanium dioxide (TiO2) nanoparticles and study of its phase transition from anataze to rutile. Titanium dioxide (TiO2) nanoparticles have been prepared by hydrolysis of Titanium isopropoxide an aqueous solution with constant value of pH 2 and peptizing the resultant suspension gel(white-Blue) and calcinate gel at different temperature. Structures of synthetic samples of TiO2 have been examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). The anatase-rutile transition has been a popular topic due to its interest to scientific and engineering fields. . Here we have seen that the 100 °C calcinate powder consist of anatase fine crystalline phase with a particle size 14 to 15 nm. The prepared TiO2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks. The phase transform occurred from anatase to rutile at calcinate temperature up to 600 °C. A very fine network texture made from uniform nanoparticles was revealed by scanning electron microscopy (SEM) analyses.
FATE, TRANSFORMATION AND TOXICITY OF MANUFACTURED NANOMATERIALS IN DRINKING WATER
Studies were conducted using several types of commercial metal oxide nanoparticles (two types of titanium dioxide, iron(III) oxide, zinc oxide, nickel oxide, and silica in powder form or liquid suspensions), functionalized quantum dots, lab-synthesized hematite nanoparticles a...
Electrical properties of titanium dioxide nanoparticle on microelectrode: Gap size effect
NASA Astrophysics Data System (ADS)
Nadzirah, Sh.; Hashim, U.; Zakaria, M. R.; Rusop, M.
2018-05-01
TiO2 nanoparticle based interdigitated microelectrode was fabricated by spin-coating and conventional photolithography approaches. Aluminum metal was deposited by thermal evaporator on silicon dioxide substrate. The effect of aluminum microelectrode gap sizes (4, 5 and 6 µm) on the electrical performance was investigated using picoammeter. Extremely small output current values of three different gap sizes were acquired. A characteristic electrical behavior was observed for the studied geometry. The configuration demonstrated a reduction in the output current from 2.28E-10, 1.32E-9 and 2.38E-9 A with increasing gap size.
Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid.
Melo, Catarina I; Szczepańska, Anna; Bogel-Łukasik, Ewa; Nunes da Ponte, Manuel; Branco, Luís C
2016-05-23
The efficient transformation of carbon dioxide into fuels can be an excellent alternative to sequestration. In this work, we describe CO2 hydrogenation to methane in imidazolium-based ionic liquid media, using ruthenium nanoparticles prepared in situ as catalyst. The best yield of methane (69 %) was achieved using 0.24 mol % ruthenium catalyst (in [omim][NTf2 ], 1-octyl-3-methylimidazolium bistrifluoromethanesulfonylimide, at 40 bar of hydrogen pressure plus 40 bar of CO2 pressure, and at 150 °C. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Bei-Zen; Chen, GuanYu; Yak, HwaKwang; Liao, Weisheng; Chiu, KongHwa; Peng, Shie-Ming
2016-06-01
Palladium nanoparticles stabilized in microcellular high-density polyethylene prepared through supercritical foaming, supercritical impregnation, and H2 reduction are used for the hydrodechlorination of lindane and hexachlorobenzene in supercritical carbon dioxide below 100 °C. Both lindane and hexachlorobenzene can be almost 100% transformed to cyclohexane in 1 h. Reaction intermediates, such as lower chlorinated products or benzene, are not observed or exist in trace amount indicating that most of them may undergo reactions without leaving the metal surface. Copyright © 2016 Elsevier Ltd. All rights reserved.
This dataset is generated to both qualitatively and quantitatively examine the interactions between nano-TiO2 and natural organic matter (NOM). This integrated dataset assemble all data generated in this project through a series of experiments. This dataset is associated with the following publication:Li , S., H. Ma, L. Wallis, M. Etterson , B. Riley , D. Hoff , and S. Diamond. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles. SCIENCE OF THE TOTAL ENVIRONMENT. Elsevier BV, AMSTERDAM, NETHERLANDS, 542: 324-333, (2016).
Li, Fanchi; Gu, Zhiya; Wang, Binbin; Xie, Yi; Ma, Lie; Xu, Kaizun; Ni, Min; Zhang, Hua; Shen, Weide; Li, Bing
2014-08-01
Silkworm (Bombyx mori), a model Lepidoptera insect, is economically important. Its growth and development are regulated by endogenous hormones. During the process of transition from larvae to pupae, 20-hydroxyecdysone (20E) plays an important role. The recent surge in consumer products and applications using metallic nanoparticles has increased the possibility of human or ecosystem exposure due to their unintentional release into the environment. We investigated the effects of exposure to titanium dioxide nanoparticles (TiO2 NPs) on the action of 20E in B. mori. Titanium dioxide nanoparticle treatment shortened the molting duration by 8 hr and prolonged the molting peak period by 10 %. Solexa sequencing profiled the changes in gene expression in the brain of fifth-instar B. mori in response to TiO2NPS exposure for 72 hr, to address the effects on hormone metabolism and regulation. Thirty one genes were differentially expressed. The transcriptional levels of pi3k and P70S6K, which are involved in the target of the rapamycin (TOR) signaling pathway, were up-regulated. Transcriptional levels of four cytochrome P450 genes, which are involved in 20E biosynthesis, at different developmental stages (48, 96, 144, and 192 hr) at 5th instars of all displayed trends of increasing expression. Simultaneously, the ecdysterone receptors, also displayed increasing trends. The 20E titers at four developmental stages during the 5th instar were 1.26, 1.23, 1.72, and 2.16 fold higher, respectively, than the control group. These results indicate that feeding B. mori with TiO2 NPs stimulates 20E biosynthesis, shortens the developmental progression, and reduces the duration of molting. Thus, application of TiO2 NPs is of high significance for saving the labor force in sericulture, and our research provides a reference for the ecological problems in the field of Lepidoptera exposured to titanium dioxide nanoparticles.
NASA Astrophysics Data System (ADS)
Faust, James J.
Engineered nanoparticles (NP; 10-9 m) have found use in a variety of consumer goods and medical devices because of the unique changes in material properties that occur when synthesized on the nanoscale. Although many definitions for nanoparticle exist, from the perspective of size, nanoparticle is defined as particles with diameters less than 100 nm in any external dimension. Examples of their use include titanium dioxide added as a pigment in products intended to be ingested by humans, silicon dioxide NPs are used in foods as an anticaking agent, and gold or iron oxide NPs can be used as vectors for drug delivery or contrast agents for specialized medical imaging. Although the intended use of these NPs is often to improve human health, it has come to the attention of investigators that NPs can have unintended or even detrimental effects on the organism. This work describes one such unintended effect of NP exposure from the perspective of exposure via the oral route. First, this Dissertation will explain an event referred to as brush border disruption that occurred after nanoparticles interacted with an in vitro model of the human intestinal epithelium. Second, this Dissertation will identify and characterize several consumer goods that were shown to contain titanium dioxide that are intended to be ingested. Third, this Dissertation shows that sedimentation due to gravity does not artifactually result in disruption of brush borders as a consequence of exposure to food grade titanium dioxide in vitro. Finally, this Dissertation will demonstrate that iron oxide nanoparticles elicited similar effects after exposure to an in vitro brush border expressing model of the human placenta. Together, these data suggest that brush border disruption is not an artifact of the material/cell culture model, but instead represents a bona fide biological response as a result of exposure to nanomaterial.
Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells.
Jin, Cheng-Yu; Zhu, Bang-Shang; Wang, Xue-Feng; Lu, Qing-Hua
2008-09-01
Nanotitanium dioxide (TiO2) is an important industrial material that is widely used as an additive in cosmetics, pharmaceuticals, and food colorants. Although the small size of the TiO2 nanoparticle is useful in various applications, the biosafety of this material needs to be evaluated. In this study, mouse fibroblast (L929) cells were used to evaluate the cytotoxicity of different concentrations (3-600 microg/mL) of homogeneous and weakly aggregated TiO2 nanoparticles in aqueous solution. The L929 cells became round and even shrank as the concentration of TiO2 nanoparticles increased. Moreover, TiO2 nanoparticle-treated cells had condensed fragmented chromatin or were directly necrosed, as observed by acridine orange (AO) staining. The transmission electron microscopy (TEM) analysis showed that in cells cultured in a medium containing 300 microg/mL TiO2, the number of lysosomes increased, and some cytoplasmic organelles were damaged. In addition, there was a significant increase in oxidative stress at higher TiO2 nanoparticle concentrations (>60 microg/mL). As the concentration of TiO2 nanoparticles increased in the culture medium, the levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) increased, while those of methyl tetrazolium cytotoxicity (MTT), glutathione (GSH), and superoxide dismutase (SOD) decreased. A possible mechanism for the cytotoxicity of TiO2 nanoparticles is also discussed.
Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms
The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) capped silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) and titanium dioxide (TiO2) NPs in marine organisms via marine sediment exposure were investigated. Results from 7-d sedimen...
Ho, Chia-Chi; Lee, Hui-Ling; Chen, Chao-Yu; Luo, Yueh-Hsia; Tsai, Ming-Hsien; Tsai, Hui-Ti; Lin, Pinpin
2017-04-01
Zinc oxide nanoparticles (ZnONPs) are widely used in our daily life, such as in sunscreens and electronic nanodevices. However, pulmonary exposure to ZnONPs causes acute pulmonary inflammation, which is considered as an initial event for various respiratory diseases. Thus, elucidation of the underlying cellular mechanisms of ZnONPs can help us in predicting their potential effects in respiratory diseases. In this study, we observed that ZnONPs increased proinflammatory cytokines, accompanied with an increased expression of aryl hydrocarbon receptor (AhR) and its downstream target cytochrome P450 1A1 (CYP1A1) in macrophages in vitro and in mouse lung epithelia in vivo. Moreover, zinc nitrate, but not silica or titanium dioxide nanoparticles (NPs), had similar effects on macrophages, indicating that the zinc element or ion released from ZnONPs is likely responsible for the activation of the AhR pathway. Cotreatment with an AhR antagonist or AhR knockout reduced ZnONPs-induced cytokine secretion in macrophages or mice, respectively. Furthermore, kynurenine (KYN), an endogenous AhR agonist and a tryptophan metabolite catalyzed by indoleamine 2,3-dioxygenase (IDO), was increased in the serums of mice that aspirated ZnONPs. Consistently, ZnONPs increased IDO1 expression in lung cells in vitro and in vivo. Finally, AhR knockout reduced ZnONPs-induced pulmonary inflammation, cytokine secretion and KYN production in mice, suggesting that AhR activation is involved in ZnONPs-induced cytokine secretion and pulmonary inflammation. In summary, we demonstrated that the pulmonary exposure of ZnONPs stimulated the cytokine-IDO1-AhR loop in the lungs, which has been implied to play roles in immune dysfunctions.
Polleux, Julien; Rasp, Matthias; Louban, Ilia; Plath, Nicole; Feldhoff, Armin; Spatz, Joachim P
2011-08-23
Simultaneous synthesis and assembly of nanoparticles that exhibit unique physicochemical properties are critically important for designing new functional devices at the macroscopic scale. In the present study, we report a simple version of block copolymer micellar lithography (BCML) to synthesize gold and titanium dioxide (TiO(2)) nanoarrays by using benzyl alcohol (BnOH) as a solvent. In contrast to toluene, BnOH can lead to the formation of various gold nanopatterns via salt-induced micellization of polystyrene-block-poly(vinylpyridine) (PS-b-P2VP). In the case of titania, the use of BCML with a nonaqueous sol-gel method, the "benzyl alcohol route", enables the fabrication of nanopatterns made of quasi-hexagonally organized particles or parallel wires upon aging a (BnOH-TiCl(4)-PS(846)-b-P2VP(171))-containing solution for four weeks to grow TiO(2) building blocks in situ. This approach was found to depend mainly on the relative lengths of the polymer blocks, which allows nanoparticle-induced micellization and self-assembly during solvent evaporation. Moreover, this versatile route enables the design of uniform and quasi-ordered gold-TiO(2) binary nanoarrays with a precise particle density due to the absence of graphoepitaxy during the deposition of TiO(2) onto gold nanopatterns. © 2011 American Chemical Society
Chen, Fengli; Li, Tong; Li, Shuangyang; Hou, Kexin; Liu, Zaizhi; Li, Lili; Cui, Guoqiang; Zu, Yuangang; Yang, Lei
2014-02-17
The aim of this study was to prepare nanosized Tripterygium wilfordii multi-glycoside (GTW) powders by the supercritical antisolvent precipitation process (SAS), and to evaluate the anti-inflammatory effects. Ethanol was used as solvent and carbon dioxide was used as an antisolvent. The effects of process parameters such as precipitation pressure (15-35 MPa), precipitation temperature (45-65 °C), drug solution flow rates (3-7 mL/min) and drug concentrations (10-30 mg/mL) were investigated. The nanospheres obtained with mean diameters ranged from 77.5 to 131.8 nm. The processed and unprocessed GTW were characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and thermal gravimetric analysis. The present study was designed to investigate the beneficial effect of the GTW nanoparticles on adjuvant-induced arthritis in albino rats. The processed and unprocessed GTW were tested against Freund's complete adjuvant-induced arthritis in rats. Blood samples were collected for the estimation of interleukins (IL-1α, IL-1β) and tumor necrosis factor-α (TNF-α). It was concluded that physicochemical properties and anti-inflammatory activity of GTW nanoparticles could be improved by physical modification, such as particle size reduction using supercritical antisolvent (SAS) process. Further, SAS process was a powerful methodology for improving the physicochemical properties and anti-inflammatory activity of GTW.
Chen, Fengli; Li, Tong; Li, Shuangyang; Hou, Kexin; Liu, Zaizhi; Li, Lili; Cui, Guoqiang; Zu, Yuangang; Yang, Lei
2014-01-01
The aim of this study was to prepare nanosized Tripterygium wilfordii multi-glycoside (GTW) powders by the supercritical antisolvent precipitation process (SAS), and to evaluate the anti-inflammatory effects. Ethanol was used as solvent and carbon dioxide was used as an antisolvent. The effects of process parameters such as precipitation pressure (15–35 MPa), precipitation temperature (45–65 °C), drug solution flow rates (3–7 mL/min) and drug concentrations (10–30 mg/mL) were investigated. The nanospheres obtained with mean diameters ranged from 77.5 to 131.8 nm. The processed and unprocessed GTW were characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and thermal gravimetric analysis. The present study was designed to investigate the beneficial effect of the GTW nanoparticles on adjuvant-induced arthritis in albino rats. The processed and unprocessed GTW were tested against Freund’s complete adjuvant-induced arthritis in rats. Blood samples were collected for the estimation of interleukins (IL-1α, IL-1β) and tumor necrosis factor-α (TNF-α). It was concluded that physicochemical properties and anti-inflammatory activity of GTW nanoparticles could be improved by physical modification, such as particle size reduction using supercritical antisolvent (SAS) process. Further, SAS process was a powerful methodology for improving the physicochemical properties and anti-inflammatory activity of GTW. PMID:24549173
Isotherm experiments evaluating trichloroethylene (TCE) adsorption onto powdered activated carbon (PAC) were conducted in the presence and absence of three commercially available nanomaterials— iron oxide (Fe2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2). Isotherm exp...
Thote, Amol J; Gupta, Ram B
2005-03-01
Our purpose was to produce nanoparticles of a hydrophilic drug with use of supercritical carbon dioxide (CO2), encapsulate the obtained nanoparticles into polymer microparticles with use of an anhydrous method and study their sustained in vitro drug release. The hydrophilic drug, dexamethasone phosphate, is dissolved in methanol and injected in supercritical CO2 with an ultrasonic field for enhanced molecular mixing (supercritical antisolvent technique with enhanced mass transfer [SAS-EM]). Supercritical CO2 rapidly extracts methanol leading to instantaneous precipitation of drug nanoparticles. The nanoparticles are then encapsulated in poly(lactide-co-glycolide) (PLGA) polymer by use of the anhydrous solid-oil-oil-oil technique. This results in a well-dispersed encapsulation of drug nanoparticles in polymer microspheres. In vitro drug release from these microparticles is studied. With supercritical CO2 used as an antisolvent, nanoparticles of dexamethasone phosphate were obtained in the range of 150 to 200 nm. On encapsulation in polylactide coglycolide, composite microspheres of approximately 70 microm were obtained. The in vitro drug release of these nanoparticles/microparticles composites shows sustained release of dexamethasone phosphate over a period of 700 hours with almost no initial burst release. Nanoparticles of dexamethasone phosphate can be produced with the SAS-EM technique. When microencapsulated, these particles can provide sustained drug release without initial burst release. Because the complete process is anhydrous, it can be easily extended to produce sustained release formulations of other hydrophilic drugs.
Caratto, Valentina; Ball, Lorenzo; Sanguineti, Elisa; Insorsi, Angelo; Firpo, Iacopo; Alberti, Stefano; Ferretti, Maurizio; Pelosi, Paolo
2017-01-01
Objective The aim of this study was to assess the antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa of two nanoparticle endotracheal tube coatings with visible light-induced photocatalysis. Methods Two types of titanium dioxide nanoparticles were tested: standard anatase (TiO2) and N-doped TiO2 (N-TiO2). Nanoparticles were placed on the internal surface of a segment of commercial endotracheal tubes, which were loaded on a cellulose acetate filter; control endotracheal tubes were left without a nanoparticle coating. A bacterial inoculum of 150 colony forming units was placed in the endotracheal tubes and then exposed to a fluorescent light source (3700 lux, 300-700 nm wavelength) for 5, 10, 20, 40, 60 and 80 minutes. Colony forming units were counted after 24 hours of incubation at 37°C. Bacterial inactivation was calculated as the percentage reduction of bacterial growth compared to endotracheal tubes not exposed to light. Results In the absence of light, no relevant antibacterial activity was shown against neither strain. For P. aeruginosa, both coatings had a higher bacterial inactivation than controls at any time point (p < 0.001), and no difference was observed between TiO2 and N-TiO2. For S. aureus, inactivation was higher than for controls starting at 5 minutes for N-TiO2 (p = 0.018) and 10 minutes for TiO2 (p = 0.014); inactivation with N-TiO2 was higher than that with TiO2 at 20 minutes (p < 0.001), 40 minutes (p < 0.001) and 60 minutes (p < 0.001). Conclusions Nanosized commercial and N-doped TiO2 inhibit bacterial growth under visible fluorescent light. N-TiO2 has higher antibacterial activity against S. aureus compared to TiO2. PMID:28444073
Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
Han, Joung Woo; Kim, Chanyeon; Park, Jun Seong; Lee, Hyunjoo
2014-02-01
Nickel catalysts are typically used for hydrogen production by reforming reactions. Reforming methane with carbon dioxide, called dry reforming of methane (DRM), is a good way to produce hydrogen or syngas (a mixture of hydrogen and carbon monoxide) from two notable greenhouse gases. However, Ni catalysts used for DRM suffer from severe coke deposition. It has been known that small Ni nanoparticles are advantageous to reduce coke formation, but the high reaction temperature of DRM (800 °C) inevitably induces aggregation of the nanoparticles, leading to severe coke formation and degraded activity. Here, we develop highly coke-resistant Ni catalysts by immobilizing premade Ni nanoparticles of 5.2 nm in size onto functionalized silica supports, and then coating the Ni/SiO2 catalyst with silica overlayers. The silica overlayers enable the transfer of reactants and products while preventing aggregation of the Ni nanoparticles. The silica-coated Ni catalysts operate stably for 170 h without any degradation in activity. No carbon deposition was observed by temperature programmed oxidation (TPO), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The Ni catalysts without silica coating show severe sintering after DRM reaction, and the formation of filamentous carbon was observed. The coke-resistant Ni catalyst is potentially useful in various hydrocarbon transformations. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A review on potential neurotoxicity of titanium dioxide nanoparticles
NASA Astrophysics Data System (ADS)
Song, Bin; Liu, Jia; Feng, Xiaoli; Wei, Limin; Shao, Longquan
2015-08-01
As the rapid development of nanotechnology in the past three decades, titanium dioxide nanoparticles (TiO2 NPs), for their peculiar physicochemical properties, are widely applied in consumer products, food additives, cosmetics, drug carriers, and so on. However, little is known about their potential exposure and neurotoxic effects. Once NPs are unintentionally exposed to human beings, they could be absorbed, and then accumulated in the brain regions by passing through the blood-brain barrier (BBB) or through the nose-to-brain pathway, potentially leading to dysfunctions of central nerve system (CNS). Besides, NPs may affect the brain development of embryo by crossing the placental barrier. A few in vivo and in vitro researches have demonstrated that the morphology and function of neuronal or glial cells could be impaired by TiO2 NPs which might induce cell necrosis. Cellular components, such as mitochondrial, lysosome, and cytoskeleton, could also be influenced as well. The recognition ability, spatial memory, and learning ability of TiO2 NPs-treated rodents were significantly impaired, which meant that accumulation of TiO2 NPs in the brain could lead to neurodegeneration. However, conclusions obtained from those studies were not consistent with each other as researchers may choose different experimental parameters, including administration ways, dosage, size, and crystal structure of TiO2 NPs. Therefore, in order to fully understand the potential risks of TiO2 NPs to brain health, figure out research areas where further studies are required, and improve its bio-safety for applications in the near future, how TiO2 NPs interact with the brain is investigated in this review by summarizing the current researches on neurotoxicity induced by TiO2 NPs.
Previous studies have found the significant role of impurities (i.e., silicon, phosphorus) in the aggregation and sedimentation of TiO2 nanoparticles in water environment. However, it is not understood whether dissolution of the impurities potentially impacts the environment or t...
ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES
In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...
Toxicity assessment of Titanium Dioxide and Cerium Oxide nanoparticles in Arabidopsis thaliana L.
The production and applications of nanoparticles (NP) in diverse fields has steadily increased in recent decades; however, knowledge about risks of NP to human health and ecosystems is still scarce. In this study, we assessed potential toxicity of two commercially used engineere...
Sun, Der-Shan; Kau, Jyh-Hwa; Huang, Hsin-Hsien; Tseng, Yao-Hsuan; Wu, Wen-Shiang; Chang, Hsin-Hou
2016-01-01
The bactericidal activity of conventional titanium dioxide (TiO2) photocatalyst is effective only on irradiation by ultraviolet light, which restricts the applications of TiO2 for use in living environments. Recently, carbon-containing TiO2 nanoparticles [TiO2(C) NP] were found to be a visible-light-responsive photocatalyst (VLRP), which displayed significantly enhanced antibacterial properties under visible light illumination. However, whether TiO2(C) NPs exert antibacterial properties against Bacillus anthracis remains elusive. Here, we evaluated these VLRP NPs in the reduction of anthrax-induced pathogenesis. Bacteria-killing experiments indicated that a significantly higher proportion (40%–60%) of all tested Bacillus species, including B. subtilis, B. cereus, B. thuringiensis, and B. anthracis, were considerably eliminated by TiO2(C) NPs. Toxin inactivation analysis further suggested that the TiO2(C) NPs efficiently detoxify approximately 90% of tested anthrax lethal toxin, a major virulence factor of anthrax. Notably, macrophage clearance experiments further suggested that, even under suboptimal conditions without considerable bacterial killing, the TiO2(C) NP-mediated photocatalysis still exhibited antibacterial properties through the reduction of bacterial resistance against macrophage killing. Our results collectively suggested that TiO2(C) NP is a conceptually feasible anti-anthrax material, and the relevant technologies described herein may be useful in the development of new strategies against anthrax. PMID:28335365
Predictive tests to evaluate oxidative potential of engineered nanomaterials
NASA Astrophysics Data System (ADS)
Ghiazza, Mara; Carella, Emanuele; Oliaro-Bosso, Simonetta; Corazzari, Ingrid; Viola, Franca; Fenoglio, Ivana
2013-04-01
Oxidative stress constitutes one of the principal injury mechanisms through which particulate toxicants (asbestos, crystalline silica, hard metals) and engineered nanomaterials can induce adverse health effects. ROS may be generated indirectly by activated cells and/or directly at the surface of the material. The occurrence of these processes depends upon the type of material. Many authors have recently demonstrated that metal oxides and carbon-based nanoparticles may influence (increasing or decreasing) the generation of oxygen radicals in a cell environment. Metal oxide, such as iron oxides, crystalline silica, and titanium dioxide are able to generate free radicals via different mechanisms causing an imbalance within oxidant species. The increase of ROS species may lead to inflammatory responses and in some cases to the development of cancer. On the other hand carbon-based nanomaterials, such as fullerene, carbon nanotubes, carbon black as well as cerium dioxide are able to scavenge the free radicals generated acting as antioxidant. The high numbers of new-engineered nanomaterials, which are introduced in the market, are exponentially increasing. Therefore the definition of toxicological strategies is urgently needed. The development of acellular screening tests will make possible the reduction of the number of in vitro and in vivo tests to be performed. An integrated protocol that may be used to predict the oxidant/antioxidant potential of engineered nanoparticles will be here presented.
Valdiglesias, Vanessa; Costa, Carla; Sharma, Vyom; Kiliç, Gözde; Pásaro, Eduardo; Teixeira, João Paulo; Dhawan, Alok; Laffon, Blanca
2013-07-01
Titanium dioxide (TiO2) are among most frequently used nanoparticles (NPs). They are present in a variety of consumer products, including food industry in which they are employed as an additive. The potential toxic effects of these NPs on mammal cells have been extensively studied. However, studies regarding neurotoxicity and specific effects on neuronal systems are very scarce and, to our knowledge, no studies on human neuronal cells have been reported so far. Therefore, the main objective of this work was to investigate the effects of two types of TiO₂ NPs, with different crystalline structure, on human SHSY5Y neuronal cells. After NPs characterization, a battery of assays was performed to evaluate the viability, cytotoxicity, genotoxicity and oxidative damage in TiO₂ NP-exposed SHSY5Y cells. Results obtained showed that the behaviour of both types of NPs resulted quite comparable. They did not reduce the viability of neuronal cells but were effectively internalized by the cells and induced dose-dependent cell cycle alterations, apoptosis by intrinsic pathway, and genotoxicity not related with double strand break production. Furthermore, all these effects were not associated with oxidative damage production and, consequently, further investigations on the specific mechanisms underlying the effects observed in this study are required. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sun, Xiujuan; Chang, Yun; Cheng, Yan; Feng, Yanlin; Zhang, Haiyuan
2018-04-12
Anatase/rutile mixed-phase titanium dioxide (TiO2) nanoparticles (NPs) have been found in cosmetics and cotton textiles. Once exposed to sunlight, mixed-phase TiO2 NPs are even more toxic to cells than pure phase NPs, however, the underlying mechanism remains unclear. Considering the unique anatase/rutile heterojunction structure existing in mixed-phase NPs, the potent toxicity of mixed-phase TiO2 NPs probably originates from the high reactive oxygen species (ROS) production because the anatase/rutile heterojunction is constituted by the staggered energy bands that facilitate the electron-hole separation at the interface due to the band alignment. In the present study, a library of mixed-phase TiO2 NPs with different anatase/rutile ratios was established to investigate the potential property-activity relationship and further clarify the underlying molecular mechanism. Under sunlight exposure, these mixed-phase TiO2 NPs could produce significant abiotic ROS and induce hierarchical oxidative stress to HaCaT skin cells and mice skin. The ROS magnitude and toxicity potential of these NPs were found to be proportional to their energy band bending (BB) levels. This means that the toxicity of mixed-phase TiO2 NPs can be correlated to their heterojunction density, and the toxicity potential of mixed-phase TiO2 NPs can be weighed by their BB levels.
M, Sundrarajan; K, Bama; M, Bhavani; S, Jegatheeswaran; S, Ambika; A, Sangili; P, Nithya; R, Sumathi
2017-06-01
In this work, we synthesized titanium dioxide (TiO 2 ) nanoparticles using leaf extract of Morinda citrifolia (M. citrifolia) by the advanced hydrothermal method. The synthesized TiO 2 nanoparticles were characterized by X-ray diffraction (XRD), Fourier transmission infrared (FT-IR), Ultraviolet-visible diffuse reflectance (UV-Vis DRS), Ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM with EDX) techniques. The XRD major peak at 27.3° corresponds to the (110) lattice plane of tetragonal rutile TiO 2 phase and average crystalline size of nanoparticles is 10nm. The FT-IR result confirmed that TiO 2 nanoparticles and the presences of very few amount of anthraquinone and phenolic compounds of the leaf extract. The obtained nanoparticles were also characterized by UV-Vis DRS absorption spectroscopy and an intense band at 423nm clearly reveals the formation of nanoparticles. SEM images with EDX spectra clearly reveal the size of the nanoparticles, between 15 and 19nm in excellent quasi-spherical shape, by virtue of stabilization (capping) agent. The presence of elements-titanium and oxygen was verified with EDX spectrum. Furthermore, the inhibitory activity of green synthesized TiO 2 nanoparticles was tested against human pathogens like Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger by the agar well-diffusion method. The TiO 2 nanoparticles exhibited superior antimicrobial activity against Gram-positive bacteria, demonstrating their antimicrobial value against pathogenic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Khan, Shams Tabrez; Ahmad, Javed; Ahamed, Maqusood; Musarrat, Javed; Al-Khedhairy, Abdulaziz A
2016-06-01
Streptococcus mitis from the oral cavity causes endocarditis and other systemic infections. Rising resistance against traditional antibiotics amongst oral bacteria further aggravates the problem. Therefore, antimicrobial and antibiofilm activities of zinc oxide and titanium dioxide nanoparticles (NPs) synthesized and characterized during this study against S. mitis ATCC 6249 and Ora-20 were evaluated in search of alternative antimicrobial agents. ZnO and TiO2-NPs exhibited an average size of 35 and 13 nm, respectively. The IC50 values of ZnO and TiO2-NPs against S. mitis ATCC 6249 were 37 and 77 µg ml(-1), respectively, while the IC50 values against S. mitis Ora-20 isolate were 31 and 53 µg ml(-1), respectively. Live and dead staining, biofilm formation on the surface of polystyrene plates, and extracellular polysaccharide production show the same pattern. Exposure to these nanoparticles also shows an increase (26-83 %) in super oxide dismutase (SOD) activity. Three genes, namely bapA1, sodA, and gtfB like genes from these bacteria were identified and sequenced for quantitative real-time PCR analysis. An increase in sodA gene (1.4- to 2.4-folds) levels and a decrease in gtfB gene (0.5- to 0.9-folds) levels in both bacteria following exposure to ZnO and TiO2-NPs were observed. Results presented in this study verify that ZnO-NPs and TiO2-NPs can control the growth and biofilm formation activities of these strains at very low concentration and hence can be used as alternative antimicrobial agents for oral hygiene.
Cernei, Natalia; Lackova, Zuzana; Guran, Roman; Hynek, David; Skladanka, Jiri; Horky, Pavel; Zitka, Ondrej; Adam, Vojtech
2016-01-01
The presence of biogenic amines is a hallmark of degraded food and its products. Herein, we focused on the utilization of magnetic nanoparticles off-line coupled with ion exchange chromatography with post-column ninhydrin derivatization and Vis detection for histamine (Him) separation and detection. Primarily, we described the synthesis of magnetic nanoparticles with nanomaghemite core (γ-Fe2O3) functionalized with titanium dioxide and, then, applied these particles to specific isolation of Him. To obtain further insight into interactions between paramagnetic particles’ (PMP) surface and Him, a scanning electron microscope was employed. It was shown that binding of histamine causes an increase of relative current response of deprotonated PMPs, which confirmed formation of Him-PMPs clusters. The recovery of the isolation showed that titanium dioxide-based particles were able to bind and preconcentrate Him with recovery exceeding 90%. Finally, we successfully carried out the analyses of real samples obtained from silage. We can conclude that our modified particles are suitable for Him isolation, and thus may serve as the first isolation step of Him from biological samples, as it is demonstrated on alfalfa seed variety Tereza silage. PMID:27626434
Cheng, Yan; Chang, Yun; Feng, Yanlin; Liu, Ning; Sun, Xiujuan; Feng, Yuqing; Li, Xi; Zhang, Haiyuan
2017-05-01
Simulated sunlight has promise as a light source able to alleviate the severe pain associated with patients during photodynamic therapy (PDT); however, low sunlight utilization efficiency of traditional photosensitizers dramatically limits its application. Titanium-dioxide-nanoparticle-gold-nanocluster-graphene (TAG) heterogeneous nanocomposites are designed to efficiently utilize simulated sunlight for melanoma skin cancer PDT. The narrow band gap in gold nanoclusters (Au NCs), and staggered energy bands between Au NCs, titanium dioxide nanoparticles (TiO 2 NPs), and graphene can result in efficient utilization of simulated sunlight and separation of electron-hole pairs, facilitating the production of abundant hydroxyl and superoxide radicals. Under irradiation of simulated sunlight, TAG nanocomposites can trigger a series of toxicological responses in mouse B16F1 melanoma cells, such as intracellular reactive oxygen species production, glutathione depletion, heme oxygenase-1 expression, and mitochondrial dysfunctions, resulting in severe cell death. Furthermore, intravenous or intratumoral administration of biocompatible TAG nanocomposites in B16F1-tumor-xenograft-bearing mice can significantly inhibit tumor growth and cause severe pathological tumor tissue changes. All of these results demonstrate prominent simulated sunlight-mediated PDT effects. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A silicon dioxide modified magnetic nanoparticles-labeled lateral flow strips for HBs antigen.
Zhang, Xueqing; Jiang, Lin; Zhang, Chunlei; Li, Ding; Wang, Can; Gao, Feng; Cui, Daxiang
2011-12-01
Herein we reported a new type of silicon dioxide wrapped magnetic nanoparticles-labeled lateral flow strip for detection of HBs antigen in sera. The SiO2 wrapped Fe3O4 nanocomposites were prepared and characterized by HR-TEM, FTIR and magnetometer. As-prepared nanocomposites were used to label anti-HBV surface monoclonal antibody, the lateral flow strips were constructed, and 100 specimens of sera were collected and tested. Results showed that the prepared SiO2 wrapped Fe3O4 nanocomposites were shell/core structure, well dispersed, with the size of 25 nm in diameter, the thickness of the shell was about 3 nm, their magnetic saturation intensity was 44.3 meu g(-1). Clinical sera specimens test results showed that the prepared lateral flow strips were with the detection limitation of 5 pg/mL by naked eye observation, and 0.1 pg/mL by CCD reader or MAR Analyzer, specificity was 100%. In conclusion, one kind of silicon dioxide wrapped magnetic nanoparticles-labeled lateral flow strip for ultrasensitive detection of HBs antigen was successfully developed, its ease of use, sensitiveness and low-cost make it well-suited for population-based on-the-site hepatitis B screening.
USDA-ARS?s Scientific Manuscript database
Ingestion of nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface and a barrier between the body and the external environment, and is the site of essential nutrient abs...
Surface transformation can affect the stability, reactivity, and toxicity of titanium dioxide (TiO2) nanoparticles (NPs) when released to water environments. Herein, we investigated the release kinetics of Si impurity frequently introduced during NP synthesis and the resulting ef...
Soils are major sinks of engineered nanoparticles (ENPs) as results of land applications of sewage sludge, accidental spills, or deliberate applications of ENPs (e.g., nano-pesticides). In this study, the transport behaviors of four widely used ENPs (titanium dioxide [TiO2], buck...
NASA Astrophysics Data System (ADS)
Ilina, Svetlana; Baran, Nicole; Slomberg, Danielle; Devau, Nicolas; Pariat, Anne; Sani-Kast, Nicole; Scheringer, Martin; Labille, Jérôme; Ollivier, patrick
2017-04-01
Water quality is increasingly monitored worldwide, where various levels of nitrate and pesticide and/or metabolite contamination have been confirmed. Glyphosate [N-(phosphonomethyl)glycine] is probably the most widely used herbicide in the world. AMPA [aminomethylphosphonic acid] is its main degradation product. Although glyphosate mobility in the environment is supposed to be limited because of its high adsorption capacity in soils several studies show that glyphosate may reach both surface and ground-waters either by transport in dissolved form, or particle bonded onto soil colloids. At the same time, in recent years, rapid development of new technologies has resulted in a significant increase in the production and uses of products containing nanoparticles, notably dioxide titanium nanoparticles. This enthusiasm for nanotechnology is however accompanied by awareness about the potential release and impact of the nanoparticles in the environment. The aim of the study is to increase the knowledge on pesticide and nanoparticles interactions that may be present as contaminant cocktail in waters. Thanks to lab-experiments conducted with glyphosate or AMPA and rutile or anatase under different water chemistry conditions (pH, ionic strength, presence and concentrations of mono- and bivalent cations), we were able to describe the colloidal stability of nanoparticles that control their mobility and to characterize the sorption of pesticide on these nanoparticles and their transformation.
Besinis, Alexandros; De Peralta, Tracy
2014-01-01
Metal-containing nanomaterials have the potential to be used in dentistry for infection control, but little is known about their antibacterial properties. This study investigated the toxicity of silver (Ag), titanium dioxide and silica nanoparticles (NPs) against the oral pathogenic species of Streptococcus mutans, compared to the routine disinfectant, chlorhexidine. The bacteria were assessed using the minimum inhibitory concentration assay for growth, fluorescent staining for live/dead cells, and measurements of lactate. All the assays showed that Ag NPs had the strongest antibacterial activity of the NPs tested, with bacterial growth also being 25-fold lower than that in chlorhexidine. The survival rate of bacteria under the effect of 100 mg l−1 Ag NPs in the media was 2% compared to 60% with chlorhexidine, while the lactate concentration was 0.6 and 4.0 mM, respectively. Silica and titanium dioxide NPs had limited effects. Dialysis experiments showed negligible silver dissolution. Overall, Ag NPs were the best disinfectant and performed better than chlorhexidine. Improvements to the MIC assay are suggested. PMID:23092443
Dorier, M; Brun, E; Veronesi, G; Barreau, F; Pernet-Gallay, K; Desvergne, C; Rabilloud, T; Carapito, C; Herlin-Boime, N; Carrière, M
2015-04-28
TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken together, these data suggest that TiO2-NPs may increase the functionality of gut epithelial cells, particularly their property to form a protective barrier against exogenous toxicants and to absorb nutrients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, B; Sajo, E; Ouyang, Z
2016-06-15
Purpose: A recent publication has shown that by delivering titanium dioxide nanoparticles (titania) as a photosensitizer into tumors, Cerenkov radiation (CR) produced by radionuclides could be used for substantially boosting damage to cancer cells. The present work compares CR production by various clinically relevant radiation sources including internal radionuclides and external beam radiotherapy (EBRT), and provides preliminarily computational results of CR absorption by titania. Methods: 1) Geant4.10.1 was used to simulate ionizing radiation-induced CR production in a 1cm diameter spherical volume using external radiotherapy sources: Varian Clinac IX 6MV and Eldorado {sup 60}Co, both with 10*10 cm{sup 2} field size.more » In each case the volume was placed at the maximum dose depth (1.5cm for 6MV source and 0.5cm for {sup 60}Co). In addition, {sup 18}F, {sup 192}Ir and {sup 60}Co were simulated using Geant4 radioactive decay models as internal sources. Dose deposition and CR production spectra in 200nm-400nm range were calculated as it is the excitation range of titania. 2) Using 6MV external source, the absorption by titania was calculated via the track length of CR in the spherical volume. The nanoparticle concentration was varied from 0.25 to 5µg/g. Results: Among different radioactive sources, results showed that {sup 18}F induced the highest amount of CR per disintegration, but {sup 60}Co had the highest yield per unit dose. When compared with external sources, 6MV source was shown to be the most efficient for the the same delivered dose. Simulations indicated increased absorption for increasing concentrations, with up to 68% absorption of generated CR for 5µg/g titania concentration. Conclusion: The results demonstrate that 6MV beam is favored with a higher CR yield, compared to radionuclides, and that the use of higher concentrations of titania may increase photosensitization. From the findings, we propose that if sufficiently potent concentrations of titania are delivered to tumors this could substantially boost EBRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y.; Fowlkes, J. D.; Roberts, N. A.
Nanoscale copper rings of different radii, thicknesses, and widths were synthesized on silicon dioxide thin films and were subsequently liquefied via a nanosecond pulse laser treatment. During the nanoscale liquid lifetimes, the rings experience competing retraction dynamics and thin film and/or Rayleigh-Plateau types of instabilities, which lead to arrays of ordered nanodroplets. Surprisingly, the results are significantly different from those of similar experiments carried out on a Si surface.(1) We use hydrodynamic simulations to elucidate how the different liquid/solid interactions control the different instability mechanisms in the present problem.
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Shah, Faisal; Khan, Muhammad Ijaz; Alsaedi, Ahmed
2018-03-01
Mixed convection stagnation point flow of nanofluid by a vertical permeable circular cylinder has been addressed. Water is treated as ordinary liquid while nanoparticles include aluminium oxide, copper and titanium dioxide. Homogeneous-heterogeneous reactions are considered. The nonlinear higher order expressions are changed into first ordinary differential equations and then solved by built-in-Shooting method in mathematica. The results of velocity, temperature, concentration, skin friction and local Nusselt number are discussed. Our results demonstrate that surface drag force and heat transfer rate are enhanced linearly for higher estimation of curvature parameter. Further surface drag force decays for aluminium oxide and it enhances for copper nanoparticle. Heat transfer rate enhances with increasing all three types of nanoparticles. In addition, the lowest heat transfer rate is obtained in case of titanium dioxide when compared with copper and aluminium oxide.
