NASA Astrophysics Data System (ADS)
Garcia Payne, D. G.; Grutter, M.; Melamed, M. L.
2010-12-01
The differential optical absorption spectroscopy method (DOAS) was used to get column densities of nitrogen dioxide (NO2) from the analysis of zenith sky UV/visible spectra. Since the optical path length provides critical information in interpreting NO2 column densities, in conjunction with NO2 column densities, the oxygen dimer (O4) column density was retrieved to give insight into the optical path length. We report observations of year round NO2 and O4 column densities (from august 2009 to september 2010) from which the mean seasonal levels and the daily evolution, as well as the occurrence of elevated pollution episodes are examined. Surface nitric oxide (NO) and NO2 from the local monitoring network, as well as wind data and the vertical aerosol density from continuous Lidar measurements are used in the analysis to investigate specific events in the context of local emissions from vehicular traffic, photochemical production and transport from industrial emissions. The NO2 column density measurements will enhance the understanding Mexico City urban air pollution. Recent research has begun to unravel the complexity of the air pollution problem in Mexico City and its effects not only locally but on a regional and global scale as well.
High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)
NASA Astrophysics Data System (ADS)
Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.
2015-06-01
Nitrogen Dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging (UV)-vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK. Retrieved NO2 columns at a surface resolution of 80 m x 20 m revealed hot spots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hot spots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.
Reed, Andra J; Thompson, Anne M; Kollonige, Debra E; Martins, Douglas K; Tzortziou, Maria A; Herman, Jay R; Berkoff, Timothy A; Abuhassan, Nader K; Cede, Alexander
An analysis is presented for both ground- and satellite-based retrievals of total column ozone and nitrogen dioxide levels from the Washington, D.C., and Baltimore, Maryland, metropolitan area during the NASA-sponsored July 2011 campaign of D eriving I nformation on S urface CO nditions from Column and VER tically Resolved Observations Relevant to A ir Q uality (DISCOVER-AQ). Satellite retrievals of total column ozone and nitrogen dioxide from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used, while Pandora spectrometers provide total column ozone and nitrogen dioxide amounts from the ground. We found that OMI and Pandora agree well (residuals within ±25 % for nitrogen dioxide, and ±4.5 % for ozone) for a majority of coincident observations during July 2011. Comparisons with surface nitrogen dioxide from a Teledyne API 200 EU NO x Analyzer showed nitrogen dioxide diurnal variability that was consistent with measurements by Pandora. However, the wide OMI field of view, clouds, and aerosols affected retrievals on certain days, resulting in differences between Pandora and OMI of up to ±65 % for total column nitrogen dioxide, and ±23 % for total column ozone. As expected, significant cloud cover (cloud fraction >0.2) was the most important parameter affecting comparisons of ozone retrievals; however, small, passing cumulus clouds that do not coincide with a high (>0.2) cloud fraction, or low aerosol layers which cause significant backscatter near the ground affected the comparisons of total column nitrogen dioxide retrievals. Our results will impact post-processing satellite retrieval algorithms and quality control procedures.
High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)
NASA Astrophysics Data System (ADS)
Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; White, J.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.
2015-11-01
Nitrogen dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging UV/Vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK on a cloud-free winter day in February 2013. Retrieved NO2 columns gridded to a surface resolution of 80 m × 20 m revealed hotspots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hotspots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.
Nitrogen Dioxide Total Column Over Terra Nova Bay Station - Antarctica - During 2001
NASA Astrophysics Data System (ADS)
Bortoli, D.; Ravegnani, F.; Giovanelli, G.; Petritoli, A.; Kostadinov, I.
GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences), installed at the Italian Antarctic Station of Terra Nova Bay (TNB) - 74.69S, 164.12E - since 1995, carried out a full dataset of zenith scattered light measurements for the year 2001. The application of DOAS methodology to the collected data gave as final results, the slant column values for nitrogen dioxide. The seasonal variation shows a maxi- mum in the summer and it is in good agreement with the results obtained by other authors. The data analysis is performed by using different parameters like the po- tential vorticity (PV) at 500 K and the atmospheric temperatures at the same level. After the verification of the linear dependency between the NO2 slant column values and the temperature of NO2 cross section utilized in the DOAS algorithm, the actual stratospheric temperatures (from ECMWF) over TNB are applied to the results. The sensible changes in the nitrogen dioxide slant column values allow to highlight the good matching between the NO2 AM/PM ratio and the potential vorticity at 500 K. The NO2 slant column values follow the variations of the stratospheric temperature mainly during the spring season, when the lowest temperatures are observed and the ozone-hole phenomena mainly occur. ACKNOWLEDGMENTS: The author Daniele Bortoli was financially supported by the "Subprograma Ciência e Tecnologia do Ter- ceiro Quadro Comunitário de Apoio". The National Program for Antarctic Research (PNRA) supported this research.
Total-column nitrogen dioxide (NO2) data collected by a ground-based sun-tracking spectrometer system 21 (Pandora) and an photolytic-converter-based in-situ instrument collocated at NASA’s Langley Research Center in 22 Hampton, Virginia were analyzed to study the relationship bet...
Nitrogen Dioxide Trend over the United States: the View from the Ground, the View from Space
NASA Technical Reports Server (NTRS)
Lamsal, Lok N.; Duncan, Bryan N.; Yoshida, Yasuko; Krotkov, Nickolay A.
2014-01-01
Emissions of nitrogen oxides (NOx) are decreasing over the US due to environmental policies and technological change. We use observations of tropospheric nitrogen dioxide (NO2) columns from the Ozone Monitoring Instrument (OMI) satellite instrument and surface NO2 in-situ measurements from the air quality system (AQS) to quantify the trends, and to establish the relationship between the trends in tropospheric column and surface concentration. Both observations show substantial downward trends from 2005 to 2013, with an average reduction of 35 percent according to OMI and 38 percent according to AQS. The annual reduction rates are largest in 2005-2009: -6.2 percent per year and -7 percent per year observed by OMI and AQS, respectively. We examine various factors affecting the estimated trend in OMI NO2 columns and in-situ NO2 observations. An improved understanding of trend offers valuable insights about effectiveness of emission reduction regulations on state and federal level.
Knepp, T; Pippin, M; Crawford, J; Chen, G; Szykman, J; Long, R; Cowen, L; Cede, A; Abuhassan, N; Herman, J; Delgado, R; Compton, J; Berkoff, T; Fishman, J; Martins, D; Stauffer, R; Thompson, A M; Weinheimer, A; Knapp, D; Montzka, D; Lenschow, D; Neil, D
Total-column nitrogen dioxide (NO 2 ) data collected by a ground-based sun-tracking spectrometer system (Pandora) and an photolytic-converter-based in-situ instrument collocated at NASA's Langley Research Center in Hampton, Virginia were analyzed to study the relationship between total-column and surface NO 2 measurements. The measurements span more than a year and cover all seasons. Surface mixing ratios are estimated via application of a planetary boundary-layer (PBL) height correction factor. This PBL correction factor effectively corrects for boundary-layer variability throughout the day, and accounts for up to ≈75 % of the variability between the NO 2 data sets. Previous studies have made monthly and seasonal comparisons of column/surface data, which has shown generally good agreement over these long average times. In the current analysis comparisons of column densities averaged over 90 s and 1 h are made. Applicability of this technique to sulfur dioxide (SO 2 ) is briefly explored. The SO 2 correlation is improved by excluding conditions where surface levels are considered background. The analysis is extended to data from the July 2011 DISCOVER-AQ mission over the greater Baltimore, MD area to examine the method's performance in more-polluted urban conditions where NO 2 concentrations are typically much higher.
Shabbir, Yasir; Khokhar, Muhammad Fahim; Shaiganfar, Reza; Wagner, Thomas
2016-05-01
This paper discusses the findings of the first car MAX-DOAS (multi-axis differential optical absorption spectroscopy) field campaign (300km long) along the National Highway-05 (N5-Highway) of Pakistan conducted on 13 and 14 November, 2012. The main objective of the field campaign was to assess the spatial distribution of tropospheric nitrogen dioxide (NO2) columns and corresponding concentrations along the N5-Highway from Islamabad to Lahore. Source identification of NO2 revealed that the concentrations were higher within major cities along the highway. The highest NO2 vertical column densities (NO2 VCDs) were found around two major cities of Rawalpindi and Lahore. This study also presents a comparison of NO2 VCDs measured by the ozone monitoring instrument (OMI) and car MAX-DOAS observations. The comparison revealed similar spatial distribution of the NO2 columns with both car MAX-DOAS and satellite observations, but the car MAX-DOAS observations show much more spatial details. Maximum NO2 VCD retrieved from car MAX-DOAS observations was up to an order of magnitude larger than the OMI observations in urban areas. Copyright © 2015. Published by Elsevier B.V.
Observations of the loss of stratospheric NO2 following volcanic eruptions
NASA Technical Reports Server (NTRS)
Coffey, M. T.; Mankin, William G.
1993-01-01
Observations of stratospheric column amounts of nitrogen dioxide (NO2), nitric oxide (NO) and nitric acid (HNO3) have been made following major eruptions of the El Chichon and Mt. Pintatubo volcanoes. Midlatitude abundances of NO2 and NO were reduced by as much as 70% in the months following the appearance of the volcanic aerosols as compared to volcanically quite periods. There are heterogeneous reactions which could occur on the volcanic aerosols to convert NO2 into HNO3 but no commensurate increase in HNO3 column amounts was observed at the times of NO2 decrease.
NASA Astrophysics Data System (ADS)
Schreier, Stefan F.; Richter, Andreas; Wittrock, Folkard; Burrows, John P.
2015-04-01
Spectral measurements at two mountain sites were performed with a MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) instrument from February to July 2003 (Zugspitze, Germany) and from March 2004 to November 2008 (Pico Espejo, Venezuela). Here, these measurements are used for the retrieval of slant column densities (SCDs) of nitrogen dioxide (NO2). While at the altitude of observations the NO2 levels are usually small, uplifting of anthropogenic emissions from the valley and in Venezuela also transport of emissions from biomass burning can lead to significant enhancements. Daily, weekly, and seasonal cycles of NO2 SCDs are shown for the two stations, linked to different meteorological conditions and compared between the two sites. In a next step, a preliminary approach to derive vertical column densities (VCDs) is presented. VCDs of NO2 from ground-based MAX-DOAS instruments provide useful information for the validation of satellite instruments such as SCIAMACHY, OMI, and GOME-2. Comparisons between ground-based and satellite-based NO2 VCDs are shown for selected periods.
Maximizing performance in supercritical fluid chromatography using low-density mobile phases.
Gritti, Fabrice; Fogwill, Michael; Gilar, Martin; Jarrell, Joseph A
2016-10-14
The performance of a 3.0mm×150mm column packed with 1.8μm fully porous HSS-SB-C 18 particles was investigated in supercritical fluid chromatography (SFC) with low-density, highly expansible carbon dioxide. These conditions are selected for the analysis of semi-volatile compounds. Elevated temperatures (>100°C) were then combined with low column back pressures (<100bar). In this work, the inlet temperature of pure carbon dioxide was set at 107°C, the active back pressure regulator (ABPR) pressure was fixed at 100bar, and the flow rate was set at 2.1mL/min at 12°C (liquefied carbon dioxide) and at an inlet column pressure close to 300bar. Nine n-alkylbenzenes (from benzene to octadecylbenzene) were injected under linear (no sample overload) conditions. The severe steepness of the temperature gradients across the column diameter were predicted from a simplified heat transfer model. Such conditions dramatically lower the column performance by affecting the symmetry of the peak shape. In order to cope with this problem, three different approaches were experimentally tested. They include (1) the decoupling and the proper selection of the inlet eluent temperature with respect to the oven temperature, (2) the partial thermal insulation of the column using polyethylene aerogel, and (3) the application of a high vacuum (10 -5 Torr provided by a turbo-molecular pump) in a housing chamber surrounding the whole column body. The results reveal that (1) the column efficiency can be maximized by properly selecting the difference between the eluent and the oven temperatures, (2) the mere wrapping of the column with an excellent insulating material is insufficient to fully eliminate heat exchanges by conduction and the undesirable radial density gradients across the column i.d., and (3) the complete thermal insulation of the SFC column under high vacuum allows to maximize the column efficiency by maintaining the integrity of the peak shape. Copyright © 2016 Elsevier B.V. All rights reserved.
Measurement of Carbon Dioxide Column via Space Borne Laser Absorption
NASA Technical Reports Server (NTRS)
Heaps, WIlliam S.
2007-01-01
In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. In order to uncover the 'missing sink that is responsible for the large discrepancies in the budget as we presently understand it calculation has indicated that measurement accuracy on the order of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of .25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget in order to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong requirements on the laser system used for the measurement. This work presents an analysis of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics Several systems for meeting these requirements that are under investigation at various institutions in the US as well as Europe will be discussed.
NASA Astrophysics Data System (ADS)
Lee, H.; Kim, S.; Brioude, J.; Cooper, O. R.; Frost, G. J.; Trainer, M.; Kim, C.
2012-12-01
Nitrogen dioxide (NO2) columns observed from space have been useful in detecting the increase of NOx emissions over East Asia in accordance with rapid growth in its economy. In addition to emissions, transport can be an important factor to determine the observed satellite NO2 columns in this region. Satellite tropospheric NO2 columns showed maximum in winter and minimum in summer over the high emission areas in China, as lifetime of NO2 decreases with increase of sunlight. However, secondary peaks in the satellite NO2 columns were found in spring in both Korea and Japan, which may be influenced by transport of NOx within East Asia. Surface in-situ observations confirm the findings from the satellite measurements. The large-scale distribution of satellite NO2 columns over East Asia and the Pacific Ocean showed that the locations of NO2 column maxima coincided with wind convergence zones that change with seasons. In spring, the convergence zone is located over 30-40°N, leading to the most efficient transport of the emissions from southern China to downwind areas including Korea, Japan, and western coastal regions of the United States. We employed a Lagrangian particle dispersion model to identify the sources of the observed springtime maximum NO2. In order to understand chemical processing during the transport and quantify the roles of emissions and transport in local NOx budgets, we will also present the results from a regional chemical transport model.
Nitrogen dioxide observations from the Geostationary Trace ...
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with prelim
OMI air-quality monitoring over the Middle East
NASA Astrophysics Data System (ADS)
Barkley, Michael P.; González Abad, Gonzalo; Kurosu, Thomas P.; Spurr, Robert; Torbatian, Sara; Lerot, Christophe
2017-04-01
Using Ozone Monitoring Instrument (OMI) trace gas vertical column observations of nitrogen dioxide (NO2), formaldehyde (HCHO), sulfur dioxide (SO2), and glyoxal (CHOCHO), we have conducted a robust and detailed time series analysis to assess changes in local air quality for over 1000 locations (focussing on urban, oil refinery, oil port, and power plant targets) over the Middle East for 2005-2014. Apart from NO2, which is highest over urban locations, average tropospheric column levels of these trace gases are highest over oil ports and refineries. The highest average pollution levels over urban settlements are typically in Bahrain, Kuwait, Qatar, and the United Arab Emirates. We detect 278 statistically significant and real linear NO2 trends in total. Over urban areas NO2 increased by up to 12 % yr-1, with only two locations showing a decreasing trend. Over oil refineries, oil ports, and power plants, NO2 increased by about 2-9 % yr-1. For HCHO, 70 significant and real trends were detected, with HCHO increasing by 2-7 % yr-1 over urban settlements and power plants and by about 2-4 % yr-1 over refineries and oil ports. Very few SO2 trends were detected, which varied in direction and magnitude (23 increasing and 9 decreasing). Apart from two locations where CHOCHO is decreasing, we find that glyoxal tropospheric column levels are not changing over the Middle East. Hence, for many locations in the Middle East, OMI observes a degradation in air quality over 2005-2014. This study therefore demonstrates the capability of OMI to generate long-term air-quality monitoring at local scales over this region.
Gas-liquid chromatography with a volatile "stationary" liquid phase.
Wells, P S; Zhou, S; Parcher, J F
2002-05-01
A unique type of gas-liquid chromatography is described in which both mobile and "stationary" phases are composed of synthetic mixtures of helium and carbon dioxide. At temperatures below the critical point of the binary mixture and pressures above the vapor pressure of pure liquid carbon dioxide, helium and carbon dioxide can form two immiscible phases over extended composition ranges. A binary vapor phase enriched in helium can act as the mobile phase for chromatographic separations, whereas a CO2-rich liquid in equilibrium with the vapor phase, but condensed on the column wall, can act as a pseudostationary phase. Several examples of chromatographic separations obtained in "empty" capillary columns with no ordinary stationary liquid phase illustrate the range of conditions that produce such separations. In addition, several experiments are reported that confirm the proposed two-phase hypothesis. The possible consequences of the observed chromatographic phenomenon in the field of supercritical fluid chromatography with helium headspace carbon dioxide are discussed.
Ozone and nitrogen dioxide above the northern Tien Shan
NASA Technical Reports Server (NTRS)
Arefev, Vladimir N.; Volkovitsky, Oleg A.; Kamenogradsky, Nikita E.; Semyonov, Vladimir K.; Sinyakov, Valery P.
1994-01-01
The results of systematic perennial measurements of the total ozone (since 1979) and nitrogen dioxide column (since 1983) in the atmosphere in the European-Asian continent center above the mountainmass of the Tien Shan are given. This region is distinguished by a great number of sunny days during a year. The observation station is at the Northern shore of Issyk Kul Lake (42.56 N 77.04 E 1650 m above the sea level). The measurement results are presented as the monthly averaged atmospheric total ozone and NO2 stratospheric column abundances (morning and evening). The peculiarities of seasonal variations of ozone and nitrogen dioxide atmospheric contents, their regular variances with a quasi-biennial cycles and trends have been noticed. Irregular variances of ozone and nitrogen dioxide atmospheric contents, i.e. their positive and negative anomalies in the monthly averaged contents relative to the perennial averaged monthly means, have been analyzed. The synchronous and opposite in phase anomalies in variations of ozone and nitrogen dioxide atmospheric contents were explained by the transport and zonal circulation in the stratosphere (Kamenogradsky et al., 1990).
Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations
NASA Astrophysics Data System (ADS)
Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.
2015-01-01
We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the Differential Optical Absorption Spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS dataset acquired with a Multi-AXis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from the 10 June to the 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data from a co-located Système d'Analyse par Observations Zénithales (SAOZ) spectrometer. The retrieved tropospheric VCDs are in good agreement with the different datasets with correlation coefficients and slopes close to or larger than 0.9. The potential of the presented ZS retrieval algorithm is further demonstrated by its successful application on a 2 year dataset, acquired at the NDACC (Network for the Detection of Atmospheric Composition Change) station Observatoire de Haute Provence (OHP; Southern France).
Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations
NASA Astrophysics Data System (ADS)
Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.
2015-06-01
We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the differential optical absorption spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS data set acquired with a multi-axis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from 10 June to 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In the case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data from a co-located Système d'Analyse par Observations Zénithales (SAOZ) spectrometer. The retrieved tropospheric VCDs are in good agreement with the different data sets with correlation coefficients and slopes close to or larger than 0.9. The potential of the presented ZS retrieval algorithm is further demonstrated by its successful application on a 2-year data set, acquired at the NDACC (Network for the Detection of Atmospheric Composition Change) station Observatoire de Haute Provence (OHP; Southern France).
OMI Total and Tropospheric Column Nitrogen Dioxide: Version 2 Status
NASA Technical Reports Server (NTRS)
Gleason, James
2007-01-01
The at-launch version of the OM1 NO2 total and tropospheric NO2 algorithm made a number of assumptions about instrument performance. Our knowledge of tropospheric NO2 has increased in the 3 years since the inital version was delivered. The results of the post-launch validation campaigns and improved atmospheric modelling has lead to changes in the NO2 retrieval algorithm. The algorithm changes and the impacts on the data products will be presented.
NASA Technical Reports Server (NTRS)
Cede, Alexander; Herman, Jay; Richter, Andreas; Krotkov, Nickolay; Burrows, John
2006-01-01
NO2 column amounts were measured for the past 2 years at Goddard Space Flight Center, Greenbelt, Maryland, using a Brewer spectrometer in direct Sun mode. A new bootstrap method to calibrate the instrument is introduced and described. This technique selects the cleanest days from the database to obtain the solar reference spectrum. The main advantage for direct Sun measurements is that the conversion uncertainty from slant column to vertical column is negligible compared to the standard scattered light observations where it is typically on the order of 100% (2sigma) at polluted sites. The total 2sigma errors of the direct Sun retrieved column amounts decrease with solar zenith angle and are estimated at 0.2 to 0.6 Dobson units (DU, 1 DU approx. equal to 2.7 10(exp 16) molecules cm(exp -2)), which is more accurate than scattered light measurements for high NO2 amounts. Measured NO2 column amounts, ranging from 0 to 3 DU with a mean of 0.7 DU, show a pronounced daily course and a strong variability from day to day. The NO2 concentration typically increases from sunrise to noon. In the afternoon it decreases in summer and stays constant in winter. As expected from the anthropogenic nature of its source, NO2 amounts on weekends are significantly reduced. The measurements were compared to satellite retrievals from Scanning Image Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). Satellite data give the same average NO2 column and show a seasonal cycle that is similar to the ground data in the afternoon. We show that NO2 must be considered when retrieving aerosol absorption properties, especially for situations with low aerosol optical depth.
NO2 column changes induced by volcanic eruptions
NASA Technical Reports Server (NTRS)
Johnston, Paul V.; Keys, J. Gordon; Mckenzie, Richard L.
1994-01-01
Nitrogen dioxide slant column amounts measured by ground-based remote sensing from Lauder, New Zealand (45 deg S) and Campbell Island (53 deg S) during the second half of 1991 and early 1992 show anomalously low values that are attributed to the effects of volcanic eruptions. It is believed that the eruptions of Mount Pinatubo in the Philippines in June 1991 and possibly Mount Hudson in Chile in August 1991 are responsible for the stratospheric changes, which first became apparent in July 1991. The effects in the spring of 1991 are manifested as a reduction in the retrieved NO2 column amounts from normal levels by 35 to 45 percent, and an accompanying increase in the overnight decay of NO2. The existence of an accurate long-term record of column NO2 from the Lauder site enables us to quantify departures from the normal seasonal behavior with some confidence. Simultaneous retrievals of column ozone agree well with Dobson measurements, confirming that only part of the NO2 changes can be attributed to a modification of the scattering geometry by volcanic aerosols. Other reasons for the observed behavior are explored, including the effects of stratospheric temperature increases resulting from the aerosol loading and the possible involvement of heterogeneous chemical processes.
NASA Astrophysics Data System (ADS)
Lamsal, L.; Martin, R. V.; Parrish, D. D.
2011-12-01
Nitrogen dioxide (NO2) is a short-lived atmospheric pollutant released from combustion processes and is an indicator of air quality. We derive a global distribution of ground-level NO2 concentrations by applying local scaling factors from a global three-dimensional model to tropospheric NO2 columns retrieved from the Ozone Monitoring Instrument. The OMI-derived surface NO2 data are compared with in situ surface NO2 data obtained from the SEARCH, AQS/EPA, and NAPS networks. The correlation between the OMI-derived surface NO2 and the ground-based measurements is generally > 0.5. We examine how NO2 columns measured by satellite, ground-level NO2 derived from satellite, and NOx emissions obtained from bottom-up inventories relate to city population in North America, Europe, and Asia. NO2 increases proportional to population raised to an exponent that is in the range 0.25-0.55. This relationship provides insights into per capita emissions and the quality of air people breathe.
NASA Technical Reports Server (NTRS)
Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; Abad, Gonzalo Gonzalez; Liu, Xiaojun; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William;
2016-01-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m x 250 m spatial resolution with a fitting precision of 2.2 x 10(exp 15) molecules/sq cm. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.
NASA Astrophysics Data System (ADS)
Cooper, Matthew; Martin, Randall V.; Padmanabhan, Akhila; Henze, Daven K.
2017-04-01
Satellite observations offer information applicable to top-down constraints on emission inventories through inverse modeling. Here we compare two methods of inverse modeling for emissions of nitrogen oxides (NOx) from nitrogen dioxide (NO2) columns using the GEOS-Chem chemical transport model and its adjoint. We treat the adjoint-based 4D-Var modeling approach for estimating top-down emissions as a benchmark against which to evaluate variations on the mass balance method. We use synthetic NO2 columns generated from known NOx emissions to serve as "truth." We find that error in mass balance inversions can be reduced by up to a factor of 2 with an iterative process that uses finite difference calculations of the local sensitivity of NO2 columns to a change in emissions. In a simplified experiment to recover local emission perturbations, horizontal smearing effects due to NOx transport are better resolved by the adjoint approach than by mass balance. For more complex emission changes, or at finer resolution, the iterative finite difference mass balance and adjoint methods produce similar global top-down inventories when inverting hourly synthetic observations, both reducing the a priori error by factors of 3-4. Inversions of simulated satellite observations from low Earth and geostationary orbits also indicate that both the mass balance and adjoint inversions produce similar results, reducing a priori error by a factor of 3. As the iterative finite difference mass balance method provides similar accuracy as the adjoint method, it offers the prospect of accurately estimating top-down NOx emissions using models that do not have an adjoint.
NASA Technical Reports Server (NTRS)
Li, Can; Zhang, Qiang; Krotkov, Nickolay A.; Streets, David G.; He, Kebin; Tsay, Si-Chee; Gleason, James F.
2010-01-01
The Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite observed substantial increases in total column SO2 and tropospheric column NO2 from 2005 to 2007, over several areas in northern China where large coal-fired power plants were built during this period. The OMI-observed SO2/NO2 ratio is consistent with the SO2/ NO2, emissions estimated from a bottom-up approach. In 2008 over the same areas, OMI detected little change in NO2, suggesting steady electricity output from the power plants. However, dramatic reductions of S0 2 emissions were observed by OMI at the same time. These reductions confirm the effectiveness of the flue-gas desulfurization (FGD) devices in reducing S02 emissions, which likely became operational between 2007 and 2008. This study further demonstrates that the satellite sensors can monitor and characterize anthropogenic emissions from large point sources.
Precision Column CO2 Measurement from Space Using Broad Band LIDAR
NASA Technical Reports Server (NTRS)
Heaps, William S.
2009-01-01
In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. To uncover the missing sink" that is responsible for the large discrepancies in the budget as we presently understand it, calculation has indicated that measurement accuracy of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of 0.25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong constraints on the laser system used for the measurement. This work presents an overview of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics. We are examining the possibility of making precise measurements of atmospheric carbon dioxide using a broad band source of radiation. This means that many of the difficulties in wavelength control can be treated in the detector portion of the system rather than the laser source. It also greatly reduces the number of individual lasers required to make a measurement. Simplifications such as these are extremely desirable for systems designed to operate from space.
NASA Astrophysics Data System (ADS)
Vlemmix, T.; Eskes, H. J.; Piters, A. J. M.; Schaap, M.; Sauter, F. J.; Kelder, H.; Levelt, P. F.
2015-02-01
A 14-month data set of MAX-DOAS (Multi-Axis Differential Optical Absorption Spectroscopy) tropospheric NO2 column observations in De Bilt, the Netherlands, has been compared with the regional air quality model Lotos-Euros. The model was run on a 7×7 km2 grid, the same resolution as the emission inventory used. A study was performed to assess the effect of clouds on the retrieval accuracy of the MAX-DOAS observations. Good agreement was found between modeled and measured tropospheric NO2 columns, with an average difference of less than 1% of the average tropospheric column (14.5 · 1015 molec cm-2). The comparisons show little cloud cover dependence after cloud corrections for which ceilometer data were used. Hourly differences between observations and model show a Gaussian behavior with a standard deviation (σ) of 5.5 · 1015 molec cm-2. For daily averages of tropospheric NO2 columns, a correlation of 0.72 was found for all observations, and 0.79 for cloud free conditions. The measured and modeled tropospheric NO2 columns have an almost identical distribution over the wind direction. A significant difference between model and measurements was found for the average weekly cycle, which shows a much stronger decrease during the weekend for the observations; for the diurnal cycle, the observed range is about twice as large as the modeled range. The results of the comparison demonstrate that averaged over a long time period, the tropospheric NO2 column observations are representative for a large spatial area despite the fact that they were obtained in an urban region. This makes the MAX-DOAS technique especially suitable for validation of satellite observations and air quality models in urban regions.
Progress in Measurement of Carbon Dioxide Using a Broadband Lidar
NASA Technical Reports Server (NTRS)
Heaps, William S.
2010-01-01
In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. In order to uncover the 'missing sink" that is responsible for the large discrepancies in the budget as we presently understand it calculation has indicated that measurement accuracy on the order of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of .25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget in order to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong requirements on the laser system used for the measurement. This work presents an overview of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics We have been examining the possibility of making precise measurements of atmospheric carbon dioxide using broad band source of radiation. This means that many of the difficulties in wavelength control can be treated in the detector portion of the system rather than the laser source. It also greatly reduces the number of individual lasers required to make a measurement. Simplifications such as these are extremely desirable for systems designed to operate from space.
Precipitated Silica from Pumice and Carbon Dioxide Gas (Co2) in Bubble Column Reactor
NASA Astrophysics Data System (ADS)
Dewati, R.; Suprihatin, S.; Sumada, K.; Muljani, S.; Familya, M.; Ariani, S.
2018-01-01
Precipitated silica from silica and carbon dioxide gas has been studied successfully. The source of silica was obtained from pumice stone while precipitation process was carried out with carbon dioxide gas (CO2). The sodium silicate solution was obtained by extracting the silica from pumice stone with sodium hydroxide (NaOH) solution and heated to 100 °C for 1 h. The carbon dioxide gas is injected into the aqueous solution of sodium silicate in a bubble column reactor to form precipitated silica. m2/g. The results indicate that the products obtained are precipitate silica have surface area in the range of 100 - 227 m2/g, silica concentration more than 80%, white in appearance, and silica concentration reached 90% at pH 7.
NASA Astrophysics Data System (ADS)
Schaub, D.; Boersma, K. F.; Kaiser, J. W.; Weiss, A. K.; Folini, D.; Eskes, H. J.; Buchmann, B.
2006-08-01
Nitrogen dioxide (NO2) vertical tropospheric column densities (VTCs) retrieved from the Global Ozone Monitoring Experiment (GOME) are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute) and BIRA/IASB (Belgian Institute for Space Aeronomy) with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK) of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration) and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively). The mean relative difference (with respect to the ground-based columns) is -7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a priori and the ground-based NO2 profile is analysed by considering AK information. It is moderate and indicates similar shapes of the profiles for clear sky conditions. Only for large GOME columns, differences between the profile shapes explain the larger part of the relative difference. In contrast, the other error sources give rise to the larger relative differences found towards smaller columns. Further, for the clear sky cases, errors from different sources are found to compensate each other partially. The comparison for cloudy cases indicates a poorer agreement between the columns (n=60, R=0.61). The mean relative difference between the columns is 60% with a standard deviation of 118% and GOME on average overestimating the ground-based columns. The clear improvement after inclusion of AK information (n=60, R=0.87) suggests larger errors in the a priori NO2 profiles under cloudy conditions and demonstrates the importance of using accurate profile information for (partially) clouded scenes.
NASA Astrophysics Data System (ADS)
Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.
2016-06-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 molecules
Separation and Detection of Toxic Gases with a Silicon Micromachined Gas Chromatography System
NASA Technical Reports Server (NTRS)
Kolesar, Edward S.; Reston, Rocky R.
1995-01-01
A miniature gas chromatography (GC) system was designed and fabricated using silicon micromachining and integrated circuit (IC) processing techniques. The silicon micromachined gas chromatography system (SMGCS) is composed of a miniature sample injector that incorporates a 10 microliter sample loop; a 0.9 meter long, rectangular shaped (300 micrometer width and 10 micrometer height) capillary column coated with a 0.2 micrometer thick copper phthalocyanine (CuPc) stationary phase; and a dual detector scheme based upon a CuPc-coated chemiresistor and a commercially available 125 micrometer diameter thermal conductivity detector (TCD) bead. Silicon micromachining was employed to fabricate the interface between the sample injector and the GC column, the column itself, and the dual detector cavity. A novel IC thin-film processing technique was developed to sublime the CuPc stationary phase coating on the column walls that were micromachined in the host silicon wafer substrate and Pyrex (r) cover plate, which were then electrostatically bonded together. The SMGCS can separate binary gas mixtures composed of parts-per-million (ppm) concentrations of ammonia (NH3) and nitrogen dioxide (NO2) when isothermally operated (55-80 degrees C). With a helium carrier gas and nitrogen diluent, a 10 microliter sample volume containing ammonia and nitrogen dioxide injected at 40 psi ((2.8 x 10(exp 5)Pa)) can be separated in less than 30 minutes.
NASA Technical Reports Server (NTRS)
Pommereau, J. P.; Goutail, F.
1988-01-01
Unattended diode array spectrometers have been designed for ground based stratospheric trace species monitoring by zenith sky visible spectrometry. Measurements are performed with a 1.0 nm resolution between 290 nm and 590 nm in order to allow simultaneous evaluations of column densities of ozone, nitrogen dioxide. Field tests have shown that the species can be monitored with a precision of + or - 2 Dobson for the first and + or - 2.10 to the 15th mol/sq cm for the second, although the absolute accuracy of the method is limited by the error of the estimation of the atmospheric optical path of the scattered light. Two identical instruments were set up in January 1988, one in Antarctica at Dumont d'Urville (66 S, 140 E) to be operated all year and another one in the Arctic at ESRANGE at Kiruna (68 N; 22 E) which will operate to the final warming of spring 1988. The data are processed in real time at both stations. O3 and NO2 columns are transmitted together with surface and stratospheric temperature and winds. They are also recorded for further treatment and search for OClO and BrO. Only one month of data from Antarctica is available at the moment. Obtained during polar summer, they cannot show more than stable columns of O3 and NO2 and for the last species, the buildup of its diurnal variation.
NASA Astrophysics Data System (ADS)
Kharol, S. K.; Martin, R. V.; Philip, S.; Boys, B.; Lamsal, L. N.; Jerrett, M.; Brauer, M.; Crouse, D. L.; McLinden, C.; Burnett, R. T.
2015-10-01
We estimate ground-level nitrogen dioxide (NO2) concentrations from the OMI (Ozone Monitoring Instrument) over North America for the period 2005-2012. A chemical transport model (GEOS-Chem) is used to account for effects of the NO2 profile on the column retrieval, and to relate OMI NO2 columns to ground-level concentrations. The magnitude of the period-mean OMI-derived NO2 concentrations is evaluated versus in situ measurements from air quality networks yielding a significant spatial correlation (r = 0.81) but OMI-derived values are lower with a slope of 0.4. Comparison of the in situ concentrations versus spatially resolved concentrations estimated from land use regression models reveals that this difference partially arises from representativeness difference due to preferential placement of in situ monitors at locations with enhanced NO2, coupled with the OMI horizontal resolution. In situ observations provide information about local concentrations while OMI offers area-averaged information. The remaining difference is less readily explained and appears to include a combination of the effects of local unresolved geophysical processes affecting both the NO2 retrieval and the vertical profile used to relate the column to ground level. We also evaluate trends over North America from OMI and in situ measurements for the period of 2005-2012. OMI derived ground-level NO2 well reproduces the spatial pattern of the in situ trends (r = 0.77) and the slope of 0.4 versus the trend from in situ monitors is consistent with the slope versus mean concentrations. Absolute regional trends inferred from in situ measurements alone may overestimate area average changes. Nonetheless coincidently sampled ground-level NO2 concentrations from OMI and in situ measurements for 2005-2012 exhibit similar relative decreases over Eastern (-6.5 ± 2.0%/yr, -7.1 ± 1.3%/yr), Western (-4.5 ± 1.1%/yr, -6.5 ± 0.7%/yr) and Central (-3.3 ± 2.3%/yr, -4.1 ± 0.8%/yr) North America.
NASA Astrophysics Data System (ADS)
Kollonige, Debra E.; Thompson, Anne M.; Josipovic, Miroslav; Tzortziou, Maria; Beukes, Johan P.; Burger, Roelof; Martins, Douglas K.; van Zyl, Pieter G.; Vakkari, Ville; Laakso, Lauri
2018-01-01
The Pandora spectrometer that uses direct-Sun measurements to derive total column amounts of gases provides an approach for (1) validation of satellite instruments and (2) monitoring of total column (TC) ozone (O3) and nitrogen dioxide (NO2). We use for the first time Pandora and Ozone Monitoring Instrument (OMI) observations to estimate surface NO2 over marine and terrestrial sites downwind of urban pollution and compared with in situ measurements during campaigns in contrasting regions: (1) the South African Highveld (at Welgegund, 26°34'10″S, 26°56'21″E, 1,480 m asl, 120 km southwest of the Johannesburg-Pretoria megacity) and (2) shipboard U.S. mid-Atlantic coast during the 2014 Deposition of Atmospheric Nitrogen to Coastal Ecosystems (DANCE) cruise. In both cases, there were no local NO
NASA Technical Reports Server (NTRS)
Duncan, Bryan N.; Yoshida, Yasuko; deFoy, Benjamin; Lamsal, Lok N.; Streets, David G.; Lu, Zifeng; Pickering, Kenneth E.; Krotkov, Nickolay A.
2013-01-01
We show that Aura Ozone Monitoring Instrument (OMI) nitrogen dioxide (NO2) tropospheric column data may be used to assess changes of the emissions of nitrogen oxides (NOx) from power plants in the United States, though careful interpretation of the data is necessary. There is a clear response for OMI NO2 data to NOx emission reductions from power plants associated with the implementation of mandated emission control devices (ECDs) over the OMI record (2005e2011). This response is scalar for all intents and purposes, whether the reduction is rapid or incremental over several years. However, it is variable among the power plants, even for those with the greatest absolute decrease in emissions. We document the primary causes of this variability, presenting case examples for specific power plants.
Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area
NASA Astrophysics Data System (ADS)
Bechle, Matthew J.; Millet, Dylan B.; Marshall, Julian D.
2013-04-01
Remote sensing may be a useful tool for exploring spatial variability of air pollution exposure within an urban area. To evaluate the extent to which satellite data from the Ozone Monitoring Instrument (OMI) can resolve urban-scale gradients in ground-level nitrogen dioxide (NO2) within a large urban area, we compared estimates of surface NO2 concentrations derived from OMI measurements and US EPA ambient monitoring stations. OMI, aboard NASA's Aura satellite, provides daily afternoon (˜13:30 local time) measurements of NO2 tropospheric column abundance. We used scaling factors (surface-to-column ratios) to relate satellite column measurements to ground-level concentrations. We compared 4138 sets of paired data for 25 monitoring stations in the South Coast Air Basin of California for all of 2005. OMI measurements include more data gaps than the ground monitors (60% versus 5% of available data, respectively), owing to cloud contamination and imposed limits on pixel size. The spatial correlation between OMI columns and corrected in situ measurements is strong (r = 0.93 for annual average data), indicating that the within-urban spatial signature of surface NO2 is well resolved by the satellite sensor. Satellite-based surface estimates employing scaling factors from an urban model provide a reliable measure (annual mean bias: -13%; seasonal mean bias: <1% [spring] to -22% [fall]) of fine-scale surface NO2. We also find that OMI provides good spatial density in the study region (average area [km2] per measurement: 730 for the satellite sensor vs. 1100 for the monitors). Our findings indicate that satellite observations of NO2 from the OMI sensor provide a reliable measure of spatial variability in ground-level NO2 exposure for a large urban area.
Carbon dioxide stripping in aquaculture -- part II: development of gas transfer models
Colt, John; Watten, Barnaby; Pfeiffer, Tim
2012-01-01
The basic mass transfer equation for gases such as oxygen and carbon dioxide can be derived from integration of the driving force equation. Because of the physical characteristics of the gas transfer processes, slightly different models are used for aerators tested under the non steady-state procedures, than for packed columns, or weirs. It is suggested that the standard condition for carbon dioxide should be 20 °C, 1 atm, CCO2=20 mg/kg, and XCO2=0.000285. The selection of the standard condition for carbon dioxide based on a fixed mole fraction ensures that standardized carbon dioxide transfer rates will be comparable even though the value of C*CO2 in the atmosphere is increasing with time. The computation of mass transfer for carbon dioxide is complicated by the impact of water depth and gas phase enrichment on the saturation concentration within the unit, although the importance of either factor depends strongly on the specific type of aerator. For some types of aerators, the most accurate gas phase model remains to be determined for carbon dioxide. The assumption that carbon dioxide can be treated as a non-reactive gas in packed columns may apply for cold acidic waters but not for warm alkaline waters.
Space-Based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions
NASA Technical Reports Server (NTRS)
Martin, Randall V.; Fiore, Arlene M.; VanDonkelaar, Aaron
2004-01-01
We present a novel capability in satellite remote sensing with implications for air pollution control strategy. We show that the ratio of formaldehyde columns to tropospheric nitrogen dioxide columns is an indicator of the relative sensitivity of surface ozone to emissions of nitrogen oxides (NO(x) = NO + NO2) and volatile organic compounds (VOCs). The diagnosis from these space-based observations is highly consistent with current understanding of surface ozone chemistry based on in situ observations. The satellite-derived ratios indicate that surface ozone is more sensitive to emissions of NO(x) than of VOCs throughout most continental regions of the Northern Hemisphere during summer. Exceptions include Los Angeles and industrial areas of Germany. A seasonal transition occurs in the fall when surface ozone becomes less sensitive to NOx and more sensitive to VOCs.
NASA Astrophysics Data System (ADS)
Chong, H.; Lee, S.; Jeong, U.; Kim, J.; Li, C.; Krotkov, N. A.; Al-Saadi, J. A.; Janz, S. J.; Kowalewski, M. G.; Nowlan, C. R.; Kang, M.; Joiner, J.; Haffner, D. P.; Koo, J. H.; Hong, H.; Lee, H.
2017-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) is an airborne instrument measuring backscattered radiance with a spectrometer covering the spectral range between 290-695 nm. GeoTASO flew on the B-200 (UC-12B) - LARC aircraft during the KORUS-AQ campaign, of which the spatial resolution is about 250 nm x 250 m. Principal component analysis (PCA) technique is used to retrieve slant column densities (SCD) of sulfur dioxide (SO2), nitrogen dioxide (NO2), and formaldehyde (HCHO). The fitting windows of SO2, NO2, and HCHO are 310-325 nm, 350-380 nm, and 335-357 nm respectively. The clear PCs of each species are collected from rural areas where are found to have less SCDs of each species from prior iteration step. Using the clear sector PCs and the cross section of each species, SCDs of each trace gas are obtained using the multiple linear regression method. Air mass factors (AMF) of each species are obtained using the atmospheric profiles from chemical transport model calculations during the campaign to convert SCDs to vertical column densities (VCD). The retrieved VCDs of each species well capture small point sources on the flight paths and their plumes propagating downwind areas, which was not available from the ground-based in-situ measurements. The retrieved VCDs will be compared and/or validated against other benchmark measurements during the campaign.
NASA Astrophysics Data System (ADS)
Singh, Upendra N.; Refaat, Tamer F.; Ismail, Syed; Petros, Mulugeta; Davis, Kenneth J.; Kawa, Stephan R.; Menzies, Robert T.
2018-04-01
Modeling of a space-based high-energy 2-μm triple-pulse Integrated Path Differential Absorption (IPDA) lidar was conducted to demonstrate carbon dioxide (CO2) measurement capability and to evaluate random and systematic errors. A high pulse energy laser and an advanced MCT e-APD detector were incorporated in this model. Projected performance shows 0.5 ppm precision and 0.3 ppm bias in low-tropospheric column CO2 mixing ratio measurements from space for 10 second signal averaging over Railroad Valley (RRV) reference surface.
NASA Astrophysics Data System (ADS)
Qin, Xiu-Chun; Nakayama, Tomoki; Matsumi, Yutaka; Kawasaki, Masahiro; Ono, Akiko; Hayashida, Sachiko; Imasu, Ryoichi; Lei, Li-Ping; Murata, Isao; Kuroki, Takahiro; Ohashi, Masafumi
2018-01-01
Remote sensing of the atmospheric greenhouse gases, methane (CH4) and carbon dioxide (CO2), contributes to the understanding of global warming and climate change. A portable ground-based instrument consisting of a commercially available desktop optical spectrum analyzer and a small sun tracker has been applied to measure the column densities of atmospheric CH4 and CO2 at Yanting observation station in a mountainous paddy field of the Sichuan Basin from September to November 2013. The column-averaged dry-air molar mixing ratios, XCH4/XCO2, are compared with those retrieved by satellite observations in the Sichuan Basin and by ground-based network observations in the same latitude zone as the Yanting observation station.
NASA Astrophysics Data System (ADS)
Liu, Lei; Zhang, Xiuying; Xu, Wen; Liu, Xuejun; Li, Yi; Lu, Xuehe; Zhang, Yuehan; Zhang, Wuting
2017-08-01
China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen (Nr). Atmospheric ammonia (NH3) and nitrogen dioxide (NO2) are the most important precursors for Nr compounds (including N2O5, HNO3, HONO and particulate NO3- and NH4+) in the atmosphere. Understanding the changes in NH3 and NO2 has important implications for the regulation of anthropogenic Nr emissions and is a requirement for assessing the consequence of environmental impacts. We conducted the temporal trend analysis of atmospheric NH3 and NO2 on a national scale since 1980 based on emission data (during 1980-2010), satellite observation (for NH3 since 2008 and for NO2 since 2005) and atmospheric chemistry transport modeling (during 2008-2015).Based on the emission data, during 1980-2010, significant continuous increasing trends in both NH3 and NOx were observed in REAS (Regional Emission inventory in Asia, for NH3 0.17 and for NOx 0.16 kg N ha-1 yr-2) and EDGAR (Emissions Database for Global Atmospheric Research, for NH3 0.24 and for NOx 0.17 kg N ha-1 yr-2) over China. Based on the satellite data and atmospheric chemistry transport model (CTM) MOZART-4 (Model for Ozone and Related chemical Tracers, version 4), the NO2 columns over China increased significantly from 2005 to 2011 and then decreased significantly from 2011 to 2015; the satellite-retrieved NH3 columns from 2008 to 2014 increased at a rate of 2.37 % yr-1. The decrease in NO2 columns since 2011 may result from more stringent strategies taken to control NOx emissions during the 12th Five Year Plan, while no control policy has focused on NH3 emissions. Our findings provided an overall insight into the temporal trends of both NO2 and NH3 since 1980 based on emission data, satellite observations and atmospheric transport modeling. These findings can provide a scientific background for policy makers that are attempting to control atmospheric pollution in China. Moreover, the multiple datasets used in this study have implications for estimating long-term Nr deposition datasets to assess its impact on soil, forest, water and greenhouse balance.
The 2014 ASCENDS Field Campaign - a Carbon Dioxide Laser Absorption Spectrometer Perspective
NASA Astrophysics Data System (ADS)
Spiers, G. D.; Menzies, R. T.; Jacob, J. C.; Geier, S.; Fregoso, S. F.
2014-12-01
NASA's ASCENDS mission has been flying several candidate lidar instruments on board the NASA DC-8 aircraft to obtain column integrated measurements of Carbon Dioxide. Each instrument uses a different approach to making the measurement and combined they have allowed for the informed development of the ASCENDS mission measurement requirements(1). The JPL developed Carbon Dioxide Laser Absorption Spectrometer, CO2LAS is one of these instruments. The CO2LAS measures the weighted, column averaged carbon dioxide between the aircraft and the ground using a continuous-wave heterodyne technique. The instrument operates at a 2.05 micron wavelength optimized for enhancing sensitivity to boundary layer carbon dioxide. Since the 2013 field campaign the instrument has undergone significant upgrades that improve the data collection efficiency and instrument stability and has recently been re-integrated onto the NASA DC-8 for the August 2014 ASCENDS field campaign. This presentation will summarize the instrument and algorithm improvements and review the 2014 field campaign flights and preliminary results. (1) Abshire, J.B. et al., "An overview of NASA's ASCENDS Mission lidar measurement requirements", submitted to 2014 Fall AGU Conference.
Eleven years of tropospheric NO2 measured by GOME, SCIAMACHY and OMI
NASA Astrophysics Data System (ADS)
Eskes, H.; Boersma, F.; Dirksen, R.; van der A, R.; Veefkind, P.; Levelt, P.; Brinksma, E.; van Roozendael, M.; de Smedt, I.; Gleason, J.
2006-12-01
Based on measurements of GOME on ESA ERS-2, SCIAMACHY on ESA-ENVISAT, and Ozone Monitoring Instrument (OMI) on the NASA EOS-Aura satellite there is now a unique 11-year dataset of global tropospheric nitrogen dioxide measurements from space. The retrieval approach consists of two steps. The first step is an application of the DOAS (Differential Optical Absorption Spectroscopy) approach which delivers the total absorption optical thickness along the light path (the slant column). For GOME and SCIAMACHY this is based on the DOAS implementation developed by BIRA/IASB. For OMI the DOAS implementation was developed in a collaboration between KNMI and NASA. The second retrieval step, developed at KNMI, estimates the tropospheric vertical column of NO2 based on the slant column, cloud fraction and cloud top height retrieval, stratospheric column estimates derived from a data assimilation approach and vertical profile estimates from space-time collocated profiles from the TM chemistry-transport model. The second step was applied with only minor modifications to all three instruments to generate a uniform 11-year data set. In our talk we will address the following topics: - A short summary of the retrieval approach and results - Comparisons with other retrievals - Comparisons with global and regional-scale models - OMI-SCIAMACHY and SCIAMACHY-GOME comparisons - Validation with independent measurements - Trend studies of NO2 for the past 11 years
NASA Astrophysics Data System (ADS)
Kim, S.; Brioude, J.; Hilboll, A.; Richter, A.; Gleason, J. F.; Burrows, J. P.; Ryerson, T. B.; Peischl, J. W.; Holloway, J.; Lee, S.; Frost, G. J.; McKeen, S. A.; Trainer, M.
2009-12-01
During August-October 2006, there were many fire events in the U.S., including a month-long fire in Los Padres National Forest in California and numerous fires in the southeastern U.S. The OMI instrument onboard NASA's Aura satellite, the MODIS instrument on NASA's Terra satellite, and instruments on the NOAA GOES satellites clearly detected fire plumes during this period, opening the possibility of using trace gas and aerosol measurements from satellites to improve bottom-up emission estimates from wildfires. WRF-Chem model simulations of U.S. air quality without bottom-up fire emissions underestimated satellite-observed nitrogen dioxide columns substantially over fire-impacted regions during this time period. In this presentation, nitrogen dioxide columns simulated from the model including the wildfire emissions will be compared with the satellite retrievals and uncertainties in the bottom-up fire NOx emissions will be discussed. In addition, the sensitivities of satellite retrievals to aerosols resulting from these fires will be shown. The satellite NO2 columns will also be tested with aircraft observations made over the Texas region during September-October 2006 as part of the TexAQS/GoMACCS field campaign.
NASA Astrophysics Data System (ADS)
Rivera, C. I.; Stremme, W.; Grutter, M.
2015-12-01
Population density and economic activities in urban agglomerations have drastically increased in many cities in Mexico during the last decade. Several factors are responsible for increased urbanization such as a shift of people from rural to urban areas while looking for better education, services and job opportunities as well as the natural growth of the urban areas themselves. Urbanization can create great social, economic and environmental pressures and changes which can easily be observed in most urban agglomerations in the world. In this study, we have focused on analyzing tropospheric NO2 (nitrogen dioxide) column trends over Mexican urban areas that have a population of at least one million inhabitants according to the latest 2010 population census. Differential Optical Absorption Spectroscopy (DOAS) measurements of NO2 conducted by the space-borne Ozone Monitoring Instrument (OMI) on board the Aura satellite between 2005 and 2014 have been used for this analysis. This dataset has allowed us to obtain a satellite-based 10-year tropospheric NO2 column trend over the most populated Mexican cities which include the dominating metropolitan area of Mexico City with more than twenty million inhabitants as well as ten other Mexican cities with a population ranging between one to five million inhabitants with a wide range of activities (commercial, agricultural or heavily industrialized) as well as two important border crossings. Distribution maps of tropospheric NO2 columns above the studied urban agglomerations were reconstructed from the analyzed OMI dataset, allowing to identify areas of interest due to clear NO2 enhancements inside these urban regions.
INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED ...
INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED SALT BRINE TO MAKE BICARBONATE OF SODA. - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY
Lin, Jintai; Nielsen, Chris P; Zhao, Yu; Lei, Yu; Liu, Yang; McElroy, Michael B
2010-10-15
The Chinese government has moved aggressively since 2005 to reduce emissions of a number of pollutants including primary particulate matter (PM) and sulfur dioxide (SO(2)), efforts inadvertently aided since late 2008 by economic recession. Satellite observations of aerosol optical depth (AOD) and column nitrogen dioxide (NO(2)) provide independent indicators of emission trends, clearly reflecting the sharp onset of the recession in the fall of 2008 and rebound of the economy in the latter half of 2009. Comparison of AOD with ground-based observations of PM over a longer period indicate that emission-control policies have not been successful in reducing concentrations of aerosol pollutants at smaller size range over industrialized regions of China. The lack of success is attributed to the increasing importance of anthropogenic secondary aerosols formed from precursor species including nitrogen oxides (NO(x)), non-methane volatile organic compounds (NMVOC), and ammonia (NH(3)).
NASA Astrophysics Data System (ADS)
Irie, H.; Muto, T.; Itahashi, S.; Kurokawa, J. I.
2015-12-01
The Ozone Monitoring Instrument (OMI) aboard the Aura satellite recorded the 10-year (2005-2014) of tropospheric nitrogen dioxide (NO2) vertical column density (VCD) data. The data set taken over East Asia was analyzed to estimate linear trends on national and grid bases for two periods of 2005-2011 and 2011-2014. The most striking features are leveling-off or decreasing trends seen in NO2 VCDs over China for 2011-2014 after continuous increases for 2005-2011. In particular, a significant reduction by ~14% occurred from 2013 through 2014, attaining to the level of 2009. The grid-basis trend analysis implies that the turnaround seen in the trends occurred on a province or larger spatial scale and was likely due mainly to the technical improvement such as the widespread use of de-NOx units. Another prominent features are seen in Japan, where NO2 VCDs decreased at a rate of ~4% per year from 2005 to 2011. The rate was almost unchanged between the two periods 2005-2011 and 2011-2014, while the significant power substitution of thermal power generation for the nuclear power generation took place in Japan after 2011, when a massive earthquake occurred off the Pacific coast of northern Japan. This reflects a less contribution of NOx emissions from the power plant sector than that from the transport sector in the Pacific Belt Zone lying over metropolitan areas.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Wang, Kai; He, Jian
2017-09-01
Following a comprehensive evaluation of WRF-CAM5 in Part I, Part II describes analyses of interannual variability, multi-year variation trends, and the direct, indirect, and total effects of anthropogenic aerosols. The interannual variations of chemical column and surface concentrations, and ozone (O3)/particulate matter (PM) indicators are strongly correlated to anthropogenic emission changes. Despite model biases, the model captures well the observed interannual variations of temperature at 2-m, cloud fraction, shortwave cloud forcing, downwelling shortwave radiation, cloud droplet number concentration, column O3, and column formaldehyde (HCHO) for the whole domain. While the model reproduces the volatile organic compound (VOC)-limited regimes of O3 chemistry at sites in Hong Kong, Taiwan, Japan, South Korea, and from the Acid Deposition Monitoring Network in East Asia (EANET) and the degree of sulfate neutralization at the EANET sites, it has limited capability in capturing the interannual variations of the ratio of O3 and nitrogen dioxide (O3/NO2) and PM chemical regime indicators, due to uncertainties in the emissions of precursors for O3 and secondary PM, the model assumption for ammonium bisulfate (NH4HSO4) as well as lack of gas/particle partitioning of total ammonia and total nitrate. While the variation trends in multi-year periods in aerosol optical depth and column concentrations of carbon monoxide, sulfur dioxide, and NO2 are mainly caused by anthropogenic emissions, those of major meteorological and cloud variables partly reflect feedbacks of chemistry to meteorological variables. The impacts of anthropogenic aerosol indirect effects either dominate or play an important role in the aerosol total effects for most cloud and chemical predictions, whereas anthropogenic aerosol direct effects influence most meteorological and radiation variables. The direct, indirect, and total effects of anthropogenic aerosols exhibit a strong interannual variability in 2001, 2006, and 2011.
de Foy, Benjamin; Lu, Zifeng; Streets, David G.
2016-10-27
China’s twelfth Five-Year Plan included pollution control measures with a goal of reducing national emissions of nitrogen oxides (NO x) by 10% by 2015 compared with 2010. Multiple linear regression analysis was used on 11-year time series of all nitrogen dioxide (NO 2) pixels from the Ozone Monitoring Instrument (OMI) over 18 NO 2 hotspots in China. The regression analysis accounted for variations in meteorology, pixel resolution, seasonal effects, weekday variability and year-to-year variability. The NO 2 trends suggested that there was an increase in NO 2 columns in most areas from 2005 to around 2011 which was followed bymore » a strong decrease continuing through 2015. The satellite results were in good agreement with the annual official NO x emission inventories which were available up until 2014. We show the value of evaluating trends in emission inventories using satellite retrievals. It further shows that recent control strategies were effective in reducing emissions and that recent economic transformations in China may be having an effect on NO 2 columns. The satellite information for 2015 suggests that emissions have continued to decrease since the latest inventories available and have surpassed the goals of the twelfth Five-Year Plan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Foy, Benjamin; Lu, Zifeng; Streets, David G.
China’s twelfth Five-Year Plan included pollution control measures with a goal of reducing national emissions of nitrogen oxides (NO x) by 10% by 2015 compared with 2010. Multiple linear regression analysis was used on 11-year time series of all nitrogen dioxide (NO 2) pixels from the Ozone Monitoring Instrument (OMI) over 18 NO 2 hotspots in China. The regression analysis accounted for variations in meteorology, pixel resolution, seasonal effects, weekday variability and year-to-year variability. The NO 2 trends suggested that there was an increase in NO 2 columns in most areas from 2005 to around 2011 which was followed bymore » a strong decrease continuing through 2015. The satellite results were in good agreement with the annual official NO x emission inventories which were available up until 2014. We show the value of evaluating trends in emission inventories using satellite retrievals. It further shows that recent control strategies were effective in reducing emissions and that recent economic transformations in China may be having an effect on NO 2 columns. The satellite information for 2015 suggests that emissions have continued to decrease since the latest inventories available and have surpassed the goals of the twelfth Five-Year Plan.« less
NASA Astrophysics Data System (ADS)
Ortega, I.; Coburn, S.; Oetjen, H.; Sinreich, R.; Thalman, R. M.; Waxman, E.; Volkamer, R.
2011-12-01
We present results from two ground-based University of Colorado Multi Axis Differential Optical Absorption Spectroscopy (CU-MAX-DOAS) instruments that were deployed during the CALNEX and CARES 2010 field campaigns. Ground based CU-MAX-DOAS measurements were carried out through Dec 2010, and measured vertical column abundances of nitrogen dioxide (NO2), nitrous acid (HONO), formaldehyde (HCHO), glyoxal (CHOCHO), and aerosol extinction, which is determined indirectly from observing the oxygen dimers (O4). The measurements were acquired on the top of Millikan library at Caltech, Pasadena, CA, at the Fontana Arrows site located 60 Km east of Caltech, and for a limited period also downwind of Sacramento at T1 site during CARES. In the South Coast Air Basin, the MAX-DOAS instruments at both sites collected an extended time series of use to test satellites, and atmospheric chemistry models. We determine the state of the planetary boundary layer by comparing the columns observations with in-situ sensors, and place the CALNEX and CARES measurements intensive into seasonal context.
Surface NO2 fields derived from joint use of OMI and GOME-2A observations with EMEP model output
NASA Astrophysics Data System (ADS)
Schneider, Philipp; Svendby, Tove; Stebel, Kerstin
2016-04-01
Nitrogen dioxide (NO2) is one of the most prominent air pollutants. Emitted primarily by transport and industry, NO2 has a major impact on health and economy. In contrast to the very sparse network of air quality monitoring stations, satellite data of NO2 is ubiquitous and allows for quantifying the NO2 levels worldwide. However, one drawback of satellite-derived NO2 products is that they provide solely an estimate of the entire tropospheric column, whereas what is generally needed for air quality applications are the concentrations of NO2 near the surface. Here we derive surface NO2 concentration fields from OMI and GOME-2A tropospheric column products using the EMEP chemical transport model as auxiliary information. The model is used for providing information of the boundary layer contribution to the total tropospheric column. For preparation of deriving the surface product, a comprehensive model-based analysis of the spatial and temporal patterns of the NO2 surface-to-column ratio in Europe was carried out for the year 2011. The results from this analysis indicate that the spatial patterns of the surface-to-column ratio vary only slightly. While the highest ratio values can be found in some shipping lanes, the spatial variability of the ratio in some of the most polluted areas of Europe is not very high. Some but not all urban agglomeration shows high ratio values. Focusing on the temporal behavior, the analysis showed that the European-wide average ratio varies throughout the year. The surface-to-column ratio increases from January all the way through April when it reaches its maximum, then decreases relatively rapidly to average levels and then stays mostly constant throughout the summer. The minimum ratio is observed in December. The knowledge gained from analyzing the spatial and temporal patterns of the surface-to-column ratio was then used to produce surface NO2 products from the daily NO2 data for OMI and GOME-2A. This was carried out using two methods, namely using 1) hourly surface-to-column ratio at the time of the satellite overpass as well as 2) using annual average ratios thus eliminating the temporal variability and focusing solely on the spatial patterns. A validation of the resulting surface NO2 fields was performed using station observations of NO2 as provided by the Airbase database maintained by the European Environment Agency. First results indicate that the methodology is capable of producing surface concentration fields that reproduce the station-observed surface NO2 levels significantly better than the model surface fields as measured by the root mean squared error. The results also show that the spatial patterns of the surface-to-column ratio are more significant than its temporal variability. In addition to deriving satellite-based surface NO2, we further present initial results of a geostatistical methodology for downscaling satellite products of NO2 to spatial scales that are more relevant for applications in urban air quality. This is being carried out by applying area-to-point kriging techniques while using high-resolution (1-2 km spatial resolution) runs of a chemical transport model as a spatial proxy. In combination, these two techniques for deriving surface NO2 and spatially downscaling satellite-based NO2 fields have significant potential for improving satellite-based monitoring and mapping of regional and local-scale air pollution.