Grassian, Vicki H; O'shaughnessy, Patrick T; Adamcakova-Dodd, Andrea; Pettibone, John M; Thorne, Peter S
2007-03-01
Nanotechnology offers great promise in many industrial applications. However, little is known about the health effects of manufactured nanoparticles, the building blocks of nanomaterials. Titanium dioxide (TiO(2)) nanoparticles with a primary size of 2-5 nm have not been studied previously in inhalation exposure models and represent some of the smallest manufactured nanoparticles. The purpose of this study was to assess the toxicity of these nanoparticles using a murine model of lung inflammation and injury. The properties of TiO(2) nanoparticles as well as the characteristics of aerosols of these particles were evaluated. Mice were exposed to TiO(2) nanoparticles in a whole-body exposure chamber acutely (4 hr) or subacutely (4 hr/day for 10 days). Toxicity in exposed mice was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase (LDH) activity and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid. Lungs were also evaluated for histopathologic changes Mice exposed acutely to 0.77 or 7.22 mg/m(3) nanoparticles demonstrated minimal lung toxicity or inflammation. Mice exposed subacutely (8.88 mg/m(3)) and necropsied immediately and at week 1 or 2 postexposure had higher counts of total cells and alveolar macrophages in the BAL fluid compared with sentinels. However, mice recovered by week 3 postexposure. Other indicators were negative. Mice subacutely exposed to 2-5 nm TiO(2) nanoparticles showed a significant but moderate inflammatory response among animals at week 0, 1, or 2 after exposure that resolved by week 3 postexposure.
NASA Astrophysics Data System (ADS)
Taing, James
The photodeposition of gold, platinum, or silver nanoparticles selectively onto isolated titanium dioxide (TiO2) nanoparticles created metal/TiO2 photocatalysts and heterogeneous catalysts, and validated the photocatalytic property of the semiconductor. The isolated and ordered TiO2 nanoparticles permitted clear observations of the stability, and changes in morphology, of the particles in various experimental conditions. The fabrication of TiO2 nanoparticles at the steps of highly oriented pyrolytic graphite (HOPG), utilizing physical vapor deposition, required heating the graphite substrate to a minimum of 800 °C. The production of a photocurrent, and plating of gold nanoparticles, confirmed the photocatalytic property of the TiO2 nanoparticles on HOPG when utilized as a photoelectrode in a two half-cell setup. Employing sodium chloride (1.0 M) as an electrolyte resulted in an increase/decrease of the photocurrent with the addition of gold cations to the half-cell without/with the TiO2 nanoparticles. A poor distribution of gold nanoparticles, roughly 40-45 nm wide, deposited around few of the TiO2 nanoparticles. A lower concentration of sodium chloride (0.1 M) resulted in a coalescence of Au nanoparticles, roughly 10 nm, around many TiO2 nanoparticles. Using sodium nitrate as an electrolyte resulted in a rapid decay in the photocurrent and a growth of an unidentified material on the TiO2 nanoparticles. The unidentified material hindered the reduction of gold cations introduced midway through the experiment. With gold cations present at the onset of the experiment, disperse gold nanoparticles (˜5-10 nm) deposited around the TiO2 nanoparticles. In the absence of additional electrolyte, many disperse gold nanoparticles less than 5 nm deposited onto the TiO2 nanoparticles. More platinum than gold selectively deposited onto the TiO2 nanoparticles. On the contrary, less silver selectively deposited onto the TiO2 nanoparticles. Scanning electron microscopy and atomic force microscopy determined the morphology and distribution of the TiO2 nanoparticles and metal/TiO 2 nanocomposites. Energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy identified the composition of the materials.
Carbon dioxide conversion over carbon-based nanocatalysts.
Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman
2013-07-01
The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.
NASA Astrophysics Data System (ADS)
Wang, Yanli; Yao, Chenjie; Li, Chenchen; Ding, Lin; Liu, Jian; Dong, Peng; Fang, Haiping; Lei, Zhendong; Shi, Guosheng; Wu, Minghong
2015-07-01
To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials. We studied the effect of nano-TiO2, nano-Al2O3 and nano-SiO2 deposition films on the ion concentration on a cell-free system simulating the cell membrane. The results showed that the ion concentration of K+, Ca2+, Na+, Mg2+ and SO42- decreased significantly following filtration of the prepared deposition films. More specifically, at a high nano-TiO2 concentration (200 mg L-1) and a long nano-TiO2 deposition time (48 h), the concentration of Na+ decreased from 2958.01 to 2775.72, 2749.86, 2757.36, and 2719.82 mg L-1, respectively, for the four types of nano-TiO2 studied. Likewise, the concentration of SO42- decreased from 38.83 to 35.00, 35.80, 35.40, and 35.27 mg L-1, respectively. The other two kinds of typical low toxicity nanomaterials (nano-Al2O3 and nano-SiO2) have a similar impact on the ion concentration change trend. Adsorption of ions on nanoparticles and the hydrated shell around the ions strongly hindered the ions through the nanoparticle films. The endocytosed nanoparticles could be released from the cells without inducing cytotoxicity. Hindering the ion exchange and disrupting the exocytosis process are the main factors that induce cytotoxicity in the presence of excess nano-TiO2 on the cell surface. The current findings may offer a universal principle for understanding the mechanism of cytotoxicity induced by low toxicity nanomaterials.To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials. We studied the effect of nano-TiO2, nano-Al2O3 and nano-SiO2 deposition films on the ion concentration on a cell-free system simulating the cell membrane. The results showed that the ion concentration of K+, Ca2+, Na+, Mg2+ and SO42- decreased significantly following filtration of the prepared deposition films. More specifically, at a high nano-TiO2 concentration (200 mg L-1) and a long nano-TiO2 deposition time (48 h), the concentration of Na+ decreased from 2958.01 to 2775.72, 2749.86, 2757.36, and 2719.82 mg L-1, respectively, for the four types of nano-TiO2 studied. Likewise, the concentration of SO42- decreased from 38.83 to 35.00, 35.80, 35.40, and 35.27 mg L-1, respectively. The other two kinds of typical low toxicity nanomaterials (nano-Al2O3 and nano-SiO2) have a similar impact on the ion concentration change trend. Adsorption of ions on nanoparticles and the hydrated shell around the ions strongly hindered the ions through the nanoparticle films. The endocytosed nanoparticles could be released from the cells without inducing cytotoxicity. Hindering the ion exchange and disrupting the exocytosis process are the main factors that induce cytotoxicity in the presence of excess nano-TiO2 on the cell surface. The current findings may offer a universal principle for understanding the mechanism of cytotoxicity induced by low toxicity nanomaterials. Electronic supplementary information (ESI) available: Nano-TiO2 characterization; changes in nucleus morphology; apoptosis assay; variations in Ca2+; schematic of the experiment to simulate ion exchange; TEM images; ion concentration change after being filtered through the nano-deposition films; theoretical simulation methods; ROS generation; intercellular communication; the movie shows the process of Na+ in the films. See DOI: 10.1039/c5nr03269e
The impact of three commercially-available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE Adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide (S...
Increased manufacture of TiO2 nano-products has caused concern about the potential toxicity of these products to the environment and in public health. Identification and confirmation of the presence of TiO2 nanoparticles derived from consumer products as opposed to industrial TiO...
Titanium dioxide (TiO2) nanoparticles (NPs) exposed to UVA radiation generate reactive oxygen species (ROS). As a component of sunscreen formulations, TiO2 NPs may be coated with Al(OH)3 to prevent ROS from causing oxidative damage to tissues. Simulated swimming pool water (SSPW)...
USDA-ARS?s Scientific Manuscript database
Bacterial spoilage is a major cause of reduced shelf life of fresh poultry; therefore, decreasing contamination by spoilage bacteria could increase the shelf life of these products. Titanium dioxide (TiO2) nanoparticles in the presence of UVA light possess antibacterial activities towards several ba...
The behavior and fate of nanoparticles (NPs) in the marine environment is largely unknown and has the potential to have important environmental and human health implications. The aggregation state and fate of NPs in the marine environment is greatly influenced by their interactio...
Moreno, Virginia; Llorent-Martínez, Eulogio J; Zougagh, Mohammed; Ríos, Angel
2016-12-01
A supercritical carbon dioxide medium was used for the decoration of functionalized multi-walled carbon nanotubes (MWCNTs) with metallic nanoparticles. This procedure allowed the rapid and simple decoration of carbon nanotubes with the selected metallic nanoparticles. The prepared nanomaterials were used to modify screen-printed electrodes, improving their electrochemical properties and allowing to obtain a wide range of working electrodes based on carbon nanotubes. These electrodes were applied to the amperometric determination of vitamin B6 in food and pharmaceutical samples as an example of the analytical potentiality of the electrodes thus prepared. Using Ru-nanoparticles-MWCNTs as the working electrode, a linear dynamic range between 2.6×10 -6 and 2×10 -4 molL -1 and a limit of detection of 0.8×10 -6 molL -1 were obtained. These parameters represented a minimum 3-fold increase in sensitivity compared to the use of bare MWCNTs or other carbon-based working electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.
Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...
USDA-ARS?s Scientific Manuscript database
Food safety or foodborne pathogen contamination is a major concern in food industry. Titanium dioxide (TiO2) is a photocatalyst and can inactivate a wide spectrum of microorganisms under UV illumination. There is significant interest in the development of TiO2-coated or –incorporated food packaging ...
Effect of engineered nanoparticles on vasomotor responses in rat intrapulmonary artery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtois, Arnaud, E-mail: arnaud.courtois@u-bordeaux2.f; Inserm, U885, Bordeaux, F-33076; Andujar, Pascal
2010-06-01
Pulmonary circulation could be one of the primary vascular targets of finest particles that can deeply penetrate into the lungs after inhalation. We investigated the effects of engineered nanoparticles on vasomotor responses of small intrapulmonary arteries using isometric tension measurements. Acute in vitro exposure to carbon nanoparticles (CNP) decreased, and in some case abolished, the vasomotor responses induced by several vasoactive agents, whereas acute exposure to titanium dioxide nanoparticles (TiO{sub 2}NP) did not. This could be attributed to a decrease in the activity of those vasoactive agents (including PGF{sub 2{alpha}}, serotonin, endothelin-1 and acetylcholine), as suggested when they were exposedmore » to CNP before being applied to arteries. Also, CNP decreased the contraction induced by 30 mM KCl, without decreasing its activity. After endoplasmic reticulum calcium stores depletion (by caffeine and thapsigargin), CaCl{sub 2} addition induced a contraction, dependent on Store-Operated Calcium Channels that was not modified by acute CNP exposure. Further addition of 30 mM KCl elicited a contraction, originating from activation of Voltage-Operated Calcium Channels that was diminished by CNP. Contractile responses to PGF{sub 2{alpha}} or KCl, and relaxation to acetylcholine were modified neither in pulmonary arteries exposed in vitro for prolonged time to CNP or TiO{sub 2}NP, nor in those removed from rats intratracheally instilled with CNP or TiO{sub 2}NP. In conclusion, prolonged in vitro or in vivo exposure to CNP or TiO{sub 2}NP does not affect vasomotor responses of pulmonary arteries. However, acute exposure to CNP decreases contraction mediated by activation of Voltage-Operated, but not Store-Operated, Calcium Channels. Moreover, interaction of some vasoactive agents with CNP decreases their biological activity that might lead to misinterpretation of experimental data.« less
NASA Astrophysics Data System (ADS)
Damiano, Marina Giacoma
High density lipoproteins (HDLs), natural nanoparticles that function as vehicles for cholesterol transport, have enhanced uptake by several human cancers. This uptake is mediated, in part, by the high affinity HDL receptor, scavenger receptor B-1 (SR-B1). More specifically, studies show that the rate of cellular proliferation of lymphoma, a cancer of the lymphocytes, is directly proportional to the amount of HDL-cholesterol available. Thus, targeting of HDL-cholesterol uptake by these cells could be an effective therapeutic approach that may have lower toxicity to healthy cells compared to conventional therapies. Biomimetic HDL can be synthesized using a gold nanoparticle template (HDL-AuNPs), which provides control over size, shape, and surface chemistry. Like their natural counterparts, HDL-AuNPs sequester cholesterol. However, since the gold nanoparticle replaces the cholesterol core of natural HDL, HDL-AuNPs inherently deliver less cholesterol. We show that HDL-AuNPs are able to induce dose dependent apoptosis in B cell lymphoma cell lines and reduce tumor volume following systemic administration to mice bearing B cell lymphoma tumors. Furthermore, HDL-AuNPs are neither toxic to healthy human lymphocytes (SR-B1-), nor to hepatocytes and macrophages (SR-B1+), which are cells naturally encountered by HDLs. Manipulation of cholesterol flux and targeting of SR-B1 are responsible for the efficacy of HDL-AuNPs against B cell lymphoma. HDL-AuNPs could be used to treat B cell lymphomas and other diseases that involve pathologic accumulation of cholesterol. Titanium dioxide nanoparticle (TiO2 NP) core HDLs (HDL-TiO 2 NPs) have been synthesized for high resolution cellular localization studies and for future use as a therapeutic and imaging agent. In initial studies, HDL-TiO(2 NPs display maximum uptake in B cell lymphoma cell lines. X-ray fluorescence microscopy studies show interaction between HDL-TiO2 NPs and cells 10 minutes after treatment and internalization after 1 hour. HDL-TiO2 NPs induce apoptosis in B cell lymphoma cell lines. These results suggest that HDL-TiO2 NPs may be used as therapeutics for lymphoma and other cancers by inducing apoptosis through manipulation of cellular cholesterol flux.
Investigation of the SERS Spectra of Hydroquinone Molecule Adsorbed on Titanium Dioxide
NASA Astrophysics Data System (ADS)
Polubotko, A. M.; Chelibanov, V. P.
2018-01-01
The paper analyzes the SERS spectrum of hydroquinone adsorbed on nanoparticles of titanium dioxide (TiO2). It is seen that the enhancement is stronger for a larger mean size of nanoparticles that is in agreement with an electrostatic approximation. In addition, it is found that there are the lines, which are forbidden in usual Raman spectra. There is also an enhancement caused both by the normal and tangential components of the electric field. This result is in agreement with the theory of SERS on semiconductor and dielectric substrates. The discovery of the forbidden lines indicates on the sufficiently large role of the strong quadrupole light-molecule interaction in such a system.
Inorganic nanoparticles as nucleic acid transporters into eukaryotic cells
NASA Astrophysics Data System (ADS)
Amirkhanov, R. N.; Zarytova, V. F.; Zenkova, M. A.
2017-02-01
The review is concerned with inorganic nanoparticles (gold, titanium dioxide, silica, iron oxides, calcium phosphate) used as nucleic acid transporters into mammalian cells. Methods for the synthesis of nanoparticles and approaches to surface modification through covalent or noncovalent attachment of low- or high-molecular-weight compounds are considered. The data available from the literature on biological action of nucleic acids delivered into the cells by nanoparticles and on the effect of nanoparticles and their conjugates and complexes on the cell survival are summarized. Pathways of cellular internalization of nanoparticles and the mechanism of their excretion, as well as the ways of release of nucleic acids from their complexes with nanoparticles after the cellular uptake are described. The bibliography includes 161 references.
NASA Astrophysics Data System (ADS)
Yurkov, G. Yu.; Kozinkin, A. V.; Koksharov, Yu. A.; Ovchenkov, E. A.; Volkov, A. N.; Kozinkin, Yu. A.; Vlasenko, V. G.; Popkov, O. V.; Ivicheva, S. N.; Kargin, Yu. F.
2013-05-01
Cobalt-containing particles are synthesized on the surface of silicon dioxide micrograins prepared by the Stöber-Fink method. The composition and structure of nanoparticles are determined by transmission electron microscopy, X-ray diffraction analysis, and EXAFS. The average size of cobalt nanoparticles in the samples is found to be 14 ± 5 nm. The resulting composites are shown to be ferromagnetics with low specific magnetization values.
Effects of Nano-Titanium Dioxide on Freshwater Algal Population Dynamics
Kulacki, Konrad J.; Cardinale, Bradley J.
2012-01-01
To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO2 (ranging from controls to 300 mg n-TiO2 L−1). We then examined the effects of n-TiO2 on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO2 had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO2 tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations. PMID:23071735
Methods of forming semiconductor devices and devices formed using such methods
Fox, Robert V; Rodriguez, Rene G; Pak, Joshua
2013-05-21
Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
Methods for forming particles from single source precursors
Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID
2011-08-23
Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
Nanostructures having crystalline and amorphous phases
Mao, Samuel S; Chen, Xiaobo
2015-04-28
The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.
NASA Astrophysics Data System (ADS)
Hamal, Dambar B.
For solar environmental remediation, a new generation of nanosized (< 10 nm) titanium dioxide photocatalysts codoped with metals and nonmetals, or metals only were prepared by the xero-gel and aero-gel methods. For silver or cobalt-based xero-gel titanium dioxide photocatalysts, photoactivities tests revealed that codoping of titanium dioxide with a metal (1% Ag or 2% Co) and nonmetals (carbon and sulfur) is necessary to achieve high-activities for acetaldehyde degradation under visible light (wavelength > 420 nm). It was concluded that high visible-light-activities for acetaldehyde degradation over codoped titanium dioxide were attributed to an interplay of anatase crystallinity, high-surface area, reduced band-gap (< 3.0 eV), uniform dispersion of doped metal ions, and suppressed recombination rate of photogenerated electronhole pairs. Moreover, the nature and amount of codoped metals play a significant role in visible-light-induced photocatalysis. Metals (Al, Ga, and In) doped/codoped titanium dioxide photocatalysts were prepared by the aero-gel method. The photocatalytic studies showed that activities of metal doped/codoped photocatalysts under UV light (wavelength < 400 nm) were found to be dependent on pollutants. Indium demonstrated beneficial effects in both textural and photocatalytic properties. Gallium and indium codoped titanium dioxide photocatalysts displayed even better performance in the CO oxidation reaction under UV light. Notably, titanium dioxide codoped with Ga, In, and Pt, exhibited unique photoactivities for the CO oxidation under both UV and visible light irradiation, indicating that this system could have promise for the water-gas shift reaction for hydrogen production. Silver-based nanostructured titanium dioxide samples were developed for killing human pathogens (Escherichia coli cells and Bacillus subtilis spores). Biocidal tests revealed that silver, carbon, and sulfur codoped titanium dioxide nanoparticles (< 10 nm) possess very strong antimicrobial actions on both E. coli (logarithmic kill > 8) and B. subtilis spores (logarithmic kill > 5) for 30 minute exposures in dark conditions compared with Degussa P25. It was believed that the carbon and sulfur codoped titanium dioxide support and Ag species acted synergistically during deactivation of both E. coli and B. subtilis spores. Thus, titanium dioxide codoped with silver, carbon, sulfur can serve as a multifunctional generic biocide and a visible-light-active photocatalyst.
The mechanisms governing the transport and retention kinetics of titanium dioxide (TiO2, rutile) nanoparticle (NP) aggregates were investigated in saturated porous media. Experiments were carried out under a range of well-controlled ionic strength (from DI water up to 1 mM) and...
NASA Astrophysics Data System (ADS)
Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying
2016-02-01
Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide.
Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying
2016-02-11
Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide.
Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying
2016-01-01
Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide. PMID:26865351
Jovanović, Boris; Cvetković, Vladimir J; Mitrović, Tatjana Lj
2016-02-01
The fruitfly, Drosophila melanogaster was exposed to the human food grade of E171 titanium dioxide (TiO2). This is a special grade of TiO2 which is frequently omitted in nanotoxicology studies dealing with TiO2, yet it is the most relevant grade regarding oral exposure of humans. D. melanogaster larvae were exposed to 0.002 mg mL(-1), 0.02 mg mL(-1), 0.2 mg mL(-1), and 2 mg mL(-1) of TiO2 in feeding medium, and the survival, fecundity, pupation time, and expression of genes involved in oxidative stress response were monitored. TiO2 did not affect survival but significantly increased time to pupation (p < 0.001). Fecundity of D. melanogaster was unaffected by the treatment. Expression of the gene for catalase was markedly downregulated by the treatment, while the effect on the downregulation of superoxide dismutase 2 was less pronounced. After four days of dietary exposure TiO2 was present in a significant amount in larvae, but was not transferred to adults during metamorphosis. Two individuals with aberrant phenotype similar to previously described gold nanoparticles induced mutant phenotypes were detected in the group exposed to TiO2. In general, TiO2 showed little toxicity toward D. melanogaster at concentrations relevant to oral exposure of humans. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhiyuan, Liu; Shuili, Yu; Heedeung, Park; Qingbin, Yuan; Guicai, Liu; Qi, Li
2016-08-01
Titanium dioxide nanoparticles (TiO2 NPs) are inevitably present in the aquatic environment owing to their increasing production and use. However, knowledge of the potential effects of TiO2 NPs on the treatment of drinking water is scarce. Herein, the effects of two types of anatase TiO2 NPs (TP1, 25 nm; TP2, 100 nm) on the bacterial community in a biological activated carbon (BAC) filter were investigated via quantitative polymerase chain reaction (Q-PCR) analysis, ATP quantification, and 454 pyrosequencing analysis. Both TP1 and TP2 significantly inhibited the bacterial ATP level (p < 0.01) and induced a decrease in the abundance of bacterial 16S rDNA gene copies at doses of 0.1 and 100 mg L(-1). Simultaneously, the diversity and evenness of the bacterial communities were considerably reduced. The relative abundances of bacteria annotated to OTUs from Nitrospira class and Betaproteobacteria class decreased upon TiO2 NP treatment, whereas those of Bacilli class and Gammaproteobacteria class increased. TiO2 NP size showed a greater effect on the bacterial composition than did the dose based on Bray-Curtis distances. These findings identified negative effects of TiO2 NPs on the bacterial community in the BAC filter. Given the fact that BAC filters are used widely in drinking water treatment plants, these results suggested a potential threat by TiO2 NP to drinking water treatment system.
Advances in antimicrobial photodynamic inactivation at the nanoscale
Kashef, Nasim; Huang, Ying-Ying; Hamblin, Michael R.
2017-01-01
The alarming worldwide increase in antibiotic resistance amongst microbial pathogens necessitates a search for new antimicrobial techniques, which will not be affected by, or indeed cause resistance themselves. Light-mediated photoinactivation is one such technique that takes advantage of the whole spectrum of light to destroy a broad spectrum of pathogens. Many of these photoinactivation techniques rely on the participation of a diverse range of nanoparticles and nanostructures that have dimensions very similar to the wavelength of light. Photodynamic inactivation relies on the photochemical production of singlet oxygen from photosensitizing dyes (type II pathway) that can benefit remarkably from formulation in nanoparticle-based drug delivery vehicles. Fullerenes are a closed-cage carbon allotrope nanoparticle with a high absorption coefficient and triplet yield. Their photochemistry is highly dependent on microenvironment, and can be type II in organic solvents and type I (hydroxyl radicals) in a biological milieu. Titanium dioxide nanoparticles act as a large band-gap semiconductor that can carry out photo-induced electron transfer under ultraviolet A light and can also produce reactive oxygen species that kill microbial cells. We discuss some recent studies in which quite remarkable potentiation of microbial killing (up to six logs) can be obtained by the addition of simple inorganic salts such as the non-toxic sodium/potassium iodide, bromide, nitrite, and even the toxic sodium azide. Interesting mechanistic insights were obtained to explain this increased killing. PMID:29226063
Advances in antimicrobial photodynamic inactivation at the nanoscale
NASA Astrophysics Data System (ADS)
Kashef, Nasim; Huang, Ying-Ying; Hamblin, Michael R.
2017-08-01
The alarming worldwide increase in antibiotic resistance amongst microbial pathogens necessitates a search for new antimicrobial techniques, which will not be affected by, or indeed cause resistance themselves. Light-mediated photoinactivation is one such technique that takes advantage of the whole spectrum of light to destroy a broad spectrum of pathogens. Many of these photoinactivation techniques rely on the participation of a diverse range of nanoparticles and nanostructures that have dimensions very similar to the wavelength of light. Photodynamic inactivation relies on the photochemical production of singlet oxygen from photosensitizing dyes (type II pathway) that can benefit remarkably from formulation in nanoparticle-based drug delivery vehicles. Fullerenes are a closed-cage carbon allotrope nanoparticle with a high absorption coefficient and triplet yield. Their photochemistry is highly dependent on microenvironment, and can be type II in organic solvents and type I (hydroxyl radicals) in a biological milieu. Titanium dioxide nanoparticles act as a large band-gap semiconductor that can carry out photo-induced electron transfer under ultraviolet A light and can also produce reactive oxygen species that kill microbial cells. We discuss some recent studies in which quite remarkable potentiation of microbial killing (up to six logs) can be obtained by the addition of simple inorganic salts such as the non-toxic sodium/potassium iodide, bromide, nitrite, and even the toxic sodium azide. Interesting mechanistic insights were obtained to explain this increased killing.
Gas sensing with gold-decorated vertically aligned carbon nanotubes
Mudimela, Prasantha R; Scardamaglia, Mattia; González-León, Oriol; Reckinger, Nicolas; Snyders, Rony; Llobet, Eduard; Colomer, Jean-François
2014-01-01
Summary Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm) synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2) at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length. PMID:24991529
Gas sensing with gold-decorated vertically aligned carbon nanotubes.
Mudimela, Prasantha R; Scardamaglia, Mattia; González-León, Oriol; Reckinger, Nicolas; Snyders, Rony; Llobet, Eduard; Bittencourt, Carla; Colomer, Jean-François
2014-01-01
Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm) synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2) at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length.
Current research and prospects for health effects of nanoparticles on offspring
NASA Astrophysics Data System (ADS)
Umezawa, Masakazu; Takeda, Ken
2011-10-01
Caution in handling ceramic nanoparticles is required by workers and consumers if they are to be used safely and profitably. The small size of nanoparticles can bestow high reactivity and unique translocational properties. Studies have shown that exposure to some types of nanoparticles affects the respiratory, cardiovascular and central nervous systems and various organs. When pregnant mice were exposed to nanoparticles, various organs of offspring are also affected. Our recent studies showed that prenatal exposure to nanoparticles (carbon black and titanium dioxide) causes long-term adverse effects on the reproductive, respiratory and central nervous systems of offspring. The effects of nanoparticles on fetuses and children and the possibility of them leading to the onset of diseases in adulthood are of concern. Thus, it is important to research the risk of unintentional exposure to nanoparticles, including ceramic nanoparticles, from the environment and to attempt to identify methods to protect against their toxicity.
Comotto, Mattia; Casazza, Alessandro Alberto; Aliakbarian, Bahar; Caratto, Valentina; Ferretti, Maurizio; Perego, Patrizia
2014-01-01
The influence of titanium dioxide nanoparticles (pure anatase and 15% N doped anatase) on the growth of Chlorella vulgaris, Haematococcus pluvialis, and Arthrospira platensis was investigated. Results showed that pure anatase can lead to a significant growth inhibition of C. vulgaris and A. platensis (17.0 and 74.1%, resp.), while for H. pluvialis the nanoparticles do not cause a significant inhibition. Since in these stress conditions photosynthetic microorganisms can produce antioxidant compounds in order to prevent cell damages, we evaluated the polyphenols content either inside the cells or released in the medium. Although results did not show a significant difference in C. vulgaris, the phenolic concentrations of two other microorganisms were statistically affected by the presence of titanium dioxide. In particular, 15% N doped anatase resulted in a higher production of extracellular antioxidant compounds, reaching the concentration of 65.2 and 68.0 mg gDB −1 for H. pluvialis and A. platensis, respectively. PMID:25610914
Babitha, S; Annamalai, Meenakshi; Dykas, Michal Marcin; Saha, Surajit; Poddar, Kingshuk; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Venkatesan, Thirumalai; Korrapati, Purna Sai
2018-04-01
A biomimetic Zein polydopamine based nanofiber scaffold was fabricated to deliver bone morphogenic protein-2 (BMP-2) peptide conjugated titanium dioxide nanoparticles in a sustained manner for investigating its osteogenic differentiation potential. To prolong its retention time at the target site, BMP-2 peptide has been conjugated to titanium dioxide nanoparticles owing to its high surface to volume ratio. The effect of biochemical cues from BMP-2 peptide and nanotopographical stimulation of electrospun Zein polydopamine nanofiber were examined for its enhanced osteogenic expression of human fetal osteoblast cells. The sustained delivery of bioactive signals, improved cell adhesion, mineralization, and differentiation could be attributed to its highly interconnected nanofibrous matrix with unique material composition. Further, the expression of osteogenic markers revealed that the fabricated nanofibrous scaffold possess better cell-biomaterial interactions. These promising results demonstrate the potential of the composite nanofibrous scaffold as an effective biomaterial substrate for bone regeneration. Copyright © 2017 John Wiley & Sons, Ltd.
Zhaodong Li; Chunhua Yao; Yi-Cheng Wang; Solomon Mikael; Sundaram Gunasekaran; Zhenqiang Ma; Zhiyong Cai; Xudong Wang
2016-01-01
Aldehyde-functionalized cellulose nanofibers (CNFs) were applied to synthesize Pt nanoparticles (NPs) on CNF surfaces via on-site Pt ion reduction and achieve high concentration and uniform Pt NP loading. ALD could then selectively deposit TiO2 on CNFs and keep the Pt NPs uncovered due to their drastically different hydro-affinity properties. The...
The influence of solution pH, ionic strength, and varying concentrations of the Suwannee River Humic Acid (SRHA) on the transport of titanium dioxide (TiO2, rutile) nanoparticle aggregates (nTiO2) in saturated porous media was investigated through systematically examining the tra...
Distinct effects of humic acid (HA, 0 – 10 mg L-1) on the transport of titanium dioxide (rutile) nanoparticles (nTiO2) through saturated sand columns were observed under conditions of environmental relevance (ionic strength 3 – 200 mM NaCl, pH 5.7 and 9.0). Specifical...
Column tests show nanoparticles (NPs) of Cu(0) and ZnO were immobile at neutral pH in saturated sand.They became mobile in the presence of trizma, humic/fulvic, and citric/oxalic/formic acids. Copper NPs were mobile at pH 9. The deposition rates of TiO2 NP aggregates in both KCl ...
Veisi, Farzaneh; Zazouli, Mohammad Ali; Ebrahimzadeh, Mohammad Ali; Charati, Jamshid Yazdani; Dezfoli, Amin Shiralizadeh
2016-11-01
The photocatalytic degradation of furfural in aqueous solution was investigated using N-doped titanium dioxide nanoparticles under sunlight and ultraviolet radiation (N-TiO 2 /Sun and N-TiO 2 /UV) in a lab-scale batch photoreactor. The N-TiO 2 nanoparticles prepared using a sol-gel method were characterized using XRD, X-ray photoelectron spectroscopy (XPS), and SEM analyses. Using HPLC to monitor the furfural concentration, the effect of catalyst dosage, contact time, initial solution pH, initial furfural concentration, and sunlight or ultraviolet radiation on the degradation efficiency was studied. The efficiency of furfural removal was found to increase with increased reaction time, nanoparticle loading, and pH for both processes, whereas the efficiency decreased with increased furfural concentration. The maximum removal efficiencies for the N-TiO 2 /UV and N-TiO 2 /Sun processes were 97 and 78 %, respectively, whereas the mean removal efficiencies were 80.71 ± 2.08 % and 62.85 ± 2.41 %, respectively. In general, the degradation and elimination rate of furfural using the N-TiO 2 /UV process was higher than that using the N-TiO 2 /Sun process.
Liu, Wei; Li, Xinshi; Li, Wentao; Zhang, Qiqi; Bai, Hua; Li, Junfang; Xi, Guangcheng
2018-05-01
Photothermal therapy (PTT) is one of promising cancer therapy with high efficiency and minimal invasiveness. Exploiting of perfect PTT agent is vital to improve the therapy. In this study, a new type of bow tie-like molybdenum dioxide (MoO 2 ) nanoparticles was successfully synthesized. These nanobow-ties had strong localized surface plasmon resonance (SPR) effect from visible to near infrared regions, and exhibited ultrahigh chemical stability. They could not only withstand high temperature heating without oxidation, but also resist the corrosion of strong acid and alkali. Meanwhile, the MoO 2 nanoparticles were highly stable in protein-containing biological medium, though they partly degraded in PBS solution. Both in vivo and in vitro experiments indicated that they exhibited inappreciable toxicity. Under illumination of near infrared laser, they showed excellent PTT effect, as revealed by significant inhibition of cancer cell viability in vitro and efficient destruction in tumor tissue growth in vivo. These MoO 2 nanoparticles possessed highly chemical stability and low toxicity with high PTT efficiency, thus promising them high potential as nanoagent in cancer treatment. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Bibin, Andriana B.; Kume, Kyo; Tsutumi, Kotaro; Fukunaga, Yukihiro; Ito, Shinnji; Imamura, Yoshiaki; Miyoshi, Norio
2011-12-01
One of the most important technologies of the 21st century is nanotechnology. Many researchers will have been focusing to employ nanotechnology for medical purpose. Our team was interested in focusing to the application of titanium dioxide (TiO2), as nano-particles, for medical purpose especially drug delivery for the cancer and tumor. The administrations of TiO2 nano-particle via the oral administration of the interface layer particles into the mouse transplanted squamous-cell-carcinoma (SCC) have already conducted. Histology study and Raman spectroscope data were applied to the serial section of frozen tumor tissue in order to observe the distribution of TiO2 nano-particle within the SCC tissue. We used near infrared laser Raman microscopy system, the wavelength is 785 nm. Hematoxyline & eosin stained image and the Raman microscopy system were also used for analyzing the photodynamic therapy (PDT) with 5-ALA and TiO2-particle-sol [TiO2]-ALA-treated tumor samples. As the result, we demonstrated the distribution of TiO2, where TiO2 particles were detected to be distributed in the blood vessel at the bleeding in the SCC tumor tissue. PDT with TiO2 nano-particles that is presented in the SCC-transplanted mouse tumor model can cause the enhancement of photodynamic reaction by nano-particles. Therefore, the combinations of PDT with TiO2 nano-particles may have a possibility to be introduced to the human body in near future for diagnose and PDT treatment of the tumor.
Meric, Pascal; Yu, Kai Man K; Tsang, Shik Chi
2004-09-28
A new approach of employing metal particles in micelles for the hydrogenation of organic molecules in the presence of fluorinated surfactant and water in supercritical carbon dioxide has very recently been introduced. This is allegedly to deliver many advantages for carrying out catalysis including the use of supercritical carbon dioxide (scCO2) as a greener solvent. Following this preliminary account, the present work aims to provide direct visual evidence on the formation of metal microemulsions and to investigate whether metal located in the soft micellar assemblies could affect reaction selectivity. Synthesis of Pd nanoparticles in perfluorohydrocarboxylate anionic micelles in scCO2 is therefore carried out in a stainless steel batch reactor at 40 degrees C and in a 150 bar CO2/H2 mixture. Homogeneous dispersion of the microemulsion containing Pd nanoparticles in scCO2 is observed through a sapphire window reactor at W0 ratios (molar water-to-surfactant ratios) ranging from 2 to 30. It is also evidenced that the use of micelle assemblies as new metal catalyst nanocarriers could indeed exert a great influence on product selectivity. The hydrogenation of a citral molecule that contains three reducible groups (aldehyde, double bonds at the 2,3-position and the 6,7-position) is studied. An unusually high selectivity toward citronellal (a high regioselectivity toward the reduction of the 2,3-unsaturation) is observed in supercritical carbon dioxide. On the other hand, when the catalysis is carried out in the conventional liquid or vapor phase over the same reaction time, total hydrogenation of the two double bonds is achieved. It is thought that the high kinetic reluctance for double bond hydrogenation of the citral molecule at the hydrophobic end (the 6,7-position) is due to the unique micelle environment that is in close proximity to the metal surface in supercritical carbon dioxide that guides a head-on attack of the molecule toward the core metal particle.
Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo
2013-10-01
Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.
Biosynthesis of titanium dioxide nanoparticles using a probiotic from coal fly ash effluent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babitha, S; Korrapati, Purna Sai, E-mail: purnasaik.clri@gmail.com
Graphical abstract: - Highlights: • Metal resistant probiotic species was isolated from coal fly ash effluent site. • Uniform sized anatase form of TiO{sub 2} nanoparticles were synthesized using Propionibacterium jensenii. • Diffraction patterns confirmed the anatase – TiO{sub 2} NPs with average size <80 nm. • TiO{sub 2} nanoparticle incorporated wound dressing exhibits better wound healing. - Abstract: The synthesis of titanium dioxide nanoparticle (TiO{sub 2} NP) has gained importance in the recent years owing to its wide range of potential biological applications. The present study demonstrates the synthesis of TiO{sub 2} NPs by a metal resistant bacterium isolatedmore » from the coal fly ash effluent. This bacterial strain was identified on the basis of morphology and 16s rDNA gene sequence [KC545833]. The physico-chemical characterization of the synthesized nanoparticles is completely elucidated by energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmission and scanning electron microscopy (TEM, SEM). The crystalline nature of the nanoparticles was confirmed by X-RD pattern. Further, cell viability and haemolytic assays confirmed the biocompatible and non toxic nature of the NPs. The TiO{sub 2} NPs was found to enhance the collagen stabilization and thereby enabling the preparation of collagen based biological wound dressing. The paper essentially provides scope for an easy bioprocess for the synthesis of TiO{sub 2} NPs from the metal oxide enriched effluent sample for future biological applications.« less
Minimum pickup velocity ( U pu) of nanoparticles in gas-solid pneumatic conveying
NASA Astrophysics Data System (ADS)
Anantharaman, Aditya; van Ommen, J. Ruud; Chew, Jia Wei
2015-12-01
This paper is the first systematic study of the pneumatic conveying of nanoparticles. The minimum pickup velocity, U pu, of six nanoparticle species of different materials [i.e., silicon dioxide (SiO2), aluminum oxide (Al2O3), and titanium dioxide (TiO2)] and surfaces (i.e., apolar and polar) was determined by the weight loss method. Results show that (1) due to relative lack of hydrogen bonding, apolar nanoparticles had higher mass loss values at the same velocities, mass loss curves with accentuated S-shaped profiles, and lower U pu values, (2) among the three species, SiO2, which has the lowest Hamaker coefficient, exhibited the greatest discrepancy between apolar and polar surfaces with respect to both mass loss curves and U pu values, (3) U mf,polar/ U mf,apolar was between 1 and 3.5 times that of U pu,polar/ U pu,apolar due to greater extents of hydrogen bonding associated with U mf, (4) U pu values were at least an order-of-magnitude lower than that expected from the well-acknowledged U pu correlation (Kalman et al., Powder Technol 160:103-113, 2005) due to agglomeration, (5) although nanoparticles should be categorized as Zone III (Kalman et al. 2005) (or Geldart group C, Powder Technol 7:285-292, 1973), the nanoparticles, and primary and complex agglomerates agreed more with the Zone I (or Geldart group B) correlation.
Lopes, F S; Oliveira, J R; Milani, J; Oliveira, L D; Machado, J P B; Trava-Airoldi, V J; Lobo, A O; Marciano, F R
2017-12-01
Recently, the development of coatings to protect biomedical alloys from oxidation, passivation and to reduce the ability for a bacterial biofilm to form after implantation has emerged. Diamond-like carbon films are commonly used for implanted medical due to their physical and chemical characteristics, showing good interactions with the biological environment. However, these properties can be significantly improved when titanium dioxide nanoparticles are included, especially to enhance the bactericidal properties of the films. So far, the deposition of hydroxyapatite on the film surface has been studied in order to improve biocompatibility and bioactive behavior. Herein, we developed a new route to obtain a homogeneous and crystalline apatite coating on diamond-like carbon films grown on 304 biomedical stainless steel and evaluated its antibacterial effect. For this purpose, films containing two different concentrations of titanium dioxide (0.1 and 0.3g/L) were obtained by chemical vapor deposition. To obtain the apatite layer, the samples were soaked in simulated body fluid solution for up to 21days. The antibacterial activity of the films was evaluated by bacterial eradication tests using Staphylococcus aureus biofilm. Scanning electron microscopy, X-ray diffraction, Raman scattering spectroscopy, and goniometry showed that homogeneous, crystalline, and hydrophilic apatite films were formed independently of the titanium dioxide concentration. Interestingly, the diamond-like films containing titanium dioxide and hydroxyapatite reduced the biofilm formation compared to controls. A synergism between hydroxyapatite and titanium dioxide that provided an antimicrobial effect against opportunistic pathogens was clearly observed. Copyright © 2017 Elsevier B.V. All rights reserved.
Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?
Zou, Xiaoyan; Shi, Junpeng; Zhang, Hongwu
2014-09-01
Due to their bactericidal and photocatalytic characteristics, silver nanoparticles (Ag NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in the fields of environment and physiology. Once these untreated nanoparticles are released into an aquatic environment and encounter one another, there is more uncertainty about their fate and ecotoxicological risks compared with the single nanoparticles. To expand our knowledge of the health and environmental impacts of nanoparticles, we investigated the possible risk of the co-existence of TiO2 NPs and Ag NPs in an aquatic environment using ciliated protozoa (Tetrahymena pyriformis) as an aquatic animal model. In this study, silver ion (Ag(+)) release and physicochemical properties, as well as their effect on oxidative stress biomarkers, were monitored. Continuous illumination (12,000 lx) led to the 20.0% decrease in Ag(+) release in comparison with dark conditions, while TiO2 NPs and continuous illumination resulted in decreasing the Ag(+) concentration to 64.3% in contrast with Ag NPs-only suspensions. Toxicity tests indicated that different illumination modes exerted distinct effects of TiO2 NPs on the toxicity of Ag NPs: no effects, antagonism and synergism in dark, natural light and continuous light, respectively. In the presence of 1.5mg/L (18.8 μM) TiO2 NPs, the toxicity of 1.5 mg/L (13.9 μM) Ag NPs was reduced by 28.7% and increased by 6.93% in natural light and 12,000 lx of continuous light, respectively. After culturing in 12,000 lx continuous light for 24h, SOD activity of the light control surged to 1.96 times compared to the dark control (P<0.001). TiO2 NPs induced a reduction of CAT activity by an average of (36.1±1.7) % in the light. In the natural light reductions in the toxicity of Ag, NPs decrease Ag(+) concentrations via adsorption of Ag(+) onto TiO2 NPs surfaces. The enhancement of Ag NPs toxicity can contribute to the formation of activated TiO2-Ag NPs complexes in continuous light. The existence of TiO2 NPs in various illumination modes changed the surface chemistry of Ag NPs and then led to different toxicity effects. TiO2 NPs reduce the environmental risks of Ag NPs in natural light, but in continuous light, TiO2 NPs enhance the environmental risks of Ag NPs. Copyright © 2014 Elsevier B.V. All rights reserved.