NASA Astrophysics Data System (ADS)
Raut, U.; Fulvio, D.; Loeffler, M. J.; Baragiola, R. A.
2012-06-01
We report the synthesis of carbon dioxide on an amorphous carbon-13 substrate coated with amorphous water ice from irradiation with 100 keV protons at 20 K and 120 K. The quantitative studies show that the CO2 is dispersed in the ice; its column density increases with ion fluence to a maximum value (in 1015 molecules cm-2) of ~1 at 20 K and ~3 at 120 K. The initial yield is 0.05 (0.1) CO2 per incident H+ at 20 (120) K. The CO2 destruction process, which limits the maximum column density, occurs with an effective cross section of ~2.5 (4.1) × 10-17 cm2 at 20 (120) K. We discuss radiation-induced oxidation by reactions of radicals in water with the carbon surface and demonstrate that these reactions can be a significant source of condensed carbon dioxide in interstellar grains and in icy satellites in the outer solar system.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Hong, Chaopeng; Yahya, Khairunnisa; Li, Qi; Zhang, Qiang; He, Kebin
2016-08-01
An online-coupled meteorology-chemistry model, WRF/Chem-MADRID, has been deployed for real time air quality forecast (RT-AQF) in southeastern U.S. since 2009. A comprehensive evaluation of multi-year RT-AQF shows overall good performance for temperature and relative humidity at 2-m (T2, RH2), downward surface shortwave radiation (SWDOWN) and longwave radiation (LWDOWN), and cloud fraction (CF), ozone (O3) and fine particles (PM2.5) at surface, tropospheric ozone residuals (TOR) in O3 seasons (May-September), and column NO2 in winters (December-February). Moderate-to-large biases exist in wind speed at 10-m (WS10), precipitation (Precip), cloud optical depth (COT), ammonium (NH4+), sulfate (SO42-), and nitrate (NO3-) from the IMPROVE and SEARCH networks, organic carbon (OC) at IMPROVE, and elemental carbon (EC) and OC at SEARCH, aerosol optical depth (AOD) and column carbon monoxide (CO), sulfur dioxide (SO2), and formaldehyde (HCHO) in both O3 and winter seasons, column nitrogen dioxide (NO2) in O3 seasons, and TOR in winters. These biases indicate uncertainties in the boundary layer and cloud process treatments (e.g., surface roughness, microphysics cumulus parameterization), emissions (e.g., O3 and PM precursors, biogenic, mobile, and wildfire emissions), upper boundary conditions for all major gases and PM2.5 species, and chemistry and aerosol treatments (e.g., winter photochemistry, aerosol thermodynamics). The model shows overall good skills in reproducing the observed multi-year trends and inter-seasonal variability in meteorological and radiative variables such as T2, WS10, Precip, SWDOWN, and LWDOWN, and relatively well in reproducing the observed trends in surface O3 and PM2.5, but relatively poor in reproducing the observed column abundances of CO, NO2, SO2, HCHO, TOR, and AOD. The sensitivity simulations using satellite-constrained boundary conditions for O3 and CO show substantial improvement for both spatial distribution and domain-mean performance statistics. The model's forecasting skills for air quality can be further enhanced through improving model inputs (e.g., anthropogenic emissions for urban areas and upper boundary conditions of chemical species), meteorological forecasts (e.g., WS10, Precip) and meteorologically-dependent emissions (e.g., biogenic and wildfire emissions), and model physics and chemical treatments (e.g., gas-phase chemistry in winter conditions, cloud processes and their interactions with radiation and aerosol).
NASA Astrophysics Data System (ADS)
Ionov, D.; Sinyakov, V.; Semenov, V.
Starting from 1995 the global monitoring of atmospheric nitrogen dioxide is carried out by the measurements of nadir-viewing GOME spectrometer aboard ERS-2 satellite. Continuous validation of that data by means of comparisons with well-controlled ground-based measurements is important to ensure the quality of GOME data products and improve related retrieval algorithms. At the station of Issyk-Kul (Kyrgyzstan) the ground-based spectroscopic observations of NO2 vertical column have been started since 1983. The station is located on the northern shore of Issyk-Kul lake, 1650 meters above the sea level (42.6 N, 77.0 E). The site is equipped with grating spectrometer for the twilight measurements of zenith-scattered solar radiation in the visible range, and applies the DOAS technique to retrieve NO2 vertical column. It is included in the list of NDSC stations as a complementary one. The present study is focused on validation of GOME NO2 vertical column data, based on 8-year comparison with correlative ground-based measurements at Issyk-Kul station in 1996-2003. Within the investigation, an agreement of both individual and monthly averaged GOME measurements with corresponding twilight ground-based observations is examined. Such agreement is analyzed with respect to different conditions (season, sun elevation), temporal/spatial criteria choice (actual overpass location, correction for diurnal variation) and data processing (GDP version 2.7, 3.0). In addition, NO2 vertical columns were integrated from simultaneous stratospheric profile measurements by NASA HALOE and SAGE-II/III satellite instruments and introduced to explain the differences with ground-based observations. In particular cases, NO2 vertical profiles retrieved from the twilight ground-based measurements at Issuk-Kul were also included into comparison. Overall, summertime GOME NO2 vertical columns were found to be systematicaly lower than ground-based data. This work was supported by International Association for the promotion of co-operation with scientists from the New Independent States of the former Soviet Union (INTAS-YSF-02-138), International Science and Technology Center (ISTC Kr-763), Russian Foundation for Basic Research (RFBR-03-05-64626), the joint foundation of Russian Ministry of Education and St.Petersburg Administration (PD02-1.5-96) and the President of Russia grant (MK-2686.2003.05).
Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, S.H.; Shyu, C.T.
1999-01-01
Carbon dioxide (CO[sub 2]) is widely recognized as a major greenhouse gas contributing to global warming. To mitigate the global warming problem, removal of CO[sub 2] from the industrial flue gases is necessary. Absorption of carbon dioxide by amines in a packed column was experimentally investigated. The amines employed in the present study were the primary mono-ethanolamine (MEA) and tertiary N-methyldiethanolamine (MDEA), two very popular amines widely used in the industries for gas purification. The CO[sub 2] absorption characteristics by these two amines were experimentally examined under various operating conditions. A theoretical model was developed for describing the CO[sub 2]more » absorption behavior. Test data have revealed that the model predictions and the observed CO[sub 2] absorption breakthrough curves agree very well, validating the proposed model. Preliminary regeneration tests of exhausted amine solution were also conducted. The results indicated that the tertiary amine is easier to regenerate with less loss of absorption capacity than the primary one.« less
NASA Astrophysics Data System (ADS)
Souri, Amir H.; Choi, Yunsoo; Pan, Shuai; Curci, Gabriele; Nowlan, Caroline R.; Janz, Scott J.; Kowalewski, Matthew G.; Liu, Junjie; Herman, Jay R.; Weinheimer, Andrew J.
2018-03-01
A number of satellite-based instruments have become an essential part of monitoring emissions. Despite sound theoretical inversion techniques, the insufficient samples and the footprint size of current observations have introduced an obstacle to narrow the inversion window for regional models. These key limitations can be partially resolved by a set of modest high-quality measurements from airborne remote sensing. This study illustrates the feasibility of nitrogen dioxide (NO2) columns from the Geostationary Coastal and Air Pollution Events Airborne Simulator (GCAS) to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. We convert slant column densities to vertical columns using a radiative transfer model with (i) NO2 profiles from a high-resolution regional model (1 × 1 km2) constrained by P-3B aircraft measurements, (ii) the consideration of aerosol optical thickness impacts on radiance at NO2 absorption line, and (iii) high-resolution surface albedo constrained by ground-based spectrometers. We characterize errors in the GCAS NO2 columns by comparing them to Pandora measurements and find a striking correlation (r > 0.74) with an uncertainty of 3.5 × 1015 molecules cm-2. On 9 of 10 total days, the constrained anthropogenic emissions by a Kalman filter yield an overall 2-50% reduction in polluted areas, partly counterbalancing the well-documented positive bias of the model. The inversion, however, boosts emissions by 94% in the same areas on a day when an unprecedented local emissions event potentially occurred, significantly mitigating the bias of the model. The capability of GCAS at detecting such an event ensures the significance of forthcoming geostationary satellites for timely estimates of top-down emissions.
A Decade of Change in NO2 and SO2 over the Canadian Oil Sands As Seen from Space
NASA Technical Reports Server (NTRS)
Mclinden, Chris A.; Fioletov, Vitali; Krotkov, Nickolay A.; Li, Can; Boersma, K. Folkert; Adams, Cristen
2015-01-01
A decade (20052014) of observations from the Ozone Monitoring Instrument (OMI) were used to examine trends in nitrogen dioxide(NO2) and sulfur dioxide (SO2) over a large region of western Canada and the northern United States, with a focus on the Canadian oil sands. In the oil sands, primarily over an area of intensive surface mining, NO2 tropospheric vertical column densities (VCDs) are seen to be increasing by as much as 10year, with the location of the largest trends in a newly developing NO2 lobe well removed from surface monitoring stations. SO2 VCDs in the oil sands have remained approximately constant. The only other significant increase in the region was seen in NO2 over Bakken gas fields in North Dakota which showed increases of up to5yr. By contrast, other locations in the region show substantial declines in both pollutants, providing strong evidence to the efficacy of environmental pollution control measures implemented by both nations. The OMI-derived trends were found to be consistent with those from the Canadian surface monitoring network, although in the case of SO2, it was necessary to apply a correction in order to remove the residual signal from volcanic eruptions present in the OMI data.
Glycolipid class profiling by packed-column subcritical fluid chromatography.
Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre
2004-06-18
The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation.
Improved OSIRIS NO2 retrieval algorithm: description and validation
NASA Astrophysics Data System (ADS)
Sioris, Christopher E.; Rieger, Landon A.; Lloyd, Nicholas D.; Bourassa, Adam E.; Roth, Chris Z.; Degenstein, Douglas A.; Camy-Peyret, Claude; Pfeilsticker, Klaus; Berthet, Gwenaël; Catoire, Valéry; Goutail, Florence; Pommereau, Jean-Pierre; McLinden, Chris A.
2017-03-01
A new retrieval algorithm for OSIRIS (Optical Spectrograph and Infrared Imager System) nitrogen dioxide (NO2) profiles is described and validated. The algorithm relies on spectral fitting to obtain slant column densities of NO2, followed by inversion using an algebraic reconstruction technique and the SaskTran spherical radiative transfer model (RTM) to obtain vertical profiles of local number density. The validation covers different latitudes (tropical to polar), years (2002-2012), all seasons (winter, spring, summer, and autumn), different concentrations of nitrogen dioxide (from denoxified polar vortex to polar summer), a range of solar zenith angles (68.6-90.5°), and altitudes between 10.5 and 39 km, thereby covering the full retrieval range of a typical OSIRIS NO2 profile. The use of a larger spectral fitting window than used in previous retrievals reduces retrieval uncertainties and the scatter in the retrieved profiles due to noisy radiances. Improvements are also demonstrated through the validation in terms of bias reduction at 15-17 km relative to the OSIRIS operational v3.0 algorithm. The diurnal variation of NO2 along the line of sight is included in a fully spherical multiple scattering RTM for the first time. Using this forward model with built-in photochemistry, the scatter of the differences relative to the correlative balloon NO2 profile data is reduced.
Tropospheric nitrogen dioxide column retrieval based on ground-based zenith-sky DOAS observations
NASA Astrophysics Data System (ADS)
Tack, F. M.; Hendrick, F.; Pinardi, G.; Fayt, C.; Van Roozendael, M.
2013-12-01
A retrieval approach has been developed to derive tropospheric NO2 vertical column amounts from ground-based zenith-sky measurements of scattered sunlight. Zenith radiance spectra are observed in the visible range by the BIRA-IASB Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument and analyzed by the DOAS technique, based on a least-squares spectral fitting. In recent years, this technique has shown to be a well-suited remote sensing tool for monitoring atmospheric trace gases. The retrieval algorithm is developed and validated based on a two month dataset acquired from June to July 2009 in the framework of the Cabauw (51.97° N, 4.93° E) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). Once fully operational, the retrieval approach can be applied to observations from stations of the Network for the Detection of Atmospheric Composition Change (NDACC). The obtained tropospheric vertical column amounts are compared with the multi-axis retrieval from the BIRA-IASB MAX-DOAS instrument and the retrieval from a zenith-viewing only SAOZ instrument (Système d'Analyse par Observations Zénithales), owned by Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS). First results show a good agreement for the whole time series with the multi-axis retrieval (R = 0.82; y = 0.88x + 0.30) as well as with the SAOZ retrieval (R = 0.85; y = 0.76x + 0.28 ). Main error sources arise from the uncertainties in the determination of tropospheric and stratospheric air mass factors, the stratospheric NO2 abundances and the residual amount in the reference spectrum. However zenith-sky measurements have been commonly used over the last decades for stratospheric monitoring, this study also illustrates the suitability for retrieval of tropospheric column amounts. As there are long time series of zenith-sky acquisitions available, the developed approach offers new perspectives with regard to the use of observations from the NDACC stations.
NASA Technical Reports Server (NTRS)
Martin, Randall V.; Sioris, Christopher E.; Chance, Kelly; Ryerson, Thomas B.; Flocke, Frank M.; Bertram, Timothy H.; Wooldridge, Paul J.; Cohen, Ronald C.; Neuman, J. Andy; Swanson, Aaron
2006-01-01
We retrieve tropospheric nitrogen dioxide (NO 2) columns for May 2004 to April 2005 from the SCIAMACHY satellite instrument to derive top-down emissions of nitrogen oxides (NO(x) = NO + NO2) via inverse modeling with a global chemical transport model (GEOS-Chem). Simulated NO 2 vertical profiles used in the retrieval are evaluated with airborne measurements over and downwind of North America (ICARTT); a northern midlatitude lightning source of 1.6 Tg N/yr minimizes bias in the retrieval. Retrieved NO2 columns are validated (r2 = 0.60, slope = 0.82) with coincident airborne in situ measurements. The top-down emissions are combined with a priori information from a bottom-up emission inventory with error weighting to achieve an improved a posteriori estimate of the global distribution of surface NOx emissions. Our a posteriori NOx emission inventory for land surface NOx emissions (46.1 Tg N/yr) is 22% larger than the GEIA-based a priori bottom-up inventory for 1998, a difference that reflects rising anthropogenic emissions, especially from East Asia A posteriori NOx emissions for East Asia (9.8 Tg N/yr) exceed those from other continents. The a posteriori inventory improves the GEOS-Chem simulation of NOx, peroxyacetylnitrate, and nitric acid with respect to airborne in situ measurements over and downwind of New York City. The a posteriori is 7% larger than the EDGAR 3.2FT2000 global inventory, 3% larger than the NEI99 inventory for the United States, and 68% larger than a regional inventory for 2000 for eastern Asia. SCIAMACHY NO2 columns over the North Atlantic show a weak plume from lightning NO(x).
For EPA, this Summer 2014, Denver CO, DISCOVER-AQ field research activity focused on assessing Federal Reference Methods (FRMs) and Federal Equivalent Methods (FEMs) for ozone (O3) and Nitrogen Dioxide (NO2), while comparing their operational performance to each other and to smal...
NASA Astrophysics Data System (ADS)
Eskes, H.; Boersma, F.; Dirksen, R.; van der A, R.; Veefkind, P.; Levelt, P.; Brinksma, E.; van Roozendael, M.; de Smedt, I.; Gleason, J.
2005-05-01
Based on measurements of GOME on ESA ERS-2, SCIAMACHY on ESA-ENVISAT, and Ozone Monitoring Instrument (OMI) on the NASA EOS-Aura satellite there is now a unique 11-year dataset of global tropospheric nitrogen dioxide measurements from space. The retrieval approach consists of two steps. The first step is an application of the DOAS (Differential Optical Absorption Spectroscopy) approach which delivers the total absorption optical thickness along the light path (the slant column). For GOME and SCIAMACHY this is based on the DOAS implementation developed by BIRA/IASB. For OMI the DOAS implementation was developed in a collaboration between KNMI and NASA. The second retrieval step, developed at KNMI, estimates the tropospheric vertical column of NO2 based on the slant column, cloud fraction and cloud top height retrieval, stratospheric column estimates derived from a data assimilation approach and vertical profile estimates from space-time collocated profiles from the TM chemistry-transport model. The second step was applied with only minor modifications to all three instruments to generate a uniform 11-year data set. In our talk we will address the following topics: - A short summary of the retrieval approach and results - Comparisons with other retrievals - Comparisons with global and regional-scale models - OMI-SCIAMACHY and SCIAMACHY-GOME comparisons - Validation with independent measurements - Trend studies of NO2 for the past 11 years
Distinct effects of humic acid (HA, 0 – 10 mg L-1) on the transport of titanium dioxide (rutile) nanoparticles (nTiO2) through saturated sand columns were observed under conditions of environmental relevance (ionic strength 3 – 200 mM NaCl, pH 5.7 and 9.0). Specifical...
Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J
2013-01-01
A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and effective for the determination of high levels of sulfites in dried fruits.
EPA True NO2 ground site measurements ?? multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; TCEQ ground site measurements of meteorological and air pollution parameters ?? multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; GeoTASO NO2 Vertical Column - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013?FALCON=1This dataset is associated with the following publication:Nowlan, C., X. Lu, J. Leitch, K. Chance, G. González Abad, C. Lu, P. Zoogman, J. Cole, T. Delker, W. Good, F. Murcray, L. Ruppert, D. Soo, M. Follette-Cook, S. Janz, M. Kowalewski, C. Loughner, K. Pickering, J. Herman, M. Beaver, R. Long, J. Szykman, L. Judd, P. Kelley, W. Luke, X. Ren, and J. Al-Saadi. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013. Atmospheric Measurement Techniques. Copernicus Publications, Katlenburg-Lindau, GERMANY, 9(6): 2647-2668, (2016).
Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges
2014-01-03
The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Georgoulias, A. K.; Balis, D.; Koukouli, M. E.; Meleti, C.; Bais, A.; Zerefos, C.
We present characteristics of the sulfur dioxide (SO 2) loading over Thessaloniki, Greece, and seven other selected sites around the world using SO 2 total column measurements from Brewer spectrophotometers together with satellite estimates of the Version 8 TOMS Sulfur Dioxide Index (SOI) over the same locations, retrieved from Nimbus 7 TOMS (1979-1993), Earth Probe TOMS (1996-2003) and OMI/Aura (2004-2006). Traditionally, the SOI has been used to quantify the SO 2 quantities emitted during great volcanic eruptions. Here, we investigate whether the SOI can give an indication of the total SO 2 load for areas and periods away from eruptive volcanic activity by studying its relative changes as a correlative measure to the SO 2 total column. We examined time series from Thessaloniki and another seven urban and non-urban stations, five in the European Union (Arosa, De Bilt, Hohenpeissenberg, Madrid, Rome) and two in India (Kodaikanal, New Delhi). Based on the Brewer data, Thessaloniki shows high SO 2 total columns for a European Union city but values are still low if compared to highly affected regions like those in India. For the time period 1983-2006 the SO 2 levels above Thessaloniki have generally decreased with a rate of 0.028 Dobson Units (DU) per annum, presumably due to the European Union's strict sulfur control policies. The seasonal variability of the SO 2 total column exhibits a double peak structure with two maxima, one during winter and the second during summer. The winter peak can be attributed to central heating while the summer peak is due to synoptic transport from sources west of the city and sources in the north of Greece. A moderate correlation was found between the seasonal levels of Brewer total SO 2 and SOI for Thessaloniki, Greece ( R = 0.710-0.763) and Madrid, Spain ( R = 0.691) which shows that under specific conditions the SOI might act as an indicator of the SO 2 total load.
Application of High Resolution Air-Borne Remote Sensing Observations for Monitoring NOx Emissions
NASA Astrophysics Data System (ADS)
Souri, A.; Choi, Y.; Pan, S.; Curci, G.; Janz, S. J.; Kowalewski, M. G.; Liu, J.; Herman, J. R.; Weinheimer, A. J.
2017-12-01
Nitrogen oxides (NOx=NO+NO2) are one of the air pollutants, responsible for the formation of tropospheric ozone, acid rain and particulate nitrate. The anthropogenic NOx emissions are commonly estimated based on bottom-up inventories which are complicated by many potential sources of error. One way to improve the emission inventories is to use relevant observations to constrain them. Fortunately, Nitrogen dioxide (NO2) is one of the most successful detected species from remote sensing. Although many studies have shown the capability of using space-borne remote sensing observations for monitoring emissions, the insufficient sample number and footprint of current measurements have introduced a burden to constrain emissions at fine scales. Promisingly, there are several air-borne sensors collected for NASA's campaigns providing high spatial resolution of NO2 columns. Here, we use the well-characterized NO2 columns from the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's B200 aircraft into a 1×1 km regional model to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. Firstly, in order to incorporate the data, we convert the NO2 slant column densities to vertical ones using a joint of a radiative transfer model and the 1x1 km regional model constrained by P3-B aircraft measurements. After conducting an inverse modeling method using the Kalman filter, we find the ACAM observations are resourceful at mitigating the overprediction of model in reproducing NO2 on regular days. Moreover, the ACAM provides a unique opportunity to detect an anomaly in emissions leading to strong air quality degradation that is lacking in previous works. Our study provides convincing evidence that future geostationary satellites with high spatial and temporal resolutions will give us insights into uncertainties associated with the emissions at regional scales.
NASA Astrophysics Data System (ADS)
Lin, J.-T.; Liu, Z.; Zhang, Q.; Liu, H.; Mao, J.; Zhuang, G.
2012-12-01
Errors in chemical transport models (CTMs) interpreting the relation between space-retrieved tropospheric column densities of nitrogen dioxide (NO2) and emissions of nitrogen oxides (NOx) have important consequences on the inverse modeling. They are however difficult to quantify due to lack of adequate in situ measurements, particularly over China and other developing countries. This study proposes an alternate approach for model evaluation over East China, by analyzing the sensitivity of modeled NO2 columns to errors in meteorological and chemical parameters/processes important to the nitrogen abundance. As a demonstration, it evaluates the nested version of GEOS-Chem driven by the GEOS-5 meteorology and the INTEX-B anthropogenic emissions and used with retrievals from the Ozone Monitoring Instrument (OMI) to constrain emissions of NOx. The CTM has been used extensively for such applications. Errors are examined for a comprehensive set of meteorological and chemical parameters using measurements and/or uncertainty analysis based on current knowledge. Results are exploited then for sensitivity simulations perturbing the respective parameters, as the basis of the following post-model linearized and localized first-order modification. It is found that the model meteorology likely contains errors of various magnitudes in cloud optical depth, air temperature, water vapor, boundary layer height and many other parameters. Model errors also exist in gaseous and heterogeneous reactions, aerosol optical properties and emissions of non-nitrogen species affecting the nitrogen chemistry. Modifications accounting for quantified errors in 10 selected parameters increase the NO2 columns in most areas with an average positive impact of 18% in July and 8% in January, the most important factor being modified uptake of the hydroperoxyl radical (HO2) on aerosols. This suggests a possible systematic model bias such that the top-down emissions will be overestimated by the same magnitude if the model is used for emission inversion without corrections. The modifications however cannot eliminate the large model underestimates in cities and other extremely polluted areas (particularly in the north) as compared to satellite retrievals, likely pointing to underestimates of the a priori emission inventory in these places with important implications for understanding of atmospheric chemistry and air quality. Note that these modifications are simplified and should be interpreted with caution for error apportionment.
The distinct effects of humic acid (HA, 0−10 mg L−1) on the transport of titanium dioxide (rutile) nanoparticles (nTiO2) through saturated sand columns were observed under conditions of environmental relevance (ionic strength 3−200 mM NaCl, pH 5.7 and 9.0). Specifically, the tra...
The deposition behavior of cerium dioxide (CeO2) nanoparticles (NPs) in dilute NaCl solutions was investigated as a function of collector surface composition, pH, ionic strength, and organic matter (OM). Sensors coated separately with silica, iron oxide, and alumina were applied ...
Jumaah, Firas; Jędrkiewicz, Renata; Gromadzka, Justyna; Namieśnik, Jacek; Essén, Sofia; Turner, Charlotta; Sandahl, Margareta
2017-09-20
This study demonstrates the effect of column selectivity and density of supercritical carbon dioxide (SC-CO 2 ) on the separation of monochloropropanediol (MCPD) esters, known as food toxicants, using SC-CO 2 without addition of cosolvent in ultrahigh performance supercritical fluid chromatography-mass spectrometry (UHPSFC-MS). This study shows that over 20 2-monochloropropanediol (2-MCPD) and 3-monochloropropanediol (3-MCPD) mono- and diesters are separated on a 2-picolylamine column in less than 12 min. The presence and position of a hydroxyl group in the structure, the number of unsaturated bonds, and the acyl chain length play a significant role in the separation of MCPD esters. The flow rate, backpressure, and column oven temperature, which affect the density of the mobile phase, were shown to have a substantial impact on retention, efficiency, and selectivity. The developed method was successfully applied for the determination of MCPD esters in refined oils and showed a close to excellent green analysis score using the Analytical Eco-Scale.
NOx Emission Reduction and its Effects on Ozone during the 2008 Olympic Games
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qing; Wang, Yuhang; Zhao, Chun
2011-07-15
We applied a daily-assimilated inversion method to estimate NOx (NO+NO2) emissions for June-September 2007 and 2008 on the basis of the Aura Ozone Monitoring Instrument (OMI) observations of nitrogen dioxide (NO2) and model simulations using the Regional chEmistry and trAnsport Model (REAM). Over urban Beijing, rural Beijing, and the Huabei Plain, OMI column NO2 reductions are approximately 45%, 33%, and 14%, respectively, while the corresponding anthropogenic NOx emission reductions are only 28%, 24%, and 6%, during the full emission control period (July 20 – Sep 20, 2008). The emission reduction began in early July and was in full force bymore » July 20, corresponding to the scheduled implementation of emission controls over Beijing. The emissions did not appear to recover after the emission control period. Meteorological change from summer 2007 to 2008 is the main factor contributing to the column NO2 decreases not accounted for by the emission reduction. Model simulations suggest that the effect of emission reduction on ozone concentrations over Beijing is relatively minor using a standard VOC emission inventory in China. With an adjustment of the model emissions to reflect in situ observations of VOCs in Beijing, the model simulation suggests a larger effect of the emission reduction.« less
The version 3 OMI NO2 standard product
NASA Astrophysics Data System (ADS)
Krotkov, Nickolay A.; Lamsal, Lok N.; Celarier, Edward A.; Swartz, William H.; Marchenko, Sergey V.; Bucsela, Eric J.; Chan, Ka Lok; Wenig, Mark; Zara, Marina
2017-09-01
We describe the new version 3.0 NASA Ozone Monitoring Instrument (OMI) standard nitrogen dioxide (NO2) products (SPv3). The products and documentation are publicly available from the NASA Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/summary/). The major improvements include (1) a new spectral fitting algorithm for NO2 slant column density (SCD) retrieval and (2) higher-resolution (1° latitude and 1.25° longitude) a priori NO2 and temperature profiles from the Global Modeling Initiative (GMI) chemistry-transport model with yearly varying emissions to calculate air mass factors (AMFs) required to convert SCDs into vertical column densities (VCDs). The new SCDs are systematically lower (by ˜ 10-40 %) than previous, version 2, estimates. Most of this reduction in SCDs is propagated into stratospheric VCDs. Tropospheric NO2 VCDs are also reduced over polluted areas, especially over western Europe, the eastern US, and eastern China. Initial evaluation over unpolluted areas shows that the new SPv3 products agree better with independent satellite- and ground-based Fourier transform infrared (FTIR) measurements. However, further evaluation of tropospheric VCDs is needed over polluted areas, where the increased spatial resolution and more refined AMF estimates may lead to better characterization of pollution hot spots.
Satellite-based emission constraint for nitrogen oxides: Capability and uncertainty
NASA Astrophysics Data System (ADS)
Lin, J.; McElroy, M. B.; Boersma, F.; Nielsen, C.; Zhao, Y.; Lei, Y.; Liu, Y.; Zhang, Q.; Liu, Z.; Liu, H.; Mao, J.; Zhuang, G.; Roozendael, M.; Martin, R.; Wang, P.; Spurr, R. J.; Sneep, M.; Stammes, P.; Clemer, K.; Irie, H.
2013-12-01
Vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) retrieved from satellite remote sensing have been employed widely to constrain emissions of nitrogen oxides (NOx). A major strength of satellite-based emission constraint is analysis of emission trends and variability, while a crucial limitation is errors both in satellite NO2 data and in model simulations relating NOx emissions to NO2 columns. Through a series of studies, we have explored these aspects over China. We separate anthropogenic from natural sources of NOx by exploiting their different seasonality. We infer trends of NOx emissions in recent years and effects of a variety of socioeconomic events at different spatiotemporal scales including the general economic growth, global financial crisis, Chinese New Year, and Beijing Olympics. We further investigate the impact of growing NOx emissions on particulate matter (PM) pollution in China. As part of recent developments, we identify and correct errors in both satellite NO2 retrieval and model simulation that ultimately affect NOx emission constraint. We improve the treatments of aerosol optical effects, clouds and surface reflectance in the NO2 retrieval process, using as reference ground-based MAX-DOAS measurements to evaluate the improved retrieval results. We analyze the sensitivity of simulated NO2 to errors in the model representation of major meteorological and chemical processes with a subsequent correction of model bias. Future studies will implement these improvements to re-constrain NOx emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhen; Wong, Michael; Gupta, Mayank
The Rice University research team developed a hybrid carbon dioxide (CO 2) absorption process combining absorber and stripper columns using a high surface area ceramic foam gas-liquid contactor for enhanced mass transfer and utilizing waste heat for regeneration. This integrated absorber/desorber arrangement will reduce space requirements, an important factor for retrofitting existing coal-fired power plants with CO 2 capture technology. Described in this report, we performed an initial analysis to estimate the technical and economic feasibility of the process. A one-dimensional (1D) CO 2 absorption column was fabricated to measure the hydrodynamic and mass transfer characteristics of the ceramic foam.more » A bench-scale prototype was constructed to implement the complete CO 2 separation process and tested to study various aspects of fluid flow in the process. A model was developed to simulate the two-dimensional (2D) fluid flow and optimize the CO 2 capture process. Test results were used to develop a final technoeconomic analysis and identify the most appropriate absorbent as well as optimum operating conditions to minimize capital and operating costs. Finally, a technoeconomic study was performed to assess the feasibility of integrating the process into a 600 megawatt electric (MWe) coal-fired power plant. With process optimization, $82/MWh of COE can be achieved using our integrated absorber/desorber CO 2 capture technology, which is very close to DOE's target that no more than a 35% increase in COE with CCS. An environmental, health, and safety (EH&S) assessment of the capture process indicated no significant concern in terms of EH&S effects or legislative compliance.« less
Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Ismail, Syed; Kavaya, Michael J; Davis, Kenneth J
2015-02-20
Water vapor and carbon dioxide are the most dominant greenhouse gases directly contributing to the Earth's radiation budget and global warming. A performance evaluation of an airborne triple-pulsed integrated path differential absorption (IPDA) lidar system for simultaneous and independent monitoring of atmospheric water vapor and carbon dioxide column amounts is presented. This system leverages a state-of-the-art Ho:Tm:YLF triple-pulse laser transmitter operating at 2.05 μm wavelength. The transmitter provides wavelength tuning and locking capabilities for each pulse. The IPDA lidar system leverages a low risk and technologically mature receiver system based on InGaAs pin detectors. Measurement methodology and wavelength setting are discussed. The IPDA lidar return signals and error budget are analyzed for airborne operation on-board the NASA B-200. Results indicate that the IPDA lidar system is capable of measuring water vapor and carbon dioxide differential optical depth with 0.5% and 0.2% accuracy, respectively, from an altitude of 8 km to the surface and with 10 s averaging. Provided availability of meteorological data, in terms of temperature, pressure, and relative humidity vertical profiles, the differential optical depth conversion into weighted-average column dry-air volume-mixing ratio is also presented.
MAX-DOAS measurements of NO2 column densities in Vienna
NASA Astrophysics Data System (ADS)
Schreier, Stefan; Weihs, Philipp; Peters, Enno; Richter, Andreas; Ostendorf, Mareike; Schönhardt, Anja; Burrows, John P.; Schmalwieser, Alois
2017-04-01
In the VINDOBONA (VIenna horizontal aNd vertical Distribution OBservations Of Nitrogen dioxide and Aerosols) project, two Multi AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) systems will be set up at two different locations and altitudes in Vienna, Austria. After comparison measurements in Bremen, Germany, and Cabauw, The Netherlands, the first of the two MAX-DOAS instruments was set up at the University of Veterinary Medicine in the northeastern part of Vienna in December 2016. The instrument performs spectral measurements of visible scattered sunlight at defined horizontal and vertical viewing directions. From these measurements, column densities of NO2 and aerosols are derived by applying the DOAS analysis. First preliminary results are presented. The second MAX-DOAS instrument will be set up in April/May 2017 at the University of Natural Resources and Life Sciences in the northwestern part of Vienna. Once these two instruments are measuring simultaneously, small campaigns including car DOAS zenith-sky and tower DOAS off-axis measurements are planned. The main emphasis of this project will be on the installation and operation of two MAX-DOAS instruments, the improvement of tropospheric NO2 and aerosol retrieval, and the characterization of the horizontal, vertical, and temporal variations of tropospheric NO2 and aerosols in Vienna, Austria.
Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna
2015-01-01
Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.
Effect of water-column pH on sediment-phosphorus release rates in Upper Klamath Lake, Oregon, 2001
Fisher, Lawrence H.; Wood, Tamara M.
2004-01-01
Sediment-phosphorus release rates as a function of pH were determined in laboratory experiments for sediment and water samples collected from Shoalwater Bay in Upper Klamath Lake, Oregon, in 2001. Aerial release rates for a stable sediment/water interface that is representative of the sediment surface area to water column volume ratio (1:3) observed in the lake and volumetric release rates for resuspended sediment events were determined at three different pH values (8.1, 9.2, 10.2). Ambient water column pH (8.1) was maintained by sparging study columns with atmospheric air. Elevation of the water column pH to 9.2 was achieved through the removal of dissolved carbon dioxide by sparging with carbon dioxide-reduced air, partially simulating water chemistry changes that occur during algal photosynthesis. Further elevation of the pH to 10.2 was achieved by the addition of sodium hydroxide, which doubled average alkalinities in the study columns from about 1 to 2 milliequivalents per liter. Upper Klamath Lake sediments collected from the lake bottom and then placed in contact with lake water, either at a stable sediment/water interface or by resuspension, exhibited an initial capacity to take up soluble reactive phosphorus (SRP) from the water column rather than release phosphorus to the water column. At a higher pH this initial uptake of phosphorus is slowed, but not stopped. This initial phase was followed by a reversal in which the sediments began to release SRP back into the water column. The release rate of phosphorus 30 to 40 days after suspension of sediments in the columns was 0.5 mg/L/day (micrograms per liter per day) at pH 8, and 0.9 mg/L/day at pH 10, indicating that the higher pH increased the rate of phosphorus release by a factor of about two. The highest determined rate of release was approximately 10% (percent) of the rate required to explain the annual internal loading to Upper Klamath Lake from the sediments as calculated from a lake-wide mass balance and observed in total phosphorus data collected at individual locations.
Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime
2015-07-01
Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Slow Physics: Recording the Ascent and Descent of a Water Column
ERIC Educational Resources Information Center
Lindén, Johan; Källman, Kjell-Mikael; Holm, Erik
2018-01-01
A glass filled with carbon dioxide gas upside down on a plate of water constitutes an excellent demonstration of the solubility of gases. If the water level on the plate is maintained the CO[subscript 2] will slowly dissolve and the column of water will rise inside the glass, without quite reaching the ceiling, before an opposite process sets in:…
NASA Astrophysics Data System (ADS)
Du, Juan; Liu, Jiqiao; Bi, Decang; Ma, Xiuhua; Hou, Xia; Zhu, Xiaolei; Chen, Weibiao
2018-04-01
A ground-based double-pulse 1572 nm integrated path differential absorption (IPDA) lidar was developed for carbon dioxide (CO2) column concentrations measurement. The lidar measured the CO2 concentrations continuously by receiving the scattered echo signal from a building about 1300 m away. The other two instruments of TDLAS and in-situ CO2 analyzer measured the CO2 concentrations on the same time. A CO2 concentration measurement of 430 ppm with 1.637 ppm standard error was achieved.
Petosa, Adamo Riccardo; Ohl, Carolin; Rajput, Faraz; Tufenkji, Nathalie
2013-10-01
The environmental and health risks posed by emerging engineered nanoparticles (ENPs) released into aquatic environments are largely dependent on their aggregation, transport, and deposition behavior. Herein, laboratory-scale columns were used to examine the mobility of polyacrylic acid (PAA)-coated cerium dioxide nanoparticles (nCeO2) and an analogous nanosized polymeric capsule (nCAP) in water saturated quartz sand or loamy sand. The influence of solution ionic strength (IS) and cation type (Na(+), Ca(2+), or Mg(2+)) on the transport potential of these ENPs was examined in both granular matrices and results were also compared to measurements obtained using a natural groundwater. ENP suspensions were characterized using dynamic light scattering and nanoparticle tracking analysis to establish aggregate size, and laser Doppler electrophoresis to determine ENP electrophoretic mobility. Regardless of IS, virtually all nCeO2 particles suspended in NaNO3 eluted from the quartz sand-packed columns. In contrast, heightened nCeO2 and nCAP particle retention and dynamic (time-dependent) transport behavior was observed with increasing concentrations of the divalent salts and in the presence of natural groundwater. Enhanced particle retention was also observed in loamy sand in comparison to the quartz sand, emphasizing the need to consider the nature of the aqueous matrix and granular medium in evaluating contamination risks associated with the release of ENPs in natural and engineered aquatic environments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Atmospheric Science Data Center
2018-06-29
... dioxide (SO2) from volcanic plumes, scene reflectivity, and aerosol index (AI), retrieved from the ultraviolet (UV) measurements of DSCOVR ... Access: Order Data Parameters: Aerosol Index (AI) Reflectivity at 340 nm Vertical Column of Ozone (O3) ...
High-Accuracy Measurements of Total Column Water Vapor From the Orbiting Carbon Observatory-2
NASA Technical Reports Server (NTRS)
Nelson, Robert R.; Crisp, David; Ott, Lesley E.; O'Dell, Christopher W.
2016-01-01
Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution [1.3 x 2.3 km(exp. 2)] and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products.
NASA Astrophysics Data System (ADS)
Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Taylor, Bryant D.; Bowen, Stephen C.; Welters, Angela M.; Remus, Ruben G.; Wong, Teh-Hwa; Reithmaier, Karl; Lee, Jane; Ismail, Syed
2017-09-01
An airborne 2-μm triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This lidar targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements, simultaneously. Advancements in the development of this IPDA lidar are presented in this paper. Updates on advanced two-micron triple-pulse high-energy laser transmitter will be given including packaging and lidar integration status. In addition, receiver development updates will also be presented. This includes a state-of-the-art detection system integrated at NASA Goddard Space Flight Center. This detection system is based on a newly developed HgCdTe (MCT) electron-initiated avalanche photodiode (e-APD) array. Future plan for IPDA lidar system for ground integration, testing and flight validation will be discussed.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Taylor, Bryant D.; Bowen, Stephen C.; Welters, Angela M.; Remus, Ruben G.; Wong, Teh-Hwa;
2014-01-01
An airborne 2 micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This lidar targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements, simultaneously. Advancements in the development of this IPDA lidar are presented in this paper. Updates on advanced two-micron triple-pulse high-energy laser transmitter will be given including packaging and lidar integration status. In addition, receiver development updates will also be presented. This includes a state-of-the-art detection system integrated at NASA Goddard Space Flight Center. This detection system is based on a newly developed HgCdTe (MCT) electron-initiated avalanche photodiode (e-APD) array. Future plan for IPDA lidar system for ground integration, testing and flight validation will be discussed.
Chattopadhyay, Sankha; Saha Das, Sujata
2010-10-01
A simple and inexpensive ion-exchange chromatography method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed and tested using (131)I. The radiochemical separation was performed using a very small Dowex-1x8 ion-exchange column. The overall radiochemical yield for the complete separation of (131)I was 92+/-1.8 (standard deviation) % (n=8). The separated nca (131)I was of high, approximately 99%, radionuclidic and radiochemical purity and did not contain detectable amounts of the target material. This method may be adopted for the radiochemical separation of other different iodine radionuclides produced from tellurium matrices through cyclotron as well as reactor irradiation. Copyright 2010 Elsevier Ltd. All rights reserved.
Iriana, Windy; Tonokura, Kenichi; Inoue, Gen; Kawasaki, Masahiro; Kozan, Osamu; Fujimoto, Kazuki; Ohashi, Masafumi; Morino, Isamu; Someya, Yu; Imasu, Ryuichi; Rahman, Muhammad Arif; Gunawan, Dodo
2018-05-31
Tropical peatlands in Indonesia have been disturbed over decades and are a source of carbon dioxide (CO 2 ) into the atmosphere by peat respiration and peatland fire. With a portable solar spectrometer, we have performed measurements of column-averaged CO 2 dry-air molar mixing ratios, XCO 2 , in Palangka Raya, Indonesia, and quantify the emission dynamics of the peatland with use of the data for weather, fire hotspot, ground water table, local airport operation visibility and weather radar images. Total emission of CO 2 from surface and underground peat fires as well as from peatland ecosystem is evaluated by day-to-day variability of XCO 2 . We found that the peatland fire and the net ecosystem CO 2 exchange contributed with the same order of magnitude to the CO 2 emission during the non-El Niño Southern Oscillation year of July 2014-August 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jung Hwa; Hyung, Seok-Won; Mun, Dong-Gi
2012-08-03
A multi-functional liquid chromatography system that performs 1-dimensional, 2-dimensional (strong cation exchange/reverse phase liquid chromatography, or SCX/RPLC) separations, and online phosphopeptides enrichment using a single binary nano-flow pump has been developed. With a simple operation of a function selection valve, which is equipped with a SCX column and a TiO2 (titanium dioxide) column, a fully automated selection of three different experiment modes was achieved. Because the current system uses essentially the same solvent flow paths, the same trap column, and the same separation column for reverse-phase separation of 1D, 2D, and online phosphopeptides enrichment experiments, the elution time information obtainedmore » from these experiments is in excellent agreement, which facilitates correlating peptide information from different experiments.« less
Pollution damage to the Powell Building, Reston, Virginia
Doe, B.R.; Reddy, M.M.; Eggleston, J.R.
1999-01-01
Concrete column segments of the Powell Building (Reston, VA) exposed to the elements and wetted by precipitation were `cleaned' and roughened, but sheltered portions of the columns retained their smoothness and pollution accumulates, similar to observations for limestone, marble, and sandstone. Weathering effects on the columns were dominated by precipitation run-off and not the acidity of the precipitation. The process may be dry deposition of sulfur dioxide (SO2) and nitric oxides (NOx) that formed soluble salts in the presence of humid air or dew, salts that were removed by precipitation run-off.
NASA Astrophysics Data System (ADS)
Wang, Litao; Jang, Carey; Zhang, Yang; Wang, Kai; Zhang, Qiang; Streets, David; Fu, Joshua; Lei, Yu; Schreifels, Jeremy; He, Kebin; Hao, Jiming; Lam, Yun-Fat; Lin, Jerry; Meskhidze, Nicholas; Voorhees, Scott; Evarts, Dale; Phillips, Sharon
2010-09-01
Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)'s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM 2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO 2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality. The air quality improvement that would result from the targeted sulfur dioxide (SO 2) and nitrogen oxides (NO x) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO 2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30-60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM 2.5 can also decline by 3-15 μg m -3 (4-25%) due to the lower SO 2 and sulfate concentrations. If similar controls are implemented for NO x emissions, NO x concentrations are estimated to decrease by 30-60% as compared with the 2010 BAU scenario. The annual mean PM 2.5 concentrations will also decline by 2-14 μg m -3 (3-12%). In addition, the number of ozone (O 3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O 3 concentrations in the summer reduced by 8-30 ppb.
NASA Astrophysics Data System (ADS)
Segal-Rosenheimer, M.; Russell, P. B.; Schmid, B.; Redemann, J.; Livingston, J. M.; Flynn, C. J.; Johnson, R. R.; Dunagan, S. E.; Shinozuka, Y.; Herman, J.; Cede, A.; Abuhassan, N.; Comstock, J. M.; Hubbe, J. M.; Zelenyuk, A.; Wilson, J.
2014-03-01
Total columnar water vapor (CWV), nitrogen dioxide (NO2), and ozone (O3) are derived from a newly developed, hyperspectral airborne Sun-sky spectrometer (4STAR) for the first time during the two intensive phases of the Two-Column Aerosol Project (TCAP) in summer 2012 and winter 2013 aboard the DOE G-1 aircraft. We compare results with coincident measurements. We find 0.045 g/cm2 (4.2%) negative bias and 0.28 g/cm2 (26.3%) root-mean-square difference (RMSD) in water vapor layer comparison with an in situ hygrometer and an overall RMSD of 1.28 g/m3 (38%) water vapor amount in profile by profile comparisons, with differences distributed evenly around zero. RMSD for O3 columns average to 3%, with a 1% negative bias for 4STAR compared with the Ozone Measuring Instrument along aircraft flight tracks for 14 flights during both TCAP phases. Ground-based comparisons with Pandora spectrometers at the Goddard Space Flight Center, Greenbelt, Maryland, showed excellent agreement between the instruments for both O3 (1% RMSD and 0.1% bias) and NO2 (17.5% RMSD and -8% bias). We apply clustering analysis of the retrieved products as a case study during the TCAP summer campaign to identify variations in atmospheric composition of elevated pollution layers and demonstrate that combined total column measurements of trace gas and aerosols can be used to define different pollution layer sources, by comparing our results with trajectory analysis and in situ airborne miniSPLAT (single-particle mass spectrometer) measurements. Our analysis represents a first step in linking sparse but intense in situ measurements from suborbital campaigns with total column observations from space.
NASA Astrophysics Data System (ADS)
Obland, Michael D.; Campbell, Joel; Kooi, Susan; Fan, Tai-Fang; Carrion, William; Hicks, Jonathan; Lin, Bing; Nehrir, Amin R.; Browell, Edward V.; Meadows, Byron; Davis, Kenneth J.
2018-04-01
This work describes advances in critical lidar technologies and techniques developed as part of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons CarbonHawk Experiment Simulator system for measuring atmospheric column carbon dioxide (CO2) mixing ratios. This work provides an overview of these technologies and results from recent test flights during the NASA Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital summer 2016 flight campaign.
Behavior of short silica monolithic columns in high pressure gas chromatography.
Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antoniali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme
2016-08-19
In order to analyze light hydrocarbons mixtures with silica monolithic columns, a conventional gas chromatograph was modified to work with carrier gas pressure as high as 60bar. To understand hydrodynamic flow and retention with short columns (less than 30cm), special attention was required due to the temperature difference between the oven area and the FID detector which contain a significant length of the column. Efficiency and selectivity using various carrier gases (helium, nitrogen and carbon dioxide) at different inlet pressure for different oven temperature were studied. Carrier gas nature was a very significant parameter: on one side, linked to adsorption mechanism for gases like nitrogen and carbon dioxide onto the stationary phase modifying retention and selectivity, on the other side in relation to the minimum theoretical plate height which was as low as 15μm (66 000 platem(-1)) using carbon dioxide as carrier gas. The chromatographic system was then used to separate methane, ethane, ethylene, acetylene, propane, cyclopropane, and butane in less than 30s. Copyright © 2016 Elsevier B.V. All rights reserved.
Azizian, Mohammad F; Semprini, Lewis
2017-08-01
The simultaneous anaerobic transformation of tetrachloroethene (PCE) and carbon tetrachloride (CT) was evaluated in a continuous flow column. The column was packed with quartz sand and bioaugmented with the Evanite culture (EV) that is capable of transforming PCE to ethene. Azizian and Semprini (2016) reported that PCE and CT could be simultaneously transformed in the column, with PCE (0.1mM) transformed mainly to ethene and CT (0.015mM) to chloroform (CF) (20%) and an unknown transformation product, likely carbon dioxide (CO 2 ). The fermentation of propionate, formed from lactate fermentation, was inhibited after the transformation of CT, likely from the exposure to CF. Reported here is the second phase of that study where a second bioaugmentation of the EV culture was made to reintroduce a lactate and propionate fermenting population to the column. Effective lactate and propionate fermentation were restored with a H 2 concentration of ~25nM maintained in the column effluent. PCE (0.1mM) was effectively transformed to ethene (~98%) and vinyl chloride (VC) (~2%). Unlabeled CT (0.015 to 0.03mM) was completely transformed with a transient build-up of CF and chloromethane (CM), which were subsequently removed below their detection limits. A series of transient tests were initiated through the addition of carbon-13 labeled CT ( 13 CT), with concentrations gradually increased from 0.03 to 0.10mM. GC-MS analysis of the column effluent showed that 13 C labeled CO 2 ( 13 CO 2 ) was formed, ranging from 82 to 93% of the 13 CT transformed, with the transient increases in 13 CO 2 associated with the increased concentration of 13 CT. A modified COD analysis indicated a lesser amount of 13 CT (18%) was transformed to soluble products, while 13 CO 2 represented 82% the 13 CT transformed. In a final transient test, the influent lactate concentration was decreased from 1.1 to 0.67mM. The transformation of both CT and PCE changed dramatically. Only 59% of the 13 CT was transformed, primarily to CF. 13 CO 2 concentrations gradually decreased to background levels, indicating CO 2 was no longer a transformation product. PCE transformation resulted in the following percentage of products formed: cDCE (60%), VC (36%), and ethene (4%). Incomplete propionate fermentation was also observed, consistent with the build-up of CF and the decrease in H 2 concentrations to approximately 2nM. The results clearly demonstrate that high concentrations of CT were transformed to CO 2 , and effective PCE dehalogenation to ethene was maintained when excess lactate was fed and propionate was effectively fermented. However, when the lactate concentration was reduced, both PCE and CT transformation and propionate fermentation were negatively impacted. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Azizian, Mohammad F.; Semprini, Lewis
2017-08-01
The simultaneous anaerobic transformation of tetrachloroethene (PCE) and carbon tetrachloride (CT) was evaluated in a continuous flow column. The column was packed with quartz sand and bioaugmented with the Evanite culture (EV) that is capable of transforming PCE to ethene. Azizian and Semprini (2016) reported that PCE and CT could be simultaneously transformed in the column, with PCE (0.1 mM) transformed mainly to ethene and CT (0.015 mM) to chloroform (CF) (20%) and an unknown transformation product, likely carbon dioxide (CO2). The fermentation of propionate, formed from lactate fermentation, was inhibited after the transformation of CT, likely from the exposure to CF. Reported here is the second phase of that study where a second bioaugmentation of the EV culture was made to reintroduce a lactate and propionate fermenting population to the column. Effective lactate and propionate fermentation were restored with a H2 concentration of 25 nM maintained in the column effluent. PCE (0.1 mM) was effectively transformed to ethene ( 98%) and vinyl chloride (VC) ( 2%). Unlabeled CT (0.015 to 0.03 mM) was completely transformed with a transient build-up of CF and chloromethane (CM), which were subsequently removed below their detection limits. A series of transient tests were initiated through the addition of carbon-13 labeled CT (13CT), with concentrations gradually increased from 0.03 to 0.10 mM. GC-MS analysis of the column effluent showed that 13C labeled CO2 (13CO2) was formed, ranging from 82 to 93% of the 13CT transformed, with the transient increases in 13CO2 associated with the increased concentration of 13CT. A modified COD analysis indicated a lesser amount of 13CT (18%) was transformed to soluble products, while 13CO2 represented 82% the 13CT transformed. In a final transient test, the influent lactate concentration was decreased from 1.1 to 0.67 mM. The transformation of both CT and PCE changed dramatically. Only 59% of the 13CT was transformed, primarily to CF. 13CO2 concentrations gradually decreased to background levels, indicating CO2 was no longer a transformation product. PCE transformation resulted in the following percentage of products formed: cDCE (60%), VC (36%), and ethene (4%). Incomplete propionate fermentation was also observed, consistent with the build-up of CF and the decrease in H2 concentrations to approximately 2 nM. The results clearly demonstrate that high concentrations of CT were transformed to CO2, and effective PCE dehalogenation to ethene was maintained when excess lactate was fed and propionate was effectively fermented. However, when the lactate concentration was reduced, both PCE and CT transformation and propionate fermentation were negatively impacted.
Voiculescu, Mirela
2017-01-01
In this work we present the evolution of tropospheric nitrogen dioxide (NO2) content over several important European cities during 2005–2014 using space observations and ground-based in-situ measurements. The NO2 content was derived using the daily observations provided by the Ozone Monitoring Instrument (OMI), while the NO2 volume mixing ratio measurements were obtained from the European Environment Agency (EEA) air quality monitoring stations database. The European cities selected are: Athens (37.98° N, 23.72° E), Berlin (52.51° N, 13.41° E), Bucharest (44.43° N, 26.10° E), Madrid (40.38° N, 3.71° W), Lisbon (38.71° N, 9.13° W), Paris (48.85° N, 2.35° E), Rome (41.9° N, 12.50° E), and Rotterdam (51.91° N, 4.46° E). We show that OMI NO2 tropospheric column data can be used to assess the evolution of NO2 over important European cities. According to the statistical analysis, using the seasonal variation, we found good correlations (R > 0.50) between OMI and ground-based in-situ observations for all of the cities presented in this work. Highest correlation coefficients (R > 0.80) between ground-based monitoring stations and OMI observations were calculated for the cities of Berlin, Madrid, and Rome. Both types of observations, in-situ and remote sensing, show an NO2 negative trend for all of locations presented in this study. PMID:29156623
Temporal Trends of NO2, CO and their Relation to the Fire Occurrences over the Indo-Gangetic Plain
NASA Astrophysics Data System (ADS)
Pandey, A. K.; Kumar, K.
2016-12-01
Air pollution is an environmental issue that has a gigantic impact on human health, and it is a major problem in the densely populated regions throughout the world. Situated in the foothills of the great Himalayas Indo-Gangetic Plain (IGP) is among one of the most densely populated regions of the earth. NO2 and CO are among major air pollutants which affect the air quality of IGP predominantly. In the present study, we studied the temporal trends of NO2, CO and fire count over the IGP region. Further, we investigated the role of the fire occurrences in the ambient NO2 and CO levels. We used MODIS instrument (Aqua satellite), OMI sensor and AIRS instrument data for fire count, Nitrogen Dioxide (NO2) tropospheric column and Carbon monoxide (CO) column study respectively. The IGP is divided into three part geographically i.e. Eastern (E-IGP), Central (C-IGP) and Western (W-IGP). A higher columnar CO concentration is observed in the E-IGP whereas NO2 concentration is highest in the W-IGP. A higher NO2 concentration is obtained in winter followed by summer and a minimum in monsoon months throughout the IGP. Columnar CO concentration is higher in the E-IGP and its concentration is maximum in pre-monsoon months and minimum in the monsoon months. Fire pixel count is highest in the W-IGP with peak twice every year i.e. in the April - May and October - November corresponding to the harvest period in the Rabi-Kharif cropping system. We also obtained a significant positive correlation between fire occurrences and columnar NO2 & CO levels over the IGP which shows the biomass burning practices associated with the agriculture influences the NO2 and CO concentration in the atmosphere.
Bayat, Ali Esfandyari; Junin, Radzuan; Shamshirband, Shahaboddin; Chong, Wen Tong
2015-09-16
Engineered aluminum oxide (Al2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2) nanoparticles (NPs) are utilized in a broad range of applications; causing noticeable quantities of these materials to be released into the environment. Issues of how and where these particles are distributed into the subsurface aquatic environment remain as major challenges for those in environmental engineering. In this study, transport and retention of Al2O3, TiO2, and SiO2 NPs through various saturated porous media were investigated. Vertical columns were packed with quartz-sand, limestone, and dolomite grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolet-visible spectrophotometer. It was found that Al2O3 and TiO2 NPs are easily transported through limestone and dolomite porous media whereas NPs recoveries were achieved two times higher than those found in the quartz-sand. The highest and lowest SiO2-NPs recoveries were also achieved from the quartz-sand and limestone columns, respectively. The experimental results closely replicated the general trends predicted by the filtration and DLVO calculations. Overall, NPs mobility through a porous medium was found to be strongly dependent on NP surface charge, NP suspension stability against deposition, and porous medium surface charge and roughness.
Retrieval of NO2 stratospheric profiles from ground-based zenith-sky uv-visible measurements at 60°N
NASA Astrophysics Data System (ADS)
Hendrick, F.; van Roozendael, M.; Lambert, J.-C.; Fayt, C.; Hermans, C.; de Mazière, M.
2003-04-01
Nitrogen dioxide (NO_2) plays an important role in controlling ozone abundances in the stratosphere, either directly through the NOx (NO+NO_2) catalytic cycle, either indirectly by reaction with the radical ClO to form the reservoir species ClONO_2. In this presentation, NO_2 stratospheric profiles are retrieved from ground-based UV-visible NO_2 slant column abundances measured since 1998 at the complementary NDSC station of Harestua (Norway, 60^oN). The retrieval algorithm is based on the Rodgers optimal estimation inversion method and a forward model consisting in the IASB-BIRA stacked box photochemical model PSCBOX coupled to the radiative transfer package UVspec/DISORT. This algorithm has been applied to a set of about 50 sunrises and sunsets for which spatially and temporally coincident NO_2 measurements made by the HALOE (Halogen Occultation Experiment) instrument on board the Upper Atmosphere Research Satellite (UARS) are available. The consistency between retrieved and HALOE profiles is discussed in term of the different seasonal conditions investigated which are spring with and without chlorine activation, summer, and fall.
Research on modified the estimates of NOx emissions combined the OMI and ground-based DOAS technique
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Li*, Ang; Xie, Pinhua; Hu, Zhaokun; Wu, Fengcheng; Xu, Jin
2017-04-01
A new method to calibrate nitrogen dioxide (NO2) lifetimes and emissions from point sources using satellite measurements base on the mobile passive differential optical absorption spectroscopy (DOAS) and multi axis differential optical absorption spectroscopy (MAX-DOAS) is described. It is based on using the Exponentially-Modified Gaussian (EMG) fitting method to correct the line densities along the wind direction by fitting the mobile passive DOAS NO2 vertical column density (VCD). An effective lifetime and emission rate are then determined from the parameters of the fit. The obtained results were then compared with the results acquired by fitting OMI (Ozone Monitoring Instrument) NO2 using the above fitting method, the NOx emission rate was about 195.8mol/s, 160.6mol/s, respectively. The reason why the latter less than the former may be because the low spatial resolution of the satellite.
NASA Astrophysics Data System (ADS)
Smeltzer, C. D.; Wang, Y.; Zhao, C.; Boersma, F.
2009-12-01
Polar orbiting satellite retrievals of tropospheric nitrogen dioxide (NO2) columns are important to a variety of scientific applications. These NO2 retrievals rely on a priori profiles from chemical transport models and radiative transfer models to derive the vertical columns (VCs) from slant columns measurements. In this work, we compare the retrieval results using a priori profiles from a global model (TM4) and a higher resolution regional model (REAM) at the OMI overpass hour of 1330 local time, implementing the Dutch OMI NO2 (DOMINO) retrieval. We also compare the retrieval results using a priori profiles from REAM model simulations with and without lightning NOx (NO + NO2) production. A priori model resolution and lightning NOx production are both found to have large impact on satellite retrievals by altering the satellite sensitivity to a particular observation by shifting the NO2 vertical distribution interpreted by the radiation model. The retrieved tropospheric NO2 VCs may increase by 25-100% in urban regions and be reduced by 50% in rural regions if the a priori profiles from REAM simulations are used during the retrievals instead of the profiles from TM4 simulations. The a priori profiles with lightning NOx may result in a 25-50% reduction of the retrieved tropospheric NO2 VCs compared to the a priori profiles without lightning. As first priority, a priori vertical NO2 profiles from a chemical transport model with a high resolution, which can better simulate urban-rural NO2 gradients in the boundary layer and make use of observation-based parameterizations of lightning NOx production, should be first implemented to obtain more accurate NO2 retrievals over the United States, where NOx source regions are spatially separated and lightning NOx production is significant. Then as consequence of a priori NO2 profile variabilities resulting from lightning and model resolution dynamics, geostationary satellite, daylight observations would further promote the next step towards producing a more complete NO2 data product provided sufficient resolution of the observations. Both the corrected retrieval algorithm and the proposed next generation geostationary satellite observations would thus improve emission inventories, better validate model simulations, and advantageously optimize regional specific ozone control strategies.