Demir, Eşref; Turna, Fatma; Vales, Gerard; Kaya, Bülent; Creus, Amadeu; Marcos, Ricard
2013-11-01
As in vivo system, we propose Drosophila melanogaster as a useful model for study the genotoxic risks associated with nanoparticle exposure. In this study we have carried out a genotoxic evaluation of titanium dioxide (TiO2), zirconium oxide (ZrO2) and aluminium oxide (Al2O3) nanoparticles and their microparticulated forms in D. melanogaster by using the wing somatic mutation and recombination assay. This assay is based on the principle that loss of heterozygosis and the corresponding expression of the suitable recessive markers, multiple wing hairs and flare-3, can lead to the formation of mutant clones in treated larvae, which are expressed as mutant spots on the wings of adult flies. Third instar larvae were feed with TiO2, ZrO2 and Al2O3 nanoparticles, and their microparticulated forms, at concentrations ranging from 0.1 to 10mM. Although a certain level of aggregation/agglomeration was observed in solution, it must be noted than the constant digging activity of larvae ensures that treated medium pass constantly through the digestive tract ensuring exposure. The results showed that no significant increases in the frequency of all spots (e.g. small single, large single, twin, total mwh and total spots) were observed, indicating that these nanoparticles were not able to induce genotoxic activity in the wing spot assay of D. melanogaster. Negative data were also obtained with the microparticulated forms. This indicates that the nanoparticulated form of the selected nanomaterials does not modify the potential genotoxicity of their microparticulated versions. These in vivo results contribute to increase the genotoxicity database on the TiO2, ZrO2 and Al2O3 nanoparticles. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.
2016-12-01
Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.
Raie, Diana S.; Mhatre, Eisha; El-Desouki, Doaa S.; Labena, Ahmed; El-Ghannam, Gamal; Farahat, Laila A.; Youssef, Tareq; Fritzsche, Wolfgang; Kovács, Ákos T.
2018-01-01
The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite. PMID:29346268
NASA Astrophysics Data System (ADS)
Jovanovic, Boris
2011-12-01
Nanoparticles have the potential to cause adverse effects on the fish health, but the understanding of the underlying mechanisms is limited. Major task of this dissertation was to connect gaps in current knowledge with a comprehensive sequence of molecular, cellular and organismal responses toward environmentally relevant concentrations of engineered nanoparticles (titanium dioxide -- TiO2 and hydroxylated fullerenes), outlining the interaction with the innate immune system of fish. The research was divided into following steps: 1) create cDNA libraries for the species of fathead minnow (Pimephales promelas); 2) evaluate whether, and how can nanoparticles modulate neutrophil function in P. promelas; 3) determine the changes in expression of standard biomarker genes as a result of nanoparticle treatment; 4) expose the P. promelas to nanoparticles and appraise their survival rate in a bacterial challenge study; 5) assess the impact of nanoparticles on neuro-immunological interface during the early embryogenesis of zebrafish (Danio rerio). It was hypothesized that engineered nanoparticles can cause measurable changes in fish transcriptome, immune response, and disease resistance. The results of this dissertation are: 1) application of environmentally relevant concentration of nanoparticles changed function of fish neutrophils; 2) fish exposed to nano-TiO2 had significantly increased expression of interleukin 11, macrophage stimulating factor 1, and neutrophil cytosolic factor 2, while expression of interleukin 11 and myeloperoxidase was significantly increased and expression of elastase 2 was significantly decreased in fish exposed to hydroxylated fullerenes; 3) exposure to environmental estimated concentration of nano-TiO2 significantly increased fish mortality during Aeromonas hydrophila challenge. Analysis of nano-TiO 2 distribution in fish organism outlined that the nano-TiO2 is concentrating in the fish kidney and spleen; 4) during the early embryogenesis of D. rerio exposure to nanoparticles caused shifts in gene regulation response patterns. Significant effects on gene regulation were observed on genes involved in circadian rhythm, kinase activity, vesicular transport and immune response.
Nickheslat, Ali; Amin, Mohammad Mehdi; Izanloo, Hassan; Fatehizadeh, Ali; Mousavi, Seyed Mohammad
2013-01-01
Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2 catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated. Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time. Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm). The highest removal efficiency of phenol with photocatalytic UV/TiO2 process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal. PMID:23710198
Siuzdak, K; Sawczak, M; Klein, M; Nowaczyk, G; Jurga, S; Cenian, A
2014-08-07
We report on the preparation method of nanocrystalline titanium dioxide modified with platinum by using nanosecond laser ablation in liquid (LAL). Titania in the form of anatase crystals has been prepared in a two-stage process. Initially, irradiation by laser beam of a titanium metal plate fixed in a glass container filled with deionized water was conducted. After that, the ablation process was continued, with the use of a platinum target placed in a freshly obtained titania colloid. In this work, characterization of the obtained nanoparticles, based on spectroscopic techniques--Raman, X-ray photoelectron and UV-vis reflectance spectroscopy--is given. High resolution transmission electron microscopy was used to describe particle morphology. On the basis of photocatalytic studies we observed the rate of degradation process of methylene blue (MB) (a model organic pollution) in the presence of Pt modified titania in comparison to pure TiO2--as a reference case. Physical and chemical mechanisms of the formation of platinum modified titania are also discussed here. Stable colloidal suspensions containing Pt modified titanium dioxide crystalline anatase particles show an almost perfect spherical shape with diameters ranging from 5 to 30 nm. The TiO2 nanoparticles decorated with platinum exhibit much higher (up to 30%) photocatalytic activity towards the degradation of MB under UV illumination than pure titania.
Sapi, Andras; Liu, Fudong; Cai, Xiaojun; Thompson, Christopher M; Wang, Hailiang; An, Kwangjin; Krier, James M; Somorjai, Gabor A
2014-11-12
Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ∼80 times faster, and the activation energy is ∼5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy.
Li, Jianlin; Han, Tao; Wei, Nannan; Du, Jiangyan; Zhao, Xiangwei
2009-12-15
Gold nanoparticles have been introduced into the wall framework of titanium dioxide photonic crystals by the colloidal crystal template technique. The three-dimensionally ordered macroporous gold-nanoparticle-doped titanium dioxide (3DOM GTD) film was modified on the indium-tin oxide (ITO) electrode surface and used for the hydrogen peroxide biosensor. The direct electron transfer and electrocatalysis of horseradish peroxidase (HRP) immobilized on this film have been investigated. The 3DOM GTD film could provide a good microenvironment for retaining the biological bioactivity, large internal area, and superior conductivity. The HRP/3DOM GTD/ITO electrode exhibited two couples of redox peaks corresponding to the HRP intercalated in the mesopores and adsorbed on the external surface of the film with the formal potential of -0.19 and -0.52V in 0.1M PBS (pH 7.4), respectively. The HRP intercalated in the mesopores showed a surface-controlled process with a single proton transfer. The direct electron transfer between the adsorbed HRP and the electrode is achieved without the aid of an electron mediator. The H(2)O(2) biosensor displayed a rapid eletrocatalytic response (less than 3s), a wide linear range from 0.5 microM to 1.4mM with a detection limit of 0.2 microM, high sensitivity (179.9 microAmM(-1)), good stability and reproducibility. Compared with the free-Au doped titanium dioxide photonic crystals modified electrode, the GTD modified electrode could greatly enhance the response current signal, linear detection range and higher sensitivity. The 3DOM GTD provided a new matrix for protein immobilization and direct transfer study and opened a way for low conductivity electrode biosensor.
Li, Meng; Wu, Qiong; Wang, Qiangwei; Xiang, Dandan; Zhu, Guonian
2018-06-01
In aquatic environment, the presence of nanoparticles (NPs) has been reported to modify the bioavailability and toxicity of the organic toxicants. Nevertheless, the combined toxicity of NPs and the pesticides that were used world-widely still remains unclear. Cypermethrin (CYP), a synthetic pyrethroid insecticide, is commonly used for controlling agricultural and indoor pests. Therefore, the effects of titanium dioxide NPs (nTiO 2 ) on CYP bioconcentration and its effects on the neuronal development in zebrafish were investigated in our study. Zebrafish embryos (2- hour-post-fertilization, hpf) were exposed to CYP (0, 0.4, 2 and 10 μg/L) alone or co-exposed with nTiO 2 (1 mg/L) until 120-hpf. nTiO 2 is taken up by zebrafish larvae and also it can adsorb CYP. The zebrafish body burdens of CYP was observed and CYP uptake was increased by nTiO 2 , indicating that the nTiO 2 could accelerate the bioaccumulation of CYP in larvae. Co-exposure of nTiO 2 and CYP induced the generation of reactive oxygen species. Exposure to CYP alone significantly decreased the mRNA expression of genes, including glial fibrillary acidic protein (gfap), α1-tubulin, myelin basic protein (mbp) and growth associated protein (gap-43). Besides, reductions of serotonin, dopamine and GABA concentrations were observed in zebrafish and the larval locomotion was significantly decreased in response to the lower level of the neurotransmitters. Moreover, co-exposure of nTiO 2 and CYP caused further significantly decreased in the locomotion activity, and enhanced the down-regulation of the mRNA expression of specific genes and the neurotransmitters levels. The results demonstrated that nTiO 2 increased CYP accumulation and enhanced CYP-induced developmental neurotoxicity in zebrafish. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Braga, Natália F.; da Silva, Ana Paula; Moraes Arantes, Tatiane; Lemes, Ana Paula; Cristovan, Fernando Henrique
2018-01-01
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was reinforced with titanium dioxide (TiO2) in concentrations of 1.0%, 2.5% and 5.0% (m/m) to produce nanocomposites by the solvent casting technique. TiO2 was synthesized by a hydrothermal treatment to produce nanoparticles. The nanostructure of the nanoparticles was studied by x-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The XRD confirmed TiO2 crystalline nanoparticles, with a mixture of anatase and rutile phases. Through TEM analysis, the formation of TiO2 nanorod agglomerates with an average diameter and length of 40 and 12 nm, respectively, was observed. The thermal and mechanical properties of the pure PHBV and nanocomposite films were characterized by differential scanning calorimetry (DSC) and dynamic mechanical analysis. The DSC analysis showed that the glass transition temperature decreased with the inclusion of TiO2 in the PHBV matrix in relation to pure PHBV. The results of biodegradation assays for the PHBV and nanocomposites in an aqueous medium and in soil showed morphological and structural changes for all samples, indicating a high biodegradation rate for this material. The most important conclusion is that the biodegradation of the PHBV was not affected by the addition of nanoparticles, thus enabling the use of nanocomposites in applications requiring biodegradable materials.
He, Qingyan; Zhang, Yuchen; Cai, Xixi; Wang, Shaoyun
2016-03-01
Biodegradable fish skin gelatin-titanium dioxide (TiO2) nanocomposite films were fabricated and characterized as a function of incorporating amount of TiO2 nanoparticles (gelatin/TiO2 ratio of 30:1, 20:1 and 10:1). A uniform distribution of TiO2 nanoparticles into gelatin matrix was observed using atomic force microscopy (AFM) micrographs. The data of intrinsic fluorescence spectra, Fourier transform infrared spectra (FTIR) and X-ray diffraction confirmed the interaction between protein and nanoparticles through hydrogen bonding. The TiO2-incorporated gelatin nanocomposite films exhibited more effective antibacterial activity for Escherichia coli after irradiating 120 min by UV light (365 nm), which were 54.38% for E. coli and 44.89% for Staphylococcus aureus, respectively. The analysis of physical properties revealed that addition of TiO2 nanoparticles to gelatin films significantly increased the tensile strength and elongation at break, while decreased its water vapor permeability. The light barrier measurements indicated that these films were highly transparent, and they had excellent barrier properties against UVC light at the same time. The results demonstrated the feasibility of incorporating nanoparticles to improve the properties of gelatin films, and it is of significance in utilizing the gelatin and titanium dioxide to produce biodegradable nanocomposite film as packaging material in food industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Chemically synthesized TiO2 and PANI/TiO2 thin films for ethanol sensing applications
NASA Astrophysics Data System (ADS)
Gawri, Isha; Ridhi, R.; Singh, K. P.; Tripathi, S. K.
2018-02-01
Ethanol sensing properties of chemically synthesized titanium dioxide (TiO2) and polyaniline/titanium dioxide nanocomposites (PANI/TiO2) had been performed at room temperature. In-situ oxidative polymerization process had been employed with aniline as a monomer in presence of anatase titanium dioxide nanoparticles. The prepared samples were structurally and morphologically characterized by x-ray diffraction, fourier transform infrared spectra, high resolution-transmission electron microscopy and field emission-scanning electron microscopy. The crystallinity of PANI/TiO2 nanocomposite was revealed by XRD and FTIR spectra confirmed the presence of chemical bonding between the polymer chains and metal oxide nanoparticles. HR-TEM micrographs depicted that TiO2 particles were embedded in polymer matrix, which provides an advantage over pure TiO2 nanoparticles in efficient adsorption of vapours. These images also revealed that the TiO2 nanoparticles were irregular in shape with size around 17 nm. FE-SEM studies revealed that in the porous structure of PANI/TiO2 film, the intercalation of TiO2 in PANI chains provides an advantage over pure TiO2 film for uniform interaction with ethanol vapors. The sensitivity values of prepared samples were examined towards ethanol vapours at room temperature. The PANI/TiO2 nanocomposite exhibited better sensing response and faster response-recovery examined at different ethanol concentrations ranging from 5 ppm to 20 ppm in comparison to pure TiO2 nanoparticles. The increase in vapour sensing of PANI/TiO2 sensing film as compared to pure TiO2 film had been explained in detail with the help of gas sensing mechanism of TiO2 and PANI/TiO2. This provides strong evidence that gas sensing properties of TiO2 had been considerably improved and enhanced with the addition of polymer matrix.
Cai, Li; Peng, Shengnan; Wu, Dan; Tong, Meiping
2016-01-01
Colloids (non-biological and biological) with different sizes are ubiquitous in natural environment. The investigations regarding the influence of different-sized colloids on the transport and deposition behaviors of engineered-nanoparticles in porous media yet are still largely lacking. This study investigated the effects of different-sized non-biological and biological colloids on the transport of titanium dioxide nanoparticles (nTiO2) in quartz sand under both electrostatically favorable and unfavorable conditions. Fluorescent carboxylate-modified polystyrene latex microspheres (CML) with sizes of 0.2-2 μm were utilized as model non-biological colloids, while Gram-negative Escherichia coli (∼ 1 μm) and Gram-positive Bacillus subtilis (∼ 2 μm) were employed as model biological colloids. Under the examined solution conditions, both breakthrough curves and retained profiles of nTiO2 with different-sized CML particles/bacteria were similar as those without colloids under favorable conditions, indicating that the copresence of model colloids in suspensions had negligible effects on the transport and deposition of nTiO2 under favorable conditions. In contrast, higher breakthrough curves and lower retained profiles of nTiO2 with CML particles/bacteria relative to those without copresent colloids were observed under unfavorable conditions. Clearly, the copresence of model colloids increased the transport and decreased the deposition of nTiO2 in quartz sand under unfavorable conditions (solution conditions examined in present study). Both competition of deposition sites on quartz sand surfaces and the enhanced stability/dispersion of nTiO2 induced by copresent colloids were found to be responsible for the increased nTiO2 transport with colloids under unfavorable conditions. Moreover, the smallest colloids had the highest coverage on sand surface and most significant dispersion effect on nTiO2, resulting in the greatest nTiO2 transport. Copyright © 2015. Published by Elsevier Ltd.
Measurement of the near-wall velocity profile for a nanofluid flow inside a microchannel
NASA Astrophysics Data System (ADS)
Kanjirakat, Anoop; Sadr, Reza
2015-11-01
Hydrodynamics and anomalous heat transfer enhancements have been reported in the past for colloidal suspensions of nano-sized particles dispersed in a fluid (nanofluids). However, such augmentations may manifest itself by study of fluid flow characteristics near in the wall region. Present experimental study reports near-wall velocity profile for nanofluids (silicon dioxide nanoparticles in water) measured inside a microchannel. An objective-based nano-Particle Image Velocimetry (nPIV) technique is used to measure fluid velocity within three visible depths, O(100nm), from the wall. The near-wall fluid velocity profile is estimated after implementing the required corrections for optical properties and effects caused by hindered Brownian motion, wall-particle interactions, and non-uniform exponential illumination on the measurement technique. The fluid velocities of nanofluids at each of the three visible depths are observed to be higher than that of the base fluid resulting in a higher shear rate in this region. The relative increase in shear rates for nanofluids is believed to be the result of the near-wall shear-induced particle migration along with the Brownian motion of the nanoparticles. This research is funded by NPRP grant # 08-574-2-239 from the Qatar National Research Fund (a member of Qatar Foundation).
The distinct effects of humic acid (HA, 0−10 mg L−1) on the transport of titanium dioxide (rutile) nanoparticles (nTiO2) through saturated sand columns were observed under conditions of environmental relevance (ionic strength 3−200 mM NaCl, pH 5.7 and 9.0). Specifically, the tra...
The Morphology of Titanium Dioxide Aerogels
NASA Astrophysics Data System (ADS)
Zhu, Zhu
The morphology of titanium dioxide TiO _2 aerogels has been characterized by four major techniques. This work will discuss these complementary techniques such as nitrogen adsorption, X-ray powder diffraction (XRD), electron microscopies (EM- TEM, SEM), and small angle neutron scattering (SANS). The results of these characterizations have shown that the morphology of titanium dioxide TiO_2 aerogels can be characterized in terms of two length scales: 5 nm diameter, crystalline nanoparticles of anatase closely packed into mesoaggregates about 50 nm in size. The mesoaggregates are, in turn, packed into a loosely linked structure with an overall porosity of 80%.
NASA Astrophysics Data System (ADS)
Qayyum Khan, Abdul; Yuan, Shuai; Niu, Sheng; Liu, Fengjiang; Feng, Guang; Jiang, Mengci; Zeng, Heping
2018-01-01
Photocatalytic methalyne blue dye degradation was carried out with copper (Cu)-titanium dioxide (TiO2) nanocomposites under sunlight and visible light irradiation. The Cu-TiO2 nanocomposites were fabricated via femtosecond laser ablation of pressed targets in water. The current method provides a facile route for Cu-TiO2 nanocomposites preparation, which is free from impurities on the catalysts surface. The Cu-TiO2 nanocomposites (with Cu content of 5 wt%) have shown 3 folds faster dye degradation kinetics compared with TiO2 nanoparticles under sunlight irradiation. While under visible light irradiation, the same nanocomposites exhibited 2.6 folds faster kinetics compared with TiO2 nanoparticles. The faster light harvesting efficiency of the catalysts is attributed to more hydroxyl radical generation.
Schneider, Marion; Türke, Alexander; Fischer, Wolf-Joachim; Kilmartin, Paul A
2014-09-15
During winemaking sulphur dioxide is added to prevent undesirable reactions. However, concerns over the harmful effects of sulphites have led to legal limits being placed upon such additives. There is thus a need for simple and selective determinations of sulphur dioxide in wine, especially during winemaking. The simultaneous detection of polyphenols and sulphur dioxide, using cyclic voltammetry at inert electrodes is challenging due to close oxidation potentials. In the present study, inkjet printed electrodes were developed with a suitable voltammetric signal on which the polyphenol oxidation is suppressed and the oxidation peak height for sulphur dioxide corresponds linearly to the concentration. Different types of working electrodes were printed. Electrodes consisting of gold nanoparticles mixed with silver showed the highest sensitivity towards sulphur dioxide. Low cost production of the sensor elements and ultra fast determination of sulphur dioxide by cyclic voltammetry makes this technique very promising for the wine industry. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honda, Mitsuhiro; Saito, Yuika, E-mail: yuika@ap.eng.osaka-u.ac.jp; Kawata, Satoshi
We report plasmonic nanoparticle enhanced photocatalysis on titanium dioxide (TiO{sub 2}) in the deep-UV range. Aluminum (Al) nanoparticles fabricated on TiO{sub 2} film increases the reaction rate of photocatalysis by factors as high as 14 under UV irradiation in the range of 260–340 nm. The reaction efficiency has been determined by measuring the decolorization rate of methylene blue applied on the TiO{sub 2} substrate. The enhancement of photocatalysis shows particle size and excitation wavelength dependence, which can be explained by the surface plasmon resonance of Al nanoparticles.
Mohamed, Hanan Ramadan Hamad
2015-09-01
Titanium dioxide (TiO2) nanoparticles are widely used as a food additive and coloring agent in many consumer products however limited data is available on the nano-TiO2 induced genotoxicity persistence. Thus, this study investigated the persistence of nano-TiO2 induced genotoxicity and possible induction of chronic gastritis in mice. The mice were orally administered 5, 50 or 500 mg/kg body weight nano-TiO2 for five consecutive days, and then mice from each dosage group were sacrificed 24 h or one or two weeks after the last treatment. The administration of nano-TiO2 resulted in persistent apoptotic DNA fragmentation and mutations in p53 exons (5-8) as well as significant persistent elevations in malondialdehyde and nitric oxide levels and decreases in the reduced glutathione level and catalase activity compared with the control mice in a dose- and time-dependent manner. Necrosis and inflammation were evident upon histological examination. These findings could be attributed to the persistent accumulation of nano-TiO2 at the tested doses at all three time points. Based on these findings, we conclude that the administration of nano-TiO2, even at low doses, leads to persistent accumulation of nano-TiO2 in mice, resulting in persistent inflammation, apoptosis and oxidative stress, ultimately leading to the induction of chronic gastritis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Titanium Dioxide Modulation of the Contractibility of Visceral Smooth Muscles In Vivo
NASA Astrophysics Data System (ADS)
Tsymbalyuk, Olga V.; Naumenko, Anna M.; Rohovtsov, Oleksandr O.; Skoryk, Mykola A.; Voiteshenko, Ivan S.; Skryshevsky, Valeriy A.; Davydovska, Tamara L.
2017-02-01
Electronic scanning microscopy was used in the work to obtain the image and to identify the sizes of titanium dioxide (TiO2) nanoparticles 21 ± 5 nm. The qualitative and quantitative elemental analysis of the preparations of the caecum, antrum, myometrium, kidneys, and lungs of the rats, burdened with titanium dioxide, was also performed. It was established using the tenzometric method in the isometric mode that the accumulation of titanium dioxide in smooth muscles of the caecum resulted in the considerable, compared to the control, increase in the frequency of their spontaneous contractions, the decrease in the duration of the contraction-relaxation cycle, and the decrease in the indices of muscle functioning efficiency (the index of contractions in Montevideo units (MU) and the index of contractions in Alexandria units (AU)). In the same experimental conditions, there was not the increase, but the decrease in the frequency of spontaneous contractions, the duration of the contraction-relaxation cycle, and the increase in MU and AU indices in the smooth muscles of myometrium (in the group of rats, burdened with TiO2 for 30 days). It was also determined that TiO2 modulates both the mechanisms of the input of extracellular Ca2+ ions and the mechanisms of decreasing the concentration of these cations in smooth muscle cells of the caecum during the generation of the high potassium contraction. In these conditions, there is a considerable increase in the normalized maximal velocity of the contraction phase and the relaxation phase. It was demonstrated in the work that titanium dioxide also changes the cholinergic excitation in these muscles. The impact of titanium dioxide in the group of rats, burdened with TiO2, was accompanied with a considerable impairment of the kinetics of forming the tonic component of the oxytocin-induced contraction of the smooth muscles of myometrium.
Titania nanospheres from supercritical fluids.
Darr, J A; Kellici, S; Rehman, I U
2005-06-01
Surfactant-coated amorphous titania nanospheres have been synthesised using templating 'water-in-supercritical carbon dioxide' emulsion droplets; the process represents a clean and controlled method for the manufacture of high-purity nanoparticles.
NASA Astrophysics Data System (ADS)
Dal'Toé, Adrieli T. O.; Colpani, Gustavo Lopes; Padoin, Natan; Fiori, Márcio Antônio; Soares, Cíntia
2018-05-01
Lanthanum doped titanium dioxide decorated with silver plasmonic nanoparticles (Ag-La/TiO2 NPs) materials were prepared using a simple ultrasound-assisted wet impregnation method followed by silver photodeposition. The obtained photocatalysts with different Ag contents were characterized by XRD, FE-SEM, EDX, TEM, BET, XPS, DRS and PL techniques. Moreover, the size distribution of the nanoparticles aggregates was assessed. The characterization analysis revealed that La doping slightly changed the crystalline phase of TiO2, increased the amount of surface hydroxyl groups and interacted with TiO2 nanoparticles via Ti-O-La bond, while Ag photodeposition enhanced the absorption of visible light due to the effects of localized surface plamon resonance and significantly decreased electronic recombination rate by the Schottky junction. Furthermore, the combination of Ag-La induced the formation of oxygen vacancies, which increased the amount of adsorbed surface hydroxyl groups in Ag-La/TiO2. In addition, Ag-La possibly decreased the semiconductor surface energy, which acted positively in the reduction of NPs aggregation. These features along with better textural properties (greater surface areas) played a fundamental role in the enhancement of the photocatalytic activity of Ag-La/TiO2 composites for the decolorization of methylene blue under UV-visible irradiation compared to the mono-metallic (La/TiO2 and Ag/TiO2) modified photocatalysts. Finally, a mechanism for the transfer of charge carriers in Ag-La/TiO2 photocatalyst under UV-visible irradiation was proposed.
Titanium dioxide nanoparticles: a review of current toxicological data.
Shi, Hongbo; Magaye, Ruth; Castranova, Vincent; Zhao, Jinshun
2013-04-15
Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed.
Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea.
Yu, Ran; Wu, Junkang; Liu, Meiting; Zhu, Guangcan; Chen, Lianghui; Chang, Yan; Lu, Huijie
2016-06-01
Although the widely used metal oxide nanoparticles (NPs) titanium dioxide NPs (n-TiO2), cerium dioxide NPs (n-CeO2), and zinc oxide NPs (n-ZnO) have been well known for their potential cytotoxicities to environmental organisms, their combined effects have seldom been investigated. In this study, the short-term binary effect of n-CeO2 and n-TiO2 or n-ZnO on a model ammonia oxidizing bacterium, Nitrosomonas europaea were evaluated based on the examinations of cells' physiological, metabolic, and transcriptional responses. The addition of n-TiO2 mitigated the negative effect of more toxic n-CeO2 and the binary toxicity (antagonistic toxicity) of n-TiO2 and n-CeO2 was generally lower than the single NPs induced one. While the n-CeO2/n-ZnO mixture exerted higher cytotoxicity (synergistic cytotoxicity) than that from single NPs. The increased addition of the less toxic n-CeO2 exaggerated the binary toxicity of n-CeO2/n-ZnO mixture although the solubility of n-ZnO was not significantly affected, which excluded the contribution of the dissolved Zn ions to the enhancement of the combined cytotoxicity. The cell membrane disturbances and NP internalizations were detected for all the NP impacted cultures and the electrostatic interactions among the two distinct NPs and the cells were expected to play a key role in mediating their direct contacts and the eventual binary nanotoxicity to the cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Varela-Valencia, Ruth; Gómez-Ortiz, Nikte; Oskam, Gerko; de Coss, Romeo; Rubio-Piña, Jorge; del Río-García, Marcela; Albores-Medina, Arnulfo; Zapata-Perez, Omar
2014-04-01
The reactivity of nanoparticles (NPs) in biological systems is well recognized, but there are huge gaps in our understanding of NP toxicity in fish, despite a number of recent ecotoxicity studies. Therefore, the aim of this research was to evaluate the effect of titanium dioxide NPs (TiO2-NPs) on antioxidant gene expression in the tilapia, Oreochromis niloticus. First, different sizes, shapes, and phases of TiO2-NPs were synthesized and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS). Fish were injected intraperitoneally with different concentrations (0.1, 1.0, 10.0 mg/L), sizes (7, 14, and 21 nm), and phases (anatase and rutile) of TiO2-NPs, and sacrificed 3, 6, 12, and 24 h after injection, when their livers were removed. Total RNA was extracted, and expression of the catalase ( CAT), glutathione- S-transferase ( GST), and superoxide dismutase ( SOD) genes was assessed by real-time polymerase chain reaction (RT-PCR). The results showed that injection of 1.0 mg/L TiO2-NPs induced an initial mild increase in CAT, GST, and SOD gene expression in tilapia, after which transcript levels decreased. Fish injected with 7 and 14 nm TiO2-NPs showed an increase in antioxidant transcript levels 6 h after treatment. Finally, the rutile form generated stronger induction of the GST gene than anatase TiO2-NPs during the first 6 h after injection, which suggests that exposure to rutile causes higher levels of reactive oxygen species to be produced.
Titanium dioxide nanoparticles: a review of current toxicological data
2013-01-01
Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed. PMID:23587290
Biological effect of food additive titanium dioxide nanoparticles on intestine: an in vitro study.
Song, Zheng-Mei; Chen, Ni; Liu, Jia-Hui; Tang, Huan; Deng, Xiaoyong; Xi, Wen-Song; Han, Kai; Cao, Aoneng; Liu, Yuanfang; Wang, Haifang
2015-10-01
Titanium dioxide nanoparticles (TiO2 NPs) are widely found in food-related consumer products. Understanding the effect of TiO2 NPs on the intestinal barrier and absorption is essential and vital for the safety assessment of orally administrated TiO2 NPs. In this study, the cytotoxicity and translocation of two native TiO2 NPs, and these two TiO2 NPs pretreated with the digestion simulation fluid or bovine serum albumin were investigated in undifferentiated Caco-2 cells, differentiated Caco-2 cells and Caco-2 monolayer. TiO2 NPs with a concentration less than 200 µg ml(-1) did not induce any toxicity in differentiated cells and Caco-2 monolayer after 24 h exposure. However, TiO2 NPs pretreated with digestion simulation fluids at 200 µg ml(-1) inhibited the growth of undifferentiated Caco-2 cells. Undifferentiated Caco-2 cells swallowed native TiO2 NPs easily, but not pretreated NPs, implying the protein coating on NPs impeded the cellular uptake. Compared with undifferentiated cells, differentiated ones possessed much lower uptake ability of these TiO2 NPs. Similarly, the traverse of TiO2 NPs through the Caco-2 monolayer was also negligible. Therefore, we infer the possibility of TiO2 NPs traversing through the intestine of animal or human after oral intake is quite low. This study provides valuable information for the risk assessment of TiO2 NPs in food. Copyright © 2015 John Wiley & Sons, Ltd.
Jovanović, Boris; Guzmán, Héctor M
2014-06-01
Increased use of manufactured titanium dioxide nanoparticles (nano-TiO2 ) is causing a rise in their concentration in the aquatic environment, including coral reef ecosystems. Caribbean mountainous star coral (Montastraea faveolata) has frequently been used as a model species to study gene expression during stress and bleaching events. Specimens of M. faveolata were collected in Panama and exposed for 17 d to nano-TiO2 suspensions (0.1 mg L(-1) and 10 mg L(-1) ). Exposure to nano-TiO2 caused significant zooxanthellae expulsion in all the colonies, without mortality. Induction of the gene for heat-shock protein 70 (HSP70) was observed during an early stage of exposure (day 2), indicating acute stress. However, there was no statistical difference in HSP70 expression on day 7 or 17, indicating possible coral acclimation and recovery from stress. No other genes were significantly upregulated. Inductively coupled plasma mass spectrometry analysis revealed that nano-TiO2 was predominantly trapped and stored within the posterior layer of the coral fragment (burrowing sponges, bacterial and fungal mats). The bioconcentration factor in the posterior layer was close to 600 after exposure to 10 mg L(-1) of nano-TiO2 for 17 d. The transient increase in HSP70, expulsion of zooxanthellae, and bioaccumulation of nano-TiO2 in the microflora of the coral colony indicate the potential of such exposure to induce stress and possibly contribute to an overall decrease in coral populations. © 2014 SETAC.
Liu, Jing; Zhao, Yong; Ge, Wei; Zhang, Pengfei; Liu, Xinqi; Zhang, Weidong; Hao, Yanan; Yu, Shuai; Li, Lan; Chu, Meiqiang; Min, Lingjiang; Zhang, Hongfu; Shen, Wei
2017-06-27
The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use.
Liu, Jing; Zhao, Yong; Ge, Wei; Zhang, Pengfei; Liu, Xinqi; Zhang, Weidong; Hao, Yanan; Yu, Shuai; Li, Lan; Chu, Meiqiang; Min, Lingjiang; Zhang, Hongfu; Shen, Wei
2017-01-01
The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use. PMID:28487501
Li, Qian; Li, Ti; Liu, Chengmei; DeLoid, Glen; Pyrgiotakis, Georgios; Demokritou, Philip; Zhang, Ruojie; Xiao, Hang; McClements, David Julian
Titanium dioxide (TiO 2 ) particles are used in some food products to alter their optical properties, such as whiteness or brightness. These additives typically contain a population of TiO 2 nanoparticles (d < 100 nm), which has led to concern about their potential toxicity. The objective of this study was to examine the impact of TiO 2 particles on the gastrointestinal fate of oil-in-water emulsions using a simulated gastrointestinal tract (GIT) that includes mouth, stomach, and small intestine phases. Theoretical predictions suggested that TiO 2 nanoparticles might inhibit lipid digestion through two physicochemical mechanisms: (i) a fraction of the lipase adsorbs to TiO 2 particle surfaces, thereby reducing the amount available to hydrolyze lipid droplets; (ii) some TiO 2 particles adsorb to the surfaces of lipid droplets, thereby reducing the lipid surface area exposed to lipase. The importance of these mechanisms was tested by passing protein-coated lipid droplets (2%, w/w) through the simulated GIT in the absence and presence of TiO 2 (0.5%, w/w) nanoparticles (18 nm) and fine particles (167 nm). Changes in particle characteristics (size, organization, and charge) and lipid digestion were then measured. Both TiO 2 nanoparticles and fine particles had little impact on the aggregation state and charge of the lipid droplets in the different GIT regions, as well as on the rate and extent of lipid digestion. This suggests that the theoretically predicted impact of particle size on lipid digestion was not seen in practice.
Activated carbon-supported CuO nanoparticles: a hybrid material for carbon dioxide adsorption
NASA Astrophysics Data System (ADS)
Boruban, Cansu; Esenturk, Emren Nalbant
2018-03-01
Activated carbon-supported copper(II) oxide (CuO) nanoparticles were synthesized by simple impregnation method to improve carbon dioxide (CO2) adsorption capacity of the support. The structural and chemical properties of the hybrid material were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCsQFjAC&url=http%3A%2F%2Fwww.intertek.com%2Fanalytical-laboratories%2Fxrd%2F&ei=-5WZVYSCHISz7Aatqq-IAw&usg=AFQjCNFBlk-9wqy49foh8tskmbD-GGbG9g&sig2=eKrhYjO75rl_Id2sLGpq4w&bvm=bv.96952980,d.bGg) (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and Brunauer-Emmett-Teller (BET) analyses. The analyses showed that CuO nanoparticles are well-distributed on the activated carbon surface. The CO2 adsorption behavior of the activated carbon-supported CuO nanoparticles was observed by thermogravimetric analysis (TGA), temperature programmed desorption (TPD), Fourier transform infrared (FTIR), and BET analyses. The results showed that CuO nanoparticle loading on activated carbon led to about 70% increase in CO2 adsorption capacity of activated carbon under standard conditions (1 atm and 298 K). The main contributor to the observed increase is an improvement in chemical adsorption of CO2 due to the presence of CuO nanoparticles on activated carbon.
Meshik, Xenia; Choi, Min; Baker, Adam; Malchow, R Paul; Covnot, Leigha; Doan, Samuel; Mukherjee, Souvik; Farid, Sidra; Dutta, Mitra; Stroscio, Michael A
2017-04-01
This study examines the ability of optically-excited titanium dioxide nanoparticles to influence voltage-gated ion channels in retinal horizontal cells. Voltage clamp recordings were obtained in the presence and absence of TiO 2 and ultraviolet laser excitation. Significant current changes were observed in response to UV light, particularly in the -40 mV to +40 mV region where voltage-gated Na + and K + channels have the highest conductance. Cells in proximity to UV-excited TiO 2 exhibited a left-shift in the current-voltage relation of around 10 mV in the activation of Na + currents. These trends were not observed in control experiments where cells were excited with UV light without being exposed to TiO 2 . Electrostatic force microscopy confirmed that electric fields can be induced in TiO 2 with UV light. Simulations using the Hodgkin-Huxley model yielded results which agreed with the experimental data and showed the I-V characteristics of individual ion channels in the presence of UV-excited TiO 2 . Copyright © 2016 Elsevier Inc. All rights reserved.
Minguzzi, Alessandro; Longoni, Gianluca; Cappelletti, Giuseppe; Pargoletti, Eleonora; Di Bari, Chiara; Locatelli, Cristina; Marelli, Marcello; Rondinini, Sandra; Vertova, Alberto
2016-01-06
Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO₂ nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO₂ (M_hydro_1.0%Ag) allows reaching very high specific capacity close to 1400 mAh·g -1 . Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO₂ nanoparticles.
Minguzzi, Alessandro; Longoni, Gianluca; Cappelletti, Giuseppe; Pargoletti, Eleonora; Di Bari, Chiara; Locatelli, Cristina; Marelli, Marcello; Rondinini, Sandra; Vertova, Alberto
2016-01-01
Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO2 nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO2 (M_hydro_1.0%Ag) allows reaching very high specific capacity close to 1400 mAh·g−1. Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO2 nanoparticles. PMID:28344267
TiO2 nanorods thin-films embedded with gold nanoparticles for enhanced photocatalytic activity
NASA Astrophysics Data System (ADS)
Raval, Dhyey; Jani, Margi; Mukhopadhyay, Indrajit; Ray, Abhijit
2018-05-01
This article reports on the gold nanoparticle (Au-NP) induced absorption enhancement in the hydrothermally grown titanium dioxide nanorods (TiO2-NRs). The localized surface plasmon resonance (LSPR) and transfer of electron from Au-NPs attached to the TiO2-NR have been related to their photocatalytic response. The photocurrent enhancement observed in the studies of IPCE has been explained on the basis of electrons in the conduction band of TiO2-NR. The electrons from the Au-NP to the conduction band of TiO2-NR with respect to the wavelength of the incident spectrum shows an increase in efficiency over pristine TiO2-NRs sample. Further, to investigate the role of Au-NP, an absorption spectra with its incident wavelength shows an increase in the visible spectrum in the present study. This provides an explanation for the response to the absorption of the wide bandgap semiconductor oxide which gives an opportunity to develop a hybrid structure on the transparent substrates. The better response of Au-NPs/TiO2-NRs system can be used in photocatalytic processes.
Biologically Self-Assembled Memristive Circuit Elements
2010-01-01
hydrothermal approach, TiO2 nanoparticles were synthesized by slowly stirring a 1:3 volumetric ratio mixture of titanium isopropoxide (TTIP) and isopropyl...Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Journal of Materials Processing Technology 2007, 189...important role interfacing with group IV metal oxides such as hafnium, providing a stable linkage to the surface [3]. Titanium dioxide (TiO2), which is
NASA Astrophysics Data System (ADS)
Afify, T. A.; Ghazy, O. A.; Saleh, H. H.; Ali, Z. I.
2018-02-01
Gamma radiation was used to prepare nanocomposites based on polyaniline/titanium dioxide (PANI/TiO2) or polyaniline/poly (vinyl alcohol)/titanium dioxide (PANI/PVA/TiO2). It was found that PANI/TiO2 in the form of nanocomposite as shown by the UV/vis spectroscopy. This was through the appearance and shift of two absorption peaks at 340 and 598 nm. The SEM micrographs of the PANI/TiO2 nanocomposites showed a fibrous morphology before the treatment with HCl. The TiO2 nanoparticles are clearly seen to be precipitated on the PANI fibers and the morphology changed towards the sheets shape with highly distribution on PANI surface. The transmission electron microscopy (TEM) image confirms the fibrous shape of the PANI and spherical shape of TiO2 nanoparticles. The XRD study showed a several diffraction patterns of TiO2 nanoparticles confirming the PANI/TiO2 and PANI/PVA/TiO2 nanocomposites. The FT-IR analysis indicated that there is an interfacial interaction existed between the PANI and its inorganic counterpart of TiO2 nanoparticles. The dielectric constant of the PANI/PVA showed the lowest values and was increased by either doping with TiO2 or increasing irradiation dose.
Pagnout, Christophe; Jomini, Stéphane; Dadhwal, Mandeep; Caillet, Céline; Thomas, Fabien; Bauda, Pascale
2012-04-01
The increasing production and use of titanium dioxide nanoparticles (NP-TiO(2)) has led to concerns about their possible impact on the environment. Bacteria play crucial roles in ecosystem processes and may be subject to the toxicity of these nanoparticles. In this study, we showed that at low ionic strength, the cell viability of Escherichia coli was more severely affected at pH 5.5 than at pH 7.0 and pH 9.5. At pH 5.5, nanoparticles (positively charged) strongly interacted with the bacterial cells (negatively charged) and accumulated on their surfaces. This phenomenon was observed in a much lower degree at pH 7.0 (NP-TiO(2) neutrally charged and cells negatively charged) and pH 9.5 (both NP-TiO(2) and cells negatively charged). It was also shown that the addition of electrolytes (NaCl, CaCl(2), Na(2)SO(4)) resulted in a gradual reduction of the NP-TiO(2) toxicity at pH 5.5 and an increase in this toxicity at pH 9.5, which was closely related to the reduction of the NP-TiO(2) and bacterial cell electrostatic charges. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Tang, Yanjun; Hu, Xiulan; Zhang, Xinqi; Guo, Daliang; Zhang, Junhua; Kong, Fangong
2016-10-20
Incorporation of nanofillers into a polymeric matrix has received much attention as a route to reinforced polymer nanocomposites. In the present work, an environmentally friendly chitosan (CTS)/titanium dioxide (TiO2) nanocomposite coating was designed/prepared and subsequently employed for imparting antibacterium and improved mechanical properties to cellulosic paper via surface coating. Effect of TiO2 nanoparticle loadings on the rheological behavior of nanocomposite coatings was investigated. Surface application of CTS/TiO2 nanocomposite coatings to cellulosic paper was performed, and the antibacterial activity and mechanical properties of surface-coated cellulosic paper were examined. Results showed that the increased TiO2 nanoparticle loadings decreased the viscosity and dynamic viscoelasticity of the as-prepared coatings, and improved the antibacterial activity and mechanical properties of surface-coated cellulosic paper. The optimum loading of TiO2 nanoparticles was identified at 10%. This work suggested that CTS/TiO2 nanocomposite coatings may have the potential to be used as a promising antibacterial protective coating for paper packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.