Liu, Xuyang; Chen, Gexin; Su, Chunming
2012-06-19
The deposition behavior of cerium dioxide (CeO(2)) nanoparticles (NPs) in dilute NaCl solutions was investigated as a function of collector surface composition, pH, ionic strength, and organic matter (OM). Sensors coated separately with silica, iron oxide, and alumina were applied in quartz crystal microbalance with dissipation (QCM-D) to examine the effect of these mineral phases on CeO(2) deposition in NaCl solution (1-200 mM). Frequency and dissipation shift followed the order: silica > iron oxide > alumina in 10 mM NaCl at pH 4.0. No significant deposition was observed at pH 6.0 and 8.5 on any of the tested sensors. However, ≥ 94.3% of CeO(2) NPs deposited onto Ottawa sand in columns in 10 mM NaCl at pH 6.0 and 8.5. The inconsistency in the different experimental approaches can be mainly attributed to NP aggregation, surface heterogeneity of Ottawa sand, and flow geometry. In QCM-D experiments, the deposition kinetics was found to be qualitatively consistent with the predictions based on the classical colloidal stability theory. The presence of low levels (1-6 mg/L) of Suwannee River humic acid, fulvic acid, alginate, citric acid, and carboxymethyl cellulose greatly enhanced the stability and mobility of CeO(2) NPs in 1 mM NaCl at pH 6.5. The poor correlation between the transport behavior and electrophoretic mobility of CeO(2) NPs implies that the electrosteric effect of OM was involved.
Space-based retrieval of NO2 over biomass burning regions: quantifying and reducing uncertainties
NASA Astrophysics Data System (ADS)
Bousserez, N.
2014-10-01
The accuracy of space-based nitrogen dioxide (NO2) retrievals from solar backscatter radiances critically depends on a priori knowledge of the vertical profiles of NO2 and aerosol optical properties. This information is used to calculate an air mass factor (AMF), which accounts for atmospheric scattering and is used to convert the measured line-of-sight "slant" columns into vertical columns. In this study we investigate the impact of biomass burning emissions on the AMF in order to quantify NO2 retrieval errors in the Ozone Monitoring Instrument (OMI) products over these sources. Sensitivity analyses are conducted using the Linearized Discrete Ordinate Radiative Transfer (LIDORT) model. The NO2 and aerosol profiles are obtained from a 3-D chemistry-transport model (GEOS-Chem), which uses the Fire Locating and Monitoring of Burning Emissions (FLAMBE) daily biomass burning emission inventory. Aircraft in situ data collected during two field campaigns, the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) and the Dust and Biomass-burning Experiment (DABEX), are used to evaluate the modeled aerosol optical properties and NO2 profiles over Canadian boreal fires and West African savanna fires, respectively. Over both domains, the effect of biomass burning emissions on the AMF through the modified NO2 shape factor can be as high as -60%. A sensitivity analysis also revealed that the effect of aerosol and shape factor perturbations on the AMF is very sensitive to surface reflectance and clouds. As an illustration, the aerosol correction can range from -20 to +100% for different surface reflectances, while the shape factor correction varies from -70 to -20%. Although previous studies have shown that in clear-sky conditions the effect of aerosols on the AMF was in part implicitly accounted for by the modified cloud parameters, here it is suggested that when clouds are present above a surface layer of scattering aerosols, an explicit aerosol correction would be beneficial to the NO2 retrieval. Finally, a new method that uses slant column information to correct for shape-factor-related AMF error over NOx emission sources is proposed, with possible application to near-real-time OMI retrievals.
Chattopadhyay, Sankha; Saha Das, Sujata
2009-10-01
A simple and inexpensive method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed. The beta(-) emitting (131)I radionuclide, produced by the decay of (131)Te through the (nat)Te(n, gamma)(131)Te nuclear reaction, was used for standardization of the radiochemical separation procedure. The radiochemical separation was performed by precipitation followed by column (activated charcoal) chromatography. Quantitative post-irradiation recovery of the TeO(2) target material (98-99%), in a form suitable for reuse in future irradiations, was achieved. The overall radiochemical yield for the complete separation of (131)I was 75-85% (n=8). The separated nca (131)I was of high, approximately 99%, radionuclidic and radiochemical purities and did not contain detectable amounts of the target material. This method can be adopted for the radiochemical separation of other different iodine radionuclides produced from tellurium matrices through cyclotron as well as reactor irradiation.
Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column
NASA Technical Reports Server (NTRS)
Wilson, E. L.; Mclinden, M. L.; Miller, J. H.; Allan, G. R.; Lott, L. E.; Melroy, H. R.; Clarke, G. B.
2013-01-01
We have developed a low-cost, miniaturized laser heterodyne radiometer for highly sensitive measurements of carbon dioxide (CO2) in the atmospheric column. In this passive design, sunlight that has undergone absorption by CO2 in the atmosphere is collected and mixed with continuous wave laser light that is step-scanned across the absorption feature centered at 1,573.6 nm. The resulting radio frequency beat signal is collected as a function of laser wavelength, from which the total column mole fraction can be de-convolved. We are expanding this technique to include methane (CH4) and carbon monoxide (CO), and with minor modifications, this technique can be expanded to include species such as water vapor (H2O) and nitrous oxide (N2O).
Jeon, Jin Hee; Kim, Sang Done; Lim, Tak Hyoung; Lee, Dong Hyun
2005-08-01
The effects of initial trichloroethylene (TCE) concentration, recirculating liquid flow rate and gas velocity on photodegradation of TCE have been determined in an internally circulating slurry bubble column reactor (0.15m-ID x 0.85 m-high). Titanium dioxide (TiO2) powder was employed as a photocatalyst and the optimum loading of TiO2 in the present system is found to be approximately 0.2 wt%. The stripping fraction of TCE by air flow increases but photodegradation fraction of TCE decreases with increasing the initial TCE concentration, recirculating liquid flow rate and gas velocity. The average removal efficiency of TCE is found to be approximately 97% in an internally circulating slurry bubble column reactor.
What You Need to Know About the OMI NO2 Data Product for Air Quality Studies
NASA Technical Reports Server (NTRS)
Celarier, E. A.; Gleason, J. F.; Bucsela, E. J.; Brinksma, E.; Veefkind, J. P.
2007-01-01
The standard nitrogen dioxide (NO2) data product, produced from measurements by the Ozone Monitoring Instrument (OMI), are publicly available online from the NASA GESDISC facility. Important data fields include total and tropospheric column densities, as well as collocated data for cloud fraction and cloud top height, surface albedo and snow/ice coverage, at the resolution of the OMI instrument (12 km x 26 km, at nadir). The retrieved NO2 data have been validated, principally under clear-sky conditions. The first public-release version has been available since September 2006. An improved version of the data product, which includes a number of new data fields, and improved estimates of the retrieval uncertainties will be released by the end of 2007. This talk will describe the standard NO2 data product, including details that are essential for the use of the data for air quality studies. We will also describe the principal improvements with the new version of the data product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO2) capture to predict the CO2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive and reactive massmore » transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less
Wang, Chao; Xu, Zhijie; Lai, Canhai; ...
2018-03-27
The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less
The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation
NASA Astrophysics Data System (ADS)
Williams, Jason E.; Folkert Boersma, K.; Le Sager, Phillipe; Verstraeten, Willem W.
2017-02-01
We provide a comprehensive description of the high-resolution version of the TM5-MP global chemistry transport model, which is to be employed for deriving highly resolved vertical profiles of nitrogen dioxide (NO2), formaldehyde (CH2O), and sulfur dioxide (SO2) for use in satellite retrievals from platforms such as the Ozone Monitoring Instrument (OMI) and the Sentinel-5 Precursor, and the TROPOspheric Monitoring Instrument (tropOMI). Comparing simulations conducted at horizontal resolutions of 3° × 2° and 1° × 1° reveals differences of ±20 % exist in the global seasonal distribution of 222Rn, being larger near specific coastal locations and tropical oceans. For tropospheric ozone (O3), analysis of the chemical budget terms shows that the impact on globally integrated photolysis rates is rather low, in spite of the higher spatial variability of meteorological data fields from ERA-Interim at 1° × 1°. Surface concentrations of O3 in high-NOx regions decrease between 5 and 10 % at 1° × 1° due to a reduction in NOx recycling terms and an increase in the associated titration term of O3 by NO. At 1° × 1°, the net global stratosphere-troposphere exchange of O3 decreases by ˜ 7 %, with an associated shift in the hemispheric gradient. By comparing NO, NO2, HNO3 and peroxy-acetyl-nitrate (PAN) profiles against measurement composites, we show that TM5-MP captures the vertical distribution of NOx and long-lived NOx reservoirs at background locations, again with modest changes at 1° × 1°. Comparing monthly mean distributions in lightning NOx and applying ERA-Interim convective mass fluxes, we show that the vertical re-distribution of lightning NOx changes with enhanced release of NOx in the upper troposphere. We show that surface mixing ratios in both NO and NO2 are generally underestimated in both low- and high-NOx scenarios. For Europe, a negative bias exists for [NO] at the surface across the whole domain, with lower biases at 1° × 1° at only ˜ 20 % of sites. For NO2, biases are more variable, with lower (higher) biases at 1° × 1° occurring at ˜ 35 % ( ˜ 20 %) of sites, with the remainder showing little change. For CH2O, the impact of higher resolution on the chemical budget terms is rather modest, with changes of less than 5 %. The simulated vertical distribution of CH2O agrees reasonably well with measurements in pristine locations, although column-integrated values are generally underestimated relative to satellite measurements in polluted regions. For SO2, the performance at 1° × 1° is principally governed by the quality of the emission inventory, with limited improvements in the site-specific biases, with most showing no significant improvement. For the vertical column, improvements near strong source regions occur which reduce the biases in the integrated column. For remote regions missing biogenic source terms are inferred.
Gas chromatographic column for the Viking 1975 molecular analysis experiment
NASA Technical Reports Server (NTRS)
Novotny, M.; Hayes, J. M.; Bruner, F.; Simmonds, P. G.
1975-01-01
A gas chromatographic column has been developed for use in the remote analysis of the Martian surface. The column, which utilizes a liquid-modified organic adsorbent (Tenax) as the stationary phase, provides efficient transmission and resolution of nanogram quantities of organic materials in the presence of millionfold excesses of water and carbon dioxide.
Esfandyari Bayat, Ali; Junin, Radzuan; Shamshirband, Shahaboddin; Tong Chong, Wen
2015-01-01
Engineered aluminum oxide (Al2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2) nanoparticles (NPs) are utilized in a broad range of applications; causing noticeable quantities of these materials to be released into the environment. Issues of how and where these particles are distributed into the subsurface aquatic environment remain as major challenges for those in environmental engineering. In this study, transport and retention of Al2O3, TiO2, and SiO2 NPs through various saturated porous media were investigated. Vertical columns were packed with quartz-sand, limestone, and dolomite grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolet-visible spectrophotometer. It was found that Al2O3 and TiO2 NPs are easily transported through limestone and dolomite porous media whereas NPs recoveries were achieved two times higher than those found in the quartz-sand. The highest and lowest SiO2-NPs recoveries were also achieved from the quartz-sand and limestone columns, respectively. The experimental results closely replicated the general trends predicted by the filtration and DLVO calculations. Overall, NPs mobility through a porous medium was found to be strongly dependent on NP surface charge, NP suspension stability against deposition, and porous medium surface charge and roughness. PMID:26373598
The interaction of ozone and nitrogen dioxide in the stratosphere of East Antarctica
NASA Astrophysics Data System (ADS)
Bruchkouski, Ilya; Krasouski, Aliaksandr; Dziomin, Victar; Svetashev, Alexander
2016-04-01
At the Russian Antarctic station "Progress" (S69°23´, E76°23´) simultaneous measurements of trace gases using the MARS-B (Multi-Axis Recorder of Spectra) instrument and PION-UV spectro-radiometer for the time period from 05.01.2014 to 28.02.2014 have been performed. Both instruments were located outdoors. The aim of the measurements was to retrieve the vertical distribution of ozone and nitrogen dioxide in the atmosphere and to study their variability during the period of measurements. The MARS-B instrument, developed at the National Ozone Monitoring Research and Education Centre of the Belarusian State University (NOMREC BSU), successfully passed the procedure of international inter-comparison campaign MAD-CAT 2013 in Mainz, Germany. The instrument is able to record the spectra of scattered sunlight at different elevation angles within a maximum aperture of 1.3°. 12 elevation angles have been used in this study, including the zenith direction. Approximately 7000 spectra per day were registered in the range of 403-486 nm, which were then processed by DOAS technique aiming to retrieve differential slant columns of ozone, nitrogen dioxide and oxygen dimer. Furthermore, total nitrogen dioxide column values have been retrieved employing the Libradtran radiative transfer model. The PION-UV spectro-radiometer, also developed at NOMREC BSU, is able to record the spectra of scattered sunlight from the hemisphere in the range of 280-430 nm. The registered spectra have been used to retrieve the total ozone column values employing the Stamnes method. In this study observational data from both instruments is presented and analyzed. Furthermore, by combining analysis of this data with model simulations it is shown that decreases in nitrogen dioxide content in the upper atmosphere can be associated with increases in total ozone column values and rising of the ozone layer upper boundary. Finally, the time delay between changes in nitrogen dioxide and ozone values is calculated from the observed time series, demonstrating that changes in nitrogen dioxide content cause subsequent changes in the ozone layer. Attempt to explain this phenomenon as influence upper atmosphere on ozone layer is under discussed.
NASA Technical Reports Server (NTRS)
Yu, Jirong; Singh, Upendra; Petros, Mulugeta; Refaat, Tamer
2015-01-01
The study of global warming needs precisely and accurately measuring greenhouse gases concentrations in the atmosphere. CO2 and H2O are important greenhouse gases that significantly contribute to the carbon cycle and global radiation budget on Earth. NRC Decadal Survey recommends a mission for Active Sensing of Carbon Dioxide (CO2) over Nights, Days and Seasons (ASCENDS). 2 micron laser is a viable IPDA transmitter to measure CO2 and H2O column density from space. The objective is to demonstrate a first airborne direct detection 2 micron IPDA lidar for CO2 and H2O measurements.
The Sensitivity of U.S. Surface Ozone Formation to NOx, and VOCs as Viewed from Space
NASA Technical Reports Server (NTRS)
Duncan, Bryan N.; Yoshida, Yasuko; Sillman, Sanford; Retscher, Christian; Pickering, Kenneth E.; Martin, Randall V.; Celarier, Edward A.
2009-01-01
We investigated variations in the sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NO(x)) as inferred from the ratio of tropospheric columns of formaldehyde and nitrogen dioxide from the Aura Ozone Monitoring Instrument (OMI). The data indicate that ozone formation became: 1. more sensitive to NO(x) over most of the U.S, from 2005 to 2007 because of substantial decreases in NO(x) emissions primarily from stationary sources, and 2. more sensitive to NO(x) with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. Based on our interpretation of the data, current strategies implemented to reduce unhealthy levels of surface ozone should focus more on reducing NO(x) emissions, except in some downtown areas which have historically benefited from reductions in VOC emissions.
NASA Astrophysics Data System (ADS)
Singh, U. N.; Petros, M.; Refaat, T. F.; Yu, J.; Ismail, S.
2017-09-01
The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption features for the gas at this wavelength region [1]. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers [2]. Currently, LaRC team is engaged in designing, developing and demonstrating a triple-pulsed 2-micron direct detection Integrated Path Differential Absorption (IPDA) lidar to measure the weighted-average column dry-air mixing ratios of carbon dioxide (XCO2) and water vapor (XH2O) from an airborne platform [1, 3-5]. This novel technique allows measurement of the two most dominant greenhouse gases, simultaneously and independently, using a single instrument. This paper will provide status and details of the development of this airborne 2-micron triple-pulse IPDA lidar. The presented work will focus on the advancement of critical IPDA lidar components. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plans for IPDA lidar ground integration, testing and flight validation will also be discussed. This work enables new Earth observation measurements, while reducing risk, cost, size, volume, mass and development time of required instruments.
Zauner, Jordan; Lusk, Ryan; Koski, Steven; Poe, Donald P
2012-11-30
When a packed column is operated at temperatures and pressures near the critical point in supercritical fluid chromatography, the thermal environment in which it is placed has a significant impact on retention and efficiency. We measured the retention factors, plate heights, and related parameters for elution of a test mixture of alkylbenzenes with 5% methanol/95% carbon dioxide mobile phase on a 250 mm × 4.6 mm i.d. column packed with 5-micron Luna-C18 particles. Separations were performed at outlet pressures from 100 to 150 bar and a column oven temperature of 323K. For a bare column thermostated with convective air, significant efficiency losses were observed for outlet pressures equal to or less than 120 bar. These large efficiency losses are attributed to radial temperature gradients. Addition of foam insulation resulted in significant improvements in efficiency. Operating the column in still air using a commercially available column heater provided the best overall performance, with no measurable efficiency loss over the entire range of pressures studied. A reduced plate height of 1.88 was obtained at an optimum flow rate of 3.0 mL/min at 100 bar outlet pressure and with the temperature of the incoming mobile phase set approximately 2.3K above the temperature of the column oven. Retention time repeatability for all three thermal conditions was equal to or less than 0.5% RSD. These results demonstrate that it is possible to perform fast, efficient separations with excellent repeatability using SFC under near-critical conditions if the thermal environment is optimized to minimize the generation of radial temperature gradients. Copyright © 2012 Elsevier B.V. All rights reserved.
Development of a digital mobile solar tracker
NASA Astrophysics Data System (ADS)
Baidar, S.; Kille, N.; Ortega, I.; Sinreich, R.; Thomson, D.; Hannigan, J.; Volkamer, R.
2015-11-01
We have constructed and deployed a fast digital solar tracker aboard a moving ground-based platform. The tracker consists of two rotating mirrors, a lens, an imaging camera, and a motion compensation system that provides the Euler angles of the mobile platform in real time. The tracker can be simultaneously coupled to UV-Vis and FTIR spectrometers making it a versatile tool to measure the absorption of trace gases using solar incoming radiation. The integrated system allows the tracker to operate autonomously while the mobile laboratory is in motion. Mobile direct sun Differential Optical Absorption Spectroscopy (mobile DS-DOAS) observations using this tracker were conducted during summer 2014 as part of the Front Range Photochemistry and Pollution Experiment (FRAPPE) in Colorado, USA. We demonstrate an angular precision of 0.052° (about 1/10 of the solar disk diameter) during research drives, and verify this tracking precision from measurements of the center to limb darkening (CLD, the changing appearance of Fraunhofer lines) in the mobile DS-DOAS spectra. The high photon flux from direct sun observation enables measurements of nitrogen dioxide (NO2) slant columns with high temporal resolution, and reveals spatial detail in the variations of NO2 vertical column densities (VCDs). The NO2 VCD from DS-DOAS is compared with a co-located MAX-DOAS instrument. Overall good agreement is observed amid a highly heterogeneous air mass.
Development of a digital mobile solar tracker
NASA Astrophysics Data System (ADS)
Baidar, Sunil; Kille, Natalie; Ortega, Ivan; Sinreich, Roman; Thomson, David; Hannigan, James; Volkamer, Rainer
2016-03-01
We have constructed and deployed a fast digital solar tracker aboard a moving ground-based platform. The tracker consists of two rotating mirrors, a lens, an imaging camera, and a motion compensation system that provides the Euler angles of the mobile platform in real time. The tracker can be simultaneously coupled to UV-Vis and Fourier transform infrared spectrometers, making it a versatile tool to measure the absorption of trace gases using solar incoming radiation. The integrated system allows the tracker to operate autonomously while the mobile laboratory is in motion. Mobile direct sun differential optical absorption spectroscopy (mobile DS-DOAS) observations using this tracker were conducted during summer 2014 as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) in Colorado, USA. We demonstrate an angular precision of 0.052° (about 1/10 of the solar disk diameter) during research drives and verify this tracking precision from measurements of the center to limb darkening (CLD, the changing appearance of Fraunhofer lines) in the mobile DS-DOAS spectra. The high photon flux from direct sun observation enables measurements of nitrogen dioxide (NO2) slant columns with high temporal resolution and reveals spatial detail in the variations of NO2 vertical column densities (VCDs). The NO2 VCD from DS-DOAS is compared with a co-located MAX-DOAS instrument. Overall good agreement is observed amid a highly heterogeneous air mass.
The Second Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments (CINDI-2)
NASA Astrophysics Data System (ADS)
Van Roozendael, M.; Hendrick, F.; Apituley, A.; Kreher, K.; Friess, U.; Richter, A.; Wagner, T.; Fehr, T.
2017-12-01
For the validation of space borne UV-Vis observations of air quality gases, ground based remote-sensing instruments using the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the observations from orbit. Over the last decade, MAXDOAS instruments of various designs (including PANDORA systems) have been deployed worldwide forming the basis for a global ground based reference network suitable for the validation of future satellite sensors, such as TROPOMI/Sentinel-5 precursor, GEMS, TEMPO, and Sentinel 4 and 5. To ensure proper traceability of these observations, assess their accuracy and progress towards harmonized data acquisition and delivery, a thorough intercomparison campaign known as the Second Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments (CINDI-2) was held in Cabauw, The Netherlands during the month of September 2016. About 35 MAXDOAS instruments operated by 25 different groups were deployed, together with systems providing key ancillary in-situ measurements of NO2 and aerosol optical properties, as well as vertical profiles of NO2 by lidar and sonde and vertical profiles of aerosol optical properties by Raman lidar. We provide an overview of the main outcome of the campaign, which included a formal semi-blind slant column intercomparison and a number of additional exercises aiming at assessing the potential of the MAXDOAS technique for retrieving vertically-resolved information on NO2, aerosol, HCHO, O3 and a few other more challenging species such as HONO and glyoxal.
NASA Astrophysics Data System (ADS)
Yakovleva, E. Yu.; Patrushev, Yu. V.; Pai, Z. P.
2018-05-01
The chromatographic properties of capillary columns prepared using functionalized poly(1- trimethylsilyl-1-propyne) (PTMSP) are evaluated and compared with the performance of a commercial column with divinylbenzene polymer sorbent. The loading capacity of a PTMSP column with dimensions of 30 m × 0.53 mm × 0.8 μm is shown to be about 2.5 times higher than that of a divinylbenzene polymer column with a diameter of 0.32 mm and a film thickness of 10 μm. The increased value of the background current for PTMSP columns at 220°C is explained by the presence of non-polar bulky substituents in the polymer chain. Differences in the order of elution are found for the following pairs of compounds: acetylene-ethylene; ethane-water; butene-1-isobutane; and sulfur dioxide-carbonyl sulfide. On a column with the functionalized PTMC, analysis of a mixture composition close to natural gas is found to be complete within 27 min.
NASA Astrophysics Data System (ADS)
Smeltzer, C. D.; Wang, Y.; Boersma, F.; Celarier, E. A.; Bucsela, E. J.
2013-12-01
We investigate the effects of retrieval radiation schemes and parameters on trend analysis using tropospheric nitrogen dioxide (NO2) vertical column density (VCD) measurements over the United States. Ozone Monitoring Instrument (OMI) observations from 2005 through 2012 are used in this analysis. We investigated two radiation schemes, provided by National Aeronautics and Space Administration (NASA TOMRAD) and Koninklijk Nederlands Meteorologisch Instituut (KNMI DAK). In addition, we analyzed trend dependence on radiation parameters, including surface albedo and viewing geometry. The cross-track mean VCD average difference is 10-15% between the two radiation schemes in 2005. As the OMI anomaly developed and progressively worsens, the difference between the two schemes becomes larger. Furthermore, applying surface albedo measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) leads to increases of estimated NO2 VCD trends over high-emission regions. We find that the uncertainties of OMI-derived NO2 VCD trends can be reduced by up to a factor of 3 by selecting OMI cross-track rows on the basis of their performance over the ocean [see abstract figure]. Comparison of OMI tropospheric VCD trends to those estimated based on the EPA surface NO2 observations indicate using MODIS surface albedo data and a more narrow selection of OMI cross-track rows greatly improves the agreement of estimated trends between satellite and surface data. This figure shows the reduction of uncertainty in OMI NO2 trend by selecting OMI cross-track rows based on the performance over the ocean. With this technique, uncertainties within the seasonal trend may be reduced by a factor of 3 or more (blue) compared with only removing the anomalous rows: considering OMI cross-track rows 4-24 (red).
Global high-resolution simulations of tropospheric nitrogen dioxide using CHASER V4.0
NASA Astrophysics Data System (ADS)
Sekiya, Takashi; Miyazaki, Kazuyuki; Ogochi, Koji; Sudo, Kengo; Takigawa, Masayuki
2018-03-01
We evaluate global tropospheric nitrogen dioxide (NO2) simulations using the CHASER V4.0 global chemical transport model (CTM) at horizontal resolutions of 0.56, 1.1, and 2.8°. Model evaluation was conducted using satellite tropospheric NO2 retrievals from the Ozone Monitoring Instrument (OMI) and the Global Ozone Monitoring Experiment-2 (GOME-2) and aircraft observations from the 2014 Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ). Agreement against satellite retrievals improved greatly at 1.1 and 0.56° resolutions (compared to 2.8° resolution) over polluted and biomass burning regions. The 1.1° simulation generally captured the regional distribution of the tropospheric NO2 column well, whereas 0.56° resolution was necessary to improve the model performance over areas with strong local sources, with mean bias reductions of 67 % over Beijing and 73 % over San Francisco in summer. Validation using aircraft observations indicated that high-resolution simulations reduced negative NO2 biases below 700 hPa over the Denver metropolitan area. These improvements in high-resolution simulations were attributable to (1) closer spatial representativeness between simulations and observations and (2) better representation of large-scale concentration fields (i.e., at 2.8°) through the consideration of small-scale processes. Model evaluations conducted at 0.5 and 2.8° bin grids indicated that the contributions of both these processes were comparable over most polluted regions, whereas the latter effect (2) made a larger contribution over eastern China and biomass burning areas. The evaluations presented in this paper demonstrate the potential of using a high-resolution global CTM for studying megacity-scale air pollutants across the entire globe, potentially also contributing to global satellite retrievals and chemical data assimilation.
A Miniaturized Laser Heterodyne Radiometer for Greenhouse Gas Measurements in the Atmospheric Column
NASA Technical Reports Server (NTRS)
Steel, Emily Wilson
2015-01-01
Laser Heterodyne Radiometry is a technique adapted from radio receiver technology has been used to measure trace gases in the atmosphere since the 1960s.By leveraging advances in the telecommunications industry, it has been possible to miniaturize this technology.The mini-LHR (Miniaturized Laser Heterodyne Radiometer) has been under development at NASA Goddard Space flight Center since 2009. This sun-viewing instrument measures carbon dioxide and methane in the atmospheric column and operates in tandem with an AERONET sun photometer producing a simultaneous measure of aerosols. The mini-LHR has been extensively field tested in a range of locations ranging in the continental US as well as Alaska and Hawaii and now operates autonomously with sensitivities of approximately 0.2 ppmv and approximately10 ppbv, for carbon dioxide and methane respectively, for 10 averaged scans under clear sky conditions.
Rapid growth in nitrogen dioxide pollution over Western China, 2005-2013
NASA Astrophysics Data System (ADS)
Cui, Y.-Z.; Lin, J.-T.; Song, C.; Liu, M.-Y.; Yan, Y.-Y.; Xu, Y.; Huang, B.
2015-12-01
Western China has experienced rapid industrialization and urbanization since the implementation of the National Western Development Strategies (the "Go West" movement) in 1999. This transition has affected the spatial and temporal characteristics of nitrogen dioxide (NO2) pollution. In this study, we analyze the trends and variability of tropospheric NO2 vertical column densities (VCDs) from 2005 to 2013 over Western China, based on a wavelet analysis on monthly mean NO2 data derived from the Ozone Monitoring Instrument (OMI) measurements. We focus on the anthropogenic NO2 by subtracting region-specific "background" values dominated by natural sources. We find significant NO2 growth over Western China between 2005 and 2013 (8.6 ± 0.9 % yr-1 on average, relative to 2005), with the largest increments (15 % yr-1 or more) over parts of several city clusters. The NO2 pollution in most provincial regions rose rapidly from 2005 to 2011 but stabilized or declined afterwards. The NO2 trends were driven mainly by changes in anthropogenic emissions, as confirmed by a nested GEOS-Chem model simulation and a comparison with Chinese official emission statistics. The rate of NO2 growth during 2005-2013 reaches 11.3 ± 1.0 % yr-1 over Northwestern China, exceeding the rates over Southwestern China (5.9 ± 0.6 % yr-1) and the three well-known polluted regions in the east (5.3 ± 0.8 % yr-1 over Beijing-Tianjin-Hebei, 4.0 ± 0.6 % yr-1} over the Yangtze River Delta, and -3.3 ± 0.3 % yr-1 over the Pearl River Delta). Additional socioeconomic analyses suggest that the rapid NO2 growth in Northwestern China is likely related to the fast developing resource- and pollution-intensive industries along with the "Go West" movement as well as relatively weak emission controls. Further efforts should be made to alleviate NOx pollution to achieve sustainable development in Western China.