Friction factors of colloidal suspension containing silicon dioxide nanoparticles in water
NASA Astrophysics Data System (ADS)
Tang, Clement; Pant, Sarbottam; Sharif, Md. Tanveer
2015-11-01
The purpose of this study is to experimentally characterize the friction factor of a colloidal suspension flow in circular and square tubes. The suspension contained silicon dioxide nanoparticles dispersed in distilled water at 9.58% volume concentration. Rheological measurements indicated that the suspension exhibits non-Newtonian behavior, and could be modelled as a power-law generalized Newtonian fluid. The experimental study showed that, with proper characterization of the consistency and flow behavior indices, the suspension flow friction factors in circular and square tubes exhibit similarities with those of Newtonian fluid flow. In the laminar fully-developed flow region, the Poiseuille numbers are similar to those established for Newtonian fluid flow. In the turbulent region, the Dodge and Metzner relation between the friction factor and a generalized Reynolds number can adequately describe the flow. The onsets of transition to turbulent flow for the suspension vary with the shape of the tube and differ from those of Newtonian fluid flow. The deviations suggest that the flow passage shape and the presence of nanoparticles affect the onset of transition to turbulent flow. Supported by North Dakota NASA EPSCoR.
Jovanović, Boris; Milošević, Djuradj; Piperac, Milica Stojković; Savić, Ana
2016-06-01
For the first time in the current literature, the effect of titanium dioxide (TiO2) nanoparticles on the community structure of macroinvertebrates has been investigated in situ. Macroinvertebrates were exposed for 100 days to an environmentally relevant concentration of TiO2 nanoparticles, 25 mg kg(-1) in sediment. Czekanowski's index was 0.61, meaning 39% of the macroinvertebrate community structure was affected by the TiO2 treatment. Non-metric multidimensional scaling (NMDS) visualized the qualitative and quantitative variability of macroinvertebrates at the community level among all samples. A distance-based permutational multivariate analysis of variance (PERMANOVA) revealed the significant effect of TiO2 on the macroinvertebrate community structure. The indicator value analysis showed that the relative frequency and abundance of Planorbarius corneus and Radix labiata were significantly lower in the TiO2 treatment than in the control. Meanwhile, Ceratopogonidae, showed a significantly higher relative frequency and abundance in the TiO2 treatment than in the control. Copyright © 2016 Elsevier Ltd. All rights reserved.
CO2 to methanol conversion using hydride terminated porous silicon nanoparticles.
Dasog, M; Kraus, S; Sinelnikov, R; Veinot, J G C; Rieger, B
2017-03-09
Porous silicon nanoparticles (Si-NPs) prepared via magnesiothermic reduction were used to convert carbon dioxide (CO 2 ) into methanol. The hydride surface of the silicon nanoparticles acted as a CO 2 reducing reagent without any catalyst at temperatures above 100 °C. The Si nanoparticles were reused up to four times without significant loss in methanol yields. The reduction process was monitored using in situ FT-IR and the materials were characterized using SEM, TEM, NMR, XPS, and powder XRD techniques. The influence of reaction temperature, pressure, and Si-NP concentration on CO 2 reduction were also investigated. Finally, Si particles produced directly from sand were used to convert CO 2 to methanol.
NASA Astrophysics Data System (ADS)
Terentyuk, G. S.; Genina, Elina A.; Bashkatov, A. N.; Ryzhova, M. V.; Tsyganova, N. A.; Chumakov, D. S.; Khlebtsov, B. N.; Sazonov, A. A.; Dolotov, L. E.; Tuchin, Valerii V.; Khlebtsov, Nikolai G.; Inozemtseva, O. A.
2012-06-01
The delivery of gold nanoparticles (nanocages coated with a layer of silicon dioxide (40/20 nm)) dispersed in the solution (glycerol + polyethylene glycol-400, 1 : 1) into the skin tissue is studied experimentally in vivo. From the data of optical coherence tomography and histochemical analysis it follows that simple application of suspension of nanoparticles is not efficient enough for delivery of the particles into the skin as a result of passive diffusion. It is shown that fractional laser microablation of skin before the application of the suspension, followed by the topical treatment by ultrasound allows penetration through the epidermis layer and delivery of nanoparticles into dermis and hypodermis
Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide
NASA Astrophysics Data System (ADS)
Yulovskaya, V. D.; Kuz'micheva, G. M.; Klechkovskaya, V. V.; Orekhov, A. S.; Zubavichus, Ya. V.; Domoroshchina, E. N.; Shegay, A. V.
2016-03-01
Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO2/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO2 characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO2 aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibit the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.
Matouke, Moise M; Elewa, Dorcas T; Abdullahi, Karimatu
2018-05-01
The wide application of titanium dioxide nanoparticles and phosphorus in the manufacturing of many industrial products mainly used in agricultural sector has resulted in the release of considerable amounts of these compounds into freshwater aquatic ecosystem. These compounds may cause some unexpected effects to aquatic organisms. This study assessed the binary effects of Titanium nanoparticles (nTiO 2 ) and Phosphorus on Chlorella ellipsoides. Toxicological assay test of the compounds nTiO 2 (1.25 μM) alone and the combination of Titanium dioxide (1.25 μM) and Phosphorus (16, 32, 80, 160, 240 μM) was assessed, after 96 h exposures, for optical density (OD 680 ), specific growth rate, chlorophyll levels and lipid peroxidation via Malondialdehyde (MDA) activity. Superoxide dismutase (SOD), peroxidase (POD) and glutathione-s-transferase (GST) activities were also measured. Two-way ANOVA showed a significant interaction (P < 0.05) between binary mixture. Co-exposure showed a decreased phosphorus bioconcentration in the microalgae with significant increase (P < 0.05) in chlorophyll a/b and total chlorophyll contents. A significant decrease (P < 0.05) in specific growth rate and optical density were recorded whereas, antioxidant enzymes (MDA, SOD, POD, GST) activities were significantly (P < 0.05) increased. These results showed that the addition of nTiO 2 to Phosphorus affected the physiology of microalgae and should be of great concern for freshwater biodiversity. Copyright © 2018. Published by Elsevier B.V.
Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh
2013-01-01
Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco's Modified Eagle's Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P<0.05). No significant differences were found in cell viability percentages between the two groups on the other days (P>0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001). L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.
Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Wamkam, Carine Tchamakam; Opoku, Michael Kwabena; Hong, Haiping; Smith, Pauline
2011-01-01
In this paper, pH influences of zeta potential, particle size distribution, rheology, viscosity, and stability on heat transfer nanofluids are studied. Significant enhancement of thermal conductivity (TC) (>20%) containing 3 wt % zirconium dioxide (ZrO2) and titanium dioxide (TiO2) are observed near the isoelectric point (IEP). Meanwhile, at this IEP (pH), particle sizes, and viscosities of these nanofluids demonstrate a significant increase to maximum values. Experimental results also indicate that the stabilities of these nanofluids are influenced by pH values. The reasonable explanation for these interesting phenomena is that at this IEP, the repulsive forces among metal oxides are zero and nanoparticles coagulate together at this pH value. According to the Derjaguin-Landau-Verwey-Overbeek theory, when the pH is equal to or close to the IEP, nanoparticles tend to be unstable, form clusters, and precipitate. The resulting big clusters will trap water and the structures of trapped water are varied due to the strong atomic force among nanoparticles. Water is packed well inside and volume fraction of the nanoparticles will be larger. In addition, shapes of clusters containing trapped water will not be spherical but rather has irregular structure (like chains). Such structure favors thermal transport because they provide a long link. Therefore, overall TC of nanofluids is enhanced. Some literature results and conclusions related to pH effects of nanofluids are discussed and analyzed. Understanding pH effects may enable exploration of fundamental nature of nanofluids.
Richter, Jonathan W; Shull, Gabriella M; Fountain, John H; Guo, Zhongyuan; Musselman, Laura P; Fiumera, Anthony C; Mahler, Gretchen J
2018-06-01
Nanosized titanium dioxide (TiO 2 ) is a common additive in food and cosmetic products. The goal of this study was to investigate if TiO 2 nanoparticles affect intestinal epithelial tissues, normal intestinal function, or metabolic homeostasis using in vitro and in vivo methods. An in vitro model of intestinal epithelial tissue was created by seeding co-cultures of Caco-2 and HT29-MTX cells on a Transwell permeable support. These experiments were repeated with monolayers that had been cultured with the beneficial commensal bacteria Lactobacillus rhamnosus GG (L. rhamnosus). Glucose uptake and transport in the presence of TiO 2 nanoparticles was assessed using fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG). When the cell monolayers were exposed to physiologically relevant doses of TiO 2 , a statistically significant reduction in glucose transport was observed. These differences in glucose absorption were eliminated in the presence of beneficial bacteria. The decrease in glucose absorption was caused by damage to intestinal microvilli, which decreased the surface area available for absorption. Damage to microvilli was ameliorated in the presence of L. rhamnosus. Complimentary studies in Drosophila melanogaster showed that TiO 2 ingestion resulted in decreased body size and glucose content. The results suggest that TiO 2 nanoparticles alter glucose transport across the intestinal epithelium, and that TiO 2 nanoparticle ingestion may have physiological consequences.
Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.
2016-01-01
Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290
NASA Astrophysics Data System (ADS)
Boltnev, R. E.; Vasiliev, M. M.; Kononov, E. A.; Petrov, O. F.
2018-04-01
The dusty plasma structures in a glow discharge of helium in a tube cooled by superfluid helium at a temperature of 1.6 K and higher have been studied experimentally. The bimodal dust plasma formed by clouds of polydisperse cerium dioxide particles and polymer nanoparticles has been analyzed. We have observed wave oscillations in the cloud of polymer nanoparticles (with a size up to 100 nm), which existed in a narrow temperature range from 1.6 to 2.17 K. Vortices have been observed in the dusty plasma structures at helium temperatures.
Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics
NASA Astrophysics Data System (ADS)
Mao, Zhilei; Xu, Bo; Ji, Xiaoli; Zhou, Kun; Zhang, Xuemei; Chen, Minjian; Han, Xiumei; Tang, Qiusha; Wang, Xinru; Xia, Yankai
2015-04-01
Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in our daily lives, for example, in the areas of sunscreens, cosmetics, toothpastes, food products, and nanomedical reagents. Recently, increasing concern has been raised about their neurotoxicity, but the mechanisms underlying such toxic effects are still unknown. In this work, we employed a human neuroblastoma cell line (SH-SY5Y) to study the effects of TiO2 NPs on neurological systems. Our results showed that TiO2 NPs did not affect cell viability but induced noticeable morphological changes until 100 μg ml-1. Immunofluorescence detection showed disorder, disruption, retraction, and decreased intensity of the microtubules after TiO2 NPs treatment. Both α and β tubule expressions did not change in the TiO2 NP-treated group, but the percentage of soluble tubules was increased. A microtubule dynamic study in living cells indicated that TiO2 NPs caused a lower growth rate and a higher shortening rate of microtubules as well as shortened lifetimes of de novo microtubules. TiO2 NPs did not cause changes in the expression and phosphorylation state of tau proteins, but a tau-TiO2 NP interaction was observed. TiO2 NPs could interact with tubule heterodimers, microtubules and tau proteins, which led to the instability of microtubules, thus contributing to the neurotoxicity of TiO2 NPs.Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in our daily lives, for example, in the areas of sunscreens, cosmetics, toothpastes, food products, and nanomedical reagents. Recently, increasing concern has been raised about their neurotoxicity, but the mechanisms underlying such toxic effects are still unknown. In this work, we employed a human neuroblastoma cell line (SH-SY5Y) to study the effects of TiO2 NPs on neurological systems. Our results showed that TiO2 NPs did not affect cell viability but induced noticeable morphological changes until 100 μg ml-1. Immunofluorescence detection showed disorder, disruption, retraction, and decreased intensity of the microtubules after TiO2 NPs treatment. Both α and β tubule expressions did not change in the TiO2 NP-treated group, but the percentage of soluble tubules was increased. A microtubule dynamic study in living cells indicated that TiO2 NPs caused a lower growth rate and a higher shortening rate of microtubules as well as shortened lifetimes of de novo microtubules. TiO2 NPs did not cause changes in the expression and phosphorylation state of tau proteins, but a tau-TiO2 NP interaction was observed. TiO2 NPs could interact with tubule heterodimers, microtubules and tau proteins, which led to the instability of microtubules, thus contributing to the neurotoxicity of TiO2 NPs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01448d
UV stabilization of wood by nano metal oxides dispersed in propylene glycol.
Nair, Sreeja; Nagarajappa, Giridhar B; Pandey, Krishna K
2018-06-01
Nanoparticles of some of the metal oxides are known to have high UV protective efficiency. The UV filtering efficiency of nanoparticles invariably depends on their size and stability in the dispersion. In the present work, a stable dispersion of nanoparticles of three metal oxides, zinc oxide (ZnO), cerium oxide (CeO 2 ) and titanium dioxide (TiO 2 ), was prepared in propylene glycol (PG) using ultrasonication. The method is easy and useful as no additional surfactant or dispersant is needed. The particle size and its distribution was confirmed by Scanning Electron Microscopy and Dynamic Light Scattering. The stability of dispersion was assessed by UV-visible absorption spectroscopy. The UV stability of wood surfaces of Wrightia tinctoria coated with nanodispersions of ZnO, CeO 2 and TiO 2 was evaluated under laboratory conditions in an accelerated weathering tester. Changes in the colour and FTIR spectra of exposed specimens were measured periodically. Rapid colour darkening (yellowing) was observed in uncoated and PG coated specimens. In contrast, nanodispersion coated specimens prevented photo-yellowing considerably with significant reduction in colour changes examined by CIE L*, a*, b* and ΔE*. Increase in concentration of nanoparticles in the dispersion imparted higher resistance to UV induced degradation. However, increased concentration of nanoparticles reduced the transparency of the coating. FTIR analysis indicated rapid degradation of lignin in uncoated and PG coated specimens due to UV exposure. Coating of wood surfaces with nanodispersions restricted lignin degradation. The study also demonstrates the potential of propylene glycol as a dispersant for developing stable and efficient UV protective nanodispersions for wood coating. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vuong Nguyen, Thien; Nguyen, Tuan Anh; Dao, Phi Hung; Phuc Mac, Van; Hiep Nguyen, Anh; Thanh Do, Minh; Nguyen, The Huu
2016-12-01
This study aims to enhance the mechanical properties, thermal stability, weathering resistance and antibacterial property of a styrene acrylic polyurethane coating by adding rutile titania dioxide (R-TiO2) nanoparticles in coating formulation. The styrene acrylic polyurethane/R-TiO2 nanocomposite had been prepared by using ultrasonication. The effects of nanoparticles on the mechanical properties, thermal stability and weathering resistance of as-prepared coatings were investigated by using the adhesion strength and ball impact tests, the Fourier transform infrared and UV-vis analyses, thermogravimetric analysis (TGA), and UV/condensation weathering chamber equipped with UVA-340 fluorescent lamps, respectively. The disperse quality of nanoparticles in the coating was examined by using the field emission scanning electron microscope (FESEM). The mechanical test results showed that suitable content of R-TiO2 nanoparticles in the nanocomposite coating was 2 wt%. The FESEM images indicated that the nanoparticles were dispersed homogeneously into the entire volume of the coating. For the nanocomposite prepared by 3 h of ultrasonication, the average size of nanoparticles was in range of 40-50 nm. The ball impact and adhesion tests showed that the incorporation of nanoparticles into the coating significantly enhanced the impact strength from 120 to 145 kg cm and increased the adhesion from level 1 to level 0. The TGA test illustrated that in presence of nanoparticles, the decomposition temperature of coating increased from 146.9 °C to 154.21 °C. For the temperature at 50% loss in mass (T 50%), it was found that the T 50% of the neat coating is 351.86 °C. Adding the 2 wt% R-TiO2 nanoparticles into coating increased the T 50% value to 360.06 °C. After UV/condensation accelerated weathering test (30 cycles), the significant improvement in weight loss, impact strength and adhesion of the neat coating was observed with the presence of nanoparticles. The antibacterial test showed that in the nanocomposite coating, R-TiO2 nanoparticles exhibited their photocatalytic effect in the inhibition against E. coli bacterial growth. Incorporating 2 wt% of R-TiO2 nanoparticles into the coating reduced the bacterial concentration by 6.1% after 60 min of culture.
Hao, Zhineng; Yin, Yongguang; Wang, Juan; Cao, Dong; Liu, Jingfu
2018-08-01
There are increasing concerns about the adverse effects of released engineered nanoparticles and photochemically formed organohalogen compounds (OHCs) on human health and the environment. Herein, we report that titanium dioxide nanoparticles (TiO 2 NPs) can photocatalytically halogenate dissolved organic matter (DOM) to form a large number of organobromine compounds (OBCs) and organoiodine compounds (OICs), as characterized by negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry. Compared with no OHCs produced in control samples in darkness and/or without TiO 2 NPs under sunlight irradiation, various OBCs and OICs were detected in freshwater and seawater under sunlight irradiation for 12h and 24h even in the presence of 1mgL -1 TiO 2 NPs, indicating the photocatalytic roles TiO 2 NPs played in DOM halogenation. Furthermore, TiO 2 NPs could result in the photodegradation of newly formed OHCs, as evidenced by the intensity and the number of some OHCs decreased with reaction time. In addition, many TiO 2 NP-induced OBCs contained two or three bromine atoms, and/or nitrogen and sulfur elements, belonging to lignin-like, tannin-like, unsaturated hydrocarbon and aliphatic compounds. While the OICs were primarily contained one iodine, and very few consisted of nitrogen and sulfur elements, most were lignin-like and tannin-like compounds. Finally, the OBCs in freshwater were found to be formed mainly via a substitution reaction or addition reaction and were accompanied by other reactions such as photooxidation, while the OBCs in seawater and OICs were formed primarily via substitution reactions. Given the abundance of produced OHCs and their toxicity, our findings call for further studies on the exact structure and toxicity of the formed OHCs, taking account the TiO 2 NP-induced DOM photohalogenation in aquatic environments during the evaluation of the environmental effects of engineered TiO 2 NPs. Copyright © 2018 Elsevier B.V. All rights reserved.
Decontaminating soil organic pollutants with manufactured nanoparticles.
Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin
2016-06-01
Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.
Titanium dioxide nanoparticles increase inflammatory responses in vascular endothelial cells
Han, Sung Gu; Newsome, Bradley; Hennig, Bernhard
2013-01-01
Atherosclerosis is a chronic inflammatory disease that remains the leading cause of death in the United States. Numerous risk factors for endothelial cell inflammation and the development of atherosclerosis have been identified, including inhalation of ultrafine particles. Recently, engineered nanoparticles (NPs) such as titanium (TiO2) NPs have attracted much attention due to their wide range of applications. However, there are also great concerns surrounding potential adverse health effects in vascular systems. Although TiO2 NPs are known to induce oxidative stress and inflammation, the associated signaling pathways have not been well studied. The focus of this work, therefore, deals with examination of the cellular signaling pathways responsible for TiO2 NP-induced endothelial oxidative stress and inflammation. In this study, primary vascular endothelial cells were treated with TiO2 NPs for 2–16 h at concentrations of 0–50 µg/mL. TiO2 NP exposure increased cellular oxidative stress and DNA binding of NF-κB. Further, phosphorylation of Akt, ERK, JNK and p38 was increased in cells exposed to TiO2 NPs. TiO2 NPs also significantly increased induction of mRNA and protein levels of vascular cell adhesion molecule-1 (VCAM-1) and mRNA levels of monocyte chemoattractant protein-1 (MCP-1). Pretreatment with inhibitors for NF-κB (pyrrolidine dithiocarbamate), oxidative stress (epigallocatechin gallate and apocynin), Akt (LY294002), ERK (PD98059), JNK (SP600125) and p38 (SB203580) significantly attenuated TiO2 NP-induced MCP-1 and VCAM-1 gene expression, as well as activation of NF-κB. These data indicate that TiO2 NPs can induce endothelial inflammatory responses via redox-sensitive cellular signaling pathways. PMID:23380242
Yamada, Ikuho; Nomura, Kazuki; Iwahashi, Hitoshi; Horie, Masanori
2016-01-01
Today, nanoparticles are used in many products. One of the most common nanoparticles is titanium dioxide (TiO2). These particles generate reactive oxygen species (ROS) upon UV irradiation. Although nanoparticles are very useful in many products, there are concerns about their biological and ecological effects when released into the environment. Thus, it was assessed that the effect of TiO2 nano-objects, and their aggregates and agglomerates greater than 100nm (NOAA) on microbes under UV irradiation by using Escherichia coli and Saccharomyces cerevisiae. ROS generation was evaluated by adding TiO2 nanoparticles and methylene blue to distilled water. We also assessed growth inhibition by adding TiO2 nanoparticles and microbes in minimal agar medium. Moreover, microbial inactivation was assessed by adding TiO2 nanoparticles and microbes to PBS. Upon UV irradiation, TiO2-NOAAs decomposed methylene blue and generated ROS. TiO2-NOAAs also decomposed methylene blue in minimal agar medium under UV irradiation; however, they did not inhibit microbial growth. Surprisingly, TiO2-NOAAs in the medium protect microbes from UV irradiation as colony formation was observed only near TiO2-NOAAs. In PBS, TiO2-NOAAs did not inactivate microbes but instead protected microbes from lethal UV irradiation. These results suggest that the amount of ROS generated by TiO2-NOAAs is not enough to inactivate microbes. In fact, our results suggest that TiO2-NOAAs may protect microbes from UV irradiations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Xiong; Zhu, Juanjuan; Liu, Yingjie
2009-11-01
As a promising candidate cathode material, spinel lithium manganese oxide nanoparticles were successfully synthesized through a novel molten salt synthesis route at relatively low temperature, using manganese dioxide nanowires as precursor. A variety of techniques were applied to characterize the spinel nanomaterial, including X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy. The average particle size of the resulting spinel nanoparticles was about 80 nm with narrow distribution. As cathode material for rechargeable lithium ion battery, the electrochemical properties were investigated. All the results show that the electrochemical performances of the homogeneous spinel nanoparticles were improved, which might be ascribed to large specific surface area, fairly narrow size distribution, and the unique synthesis strategy.
NASA Astrophysics Data System (ADS)
Azizah, N.; Hashim, U.; Arshad, M. K. Md.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Ayub, R. M.
2016-07-01
Titanium dioxide (TiO2) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of pH sensors using IDE nanocoated with TiO2 was studied in this paper. In this paper, a preliminary assessment of this intracellular sensor with electrical measurement under different pH levels. 3-aminopropyltriethoxysilane (APTES) was used to enhance the sensitivity of titanium dioxide layer as well as able to provide surface modification by undergoing protonation and deprotonation process. Different types of pH solution provide different resistivity and conductivity towards the surface. Base solution has the higher current compared to an acid solution. Amine and oxide functionalized TiO2 based IDE exhibit pH-dependent could be understood in terms of the change in surface charge during protonation and deprotonation. The simple fabrication process, high sensitivity, and fast response of the TiO2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.
NASA Astrophysics Data System (ADS)
Apostolova, Tzveta; Obreshkov, B. D.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Mel'nik, N. N.; Rudenko, A. A.
2018-01-01
In this work we show that nanometric-thick layers of SiO2, MnO2, and TiO2 may be effectively deposited on various silver nanoparticles (including cubic Ag nanoparticles) covered by a very thin (below 0.4 nm) layer of silver sulphide. The background in Raman measurements generated by sulphide-protected Ag nanoparticles is significantly smaller than that for analogous Ag nanoparticles protected by a monolayer formed from alkanethiols - depositing alkanethiols on a surface of anisotropic silver nanoparticles is the current standard method used for protecting a surface of Ag nanoparticles before depositing a layer of silica. Because of significantly smaller generated Raman background, Ag@SiO2 nanostructures with an Ag2S linkage layer between the silver core and the silica shell are very promising low-background electromagnetic nanoresonators for carrying out Raman analysis of various surfaces - especially using what is known as shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Sample SHINERS analyses of various surfaces (including pesticide-contaminated surfaces of tomatoes) using cubic-Ag@SiO2 nanoparticles as electromagnetic nanoresonators are also presented.
Plasma column and nano-powder generation from solid titanium by localized microwaves in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, Simona; Jerby, Eli, E-mail: jerby@eng.tau.ac.il; Meir, Yehuda
2015-07-14
This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy,more » and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ∼0.4 eV and ∼10{sup 19 }m{sup −3}, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.« less
Empirical Modeling of Nanoscale Dynamics using Solution Mapping
2010-02-27
high performance liquid chromatography (HPLC). Journal of Supercritical Fluids , 44(2):139–147, 2008. 14 30 40 50 60 70 80 90 100 110 120 0 0.5 1 1.5...dioxide. Journal of Supercritical Fluids , 41(2):179–186, 2007. [3] O. Aschenbrenner, N. Dahmen, K. Schaber, and E. Dinjus. Adsorption of dimethyl(1,5...carbon nanotubes in a supercritical carbon dioxide process. The goal is to predict the time-evolution of the nanoparticle size distribution, as well
Vignesh; Nayar, Sanjna; Bhuminathan; Mahadevan; Santhosh, S
2015-04-01
The surface area of the titanium dental implant materials can be increased by surface treatments without altering their shape and form, thereby increasing the biologic properties of the biomaterial. A good biomaterial helps in early cell adhesion and cell signaling. In this study, the commercially pure titanium surfaces were prepared to enable machined surfaces to form a control material and to be compared with sandblasted and acid-etched surfaces, laser treated surfaces and titanium dioxide (20 nm) Nano-particle coated surfaces. The surface elements were characterized. The biocompatibility was evaluated by cell culture in vitro using L929 fibroblasts. The results suggested that the titanium dioxide Nano-particle coated surfaces had good osteoconductivity and can be used as a potential method for coating the biomaterial.
Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yulovskaya, V. D.; Kuz’micheva, G. M., E-mail: galina-kuzmicheva@list.ru; Klechkovskaya, V. V.
2016-03-15
Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO{sub 2}/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO{sub 2} characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO{sub 2} aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibitmore » the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.« less
Titanium Dioxide Coating Prepared by Use of a Suspension-Solution Plasma-Spray Process
NASA Astrophysics Data System (ADS)
Du, Lingzhong; Coyle, Thomas W.; Chien, Ken; Pershin, Larry; Li, Tiegang; Golozar, Mehdi
2015-08-01
Titanium dioxide coatings were prepared from titanium isopropoxide solution containing nano TiO2 particles by use of a plasma-spray process. The effects of stand-off distance on coating composition and microstructure were investigated and compared with those for pure solution precursor and a water-based suspension of TiO2. The results showed that the anatase content of the coating increased with increasing stand-off distance and the rate of deposition decreased with increasing spray distance. Anatase nanoparticles in solution were incorporated into the coatings without phase transformation whereas most of the TiO2 in the precursor solution was transformed into rutile. The microstructure of preserved anatase particles bound by rutile improved the efficiency of deposition of the coating. The amount of anatase phase can be adjusted by variation of the ratio of solution to added anatase TiO2 nanoparticles.
Abdul Halim, Nur Hamidah; Lee, Yook Heng; Marugan, Radha Swathe Priya Malon; Hashim, Uda
2017-01-01
An impedimetric-based biosensor constructed using gold nanoparticles (AuNP) entrapped within titanium dioxide (TiO2) particles for hydrogen peroxide (H2O2) detection is the main feature of this research. The matrix of the biosensor employed the surface of TiO2, which was previously modified with an amine terminal group using 3-Aminopropyltriethoxysilane (APTS) at a low temperature to create a ready to immobilise surface for the biosensor application. Hemoglobin (Hb), which exhibits peroxidase-like activity, was used as the bioreceptor in the biosensor to detect H2O2 in solution. The analysis was carried out using an alternative impedance method, in which the biosensor exhibited a wide linear range response between 1 × 10−4 M and 1.5 × 10−2 M and a limit of detection (LOD) of 1 × 10−5 M without a redox mediator. PMID:28927005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azizah, N., E-mail: norazizahparmin84@gmail.com; Gopinath, Subash C. B.; Nadzirah, Sh.
2016-07-06
Titanium dioxide (TiO{sub 2}) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO{sub 2} was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO{sub 2} on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO{sub 2} based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO{sub 2} based IDE for sensitive,more » label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.« less
Subramanian, Vaidyanathan; Murugesan, Sankaran
2014-04-29
The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.
Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment.
Liga, Michael V; Bryant, Erika L; Colvin, Vicki L; Li, Qilin
2011-01-01
Photocatalytic inactivation of viruses and other microorganisms is a promising technology that has been increasingly utilized in recent years. In this study, photocatalytic silver doped titanium dioxide nanoparticles (nAg/TiO(2)) were investigated for their capability of inactivating Bacteriophage MS2 in aqueous media. Nano-sized Ag deposits were formed on two commercial TiO(2) nanopowders using a photochemical reduction method. The MS2 inactivation kinetics of nAg/TiO(2) was compared to the base TiO(2) material and silver ions leached from the catalyst. The inactivation rate of MS2 was enhanced by more than 5 fold depending on the base TiO(2) material, and the inactivation efficiency increased with increasing silver content. The increased production of hydroxyl free radicals was found to be responsible for the enhanced viral inactivation. Copyright © 2010 Elsevier Ltd. All rights reserved.
Liao, Weisheng; Liu, Hsin-Wang; Chen, Hsing-Jung; Chang, Wen-Yen; Chiu, Kong-Hwa; Wai, Chien M
2011-01-01
Catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) with up to four fused benzene rings over high-density-polyethylene-stabilized palladium nanoparticles in supercritical carbon dioxide via in situ UV/Vis spectroscopy is presented. PAHs can be efficiently converted to saturated polycyclic hydrocarbons using this green technique under mild conditions at 20 MPa of CO₂ containing 1 MPa of H₂ at 40-50°C. Kinetic studies based on in situ UV/Vis spectra of the CO₂ phase reveal that the initial hydrogenation of a given PAH and the subsequent hydrogenations of its intermediates are pseudo-first-order. The hydrogenation rate of the latter is always much smaller than that of the former probably due to increasing steric hindrance introduced by the hydrogenated benzene rings of PAHs which impedes the adsorption process and hydrogen access to PAHs on catalyst surfaces. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kim, Ki-Joong; Ahn, Ho-Geun
2017-04-01
Hydrogenation of carbon dioxide (CO₂) into methanol (CH₃OH) was carried out in the CuO–ZnO based supported gold catalyst prepared by the co-precipitation method. When gold nanoparticles were added to the CuO–ZnO/Al2O₃ catalysts (CuO–ZnO/Au/Al₂O₃), the CO₂ conversion and CH₃OH yield were increased (two times higher than that of CuO–ZnO/Al₂O₃ catalyst) with increasing reaction pressure, but selectivity of CH3OH was decreased. The main reason of this result could suggest the importance gold-oxides interface in CH₃OH formation through hydrogenation of CO₂. Maximum selectivity and yield to CH₃OH over CuO–ZnO/Au/Al₂O₃ were obtained at 250°C and under 15–20 bars.
Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation.
Zhang, Xiao; Li, Xueqian; Zhang, Du; Su, Neil Qiang; Yang, Weitao; Everitt, Henry O; Liu, Jie
2017-02-23
Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildly illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. The reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350 °C.
NASA Astrophysics Data System (ADS)
Jaimy, Kanakkanmavudi B.; Ghosh, Swapankumar; Gopakumar Warrier, Krishna
2012-12-01
Titanium dioxide photocatalysts co-doped with iron(III) and lanthanum(III) have been prepared through a modified sol-gel method. Doping with Fe3+ resulted in a relatively lower anatase to rutile phase transformation temperature, while La3+ addition reduced the crystal growth and thus retarded the phase transformation of titania nanoparticles. The presence of Fe3+ ions shifted the absorption profile of titania to the longer wavelength side of the spectrum and enhanced the visible light activity. On the other hand, La3+ addition improved the optical absorption of titania nanoparticles. Both the dopants improved the life time of excitons by proper transferring and trapping of photoexcited charges. In the present work, considerable enhancement in photocatalytic activity under visible light was achieved through synergistic effect of optimum concentrations of the two dopants and associated crystal defects.
Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation
Zhang, Xiao; Li, Xueqian; Zhang, Du; Su, Neil Qiang; Yang, Weitao; Everitt, Henry O.; Liu, Jie
2017-01-01
Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildly illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. The reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350 °C. PMID:28230100
Gomila, G; Esteban-Ferrer, D; Fumagalli, L
2013-12-20
We analyze by means of finite-element numerical calculations the polarization force between a sharp conducting tip and a non-spherical uncharged dielectric nanoparticle with the objective of quantifying its dielectric constant from electrostatic force microscopy (EFM) measurements. We show that for an oblate spheroid nanoparticle of given height the strength of the polarization force acting on the tip depends linearly on the eccentricity, e, of the nanoparticle in the small eccentricity and low dielectric constant regimes (1 < e < 2 and 1 < ε(r) < 10), while for higher eccentricities (e > 2) the dependence is sub-linear and finally becomes independent of e for very large eccentricities (e > 30). These results imply that a precise account of the nanoparticle shape is required to quantify EFM data and obtain the dielectric constants of non-spherical dielectric nanoparticles. Experimental results obtained on polystyrene, silicon dioxide and aluminum oxide nanoparticles and on single viruses are used to illustrate the main findings.
Uclés, Ana; Herrera López, Sonia; Dolores Hernando, Maria; Rosal, Roberto; Ferrer, Carmen; Fernández-Alba, Amadeo R
2015-11-01
The use of yttria-stabilized zirconium dioxide nanoparticles as d-SPE clean-up sorbent for a rapid and sensitive liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the determination of post-harvest fungicides (carbaryl, carbendazim, chlorpropham, diphenylamine, ethoxyquin, flutriafol, imazalil, iprodione, methomyl, myclobutanil, pirimiphos-methyl, prochloraz, pyrimethanil, thiabendazole, thiophanate-methyl and tolclofos-methyl) in orange and pear samples has been evaluated and validated. The sample preparation was a modification of the QuEChERS extraction method using yttria-stabilized zirconium dioxide and multi-walled carbon nanotubes (MWCNTs) nanoparticles as the solid phase extraction (d-SPE) clean-up sorbents prior to injecting the ten-fold diluted extracts into the LC system. By using the yttria-stabilized zirconium dioxide extraction method, more recoveries in the 70-120% range were obtained - thus this method was used for the validation. Quantification was carried out using a matrix-matched calibration curve which was linear in the 1-500 µg kg(-1) range for almost all the pesticides studied. The validated limit of quantification was 10 µg kg(-1) for most of the studied compounds, except chlorpropham, ethoxyquin and thiophanate-methyl. Pesticide recoveries at the 10 and 100 µg kg(-1) concentration levels were satisfactory, with values between 77% and 120% and relative standard deviations (RSD) lower than 10% (n=5). The developed method was applied for the determination of selected fungicides in 20 real orange and pear samples. Four different pesticide residues were detected in 10 of these commodities; 20% of the samples contained pesticide residues at a quantifiable level (equal to or above the LOQs) for at least one pesticide residue. The most frequently-detected pesticide residues were: carbendazim, thiabendazole and imazalil-all were below the MRL. The highest concentration found was imazalil at 1175 µg kg(-1) in a pear sample. Copyright © 2015 Elsevier B.V. All rights reserved.
Ngwa, Hilary Afeseh; Kanthasamy, Arthi; Gu, Yan; Fang, Ning; Anantharam, Vellareddy; Kanthasamy, Anumantha G.
2011-01-01
The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles (~25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalized in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25–400 µg/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase Cδ (PKCδ), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications. PMID:21856324
Infrared Spectroscopic Measurement of Titanium Dioxide Nanoparticle Shallow Trap State Energies
2010-02-10
energy from the immediately preceding pulse burst. Continuous operation of a laser directed onto a target leads to vaporization operation. In this...1988, (92), 5196-5201. 93. Wang, Y.; Herron, N., Quantum Size Effects on the Exciton Energy of Cds Clusters . Physical Review B 1990, 42 (11...Nanoparticles by Pulsed Laser Ablation: Ambient Pressure Dependence of Crystallization. Jpn. J. Appl. Phys. 2003, 42, L 479–L 481. 186. Kawasaki, K.; Despres, J
Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells
Crosera, Matteo; Prodi, Andrea; Mauro, Marcella; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Pietro; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Larese Filon, Francesca
2015-01-01
Titanium dioxide nanoparticles (TiO2NPs) suspensions (concentration 1.0 g/L) in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue® and propidium iodide, PI, uptake assays) was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm2) while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm2). Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10−4 M (MTT assay), 3.8 × 10−5 M (AlamarBlue® assay), and 7.6 × 10−4 M (PI uptake, index of a necrotic cell death). Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure. PMID:26262634
Titanium dioxide nanoparticles: some aspects of toxicity/focus on the development.
Rollerova, E; Tulinska, J; Liskova, A; Kuricova, M; Kovriznych, J; Mlynarcikova, A; Kiss, A; Scsukova, S
2015-04-01
Nanosized titanium dioxide (TiO2) particles belong to the most widely manufactured nanoparticles (NPs) on a global scale because of their photocatalytic properties and the related surface effects. TiO2 NPs are in the top five NPs used in consumer products. Ultrafine TiO2 is widely used in the number of applications, including white pigment in paint, ceramics, food additive, food packaging material, sunscreens, cosmetic creams, and, component of surgical implants. Data evidencing rapid distribution, slow or ineffective elimination, and potential long-time tissue accumulation are especially important for the human risk assessment of ultrafine TiO2 and represent new challenges to more responsibly investigate potential adverse effects by the action of TiO2 NPs considering their ubiquitous exposure in various doses. Transport of ultrafine TiO2 particles in systemic circulation and further transition through barriers, especially the placental and blood-brain ones, are well documented. Therefore, from the developmental point of view, there is a raising concern in the exposure to TiO2 NPs during critical windows, in the pregnancy or the lactation period, and the fact that human mothers, women and men in fertile age and last but not least children may be exposed to high cumulative doses. In this review, toxicokinetics and particularly toxicity of TiO2 NPs in relation to the developing processes, oriented mainly on the development of the central nervous system, are discussed Keywords: nanoparticles, nanotoxicity, nanomaterials, titanium dioxide, reproductive toxicity, developmental toxicity, blood brain barrier, placental barrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L. X.; Rajh, T.; Wang, Z.
1997-01-01
To probe the origin of the unique functions of titanium dioxide (TiO{sub 2}) nanoparticles observed in photocatalytic reactions, structures of Ti atom sites in titanium dioxide (TiO{sub 2}) nanoparticles with different sizes were studied by Ti K-edge XAFS (X-ray absorption fine structure). Compared to the bulk TiO{sub 2} structure, a shorter Ti-O distance from surface TiO{sub 2} resulting from Ti-OH bonding was observed. The XAFS spectra also revealed an increasing disorder of the lattice with decreasing sizes of the nanoparticles based on a coordination number decrease for the third-shell O atoms as well as changes in relative intensities of pre-edgemore » peaks A1, A2, and A3. However, the Ti sites largely remain octahedral even in the 30 Angstrom diameter particles. These results imply that the increasing number of surface Ti sites as well as possible corner defects in small nanoparticles may be the main cause of the unique surface chemistry exhibited by nanoparticles of TiO{sub 2}. XAFS was also used in monitoring the photoreduction reaction products of Cu{sup 2+} and Hg{sup 2+} on TiO{sub 2} nanoparticle surfaces, with or without surface adsorbers, alanine (Ala) and thiolactic acid (TLA). Ala dramatically enhanced photoreduction of Cu{sup 2+} on TiO{sub 2} nanoparticle surfaces, whereas thiolactic acid did not affect or even hindered Hg{sup 2+} photoreduction. Although both surface adsorbers chelated with the metal ions in the absence of TiO{sub 2} nanoparticles, this chelation was drastically changed in the Cu-Ala complex but was largely retained in the Hg-TLA complex when TiO{sub 2} was present. This may correlate with the different effects of the adsorbers on the photoreduction of the metal. Our experimental results suggest that a proper balance between the affinities of the adsorber to the metal ions and to the surface Ti atoms of TiO{sub 2} may be one of the keys in selecting a surface adsorber for enhanced photoreduction efficiency.« less
One-to-one comparison of sunscreen efficacy, aesthetics and potential nanotoxicity
NASA Astrophysics Data System (ADS)
Barnard, Amanda S.
2010-04-01
Numerous reports have described the superior properties of nanoparticles and their diverse range of applications. Issues of toxicity, workplace safety and environmental impact have also been a concern. Here we show a theoretical comparison of how the size of titanium dioxide nanoparticles and their concentration in sunscreens can affect efficacy, aesthetics and potential toxicity from free radical production. The simulation results reveal that, unless very small nanoparticles can be shown to be safe, there is no combination of particle size and concentration that will deliver optimal performance in terms of sun protection and aesthetics. Such a theoretical method complements well the experimental approach for identifying these characteristics.
Dendrimer-based Nanoparticle for Dye Sensitized Solar Cells with Improved Efficiency.