Rapid growth in nitrogen dioxide pollution over Western China, 2005-2013
NASA Astrophysics Data System (ADS)
Cui, Yuanzheng; Lin, Jintai; Song, Chunqiao; Liu, Mengyao; Yan, Yingying; Xu, Yuan; Huang, Bo
2016-05-01
Western China has experienced rapid industrialization and urbanization since the implementation of the National Western Development Strategies (the "Go West" movement) in 1999. This transition has affected the spatial and temporal characteristics of nitrogen dioxide (NO2) pollution. In this study, we analyze the trends and variability of tropospheric NO2 vertical column densities (VCDs) from 2005 to 2013 over Western China, based on a wavelet analysis on monthly mean NO2 data derived from the Ozone Monitoring Instrument (OMI) measurements. We focus on the anthropogenic NO2 by subtracting region-specific "background" values dominated by natural sources. After removing the background influences, we find significant anthropogenic NO2 growth over Western China between 2005 and 2013 (8.6 ± 0.9 % yr-1 on average, relative to 2005), with the largest increments (15 % yr-1 or more) over parts of several city clusters. The NO2 pollution in most provincial-level regions rose rapidly from 2005 to 2011 but stabilized or declined afterwards. The NO2 trends were driven mainly by changes in anthropogenic emissions, as confirmed by a nested GEOS-Chem model simulation and a comparison with Chinese official emission statistics. The rate of NO2 growth during 2005-2013 reaches 11.3 ± 1.0 % yr-1 over Northwestern China, exceeding the rates over Southwestern China (5.9 ± 0.6 % yr-1) and the three well-known polluted regions in the east (5.3 ± 0.8 % yr-1 over Beijing-Tianjin-Hebei, 4.0 ± 0.6 % yr-1 over the Yangtze River Delta, and -3.3 ± 0.3 % yr-1 over the Pearl River Delta). Subsequent socioeconomic analyses suggest that the rapid NO2 growth over Northwestern China is likely related to the fast developing resource- and pollution-intensive industries along with the "Go West" movement as well as relatively weak emission controls. Further efforts should be made to alleviate NOx pollution to achieve sustainable development in Western China.
Slow physics: recording the ascent and descent of a water column
NASA Astrophysics Data System (ADS)
Lindén, Johan; Källman, Kjell-Mikael; Holm, Erik
2018-07-01
A glass filled with carbon dioxide gas upside down on a plate of water constitutes an excellent demonstration of the solubility of gases. If the water level on the plate is maintained the CO2 will slowly dissolve and the column of water will rise inside the glass, without quite reaching the ceiling, before an opposite process sets in: the water level will even more slowly begin to sink in a process which will take several years. We followed the process for several months, recording images of the water column with 10 min to 1 h intervals. The physics of the process is discussed and modeled quantitatively.
Ghate, M.R.; Yang, R.T.
1985-10-03
Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.
Stratospheric nitrogen dioxide in the vicinity of soufriere, st. Vincent.
Romick, G J; Murcray, D G; Williams, W J
1982-06-04
In April 1979, measurements of nitrogen dioxide in the upper atmosphere were made near Soufriere Volcano by twilight optical-absorption techniques. The derived value of 5 x 10(15) molecules per square centimeter column implies an enhancement of 25 percent over earlier abundances measured in the same latitudinal regions. This enhancement may represent the normal stratospheric variability of nitrogen dioxide in the equatorial region but in any case may be considered an upper limit to the volcano's effect on the total nitrogen dioxide abundance.
NASA Astrophysics Data System (ADS)
Gielen, Clio; Hendrick, Francois; Pinardi, Gaia; De Smedt, Isabelle; Stavrakou, Trissevgeni; Yu, Huan; Fayt, Caroline; Hermans, Christian; Bauwens, Maité; Ndenzako, Eugene; Nzohabonayo, Pierre; Akimana, Rachel; Niyonzima, Sébastien; Müller, Jean-Francois; Van Roozendael, Michel
2016-04-01
Central Africa is known for its strong biogenic, pyrogenic, and to a lesser extent anthropogenic emissions. Satellite observations of species like nitrogen dioxide (NO2) and formaldehyde (HCHO), as well as inverse modelling results have shown that there are large uncertainties associated with the emissions in this region. There is thus a need for additional measurements, especially from the ground, in order to better characterise the biomass-burning and biogenic products emitted in this area. We present MAX-DOAS measurements of NO2, HCHO, and aerosols performed in Central Africa, in the city of Bujumbura, Burundi (3°S, 29°E, 850m). A MAX-DOAS instrument has been operating at this location by BIRA-IASB since late 2013. Aerosol-extinction and trace-gases vertical profiles are retrieved by applying the optimal-estimation-based profiling tool bePRO to the measured O4, NO2 and HCHO slant-column densities. The MAX-DOAS vertical columns and profiles are used for investigating the diurnal and seasonal cycles of NO2, HCHO, and aerosols. Regarding the aerosols, the retrieved AODs are compared to co-located AERONET sun photometer measurements for verification purpose, while in the case of NO2 and HCHO, the MAX-DOAS vertical columns and profiles are used for validating GOME-2 and OMI satellite observations. To characterise the biomass-burning and biogenic emissions in the Bujumbura region, the trace gases and aerosol MAX-DOAS retrievals are used in combination to MODIS fire counts/radiative-power and GOME-2/OMI NO2 and HCHO satellite data, as well as simulations from the NOAA backward trajectory model HYSPLIT. First results show that HCHO seasonal variation around local noon is driven by the alternation of rain and dry periods, the latter being associated with intense biomass-burning agricultural activities and forest fires in the south/south-east and transport from this region to Bujumbura. In contrast, NO2 is seen to depend mainly on local emissions close to the city, due to the short lifetime of this species (typically 1-2 hours). Regarding the biogenic emissions, it is found that they play only a minor role in the observed HCHO seasonality. These results are further assessed using the tropospheric 3D-CTM IMAGES.
NASA Technical Reports Server (NTRS)
Mao, Jianping; Kawa, S. Randolph
2003-01-01
A series of sensitivity studies is carried out to explore the feasibility of space-based global carbon dioxide (CO2) measurements for global and regional carbon cycle studies. The detection method uses absorption of reflected sunlight in the CO2 vibration-rotation band at 1.58 micron. The sensitivities of the detected radiances are calculated using the line-by-line model (LBLRTM), implemented with the DISORT (Discrete Ordinates Radiative Transfer) model to include atmospheric scattering in this band. The results indicate that (a) the small (approx.1%) changes in CO2 near the Earth's surface are detectable in this CO2 band provided adequate sensor signal-to-noise ratio and spectral resolution are achievable; (b) the effects of other interfering constituents, such as water vapor, aerosols and cirrus clouds, on the radiance are significant but the overall effects of the modification of light path length on total back-to-space radiance sensitivity to CO2 change are minor for general cases, which means that generally the total column CO2 can be derived in high precision from the ratio of the on-line center to off-line radiances; (c) together with CO2 gas absorption aerosol/cirrus cloud layer has differential scattering which may result in the modification of on-line to off-line radiance ratio which could lead a large bias in the total column CO2 retrieval. Approaches to correct such bias need further investigation. (d) CO2 retrieval requires good knowledge of the atmospheric temperature profile, e.g. approximately 1K RMS error in layer temperature, which is achievable from new atmospheric sounders in the near future; (e) the atmospheric path length, over which the CO2 absorption occurs, should be known in order to correctly interpret horizontal gradients of CO2 from the total column CO2 measurement; thus an additional sensor for surface pressure measurement needs to be attached for a complete measurement package.
78 FR 16184 - Revision to Ambient Nitrogen Dioxide Monitoring Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-14
... Revision to Ambient Nitrogen Dioxide Monitoring Requirements AGENCY: Environmental Protection Agency (EPA... ambient air quality standard (NAAQS) for nitrogen dioxide (NO 2 ) for the near-road component of the NO 2... Nitrogen Dioxide Monitoring Requirements Docket, Docket ID No. EPA-HQ-OAR-2012- 0486, EPA Docket Center...
Chang, Kwang Suk; Jeon, Hancheol; Gu, Man Bock; Pack, Seung Pil; Jin, EonSeon
2013-12-01
The development and implementation of strategies for CO2 mitigation are necessary to counteract the greenhouse gas effect of carbon dioxide emissions. To demonstrate the possibility of simultaneously capturing CO2 and utilizing four-carbon compounds, an integrated system using CA and PEPCase was developed, which mimics an in vivo carbon dioxide concentration mechanism. We first cloned the PEPCase 1 gene of the marine diatom Phaeodactylum tricornutum and produced a recombinant PtPEPCase 1. The affinity column purified PtPEPCase 1 exhibited specific enzymatic activity (5.89 U/mg). When the simultaneous and coordinated reactions of CA from Dunaliella sp. and the PtPEPCase 1 occurred, more OAA was produced than when only PEPCase was present. Therefore, this integrated CA-PEPCase system can be used not only to capture CO2 but also for a new technology to produce value-added four-carbon platform chemicals.
NASA Astrophysics Data System (ADS)
Fahim Khokhar, Muhammad; Wagner, Thomas; Jamil, Mohsin
2016-07-01
In this study, spatial and temporal distributions of tropospheric NO2 vertical column densities over Pakistan and Saudi Arabia during the time period of 2004-2015 are discussed. Data products from the satellite instrument OMI are used. The results show a large NO2 growth over major cities of both countries, particularly the areas with rapid urbanization. Different seasonal cycles were observed over both countries. Especially, seasonal variation in tropospheric NO2 over Pakistan is largely impacted by the photolysis rate, OH radical and monsoon rains in addition to soil emissions, agriculture fires and other anthropogenic activities. While in the case of Saudi Arabia, the seasonal variation in tropospheric NO2 is completely driven by thermal power generation. Furthermore, different regions of Pakistan exhibited different seasonal trends. In the provinces of Punjab (north-east), Khyber Paktunkhwa (north-west) and Sindh (south-east), NO2 columns are maximum in winter and minimum in summer months while a reversed seasonality was observed in the province of Baluchistan (south-west). We compared the observed Spatio-temporal patterns to existing emission inventories and found that for the most populated provinces the NOx emissions are clearly dominated by anthropogenic sources. In these areas also the strongest positive trends were observed. NOx released from soils and produced by lightning both together contribute about 20% for the provinces of Punjab, Sindh, and Khyber Pakhtunkhwa, while its contribution in Baluchistan is much stronger (~50%). NOx emissions from biomass burning are negligible. This finding can also explain the observed summer maximum in Baluchistan since the highest lightning activity occurs during the Monsoon season. Our comparison also indicates that the inventories of anthropogenic NOx emissions over Pakistan seem to underestimate the true emissions by about a factor of two.
NASA Astrophysics Data System (ADS)
Fu, Roger R.; Moullet, Arielle; Patel, Nimesh A.; Biersteker, John; Derose, Kimberly L.; Young, Kenneth H.
2012-02-01
We report Submillimeter Array observations of SO2 emission in the circumstellar envelope (CSE) of the red supergiant VY Canis Majoris, with an angular resolution of ≈1''. SO2 emission appears in three distinct outflow regions surrounding the central continuum peak emission that is spatially unresolved. No bipolar structure is noted in the sources. A fourth source of SO2 is identified as a spherical wind centered at the systemic velocity. We estimate the SO2 column density and rotational temperature assuming local thermal equilibrium (LTE) as well as perform non-LTE radiative transfer analysis using RADEX. Column densities of SO2 are found to be ~1016 cm-2 in the outflows and in the spherical wind. Comparison with existing maps of the two parent species OH and SO shows the SO2 distribution to be consistent with that of OH. The abundance ratio f_{SO_{2}}/f_{SO} is greater than unity for all radii larger than 3 × 1016 cm. SO2 is distributed in fragmented clumps compared to SO, PN, and SiS molecules. These observations lend support to specific models of circumstellar chemistry that predict f_{SO_{2}}/f_{SO}>1 and may suggest the role of localized effects such as shocks in the production of SO2 in the CSE.
NASA Technical Reports Server (NTRS)
Piters, Ankie; Boersma, K.F.; Kroon, M.; Hains, J. C.; Roozendael, M. Van; Wittrock, F.; Abuhassan, N.; Adams, C.; Akrami, M.; Allaart, M. A. F.;
2012-01-01
From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands. Its main objectives were to determine the accuracy of state-ofthe- art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing), and to investigate their usability in satellite data validation. The expected outcomes are recommendations regarding the operation and calibration of such instruments, retrieval settings, and observation strategies for the use in ground-based networks for air quality monitoring and satellite data validation. Twenty-four optical spectrometers participated in the campaign, of which twenty-one had the capability to scan different elevation angles consecutively, the so-called Multi-axis DOAS systems, thereby collecting vertical profile information, in particular for nitrogen dioxide and aerosol. Various in-situ samplers and lidar instruments simultaneously characterized the variability of atmospheric trace gases and the physical properties of aerosol particles. A large data set of continuous measurements of these atmospheric constituents has been collected under various meteorological conditions and air pollution levels. Together with the permanent measurement capability at the CESAR site characterizing the meteorological state of the atmosphere, the CINDI campaign provided a comprehensive observational data set of atmospheric constituents in a highly polluted region of the world during summertime. First detailed comparisons performed with the CINDI data show that slant column measurements of NO2, O4 and HCHO with MAX-DOAS agree within 5 to 15%, vertical profiles of NO2 derived from several independent instruments agree within 25% of one another, and MAX-DOAS aerosol optical thickness agrees within 20-30% with AERONET data. For the in-situ NO2 instrument using a molybdenum converter, a bias was found as large as 5 ppbv during day time, when compared to the other in-situ instruments using photolytic converters.
NASA Astrophysics Data System (ADS)
Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.
2013-01-01
Tropospheric NO2 vertical column densities were retrieved for the first time in Toronto, Canada using three methods of differing spatial scales. Remotely-sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities derived using a pair of chemiluminescence monitors situated 0.01 and 0.5 km above ground level. The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson R ranging from 0.68 to 0.79), but the in situ vertical column densities were 27% to 55% greater than the remotely-sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely-sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely-sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each of the methods.
Adsorptive conversion of nitrogen dioxide from etching vent gases over activated carbon.
Fang, Mei-Ling; Wu, Ching-Yi; Chou, Ming-Shean
2018-04-13
Some metal etching operations emit limited flow rates of waste gases with reddish-brown NO 2 fume, which may cause visual and acidic-odor complaints, as well as negative health effects. In this study, tests were performed by passing caustic-treated waste gases vented from Al-etching operations through columns packed either with virgin or regenerated granular activated carbon (GAC) to test their adsorptive conversion performance of NO 2 in the gases. The gases contained 5-55 ppm NO 2 and acetic and nitric acids of below 3 ppm. Exhausted carbon was regenerated by scrubbing it with caustic solution and water, and dried for further adsorption tests. Results indicate that with an (empty bed residence time (EBRT) of 0.15 sec for the gas through the GAC-packed space, around 60% of the influent NO 2 of 54 ppm could be removed, and 47% of the removed NO 2 was converted by and desorbed from the carbon as NO. GAC used in the present study could be regenerated at least twice to restore its capacity for NO 2 adsorption. Within EBRTs of 0.076-0.18 sec, the adsorptive conversion capacity was linearly varied with EBRT. In practice, with an EBRT of 0.20 sec, a conversion capacity of 0.80 kg NO 2 (kg GAC) -1 with an influent NO 2 of 40 ppm can be used as a basis for system design. Some metal etching operations emit waste gases with reddish-brown (yellow when diluted) NO 2 fume which may cause visual and acidic-odor complaints, as well as negative health effects. This study provides a simple process for the adsorptive conversion of NO 2 in caustic-treated waste gases vented from metal-etching operations through a GAC column. With an EBRT of 0.20 sec, a conversion capacity of 0.80 kg NO 2 (kg GAC) -1 with an influent NO 2 of 40 ppm can be used as a basis for system design. Saturated GAC can be regenerated at least twice by simply scrubbing it with aqueous caustic solution.
NASA Astrophysics Data System (ADS)
Baidar, Sunil; Oetjen, Hilke; Senff, Christoph; Alvarez, Raul, II; Hardesty, Michael; Langford, Andrew; Kim, Si-Wan; Trainer, Michael; Volkamer, Rainer
2013-04-01
Ozone (O3) and nitrogen dioxide (NO2) are two important components of air pollution. We have measured vertical column amounts of NO2, and vertical profiles of O3 and wind speed by means of measurements of solar stray light by CU Airborne MAX-DOAS, and active remote sensing using the NOAA TOPAZ lidar, and the University of Leeds Doppler lidar aboard the NOAA Twin Otter research aircraft. A total of 52 flights (up to 4 hours each) were carried out between May 19 and July 19 2010 during the CalNex and CARES field campaigns. These flights cover most of California. The boundary layer height was measured by TOPAZ lidar, and trace gas concentrations of NO2 and O3 were integrated over boundary layer height. These column integrated quantities are then combined with direct wind speed measurements to quantify directly the pollutant flux across the boundary, as defined by the flight track. By tracking the pollution fluxes during transects that are flown upwind and in various distances downwind of a NOx emission source, the NOx emission rate, and the ozone formation rate are quantified. These pollutant fluxes are calculated here for the first time exclusively based on measurements (i.e., without need to infer wind speed from a model). These fluxes provide constraints to quantify localized NOx emissions, and are being compared with WRF-Chem model simulations.
CO2 Absorption from Biogas by Glycerol: Conducted in Semi-Batch Bubble Column
NASA Astrophysics Data System (ADS)
puji lestari, Pratiwi; Mindaryani, Aswati; Wirawan, S. K.
2018-03-01
Biogas is a renewable energy source that has been developed recently. The main contents of Biogas itself are Methane and carbon dioxide (CO2) where Methane is the main component of biogas with CO2 as the highest impurities. The quality of biogas depends on the CO2 content, the lower CO2 levels, the higher biogas quality. Absorption is one of the methods to reduce CO2 level. The selections of absorbent and appropriate operating parameters are important factors in the CO2 absorption from biogas. This study aimed to find out the design parameters for CO2 absorption using glycerol that represented by the overall mass transfer coefficient (KLa) and Henry’s constant (H). This study was conducted in semi-batch bubble column. Mixed gas was contacted with glycerol in a bubble column. The concentration of CO2 in the feed gas inlet and outlet columns were analysed by Gas Chromatograph. The variables observed in this study were superficial gas velocity and temperatures. The results showed that higher superficial gas velocity and lower temperature increased the rate of absorption process and the amount of CO2 absorbed.
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Frehlich, Rod G.
2009-01-01
We present preliminary results of computer simulations of the error in measuring carbon dioxide mixing ratio profiles from earth orbit. The simulated sensor is a pulsed, 2-micron, coherent-detection lidar alternately operating on at least two wavelengths. The simulated geometry is a nadir viewing lidar measuring the column content signal. Atmospheric absorption is modeled using FASCODE3P software with the HITRAN 2004 absorption line data base. Lidar shot accumulation is employed up to the horizontal resolution limit. Horizontal resolutions of 50, 100, and 200 km are shown. Assuming a 400 km spacecraft orbit, the horizontal resolutions correspond to measurement times of about 7, 14, and 28 s. We simulate laser pulse-pair repetition frequencies from 1 Hz to 100 kHz. The range of shot accumulation is 7 to 2.8 million pulse-pairs. The resultant error is shown as a function of horizontal resolution, laser pulse-pair repetition frequency, and laser pulse energy. The effect of different on and off pulse energies is explored. The results are compared to simulation results of others and to demonstrated 2-micron operating points at NASA Langley.
Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2
NASA Technical Reports Server (NTRS)
Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason
2011-01-01
The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.
Carbon Dioxide Sealing Capacity: Textural or Compositional Controls?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cranganu, Constantin; Soleymani, Hamidreza; Sadiqua, Soleymani
2013-11-30
This research project is aiming to assess the carbon dioxide sealing capacity of most common seal-rocks, such as shales and non-fractured limestones, by analyzing the role of textural and compositional parameters of those rocks. We hypothesize that sealing capacity is controlled by textural and/or compositional pa-rameters of caprocks. In this research, we seek to evaluate the importance of textural and compositional parameters affecting the sealing capacity of caprocks. The conceptu-al framework involves two testable end-member hypotheses concerning the sealing ca-pacity of carbon dioxide reservoir caprocks. Better understanding of the elements controlling sealing quality will advance our knowledge regarding the sealingmore » capacity of shales and carbonates. Due to relatively low permeability, shale and non-fractured carbonate units are considered relatively imper-meable formations which can retard reservoir fluid flow by forming high capillary pres-sure. Similarly, these unites can constitute reliable seals for carbon dioxide capture and sequestration purposes. This project is a part of the comprehensive project with the final aim of studying the caprock sealing properties and the relationship between microscopic and macroscopic characteristics of seal rocks in depleted gas fields of Oklahoma Pan-handle. Through this study we examined various seal rock characteristics to infer about their respective effects on sealing capacity in special case of replacing reservoir fluid with super critical carbon dioxide (scCO{sub 2}). To assess the effect of textural and compositional properties on scCO{sub 2} maximum reten-tion column height we collected 30 representative core samples in caprock formations in three counties (Cimarron, Texas, Beaver) in Oklahoma Panhandle. Core samples were collected from various seal formations (e.g., Cherokee, Keys, Morrowan) at different depths. We studied the compositional and textural properties of the core samples using several techniques. Mercury Injection Porosimetry (MIP), Scanning Electron Microsco-py SEM, and Sedigraph measurements are used to assess the pore-throat-size distribu-tion, sorting, texture, and grain size of the samples. Also, displacement pressure at 10% mercury saturation (Pd) and graphically derived threshold pressure (Pc) were deter-mined by MIP technique. SEM images were used for qualitative study of the minerals and pores texture of the core samples. Moreover, EDS (Energy Dispersive X-Ray Spec-trometer), BET specific surface area, and Total Organic Carbon (TOC) measurements were performed to study various parameters and their possible effects on sealing capaci-ty of the samples. We found that shales have the relatively higher average sealing threshold pressure (Pc) than carbonate and sandstone samples. Based on these observations, shale formations could be considered as a promising caprock in terms of retarding scCO{sub 2} flow and leak-age into above formations. We hypothesized that certain characteristics of shales (e.g., 3 fine pore size, pore size distribution, high specific surface area, and strong physical chemical interaction between wetting phase and mineral surface) make them an effi-cient caprock for sealing super critical CO{sub 2}. We found that the displacement pressure at 10% mercury saturation could not be the ultimate representative of the sealing capacity of the rock sample. On the other hand, we believe that graphical method, introduced by Cranganu (2004) is a better indicator of the true sealing capacity. Based on statistical analysis of our samples from Oklahoma Panhandle we assessed the effects of each group of properties (textural and compositional) on maximum supercriti-cal CO{sub 2} height that can be hold by the caprock. We conclude that there is a relatively strong positive relationship (+.40 to +.69) between supercritical CO{sub 2} column height based on Pc and hard/ soft mineral content index (ratio of minerals with Mohs hardness more than 5 over minerals with Mohs hardness less than 5) in both shales and limestone samples. Average median pore radius and porosity display a strong negative correlation with supercritical CO{sub 2} retention column height. Also, increasing bulk density is positive-ly correlated with the supercritical CO{sub 2} retention column height. One of the most im-portant factors affecting sealing capacity and consequently the height of supercritical CO{sub 2} column is sorting of the pore throats. We observed a strong positive correlation be-tween pore throat sorting and height of CO{sub 2} retention column, especially in shales. This correlation could not be observed in limestone samples. It suggests that the pore throat sorting is more controlling the sealing capacity in shales and shales with well sorted pore throats are the most reliable lithology as seal. We observed that Brunauer–Emmett–Teller (BET) surface area shows a very strong correlation with CO{sub 2} retention column height in limestone samples while BET surface area did not display significant correlation in shales. Pore structure based on SEM mi-crographs exhibits strong correlation with CO{sub 2} retention column height in limestones. Both intercrystalline and vuggy structures have negative correlations while intergranu-lar texture has positive correlation in limestone with respect to CO{sub 2} retention column height. Textural effects observed on SEM micrographs did not show statistically signifi-cant correlation with supercritical CO{sub 2} retention column height in shale samples. Finally, we showed that increasing hard/soft mineral index is strongly correlated with the displacement pressure in limestone samples. Vuggy texture displays a relatively strong and negative correlation with displacement pressure values at 10% mercury satu-ration in shale samples.« less
Stratospheric nitrogen dioxide in the vicinity of Soufriere, St. Vincent
NASA Technical Reports Server (NTRS)
Romick, G. J.; Murcray, D. G.; Williams, W. J.
1982-01-01
In April 1979, measurements of nitrogen dioxide in the upper atmosphere were made near Soufriere Volcano by twilight optical-absorption techniques. The derived value of 5 x 10 to the 15th molecules per square centimeter column implies an enhancement of 25 percent over earlier abundances measured in the same latitudinal regions. This enhancement may represent the normal stratospheric variability of nitrogen dioxide in the equatorial region, but in any case may be considered an upper limit to the volcano's effect on the total nitrogen dioxide abundance.
NASA Astrophysics Data System (ADS)
Jacobs, N.; Simpson, W. R.; Parker, H. A.; Tu, Q.; Blumenstock, T.; Dubey, M. K.; Hase, F.; Osterman, G. B.
2017-12-01
Total column measurements of carbon-dioxide (CO2) from the Orbiting Carbon Observatory-2 (OCO-2) satellite have been validated at mid-latitudes by comparison to the Total Carbon Column Observing Network (TCCON), but there are still a limited number of sites providing high-latitude validation data for satellite observations of CO2, and no TCCON sites in Alaska. To understand the global distribution of CO2 sources and sinks, it is essential that we increase the abundance of validation sites, particularly in the climate-sensitive high-latitude Boreal forest. Therefore, we began the Arctic Mobile Infrared Greenhouse Gas Observations (AMIGGO) campaign in the Boreal Forest region around Fairbanks, Alaska with the goal of satellite validation and measurement of natural ecosystem fluxes. In this campaign, we used the EM27/SUN mobile solar-viewing Fourier-transform infrared spectrometer (EM27/SUN FTS) to retrieve the total CO2 column and column-averaged dry-air mole fraction of CO2 (XCO2) with the GGG2014 algorithm. The EM27/SUN FTS was developed by the Karlsruhe Institute of Technology (KIT) in collaboration with Bruker optics (Gisi et al., 2012, doi:10.5194/amt-5-2969-2012) and has been deployed in urban areas to measure anthropogenic fluxes of CO2 and CH4. To evaluate the EM27/SUN performance, co-located observations were made with two EM27/SUN spectrometers, and we found that XCO2 differences between spectrometers were small (0.24ppm on average) and very stable over time. In this presentation, we report on 14 OCO-2 targeted overpasses that occurred from August 2016 through July 2017, along with additional targets obtained during ongoing observations in 2017. We investigate underlying reasons for observed differences between OCO-2 and ground-based XCO2 using methods developed by Wunch et al. (2017, doi:10.5194/amt-10-2209-2017). As an additional point of comparison, coincident aircraft observations by NOAA Earth System Research Laboratory (ESRL) Global Monitoring Division at Poker Flat, Alaska, and observations from the 2017 Arctic-Boreal Vulnerability Experiment (ABoVE) airborne operations may also be included if available.
NASA Astrophysics Data System (ADS)
Hong, Qianqian; Liu, Cheng; Chan, Ka Lok; Hu, Qihou; Xie, Zhouqing; Liu, Haoran; Si, Fuqi; Liu, Jianguo
2018-04-01
In this paper, we present ship-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of tropospheric trace gases' distribution along the Yangtze River during winter 2015. The measurements were performed along the Yangtze River between Shanghai and Wuhan, covering major industrial areas in eastern China. Tropospheric vertical column densities (VCDs) of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) were retrieved using the air mass factor calculated by the radiative transfer model. Enhanced tropospheric NO2 and SO2 VCDs were detected over downwind areas of industrial zones over the Yangtze River. In addition, spatial distributions of atmospheric pollutants are strongly affected by meteorological conditions; i.e., positive correlations were found between concentration of pollutants and wind speed over these areas, indicating strong influence of transportation of pollutants from high-emission upwind areas along the Yangtze River. Comparison of tropospheric NO2 VCDs between ship-based MAX-DOAS and Ozone Monitoring Instrument (OMI) satellite observations shows good agreement with each other, with a Pearson correlation coefficient (R) of 0.82. In this study, the NO2 / SO2 ratio was used to estimate the relative contributions of industrial sources and vehicle emissions to ambient NO2 levels. Analysis results of the NO2 / SO2 ratio show a higher contribution of industrial NO2 emissions in Jiangsu Province, while NO2 levels in Jiangxi and Hubei provinces are mainly related to vehicle emissions. These results indicate that different pollution control strategies should be applied in different provinces. In addition, multiple linear regression analysis of ambient carbon monoxide (CO) and odd oxygen (Ox) indicated that the primary emission and secondary formation of HCHO contribute 54.4 ± 3.7 % and 39.3 ± 4.3 % to the ambient HCHO, respectively. The largest contribution from primary emissions in winter suggested that photochemically induced secondary formation of HCHO is reduced due to lower solar irradiance in winter. Our findings provide an improved understanding of major pollution sources along the eastern part of the Yangtze River which are useful for designing specific air pollution control policies.
NASA Astrophysics Data System (ADS)
Lin, J.
2011-12-01
Nitrogen oxides (NOx ≡ NO + NO2) are important atmospheric constituents affecting the tropospheric chemistry, surface air quality and climatic forcing. They are emitted both from anthropogenic and from natural (soil, lightning, biomass burning, etc.) sources, which can be estimated inversely from satellite remote sensing of the vertical column densities (VCDs) of nitrogen dioxide (NO2) in the troposphere. Based on VCDs of NO2 retrieved from OMI, a novel approach is developed in this study to separate anthropogenic emissions of NOx from natural sources over East China for 2006. It exploits the fact that anthropogenic and natural emissions vary with seasons with distinctive patterns. The global chemical transport model (CTM) GEOS-Chem is used to establish the relationship between VCDs of NO2 and emissions of NOx for individual sources. Derived soil emissions are compared to results from a newly developed bottom-up approach. Effects of uncertainties in model meteorology and chemistry over China, an important source of errors in the emission inversion, are evaluated systematically for the first time. Meteorological measurements from space and the ground are used to analyze errors in meteorological parameters driving the CTM.
Progress on Passive Sensor for Ultra-Precise Measurement of Carbon Dioxide from Space
NASA Technical Reports Server (NTRS)
Heaps, William S.; Kawa, S. Randolph
2002-01-01
Global measurements of atmospheric carbon dioxides (CO2) are needed to resolve significant discrepancies that exist in our understanding of the global carbon budget and, therefore, man's role in global climate change. The science measurement requirements for CO2 are extremely demanding (precision c .3%) No atmospheric chemical species has ever been measured from space with this precision. We are developing a novel application of a Fabry-Perot interferometer to detect spectral absorption of reflected sunlight by CO2 and O2 in the atmosphere. Preliminary design studies indicate that the method will be able to achieve the sensitivity and signal-to-noise required to measure column CO2 at the target specification. We are presently engaged in the construction of a prototype instrument for deployment on an aircraft to test the instrument performance and our ability to retrieve the data in the real atmosphere. In the first 6 months we have assembled a laboratory bench system to begin testing the optical and electronic components. We are also undertaking some measurements of signal and noise levels for actual sunlight reflecting from the ground. We shall present results from some of these ground based studies and discuss their implications for a space based system.