Ghann, William; Kang, Hyeonggon; Uddin, Jamal; Gonawala, Sunalee J; Mahatabuddin, Sheikh; Ali, Meser M
2018-01-01
Dye sensitized solar cells were fabricated with DyLight680 (DL680) dye and its corresponding europium conjugated dendrimer, DL680-Eu-G5PAMAM, to study the effect of europium on the current and voltage characteristics of the DL680 dye sensitized solar cell. The dye samples were characterized by using Absorption Spectroscopy, Emission Spectroscopy, Fluorescence lifetime and Fourier Transform Infrared measurements. Transmission electron microscopy imaging was carried out on the DL680-Eu-G5PAMAM dye and DL680-Eu-G5PAMAM dye sensitized titanium dioxide nanoparticles to analyze the size of the dye molecules and examine the interaction of the dye with titanium dioxide nanoparticles. The DL680-Eu-G5PAMAM dye sensitized solar cells demonstrated an enhanced solar-to-electric energy conversion of 0.32% under full light illumination (100 mWcm -2 , AM 1.5 Global) in comparison with that of DL680 dye sensitized cells which recorded an average solar-to-electric energy conversion of only 0.19%. The improvement of the efficiency could be due to the presence of the europium that enhances the propensity of dye to absorb sunlight.
Cavusoglu, Halit; Buyukbekar, Burak Zafer; Sakalak, Huseyin; Kohsakowski, Sebastian
2017-02-13
This study involves the preparation and catalytic properties of anatase titanium dioxide nanofibers (TiO2 NFs) supported gold nanoparticles (Au NPs) using a model reaction based on the reduction of 4-nitrophenol (NP) into 4-aminophenol (AP) by sodium borohydride (NaBH4). The fabrication of surfactant-free Au NPs was performed using pulsed laser ablation in liquid (PLAL) technique. The TiO2 NFs were fabricated by a combination of electrospinning and calcination process using a solution containing poly(vinyl pyrolidone)(PVP) and titanium isopropoxide. The adsorption efficiency of laser-generated surfactant-free Au NPs to TiO2 NF supports as a function of pH was analyzed. Our results show that the electrostatic interaction mainly controls the adsorption of the nanoparticles. Au NPs/TiO2 NFs composite exhibited good catalytic activity for the reduction of 4-NP to 4-AP. The unique combination of these materials leads to the development of highly efficient catalysts. Our heterostructured nanocatalysts possibly form an efficient path to fabricate various metal NP/metal-oxide supported catalysts. Thus the applications of PLAL-noble metal NPs can widely broaden. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Finnegan, Michael Patrick
The effect of solution chemistry on the phase stability, coarsening kinetics and morphology of titanium dioxide (TiO2) nanoparticles is investigated in order to attain efficient production pathways to desired nano-structures with optimal properties. To obtain sample, TiO2 was synthesized via hydrolysis of titanium isopropoxide producing an 85% anatase/15% brookite mixture. The titania was hydrothermally heated in an array of temperatures and pH values for various times. There are distinct phase stability fields for nanoscale titania based on pH alone due to slight interface charging behavior differences among the polymorphs. The mixture transforms to rutile below the pH of zero point of charge (ZPC) and remains anatase above the ZPC. This phenomenon is partially reversible. The solution chemistry also dictates the hydrothermal coarsening mechanism of the anatase polymorph. Ostwald ripening (OR) takes place in basic pH where titania solubility is elevated relative to neutral pH where lower solubility prevents rapid OR but allows for coarsening via oriented attachment (OA) of nanoparticles. This OA event can alter the symmetry of anatase causing unexpected and perhaps technically useful morphologies such as straight and curved nanorods during coarsening.
Kubo-Irie, Miyoko; Yokoyama, Masaaki; Shinkai, Yusuke; Niki, Rikio; Takeda, Ken; Irie, Masaru
2016-01-01
This study aimed to examine the transfer of nanoparticles within a terrestrial food chain. Oviposited eggs of the swallowtail butterfly (Atrophaneura alcinous) were hatched on the leaves of the host plant (Aristolochia debilis), and the root stock and root hairs were submerged in a suspension of 10 μg/ml titanium dioxide nanoparticles (TiO2-NPs) in a 100 ml bottle. The presence of TiO2-NPs in the veins of the leaves was confirmed by X-ray analytical microscopy (X-ray AM). The hatched 1st instar larvae fed on the leaves to moult into 2nd instar larvae. Small agglomerates of TiO2-NPs less than 150 nm in diameter were identified in the vascular tissue of the exposed plant, the midgut and the excreta of the larvae by transmission electron microscopy. The image of Ti elemental mapping by X-ray AM was analysed with the quantitative spatial information mapping (QSIM) technique. The results demonstrated that TiO2-NPs were transferred from the plant to the larvae and they were disseminated throughout the environment via larval excreta. PMID:27030539
Shakibaie, Mojtaba; Forootanfar, Hamid; Golkari, Yaser; Mohammadi-Khorsand, Tayebe; Shakibaie, Mohammad Reza
2015-01-01
The aim of the present study was to investigate the anti-biofilm activity of biologically synthesized selenium nanoparticles (Se NPs) against the biofilm produced by clinically isolated bacterial strains compared to that of selenium dioxide. Thirty strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis were isolated from various specimens of the patients hospitalized in different hospitals (Kerman, Iran). Quantification of the biofilm using microtiter plate assay method introduced 30% of S. aureus, 13% of P. aeruginosa and 17% of P. mirabilis isolates as severely adherent strains. Transmission electron micrograph (TEM) of the purified Se NPs (produced by Bacillus sp. MSh-1) showed individual and spherical nano-structure in the size range of 80-220nm. Obtained results of the biofilm formation revealed that selenium nanoparticles inhibited the biofilm of S. aureus, P. aeruginosa, and P. mirabilis by 42%, 34.3%, and 53.4%, respectively, compared to that of the non-treated samples. Effect of temperature and pH on the biofilm formation in the presence of Se NPs and SeO2 was also evaluated. Copyright © 2014 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Shengjie; Shen, Danping; Wu, Peiyi
2013-04-01
Hematite nanoparticle-coated magnetic composite fiber was prepared in supercritical carbon dioxide (scCO2). With the help of scCO2, cellulose did not need to be dissolved and regenerated and it could be in any form (e.g., cotton wool, filter paper, textile, etc.). The penetrating and swelling effect of scCO2, the slowing reaction rate of weak alkalis, and the template effect of cellulose fibers were discovered to be the key factors for the fabrication of ordered cellulose/Fe2O3 composite fibers. The structures of the composite fibers as well as the layers of Fe2O3 particles were characterized by means of scanning/transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman investigation. It was found that α-Fe2O3 granules which ranged from 30 to 85 nm with average diameter around 55 nm would be generated on the surface of cellulose fibers via potassium acetate, while irregular square prisms (ranged from 200 to 600 nm) which were composed of smaller nanoparticles ( 10 nm) would be fabricated via urea. And, the obtained composite was highly water repellent with superparamagnetic or ferromagnetic properties.
Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh
2013-01-01
Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P<0.05). No significant differences were found in cell viability percentages between the two groups on the other days (P>0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001). L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive. PMID:24578816
NASA Astrophysics Data System (ADS)
Piosik, A.; Żurowski, K.; Pietralik, Z.; Hędzelek, W.; Kozak, M.
2017-11-01
Zirconium dioxide has been widely used in dental prosthetics. However, the improper mechanical treatment can induce changes in the microstructure of zirconium dioxide. From the viewpoint of mechanical properties and performance, the phase transitions of ZrO2 from the tetragonal to the monoclinic phase induced by mechanical processing, are particularly undesirable. In this study, the phase transitions of yttrium stabilized zirconium dioxide (Y-TZP) induced by mechanical treatment are investigated by the scanning electron microscopy (SEM), atomic force microscopy (AFM) and powder diffraction (XRD). Mechanical stress was induced by different types of drills used presently in dentistry. At the same time the surface temperature was monitored during milling using a thermal imaging camera. Diffraction analysis allowed determination of the effect of temperature and mechanical processing on the scale of induced changes. The observed phase transition to the monoclinic phase was correlated with the methods of mechanical processing.
Zhang, Xuefei; Yates, Matthew Z
2018-05-23
Fast recombination of photogenerated charge carriers in titanium dioxide (TiO 2 ) remains a challenging issue, limiting the photocatalytic activity. This study demonstrates increased photocatalytic performance of TiO 2 nanoparticles supported on electrically polarized hydroxyapatite (HA) films. Dense and thermally stable yttrium and fluorine co-doped HA films with giant internal polarization were synthesized as photocatalyst supports. TiO 2 nanoparticles deposited on the support were then used to catalyze the photochemical reduction of aqueous silver ions to produce silver nanoparticles. It was found that significantly more silver nanoparticles were produced on polarized HA supports than on depolarized HA supports. In addition, the photodegradation of methyl orange with TiO 2 nanoparticles on polarized HA supports was found to be much faster than with TiO 2 nanoparticles on depolarized HA supports. It is proposed that separation of photogenerated electrons and holes in TiO nanoparticles is promoted by the internal polarization of the HA support, and consequently, the recombination of charge carriers is mitigated. The results imply that materials with large internal polarization can be used in strategies for enhancing quantum efficiency of photocatalysts.
Reed, Nathan; Fang, Jiaxi; Chavalmane, Sanmathi; Biswas, Pratim
2017-01-01
Composite nanoparticles find application in catalysis, drug delivery, and energy storage and require increasingly fine control of their physical properties and composition. While composite nanoparticles have been widely synthesized and characterized, little work has systematically correlated the initial concentration of precursors and the final composition of flame synthesized composite nanoparticles. This relationship is explored in a diffusion flame aerosol reactor by coupling a scanning mobility particle sizer (SMPS) with an inductively coupled plasma optical emission spectrometer (ICP-OES). A framework for studying the relationship between the initial precursor concentrations of different elements and the final nanoparticle composition is explored. The size-resolved elemental composition was measured by directly injecting size-selected fractions of aggregated magnetite and silicon dioxide composite nanoparticles into the ICP-OES plasma. This work showed a correlation between precursor molar ratio and the measured elemental ratio in the mobility size range of 50 to 140 nm. Building on previous work studying size resolved elemental composition of engineered nanoparticles, the analysis is extended to flame synthesized composite nanoparticle aggregates in this work. PMID:28435179
Reed, Nathan; Fang, Jiaxi; Chavalmane, Sanmathi; Biswas, Pratim
2017-01-01
Composite nanoparticles find application in catalysis, drug delivery, and energy storage and require increasingly fine control of their physical properties and composition. While composite nanoparticles have been widely synthesized and characterized, little work has systematically correlated the initial concentration of precursors and the final composition of flame synthesized composite nanoparticles. This relationship is explored in a diffusion flame aerosol reactor by coupling a scanning mobility particle sizer (SMPS) with an inductively coupled plasma optical emission spectrometer (ICP-OES). A framework for studying the relationship between the initial precursor concentrations of different elements and the final nanoparticle composition is explored. The size-resolved elemental composition was measured by directly injecting size-selected fractions of aggregated magnetite and silicon dioxide composite nanoparticles into the ICP-OES plasma. This work showed a correlation between precursor molar ratio and the measured elemental ratio in the mobility size range of 50 to 140 nm. Building on previous work studying size resolved elemental composition of engineered nanoparticles, the analysis is extended to flame synthesized composite nanoparticle aggregates in this work.
Cerium dioxide nanoparticles exacerbate house dust mite induced type II airway inflammation.
Meldrum, Kirsty; Robertson, Sarah B; Römer, Isabella; Marczylo, Tim; Dean, Lareb S N; Rogers, Andrew; Gant, Timothy W; Smith, Rachel; Tetley, Terry D; Leonard, Martin O
2018-05-23
Nanomaterial inhalation represents a potential hazard for respiratory conditions such as asthma. Cerium dioxide nanoparticles (CeO 2 NPs) have the ability to modify disease outcome but have not been investigated for their effect on models of asthma and inflammatory lung disease. The aim of this study was to examine the impact of CeO 2 NPs in a house dust mite (HDM) induced murine model of asthma. Repeated intranasal instillation of CeO 2 NPs in the presence of HDM caused the induction of a type II inflammatory response, characterised by increased bronchoalveolar lavage eosinophils, mast cells, total plasma IgE and goblet cell metaplasia. This was accompanied by increases in IL-4, CCL11 and MCPT1 gene expression together with increases in the mucin and inflammatory regulators CLCA1 and SLC26A4. CLCA1 and SLC26A4 were also induced by CeO 2 NPs + HDM co-exposure in air liquid interface cultures of human primary bronchial epithelial cells. HDM induced airway hyperresponsiveness and airway remodelling in mice were not altered with CeO 2 NPs co-exposure. Repeated HMD instillations followed by a single exposure to CeO 2 NPs failed to produce changes in type II inflammatory endpoints but did result in alterations in the neutrophil marker CD177. Treatment of mice with CeO 2 NPs in the absence of HDM did not have any significant effects. RNA-SEQ was used to explore early effects 24 h after single treatment exposures. Changes in SAA3 expression paralleled increased neutrophil BAL levels, while no changes in eosinophil or lymphocyte levels were observed. HDM resulted in a strong induction of type I interferon and IRF3 dependent gene expression, which was inhibited with CeO 2 NPs co-exposure. Changes in the expression of genes including CCL20, CXCL10, NLRC5, IRF7 and CLEC10A suggest regulation of dendritic cells, macrophage functionality and IRF3 modulation as key early events in how CeO 2 NPs may guide pulmonary responses to HDM towards type II inflammation. CeO 2 NPs were observed to modulate the murine pulmonary response to house dust mite allergen exposure towards a type II inflammatory environment. As this type of response is present within asthmatic endotypes this finding may have implications for how occupational or incidental exposure to CeO 2 NPs should be considered for those susceptible to disease.
Exploration of new technologies for nanotransfer and nanocatalysts
NASA Astrophysics Data System (ADS)
Unlu, Ilyas
This dissertation aims at developing methods for transferring nanoelements from a template to a substrate over large areas and for conveniently fabricating supported gold nanoparticle catalysts. The transfer method relies on the light-induced wettability conversion behavior of some transition metal oxides (e.g., titanium dioxide) such that their surfaces become hydrophilic/amphiphilic upon UV irradiation. In principle, this could allow hydrophilic nanoelements to be pulled off by attractive forces to a photo-activated metal oxide substrate. This method could preserve nanotemplates for further use because there is no physical contact between it and the substrate surface. To lay the groundwork for light-induced transfer, force-distance (F-D) measurements using an atomic force microscope (AFM) were carried out to investigate the adhesion of gold nanoparticles on bare and self-assembled monolayer (SAM)-covered quartz surfaces. Silane and thiol SAMs were prepared through solution and vapor deposition methods and characterized via different techniques, including x-ray photoelectron spectroscopy (XPS), AFM and water contact angle measurements. The colloidal probe technique, using hydrophilic Au nanoparticle-coated-probes, is highly sensitive toward SAM quality and exhibited higher adhesive forces on fluorinated quartz than on bare quartz due to surface defects of the SAM. Thus, SAM quality, including molecular orientation, plays a crucial role in determining adhesion of Au NPs, and it was found that defects cause a fluorinated surface to be more adhesive to hydrophilic nanoparticles. Potential methods for enabling the light-induced transfer of nanoelements were also explored. While successful transfer was not an outcome of this thesis, the knowledge learned may enable future researchers to accomplish this high-risk/high payoff goal. In the second half of this thesis, gold nanoparticles (Au NPs) with pre-determined sizes for effective catalysis were attached to a ZnO nanorod (NR) support using a dithiol linker However, this approach leaves organic ligands on the Au NPs and ZnO NRs, which will interfere with the catalytic properties. Therefore, to remove the ligands, the composites were treated with heat and ozone to activate their catalytic properties. The thermal treatment led to aggregation of Au NPs, which resulted in larger sized and differently shaped Au NPs, however, UV-Ozone treatment did not change the size and shape of the NPs, but it removed the ligands. However, it was not as efficient as thermal treatment. The advantages/disadvantages of different dithiol linkers were investigated. Finally, these AuNP/NR composites were successfully used to photocatalyze the degradation of an organic dye, Rhodamine B.
Determination of the mechanical characteristics of nanomaterials under tension and compression
NASA Astrophysics Data System (ADS)
Filippov, A. A.; Fomin, V. M.
2018-04-01
In this paper, new method for determining the mechanical characteristics of nanoparticles in a heterogeneous mixture is proposed. The heterogeneous mixture consists of a thermosetting epoxy resin and silicon dioxide powder of different dispersity. The mechanical characteristics of such a material at a constant concentration for nanopowder are experimentally determined. Using existing formulas for obtaining effective characteristics, the Lame coefficients for nanoparticles of various sizes are calculated. The dependence of the elastic characteristics on the particle size is obtained.
2016-03-23
polystyrene tubes . This procedure was repeated 30 times to simulate an annual exposure to acidic precipitation weathering. The average annual number...with diluted nitric acid in a 10 mL test tube . This sample was used for the ICP-AES analysis. The remainder of the sample solution was acid...Water at a Semiconducter Electrode. Nature 238 9. Gamer AO, Leibold E, van Ravenzwaay B. 2006. The in vitro absorption of microfine zinc oxide and
Deposition of platinum nanoparticles on carbon nanotubes by supercritical fluid method.
Yen, Clive H; Cui, Xiaoli; Pan, Horng-Bin; Wang, Shaofen; Lin, Yuehe; Wai, Chien M
2005-11-01
Carbon nanotube-supported platinum nanoparticles with a 5-15 nm diameter size range can be synthesized by hydrogen reduction of platinum(ll) acetylacetonate in methanol modified supercritical carbon dioxide. X-ray photoelectron spectroscopy and X-ray diffraction spectra indicate that the carbon nanotubes contain zero-valent platinum metal and high-resolution transmission electron microscopy images show that the visible lattice fringes of platinum nanoparticles are crystallites. Carbon nanotubes synthesized with 25% by weight of platinum nanoparticles exhibit a higher activity for hydrogenation of benzene compared with a commercial carbon black platinum catalyst. The carbon nanotube-supported platinum nanocatalyst can be reused at least six times for the hydrogenation reaction without losing activity. The carbon nanotube-supported platinum nanoparticles are also highly active for electrochemical oxidation of methanol and for reduction of oxygen suggesting their potential use as a new electrocatalyst for proton exchange membrane fuel cell applications.
Sensitivity of ginseng to ozone and sulfur dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proctor, J.T.A.; Ormrod, D.P.
1981-10-01
American ginseng (Panax quinquefolius L.), was injured by exposure to 20 pphm ozone and/or 50 pphm (v/v) sulfur dioxide for 6 hr daily for 4 days. Ozone induced upper surface leaflet stippling along the veins and interveinally, and sulfur dioxide induced mild chlorosis to irregular necrotic areas. Ginseng was less sensitive to ozone and as sensitive to sulfur dioxide as 'Cherry Belle' radish (Raphanus sativus L.) and 'Bel W-3' tobacco (Nicotiana tabacum L.).
Guo, Jian-Feng; Huo, Dan-Qun; Yang, Mei; Hou, Chang-Jun; Li, Jun-Jie; Fa, Huan-Bao; Luo, Hui-Bo; Yang, Ping
2016-12-01
Herein, we have developed a simple, sensitive and paper-based colorimetric sensor for the selective detection of Chromium (Ⅵ) ions (Cr (VI)). Silanization-titanium dioxide modified filter paper (STCP) was used to trap bovine serum albumin capped gold nanoparticles (BSA-Au NPs), leading to the fabrication of BSA-Au NPs decorated membrane (BSA-Au NPs/STCP). The BSA-Au NPs/STCP operated on the principle that BSA-Au NPs anchored on the STCP were gradually etched by Cr (VI) as the leaching process of gold in the presence of hydrobromic acid (HBr) and hence induced a visible color change. Under optimum conditions, the paper-based colorimetric sensor showed clear color change after reaction with Cr (VI) as well as with favorable selectivity to a variety of possible interfering counterparts. The amount-dependent colorimetric response was linearly correlated with the Cr (VI) concentrations ranging from 0.5µM to 50.0µM with a detection limit down to 280nM. Moreover, the developed cost-effective colorimetric sensor has been successfully applied to real environmental samples which demonstrated the potential for field applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghosh, Goutam; Panicker, Lata
2014-12-01
Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a `heme' group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV-vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20-30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the `heme' groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.
Therapeutic effect of apatinib-loaded nanoparticles on diabetes-induced retinal vascular leakage.
Jeong, Ji Hoon; Nguyen, Hong Khanh; Lee, Jung Eun; Suh, Wonhee
2016-01-01
Apatinib, a novel and selective inhibitor of vascular endothelial growth factor (VEGF) receptor 2, has been demonstrated recently to exhibit anticancer efficacy by inhibiting the VEGF signaling pathway. Given the importance of VEGF in retinal vascular leakage, the present study was designed to investigate whether apatinib-loaded polymeric nanoparticles inhibit VEGF-mediated retinal vascular hyperpermeability and block diabetes-induced retinal vascular leakage. For the delivery of water-insoluble apatinib, the drug was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro paracellular permeability and transendothelial electric resistance assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles significantly inhibited VEGF-induced endothelial hyperpermeability in human retinal microvascular endothelial cells. In addition, they substantially reduced the VEGF-induced junctional loss and internalization of vascular endothelial-cadherin, a major component of endothelial junction complexes. In vivo intravitreal injection of Apa-HSA-PEG nanoparticles in mice blocked VEGF-induced retinal vascular leakage. These in vitro and in vivo data indicated that Apa-HSA-PEG nanoparticles efficiently blocked VEGF-induced breakdown of the blood-retinal barrier. In vivo experiments with streptozotocin-induced diabetic mice showed that an intravitreal injection of Apa-HSA-PEG nanoparticles substantially inhibited diabetes-induced retinal vascular leakage. These results demonstrated, for the first time, that apatinib-loaded nanoparticles may be a promising therapeutic agent for the prevention and treatment of diabetes-induced retinal vascular disorders.
Therapeutic effect of apatinib-loaded nanoparticles on diabetes-induced retinal vascular leakage
Jeong, Ji Hoon; Nguyen, Hong Khanh; Lee, Jung Eun; Suh, Wonhee
2016-01-01
Apatinib, a novel and selective inhibitor of vascular endothelial growth factor (VEGF) receptor 2, has been demonstrated recently to exhibit anticancer efficacy by inhibiting the VEGF signaling pathway. Given the importance of VEGF in retinal vascular leakage, the present study was designed to investigate whether apatinib-loaded polymeric nanoparticles inhibit VEGF-mediated retinal vascular hyperpermeability and block diabetes-induced retinal vascular leakage. For the delivery of water-insoluble apatinib, the drug was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro paracellular permeability and transendothelial electric resistance assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles significantly inhibited VEGF-induced endothelial hyperpermeability in human retinal microvascular endothelial cells. In addition, they substantially reduced the VEGF-induced junctional loss and internalization of vascular endothelial-cadherin, a major component of endothelial junction complexes. In vivo intravitreal injection of Apa-HSA-PEG nanoparticles in mice blocked VEGF-induced retinal vascular leakage. These in vitro and in vivo data indicated that Apa-HSA-PEG nanoparticles efficiently blocked VEGF-induced breakdown of the blood–retinal barrier. In vivo experiments with streptozotocin-induced diabetic mice showed that an intravitreal injection of Apa-HSA-PEG nanoparticles substantially inhibited diabetes-induced retinal vascular leakage. These results demonstrated, for the first time, that apatinib-loaded nanoparticles may be a promising therapeutic agent for the prevention and treatment of diabetes-induced retinal vascular disorders. PMID:27462154
Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa
2017-03-01
In this study, the impact of energy, agriculture, macroeconomic and human-induced indicators on environmental pollution from 1971 to 2011 is investigated using the statistically inspired modification of partial least squares (SIMPLS) regression model. There was evidence of a linear relationship between energy, agriculture, macroeconomic and human-induced indicators and carbon dioxide emissions. Evidence from the SIMPLS regression shows that a 1% increase in crop production index will reduce carbon dioxide emissions by 0.71%. Economic growth increased by 1% will reduce carbon dioxide emissions by 0.46%, which means that an increase in Ghana's economic growth may lead to a reduction in environmental pollution. The increase in electricity production from hydroelectric sources by 1% will reduce carbon dioxide emissions by 0.30%; thus, increasing renewable energy sources in Ghana's energy portfolio will help mitigate carbon dioxide emissions. Increasing enteric emissions by 1% will increase carbon dioxide emissions by 4.22%, and a 1% increase in the nitrogen content of manure management will increase carbon dioxide emissions by 6.69%. The SIMPLS regression forecasting exhibited a 5% MAPE from the prediction of carbon dioxide emissions.
2012-01-01
Microsomal glutathione transferase 1 (MGST1) is an antioxidant enzyme located predominantly in the mitochondrial outer membrane and endoplasmic reticulum and has been shown to protect cells from lipid peroxidation induced by a variety of cytostatic drugs and pro-oxidant stimuli. We hypothesized that MGST1 may also protect against nanomaterial-induced cytotoxicity through a specific effect on lipid peroxidation. We evaluated the induction of cytotoxicity and oxidative stress by TiO2, CeO2, SiO2, and ZnO in the human MCF-7 cell line with or without overexpression of MGST1. SiO2 and ZnO nanoparticles caused dose- and time-dependent toxicity, whereas no obvious cytotoxic effects were induced by nanoparticles of TiO2 and CeO2. We also noted pronounced cytotoxicity for three out of four additional SiO2 nanoparticles tested. Overexpression of MGST1 reversed the cytotoxicity of the main SiO2 nanoparticles tested and for one of the supplementary SiO2 nanoparticles but did not protect cells against ZnO-induced cytotoxic effects. The data point toward a role of lipid peroxidation in SiO2 nanoparticle-induced cell death. For ZnO nanoparticles, rapid dissolution was observed, and the subsequent interaction of Zn2+ with cellular targets is likely to contribute to the cytotoxic effects. A direct inhibition of MGST1 by Zn2+ could provide a possible explanation for the lack of protection against ZnO nanoparticles in this model. Our data also showed that SiO2 nanoparticle-induced cytotoxicity is mitigated in the presence of serum, potentially through masking of reactive surface groups by serum proteins, whereas ZnO nanoparticles were cytotoxic both in the presence and in the absence of serum. PMID:22303956
Modelling the transport of engineered metallic nanoparticles in the river Rhine.
Markus, A A; Parsons, J R; Roex, E W M; de Voogt, P; Laane, R W P M
2016-03-15
As engineered nanoparticles of zinc oxide, titanium dioxide and silver, are increasingly used in consumer products, they will most probably enter the natural environment via wastewater, atmospheric deposition and other routes. The aim of this study is to predict the concentrations of these nanoparticles via wastewater emissions in a typical river system by means of a numerical model. The calculations rely on estimates of the use of nanomaterials in consumer products and the removal efficiency in wastewater treatment plants as well as model calculations of the fate and transport of nanoparticles in a riverine system. The river Rhine was chosen for this work as it is one of the major and best studied rivers in Europe. The study gives insight in the concentrations that can be expected and, by comparing the model results with measurements of the total metal concentrations, of the relative contribution of these emerging contaminants. Six scenarios were examined. Two scenarios concerned the total emission: in the first it was assumed that nanoparticles are only released via wastewater (treated or untreated) and in the second it was assumed that in addition nanoparticles can enter the river system via runoff from the application of sludge as a fertilizer. In both cases the assumption was that the nanoparticles enter the river system as free, unattached particles. Four additional scenarios, based on the total emissions from the second scenario, were examined to highlight the consequences of the assumption of free nanoparticles and the uncertainties about the aggregation processes. If all nanoparticles enter as free particles, roughly a third would end up attached to suspended particulate matter due to the aggregation processes nanoparticles are subject to. For the other scenarios the contribution varies from 20 to 45%. Since the Rhine is a fast flowing river, sedimentation is unlikely to occur, except at the floodplains and the lakes in the downstream regions, as in fact shown by the sediment mass balance. Nanoparticles will therefore be transported along the whole river until they enter the North Sea. For the first scenario, the concentrations predicted for zinc oxide and titanium dioxide nanoparticles are in the order of 0.5 μg/l, for silver nanoparticles in the order of 5 ng/l. For zinc and titanium compounds this amounts to 5-10% of the measured total metal concentrations, for silver to 2%. For the other scenarios, the predicted nanoparticle concentrations are two to three times higher. While there are still considerable uncertainties in the inputs and consequently the model results, this study predicts that nanoparticles are capable of being transported over long distances, in much the same way as suspended particulate matter. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nanoparticles modulate autophagic effect in a dispersity-dependent manner
NASA Astrophysics Data System (ADS)
Huang, Dengtong; Zhou, Hualu; Gao, Jinhao
2015-09-01
Autophagy plays a key role in human health and disease, especially in cancer and neurodegeneration. Many autophagy regulators are developed for therapy. Diverse nanomaterials have been reported to induce autophagy. However, the underlying mechanisms and universal rules remain unclear. Here, for the first time, we show a reliable and general mechanism by which nanoparticles induce autophagy and then successfully modulate autophagy via tuning their dispersity. Various well-designed univariate experiments demonstrate that nanomaterials induce autophagy in a dispersity-dependent manner. Aggregated nanoparticles induce significant autophagic effect in comparison with well-dispersed nanoparticles. As the highly stable nanoparticles may block autophagic degradation in autolysosomes, endocytosis and intracellular accumulation of nanoparticles can be responsible for this interesting phenomenon. Our results suggest dispersity-dependent autophagic effect as a common cellular response to nanoparticles, reveal the relationship between properties of nanoparticles and autophagy, and offer a new alternative way to modulate autophagy.
NASA Astrophysics Data System (ADS)
Shafi, P. Muhammed; Johnson, Chelsea; Bose, A. Chandra
2018-04-01
Manganese dioxide and Manganese dioxide based materials have long been used in various energy storage systems because of their outstanding electrochemical behavior, low cost, and environmental compatibility. In recent years, many studies had focused on its nano scale applications due to the structural flexibility and the unique physicochemical properties. The basic crystal structure of manganese dioxide configures of one manganese atom surrounded by six oxygen atoms to form an octahedron. Here β-MnO2, γ-MnO2, λ-MnO2 and δ-MnO2 nanoparticles have been successfully synthesized by simple precipitation methods. Powder X-Ray Diffraction (XRD) analyses were performed for the identification and examination of the crystalline phase structures. Presence of functional groups and purity of the sample were evaluated by Fourier Transform Infrared Spectroscopy (FTIR). Morphology studies were carried out via Scanning Electron Microscopy (SEM). Electrochemical performances of the β, γ and δ phases were characterized by cyclic voltammetry (CV), Galvanostatic Charge-Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS). Among the four electrodes, δ-MnO2 exhibited the highest value for specific capacitance. These results show that the prepared MnO2 electrodes are good materials for supercapacitor application, especially δ-MnO2.
Characterization of Nanoparticle Batch-To-Batch Variability
Mülhopt, Sonja; Dilger, Marco; Adelhelm, Christel; Anderlohr, Christopher; Gómez de la Torre, Johan; Langevin, Dominique; Mahon, Eugene; Piella, Jordi; Puntes, Victor; Ray, Sikha; Schneider, Reinhard; Wilkins, Terry; Weiss, Carsten
2018-01-01
A central challenge for the safe design of nanomaterials (NMs) is the inherent variability of NM properties, both as produced and as they interact with and evolve in, their surroundings. This has led to uncertainty in the literature regarding whether the biological and toxicological effects reported for NMs are related to specific NM properties themselves, or rather to the presence of impurities or physical effects such as agglomeration of particles. Thus, there is a strong need for systematic evaluation of the synthesis and processing parameters that lead to potential variability of different NM batches and the reproducible production of commonly utilized NMs. The work described here represents over three years of effort across 14 European laboratories to assess the reproducibility of nanoparticle properties produced by the same and modified synthesis routes for four of the OECD priority NMs (silica dioxide, zinc oxide, cerium dioxide and titanium dioxide) as well as amine-modified polystyrene NMs, which are frequently employed as positive controls for nanotoxicity studies. For 46 different batches of the selected NMs, all physicochemical descriptors as prioritized by the OECD have been fully characterized. The study represents the most complete assessment of NMs batch-to-batch variability performed to date and provides numerous important insights into the potential sources of variability of NMs and how these might be reduced. PMID:29738461
Evans, Christopher D.; Smith, Paul J.; Manning, Troy D.; Miedziak, Peter J.; Brett, Gemma L.; Armstrong, Robert D.; Bartley, Jonathan K.; Taylor, Stuart H.; Rosseinsky, Matthew J.; Hutchings, Graham J.
2016-01-01
Gold and gold alloys, in the form of supported nanoparticles, have been shown over the last three decades to be highly effective oxidation catalysts. Mixed metal oxide perovskites, with their high structural tolerance, are ideal for investigating how changes in the chemical composition of supports affect the catalysts' properties, while retaining similar surface areas, morphologies and metal co-ordinations. However, a significant disadvantage of using perovskites as supports is their high crystallinity and small surface area. We report the use of a supercritical carbon dioxide anti-solvent precipitation methodology to prepare large surface area lanthanum based perovskites, making the deposition of 1 wt% AuPt nanoparticles feasible. These catalysts were used for the selective oxidation of glycerol. By changing the elemental composition of the perovskite B site, we dramatically altered the reaction pathway between a sequential oxidation route to glyceric or tartronic acid and a dehydration reaction pathway to lactic acid. Selectivity profiles were correlated to reported oxygen adsorption capacities of the perovskite supports and also to changes in the AuPt nanoparticle morphologies. Extended time on line analysis using the best oxidation catalyst (AuPt/LaMnO3) produced an exceptionally high tartronic acid yield. LaMnO3 produced from alternative preparation methods was found to have lower activities, but gave comparable selectivity profiles to that produced using the supercritical carbon dioxide anti-solvent precipitation methodology. PMID:27074316
DOE Office of Scientific and Technical Information (OSTI.GOV)
Refaat, Tamer; West, Derek; El Achy, Samar
This work compares intravenous (IV) versus fluoroscopy-guided transarterial intra-catheter (IC) delivery of iron oxide core-titanium dioxide shell nanoparticles (NPs) in vivo in VX2 model of liver cancer in rabbits. NPs coated with glucose and decorated with a peptide sequence from cortactin were administered to animals with developed VX2 liver cancer. Two hours after NPs delivery tumors, normal liver, kidney, lung and spleen tissues were harvested and used for a series on histological and elemental analysis tests. Quantification of NPs in tissues was done both by bulk inductively coupled plasma mass spectrometry (ICP-MS) analysis and by hard X-ray fluorescence microscopy. Bothmore » IV and IC NPs injection are feasible modalities for delivering NPs to VX2 liver tumors with comparable tumor accumulation. It is possible that this is an outcome of the fact that VX2 tumors are highly vascularized and hemorrhagic, and therefore enhanced permeability and retention (EPR) plays the most significant role in accumulation of nanoparticles in tumor tissue. It is, however, interesting to note that IV delivery led to increased sequestration of NPs by spleen and normal liver tissue, while IC delivery lead to more NP positive Kupffer cells. Furthermore, this difference is most likely a direct outcome of blood flow dynamics. Armed with this knowledge about nanoparticle delivery, we plan to test them as radiosensitizers in the future.« less
Refaat, Tamer; West, Derek; El Achy, Samar; ...
2016-08-03
This work compares intravenous (IV) versus fluoroscopy-guided transarterial intra-catheter (IC) delivery of iron oxide core-titanium dioxide shell nanoparticles (NPs) in vivo in VX2 model of liver cancer in rabbits. NPs coated with glucose and decorated with a peptide sequence from cortactin were administered to animals with developed VX2 liver cancer. Two hours after NPs delivery tumors, normal liver, kidney, lung and spleen tissues were harvested and used for a series on histological and elemental analysis tests. Quantification of NPs in tissues was done both by bulk inductively coupled plasma mass spectrometry (ICP-MS) analysis and by hard X-ray fluorescence microscopy. Bothmore » IV and IC NPs injection are feasible modalities for delivering NPs to VX2 liver tumors with comparable tumor accumulation. It is possible that this is an outcome of the fact that VX2 tumors are highly vascularized and hemorrhagic, and therefore enhanced permeability and retention (EPR) plays the most significant role in accumulation of nanoparticles in tumor tissue. It is, however, interesting to note that IV delivery led to increased sequestration of NPs by spleen and normal liver tissue, while IC delivery lead to more NP positive Kupffer cells. Furthermore, this difference is most likely a direct outcome of blood flow dynamics. Armed with this knowledge about nanoparticle delivery, we plan to test them as radiosensitizers in the future.« less
Dudefoi, William; Terrisse, Hélène; Richard-Plouet, Mireille; Gautron, Eric; Popa, Florin; Humbert, Bernard; Ropers, Marie-Hélène
2017-05-01
Titanium dioxide (TiO 2 ) is a transition metal oxide widely used as a white pigment in various applications, including food. Due to the classification of TiO 2 nanoparticles by the International Agency for Research on Cancer as potentially harmful for humans by inhalation, the presence of nanoparticles in food products needed to be confirmed by a set of independent studies. Seven samples of food-grade TiO 2 (E171) were extensively characterised for their size distribution, crystallinity and surface properties by the currently recommended methods. All investigated E171 samples contained a fraction of nanoparticles, however, below the threshold defining the labelling of nanomaterial. On the basis of these results and a statistical analysis, E171 food-grade TiO 2 totally differs from the reference material P25, confirming the few published data on this kind of particle. Therefore, the reference material P25 does not appear to be the most suitable model to study the fate of food-grade TiO 2 in the gastrointestinal tract. The criteria currently to obtain a representative food-grade sample of TiO 2 are the following: (1) crystalline-phase anatase, (2) a powder with an isoelectric point very close to 4.1, (3) a fraction of nanoparticles comprised between 15% and 45%, and (4) a low specific surface area around 10 m 2 g - 1 .
Evans, Christopher D; Kondrat, Simon A; Smith, Paul J; Manning, Troy D; Miedziak, Peter J; Brett, Gemma L; Armstrong, Robert D; Bartley, Jonathan K; Taylor, Stuart H; Rosseinsky, Matthew J; Hutchings, Graham J
2016-07-04
Gold and gold alloys, in the form of supported nanoparticles, have been shown over the last three decades to be highly effective oxidation catalysts. Mixed metal oxide perovskites, with their high structural tolerance, are ideal for investigating how changes in the chemical composition of supports affect the catalysts' properties, while retaining similar surface areas, morphologies and metal co-ordinations. However, a significant disadvantage of using perovskites as supports is their high crystallinity and small surface area. We report the use of a supercritical carbon dioxide anti-solvent precipitation methodology to prepare large surface area lanthanum based perovskites, making the deposition of 1 wt% AuPt nanoparticles feasible. These catalysts were used for the selective oxidation of glycerol. By changing the elemental composition of the perovskite B site, we dramatically altered the reaction pathway between a sequential oxidation route to glyceric or tartronic acid and a dehydration reaction pathway to lactic acid. Selectivity profiles were correlated to reported oxygen adsorption capacities of the perovskite supports and also to changes in the AuPt nanoparticle morphologies. Extended time on line analysis using the best oxidation catalyst (AuPt/LaMnO3) produced an exceptionally high tartronic acid yield. LaMnO3 produced from alternative preparation methods was found to have lower activities, but gave comparable selectivity profiles to that produced using the supercritical carbon dioxide anti-solvent precipitation methodology.
Study of the controlled assembly of DNA gated PEI/Chitosan/SiO2 fluorescent sensor.
Chang, Zheng; Mi, Yinghao; Zheng, Xingwang
2018-03-01
In this paper, polyethylenimine (PEI) and Chitosan were simultaneously one-step doped into silicon dioxide (SiO 2 ) nanoparticles to synthesize PEI/Chitosan/SiO 2 composite nanoparticles. The polymer PEI contained a large amount of amino groups, which can realize the amino functionalized SiO 2 nanoparticles. And, the good pore forming effect of Chitosan was introduced into SiO 2 nanoparticles, and the resulting composite nanoparticles also had a porous structure. In pH 7.4 phosphate buffer solution (PBS), the amino groups of PEI had positive charges, and therefore the fluorescein sodium dye molecule can be loaded into the channels of PEI/Chitosan/SiO 2 composite nanoparticles by electrostatic adsorption. Furthermore, utilizing the diversity of DNA molecular conformation, we designed a high sensitive controllable assembly of DNA gated fluorescent sensor based on PEI/Chitosan/SiO 2 composite nanoparticles as loading materials. The factors affecting the sensing performance of the sensor were investigated, and the sensing mechanism was also further studied. Copyright © 2017 John Wiley & Sons, Ltd.
Li, Bing; Yu, Xiaohong; Gui, Suxin; Xie, Yi; Zhao, Xiaoyang; Hong, Jie; Sun, Qingqing; Sang, Xuezi; Sheng, Lei; Cheng, Zhe; Cheng, Jie; Hu, Rengping; Wang, Ling; Shen, Weide; Hong, Fashui
2014-06-01
Phoxim is a useful organophosphate (OP) pesticide used in agriculture in China, however, exposure to this pesticide can result in a significant reduction in cocooning in Bombyx mori (B. mori). Titanium dioxide nanoparticles (TiO2 NPs) have been shown to decrease phoxim-induced toxicity in B. mori; however, very little is known about the molecular mechanisms of silk gland damage due to OP exposure and repair of gland damage by TiO2 NP pretreatment. In the present study, exposure to phoxim resulted in a significant reduction in cocooning rate in addition to silk gland damage, whereas TiO2 NP attenuated phoxim-induced gland damage, increased the antioxidant capacity of the gland, and increased cocooning rate in B. mori. Furthermore, digital gene expression data suggested that phoxim exposure led to significant alterations in the expression of 833 genes. In particular, phoxim exposure caused significant down-regulation of Fib-L, Ser2, Ser3, and P25 genes involved in silk protein synthesis, and up-regulation of SFGH, UCH3, and Salhh genes involved in silk protein hydrolysis. A combination of both phoxim and TiO2 NP treatment resulted in marked changes in the expression of 754 genes, while treatment with TiO2 NPs led to significant alterations in the expression of 308 genes. Importantly, pretreatment with TiO2 NPs increased Fib-L, Ser2, Ser3, and P25 expression, and decreased SFGH, UCH3, and Salhh expression in silk protein in the silk gland under phoxim stress. Therefore, Fib-L, Ser2, Ser3, P25, SFGH, UCH3, and Salhh may be potential biomarkers of silk gland toxicity in B. mori caused by phoxim exposure. Copyright © 2013 Elsevier Ltd. All rights reserved.