Enantiomeric resolution of five chiral pesticides on a Chiralpak IB-H column by SFC.
Jin, Lixia; Gao, Weiliang; Yang, Huayun; Lin, Chunmian; Liu, Weiping
2011-10-01
The enantiomeric separations of five chiral pesticides, diclofopmethyl, 1; benalaxy, 2; acetofenate, 3; myclobutanil, 4; and difenoconazole, 5, were conducted on a Chiralpak IB-H column by a packed-column supercritical fluid chromatography (p-SFC). All compounds, except difenoconazole and myclobutanil, were well resolved within 10 min. As the mobile phase polarity decreased through changing the percentage and the type of alcohol modifiers in the supercritical carbon dioxide (CO(2)), the retention time, the separation factors, and the resolution increased. However, based on the retention time and the resolution, the optimized separations were obtained with the mobile phase containing 10% 2-propanol for diclofop-methyl 1; benalaxy, 2; myclobutanil, 4; difenoconazole, 5; and containing 3% 2-propanol for acetofenate, 3. The optimized separation temperature was at 35°C under the supercritical fluid condition. The π-π interactions and the hydrogen bonding interactions between Chiralpak IB-H CSP and the analytes might be the main chiral discriminations on enantioseparation of these five pesticides.
NASA Astrophysics Data System (ADS)
Choi, Yunsoo; Souri, Amir Hossein
2015-04-01
To identify spatial and temporal variations over the Iranian region, this study analyzed tropospheric formaldehyde (HCHO) and nitrogen dioxide (NO2) columns from Ozone Monitoring Instrument (OMI), carbon monoxide (CO) columns from the Measurement of Pollution in the Troposphere (MOPITT), and tropospheric column O3 (TCO) from OMI/MLS (Microwave Limb Sounder) satellites from 2005 to 2012. The study discovered high levels of HCHO (∼12 × 1015 molec./cm2) from plant isoprene emissions in the air above parts of the northern forest of Iran during the summer and from the oxidation of HCHO precursors emitted from petrochemical industrial facilities and biomass burning in South West Iran. This study showed that maximum NO2 levels (∼18 × 1015 molec./cm2) were concentrated in urban cities, indicating the predominance of anthropogenic sources. The results indicate that maximum concentrations were found in the winter, mainly because of weaker local winds and higher heating fuel consumption, in addition to lower hydroxyl radicals (OH). The high CO concentrations (∼2 × 1018 molec./cm2) in the early spring were inferred to mainly originate from a strong continental air mass from anthropogenic CO "hotspots" including regions around Caspian Sea, Europe, and North America, although the external sources of CO were partly suppressed by the Arabian anticyclone and topographic barriers. Variations in the TCO were seen to peak during the summer (∼40 DU), due to intensive solar radiation and stratospheric sources. This study also examined long-term trends in TCO and its precursors over a period of eight years in five urban cities in Iran. To perform the analysis, we estimated seasonal changes and inter-seasonal variations using least-squares harmonic estimation (LS-HE), which reduced uncertainty in the trend by 5-15%. The results showed significant increases in the levels of HCHO (∼0.08 ± 0.06 × 1015 molec./cm2 yr-1), NO2 (∼0.08 ± 0.02 × 1015 molec./cm2 yr-1), and peak annual TCO (∼0.59 ± 0.56 DU yr-1) but decreases in minimum annual TCO (∼-0.42 ± 0.60 DU yr-1) caused by an increase in NO2 species and annual CO (∼-0.95 ± 0.41 × 1016 molec./cm2 yr-1) partly resulting from the transport of reduced CO. The time series of the HCHO/NO2 column ratio (a proxy for the chemical conditions) indicated that during the last decade, the cities of Tehran, Ahvaz, and Isfahan exhibited steady chemical conditions while Tabriz and Mashhad exhibited a change from NOx-saturated/mixed to more NOx-sensitive chemical conditions.
The impact of three commercially-available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE Adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide (S...
NASA Astrophysics Data System (ADS)
Contreras, Carolina
2011-12-01
Engineered nanoparticles have enhanced products and services in the fields of medicine, energy, engineering, communications, personal care, environmental treatment, and many others. The increased use of engineered nanoparticles in consumer products will lead to these materials in natural systems, inevitably becoming a potential source of pollution. The study of the stability and mobility of these materials is fundamental to understand their behavior in natural systems and predict possible health and environmental implications. In addition, the use of probabilistic methods such as sensitivity analysis applied to the parameters controlling their behavior is useful in providing support in performing a risk assessment. This research investigated the stability and mobility of two types of metal oxide nanoparticles (aluminum oxide and titanium dioxide). The stability studies tested the effect of sand, pH 4, 7, and 10, and the NaCl in concentrations of 10mM, 25mM, 50mM, and 75mM. The mobility was tested using saturated quartz sand columns and nanoparticles suspension at pH 4 and 7 and in the presence of NaCl and CaCl2 in concentrations of 0.1mM, 1mM, and 10mM. Additionally, this work performed a sensitivity analysis of physical parameters used in mobility experiment performed for titanium dioxide and in mobility experiments taken from the literature for zero valent iron nanoparticles and fluorescent colloids to determine their effect on the value C/Co of by applying qualitative and quantitative methods. The results from the stability studies showed that titanium dioxide nanoparticles (TiO2) could remain suspended in solution for up to seven days at pH 10 and pH 7 even after settling of the sand; while for pH 4 solutions titanium settled along with the sand and after seven days no particles were observed in suspension. Other stability studies showed that nanoparticle aluminum oxide (Al2O3) and titanium dioxide (TiO2) size increased with increasing ionic strength (10 to 75 mM NaCl). The results from the mobility experiments showed that ionic strength has more effect on aluminum oxide nanoparticles mobility than on titanium oxide nanoparticles mobility. For Al2O3 25% of the initial concentration was obtained in the effluent whereas for TiO2 less than the 10% of the initial concentration was observed. In general, when the ionic strength was increased the effluent of nanoparticles decreased. Collision efficiencies calculated base on the colloid filtration theory were consistent with the mobility experiments. Results from sensitivity analysis showed that for zero valent iron nanoparticles and fluorescent colloids porous medium diameter and porosity were the parameters that most influenced the variability of C/Co whereas for titanium dioxide nanoparticles C/Co was more sensitive to column length and pore water velocity.
Nitrogen Dioxide long term trends at mid and high latitudes by means of ground based observations
NASA Astrophysics Data System (ADS)
Bortoli, D.; Petritoli, A.; Giovanelli, G.; Kostadinov, I.; Ravegnani, F.
2003-04-01
The interactions between mid- and high latitudes atmospheric changes are going to be one of the main issue for the future of stratospheric and tropospheric chemistry research. A more detailed study of the ozone trends as well as a wider comprehension of the interactions with lower and higher latitudes are maybe the main arguments to which scientist should address their works in order to build-up a more detailed picture of what scenarios we have to face in the near future. GASCODs type spectrometers (Gas Analyzer Spectrometer Correlating Optical Differences) are installed at the "Ottavio Vittori" research station (44.11N, 10.42E, 2165 m asl) since June 1993, at the Italian Antarctic Station (74.69S, 164.12E) since December 1995 and at the STIL-BAS station (42.42N, 25.63E) since 1999. The instruments measure zenith scattered solar radiation between 407 and 464 nm. Nitrogen dioxide total column is retrieved with DOAS methodology. The seasonal trend of NO2 vc values is reported and it shows the expected behaviour: maximum values during the summer period while the minimum occur in the winter season in both the hemispheres. A typical behaviour of the AMPM ratio at high latitudes is highlight. A Fourier analysis is proposed as a tool to investigate the long-term components of nitrogen dioxide stratospheric amount. Results are presented and the NO2 trend is evidenced and commented. ACKNOWLEDGMENTS: The author Daniele Bortoli was financially supported by the Subprograma Ciência e Tecnologia do 3° Quadro Comunitário de Apoio. The National Antarctic Research Program (PNRA) and the Quantification and Interpretation of Long-Term UV-Vis Observations of the Stratosphere (QUILT) project supported this research.
A new DOAS instrument on long-distance IAGOS-CARIBIC flights and airborne DOAS applications
NASA Astrophysics Data System (ADS)
Penth, Lara; Frieß, Udo; Pöhler, Denis; Platt, Ulrich; Zahn, Andreas
2017-04-01
Within the IAGOS-CARIBIC project airborne DOAS (Differential Optical Absorption Spectroscopy) measurements of atmospheric trace gases are performed aboard a commercial long range passenger aircraft from Lufthansa since 2005. They provide a unique dataset for episodic, long-term and seasonal observations. The DOAS instrument is the only remote sensing technique aboard. DOAS is a well-established remote sensing technique to retrieve trace gas columns in the atmosphere from scattered light spectra of the sun. A series of trace gas species can be observed simultaneously, including nitrogen dioxide (NO2), sulphur dioxide (SO2), bromine oxide (BrO), nitrous acid (HONO), formaldehyde (HCHO) and ozone (O3). Since DOAS is a contact-free measurement technique, it is specially well suited for measuring highly reactive trace gases. It is widely used on different platforms and the airborne DOAS measurements are filling the gap between ground-based measurements and satellite data. The CARIBIC DOAS instrument is divided into an instrument unit within the CARIBIC container in the cargo hold of the aircraft, a telescope unit, which is specially designed for the permanently mounted pylon underneath the aircraft, and fiber optics in between. The instrument unit consists of three temperature stabilized spectrometers and the readout and control electronics. The telescope unit contains three telescopes, which observe scattered sunlight to the right under the elevation angles of +10˚ , -10˚ and -82˚ (nadir) relative to the horizon. This measurement geometry allows the separation of boundary layer, free tropospheric and stratospheric trace gas columns along the flight track. A new DOAS instrument was designed and installed in 2016 (first flights expected from March 2017) to improve the detection limits of NO2, SO2, BrO, HCHO, HONO, O3 and O4. Furthermore, an extended wavelength range allows to measure in addition iodine monoxide (a potentially important oxidant in the free troposphere) and glyoxal (a tracer for VOCs). The IAGOS-CARIBIC project and the significant technical improvements of the new DOAS system will be presented. Also, selected examples for possible airborne measurement applications of the CARIBIC DOAS will be shown.
Sabouni, Rana; Kazemian, Hossein; Rohani, Sohrab
2013-08-20
It is essential to capture carbon dioxide from flue gas because it is considered one of the main causes of global warming. Several materials and different methods have been reported for CO2 capturing including adsorption onto zeolites and porous membranes, as well as absorption in amine solutions. All such methods require high energy input and high cost. A new class of porous materials called Metal Organic Frameworks (MOFs) exhibited excellent performance in extracting carbon dioxide from a gas mixture. In this study, the breakthrough curves for the adsorption of carbon dioxide on CPM-5 (crystalline porous materials) were obtained experimentally and theoretically using a laboratory-scale fixed-bed column at different experimental conditions such as feed flow rate, adsorption temperature, and feed concentration. It was found that the CPM-5 has a dynamic CO2 adsorption capacity of 11.9 wt % (2.7 mmol/g) (corresponding to 8 mL/min, 298 K, and 25% v/v CO2). The tested CPM-5 showed an outstanding adsorption equilibrium capacity (e.g., 2.3 mmol/g (10.2 wt %) at 298 K) compared to other adsorbents, which can be considered as an attractive adsorbent for separation of CO2 from flue gas.
NASA Astrophysics Data System (ADS)
Wagner, A.; Blechschmidt, A.-M.; Bouarar, I.; Brunke, E.-G.; Clerbaux, C.; Cupeiro, M.; Cristofanelli, P.; Eskes, H.; Flemming, J.; Flentje, H.; George, M.; Gilge, S.; Hilboll, A.; Inness, A.; Kapsomenakis, J.; Richter, A.; Ries, L.; Spangl, W.; Stein, O.; Weller, R.; Zerefos, C.
2015-12-01
The Monitoring Atmospheric Composition and Climate (MACC) project represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (
Lundgren, Johanna; Salomonsson, John; Gyllenhaal, Olle; Johansson, Erik
2007-06-22
Metoprolol and a number of related amino alcohols and similar analytes have been chromatographed on aminopropyl (APS) and ethylpyridine (EPS) silica columns. The mobile phase was carbon dioxide with methanol as modifier and no amine additive was present. Optimal isocratic conditions for the selectivity were evaluated based on experiments using design of experiments. A central composite circumscribed model for each column was used. Factors were column temperature, back-pressure and % (v/v) of modifier. The responses were retention and selectivity versus metoprolol. The % of modifier mainly controlled the retention on both columns but pressure and temperature could also be important for optimizing the selectivity between the amino alcohols. The compounds could be divided into four and five groups on both columns, with respect to the selectivity. Furthermore, on the aminopropyl silica the analytes were more spread out whereas on the ethylpyridine silica, due to its aromaticity, retention and selectivity were closer. For optimal conditions the column temperature and back-pressure should be high and the modifier concentration low. A comparison of the selectivity using optimized conditions show a few switches of retention order between the two columns. On aminopropyl silica an aldehyde failed to be eluted owing to Schiff-base formation. Peak symmetry and column efficiency were briefly studied for some structurally close analogues. This revealed some activity from the columns that affected analytes that had less protected amino groups, a methyl group instead of isopropyl. The tailing was more marked with the ethylpyridine column even with the more bulky alkyl substituents. Plate number N was a better measure than the asymmetry factor since some analyte peaks broadened without serious deterioration of symmetry compared to homologues.
The Potential of Clear Sky Carbon Dioxide Satellite Retrievals
NASA Astrophysics Data System (ADS)
Nelson, R.; O'Dell, C.
2013-12-01
It has been shown that neglecting scattering and absorption by aerosols and thin clouds can lead to significant errors in retrievals of the column-averaged dry-air mole fraction of carbon dioxide (XCO2) from space-based measurements of near-infrared reflected sunlight. These clear sky retrievals, which assume no aerosol effects, are desirable because of their high computational efficiency relative to common full physics retrievals. Further, clear sky retrievals may be able to make higher quality measurements relative to the full physics approach because they may introduce fewer potential biases under certain circumstances. These biases can appear when we try to retrieve clouds and aerosols in the full physics methods when there are none actually present. Recent work has shown that intelligent pre-screening can remove soundings with large light-path modifications over ocean surfaces. In this work, we test the hypothesis that intelligent pre-screening of soundings may be successfully used over land surfaces as well as oceans, which would allow clear sky retrievals to be applicable over all surfaces. We also test the hypothesis that major light path modification effects associated with aerosols can be identified based on spectral tests at 0.76, 1.6, and 2 microns. This presentation summarizes our study of both simulated data and satellite observations from the GOSAT instrument in order to assess the effectiveness of using a clear sky retrieval algorithm coupled with intelligent pre-screening to accurately measure carbon dioxide from space-borne instruments.
The Impact of Increasing Carbon Dioxide on Ozone Recovery
NASA Technical Reports Server (NTRS)
Rosenfield, Joan E.; Douglass, Anne R.; Considine, David B.; Einaudi, Franco (Technical Monitor)
2001-01-01
We have used the GSFC coupled two-dimensional (2D) model to study the impact of increasing carbon dioxide from 1980 to 2050 on the recovery of ozone to its pre-1980 amounts. We find that the changes in temperature and circulation arising from increasing CO2 affect ozone recovery in a manner which varies greatly with latitude, altitude, and time of year. Middle and upper stratospheric ozone recovers faster at all latitudes due to a slowing of the ozone catalytic loss cycles. In the lower stratosphere, the recovery of tropical ozone is delayed due to a decrease in production and a speed up in the overturning circulation. The recovery of high northern latitude lower stratospheric ozone is delayed in spring and summer due to an increase in springtime heterogeneous chemical loss, and is speeded up in fall and winter due to increased downwelling. The net effect on the higher northern latitude column ozone is to slow down the recovery from late March to late July, while making it faster at other times. In the high southern latitudes, the impact of CO2 cooling is negligible. Annual mean column ozone is predicted to recover faster at all latitudes, and globally averaged ozone is predicted to recover approximately ten years faster as a result of increasing CO2.
Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J
2012-01-01
Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3).
NASA Astrophysics Data System (ADS)
Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.
2013-10-01
Tropospheric NO2 vertical column densities have been retrieved and compared for the first time in Toronto, Canada, using three methods of differing spatial scales. Remotely sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities estimated using a pair of chemiluminescence monitors situated 0.01 and 0.5 km a.g.l. (above ground level). The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by an average of 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. The monthly averaged ratio of the NO2 concentration at 0.5 to 0.01 km varied seasonally, and exhibited a negative linear dependence on the monthly average temperature, with Pearson's R = 0.83. During the coldest month, February, this ratio was 0.52 ± 0.04, while during the warmest month, July, this ratio was 0.34 ± 0.04, illustrating that NO2 is not well mixed within 0.5 km above ground level. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson's R value ranging from 0.72 to 0.81), but the in situ vertical column densities were 52 to 58% greater than the remotely sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each measurement technique.
NASA Technical Reports Server (NTRS)
Miller, J. Houston; Clarke, Greg B.; Melroy, Hilary; Ott, Lesley; Steel, Emily Wilson
2014-01-01
In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio frequency bandwidth and describe additional future goals in instrument development and deployment target
Column tests show nanoparticles (NPs) of Cu(0) and ZnO were immobile at neutral pH in saturated sand.They became mobile in the presence of trizma, humic/fulvic, and citric/oxalic/formic acids. Copper NPs were mobile at pH 9. The deposition rates of TiO2 NP aggregates in both KCl ...
Methane and Carbon Dioxide Concentrations and Fluxes in Amazon Floodplains
NASA Astrophysics Data System (ADS)
Melack, J. M.; MacIntyre, S.; Forsberg, B.; Barbosa, P.; Amaral, J. H.
2016-12-01
Field studies on the central Amazon floodplain in representative aquatic habitats (open water, flooded forests, floating macrophytes) combine measurements of methane and carbon dioxide concentrations and fluxes to the atmosphere over diel and seasonal times with deployment of meteorological sensors and high-resolution thermistors and dissolved oxygen sondes. A cavity ringdown spectrometer is used to determine gas concentrations, and floating chambers and bubble collectors are used to measure fluxes. To further understand fluxes, we measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. These results allow calculations of vertical mixing within the water column and of air-water exchanges using surface renewal models. Methane and carbon dioxide fluxes varied as a function of season, habitat and water depth. High CO2 fluxes at high water are related to high pCO2; low pCO2 levels at low water result from increased phytoplankton uptake. CO2 fluxes are highest at turbulent open water sites, and pCO2 is highest in macrophyte beds. Fluxes and pCH4 are high in macrophyte beds.
Teutenberg, T; Goetze, H-J; Tuerk, J; Ploeger, J; Kiffmeyer, T K; Schmidt, K G; Kohorst, W gr; Rohe, T; Jansen, H-D; Weber, H
2006-05-05
A specially designed heating system for temperature-programmed HPLC was developed based on experimental measurements of eluent temperature inside a stainless steel capillary using a very thin thermocouple. The heating system can be operated at temperatures up to 225 degrees C and consists of a preheating, a column heating and a cooling unit. Fast cycle times after a temperature gradient can be realized by an internal silicone oil bath which cools down the preheating and column heating unit. Long-term thermal stability of a polybutadiene-coated zirconium dioxide column has been evaluated using a tubular oven in which the column was placed. The packing material was stable after 50h of operation at 185 degrees C. A mixture containing four steroids was separated at ambient conditions using a mobile phase of 25% acetonitrile:75% deionized water and a mobile phase of pure deionized water at 185 degrees C using the specially designed heating system and the PBD column. Analysis time could be drastically reduced from 17 min at ambient conditions and a flow rate of 1 mL/min to only 1.2 min at 185 degrees C and a flow rate of 5 mL/min. At these extreme conditions, no thermal mismatch was observed and peaks were not distorted, thus underlining the performance of the developed heating system. Temperature programming was performed by separating cytostatic and antibiotic drugs with a temperature gradient using only water as the mobile phase. In contrast to an isocratic elution of this mixture at room temperature, overall analysis time could be reduced two-fold from 20 to 10 min.
NASA Astrophysics Data System (ADS)
Anand, Jasdeep S.; Monks, Paul S.
2017-07-01
Land use regression (LUR) models have been used in epidemiology to determine the fine-scale spatial variation in air pollutants such as nitrogen dioxide (NO2) in cities and larger regions. However, they are often limited in their temporal resolution, which may potentially be rectified by employing the synoptic coverage provided by satellite measurements. In this work a mixed-effects LUR model is developed to model daily surface NO2 concentrations over the Hong Kong SAR during the period 2005-2015. In situ measurements from the Hong Kong Air Quality Monitoring Network, along with tropospheric vertical column density (VCD) data from the OMI, GOME-2A, and SCIAMACHY satellite instruments were combined with fine-scale land use parameters to provide the spatiotemporal information necessary to predict daily surface concentrations. Cross-validation with the in situ data shows that the mixed-effects LUR model using OMI data has a high predictive power (adj. R2 = 0. 84), especially when compared with surface concentrations derived using the MACC-II reanalysis model dataset (adj. R2 = 0. 11). Time series analysis shows no statistically significant trend in NO2 concentrations during 2005-2015, despite a reported decline in NOx emissions. This study demonstrates the utility in combining satellite data with LUR models to derive daily maps of ambient surface NO2 for use in exposure studies.
NASA Astrophysics Data System (ADS)
Obland, M. D.; Nehrir, A. R.; Lin, B.; Harrison, F. W.; Kooi, S. A.; Choi, Y.; Plant, J.; Yang, M. M.; Antill, C.; Campbell, J. F.; Ismail, S.; Browell, E. V.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.; Moore, B., III; Crowell, S.
2014-12-01
The ASCENDS CarbonHawk Experiment Simulator (ACES) is an Intensity-Modulated Continuous-Wave lidar system recently developed at NASA Langley Research Center that seeks to advance technologies and techniques critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. These advancements include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. ACES simultaneously transmits five laser beams: three from commercial EDFAs operating near 1571 nm, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1260 nm. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number densities and retrieve the average column CO2 mixing ratio. The outgoing laser beams are aligned to the field of view of ACES' three fiber-coupled 17.8-cm diameter athermal telescopes. The backscattered light collected by the three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.7 MHz and operates service-free using a tactical dewar and cryocooler. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. Full instrument development concluded in the spring of 2014. After ground range tests of the instrument, ACES successfully completed six test flights on the Langley Hu-25 aircraft in July, 2014, and recorded data at multiple altitudes over land and ocean surfaces with and without intervening clouds. Preliminary results from these flights will be presented in this paper.
McClure, Ryan P; Hamre, Kathleen D; Niederlehner, B R; Munger, Zackary W; Chen, Shengyang; Lofton, Mary E; Schreiber, Madeline E; Carey, Cayelan C
2018-04-30
Metalimnetic oxygen minimum zones (MOMs) commonly develop during the summer stratified period in freshwater reservoirs because of both natural processes and water quality management. While several previous studies have examined the causes of MOMs, much less is known about their effects, especially on reservoir biogeochemistry. MOMs create distinct redox gradients in the water column which may alter the magnitude and vertical distribution of dissolved methane (CH 4 ) and carbon dioxide (CO 2 ). The vertical distribution and diffusive efflux of CH 4 and CO 2 was monitored for two consecutive open-water seasons in a eutrophic reservoir that develops MOMs as a result of the operation of water quality engineering systems. During both summers, elevated concentrations of CH 4 accumulated within the anoxic MOM, reaching a maximum of 120 μM, and elevated concentrations of CO 2 accumulated in the oxic hypolimnion, reaching a maximum of 780 μM. Interestingly, the largest observed diffusive CH 4 effluxes occurred before fall turnover in both years, while peak diffusive CO 2 effluxes occurred both before and during turnover. Our data indicate that MOMs can substantially change the vertical distribution of CH 4 and CO 2 in the water column in reservoirs, resulting in the accumulation of CH 4 in the metalimnion (vs. at the sediments) and CO 2 in the hypolimnion. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong
2016-01-01
For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.
Sulfur dioxide reactions on ice surfaces: Implications for dry deposition to snow
Martha H. Conklin; Richard A. Sommerfeld; S. Kay Laird; John E. Villinski
1993-01-01
Controlled exposure of ice to a reactive gas, SO2, demonstrated the importance of the chemical composition of the ice surface on the accumulation of acidity in snow. In a series of bench-scale continuous-flow column experiments run at four temperatures (-1, -8, -30 and -60°C), SO2 was shown to dissolve and to react with other species in the ice-air interfacial region...
Comparison of MAX-DOAS profiling algorithms during CINDI-2 - Part 2: trace gases
NASA Astrophysics Data System (ADS)
Hendrick, Francois; Friess, Udo; Tirpitz, Lukas; Apituley, Arnoud; Van Roozendael, Michel; Kreher, Karin; Richter, Andreas; Wagner, Thomas
2017-04-01
The second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) took place at the Cabauw Experimental Site for Atmospheric Research (CESAR; Utrecht area, The Netherlands) from 25 August until 7 October 2016. CINDI-2 was aiming at assessing the consistency of MAX-DOAS slant column density measurements of tropospheric species (NO2, HCHO, O3, and O4) relevant for the validation of future ESA atmospheric Sentinel missions, through coordinated operation of a large number of DOAS and MAXDOAS instruments from all over the world. An important objective of the campaign was to study the relationship between remote-sensing column and profile measurements of the above species and collocated reference ancillary observations. For this purpose, the CINDI-2 Profiling Task Team (CPTT) was created, involving 22 groups performing aerosol and trace gas vertical profile inversion using dedicated MAX-DOAS profiling algorithms, as well as the teams responsible for ancillary profile and surface concentration measurements (NO2 analysers, NO2 sondes, NO2 and Raman LIDARs, CAPS, Long-Path DOAS, sunphotometer, nephelometer, etc). The main purpose of the CPTT is to assess the consistency of the different profiling tools for retrieving aerosol extinction and trace gas vertical profiles through comparison exercises using commonly defined settings and to validate the retrievals with correlative observations. In this presentation, we give an overview of the MAX-DOAS vertical profile comparison results, focusing on NO2 and HCHO, the aerosol retrievals being presented in a companion abstract led by U. Frieß. The performance of the different algorithms is investigated with respect to the various sky and weather conditions and aerosol loadings encountered during the campaign. The consistency between optimal-estimation-based and parameterized profiling tools is also evaluated for these different conditions, together with the level of agreement with available NO2 and HCHO ancillary observations. This comparison study will be put in the perspective of the development of a centralized MAX-DOAS processing system within the framework of the ESA Fiducial Reference Measurements (FRM) project.
NASA Astrophysics Data System (ADS)
Langenberg, Stefan; Schurath, Ulrich
2018-05-01
The well established technique of gas chromatography is used to investigate interactions of sulfur dioxide with a crystalline ice film in a fused silica wide bore column. Peak shape analysis of SO2 chromatograms measured in the temperature range 205-265 K is applied to extract parameters describing a combination of three processes: (i) physisorption of SO2 at the surface, (ii) dissociative reaction with water and (iii) slow uptake into bulk ice. Process (ii) is described by a dissociative Langmuir isotherm. The pertinent monolayer saturation capacity is found to increase with temperature. The impact of process (iii) on SO2 peak retention time is found to be negligible under our experimental conditions. By analyzing binary chromatograms of hydrophobic n-hexane and hydrophilic acetone, the premelt surface layer is investigated in the temperature range 221-263 K, possibly giving rise to irregular adsorption. Both temperature dependencies fit simple van't Hoff equations as expected for process (i), implying that irregular adsorption of acetone is negligible in the investigated temperature range. Adsorption enthalpies of -45 ± 5 and -23±2 kJ mol-1 are obtained for acetone and n-hexane. The motivation of our study was to assess the vertical displacement of SO2 and acetone in the wake of aircraft by adsorption on ice particles and their subsequent sedimentation. Our results suggest that this transport mechanism is negligible.
NASA Astrophysics Data System (ADS)
Ha, Jong Heon; Jeen, Sung-Wook
2017-04-01
Groundwater quality change due to the leakage of CO2 in a shallow aquifer system is an important aspect of environmental impact assessment in a carbon dioxide capture and storage (CCS) site. This study evaluated geochemical changes in a shallow aquifer system resulting from leakage of CO2 through laboratory column experiments and reactive transport modeling. In the column experiments, two columns were set up and filled with the sediment from the Environmental Impact Test (EIT) facility of the Korea CO2 Storage Environmental Management (K-COSEM) Research Center. Groundwater, also collected form the EIT site, was purged with CO2 or Ar gases, and was pumped into the columns with the pumping rates of 200-1000 mL day-1 (0.124-0.62 m day-1). Profile and time-series effluent samplings were conducted to evaluate the spatial and temporal geochemical changes in the aquifer materials upon contact with CO2. The experimental results showed that after injecting CO2-purged groundwater, the pH was decreased, and alkalinity, electrical conductivity (EC) and concentrations of major cations were increased. The spatial and temporal geochemical changes from the column experiments indicate that dissolution of aquifer materials in contact with dissolved CO2 is the major contributor to the changes in groundwater geochemistry. The reactive transport modeling has been conducted to reproduce these geochemical changes in the aquifer system by incorporating dissolution of the dominant aluminosilicate minerals in the aquifer such as microcline, anorthite, albite, and biotite. This study suggests that pH, alkalinity, EC and concentrations of major cations are important monitoring parameters for detecting CO2 leakage in a shallow groundwater aquifer system.
NASA Astrophysics Data System (ADS)
Dekemper, E.; Fussen, D.; Vanhellemont, F.; Vanhamel, J.; Pieroux, D.; Berkenbosch, S.
2017-12-01
In an urban environment, nitrogen dioxide is emitted by a multitude of static and moving point sources (cars, industry, power plants, heating systems,…). Air quality models generally rely on a limited number of monitoring stations which do not capture the whole pattern, neither allow for full validation. So far, there has been a lack of instrument capable of measuring NO2 fields with the necessary spatio-temporal resolution above major point sources (power plants), or more extended ones (cities). We have developed a new type of passive remote sensing instrument aiming at the measurement of 2-D distributions of NO2 slant column densities (SCDs) with a high spatial (meters) and temporal (minutes) resolution. The measurement principle has some similarities with the popular filter-based SO2 camera (used in volcanic and industrial sulfur emissions monitoring) as it relies on spectral images taken at wavelengths where the molecule absorption cross section is different. But contrary to the SO2 camera, the spectral selection is performed by an acousto-optical tunable filter (AOTF) capable of resolving the target molecule's spectral features. A first prototype was successfully tested with the plume of a coal-firing power plant in Romania, revealing the dynamics of the formation of NO2 in the early plume. A lighter version of the NO2 camera is now being tested on other targets, such as oil refineries and urban air masses.