Huang, Shenggen; Sun, Jian; Yan, Jian; Liu, Jiaqin; Wang, Weijie; Qin, Qingqing; Mao, Wenping; Xu, Wei; Wu, Yucheng; Wang, Junfeng
2018-03-21
In this work, Al-doped MnO 2 (Al-MO) nanoparticles have been synthesized by a simple chemical method with the aim to enhance cycling stability. At room temperature and 50 °C, the specific capacitances of Al-MO are well-maintained after 10 000 cycles. Compared with pure MnO 2 nanospheres (180.6 F g -1 at 1 A g -1 ), Al-MO also delivers an enhanced specific capacitance of 264.6 F g -1 at 1 A g -1 . During the cycling test, Al-MO exhibited relatively stable structure initially and transformed to needlelike structures finally both at room temperature and high temperature. In order to reveal the morphology evolution process, in situ NMR under high magnetic field has been carried out to probe the dynamics of structural properties. The 23 Na spectra and the SEM observation suggest that the morphology evolution may follow pulverization/reassembling process. The Na + intercalation/deintercalation induced pulverization, leading to the formation of tiny MnO 2 nanoparticles. After that, the pulverized tiny nanoparticles reassembled into new structures. In Al-MO electrodes, doping of Al 3+ could slow down this structure evolution process, resulting in a better electrochemical stability. This work deepens the understanding on the structural changes in faradic reaction of pseudocapacitive materials. It is also important for the practical applications of MnO 2 -based supercapacitors.
Laser-Induced, Local Oxidation of Copper Nanoparticle Films During Raman Measurements
NASA Astrophysics Data System (ADS)
Hight Walker, Angela R.; Cheng, Guangjun; Calizo, Irene
2011-03-01
The optical properties of gold and silver nanoparticles and their films have been thoroughly investigated as surface enhanced Raman scattering (SERS) substrates and chemical reaction promoters. Similar to gold and silver nanoparticles, copper nanoparticles exhibit distinct plasmon absorptions in the visible region. The work on copper nanoparticles and their films is limited due to their oxidization in air. However, their high reactivity actually provides an opportunity to exploit the laser-induced thermal effect and chemical reactions of these nanoparticles. Here, we present our investigation of the local oxidation of a copper nanoparticle film induced by a visible laser source during Raman spectroscopic measurements. The copper nanoparticle film is prepared by drop-casting chemically synthesized copper colloid onto silicon oxide/silicon substrate. The local oxidation induced by visible lasers in Raman spectroscopy is monitored with the distinct scattering peaks for copper oxides. Optical microscopy and scanning electron microscopy have been used to characterize the laser-induced morphological changes in the film. The results of this oxidation process with different excitation wavelengths and different laser powers will be presented.
NASA Astrophysics Data System (ADS)
Yang, Bing; Chen, Zhe; Wang, Yiting; Zhang, Jun; Liao, Guozhen; Tian, Zhengwen; Yu, Jianhui; Tang, Jieyuan; Luo, Yunhan; Lu, Huihui
2015-07-01
A temperature fiber sensor with nanostructured cladding composed ted by titanium dioxide (TiO2) nanoparticles was demonstrated. The nanoparticles self-assembled onto a side polished optical fiber (SPF). The enhancement of interaction between the propagating light and the TiO2 nanoparticles (TN) can be obtained via strong evanescent field of the SPF. The strong light-TN interaction gives rise to temperature sensing with a optical power variation of ~4dB in SPF experimentally for an environment temperature ranging from -7.8°C to 77.6°C. The novel temperature sensor shows a sensitivity of ~0.044 dB/°C. The TN-based fiber-optic temperature sensor is facile to manufactured, compatible with fiber-optic interconnections and high potential in photonics applications.
2014-01-01
Background TiO2 particles are commonly used as dietary supplements and may contain up to 36% of nano-sized particles (TiO2-NPs). Still impact and translocation of NPs through the gut epithelium is poorly documented. Results We show that, in vivo and ex vivo, agglomerates of TiO2-NPs cross both the regular ileum epithelium and the follicle-associated epithelium (FAE) and alter the paracellular permeability of the ileum and colon epithelia. In vitro, they accumulate in M-cells and mucus-secreting cells, much less in enterocytes. They do not cause overt cytotoxicity or apoptosis. They translocate through a model of FAE only, but induce tight junctions remodeling in the regular ileum epithelium, which is a sign of integrity alteration and suggests paracellular passage of NPs. Finally we prove that TiO2-NPs do not dissolve when sequestered up to 24 h in gut cells. Conclusions Taken together these data prove that TiO2-NPs would possibly translocate through both the regular epithelium lining the ileum and through Peyer’s patches, would induce epithelium impairment, and would persist in gut cells where they would possibly induce chronic damage. PMID:24666995
The advent of nanotechnology has opened up several potential avenues starting from the development of advanced manufacturing processes, revolutionary medical treatments, new consumer products, environmental applications, pollution control, etc. The backbone of this new leading-ed...
Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation
Zhang, Xiao; Li, Xueqian; Zhang, Du; ...
2017-02-23
Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildlymore » illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. As a result, the reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350°C.« less
Bear, Joseph C; Gomez, Virginia; Kefallinos, Nikolaos S; McGettrick, James D; Barron, Andrew R; Dunnill, Charles W
2015-12-15
Titanium dioxide (TiO2) bi-phasic powders with individual particles containing an anatase and rutile hetero-junction have been prepared using a sequential layer sol-gel deposition technique to soluble substrates. Sequential thin films of rutile and subsequently anatase TiO2 were deposited onto sodium chloride substrates yielding extremely fragile composite layered discs that fractured into "Janus-like" like powders on substrate dissolution. Nitrogen doped and platinum sputtered analogues were also prepared, and analysed for photocatalytic potential using the photodegradation of Rhodamine B, a model organic pollutant under UV and visible light irradiation. The materials were characterised using X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, Raman spectroscopy and scanning electron microscopy. This paper sheds light on the relationship between anatase and rutile materials when in direct contact and demonstrates a robust method for the synthesis of bi-phasic nanoparticles, ostensibly of any two materials, for photocatalytic reactions or otherwise. Copyright © 2015 Elsevier Inc. All rights reserved.
Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont.
Moll, Janine; Okupnik, Annette; Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D; van der Heijden, Marcel G A; Widmer, Franco
2016-01-01
Titanium dioxide nanoparticles (TiO2 NPs) are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two TiO2 NPs, i.e., P25, E171 and a non-nanomaterial TiO2. Growth of both organisms individually and their symbiotic root nodulation were investigated in liquid and hydroponic systems. While 23 and 18 mg l-1 of E171 and non-nanomaterial TiO2 decreased the growth rate of R. trifolii by 43 and 23% respectively, P25 did not cause effects. Shoot length of red clover decreased between 41 and 62% for all tested TiO2 NPs. In 21% of the TiO2 NP treated plants, no nodules were found. At high concentrations certain TiO2 NPs impaired R. trifolii as well as red clover growth and their symbiosis in the hydroponic systems.
Liu, Kui; Lin, Xialu; Zhao, Jinshun
2013-01-01
Due to their chemical stability and nonallergic, nonirritant, and ultraviolet protective properties, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industries such as electronics, optics, and material sciences, as well as architecture, medicine, and pharmacology. However, increasing concerns have been raised in regards to its ecotoxicity and toxicity on the aquatic environment as well as to humans. Although insights have been gained into the effects of TiO2 NPs on susceptible biological systems, there is still much ground to be covered, particularly in respect of our knowledge of the effects of the interaction of TiO2 NPs with other chemicals or physical factors. Studies suggest that interactions of TiO2 NPs with other chemicals or physical factors may result in an increase in toxicity or adverse effects. This review highlights recent progress in the study of the interactive effects of TiO2 NPs with other chemicals or physical factors. PMID:23901269
Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao; Li, Xueqian; Zhang, Du
Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildlymore » illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. As a result, the reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350°C.« less
Risk assessment of amorphous silicon dioxide nanoparticles in a glass cleaner formulation
Scheel, Julia; Karsten, Stefan; Stelter, Norbert; Wind, Thorsten
2013-01-01
Since nanomaterials are a heterogeneous group of substances used in various applications, risk assessment needs to be done on a case-by-case basis. Here the authors assess the risk (hazard and exposure) of a glass cleaner with synthetic amorphous silicon dioxide (SAS) nanoparticles during production and consumer use (spray application). As the colloidal material used is similar to previously investigated SAS, the hazard profile was considered to be comparable. Overall, SAS has a low toxicity. Worker exposure was analysed to be well controlled. The particle size distribution indicated that the aerosol droplets were in a size range not expected to reach the alveoli. Predictive modelling was used to approximate external exposure concentrations. Consumer and environmental exposure were estimated conservatively and were not of concern. It was concluded based on the available weight-of-evidence that the production and application of the glass cleaner is safe for humans and the environment under intended use conditions. PMID:22548260
Biocompatibility assessment of titanium dioxide nanoparticles in mice fetoplacental unit.
Naserzadeh, Parvaneh; Ghanbary, Fatemeh; Ashtari, Parviz; Seydi, Enayatollah; Ashtari, Khadijeh; Akbari, Mohsen
2018-02-01
As the applications of titanium dioxide nanomaterials (nTiO 2 ) are growing with an ever-increasing speed, the hazardous risks of this material have become a major concern. Several recent studies have reported that nTiO 2 can cross the placental barrier in pregnant mice and cause neurotoxicity in their offspring. However, the influence of these nanoparticles on the fetoplacental unit during the pregnancy is yet to be studied. The present study reports on the effects of nTiO 2 on the anatomical structure of fetal brain and liver in a pregnant mice model. Moreover, changes in the size and weight of the fetus and placenta are investigated as markers of fetal growth. Lastly, the toxicity of nTiO 2 in primary brain and liver is quantified. Animals treated with nTiO 2 showed a disrupted anatomical structure of the fetal brain and liver. Furthermore, the fetus and placental unit in the mice treated with these nanoparticles were smaller compared to untreated controls. Toxicity analyses revealed that nTiO 2 was toxic to the brain and liver cells and the mechanism of cell death was mostly necrosis. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 580-589, 2018. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Karasenkov, Y.; Frolov, G.; Pogorelsky, I.; Latuta, N.; Gusev, A.; Kuznetsov, D.; Leont'ev, V.
2015-11-01
New bactericidal containing nanoparticles colloids for application in dentistry, maxillofacial surgery, urology, obstetrics, gynaecology, ENT, proctology have been developed. The various water colloidal nanodispersive systems of metals and oxides have been obtained by means of electric impulse - condensation (electroerosion) method. These systems are based pure elements and alloys of argentum (Ag), titanium dioxide (TiO2), iron oxide (Fe2O3), tantalum oxide (TaO), vanadium oxide (VO2), cobalt oxide (CoO), tantalum dioxide TaO2, zinc oxide (ZnO), copper oxide (CuO) and mixed suspensions of titanium, aluminium and molybdenum oxides. The research has been made on culture of dentobacterial plaque and mixed culture issued from gingival spaces. The composition of culture was identified with S.aureus, S.epidermidis and nonfermentable kinds of E.coli. The observation period lasted more than nineteen days. All solutions showed highly prolonged bactericidal activity in dilutions from the whole solution 1-20 mg/L. The bactericidal activity of powder specimen of silica containing Ag and Fe2O3 nanoparticles used as dental filling material and disintegrates of composite materials (produced by “StomaDent” CJSC) have been studied. Tested materials have long (up to 19 days and more) bactericidal activity.
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Dojyo, Naoto; Sasaki, Wataru; Kubodera, Shoichi
2006-10-01
We realized a low-debris laser-produced plasma extreme ultraviolet (EUV) source by use of a colloidal microjet target, which contained low-concentration (6 wt%) tin-dioxide nanoparticles. An Nd:YAG laser was used to produce a plasma at the intensity on the order of 10^11 W/cm^2. The use of low concentration nanoparticles in a microjet target with a diameter of 50 μm regulated the neutral debris emission from a target, which was monitored by a silicon witness plate placed 30 cm apart from the source in a vacuum chamber. No XPS signals of tin and/or oxygen atoms were observed on the plate after ten thousand laser exposures. The low concentration nature of the target was compensated and the conversion efficiency (CE) was improved by introducing double pulses of two Nd:YAG lasers operated at 532 and 1064 nm as a result of controlling the micro-plasma characteristics. The EUV CE reached its maximum of 1.2% at the delay time of approximately 100 ns with the main laser intensiy of 2 x10^11 W/cm^2. The CE value was comparable to that of a tin bulk target, which, however, produced a significant amount of neutral debris.
Induction of discolored wood in Scots pine (Pinus sylvestris).
Nilsson, Mikael; Wikman, Susanne; Eklund, Leif
2002-04-01
Induction of discolored wood in Scots pine (Pinus sylvestris L.) trees by treatment with ethylene, carbon dioxide, nitrogen (hypoxia) or wounding from early April to late September was investigated. All treatments induced formation of discolored wood upward and downward from the drill hole. The amount of discolored wood formed above the drill hole depended on the treatment in the following order: ethylene > carbon dioxide = nitrogen > wounding; and below the drill hole in the order: ethylene > carbon dioxide = nitrogen = wounding. Based on chemical analyses (HPLC/UV, GS/MS, LC/MS and 1H-NMR), discolored wood induced by wounding or treatment with ethylene or carbon dioxide showed compositional similarities to natural heartwood, whereas discolored wood induced by nitrogen treatment showed fewer similarities to natural heartwood. The results suggest that ethylene is an important factor controlling heartwood formation, although wounding and internal concentrations of carbon dioxide may also play a role.
Aircraft in situ and remote sensing measurements of emissions from Etna volcano, Sicily
NASA Astrophysics Data System (ADS)
Vogel, A.; Weber, K.; Fischer, C.; Prata, A. J.; Durant, A. J.
2012-04-01
Volcanoes emit particles (silicates and sulphate aerosol) and gases (e.g., water and sulphur dioxide) which influence the radiative balance of the atmosphere. The rate at which sulphur dioxide oxidises to sulphate aerosol is poorly constrained and measurements of downwind abundance are required to quantify the rate at which this process occurs. During July and November 2011, a series of measurements were performed in emissions from Etna Volcano, Sicily, using the University of Applied Sciences (Dusseldorf) research aircraft. Both in situ and remote sensing instrumentation was simultaneously deployed to quantify the down-wind characteristics of gases and particles in the plume emitted by the volcano. In situ particle characteristics were measured using a Grimm 1.109 optical particle counter (microparticles 0.25-32 microns) and Grimm 1320 diffusion electrometer (nanoparticles 25-300 nanometers). Column abundance of sulphur dioxide was measured using a vertically-pointing differential optical absorption spectrometer (DOAS). These measurements were compared to horizontal pathlength-integrated measurements of sulphur dioxide from the Airborne Volcanic Imaging Object Detector (AVOID). Down-wind plume dispersion was discriminated through a series of aircraft transects below and through the volcanic plume. The emissions contained large amounts of nanoparticles relative to microparticles, which reflects gas-phase nucleation of sulphate aerosol. The AVOID system discriminated horizontal layering of volcanic aerosol at altitudes of up to 12,000 ft from a detection range of >50 km. Plume boundaries were discriminated using a combination of the in situ and DOAS measurements in order to compare to the pathlength-integrated measurements from AVOID.
Murugan, Kadarkarai; Dinesh, Devakumar; Kavithaa, Krishnamoorthy; Paulpandi, Manickam; Ponraj, Thondhi; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Wei, Hui; Kumar, Suresh; Nicoletti, Marcello; Benelli, Giovanni
2016-03-01
Mosquito vectors (Diptera: Culicidae) are responsible for transmission of serious diseases worldwide. Mosquito control is being enhanced in many areas, but there are significant challenges, including increasing resistance to insecticides and lack of alternative, cost-effective, and eco-friendly products. To deal with these crucial issues, recent emphasis has been placed on plant materials with mosquitocidal properties. Furthermore, cancers figure among the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2012 to 22 million within the next two decades. Nanotechnology is a promising field of research and is expected to give major innovation impulses in a variety of industrial sectors. In this study, we synthesized titanium dioxide (TiO2) nanoparticles using the hydrothermal method. Nanoparticles were subjected to different analysis including UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential, and energy-dispersive spectrometric (EDX). The synthesized TiO2 nanoparticles exhibited dose-dependent cytotoxicity against human breast cancer cells (MCF-7) and normal breast epithelial cells (HBL-100). After 24-h incubation, the inhibitory concentrations (IC50) were found to be 60 and 80 μg/mL on MCF-7 and normal HBL-100 cells, respectively. Induction of apoptosis was evidenced by Acridine Orange (AO)/ethidium bromide (EtBr) and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) staining. In larvicidal and pupicidal experiments conducted against the primary dengue mosquito Aedes aegypti, LC50 values of nanoparticles were 4.02 ppm (larva I), 4.962 ppm (larva II), 5.671 ppm (larva III), 6.485 ppm (larva IV), and 7.527 ppm (pupa). Overall, our results suggested that TiO2 nanoparticles may be considered as a safe tool to build newer and safer mosquitocides and chemotherapeutic agents with little systemic toxicity.
Reddy, Aileni Kaladhar; Kambalyal, Prabhuraj B; Patil, Santosh R; Vankhre, Mallikarjun; Khan, Mohammed Yaser Ahmed; Kumar, Thamtam Ramana
2016-01-01
Objective: To investigate the influence of silver (Ag), zinc oxide (ZnO), and titanium dioxide (TiO2) nanoparticles on shear bond strength (SBS). Materials and Methods: One hundred and twenty extracted premolars divided into four groups with thirty specimens in each group. Group 1 (control): brackets (American Orthodontics) were bonded with Transbond XT primer. Groups 2, 3, and 4: brackets (American Orthodontics) were bonded with adhesives incorporated with Ag, ZnO, and TiO2 nanoparticles in the concentration of 1.0% nanoparticles of Ag, 1.0% TiO2, and 1.0% ZnO weight/weight, respectively. An Instron universal testing machine AGS-10k NG (SHIMADZU) was used to measure the SBS. The data were analyzed by SPSS software and then, the normal distribution of the data was confirmed by Kolmogorov–Smirnov test. One-way ANOVA test and Tukey's multiple post hoc procedures were used to compare between groups. In all statistical tests, the significance level was set at 5% (P < 0.05). Results: A significant difference was observed between control (mean [standard deviation (SD)] 9.43 [3.03], confidence interval [CI]: 8.30–10.56), Ag (mean [SD]: 7.55 [1.29], CI: 7.07–8.03), ZnO (mean [SD]: 6.50 [1.15], CI: 6.07–6.93), and TiO2 (mean [SD]: 6.33 [1.51], CI: 5.77–0.89) with SBS (F = 16.8453, P < 0.05) at 5% level of significance. Conclusion: Incorporation of various nanoparticles into adhesive materials in minimal amounts may decrease SBS and may lead to the failure of bracket or adhesive. The limitation of this study is that it is an in vitro research and these results may not be comparable to what the expected bond strengths observed in vivo. Further clinical studies are needed to evaluate biological effects of adding such amounts of nanoparticles and approve such adhesives as clinically sustainable. PMID:27843887
Sherin, Sainulabdeen; Sheeja, Sathyabhama; Sudha Devi, Rukhmini; Balachandran, Sreedharan; Soumya, Rema Sreenivasan; Abraham, Annie
2017-09-25
The present study deals with the preparation of stable Curcumin incorporated Titaniumdioxide Nanoparticles (CTNPs) by coprecipitation method for improving the bioavailability of curcumin and site specific drug delivery. The prepared nanoparticles were characterized by UV visible spectroscopy, FTIR, XRD, DLS, SEM and EDX. The characterization studies showed the interaction of curcumin to titanium dioxide nanoparticles. The average size of the prepared CTNPs was found to be ∼29 nm with zetapotential of-53.790 mV. In vivo and in vitro toxicological evaluations were carried out to determine the biological effect of CTNPs. In vitro parameters like cell viability, Lactate dehydrogenase (LDH) Assay, Neutral red uptake (NRU) assay and uptake of curcumin from CTNPs by the cells had been investigated. In vitro toxicity studies in THP1 and H9c2 cell lines showed that CTNPs are safe even at a dose of 200 ng. The in vivo part of the study was carried out with different doses of Curcumin (1 mg-20 mg/kg body weight), Titaniumdioxide Nanoparticles (TNPs) (1 mg-5 mg/kg Body weight) and CTNPs (5 mg-10 mg/kg Body weight) in Sprague dawley rat models to determine the pharmacokinetics and genotoxicity of the nanoparticle. This was done by analysing the parameters like SGPT, SGOT, LDH, hematological parameters and biodistribution of the nanomaterial at different organ sites. Genotoxicity of samples were done by comet assay on blood cells. No significant toxicity was observed in the parameters in samples treated group compared to controls. The overall results indicated that the CTNPs are nontoxic and is highly stable with improved site specific application compared to native curcumin and are suitable for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Micro-Raman Spectroscopy of Silver Nanoparticle Induced Stress on Optically-Trapped Stem Cells
Bankapur, Aseefhali; Krishnamurthy, R. Sagar; Zachariah, Elsa; Santhosh, Chidangil; Chougule, Basavaraj; Praveen, Bhavishna; Valiathan, Manna; Mathur, Deepak
2012-01-01
We report here results of a single-cell Raman spectroscopy study of stress effects induced by silver nanoparticles in human mesenchymal stem cells (hMSCs). A high-sensitivity, high-resolution Raman Tweezers set-up has been used to monitor nanoparticle-induced biochemical changes in optically-trapped single cells. Our micro-Raman spectroscopic study reveals that hMSCs treated with silver nanoparticles undergo oxidative stress at doping levels in excess of 2 µg/ml, with results of a statistical analysis of Raman spectra suggesting that the induced stress becomes more dominant at nanoparticle concentration levels above 3 µg/ml. PMID:22514708
Oda, Shinichiro; Nagahama, Ryoji; Nakano, Kaku; Matoba, Tetsuya; Kubo, Mitsuki; Sunagawa, Kenji; Tominaga, Ryuji; Egashira, Kensuke
2010-08-01
We recently demonstrated in a murine model that nanoparticle-mediated delivery of pitavastatin into vascular endothelial cells effectively increased therapeutic neovascularization. For the development of a clinically applicable approach, further investigations are necessary to assess whether this novel system can induce the development of collateral arteries (arteriogenesis) in a chronic ischemia setting in larger animals. Chronic hind limb ischemia was induced in rabbits. They were administered single injections of nanoparticles loaded with pitavastatin (0.05, 0.15, and 0.5 mg/kg) into ischemic muscle. Treatment with pitavastatin nanoparticles (0.5 mg/kg), but not other nanoparticles, induced angiographically visible arteriogenesis. The effects of intramuscular injections of phosphate-buffered saline, fluorescein isothiocyanate (FITC)-loaded nanoparticles, pitavastatin (0.5 mg/kg), or pitavastatin (0.5 mg/kg) nanoparticles were examined. FITC nanoparticles were detected mainly in endothelial cells of the ischemic muscles for up to 4 weeks. Treatment with pitavastatin nanoparticles, but not other treatments, induced therapeutic arteriogenesis and ameliorated exercise-induced ischemia, suggesting the development of functional collateral arteries. Pretreatment with nanoparticles loaded with vatalanib, a vascular endothelial growth factor receptor (VEGF) tyrosine kinase inhibitor, abrogated the therapeutic effects of pitavastatin nanoparticles. Separate experiments with mice deficient for VEGF receptor tyrosine kinase demonstrated a crucial role of VEGF receptor signals in the therapeutic angiogenic effects. The nanotechnology platform assessed in this study (nanoparticle-mediated endothelial cell-selective delivery of pitavastatin) may be developed as a clinically feasible and promising strategy for therapeutic arteriogenesis in patients. Copyright (c) 2010 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikova, N. N., E-mail: nn-novikova07@yandex.ru; Kovalchuk, M. V.; Yakunin, S. N.
The processes of structural rearrangement in a model membrane, i.e., an arachic acid monolayer formed on a colloidal solution of cerium dioxide or magnetite, are studied in situ in real time by the methods of X-ray standing waves and 2D diffraction. It is shown that the character of the interaction of nanoparticles with the monolayer is determined by their nature and sizes and depends on the conditions of nanoparticle synthesis. In particular, the structure formation in the monolayer–particle system is greatly affected by the stabilizer (citric acid), which is introduced into the colloidal solution during synthesis.
Onesto, V; Villani, M; Coluccio, M L; Majewska, R; Alabastri, A; Battista, E; Schirato, A; Calestani, D; Coppedé, N; Cesarelli, M; Amato, F; Di Fabrizio, E; Gentile, F
2018-04-10
Diatom shells are a natural, theoretically unlimited material composed of silicon dioxide, with regular patterns of pores penetrating through their surface. For their characteristics, diatom shells show promise to be used as low cost, highly efficient drug carriers, sensor devices or other micro-devices. Here, we demonstrate diatom shells functionalized with gold nanoparticles for the harvesting and detection of biological analytes (bovine serum albumin-BSA) and chemical pollutants (mineral oil) in low abundance ranges, for applications in bioengineering, medicine, safety, and pollution monitoring.
Nanoparticles and direct immunosuppression
Ngobili, Terrika A
2016-01-01
Targeting the immune system with nanomaterials is an intensely active area of research. Specifically, the capability to induce immunosuppression is a promising complement for drug delivery and regenerative medicine therapies. Many novel strategies for immunosuppression rely on nanoparticles as delivery vehicles for small-molecule immunosuppressive compounds. As a consequence, efforts in understanding the mechanisms in which nanoparticles directly interact with the immune system have been overshadowed. The immunological activity of nanoparticles is dependent on the physiochemical properties of the nanoparticles and its subsequent cellular internalization. As the underlying factors for these reactions are elucidated, more nanoparticles may be engineered and evaluated for inducing immunosuppression and complementing immunosuppressive drugs. This review will briefly summarize the state-of-the-art and developments in understanding how nanoparticles induce immunosuppressive responses, compare the inherent properties of nanomaterials which induce these immunological reactions, and comment on the potential for using nanomaterials to modulate and control the immune system. PMID:27229901
Wan, Rong; Mo, Yiqun; Chien, Sufan; Li, Yihua; Li, Yixin; Tollerud, David J; Zhang, Qunwei
2011-12-01
Nickel is an important economic commodity, but it can cause skin sensitization and may cause lung diseases such as lung fibrosis, pneumonitis, bronchial asthma and lung cancer. With development of nanotechnology, nano-sized nickel (Nano-Ni) and nano-sized titanium dioxide (Nano-TiO₂) particles have been developed and produced for many years with new formulations and surface properties to meet novel demands. Our previous studies have shown that Nano-Ni instilled into rat lungs caused a greater inflammatory response as compared with standard-sized nickel (5 μm) at equivalent mass concentrations. Nano-Ni caused a persistent high level of inflammation in lungs even at low doses. Recently, several studies have shown that nanoparticles can translocate from the lungs to the circulatory system. To evaluate the potential systemic effects of metal nanoparticles, we compared the effects of Nano-Ni and Nano-TiO₂ on matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) gene expression and activity. Our results showed that exposure of human monocyte U937 to Nano-Ni caused dose- and time- dependent increase in MMP-2 and MMP-9 mRNA expression and pro-MMP-2 and pro-MMP-9 activity, but Nano-TiO₂ did not. Nano-Ni also caused dose- and time- related increase in tissue inhibitor of metalloproteinases 1 (TIMP-1), but Nano-TiO₂ did not. To determine the potential mechanisms involved, we measured the expression of hypoxia inducible factor 1α (HIF-1α) in U937 cells exposed to Nano-Ni and Nano-TiO₂. Our results showed that exposure to Nano-Ni caused HIF-1α accumulation in the nucleus. Furthermore, pre-treatment of U937 cells with heat shock protein 90 (Hsp90) inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG), prior to exposure to Nano-Ni significantly abolished Nano-Ni-induced MMP-2 and MMP-9 mRNA upregulation and increased pro-MMP-2 and pro-MMP-9 activity. Our results suggest that HIF-1α accumulation may be involved in the increased MMP-2 and MMP-9 production in U937 cells exposed to Nano-Ni.
Zhao, De; He, Zhongyuan; Wang, Gang; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang
2016-09-15
Microfluidic technology plays a significant role in separating biomolecules, because of its miniaturization, integration, and automation. Introducing micro/nanostructured functional materials can improve the properties of microfluidic devices, and extend their application. Inverse opal has a three-dimensional ordered net-like structure. It possesses a large surface area and exhibits good mass transport, making it a good candidate for bio-separation. This study exploits inverse opal titanium dioxide-zirconium dioxide films for on-chip phosphopeptide enrichment. Titanium dioxide-zirconium dioxide inverse opal film-based microfluidic devices were constructed from templates of 270-, 340-, and 370-nm-diameter poly(methylmethacrylate) spheres. The phosphopeptide enrichments of these devices were determined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The device constructed from the 270-nm-diameter sphere template exhibited good comprehensive phosphopeptide enrichment, and was the best among these three devices. Because the size of opal template used in construction was the smallest, the inverse opal film therefore had the smallest pore sizes and the largest surface area. Enrichment by this device was also better than those of similar devices based on nanoparticle films and single component films. The titanium dioxide-zirconium dioxide inverse opal film-based device provides a promising approach for the efficient separation of various biomolecules. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gupta, Govind Sharan; Kumar, Ashutosh; Shanker, Rishi; Dhawan, Alok
2016-08-01
Nano titanium dioxide (nTiO2) is the most abundantly released engineered nanomaterial (ENM) in aquatic environments. Therefore, it is prudent to assess its fate and its effects on lower trophic-level organisms in the aquatic food chain. A predator-and-prey-based laboratory microcosm was established using Paramecium caudatum and Escherichia coli to evaluate the effects of nTiO2. The surface interaction of nTiO2 with E. coli significantly increased after the addition of Paramecium into the microcosm. This interaction favoured the hetero-agglomeration and co-sedimentation of nTiO2. The extent of nTiO2 agglomeration under experimental conditions was as follows: combined E. coli and Paramecium > Paramecium only > E. coli only > without E. coli or Paramecium. An increase in nTiO2 internalisation in Paramecium cells was also observed in the presence or absence of E. coli cells. These interactions and nTiO2 internalisation in Paramecium cells induced statistically significant (p < 0.05) effects on growth and the bacterial ingestion rate at 24 h. These findings provide new insights into the fate of nTiO2 in the presence of bacterial-ciliate interactions in the aquatic environment.
Gupta, Govind Sharan; Kumar, Ashutosh; Shanker, Rishi; Dhawan, Alok
2016-01-01
Nano titanium dioxide (nTiO2) is the most abundantly released engineered nanomaterial (ENM) in aquatic environments. Therefore, it is prudent to assess its fate and its effects on lower trophic-level organisms in the aquatic food chain. A predator-and-prey-based laboratory microcosm was established using Paramecium caudatum and Escherichia coli to evaluate the effects of nTiO2. The surface interaction of nTiO2 with E. coli significantly increased after the addition of Paramecium into the microcosm. This interaction favoured the hetero-agglomeration and co-sedimentation of nTiO2. The extent of nTiO2 agglomeration under experimental conditions was as follows: combined E. coli and Paramecium > Paramecium only > E. coli only > without E. coli or Paramecium. An increase in nTiO2 internalisation in Paramecium cells was also observed in the presence or absence of E. coli cells. These interactions and nTiO2 internalisation in Paramecium cells induced statistically significant (p < 0.05) effects on growth and the bacterial ingestion rate at 24 h. These findings provide new insights into the fate of nTiO2 in the presence of bacterial-ciliate interactions in the aquatic environment. PMID:27530102
Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids.
Labille, Jérôme; Harns, Carrie; Bottero, Jean-Yves; Brant, Jonathan
2015-06-02
To better understand and predict the fate of engineered nanoparticles in the water column, we assessed the heteroaggregation of TiO2 nanoparticles with a smectite clay as analogues for natural colloids. Heteroaggregation was evaluated as a function of water salinity (10(-3) and 10(-1) M NaCl), pH (5 and 8), and selected nanoparticle concentration (0-4 mg/L). Time-resolved laser diffraction was used, coupled to an aggregation model, to identify the key mechanisms and variables that drive the heteroaggregation of the nanoparticles with colloids. Our data show that, at a relevant concentration, nanoparticle behavior is mainly driven by heteroaggregation with colloids, while homoaggregation remains negligible. The affinity of TiO2 nanoparticles for clay is driven by electrostatic interactions. Opposite surface charges and/or high ionic strength favored the formation of primary heteroaggregates via the attachment of nanoparticles to the clay. The initial shape and dispersion state of the clay as well as the nanoparticle/clay concentration ratio also affected the nature of the heteroaggregation mechanism. With dispersed clay platelets (10(-3) M NaCl), secondary heteroaggregation driven by bridging nanoparticles occurred at a nanoparticle/clay number ratio of greater than 0.5. In 10(-1) M NaCl, the clay was preaggregated into larger and more spherical units. This favored secondary heteroaggregation at lower nanoparticle concentration that correlated to the nanoparticle/clay surface area ratio. In this latter case, a nanoparticle to clay sticking efficiency could be determined.
NASA Astrophysics Data System (ADS)
Ferrara, Davon W.; MacQuarrie, Evan R.; Diez-Blanco, Victor; Nag, Joyeeta; Kaye, Anthony B.; Haglund, Richard F.
2012-08-01
Nanocomposites consisting of gold nanoparticle (NP) arrays and vanadium dioxide (VO2) thin films are noteworthy for the tunability of both their thermal and optical properties. The localized surface plasmon resonance (LSPR) of the Au can be tuned when its dielectric environment is modulated by the semiconducting-to-metal phase transition (SMT) of the VO2; the LSPR itself can be altered by changing the shape of the NPs and the pitch of the NP array. In principle, then it should be possible to choose a combination of VO2 film and Au LSPR properties that maximizes the overall optical response of the nanocomposite. To demonstrate this effect, transient transmission measurements were conducted on lithographically fabricated arrays of Au NPs of diameter 140 nm, array spacing 350 nm, and covered with a 60 nm thick films of VO2 via pulsed laser deposition. Both Au::VO2 nanocomposites and bare VO2 film were irradiated with a shuttered 785 nm pump laser, and their optical response was probed at 1550 nm by a fixed-frequency diode laser. The Au::VO2 nanocomposite exhibited an increased effective absorption coefficient 1.5 times that of the plain film and required 37 % less laser power to induce the SMT. The time-dependent temperature rise in the film as a function of laser intensity was calculated from these measurements and compared with both analytic and finite-element models. Our results suggest that Au::VO2 nanocomposites may be useful in applications such as thermal-management coatings for energy efficient "smart" windows.
NANOSIZE TITANIA STIMULATES REACTIVE OXYGEN SPECIES IN BRAIN MICROGLIA AND DAMAGES NEURONS.
Research that addresses the environmental impact and biological consequences of widely distributed, commonly used nanoparticles is needed. Nanosize titanium dioxide (i.e., titania, TiO2) is used in air and water remediation and in numerous products designed for direct human us...
Xuan, Lihui; Han, Guangping; Wang, Dong; Cheng, Wanli; Gao, Xun; Chen, Feng; Li, Qingde
2017-01-01
Surface modification and characterization of titanium dioxide (TiO2) nanoparticles and their roles in thermal, mechanical, and accelerated aging behavior of foamed wheat straw fiber/polypropylene (PP) composites are investigated. To improve the dispersion of nanoparticles and increase the possible interactions between wheat straw fiber and the PP matrix, the surface of the TiO2 nanoparticles was modified with ethenyltrimethoxy silane (A171), a silane coupling agent. The grafting of A171 on the TiO2 nanoparticles’ surface was characterized by Fourier transform infrared spectroscopy (FTIR). The wheat straw fibers treated with A171 and modified TiO2 nanoparticles were characterized by FTIR and thermogravimetric analysis (TGA). FTIR spectra confirmed that the organic functional groups of A171 were successfully grafted onto the TiO2 nanoparticles and wheat straw fibers, and the modified TiO2 nanoparticles were adsorbed onto the wheat straw fibers. Thermogravimetric analysis showed that a higher thermal stability of the wheat straw fiber was obtained with the modified TiO2 nanoparticles. The flexural, tensile, and impact properties were improved. A higher ultraviolet (UV) stability of the samples treated with modified TiO2 nanoparticles was exhibited by the study of the color change and loss in mechanical properties. PMID:28772816
XRD analysis of undoped and Fe doped TiO{sub 2} nanoparticles by Williamson Hall method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharti, Bandna; Barman, P. B.; Kumar, Rajesh, E-mail: rajesh.kumar@juit.ac.in
2015-08-28
Undoped and Fe doped titanium dioxide (TiO{sub 2}) nanoparticles were synthesized by sol-gel method at room temperature. The synthesized samples were annealed at 500°C. For structural analysis, the prepared samples were characterized by X-ray diffraction (XRD). The crystallite size of TiO{sub 2} and Fe doped TiO{sub 2} nanoparticles were calculated by Scherer’s formula, and was found to be 15 nm and 11 nm, respectively. Reduction in crystallite size of TiO{sub 2} with Fe doping was observed. The anatase phase of Fe-doped TiO{sub 2} nanoparticles was also confirmed by X-ray diffraction. By using Williamson-Hall method, lattice strain and crystallite size weremore » also calculated. Williamson–Hall plot indicates the presence of compressive strain for TiO{sub 2} and tensile strain for Fe-TiO{sub 2} nanoparticles annealed at 500°C.« less
Fractional laser microablation of skin aimed at enhancing its permeability for nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genina, Elina A; Dolotov, L E; Bashkatov, A N
2011-05-31
A new method for delivering nanoparticles into the skin using the fractional laser microablation of its surface and the ultrasonic treatment is proposed. As a result of in vitro and in vivo studies, it is shown that the 290-nm laser pulses with the energy from 0.5 to 3.0 J provide the penetration of nanoparticles of titanium dioxide with the diameter {approx}100 nm from the skin surface to the depth, varying from 150 to 400 {mu}m. Histological testing of the skin areas, subjected to the treatment, shows that the particles stay in the dermis at the depth up to 400 {mu}mmore » no less than for three weeks. (optical technologies in biophysics and medicine)« less
Optical diffraction in ordered VO2 nanoparticle arrays
NASA Astrophysics Data System (ADS)
Lopez, Rene; Feldman, Leonard; Haglund, Richard
2006-03-01
The potential of oxide electronic materials as multifunctional building blocks is one of the driving concepts of the field. In this presentation, we show how nanostructured particle arrays with long-range order can be used to modulate an optical response through exploiting the metal-insulator transition of vanadium dioxide. Arrays of VO2 nanoparticles with long-range order were fabricated by pulsed laser deposition in an arbitrary pattern defined by focused ion-beam lithography. The interaction of light with the nanoparticles is controlled by the nanoparticle size, spacing and geometrical arrangement and by switching between the metallic and semiconducting phases of VO2. In addition to the near-infrared surface plasmon response observed in previous VO2 studies, the VO2 nanoparticle arrays exhibit size-dependent optical resonances in the visible region that likewise show an enhanced optical contrast between the semiconducting and metallic phases. The collective optical response as a function of temperature gives rise to an enhanced scattering state during the evolving phase transition, while the incoherent coupling between the nanoparticles produces an order-disorder-order transition.
NASA Astrophysics Data System (ADS)
Svetlichnyi, V. A.; Lapin, I. N.
2013-10-01
Size characteristics, structure, and spectral and luminescent properties of nanoparticles fabricated by laser ablation of zinc metal targets in water and ethanol are experimentally investigated upon excitation by Nd:YAG-laser radiation (1064 nm, 7 ns, and 15 Hz). It is demonstrated that zinc oxide nanoparticles with average sizes of 10 nm (in water) and 16 nm (in ethanol) are formed in the initial stage as a result of ablation. The kinetics of the absorption and luminescence spectra, transmission electron microscopy, and x-ray structural analysis demonstrate that during long storage of water dispersions and their drying, nanoparticles efficiently interact with carbon dioxide gas of air that leads to the formation of water-soluble Zn(CO3)2(OH)6. In ethanol, Zn oxidation leads to the formation of stable dispersions of ZnO nanoparticles with 99% of the wurtzite phase; in this case, the fluorescence spectra of ZnO nanoparticles change with time, shifting toward longer wavelength region from 550 to 620 nm, which is caused by the changed nature of defects.
Suspension characterization as important key for toxicological investigations
NASA Astrophysics Data System (ADS)
Meißner, Tobias; Potthoff, Annegret; Richter, Volkmar
2009-05-01
To assess potential health risks of nanoparticles by means of in vitro or in vivo assays and to determine dose-action curves a defined and reproducible method of particle administration is required. The interpretation of the toxicological results should be based on a comprehensive chemical-physical characterization of the particles used. Therefore, we developed a method to suspend nanoparticles stably and homogenously in physiological media. Our approach consist of three steps: (1) physical-chemical characterisation of the powders as delivered, (2) preparation and characterization of a non-physiological electro-statically stabilized nanoparticle suspension and (3) assessment of the nanoparticles behaviour in physiological media with or without proteins. This approach is demonstrated on a titanium dioxide and a tungsten carbide nanopowder. Results showed that particles agglomerate in protein-free medium within minutes, whereas in the presence of bovine serum albumin or foetal bovine serum an agglomeration is hindered.
Kim, Min-Sik; Stees, Melinda; Karuturi, Bala Vamsi K; Vijayaraghavalu, Sivakumar; Peterson, Richard E; Madsen, Gary L; Labhasetwar, Vinod
2017-06-01
Titanium dioxide nanoparticles (TiO 2 NPs) are used in sunscreen products to protect the skin from the sun's ultraviolet rays. However, following exposure to sunlight, the photocatalytic activity of TiO 2 NPs can produce an excess of reactive oxygen species (ROS), causing skin cell damage, triggering an inflammatory response. In zebrafish model, we evaluated how well Pro-NP™ (biodegradable NPs containing superoxide dismutase and catalase) could protect them from TiO 2 NP-induced photo-oxidative stress. We hypothesized that the antioxidant properties of Pro-NP™ would protect zebrafish embryos from the phototoxic effects of TiO 2 NPs, improving overall survival and growth. Dechorionated embryos were treated with TiO 2 NPs alone or co-treated with Pro-NP™, and then exposed to simulated sunlight. Pro-NP™ by itself caused no toxicity; however, for embryos exposed to 100 μg/ml TiO 2 NPs, zebrafish survival was reduced to ∼40% and at 500 μg/ml to ∼10%. In contrast, at 100 μg/ml TiO 2 NP, co-treatment with Pro-NP™ increased zebrafish survival in a dose-dependent manner. Co-treatment also improved percent of embryos hatching and resulted in normal growth of zebrafish. On the other hand, embryos treated with TiO 2 NPs alone developed deformities, had reduced pigmentation, and showed severely truncated growth. Pro-NP™ afforded a greater level of protection against TiO 2 NP-induced phototoxicity than other antioxidants (vitamin E or N-acetylcysteine) commonly used in topical skin care formulations. We conclude that Pro-NP™ exert significant protective effects against TiO 2 NP-induced phototoxicity and could be developed as a safe, effective skin care product, used alone or in combination with sunscreen products to protect the skin from sun's UV radiation.
Cytotoxicity of titanium and silicon dioxide nanoparticles
NASA Astrophysics Data System (ADS)
Wagner, Stefanie; Münzer, Simon; Behrens, Peter; Scheper, Thomas; Bahnemann, Detlef; Kasper, Cornelia
2009-05-01
Different TiO2 and SiO2 nanoparticles have been tested concerning their toxicity on selected mammalian cell lines. Various powders and suspensions, all of which consist of titanium or silicon dioxide nanoparticles have been examined. These particles differ in the crystal structure, the size and the BET-surface area. There was also a classification in fixed particles and in particles easily accessible in solution. With focus on the possible adsorption of the nanoparticles into the human organism, via skin and via respiratory tract, the effects on fibroblasts (NIH-3T3) and on a human lung adenocarcinoma epithelial cell line were examined. Additionally, the particles were tested with HEP-G2 cells, which are often used as model cell line for biocompatibility tests, and PC-12 cells, a rat adrenal pheochromocytoma cell line. The viability of the cells was examined by the MTT-test. The viability results were found to partly depend on the type of cells used. The experimental results show that the adhesion of the cells on the different powders strongly depends on the type of cell lines as well as on the type of powder. It was found that the lower viability of some cells on the powder coatings is not only caused by a cytotoxicity effect of the powders, but is also due to a lower adhesion of the cells on the particle surfaces. Furthermore, it could be shown that the physical properties of the powders cannot be easily correlated to any observed biological effect. While some powders show a significant suppression of the cell growth, others with similar physical properties indicate no toxic effect.
NASA Astrophysics Data System (ADS)
Repko, Anton; Vejpravová, Jana; Vacková, Taťana; Zákutná, Dominika; Nižňanský, Daniel
2015-09-01
We present a facile and high-yield synthesis of cobalt ferrite nanoparticles by hydrothermal hydrolysis of Co-Fe oleate in the presence of pentanol/octanol/toluene and water at 180 or 220 °C. The particle size (6-10 nm) was controlled by the composition of the organic solvent and temperature. Magnetic properties were then investigated with respect to the particle size and surface modification with citric acid or titanium dioxide (leading to hydrophilic particles). The as-prepared hydrophobic nanoparticles (coated by oleic acid) had a minimum inter-particle distance of 2.5 nm. Their apparent blocking temperature (estimated as a maximum of the zero-field-cooled magnetization) was 180 K, 280 K and 330 K for the particles with size of 6, 9 and 10.5 nm, respectively. Replacement of oleic acid on the surface by citric acid decreased inter-particle distance to less than 1 nm, and increased blocking temperature by ca. 10 K. On the other hand, coating with titanium dioxide, supported by nitrilotri(methylphosphonic acid), caused increase of the particle spacing, and lowering of the blocking temperature by ca. 20 K. The CoFe2O4@TiO2 nanoparticles were sufficiently stable in water, methanol and ethanol. The particles were also investigated by Mössbauer spectroscopy and alternating-current (AC) susceptibility measurements, and their analysis with Vögel-Fulcher and power law. Effect of different particle coating and dipolar interactions on the magnetic properties is discussed.
The ability of different nano-sized materials (NSM) to effectively act as active photo-catalytic surfaces has been described for the mineralization/inactivation of many different aqueous pollutants. The reason for their enhanced ability over larger catalytic surfaces owes muc...
Transport Of Metal Oxide Nanoparticles In Porous Media And Its Environmental Implications
Of the most significant uses of nanomaterial, zinc oxide and titanium dioxide have been common additives with a variety of applications (e.g., 70% of sunscreens: TiO2; 30% of sunscreens: ZnO). However, fewer studies have been initiated on how these manufactured met...
It is important to evaluate the potential effects of engineered nanomaterials (ENM) across the lifecycle of nanomaterial-enabled products including transformations in the environment that mayeither gain or lose functional properties. For example, uncoated titanium dioxide (Ti02)...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Javed; Ahamed, Maqusood, E-mail: maqusood@gmail.com; Akhtar, Mohd Javed
Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion ofmore » glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ► We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ► Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ► Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ► Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ► ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.« less
Widespread Nanoparticle-Assay Interference: Implications for Nanotoxicity Testing
Ong, Kimberly J.; MacCormack, Tyson J.; Clark, Rhett J.; Ede, James D.; Ortega, Van A.; Felix, Lindsey C.; Dang, Michael K. M.; Ma, Guibin; Fenniri, Hicham; Veinot, Jonathan G. C.; Goss, Greg G.
2014-01-01
The evaluation of engineered nanomaterial safety has been hindered by conflicting reports demonstrating differential degrees of toxicity with the same nanoparticles. The unique properties of these materials increase the likelihood that they will interfere with analytical techniques, which may contribute to this phenomenon. We tested the potential for: 1) nanoparticle intrinsic fluorescence/absorbance, 2) interactions between nanoparticles and assay components, and 3) the effects of adding both nanoparticles and analytes to an assay, to interfere with the accurate assessment of toxicity. Silicon, cadmium selenide, titanium dioxide, and helical rosette nanotubes each affected at least one of the six assays tested, resulting in either substantial over- or under-estimations of toxicity. Simulation of realistic assay conditions revealed that interference could not be predicted solely by interactions between nanoparticles and assay components. Moreover, the nature and degree of interference cannot be predicted solely based on our current understanding of nanomaterial behaviour. A literature survey indicated that ca. 95% of papers from 2010 using biochemical techniques to assess nanotoxicity did not account for potential interference of nanoparticles, and this number had not substantially improved in 2012. We provide guidance on avoiding and/or controlling for such interference to improve the accuracy of nanotoxicity assessments. PMID:24618833
Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific
NASA Astrophysics Data System (ADS)
Chen, K.-H.; Lundy, D. J.; Toh, E. K.-W.; Chen, C.-H.; Shih, C.; Chen, P.; Chang, H.-C.; Lai, J. J.; Stayton, P. S.; Hoffman, A. S.; Hsieh, P. C.-H.
2015-09-01
This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered after 16 hours. HPLC analysis was used to accurately quantify nanoparticle retention by each vital organ, and tissue sections revealed the precise locations of nanoparticle deposition within key tissues. During inflammation, nanoparticles of all sizes redistributed, particularly to the marginal zones of the spleen. We found that LPS-induced inflammation induces splenic macrophage polarisation and alters leukocyte uptake of nanoparticles, with size-dependent effects. In addition, spleen vasculature becomes significantly more permeable following LPS treatment. We conclude that systemic inflammation affects nanoparticle distribution by multiple mechanisms, in a size dependent manner.This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered after 16 hours. HPLC analysis was used to accurately quantify nanoparticle retention by each vital organ, and tissue sections revealed the precise locations of nanoparticle deposition within key tissues. During inflammation, nanoparticles of all sizes redistributed, particularly to the marginal zones of the spleen. We found that LPS-induced inflammation induces splenic macrophage polarisation and alters leukocyte uptake of nanoparticles, with size-dependent effects. In addition, spleen vasculature becomes significantly more permeable following LPS treatment. We conclude that systemic inflammation affects nanoparticle distribution by multiple mechanisms, in a size dependent manner. Electronic supplementary information (ESI) available: IF images of brain, heart, low magnification images of spleen, mouse heart rate and blood pressure post-LPS. See DOI: 10.1039/c5nr03626g
2014-01-01
Background One of the major challenges of nanotechnology during the last decade has been the development of new procedures to synthesize nanoparticles. In this context, biosynthetic methods have taken hold since they are simple, safe and eco-friendly. Results In this study, we report the biosynthesis of TiO2 nanoparticles by an environmental isolate of Bacillus mycoides, a poorly described Gram-positive bacterium able to form colonies with novel morphologies. This isolate was able to produce TiO2 nanoparticles at 37°C in the presence of titanyl hydroxide. Biosynthesized nanoparticles have anatase polymorphic structure, spherical morphology, polydisperse size (40–60 nm) and an organic shell as determined by UV–vis spectroscopy, TEM, DLS and FTIR, respectively. Also, conversely to chemically produced nanoparticles, biosynthesized TiO2 do not display phototoxicity. In order to design less expensive and greener solar cells, biosynthesized nanoparticles were evaluated in Quantum Dot Sensitized Solar Cells (QDSSCs) and compared with chemically produced TiO2 nanoparticles. Solar cell parameters such as short circuit current density (ISC) and open circuit voltage (VOC) revealed that biosynthesized TiO2 nanoparticles can mobilize electrons in QDSSCs similarly than chemically produced TiO2. Conclusions Our results indicate that bacterial extracellular production of TiO2 nanoparticles at low temperatures represents a novel alternative for the construction of green solar cells. PMID:25027643
Sloat, Brian R.; Sandoval, Michael A.; Hau, Andrew M.; He, Yongqun; Cui, Zhengrong
2009-01-01
An accumulation of research over the years has demonstrated the utility of nanoparticles as antigen carriers with adjuvant activity. Herein we defined the adjuvanticity of a novel lecithin-based nanoparticle engineered from emulsions. The nanoparticles were spheres of around 200 nm. Model protein antigens, bovine serum albumin (BSA) or Bacillus anthracis protective antigen (PA) protein, were covalently conjugated onto the nanoparticles. Mice immunized with the BSA-conjugated nanoparticles developed strong anti-BSA antibody responses comparable to that induced by BSA adjuvanted with incomplete Freund's adjuvant and 6.5-fold stronger than that induced by BSA adsorbed onto aluminum hydroxide. Immunization of mice with the PA-conjugated nanoparticles elicited a quick, strong, and durable anti-PA antibody response that afforded protection of the mice against a lethal dose of anthrax lethal toxin challenge. The potent adjuvanticity of the nanoparticles was likely due to their ability to move the antigens into local draining lymph nodes, to enhance the uptake of the antigens by antigen-presenting cells (APCs), and to activate APCs. This novel nanoparticle system has the potential to serve as a universal protein-based vaccine carrier capable of inducing strong immune responses. PMID:19729045
Kinetics of aggregation in charged nanoparticle solutions driven by different mechanisms
NASA Astrophysics Data System (ADS)
Abbas, S.; Yadav, I.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.
2017-05-01
The structure and kinetics during aggregation of anionic silica nanoparticles as induced through different mechanisms have been studied by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). Three different additives, namely an electrolyte (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) were used to initiate nanoparticle aggregation. Electrolyte induced aggregation can be explained by DLVO interaction, whereas depletion interaction (non-DLVO interaction) is found responsible for nanoparticle aggregation in case of non-ionic surfactant. Unlike these two cases, strong electrostatic attraction between nanoparticle and oppositely charged protein results into protein-mediated nanoparticle aggregation. The electrolyte induced aggregation show quite slow aggregation rate whereas protein mediated as well as surfactant induced aggregation takes place almost instantaneously. The significant differences observed in the kinetics are explained based on range of interactions responsible for the aggregation. In spite of differences in mechanism and kinetics, the nanoparticle clusters are found to have similar fractal morphology (fractal dimension ˜ 2.5) in all the three cases.
Subhapradha, Namasivayam; Shanmugam, Vairamani; Shanmugam, Annaian
2017-09-01
Rationale of this study was framed to investigate the protective effect and anti-cancer property of nanoparticles based on chitosan isolated from squid, Sepioteuthis lessoniana, on hepatic cells in N-Nitrosodiethylamine-induced hepatocellular carcinoma in rats. The results conferred that the chitosan nanoparticle supplementation had a protective effect on liver cells by reducing the levels of marker enzymes and bilirubin and thus increasing the albumin levels. The level of reduced glutathione, ascorbic acid and α-tocopherol significantly increased in both post- and pre-treatment with chitosan nanoparticles. The levels of antioxidant enzymes were enhanced and lipid peroxidation products were diminished while treating nitrosodiethylamine-induced hepatocellular carcinoma with chitosan nanoparticles. Supplementation of chitosan nanoparticles had potent anti-hyperlipidemic property that was evidenced by monitoring the serum lipid levels and its components. Animals pre-treated with chitosan nanoparticles along with nitrosodiethylamine showed a significant reduction in the total cholesterol and triglycerides levels with increase in the levels of phospholipids and free fatty acids. Chitosan nanoparticles treated rats showed significant increment in high-density lipoprotein cholesterol and reduction in low-density lipoprotein and very low-density lipoprotein cholesterol when compared with levels in nitrosodiethylamine-induced hepatocellular carcinoma. Nitrosodiethylamine-induced carcinoma changes on circulation and hepatic antioxidant defense mechanism were regulated by chitosan nanoparticles, concluding that the chitosan nanoparticles have a potent protective effect on liver cells which might be due to its robust antioxidant and anti-lipidemic property. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rahman, Luna; Wu, Dongmei; Johnston, Michael; William, Andrew; Halappanavar, Sabina
2017-01-01
Titanium dioxide nanoparticles (TiO2NPs) induce lung inflammation in experimental animals. In this study, we conducted a comprehensive toxicogenomic analysis of lung responses in mice exposed to six individual TiO2NPs exhibiting different sizes (8, 20 and 300nm), crystalline structure (anatase, rutile or anatase/rutile) and surface modifications (hydrophobic or hydrophilic) to investigate whether the mechanisms leading to TiO2NP-induced lung inflammation are property specific. A detailed histopathological analysis was conducted to investigate the long-term disease implications of acute exposure to TiO2NPs. C57BL/6 mice were exposed to 18, 54, 162 or 486 µg of TiO2NPs/mouse via single intratracheal instillation. Controls were exposed to dispersion medium only. Bronchoalveolar lavage fluid (BALF) and lung tissue were sampled on 1, 28 and 90 days post-exposure. Although all TiO2NPs induced lung inflammation as measured by the neutrophil influx in BALF, rutile-type TiO2NPs induced higher inflammation with the hydrophilic rutile TiO2NP showing the maximum increase. Accordingly, the rutile TiO2NPs induced higher number of differentially expressed genes. Histopathological analysis of lung sections on Day 90 post-exposure showed increased collagen staining and fibrosis-like changes following exposure to the rutile TiO2NPs at the highest dose tested. Among the anatase, the smallest TiO2NP of 8nm showed the maximum response. The anatase TiO2NP of 300nm was the least responsive of all. The results suggest that the severity of lung inflammation is property specific; however, the underlying mechanisms (genes and pathways perturbed) leading to inflammation were the same for all particle types. While the particle size clearly influenced the overall acute lung responses, a combination of small size, crystalline structure and hydrophilic surface contributed to the long-term pathological effects observed at the highest dose (486 µg/mouse). Although the dose at which the pathological changes were observed is considered physiologically high, the study highlights the disease potential of certain TiO2NPs of specific properties. PMID:27760801
Kaiser, Jean-Pierre; Roesslein, Matthias; Diener, Liliane; Wick, Peter
2013-01-01
Microorganisms growing on painted surfaces are not only an aesthetic problem, but also actively contribute to the weathering and deterioration of materials. A widely used strategy to combat microbial colonization is the addition of biocides to the paint. However, ecotoxic, non-degradable biocides with a broad protection range are now prohibited in Europe, so the paint industry is considering engineered nanoparticles (ENPs) as an alternative biocide. There is concern that ENPs in paint might be released in run-off water and subsequently consumed by animals and/or humans, potentially coming into contact with cells of the gastrointestinal tract and affecting the immune system. Therefore, in the present study we evaluated the cytotoxic effects of three ENPs (nanosilver, nanotitanium dioxide and nanosilicon dioxide) that have a realistic potential for use in paints in the near future. When exposed to nanotitanium dioxide and nanosilicon dioxide in concentrations up to 243 µg/mL for 48 h, neither the gastrointestinal cells (CaCo-2) nor immune system cells (Jurkat) were significantly affected. However, when exposed to nanosilver, several cell parameters were affected, but far less than by silver ions used as a control. No differences in cytotoxicity were observed when cells were exposed to ENP-containing paint particles, compared with the same paint particles without ENPs. Paint particles containing ENPs did not affect cell morphology, the release of reactive oxygen species or cytokines, cell activity or cell death in a different manner to the same paint particles without ENPs. The results suggest that paints doped with ENPs do not pose an additional acute health hazard for humans. PMID:24358264
Moosavi Nejad, S; Takahashi, Hiromasa; Hosseini, Hamid; Watanabe, Akiko; Endo, Hitomi; Narihira, Kyoichi; Kikuta, Toshihiro; Tachibana, Katsuro
2016-09-01
Sonodynamic therapy (SDT) is a new treatment modality using ultrasound to activate certain chemical sensitizers for cancer therapy. In this study, effects of high intensity focused ultrasound (HIFU) combined with photocatalytic titanium dioxide (TiO2) nanoparticles on human oral squamous cell line HSC-2 were investigated. Viability of HSC-2 cells after 0, 0.1, 1, or 3s of HIFU irradiation with 20, 32, 55 and 73Wcm(-2) intensities in the presence or absence of TiO2 was measured immediately after the exposures in vitro. Immediate effects of HIFU (3s, 73Wcm(-2)) combined with TiO2 on solid tumors were also examined by histological study. Cytotoxic effect of HIFU+TiO2in vitro was significantly higher than that of TiO2 or HIFU alone with the tendency to increase for higher HIFU intensity, duration, and TiO2 concentration in the suspension. In vivo results showed significant necrosis and tissue damage in HIFU and HIFU+TiO2 treated samples. However, penetration of TiO2 nanoparticles into the cell cytoplasm was only observed in HIFU+TiO2 treated tissues. In this study, our findings provide a rational basis for the development of an effective HIFU based sonodynamic activation method. This approach offers an attractive non-invasive therapy technique for oral cancer in future. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
MacNicoll, Alan; Kelly, Mick; Aksoy, Hatice; Kramer, Evelien; Bouwmeester, Hans; Chaudhry, Qasim
2015-02-01
Certain food additives may contain a sizeable fraction of particles in the nanoscale. However, little is known about the fate, behaviour and toxicological effects of orally-ingested nanoparticles. This study investigated the uptake and biodistribution of nano- and larger-sized titanium dioxide (TiO2) using an in vitro model of gut epithelium and in vivo in rat. The results of the in vivo study showed that oral administration of 5 mg/kg body weight of TiO2 nano- or larger particles did not lead to any significant translocation of TiO2 (measured as titanium) either to blood, urine or to various organs in rat at any of the time intervals studied over a 96 h post-administration period. Different methods used for dispersing particles did not affect the uptake, and orally administered TiO2 was found excreted in the faeces over a period of time. The in vitro study provided further evidence for the lack of translocation of TiO2 across the gut epithelium model. The overall evidence from both in vivo and in vitro studies did not support that oral ingestion of nano- or larger particles of TiO2 via food would result in any significant internal exposure of the consumer to the nanoparticles. The dietary TiO2 nanoparticles are likely to be excreted in the faeces.
Bogdanov, A; Janovák, L; Lantos, I; Endrész, V; Sebők, D; Szabó, T; Dékány, I; Deák, J; Rázga, Z; Burián, K; Virok, D P
2017-11-01
Chlamydia trachomatis and herpes simplex virus (HSV) are the most prevalent bacterial and viral sexually transmitted infections. Due to the chronic nature of their infections, they are able to interact with titanium-dioxide (TiO 2 ) nanoparticles (NPs) applied as food additives or drug delivery vehicles. The aim of this study was to describe the interactions of these two prevalent pathogens with the TiO 2 NPs. Chlamydia trachomatis and HSV-2 were treated with nonactivated TiO 2 NPs, silver NPs and silver decorated TiO 2 NPs before infection of HeLa and Vero cells. Their intracellular growth was monitored by quantitative PCR. Unexpectedly, the TiO 2 NPs (100 μg ml -1 ) increased the growth of C. trachomatis by approximately fourfold, while the HSV-2 replication was not affected. Addition of TiO 2 to silver NPs decreased their antimicrobial activity against C. trachomatis up to 27·92-fold. In summary, nonactivated TiO 2 NPs could increase the replication of C. trachomatis and decrease the antimicrobial activity of silver NPs. The food industry or drug delivery use of TiO 2 NPs could enhance the growth of certain intracellular pathogens and potentially worsen disease symptoms, a feature that should be further investigated. © 2017 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Okeniyi, Joshua Olusegun; Omotosho, Olugbenga Adeshola; Inyang, Michael Anietie; Okeniyi, Elizabeth Toyin; Nwaokorie, Ikechi Thaddeus; Adidi, Emmanuel Amanogho; Owoeye, Taiwo Felicia; Nwakudu, Kelechukwu Chinedu; Akinlabu, Deborah Kehinde; Gabriel, Olanrewaju Oyewale; Taiwo, Olugbenga Samson; Awotoye, Olufisayo Adebola
2017-02-01
In this paper, inhibition of microbes inducing microbiologically-influenced-corrosion (MIC) of metals by Tectona grandis based Fe (iron) Nanoparticle material was investigated. For this, extract was obtained from the leaf of Tectona grandis and this was employed as precursor for synthesizing the Fe-nanoparticle material. From this, the synthesized plant extract based nanoparticle material was characterized using scanning electron microscopy and energy dispersive spectroscopy (SEM+EDS) instrument. The developed Fe bio-nanoparticle material was then employed for sensitivity and/or resistance study application against different strains of microbes that are known to induce microbiologically-influenced-corrosion, in metallic materials, and for this, microbial growth inhibition effect was compared with that from a commercial antibiotic employed as control. Results showed that the Tectona grandis based Fe-nanoparticle exhibited good inhibition effects on the growth of many of the MIC inducing microbes investigated. Sensitivity measures of zone of inhibition against the growth of MIC inducing microbial strains either outperformed or compares well with that obtained from the commercial antibiotic control, in the study. These results indicate positive prospect on the suitability of Fe bio-nanoparticle for corrosion inhibition applications for the protection of metals against microbiological corrosion influencing environment.
NASA Astrophysics Data System (ADS)
Dorier, M.; Brun, E.; Veronesi, G.; Barreau, F.; Pernet-Gallay, K.; Desvergne, C.; Rabilloud, T.; Carapito, C.; Herlin-Boime, N.; Carrière, M.
2015-04-01
TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken together, these data suggest that TiO2-NPs may increase the functionality of gut epithelial cells, particularly their property to form a protective barrier against exogenous toxicants and to absorb nutrients.TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken together, these data suggest that TiO2-NPs may increase the functionality of gut epithelial cells, particularly their property to form a protective barrier against exogenous toxicants and to absorb nutrients. Electronic supplementary information (ESI) available: Nanoparticle physico-chemical characterization: size distribution in exposure medium, as measured by DLS (Fig. S1), and X-ray diffraction patterns of A12 and R20 (Fig. S2); characterization of the protein corona on A12 and R20 (Table S1-S4 and experimental). See DOI: 10.1039/c5nr00505a
SPONTANEOUSLY HYPERTENSIVE RATS ARE SUSCEPTIBLE TO AIRWAY DISEASE INDUCED BY SULFUR DIOXIDE
Rodent models of chronic pulmonary diseases induced by sulfur dioxide (SO2), elastase or tobacco smoke have limited utility because of their lack of chronicity of inflammation, and they demonstrate limited sensitivity to a given experimental manipulation. We hypothesized that dis...
Murine liver damage caused by exposure to nano-titanium dioxide
NASA Astrophysics Data System (ADS)
Hong, Jie; Zhang, Yu-Qing
2016-03-01
Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO2) is widely used in all aspects of people’s daily lives, bringing it into increasing contact with humans. Thus, this material’s security issues for humans have become a heavily researched subject. Nano-TiO2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO2 is systematically described. The toxicity of nano-TiO2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO2 in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, S.W.; Krystal, J.H.; Heninger, G.R.
1989-01-01
In order to investigate possible neurobiologic mechanisms underlying carbon dioxide-induced anxiety, the effects of oral alprazolam 0.75 mg and intravenous clonidine 2 mcg/kg on CO/sub 2/-induced increases in ratings of subjective anxiety, pulse rate, and ventilation were measured in healthy human subjects. Pretreatment with alprazolam but not with clonidine significantly reduced the CO/sub 2/-induced increases in ratings of anxiety. Neither drug altered CO/sub 2/-induced increases in pulse rate or ventilatory responses. Clonidine did produce potent sedative and hypotensive effects. The behavioral data suggest that the mechanisms through which CO/sub 2/ induces anxiety-like effects involve neural systems regulated by benzodiazepine receptorsmore » and, secondly, that they appear not to require normal functioning of noradrenergic systems. Carbon dioxide may provide a useful model system for identification of new drugs with anxiolytic properties.« less
NASA Astrophysics Data System (ADS)
Guo, Keying; Liu, Zhifeng; Han, Jianhua; Zhang, Xueqi; Li, Yajun; Hong, Tiantian; Zhou, Cailou
2015-07-01
This paper describes a novel design of high-efficiency photoelectrochemical water splitting electrode, i.e., ordered TiO2 nanorod arrays (NRs) sensitized simultaneously with noble metal (Ag), binary metal sulfides (Ag2S) and ternary metal sulfides (Ag3CuS2) multiple photosensitizers for the first time. The TiO2/Ag/Ag2S/Ag3CuS2 NRs heterostructure is successfully synthesized through successive ion layer adsorption and reaction (SILAR) and a simple ion-exchange process based on ionic reaction mechanism. On the basis of an optimal quantity of Ag, Ag2S and Ag3CuS2 nanoparticles, such TiO2/Ag/Ag2S/Ag3CuS2 NRs exhibit a higher photoelectrochemical activity ever reported for TiO2-based nanoarrays in PEC water splitting, the photocurrent density is up to 9.82 mA cm-2 at 0.47 V versus Ag/AgCl, respectively. This novel architecture is able to increase electron collection efficiency and suppress carrier recombination via (i) a higher efficiency of light-harvesting through these multiple photosensitizers (Ag, Ag2S and Ag3CuS2); (ii) the efficient separation of photo-induced electrons and holes due to the direct electrical pathways; (iii) the surface plasmon resonance (SPR) effect of Ag nanoparticles, which enhances the efficient charge separation and high carrier mobility. This work is useful to explore feasible routes to further enhance the performance of oxide semiconductors for PEC water splitting to produce clean H2 energy.
NASA Astrophysics Data System (ADS)
Semaltianos, N. G.; Chassagnon, R.; Moutarlier, V.; Blondeau-Patissier, V.; Assoul, M.; Monteil, G.
2017-04-01
Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also discussed.
Semaltianos, N G; Chassagnon, R; Moutarlier, V; Blondeau-Patissier, V; Assoul, M; Monteil, G
2017-04-18
Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also discussed.
Xu, Nan; Cheng, Xueying; Zhou, Kairong; Xu, Xiaoting; Li, Zuling; Chen, Jianping; Wang, Dongtian; Li, Duo
2018-01-15
The widespread use of nanoparticles (NPs) has led to their inevitable introduction into environmental systems. How the existence of hydrochars in crop soils will affect the mobility of nanoparticle titanium dioxide (nTiO 2 ), especially in the presence of ammonium (NH 4 + ), remains unknown. Research is needed to study the effects of hydrochars on the transport and retention of nTiO 2 and to uncover the mechanisms of these effects on nTiO 2 transport. Column experiments with nTiO 2 and hydrochars were performed in various electrolyte (NaCl, NH 4 Cl, and CaCl 2 ) solutions under a controlled pH (6.0 and 8.0). Additionally, the size distributions and scanning electron microscope (SEM) and transmission electron microscope (TEM) images of the NPs were observed. The experimental results suggested that the mobility of the hydrochars was much better than that of nTiO 2 . Thus, the mobility of nTiO 2 was improved upon their attachment to the hydrochars. The facilitated transport of nTiO 2 in the presence of hydrochars was stronger at pH8.0 than at pH6.0, and facilitated transport was nearly independent of the electrolyte cation at pH8.0. However, at pH6.0, the facilitated transport in various electrolytes had the following order: NaCl>NH 4 Cl>CaCl 2 . The conversion from a completely reversible to a partially irreversible deposition of nTiO 2 in sand was induced by the partially irreversible retention of hydrochars, and this phenomenon was more pronounced in the presence of NH 4 + than in the presence of Na + . In particular, the irreversible deposition of nTiO 2 -hydrochars was enhanced as the cation concentration increased. The increased irreversible retention of nTiO 2 was related to the greater k 2 value (irreversible attachment coefficients) on site 2 for hydrochars based on two-site kinetic retention modeling. Thus, there is a potential risk of contaminating crops, soil, and underground water when nTiO 2 exists in a hydrochar-amended environment, especially when associated with NH 4 -N fertilizer. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis, stabilization, and characterization of metal nanoparticles
NASA Astrophysics Data System (ADS)
White, Gregory Von, II
Wet chemical synthesis techniques offer the ability to control various nanoparticle characteristics including size, shape, dispersibility in both aqueous and organic solvents, and tailored surface chemistries appropriate for different applications. Large quantities of stabilizing ligands or surfactants are often required during synthesis to achieve these nanoparticle characteristics. Unfortunately, excess reaction byproducts, surfactants, and ligands remaining in solution after nanoparticle synthesis can impede application, and therefore post-synthesis purification must be employed. A liquid-liquid solvent/antisolvent pair (typically ethanol/toluene or ethanol/hexane for gold nanoparticles, GNPs) can be used to both purify and size-selectively fractionate hydrophobically modified nanoparticles. Alternatively, carbon dioxide may be used in place of a liquid antisolvent, a "green" approach, enabling both nanoparticle purification and size-selective fractionation while simultaneously eliminating mixed solvent waste and allowing solvent recycle. We have used small-angle neutron scattering (SANS) to investigate the ligand structure and composition response of alkanethiol modified gold and silver nanoparticles at varying anti-solvent conditions (CO2 or ethanol). The ligand lengths and ligand solvation for alkanethiol gold and silver NPs were found to decrease with increased antisolvent concentrations directly impacting their dispersibility in solution. Calculated Flory-Huggins interaction parameters support our SANS study for dodecanethiol dispersibility in the mixed organic solvents. This research has led to a greater understanding of the liquid-liquid precipitation process for metal nanoparticles, and provides critical results for future interaction energy modeling.
Identification of toxicity pathways linked to chemical -exposure is critical for a better understanding of biological effects of the exposure, toxic mechanisms, and for enhancement of the prediction of chemical toxicity and adverse health outcomes. To identify toxicity pathways a...
Villalobos-Hernández, J R; Müller-Goymann, C C
2006-09-28
Carnauba wax is partially composed of cinnamates. The rational combination of cinnamates and titanium dioxide has shown a synergistic effect to improve the sun protection factor (SPF) of cosmetic preparations. However, the mechanism of this interaction has not been fully understood. In this study, an ethanolic extract of the carnauba wax and an ethanolic solution of a typical cinnamate derivative, ethylcinnamate, were prepared and their UV absorption and SPF either alone or in the presence of titanium dioxide were compared. The titanium dioxide crystals and the cinnamates solutions were also distributed into a matrix composed of saturated fatty acids to emulate the structure of the crystallized carnauba wax. SPF, differential scanning calorimetry (DSC) and X-ray studies of these matrices were performed. Additionally, carnauba wax nanosuspensions containing titanium dioxide either in the lipid phase or in the aqueous phase were prepared to evaluate their SPFs and their physical structure. Strong UV absorption was observed in diluted suspensions of titanium dioxide after the addition of cinnamates. The saturated fatty acid matrices probably favored the adsorption of the cinnamates at the surface of titanium dioxide crystals, which was reflected by an increase in the SPF. No modification of the crystal structure of the fatty acid matrices was observed after the addition of cinnamates or titanium dioxide. The distribution of the titanium dioxide inside the lipid phase of the nanosuspensions was more effective to reach higher SPFs than that at the aqueous phase. The close contact between the carnauba wax and the titanium dioxide crystals after the high-pressure homogenization process was confirmed by transmission electron microscopy (TEM).
Targeted sonocatalytic cancer cell injury using avidin-conjugated titanium dioxide nanoparticles.
Ninomiya, Kazuaki; Fukuda, Aya; Ogino, Chiaki; Shimizu, Nobuaki
2014-09-01
In this study, we applied sonodynamic therapy to cancer cells based on the delivery of titanium dioxide (TiO2) nanoparticles (NPs) modified with avidin protein, which preferentially discriminated cancerous cells from healthy cells. Subsequently, hydroxyl radicals were generated from the TiO2 NPs after activation by external ultrasound irradiation (TiO2/US treatment). Although 30% of the normal breast cells (human mammary epithelial cells) exhibited the uptake of avidin-modified TiO2 NPs, over 80% of the breast cancer cells (MCF-7) exhibited the uptake of avidin-TiO2 NPs. Next the effect of the TiO2/US treatment on MCF-7 cell growth was examined for up to 96 h after 1-MHz ultrasound was applied (0.1 W/cm(2), 30 s) to cells that incorporated the TiO2 NPs. No apparent cell injury was observed until 24h after the treatment, but the viable cell concentration declined to 68% compared with the control at 96 h. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Huafu; Wu, Zhiming; He, Qiong; Jiang, Yadong
2013-07-01
Vanadium dioxide (VO2) films with large phase-transition hysteresis loops were fabricated on glass substrates by reactive direct current (DC) magnetron sputtering in Ar/O2 atmosphere and subsequent in situ annealing process in pure oxygen. The crystal structure, chemical composition, morphology and metal-insulator transition (MIT) properties of the deposited films were investigated. The results reveal that the films show a polycrystalline nature with a (0 1 1) preferred orientation and consist of small spheroidal nanoparticles. All the deposited VO2 films show large hysteresis loops due to the small density of nucleating defects and the large interfacial energies, which are determined by the characteristics of the particles in the films, namely the small transversal grain size and the spheroidal shape. The film comprising the smallest spheroidal nanoparticles not only shows a large hysteresis width of 36.3 °C but also shows a low transition temperature of 32.2 °C upon cooling. This experiment facilitates the civilian applications of the VO2 films on glass substrates in optical storage-type devices.
Pinsino, Annalisa; Russo, Roberta; Bonaventura, Rosa; Brunelli, Andrea; Marcomini, Antonio; Matranga, Valeria
2015-01-01
Titanium dioxide nanoparticles (TiO2NPs) are one of the most widespread-engineered particles in use for drug delivery, cosmetics, and electronics. However, TiO2NP safety is still an open issue, even for ethical reasons. In this work, we investigated the sea urchin Paracentrotus lividus immune cell model as a proxy to humans, to elucidate a potential pathway that can be involved in the persistent TiO2NP-immune cell interaction in vivo. Morphology, phagocytic ability, changes in activation/inactivation of a few mitogen-activated protein kinases (p38 MAPK, ERK), variations of other key proteins triggering immune response (Toll-like receptor 4-like, Heat shock protein 70, Interleukin-6) and modifications in the expression of related immune response genes were investigated. Our findings indicate that TiO2NPs influence the signal transduction downstream targets of p38 MAPK without eliciting an inflammatory response or other harmful effects on biological functions. We strongly recommend sea urchin immune cells as a new powerful model for nano-safety/nano-toxicity investigations without the ethical normative issue. PMID:26412401
Behzadnia, Amir; Montazer, Majid; Rashidi, Abousaeid; Mahmoudi Rad, Mahnaz
2014-01-01
Nano nitrogen-doped titanium dioxide was rapidly prepared by hydrolysis of titanium isopropoxide at 75-80°C using in situ sonochemical synthesis by introducing ammonia. Various concentrations of titanium isopropoxide were examined to deposit nano nitrogen-doped titanium dioxide through impregnation of the wool fabric in ultrasound bath followed by curing. The antibacterial/antifungal activities of wool samples were assessed against two common pathogenic bacteria including Escherichia coli and Staphylococcus aureus and the diploid fungus Candida albicans. The sonotreated wool fabrics indicated no adverse effects on human dermal fibroblasts. The presence of nanoparticles on the sonotreated wool fabrics were confirmed by FE-SEM images and EDS patterns and X-ray mapping and the crystalline size of nanoparticles were estimated through XRD results. The role of both pH and precursor concentration on the various properties of the fabric was investigated and the optimized conditions introduced using response surface methodology. © 2014 The American Society of Photobiology.
Realistic Evaluation of Titanium Dioxide Nanoparticle Exposure in Chewing Gum.
Fiordaliso, Fabio; Foray, Claudia; Salio, Monica; Salmona, Mario; Diomede, Luisa
2018-06-20
There is growing concern about the presence of nanoparticles (NPs) in titanium dioxide (TiO 2 ) as food additive (E171). To realistically estimate the number and the amount of TiO 2 NPs ingested with food, we applied a transmission electron microscopy method combined with inductively coupled plasma optical emission spectrometry. Different percentages of TiO 2 NPs (6-18%) were detected in E171 from various suppliers. In the eight chewing gums analyzed as food prototypes, TiO 2 NPs were absent in one sample and ranged 0.01-0.66 mg/gum, corresponding to 7-568 billion NPs/gum, in the other seven. We estimated that the mass-based TiO 2 NPs ingested with chewing gums by the European population ranged from 0.28 to 112.40 μg/kg b.w./day, and children ingested more nanosized titanium than adolescents and adults. Although this level may appear negligible it corresponds to 0.1-84 billion TiO 2 NPs/kg b.w/day, raising important questions regarding their potential accumulation in the body, possibly causing long-term effects on consumers' health.
Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont
Moll, Janine; Okupnik, Annette; Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D.; van der Heijden, Marcel G. A.; Widmer, Franco
2016-01-01
Titanium dioxide nanoparticles (TiO2 NPs) are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two TiO2 NPs, i.e., P25, E171 and a non-nanomaterial TiO2. Growth of both organisms individually and their symbiotic root nodulation were investigated in liquid and hydroponic systems. While 23 and 18 mg l-1 of E171 and non-nanomaterial TiO2 decreased the growth rate of R. trifolii by 43 and 23% respectively, P25 did not cause effects. Shoot length of red clover decreased between 41 and 62% for all tested TiO2 NPs. In 21% of the TiO2 NP treated plants, no nodules were found. At high concentrations certain TiO2 NPs impaired R. trifolii as well as red clover growth and their symbiosis in the hydroponic systems. PMID:27171465
Ma, Hongbo; Brennan, Amanda; Diamond, Stephen A
2012-09-01
Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO(2)) and its consequent phototoxicity to Daphnia magna were measured under different solar ultraviolet (UV) spectra by applying a series of optical filters in a solar simulator. Removing UV-B (280-320 nm) from solar radiation had no significant impact on photocatalytic ROS production of nano-TiO(2), whereas removal of UV-A (320-400 nm) decreased ROS production remarkably. Removal of wavelengths below 400 nm resulted in negligible ROS production. A linear correlation between ROS production and D. magna immobilization suggests that photocatalytic ROS production may be a predictor of phototoxicity for nano-TiO(2). Intracellular ROS production within D. magna was consistent with the immobilization of the organism under different solar UV spectra, indicating that oxidative stress was involved in phototoxicity. The dependence of nano-TiO(2) phototoxicity on environmentally realistic variations in solar radiation suggests that risk assessment of these nanomaterials requires careful evaluation of exposure conditions in the environment. Copyright © 2012 SETAC.
Sheidaei, Behnaz; Behnajady, Mohammad A
2016-05-01
In this paper, the removal efficiency of Color Index Acid Orange 7 (AO7) as a model contaminant was investigated in a batch-recirculated photoreactor packed with immobilized titanium dioxide type P25 nanoparticles on glass beads. The effects of different operational parameters such as the initial concentration of AO7, the volume of solution, the volumetric flowrate, and the light source power in the photoreactor were investigated. The results indicate that the removal percent increased with the rise in volumetric flowrate and power of the light source, but decreased with the rise of the initial concentration of AO7 and the volume of solution. The AO7 degradation was followed through total organic carbon, gas chromatography/mass spectroscopy (GC/MS), and mineralization products analysis. The ammonium and sulfate ions were analyzed as mineralization products of nitrogen and sulfur heteroatoms, respectively. The results of GC/MS revealed the production of 1-indanone, 1-phthalanone, and 2-naphthalenol as intermediate products for the removal of AO7 in this process.
Abrasion properties of self-suspended hairy titanium dioxide nanomaterials
NASA Astrophysics Data System (ADS)
Zhang, Jiao-xia; Liu, Si; Yan, Chao; Wang, Xiao-jing; Wang, Lei; Yu, Ya-ming; Li, Shi-yun
2017-11-01
Considering the excellent solubility of pyrrolidone ring organic compounds, the synthesized N-(trimethoxysilyl) propyl- N-methyl-2-pyrrolidone chlorides was tethered onto titanium dioxide (TiO2) nanoparticles to improve dispersion of TiO2, and then polyethylene oxide (PEO) oligomer through ion exchange embraced the tethered TiO2 to obtain a novel self-suspended hairy TiO2 nanomaterials without any solvent. A variety of techniques were carried out to illustrate the structure and properties of the self-suspended hairy TiO2 nanomaterials. It was found that TiO2 nanoparticles embody monodispersity in the hybrid system though the "false reunion" phenomenon occurring due to nonpermanent weak physical cross-linking. Remarkably, self-suspended hairy TiO2 nanomaterials exhibit lower viscosity, facilitating maneuverable and outstanding antifriction and wear resistance properties, due to the synergistic lubricating effect between spontaneously forming lubricating film and nano-lubrication of TiO2 cores, overcoming the deficiency of both solid and liquid lubricants. This make them promising candidates for the micro-electromechanic/nano-electromechanic systems (MEMS/NEMS).
Zhou, Lijie; Zhang, Zhiqiang; Xia, Siqing; Jiang, Wei; Ye, Biao; Xu, Xiaoyin; Gu, Zaoli; Guo, Wenshan; Ngo, Huu-Hao; Meng, Xiangzhou; Fan, Jinhong; Zhao, Jianfu
2014-01-01
Effects of the suspended titanium dioxide nanoparticles (TiO2 NPs, 50 mg/L) on the cake layer formation in a submerged MBR were systematically investigated. With nanometer sizes, TiO2 NPs were found to aggravate membrane pore blocking but postpone cake layer fouling. TiO2 NPs showed obvious effects on the structure and the distribution of the organic and the inorganic compounds in cake layer. Concentrations of fatty acids and cholesterol in the cake layer increased due to the acute response of bacteria to the toxicity of TiO2 NPs. Line-analysis and dot map of energy-dispersive X-ray were also carried out. Since TiO2 NPs inhibited the interactions between the inorganic and the organic compounds, the inorganic compounds (especially SiO2) were prevented from depositing onto the membrane surface. Thus, the postponed cake layer fouling was due to the changing features of the complexes on the membrane surface caused by TiO2 NPs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Romeiro, Andreia; Freitas, Diana; Emília Azenha, M; Canle, Moisés; Burrows, Hugh D
2017-06-14
We report a comparative study on the photodegradation of the widely used benzodiazepine psychoactive drug alprazolam (8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine, ALP) using direct photolysis, and titanium dioxide photocatalyzed reaction. Titanium dioxide photocatalysts were prepared as nanoparticles by acidic sol-gel methods, calcined at two different temperatures, and their behavior compared with P25 (Degussa type) TiO 2 . Efficient photodegradation was observed in the photocatalytic process, with over 90% degradation after 90 minutes under optimized conditions. Triazolaminoquinoline, 5-chloro-(5-methyl-4H-1,2,4-triazol-4-yl)benzophenone, triazolbenzophenone, and α-hydroxyalprazolam were identified as the degradation products by fluorescence spectroscopy and HPLC-MS. A comparison with the literature suggests that 8H-alprazolam may also be formed. Good mineralization was observed with TiO 2 photocatalysts. ALP photodegradation with TiO 2 follows pseudo-first order kinetics, with rates depending on the photocatalyst used. The effects of the quantity of the photocatalyst and concentration of alprazolam were studied.
Lagopati, Nefeli; Tsilibary, Effie-Photini; Falaras, Polycarpos; Papazafiri, Panagiota; Pavlatou, Evangelia A; Kotsopoulou, Eleni; Kitsiou, Paraskevi
2014-01-01
Purpose The use of nanoparticles has seen exponential growth in the area of health care, due to the unique physicochemical properties of nanomaterials that make them desirable for medical applications. The aim of this study was to examine the effects of crystal phase-nanostructured titanium dioxide particles on bioactivity/cytotoxicity in breast cancer epithelial cells. Materials and methods Cultured Michigan Cancer Foundation (MCF)-7 and human breast adenocarcinoma (MDA-MB-468) breast cancer epithelial cells were exposed to ultraviolet A light (wavelength 350 nm) for 20 minutes in the presence of aqueous dispersions of two different nanostructured titanium dioxide (TiO2) crystal phases: anatase and an anatase–rutile mixture. Detailed characterization of each titanium dispersion was performed by dynamic light scattering. A 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) colorimetric assay was employed to estimate the percentage of viable cells after each treatment. Western blot analysis of protein expression and characterization, as well as a deoxyribonucleic acid (DNA)-laddering assay, were used to detect cell apoptosis. Results Our results documented that 100% anatase TiO2 nanoparticles (110–130 nm) exhibited significantly higher cytotoxicity in the highly malignant MDA-MB-468 cancer cells than anatase– rutile mixtures (75%/25%) with the same size. On the contrary, MCF-7 cells (characterized by low invasive properties) were not considerably affected. Exposure of MDA-MB-468 cells to pure anatase nanoparticles or anatase–rutile mixtures for 48 hours resulted in increased proapoptotic Bax expression, caspase-mediated poly(adenosine diphosphate ribose) polymerase (PARP) cleavage, DNA fragmentation, and programmed cell death/apoptosis. Conclusion The obtained results indicated that pure anatase TiO2 nanoparticles exhibit superior cytotoxic effects compared to anatase–rutile mixtures of the same size. The molecular mechanism of TiO2 nanoparticle cytotoxicity involved increased Bax expression and caspase-mediated PARP inactivation, thus resulting in DNA fragmentation and cell apoptosis. PMID:25061298
Zhao, Xiao; Yang, Keni; Zhao, Ruifang; Ji, Tianjiao; Wang, Xiuchao; Yang, Xiao; Zhang, Yinlong; Cheng, Keman; Liu, Shaoli; Hao, Jihui; Ren, He; Leong, Kam W; Nie, Guangjun
2016-09-01
Immunogenic cell death (ICD) occurs when apoptotic tumor cell elicits a specific immune response, which may trigger an anti-tumor effect, via the release of immunostimulatory damage-associated molecular patterns (DAMPs). Hypothesizing that nanomedicines may impact ICD due to their proven advantages in delivery of chemotherapeutics, we encapsulated oxaliplatin (OXA) or gemcitabine (GEM), an ICD and a non-ICD inducer respectively, into the amphiphilic diblock copolymer nanoparticles. Neither GEM nor nanoparticle-encapsulated GEM (NP-GEM) induced ICD, while both OXA and nanoparticle-encapsulated OXA (NP-OXA) induced ICD. Interestingly, NP-OXA treated tumor cells released more DAMPs and induced stronger immune responses of dendritic cells and T lymphocytes than OXA treatment in vitro. Furthermore, OXA and NP-OXA exhibited stronger therapeutic effects in immunocompetent mice than in immunodeficient mice, and the enhancement of therapeutic efficacy was significantly higher in the NP-OXA group than the OXA group. Moreover, NP-OXA treatment induced a higher proportion of tumor infiltrating activated cytotoxic T-lymphocytes than OXA treatment. This general trend of enhanced ICD by nanoparticle delivery was corroborated in evaluating another pair of ICD inducer and non-ICD inducer, doxorubicin and 5-fluorouracil. In conclusion, although nanoparticle encapsulation did not endow a non-ICD inducer with ICD-mediated anti-tumor capacity, treatment with a nanoparticle-encapsulated ICD inducer led to significantly enhanced ICD and consequently improved anti-tumor effects than the free ICD inducer. The proposed nanomedicine approach may impact cancer immunotherapy via the novel cell death mechanism of ICD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A; Li, Xinran; Zhu, Saijie; Cui, Zhengrong
2012-10-28
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Nadzirah, Sh; Azizah, N; Hashim, Uda; Gopinath, Subash C B; Kashif, Mohd
2015-01-01
Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13)M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses.
NASA Astrophysics Data System (ADS)
Carvalho, Karina Penedo; Martins, Nathalia Balthazar; Ribeiro, Ana Rosa Lopes Pereira; Lopes, Taliria Silva; de Sena, Rodrigo Caciano; Sommer, Pascal; Granjeiro, José Mauro
2016-08-01
Nanoparticles agglomerate when in contact with biological solutions, depending on the solutions' nature. The agglomeration state will directly influence cellular response, since free nanoparticles are prone to interact with cells and get absorbed into them. In sunscreens, titanium dioxide nanoparticles (TiO2-NPs) form mainly aggregates between 30 and 150 nm. Until now, no toxicological study with skin cells has reached this range of size distribution. Therefore, in order to reliably evaluate their safety, it is essential to prepare suspensions with reproducibility, irrespective of the biological solution used, representing the above particle size distribution range of NPs (30-150 nm) found on sunscreens. Thus, the aim of this study was to develop a unique protocol of TiO2 dispersion, combining these features after dilution in different skin cell culture media, for in vitro tests. This new protocol was based on physicochemical characteristics of TiO2, which led to the choice of the optimal pH condition for ultrasonication. The next step consisted of stabilization of protein capping with acidified bovine serum albumin, followed by an adjustment of pH to 7.0. At each step, the solutions were analyzed by dynamic light scattering and transmission electron microscopy. The final concentration of NPs was determined by inductively coupled plasma-optical emission spectroscopy. Finally, when diluted in dulbecco's modified eagle medium, melanocytes growth medium, or keratinocytes growth medium, TiO2-NPs displayed a highly reproducible size distribution, within the desired size range and without significant differences among the media. Together, these results demonstrate the consistency achieved by this new methodology and its suitability for in vitro tests involving skin cell cultures.
EFFECTS OF TITANIUM DIOXIDE NANOPARTICLE EXPOSURE ON NEUROIMMUNE RESPONSES IN RAT AIRWAYS
Scuri, Mario; Chen, Bean T.; Castranova, Vincent; Reynolds, Jeffrey S.; Johnson, Victor J.; Samsell, Lennie; Walton, Cheryl; Piedimonte, Giovanni
2013-01-01
Exposure to ambient nanoparticles (defined as particulate matter [PM] having one dimension < 100 nm) is associated with increased risk of childhood and adult asthma. Nanomaterials feature a smaller aerodynamic diameter and a higher surface area per unit mass ratio compared to fine or coarse-sized particles, resulting in greater lung deposition efficiency and an increased potential for biological interaction. The neurotrophins nerve growth factor and brain-derived neurotrophic factor are key regulatory elements of neuronal development and responsiveness of airway sensory neurons. Changes in their expression are associated with bronchoconstriction, airway hyperresponsiveness, and airway inflammation. The neurogenic-mediated control of airway responses is a key pathophysiological mechanism of childhood asthma. However, the effects of nanoparticle exposure on neurotrophin-driven airway responses and their potential role as a predisposing factor for developing asthma have not been clearly elucidated. In this study, in vivo inhalation exposure to titanium dioxide nanoparticles (12 mg/m13; 5.6 h/d for 3 d) produced upregulation of lung neurotrophins in weanling (2-wk-old) and newborn (2-d-old) rats but not in adult (12-wk-old) animals compared to controls. This effect was associated with increased airway responsiveness and upregulation of growth-related oncogene/keratine-derived chemokine (GRO/KC; CXCL1, rat equivalent of human interleukin [IL]-8) in bronchoalveolar lavage fluid. These data show for the first time that exposure to nanoparticulate upregulates the expression of lung neurotrophins in an age-dependent fashion and that this effect is associated with airway hyperresponsiveness and inflammation. These results suggest the presence of a critical window of vulnerability in earlier stages of lung development, which may lead to a higher risk of developing asthma. PMID:20818535
Nadzirah, Sh.; Azizah, N.; Hashim, Uda; Gopinath, Subash C. B.; Kashif, Mohd
2015-01-01
Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system’s physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10-13M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses. PMID:26445455
McGee, C F; Storey, S; Clipson, N; Doyle, E
2017-04-01
Soil microorganisms are key contributors to nutrient cycling and are essential for the maintenance of healthy soils and sustainable agriculture. Although the antimicrobial effects of a broad range of nanoparticulate substances have been characterised in vitro, little is known about the impact of these compounds on microbial communities in environments such as soil. In this study, the effect of three widely used nanoparticulates (silver, silicon dioxide and aluminium oxide) on bacterial and fungal communities in an agricultural pastureland soil was examined in a microcosm-based experiment using a combination of enzyme analysis, molecular fingerprinting and amplicon sequencing. A relatively low concentration of silver nanoparticles (AgNPs) significantly reduced total soil dehydrogenase and urease activity, while Al 2 O 3 and SiO 2 nanoparticles had no effect. Amplicon sequencing revealed substantial shifts in bacterial community composition in soils amended with AgNPs, with significant decreases in the relative abundance of Acidobacteria and Verrucomicrobia and an increase in Proteobacteria. In particular, the relative abundance of the Proteobacterial genus Dyella significantly increased in AgNP amended soil. The effects of Al 2 O 3 and SiO 2 NPs on bacterial community composition were less pronounced. AgNPs significantly reduced bacterial and archaeal amoA gene abundance in soil, with the archaea more susceptible than bacteria. AgNPs also significantly impacted soil fungal community structure, while Al 2 O 3 and SiO 2 NPs had no effect. Several fungal ribotypes increased in soil amended with AgNPs, compared to control soil. This study highlights the need to consider the effects of individual nanoparticles on soil microbial communities when assessing their environmental impact.
Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection.
Gutiérrez-Hernández, José Manuel; Escalante, Alfredo; Murillo-Vázquez, Raquel Nalleli; Delgado, Ezequiel; González, Francisco Javier; Toríz, Guillermo
2016-10-01
The use of sunscreens is essential for preventing skin damage and the potential appearance of skin cancer in humans. Inorganic active components such as zinc oxide (ZnO) have been used commonly in sunscreens due to their ability to block UVA radiation. This ultraviolet (UV) protection might be enhanced to cover the UVB and UVC bands when combined with other components such as titanium dioxide (TiO2). In this work we evaluate the photoprotection properties of organic nanoparticles made from lignin in combination with ZnO nanoparticles as active ingredients for sunscreens. Lignin nanoparticles were synthesized from Agave tequilana lignin. Two different pulping methods were used for dissolving lignin from agave bagasse. ZnO nanoparticles were synthesized by the precipitation method. All nanoparticles were characterized by SEM, UV-Vis and FT-IR spectroscopy. Nanoparticles were mixed with a neutral vehicle in different concentrations and in-vitro sun protection factor (SPF) values were calculated. Different sizes of spherical lignin nanoparticles were obtained from the spent liquors of two different pulping methods. ZnO nanoparticles resulted with a flake shape. The mixture of all components gave SPF values in a range between 4 and 13. Lignin nanoparticles showed absorption in the UVB and UVC regions which can enhance the SPF value of sunscreens composed only of zinc oxide nanoparticles. Lignin nanoparticles have the added advantage of being of organic nature and its brown color can be used to match the skin tone of the person using it. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael
2016-07-01
Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the "gold standard" for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing "monodisperse" aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test aerosols might cause artifacts by counting "phantom particles." Overall, the information obtained from this study will help understand the limitations of the SMPS in measuring nanoparticles so that one can adequately interpret the results for risk assessments and exposure prevention in an occupational or ambient environment.
Shape-Related Toxicity of Titanium Dioxide Nanofibres
Allegri, Manfredi; Bianchi, Massimiliano G.; Chiu, Martina; Varet, Julia; Costa, Anna L.; Ortelli, Simona; Blosi, Magda; Bussolati, Ovidio; Poland, Craig A.; Bergamaschi, Enrico
2016-01-01
Titanium dioxide (TiO2) nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP) and crocidolite asbestos as non-fibrous or fibrous benchmark materials. The evaluated endpoints were cell viability, haemolysis, macrophage activation, trans-epithelial electrical resistance (an indicator of the epithelial barrier competence), ROS production and oxidative stress as well as the morphology of exposed cells. The results showed that TiO2 nanofibres caused a cell-specific, dose-dependent decrease of cell viability, with larger effects on alveolar epithelial cells than on macrophages. The observed effects were comparable to those of crocidolite, while TiO2 NP did not decrease cell viability. TiO2 nanofibres were also found endowed with a marked haemolytic activity, at levels significantly higher than those observed with TiO2 nanoparticles or crocidolite. Moreover, TiO2 nanofibres and crocidolite, but not TiO2 nanoparticles, caused a significant decrease of the trans-epithelial electrical resistance of airway cell monolayers. SEM images demonstrated that the interaction with nanofibres and crocidolite caused cell shape perturbation with the longest fibres incompletely or not phagocytosed. The expression of several pro-inflammatory markers, such as NO production and the induction of Nos2 and Ptgs2, was significantly increased by TiO2 nanofibres, as well as by TiO2 nanoparticles and crocidolite. This study indicates that TiO2 nanofibres had significant toxic effects and, for most endpoints with the exception of pro-inflammatory changes, are more bio-active than TiO2 nanoparticles, showing the relevance of shape in determining the toxicity of nanomaterials. Given that several toxic effects of TiO2 nanofibres appear comparable to those observed with crocidolite, the possibility that they exert length dependent toxicity in vivo seems worthy of further investigation. PMID:26999274
Charge storage in β-FeSi2 nanoparticles
NASA Astrophysics Data System (ADS)
Theis, Jens; Bywalez, Robert; Küpper, Sebastian; Lorke, Axel; Wiggers, Hartmut
2015-02-01
We report on the observation of a surprisingly high specific capacitance of β-FeSi2 nanoparticle layers. Lateral, interdigitated capacitor structures were fabricated on thermally grown silicon dioxide and covered with β-FeSi2 particles by drop or spin casting. The β-FeSi2-nanoparticles, with crystallite sizes in the range of 10-30 nm, were fabricated by gas phase synthesis in a hot wall reactor. Compared to the bare electrodes, the nanoparticle-coated samples exhibit a 3-4 orders of magnitude increased capacitance. Time-resolved current voltage measurements show that for short times (seconds to minutes), the material is capable of storing up to 1 As/g at voltages of around 1 V. The devices are robust and exhibit long-term stability under ambient conditions. The specific capacitance is highest for a saturated relative humidity, while for a relative humidity below 40% the capacitance is almost indistinguishable from a nanoparticle-free reference sample. The devices work without the need of a fluid phase, the charge storing material is abundant and cost effective, and the sample design is easy to fabricate.
Development and characterization of the kefiran-whey protein isolate-TiO2 nanocomposite films.
Zolfi, Mohsen; Khodaiyan, Faramarz; Mousavi, Mohammad; Hashemi, Maryam
2014-04-01
Biodegradable kefiran-whey protein isolate (WPI)-titanium dioxide (TiO2) blend films were developed and characterized as a function of incorporating amount of TiO2 nanoparticles (1, 3 and 5% wt.). Results showed that the water vapor permeability, moisture content, moisture absorption and water solubility decreased by increasing the nano-TiO2 content. Mechanical tests revealed the plasticizing effect of TiO2 nanoparticles on the kefiran-WPI-TiO2 film. Addition of TiO2 nanoparticles to kefiran-WPI films significantly decreased tensile strength and Young's modulus, while increased its elongation at break. Differential scanning calorimetry data indicated that the glass transition temperature significantly changed by adding nano-TiO2. X-ray diffraction analysis also demonstrated that crystal type in kefiran-WPI was not affected by incorporation of TiO2 nanoparticles. A uniform distribution at 1 and 3% wt. loading levels of TiO2 nanoparticles was observed using scanning electron microscopy (SEM) micrographs. Copyright © 2014 Elsevier B.V. All rights reserved.
Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection
Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E.
2018-01-01
Titanium dioxide (TiO2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here. PMID:29541425
Andreotti, Agda Marobo; Goiato, Marcelo Coelho; Moreno, Amália; Nobrega, Adhara Smith; Pesqueira, Aldiéris Alves; dos Santos, Daniela Micheline
2014-01-01
The aim of this study was to assess the effect of adding nanoparticles to N1 acrylic resin intended for artificial sclera, in terms of the color stability, microhardness, and flexural strength of the resin. Three hundred samples of N1 acrylic resin were used: 100 samples for color stability and microhardness tests (each test was performed on the opposite side of each sample), and 200 samples for flexural strength testing (100 samples before and after 1,008 hours of accelerated aging). Samples for each test were separated into ten groups (n=10), ie, without nanoparticles (control group) or with nanoparticles of zinc oxide, titanium dioxide (TiO₂), and barium sulfate at weight concentrations of 1%, 2%, and 2.5% (nanoparticle groups). Data were subjected to statistical analysis with nested analysis of variance and Tukey's test (P<0.05 significance level). Among the nanoparticle groups, the TiO₂ groups showed better color stability at all concentrations. Microhardness values increased after artificial aging, except for the control and zinc oxide groups. After aging, the 1%-2% TiO₂ groups had significantly higher microhardness values compared with the other nanoparticle groups. Before aging, there was a significant difference in flexural strength between the control and nanoparticle groups. After aging, the control and TiO₂ groups, regardless of concentration, showed the lowest flexural strength values. Incorporation of nanoparticles directly influenced the acrylic resin properties, with TiO₂ being the most influential nanoparticle in terms of the evaluated properties.
Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection.
Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E
2018-01-01
Titanium dioxide (TiO 2 ) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.
Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.
Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto
2015-12-01
Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.
NASA Astrophysics Data System (ADS)
Dyuryagina, N. S.; Yalovets, A. P.
2017-05-01
Using the Rouse-Fowler (RF) model this work studies the radiation-induced electrical conductivity of a polymer nanocomposite material with spherical nanoparticles against the intensity and exposure time of gamma-ray, concentration and size of nanoparticles. The research has found the energy distribution of localized statesinduced by nanoparticles. The studies were conducted on polymethylmethacrylate (PMMA) with CdS nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Desireé M. de los, E-mail: desire.delossantos@uca.es; Navas, Javier, E-mail: javier.navas@uca.es; Sánchez-Coronilla, Antonio
2015-10-15
Highlights: • Highly Al-doped TiO{sub 2} nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO{sub 2} nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy.more » The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti{sup 4+} ions by Al{sup 3+} in the TiO{sub 2} lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature.« less
Wu, Ben-Zen; Sun, Yu-Jie; Chen, Yan-Hua; Yak, Hwa Kwang; Yu, Jya-Jyun; Liao, Weisheng; Chiu, KongHwa; Peng, Shie-Ming
2016-08-01
Al-powder-supported Pd, Rh, and Rh-Pd catalysts were synthesized through a spontaneous redox reaction in aqueous solutions. These catalysts hydrodebrominated 4- and 4,4'-bromodiphenyl ethers in supercritical carbon dioxide at 200 atm CO2 containing 10 atm H2 and 80 °C in 1 h. Diphenyl ether was the major product of Pd/Al. Rh/Al and Rh-Pd/Al further hydrogenated two benzene rings of diphenyl ether to form dicyclohexyl ether. The hydrogenolysis of CO bonds on diphenyl ether over Rh/Al and Rh-Pd/Al was observed to generate cyclohexanol and cyclohexane (<1%). With respect to hydrodebromination efficiency and catalyst stability, Rh-Pd/Al among three catalysts is suggested to be used for ex situ degradation of polybrominated diphenyl ethers in supercritical carbon dioxide. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yin, Jun-Jie; Liu, Jun; Ehrenshaft, Marilyn; Roberts, Joan E.; Fu, Peter P.; Mason, Ronald P.; Zhao, Baozhong
2012-01-01
Nano-sized titanium dioxide (TiO2) is among the top five widely used nanomaterials for various applications. In this study, we determine the phototoxicity of TiO2 nanoparticles (nano-TiO2) with different molecular sizes and crystal forms (anatase and rutile) in human skin keratinocytes under UVA irradiation. Our results show that all nano-TiO2 particles caused phototoxicity, as determined by the MTS assay and by cell membrane damage measured by the lactate dehydrogenase (LDH) assay, both of which were UVA dose- and nano-TiO2 dose- dependent. The smaller the particle size of nano-TiO2 the higher the cell damage. The rutile form of nano-TiO2 showed less phototoxicity than anatase nano-TiO2. The level of photocytotoxicity and cell membrane damage is mainly dependent on the level of reactive oxygen species (ROS) production. Using polyunsaturated lipids in plasma membranes and human serum albumin as model targets, and employing electron spin resonance (ESR) oximetry and immuno-spin trapping as unique probing methods, we demonstrated that UVA irradiation of nano-TiO2 can induce significant cell damage, mediated by lipid and protein peroxidation. These overall results suggest that nano-TiO2 is phototoxic to human skin keratinocytes, and that this phototoxicity is mediated by ROS generated during UVA irradiation. PMID:22705594
Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong
2012-01-01
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518
Integration of micro nano and bio technologies with layer-by-layer self-assembly
NASA Astrophysics Data System (ADS)
Kommireddy, Dinesh Shankar
In the past decade, layer-by-layer (LbL) nanoassembly has been used as a tool for immobilization and surface modification of materials with applications in biology and physical sciences. Often, in such applications, LbL assembly is integrated with various techniques to form functional surface coatings and immobilized matrices. In this work, integration of LbL with microfabrication and microfluidics, and tissue engineering are explored. In an effort to integrate microfabrication with LbL nanoassembly, microchannels were fabricated using soft-lithography and the surface of these channels was used for the immobilization of materials using LbL and laminar flow patterning. Synthesis of poly(dimethyldiallyl ammonium chloride)/poly(styrene sulfonate) and poly(dimethyldiallyl ammonium chloride)/bovine serum albumin microstrips is demonstrated with the laminar flow microfluidic reactor. Resulting micropatterns are 8-10 mum wide, separated with few micron gaps. The width of these microstrips as well as their position in the microchannel is controlled by varying the flow rate, time of interaction and concentration of the individual components, which is verified by numerical simulation. Spatially resolved pH sensitivity was observed by modifying the surface of the channel with a pH sensitive dye. In order to investigate the integration of LbL assembly with tissue engineering, glass substrates were coated with nanoparticle/polyelectrolyte layers, and two different cell types were used to test the applicability of these coatings for the surface modification of medical implants. Titanium dioxide (TiO 2), silicon dioxide, halloysite and montmorillonite nanoparticles were assembled with oppositely charged polyelectrolytes. In-vitro cytotoxicity tests of the nanoparticle substrates on human dermal firbroblasts (HDFs) showed that the nanoparticle surfaces do not have toxic effects on the cells. HDFs retained their phenotype on the nanoparticle coatings, by synthesizing type-I collagen. These cells also showed active proliferation on the nanoparticle substrates. Cells attached on TiO2 substrates showed faster rate of spreading compared with the other types of nanoparticle coatings. Mesenchymal stem cells (MSCs) were used as a second cell type to support and elaborate on the results obtained with the HDFs. Increasing surface roughness was observed with increasing number of layers of TiO2. Tests with a higher number of layers of TiO2, showed an increased attachment, proliferation and faster spreading of the MSCs on a larger number of layers of TiO2.
NASA Astrophysics Data System (ADS)
Koppolu, Ramya
Nanomaterials have diversified applications based on the unique properties. These nanoparticles and functionalized nanocomposites have been studied in the health care filed. Nanoparticles are mostly used in sunscreens which are a part of human life. These sunscreens consist of titanium dioxide and zinc oxide nanoparticles. Due to the higher band crevices, they help the skin to protect from ultraviolet rays, for instance, ultraviolet B and ultraviolet A. A series of nanostructured zinc oxide nanoparticles were prepared by cost-effective chemical and bioinspired methods and variables were optimized. Highly stable and spherical zinc oxide nanoparticles were formulated by aloe vera ( Aloe barbadensis) plant extract and avocado (Persea americana Mill) fruit extract. The state-of-the-art instrumentation was used to characterize the morphology, elemental composition, and particle size distribution. X-ray diffraction data indicated highly crystalline and ultrafine nanoparticles were obtained from the colloidal methods. The X-ray photoelectron spectroscopy results showed the chemical state of zinc, carbon, and oxygen atoms were well-indexed and are used as fingerprint identification of the elements. Transmission electron microscopy images show the shape of particles were cubic and fiber shape contingent upon the protecting operators and heat treatment conditions. The toxicity studies of zinc oxide nanoparticles were found to cause an increase in nitric oxide, which is protecting against further oxidative stress and appears to be nontoxic.
Du, Jingjing; Zhang, Yuyan; Guo, Wei; Li, Ningyun; Gao, Chaoshuai; Cui, Minghui; Lin, Zhongdian; Wei, Mingbao; Zhang, Hongzhong
2018-05-15
Titanium dioxide (TiO 2 ) nanoparticles have been applied in diverse commercial products, which could lead to toxic effects on aquatic microbes and would inhibit some important ecosystem processes. The study aimed to investigate the chronic impacts of TiO 2 nanoparticles with different concentrations (5, 50, and 500 mg L -1 ) on Populus nigra L. leaf decomposition in the freshwater ecosystem. After 50 d of decomposing, a significant decrease in decomposition rates was observed with higher concentrations of TiO 2 nanoparticles. During the period of litter decomposition, exposure of TiO 2 nanoparticles led to decreases in extracellular enzyme activities, which was caused by the reduction of microbial especially fungal biomass. In addition, the diversity and composition of the fungal community associated with litter decomposition were strongly affected by the concentrations of TiO 2 nanoparticles. The diversity and composition of the fungal community associated with litter decomposition was strongly affected. The abundance of Tricladium chaetocladium decreased with the increasing concentrations of TiO 2 nanoparticles, indicating the little contribution of the species to the litter decomposition. In conclusion, this study provided the evidence for the chronic exposure effects of TiO 2 nanoparticles on the litter decomposition and further the functions of freshwater ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhu, Jingting; Zhou, Yijie; Wang, Bingbing; Zheng, Jianyun; Ji, Shidong; Yao, Heliang; Luo, Hongjie; Jin, Ping
2015-12-23
An annealing-assisted preparation method of well-crystallized VxW1-xO2(M)@SiO2 core-shell nanoparticles for VO2-based thermochromic smart coatings (VTSC) is presented. The additional annealing process reduces the defect density of the initial hydrothermally prepared VxW1-xO2(M) nanoparticles and enhances their crystallinity so that the thermochromic film based on VxW1-xO2(M)@SiO2 nanoparticles can exhibit outstanding thermochromic performance with balanced solar regulation efficiency (ΔTsol) of 17.3%, luminous transmittance (Tlum) up to 52.2%, and critical phase transition temperature (Tc) around 40.4 °C, which is very promising for practical application. Furthermore, it makes great progress in reducing Tc of VTSC to near room temperature (25.2 °C) and simutaneously maintaining excellent optical properties (ΔTsol = 14.7% and Tlum = 50.6%). Such thermochromic performance is good enough to make VTSC applicable to practical architecture.
Influence the dopant concentration on the photocatalytic activity: Dy3+, Eu3+ doped TiO2
NASA Astrophysics Data System (ADS)
Zikriya, Mohamed; Nadaf, Y. F.; Pramod, A. G.; Renuka, C. G.
2018-05-01
Titanium dioxide (TiO2) nanoparticles were synthesis by means of hydrothermal process from metatitanic acid. The impacts reaction temperature, stirring process and aging time on the morphology, the transfer of nanoparticles particles were characterized. The morphology of the nanoparticles was described in detail with scanning electron microscopy. In the dynamic of hydrothermal method, stirring can cut down the reaction time of change from particles to nanoparticles. As can be seen from the XRD patterns, the diffraction peaks get broadened as the Eu3+ focus is increased, proposing an orderly abatement in the grain size. The Crystallite size was calculated for pure, Dy3+ and Eu3+ doped TiO2 from diffraction plane by Sherrer's formula and it was found that 13 nm to 18 nm. From SEM images the majorities of TiO2 particles are oblate spheroid or spheroid and look looser, and some macropores could be seen on a few particles.
Supercritical fluid attachment of palladium nanoparticles on aligned carbon nanotubes.
Ye, Xiang-Rong; Lin, Yuehe; Wai, Chien M; Talbot, Jan B; Jin, Sungho
2005-06-01
Nanocomposite materials consisting of Pd nanoparticles deposited on aligned multi-walled carbon nanotubes have been fabricated through hydrogen reduction of palladium-beta-diketone precursor in supercritical carbon dioxide. The supercritical fluid processing allowed deposition of high-density Pd nanoparticles (approximately 5-10 nm) on both as-grown (unfunctionalized) and functionalized (using HNO3 oxidation) nanotubes. However, the wet processing for functionalization results in pre-agglomerated, bundle-shaped nanotubes, thus significantly reducing the effective surface area for Pd particle deposition, although the bundling provides more secure, lock-in-place positioning of nanotubes and Pd catalyst particles. The nanotube bundling is substantially mitigated by Pd nanoparticle deposition on the unfunctionalized and geometrically separated nanotubes, which provides much higher catalyst surface area. Such nanocomposite materials utilizing geometrically secured and aligned nanotubes can be useful for providing much enhanced catalytic activities to chemical and electrochemical reactions (e.g., fuel cell reactions), and eliminate the need for tedious catalyst recovery process after the reaction is completed.
Lee, Jung Eun; Kim, Koung Li; Kim, Danbi; Yeo, Yeongju; Han, Hyounkoo; Kim, Myung Goo; Kim, Sun Hwa; Kim, Hyuncheol; Jeong, Ji Hoon; Suh, Wonhee
2017-01-01
Pathological angiogenesis is one of the major symptoms of severe ocular diseases, including corneal neovascularization. The blockade of vascular endothelial growth factor (VEGF) action has been recognized as an efficient strategy for treating corneal neovascularization. In this study, we aimed to investigate whether nanoparticle-based delivery of apatinib, a novel and selective inhibitor of VEGF receptor 2, inhibits VEGF-mediated angiogenesis and suppresses experimental corneal neovascularization. Water-insoluble apatinib was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro angiogenesis assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles potently inhibited VEGF-induced tube formation, scratch wounding migration, and proliferation of human endothelial cells. In a rat model of alkali burn injury-induced corneal neovascularization, a subconjunctival injection of Apa-HSA-PEG nanoparticles induced a significant decrease in neovascularization compared to that observed with an injection of free apatinib solution or phosphate-buffered saline. An in vivo distribution study using HSA-PEG nanoparticles loaded with fluorescent hydrophobic model drugs revealed the presence of a substantial number of nanoparticles in the corneal stroma within 24 h after injection. These in vitro and in vivo results demonstrate that apatinib-loaded nanoparticles may be promising for the prevention and treatment of corneal neovascularization-related ocular disorders.
Lee, Jung Eun; Kim, Koung Li; Kim, Danbi; Yeo, Yeongju; Han, Hyounkoo; Kim, Myung Goo; Kim, Sun Hwa; Kim, Hyuncheol; Jeong, Ji Hoon; Suh, Wonhee
2017-01-01
Pathological angiogenesis is one of the major symptoms of severe ocular diseases, including corneal neovascularization. The blockade of vascular endothelial growth factor (VEGF) action has been recognized as an efficient strategy for treating corneal neovascularization. In this study, we aimed to investigate whether nanoparticle-based delivery of apatinib, a novel and selective inhibitor of VEGF receptor 2, inhibits VEGF-mediated angiogenesis and suppresses experimental corneal neovascularization. Water-insoluble apatinib was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro angiogenesis assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles potently inhibited VEGF-induced tube formation, scratch wounding migration, and proliferation of human endothelial cells. In a rat model of alkali burn injury-induced corneal neovascularization, a subconjunctival injection of Apa-HSA-PEG nanoparticles induced a significant decrease in neovascularization compared to that observed with an injection of free apatinib solution or phosphate-buffered saline. An in vivo distribution study using HSA-PEG nanoparticles loaded with fluorescent hydrophobic model drugs revealed the presence of a substantial number of nanoparticles in the corneal stroma within 24 h after injection. These in vitro and in vivo results demonstrate that apatinib-loaded nanoparticles may be promising for the prevention and treatment of corneal neovascularization-related ocular disorders. PMID:28740387
Protection from radiation-induced pneumonitis using cerium oxide nanoparticles.
Colon, Jimmie; Herrera, Luis; Smith, Joshua; Patil, Swanand; Komanski, Chris; Kupelian, Patrick; Seal, Sudipta; Jenkins, D Wayne; Baker, Cheryl H
2009-06-01
In an effort to combat the harmful effects of radiation exposure, we propose that rare-earth cerium oxide (CeO(2)) nanoparticles (free-radical scavengers) protect normal tissue from radiation-induced damage. Preliminary studies suggest that these nanoparticles may be a therapeutic regenerative nanomedicine that will scavenge reactive oxygen species, which are responsible for radiation-induced cell damage. The effectiveness of CeO(2) nanoparticles in radiation protection in murine models during high-dose radiation exposure is investigated, with the ultimate goal of offering a new approach to radiation protection, using nanotechnology. We show that CeO(2) nanoparticles are well tolerated by live animals, and they prevent the onset of radiation-induced pneumonitis when delivered to live animals exposed to high doses of radiation. In the end, these studies provide a tremendous potential for radioprotection and can lead to significant benefits for the preservation of human health and the quality of life for humans receiving radiation therapy.
The Effect of Inorganic Nanoparticles on the Luminescence Properties of the 5CB Liquid Crystal
NASA Astrophysics Data System (ADS)
Bezrodna, T. V.; Klishevich, G. V.; Curmei, N. D.; Melnyk, V. I.; Nesprava, V. V.
2017-09-01
The luminescence spectral characteristics of nanocomposites based on the 5CB liquid crystal with dispersions of inorganic particles of carbon nanotubes (CNTs), the mineral montmorillonite (MMT), and nanotubes of titanium dioxide TiO2 (TNT) were investigated in the temperature range of 4.3-300 K. The IR absorption spectra of the composites at room temperature in the region of 390-4000 cm-1 were studied. The dependence of the luminescent properties of the composites on the physical properties and parameters of the nanoparticles was studied. It was established that the longwave shift of the luminescence spectra of the composites in relation to the spectra of the pure liquid crystal is related to the specific surface area of the nanoparticles. The longwave shifts of the spectra at room and low temperatures are analyzed.
Precipitation of ACC in liposomes-a model for biomineralization in confined volumes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tester, Chantel C; Wu, Ching-Hsuan; Weigand, Steven
2013-01-10
Biomineralizing organisms frequently precipitate minerals in small phospholipid bilayer-delineated compartments. We have established an in vitro model system to investigate the effect of confinement in attoliter to femtoliter volumes on the precipitation of calcium carbonate. In particular, we analyze the growth and stabilization of liposome-encapsulated amorphous calcium carbonate (ACC) nanoparticles using a combination of in situ techniques, cryo-transmission electron microscopy (Cryo-TEM), and small angle X-ray scattering (SAXS). Herein, we discuss ACC nanoparticle growth rate as a function of liposome size, carbon dioxide flux across the liposome membrane, pH, and osmotic pressure. Based on these experiments, we argue that the stabilizationmore » of ACC nanoparticles in liposomes is a consequence of a low nucleation rate (high activation barrier) of crystalline polymorphs of calcium carbonate.« less
Lee, Jong-Gun; An, Seongpil; Kim, Tae-Gun; Kim, Min-Woo; Jo, Hong-Seok; Swihart, Mark T; Yarin, Alexander L; Yoon, Sam S
2017-10-11
We have sequentially deposited layers of silver nanowires (AgNWs), silicon dioxide (SiO 2 ) nanoparticles, and polystyrene (PS) nanoparticles on uncoated glass by a rapid low-cost supersonic spraying method to create antifrosting, anticondensation, and self-cleaning glass. The conductive silver nanowire network embedded in the coating allows electrical heating of the glass surface. Supersonic spraying is a single-step coating technique that does not require vacuum. The fabricated multifunctional glass was characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), ultraviolet-visible spectroscopy, and transmission electron microscopy (TEM). The thermal insulation and antifrosting performance were demonstrated using infrared thermal imaging. The reliability of the electrical heating function was tested through extensive cycling. This transparent multifunctional coating holds great promise for use in various smart window designs.
NASA Astrophysics Data System (ADS)
Aleksandrova, E. O.; Novichkov, R. V.; Olenin, A. Yu.; Zuev, B. K.
2017-03-01
Silica nanoparticles are obtained according to the Stober-Fink-Bohn method, and their surfaces are chemically modified with 1H,1H,2H,2H-perfluorodecyltriethoxysilane. It is estimated that sols of porous silica nanoparticles (average sizes, 50-200 nm) form during primary chemical process; the average size of the particles can be increased to 400-500 nm by consecutive growth. Oxythermography (thermoprogrammed oxidation) measurements reveal a stepped dependence between the content of organic substance of nanoparticles and the duration of chemical modification reaction exists. It is concluded that this could be due to the formation of dense shell (or shells) as a result of sols aging between the cycles of growth; such shells impose diffusive restrictions when molecules penetrate into the pores of the internal volume of the particles.
Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles
NASA Astrophysics Data System (ADS)
Sales, T. S. N.; Cavalcante, F. H. M.; Bosch-Santos, B.; Pereira, L. F. D.; Cabrera-Pasca, G. A.; Freitas, R. S.; Saxena, R. N.; Carbonari, A. W.
2017-05-01
In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2) nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD), and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%).
Cheng, Haiyang; Meng, Xiangchun; He, Limin; Lin, Weiwei; Zhao, Fengyu
2014-02-01
Polyethylene glycol stabilized platinum nanoparticles were immobilized on solid supports such as γ-Al2O3, SBA-15, TiO2 and active carbon, forming supported polyethylene glycol stabilized platinum nanoparticles (SPPNs). In the hydrogenation of p-chloronitrobenzene (p-CNB) in supercritical carbon dioxide (scCO2), the SPPN showed high selectivity to p-chloroaniline (>99.3%) in the whole range of conversion. Such high selectivity to corresponding haloanilines (HANs) (>99.1%) was also obtained in the hydrogenation of o-CNB, m-CNB, 2-chloro-6-nitrotoluene, p-bromonitrobenzene and m-iodonitrobenzene. The dehalogenation and the accumulation of intermediates were fully inhibited simultaneously in scCO2. The SPPN catalysts could be reused several times without loss of high selectivity in present reaction system. Copyright © 2013 Elsevier Inc. All rights reserved.
In sunscreen lotion (SSL) formulations, titanium dioxide (nTiO2) nanoparticles are coated with an Al(OH)3 layer to shield against the harmful effects of hydroxyl radicals (•OH), superoxide anion radicals (O2-•), and other reactive oxyge...