NASA Astrophysics Data System (ADS)
Liu, M.; Lin, J.; Boersma, F.; Pinardi, G.; Wang, Y.; Chimot, J.; Wagner, T.; Xie, P.; Eskes, H.; Van Roozendael, M.; Hendrick, F.
2017-12-01
Satellite retrieval of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) is influenced by aerosols substantially. Aerosols affect the retrieval of "effective cloud fraction (CF)" and "effective cloud top pressure (CP)" that are used in the subsequent NO2 retrieval to account for the presentence of clouds. And aerosol properties and vertical distributions directly affect the NO2 air mass factor (AMF) calculations. Our published POMINO algorithm uses a parallelized LIDORT-driven AMFv6 code to derive CF, CP and NO2 VCD. Daily information on aerosol optical properties are taken from GEOS-Chem simulations, with aerosol optical depth (AOD) further constrained by monthly MODIS AOD. However, the published algorithm does not include an observation-based constraint of aerosol vertical distribution. Here we construct a monthly climatological observation dataset of aerosol extinction profiles, based on Level-2 CALIOP data over 2007-2015, to further constrain aerosol vertical distributions. GEOS-Chem captures the temporal variations of CALIOP aerosol layer heights (ALH) but has an overall underestimate by about 0.3 km. It tends to overestimate the aerosol extinction by 10% below 2 km but with an underestimate by 30% above 2 km, leading to a low bias by 10-30% in the retrieved tropospheric NO2 VCD. After adjusting GEOS-Chem aerosol extinction profiles by the CALIOP monthly ALH climatology, the retrieved NO2 VCDs increase by 4-16% over China on a monthly basis in 2012. The improved NO2 VCDs are better correlated to independent MAX-DOAS observations at three sites than POMINO and DOMINO are - especially for the polluted cases, R2 reaches 0.76 for the adjusted POMINO, much higher than that for the published POMINO (0.68) and DOMINO (0.38). The newly retrieved CP increases by 60 hPa on average, because of a stronger aerosol screening effect. Compared to the CF used in DOMINO, which implicitly includes aerosol information, our improved CF is much lower and can reach a value of zero on actual cloud-free days. Overall, constraining aerosol vertical profiles greatly improves the retrievals of clouds and NO2 VCDs from satellite remote sensing. Our algorithm can be applied, with minimum modifications, to formaldehyde, sulfur dioxide and other species with similar retrieval methodologies.
NASA Astrophysics Data System (ADS)
Krings, T.; Gerilowski, K.; Buchwitz, M.; Reuter, M.; Tretner, A.; Erzinger, J.; Heinze, D.; Burrows, J. P.; Bovensmann, H.
2011-04-01
MAMAP is an airborne passive remote sensing instrument designed for measuring columns of methane (CH4) and carbon dioxide (CO2). The MAMAP instrument consists of two optical grating spectrometers: One in the short wave infrared band (SWIR) at 1590-1690 nm to measure CO2 and CH4 absorptions and another one in the near infrared (NIR) at 757-768 nm to measure O2 absorptions for reference purposes. MAMAP can be operated in both nadir and zenith geometry during the flight. Mounted on an airplane MAMAP can effectively survey areas on regional to local scales with a ground pixel resolution of about 29 m × 33 m for a typical aircraft altitude of 1250 m and a velocity of 200 km h-1. The retrieval precision of the measured column relative to background is typically ≲ 1% (1σ). MAMAP can be used to close the gap between satellite data exhibiting global coverage but with a rather coarse resolution on the one hand and highly accurate in situ measurements with sparse coverage on the other hand. In July 2007 test flights were performed over two coal-fired powerplants operated by Vattenfall Europe Generation AG: Jänschwalde (27.4 Mt CO2 yr-1) and Schwarze Pumpe (11.9 Mt CO2 yr-1), about 100 km southeast of Berlin, Germany. By using two different inversion approaches, one based on an optimal estimation scheme to fit Gaussian plume models from multiple sources to the data, and another using a simple Gaussian integral method, the emission rates can be determined and compared with emissions as stated by Vattenfall Europe. An extensive error analysis for the retrieval's dry column results (XCO2 and XCH4) and for the two inversion methods has been performed. Both methods - the Gaussian plume model fit and the Gaussian integral method - are capable of delivering reliable estimates for strong point source emission rates, given appropriate flight patterns and detailed knowledge of wind conditions.
Using Satellite Remote Sensing and Modelling for Insights into N02 Air Pollution and NO2 Emissions
NASA Technical Reports Server (NTRS)
Lamsal, L. N.; Martin, R. V.; Krotkov, N. A.; Bucsela, E. J.; Celarier, E. A.; vanDonkelaar, A.; Parrish, D.
2012-01-01
Nitrogen oxides (NO(x)) are key actors in air quality and climate change. Satellite remote sensing of tropospheric NO2 has developed rapidly with enhanced spatial and temporal resolution since initial observations in 1995. We have developed an improved algorithm and retrieved tropospheric NO2 columns from Ozone Monitoring Instrument. Column observations of tropospheric NO2 from the nadir-viewing satellite sensors contain large contributions from the boundary layer due to strong enhancement of NO2 in the boundary layer. We infer ground-level NO2 concentrations from the OMI satellite instrument which demonstrate significant agreement with in-situ surface measurements. We examine how NO2 columns measured by satellite, ground-level NO2 derived from satellite, and NO(x) emissions obtained from bottom-up inventories relate to world's urban population. We perform inverse modeling analysis of NO2 measurements from OMI to estimate "top-down" surface NO(x) emissions, which are used to evaluate and improve "bottom-up" emission inventories. We use NO2 column observations from OMI and the relationship between NO2 columns and NO(x) emissions from a GEOS-Chem model simulation to estimate the annual change in bottom-up NO(x) emissions. The emission updates offer an improved estimate of NO(x) that are critical to our understanding of air quality, acid deposition, and climate change.
NASA Astrophysics Data System (ADS)
Imbiriba, B.
2017-12-01
Carbon dioxide and methane are the most important anthropogenic greenhouse contributions to climate change. Space-based remote sensing measurements of carbon dioxide and methane would help to understand the generation, absorption and transport mechanisms and characterization of such gases. Space-based hyperspectral thermal infrared remote sensing measurements using NASA's Atmospheric Infrared Sounder (AIRS) instrument can provide 14 years of observations of radiances at the top of the atmosphere.Here we present a Optimal Estimation based retrieval system for surface temperature, water vapor, carbon dioxide, methane, and other trace gases, based on selected AIRS channels that allow for CO2 sensitivity down to the lower part of the middle troposphere. We use the SARTA fast forward model developed at University of Maryland Baltimore County, and use the ERA product for prior state atmospheric profiles.We retrieve CO2 and CH4 column concentrations across 14 years of AIRS measurements, for clear only field-of-views, using the AIRS L1B Calibration Subset. We then compare these to the standard AIRS L2 CO2 retrievals, as well TES, and OCO2 data, and the GlobalView/CarbonTracker CO2/CH4 model data from NOAA. We evaluate the hemispheric seasonal cycles, growth rates, and possible interhemispheric transport. We also evaluate the use of atmospheric nitrous oxide concentration to correct for the errors in the temperature profile.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
...-9811-5] Approval and Promulgation of Air Quality Implementation Plans; Indiana; Sulfur Dioxide and Nitrogen Dioxide Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION... implementation plan (SIP) for nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ) under the Clean Air Act. This...
Nitrogen Dioxide's Impact on Indoor Air Quality
The two most prevalent oxides of nitrogen are nitrogen dioxide (NO2) and nitric oxide (NO). Both are toxic gases with NO2 being a highly reactive oxidant and corrosive. The primary sources indoors are combustion processes.
NASA Astrophysics Data System (ADS)
Fisher-Power, L.; Cheng, T.
2017-12-01
Transport of engineered nanoparticles (ENP) in subsurface environments has important implications to water quality and soil contamination. Although extensive research has been conducted to understand the effects of water chemistry on ENP transport, less attention has been paid to influences from the transport medium/matrix. The objective of this research is to investigate the effects of natural organic matter (NOM) and Fe/Al oxyhydroxides in a natural sediment on ENP transport. A sediment was collected and separated into four portions, one of which was unmodified, and the others treated to remove specific components (organic matter, Fe/Al oxyhydroxides, or both organic matter and Fe/Al oxyhydroxides). Transport of nanoscale titanium dioxide (nTiO2) in columns packed with quartz sand and each of the four types of the sediment under water-saturated conditions was studied. Our results showed that nTiO2 transport was strongly influenced by pH and sediment composition. When influent pH = 5, nTiO2 transport in all the sediments was low, as positively-charged nTiO2 was attracted to negatively charged NOM, quartz, and other minerals. nTiO2 transport was slightly enhanced in columns packed with untreated sediment or Fe/Al oxyhydroxides removed sediment due to dissolved organic matter generated by the partial dissolution of NOM, which adsorbed onto nTiO2 surface and reversed its zeta potential to negative. When influent pH = 9, nTiO2 transport was generally high since negatively-charged nTiO2 was repelled by negatively charged transport medium. However, in columns packed with the organic matter removed sediment or the Fe/Al oxyhydroxides removed sediment, nTiO2 transport was low. This was attributable to pH buffering by the sediment, which decreased pore water pH in the column, resulting in zeta potential change and electrostatic attraction between Fe/Al oxyhydroxides and nTiO2. This research demonstrates that electrostatic forces between nTiO2 and mineral/organic components in natural sediments is a key factor that controls nTiO2 retention and transport, and that both NOM and Fe/Al oxyhydroxides may substantially influence nTiO2 transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honaker, R.Q.; Reed, S.; Mohanty, M.K.
1997-05-01
A circuit comprised of advanced fine coal cleaning technologies was evaluated in an operating preparation plant to determine circuit performance and to compare the performance with current technologies used to treat -16 mesh fine coal. The circuit integrated a Floatex hydrosizer, a Falcon enhanced gravity concentrator and a Jameson flotation cell. A Packed-Column was used to provide additional reductions in the pyritic sulfur and ash contents by treatment of the Floatex-Falcon-Jameson circuit product. For a low sulfur Illinois No. 5 coal, the pyritic sulfur content was reduced from 0.67% to 0.34% at a combustible recovery of 93.2%. The ash contentmore » was decreased from 27.6% to 5.84%, which equates to an organic efficiency of 95% according to gravity-based washability data. The separation performance achieved on a high sulfur Illinois No. 5 coal resulted in the rejection of 72.7% of the pyritic sulfur and 82.3% of the ash-forming material at a recovery of 8 1 %. Subsequent pulverization of the cleaned product and retreatment in a Falcon concentrator and Packed-Column resulted in overall circuit ash and pyritic sulfur rejections of 89% and 93%, respectively, which yielded a pyritic sulfur content reduction from 2.43% to 0.30%. This separation reduced the sulfur dioxide emission rating of an Illinois No. 5 coal from 6.21 to 1.75 lbs SO{sub 2}/MBTU, which is Phase I compliance coal. A comparison of the results obtained from the Floatex-Falcon-Jameson circuit with those of the existing circuit revealed that the novel fine coal circuit provides 10% to 20% improvement in mass yield to the concentrate while rejecting greater amounts of ash and pyritic sulfur.« less
Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.
Yadav, Anant; Choudhary, Piyush; Atri, Neelam; Teir, Sebastian; Mutnuri, Srikanth
2016-11-01
The objective of the present study was to set up a small-scale pilot reactor at ONGC Hazira, Surat, for capturing CO 2 from vent gas. The studies were carried out for CO 2 capture by either using microalgae Chlorella sp. or a consortium of microalgae (Scenedesmus quadricauda, Chlorella vulgaris and Chlorococcum humicola). The biomass harvested was used for anaerobic digestion to produce biogas. The carbonation column was able to decrease the average 34 vol.% of CO 2 in vent gas to 15 vol.% of CO 2 in the outlet gas of the carbonation column. The yield of Chlorella sp. was found to be 18 g/m 2 /day. The methane yield was 386 l CH 4 /kg VS fed of Chlorella sp. whereas 228 l CH 4 /kg VS fed of the consortium of algae.
NASA Technical Reports Server (NTRS)
Martins, Douglas K.; Najjar, Raymond G.; Tzortziou, Maria; Abuhassan, Nader; Thompson, Anne M.; Kollonige, Debra E.
2016-01-01
In situ measurements of O3 and nitrogen oxides (NO + NO2=NOx) and remote sensing measurements of total column NO2 and O3 were collected on a ship in the North Atlantic Ocean as part of the Deposition of Atmospheric Nitrogen to Coastal Ecosystems (DANCE) campaign in July August 2014,100 km east of the mid-Atlantic United States. Relatively clean conditions for both surface in situ mixing ratio and total column O3 and NO2 measurements were observed throughout the campaign. Increased surface and column NO2 and O3 amounts were observed when a terrestrial air mass was advected over the study region. Relative to ship-based total column measurements using a Pandora over the entire study, satellite measurements overestimated total column NO2 under these relatively clean atmospheric conditions over offshore waters by an average of 16. Differences are most likely due to proximity, or lack thereof, to surface emissions; spatial averaging due to the field of view of the satellite instrument; and the lack of sensitivity of satellite measurements to the surface concentrations of pollutants. Total column O3 measurements from the shipboard Pandora showed good correlation with the satellite measurements(r 0.96), but satellite measurements were 3 systematically higher than the ship measurements, in agreement with previous studies. Derived values of boundary layer height using the surface in situ and total column measurements of NO2 are much lower than modeled and satellite-retrieved boundary layer heights, which highlight the differences in the vertical distribution between terrestrial and marine environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinert, R.A.; Sanders, J.S.
Radish and marigold plants were exposed to 0.3 ppm of nitrogen dioxide (NO/sub 2/), sulfur dioxide (SO/sub 2/), and/or ozone (O/sub 3/) nine times during a 3-wk period. No interactions among NO/sub 2/, SO/sub 2/, and O/sub 3/ were detected in measurement of radish foliage and root dry weight. Treatments containing O/sub 3/ reduced radish foliage and root (hypocotyl) dry weight 356 and 531 mg/plant, respectively. Interactions among NO/sub 2/, SO/sub 2/, and O/sub 3/ occurred in shoots and roots of marigold. SO/sub 2/ alone reduced marigold shoot and root dry weight, but this effect was reversed in the presencemore » of O/sub 3/. The suppressive effect of SO/sub 2/ on root weight was also reversed by NO/sub 3/. Treatments containing SO/sub 2/ reduced dry flower weight 0.17 g/plant, but effects of the pollutant interactions observed in shoots and roots were not present.« less
Column with CNT/magnesium oxide composite for lead(II) removal from water.
Saleh, Tawfik A; Gupta, Vinod K
2012-05-01
In this study, manganese dioxide-coated multiwall carbon nanotube (MnO(2)/CNT) nanocomposite has been successfully synthesized. The as-produced nanocomposite was characterized by different characteristic tools, such as X-ray diffraction, SEM, and FTIR. The MnO(2)/CNT nanocomposite was utilized as a fixed bed in a column system for removal of lead(II) from water. The experimental conditions were investigated and optimized. The pH range between 3 and 7 was studied; the optimum removal was found when the pH was equal to 6 and 7. The thickness of MnO(2)/CNT nanocomposite compact layer was also changed to find the optimum parameter for higher removal. It was observed that the slower the flow rates of the feed solution the higher the removal because of larger contact time.
Deshwal, Bal Raj; Jin, Dong Seop; Lee, Si Hyun; Moon, Seung Hyun; Jung, Jong Hyeon; Lee, Hyung Keun
2008-02-11
The present study attempts to clean up nitric oxide from the simulated flue gas using aqueous chlorine-dioxide solution in the bubbling reactor. Chlorine-dioxide is generated by chloride-chlorate process. Experiments are carried out to examine the effect of various operating variables like input NO concentration, presence of SO(2), pH of the solution and NaCl feeding rate on the NO(x) removal efficiency at 45 degrees C. Complete oxidation of nitric oxide into nitrogen dioxide occurred on passing sufficient ClO(2) gas into the scrubbing solution. NO is finally converted into nitrate and ClO(2) is reduced into chloride ions. A plausible reaction mechanism concerning NO(x) removal by ClO(2) is suggested. DeNO(x) efficiency increased slightly with the increasing input NO concentration. The presence of SO(2) improved the NO(2) absorption but pH of solution showed marginal effect on NO(2) absorption. NO(x) removal mechanism changed when medium of solution changed from acidic to alkaline. A constant NO(x) removal efficiency of about 60% has been achieved in the wide pH range of 3-11 under optimized conditions.
Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.
Kwak, Hyoung S; Uhm, Han S; Hong, Yong C; Choi, Eun H
2015-12-17
A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10(-3), nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10(-7), nO2/nN = 5.39 × 10(-5), where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-18
..., Disapproval and Promulgation of Air Quality Implementation Plans; Colorado: Smoke, Opacity and Sulfur Dioxide... Carbon Monoxide, NO 2 mean Nitrogen Dioxide and SO 2 mean Sulfur Dioxide. The initials BACT mean Best.... Summary of SIP Revisions Colorado's Regulation 1 governs opacity, particulates, sulfur dioxide (SO 2...
Visualization of NO2 emission sources using temporal and spatial pattern analysis in Asia
NASA Astrophysics Data System (ADS)
Schütt, A. M. N.; Kuhlmann, G.; Zhu, Y.; Lipkowitsch, I.; Wenig, M.
2016-12-01
Nitrogen dioxide (NO2) is an indicator for population density and level of development, but the contributions of the different emission sources to the overall concentrations remains mostly unknown. In order to allocate fractions of OMI NO2 to emission types, we investigate several temporal cycles and regional patterns.Our analysis is based on daily maps of tropospheric NO2 vertical column densities (VCDs) from the Ozone Monitoring Instrument (OMI). The data set is mapped to a high resolution grid by a histopolation algorithm. This algorithm is based on a continuous parabolic spline, producing more realistic smooth distributions while reproducing the measured OMI values when integrating over ground pixel areas.In the resulting sequence of zoom in maps, we analyze weekly and annual cycles for cities, countryside and highways in China, Japan and Korea Republic and look for patterns and trends and compare the derived results to emission sources in Middle Europe and North America. Due to increased heating in winter compared to summer and more traffic during the week than on Sundays, we dissociate traffic, heating and power plants and visualized maps with different sources. We will also look into the influence of emission control measures during big events like the Olympic Games 2008 and the World Expo 2010 as a possibility to confirm our classification of NO2 emission sources.
Aomura, Yoko; Kobayashi, Yoshihiko; Miyazawa, Yuzuru; Shimizu, Hideharu
2010-03-12
Rapid analysis of trace permanent gas impurities in high purity ammonia gas for the microelectronics industry is described, using a gas chromatograph equipped with a phtoionization detector. Our system incorporates a reactive precolumn in combination with the analytical column to remove the ammonia matrix peak that otherwise would complicate the measurements due to baseline fluctuations and loss of analytes. The performance of 21 precolumn candidate materials was evaluated. Copper sulfate pentahydrate (CuSO(4).5H(2)O) was shown to selectively react with ammonia at room temperature and atmospheric column pressures, without affecting the hydrogen, oxygen, nitrogen, methane or carbon monoxide peak areas. To prevent loss of trace carbon dioxide, an additional boron trioxide reactant layer was inserted above the copper sulfate pentahydrate bed in the reactive precolumn. Using the combined materials, calibration curves for carbon dioxide proved to be equivalent in both ammonia and helium matrix gases. These curves were equivalent in both matrix gases. The quantitative performance of the system was also evaluated. Peak repeatabilities, based on eight injections, were in the range of 4.1-8.2% relative standard deviation; and detection limits were 6.9 ppb for H(2), 1.8 ppb for O(2), 1.6 ppb for N(2), 6.4 ppb for CH(4), 13 ppb for CO, and 5.4 ppb for CO(2). Copyright (c) 2010 Elsevier B.V. All rights reserved.
Lemasson, Elise; Bertin, Sophie; Hennig, Philippe; Boiteux, Hélène; Lesellier, Eric; West, Caroline
2015-08-21
Impurity profiling of organic products that are synthesized as possible drug candidates requires complementary analytical methods to ensure that all impurities are identified. Supercritical fluid chromatography (SFC) is a very useful tool to achieve this objective, as an adequate selection of stationary phases can provide orthogonal separations so as to maximize the chances to see all impurities. In this series of papers, we have developed a method for achiral SFC-MS profiling of drug candidates, based on a selection of 160 analytes issued from Servier Research Laboratories. In the first part of this study, focusing on mobile phase selection, a gradient elution with carbon dioxide and methanol comprising 2% water and 20mM ammonium acetate proved to be the best in terms of chromatographic performance, while also providing good MS response [1]. The objective of this second part was the selection of an orthogonal set of ultra-high performance stationary phases, that was carried out in two steps. Firstly, a reduced set of analytes (20) was used to screen 23 columns. The columns selected were all 1.7-2.5μm fully porous or 2.6-2.7μm superficially porous particles, with a variety of stationary phase chemistries. Derringer desirability functions were used to rank the columns according to retention window, column efficiency evaluated with peak width of selected analytes, and the proportion of analytes successfully eluted with good peak shapes. The columns providing the worst performances were thus eliminated and a shorter selection of columns (11) was obtained. Secondly, based on 160 tested analytes, the 11 columns were ranked again. The retention data obtained on these columns were then compared to define a reduced set of the best columns providing the greatest orthogonality, to maximize the chances to see all impurities within a limited number of runs. Two high-performance columns were thus selected: ACQUITY UPC(2) HSS C18 SB and Nucleoshell HILIC. Copyright © 2015 Elsevier B.V. All rights reserved.
On April 3, 2012, EPA sdecided to retain the current secondary national ambient air quality standard (NAAQS) for nitrogen dioxide (NO2) and sulfur dioxide (SO2).This page contains a fact sheet describing that action.
Chlorine dioxide as a post-disinfectant for Dutch drinking water.
Wondergem, E; van Dijk-Looijaard, A M
1991-02-01
Chlorine dioxide has some important advantages over chlorine with respect to water quality (no formation of trihalomethanes, no impairment of taste and no odor) and stability when used for oxidation/disinfection of drinking water. In this paper, results are presented of experiments into the consumption and reaction kinetics of chlorine dioxide in a number of (drinking) waters in The Netherlands. It was found that chlorine dioxide consumption is related to the dissolved oxygen content (DOC) of the water and the reaction time. Water samples from a plant that applied ozonation and activated carbon filtration had a very low chlorine dioxide consumption. Other water quality parameters, including pH and CO3(2-), did not have any influence on consumption. The temporary advised Dutch guidelines of 0.2 mg l-1 (dosage) is sufficient for activated carbon treated water. For other Dutch drinking waters, however, none of the 0.2 mg l-1 chlorine dioxide remained after a reaction time of 10 min, as was also found for the water of Dutch pumping stations where chlorine dioxide is at present used for disinfection.
Chang, Moo Been; Lee, How Ming; Wu, Feeling; Lai, Chi Ren
2004-08-01
Oxides of nitrogen (NOx) [nitrogen oxide (NO) + nitrogen dioxide (NO2)] and sulfur dioxide (SO2) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for simultaneous removal of SO2 and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO2. The water-soluble NO2 then can be removed by wet scrubbing accompanied with SO2 removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel-generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO2. More than 90% removal of NO, NOx, and SO2 can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO2 and SO2 absorption. Energy efficiencies for NOx and SO2 removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO2, and SO2 from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product (approximately 100 ppm) is found and should be considered.
NASA Technical Reports Server (NTRS)
He, Hao; Vinnikov, Konstantin Y.; Li, Can; Krotkov, Nickolay Anatoly; Jongeward, Andrew R.; Li, Zhanqing; Stehr, Jeffrey W.; Hains, Jennifer; Dickerson, RUssell R.
2016-01-01
This paper addresses the questions of what effect local regulations can have on pollutants with different lifetimes and how surface observations and remotely sensed data can be used to determine the impacts. We investigated the decadal trends of tropospheric sulfur dioxide (SO2) and aerosol pollution over Maryland and its surrounding states, using surface, aircraft, and satellite measurements. Aircraft measurements indicated fewer isolated SO2 plumes observed in summers, a 40 decrease of column SO2, and a 20 decrease of atmospheric optical depth (AOD) over Maryland after the implementation of local regulations on sulfur emissions from power plants (90 reduction from 2010). Surface observations of SO2 and particulate matter (PM) concentrations in Maryland show similar trends. OMI SO2 and MODIS AOD observations were used to investigate the column contents of air pollutants over the eastern U.S.; these indicate decreasing trends in column SO2 (60 decrease) and AOD (20 decrease). The decrease of upwind SO2 emissions also reduced aerosol loadings over the downwind Atlantic Ocean near the coast by 20, while indiscernible changes of the SO2 column were observed. A step change of SO2 emissions in Maryland starting in 20092010 had an immediate and profound benefit in terms of local surface SO2 concentrations but a modest impact on aerosol pollution, indicating that short-lived pollutants are effectively controlled locally, while long-lived pollutants require regional measures.
Ito, Kazuaki; Takayama, Yohichi; Makabe, Nobuyuki; Mitsui, Ryo; Hirokawa, Takeshi
2005-08-12
A fast and highly sensitive ion chromatographic method using monolithic ODS columns was developed for the determination of nitrite (NO2-) and nitrate (NO3-) in seawater. Two monolithic ODS columns (50 mm x 4.6 mm i.d. + 100 mm x 4.6 mm i.d.) connected in series were coated and equilibrated with 5 mM cetyltrimethylammonium chloride (CTAC) aqueous solution. The column efficiency with 0.5 M NaCl as the mobile phase did not decrease in spite of the increase in flow rate of the mobile phase. Thus, good chromatograms were obtained within 3 minutes for NO2- and NO3 in artificial seawater without interferences by coexisting ions. The detection limit (S/N = 3) with UV detection at 225 nm was 0.8 and 1.6 microg/L for NO2- and NO3-, respectively. The characteristics of the monolithic CTA(+)-coated ODS columns were discussed. The present method was successfully applied to the fast and sensitive determination of NO2- and NO3- in real seawater samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinert, R.A.; Sanders, J.S.
Radish and marigold plants were exposed to 0.3 ppM of nitrogen dioxide (NO/sub 2/), sulfur dioxide (SO/sub 2/), and /or ozone (O/sub 3/) nine times during a 3-wk period. No interactions among NO/sub 2/, SO/sub 2/, and O/sub 3/ were detected in measurement of radish foliage and root dry weight. Treatments containing O/sub 3/ reduced radish foliage and root (hypocotyl) dry weight 356 and 531 mg/plant, respectively. Interactions among NO/sub 2/, SO/sub 2/ and O/sub 3/ occurred in shoots and roots of marigold. SO/sub 2/ alone reduced marigold shoot and root dry weight, but this effect was reversed in themore » presence of O/sub 3/. The suppressive effect of SO/sub 2/ on root weight was also reversed by NO/sub 2/. Treatments containing SO/sub 2/ reduced dry flower weight 0.17 g/plant, but effects of the pollutant interactions observed in shoots and roots were not present. 8 references, 2 tables.« less
NASA Astrophysics Data System (ADS)
Aaron, R. B.; Zheng, Q.; Flynn, P.; Singha, K.; Brantley, S.
2008-12-01
Three flow-through columns outfitted with Ag/AgCl electrodes were constructed to test the effects of different microbial processes on the geophysical measurements of self potential (SP), bulk electrical conductivity (σ b), and induced polarization (IP). The columns were filled with sieved, Fe-bearing subsurface sediment from the Delmarva Peninsula near Oyster, VA, inoculated (9:1 ratio) with a freshly-collected, shallow subsurface sediment from a wetland floodplain (Dorn Creek) near Madison, WI. Each of the columns was fed anoxic and sterile PIPES buffered artificial groundwater (PBAGW) containing different concentrations of acetate and nitrate. The medium fed to Column 1 (nitrate-reducing) was amended with 100 μM acetate and 2 mM nitrate. Column 2 (iron-reducing) was run with PBAGW containing 1.0 mM acetate and 0 mM nitrate. Column 3 (alternating redox state) was operated under conditions designed to alternately stimulate nitrate-reducing and iron-reducing populations to provide conditions, i.e., the presence of both nitrate and microbially-produced Fe(II), that would allow growth of nitrate-dependent Fe(II)-oxidizing populations. We operated Column 3 with a cycling strategy of 14-18 days of high C medium (1 mM acetate and 100 μ M nitrate) followed by 14-18 days of low C medium (100 μ M acetate and 2 mM nitrate). Effluent chemistry (NO3-, NO2-, NH4+, acetate, and Fe2+) was sampled daily for four months so as to be concurrent with the electrical measurements. We observed chemical evidence of iron reduction (dissolved [Fe(II)] = 0.2mM) in the effluent from the iron reduction and alternating redox columns. Chemical depletion of NO3- ([NO3-] ranged from 1 to 0.02mM), the production of NO2-, and possible production of NH4+ (0.2 mM) was observed in the nitrate reducing column as well as the alternating redox column. All three columns displayed loss of acetate as microbial activity progressed. σ b remained constant in the alternating redox column (~0.15 S/m), increased in the iron reducing column (0.2 S/m to 0.8 S/m) and increased markedly in the nitrate reducing column (0.3 S/m to 1.2 S/m). This runs counter to our expectations. We expected to see an increase in σ b as [Fe(II)] increased and a decrease in σ b as nitrate was removed from the columns. All three columns showed little or no IP response at the outset and developed negative chargeabilities over the course of the experiment (as great as -20 mV/V). These values are anomalous and difficult to interpret. SP signals show the most variable response. Initially all three columns had SP values at or very near 0 mV. SP for the nitrate reducing column remained constant around 0mV. The iron reducing column displayed an increasingly negative SP response for the first two months that became constant at about -200mV for the remainder of the experiment. The alternating redox column displayed an oscillating signal recording large positive values (~475 mV) when nitrate concentrations were low and returning to a baseline value (~160mV) when nitrate was introduced to the column. The results of these column experiments indicate that there is a link between microbial activity and geophysical signals and that further research is needed to better quantify these signals.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben
2016-01-01
This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.
Investigation variation of carbon dioxide based on GOSAT data in peninsular Malaysia
NASA Astrophysics Data System (ADS)
Sim, C. K.; Lim, H. S.; MatJafri, M. Z.
2015-10-01
Carbon dioxide (CO2) is an inodorous and transparent gas, and naturally originates in our atmosphere. Due to its optical characteristics, CO2 is the most important greenhouse gas and play a key role in climate change due to an effective thermal infrared (IR) radiation absorber. Satellite observations of atmospheric carbon dioxide (CO2) can significantly improve our knowledge about the sources and sinks of CO2. The remote sensing satellite, namely Greenhouse Gases Observing Satellite (GOSAT) was employed to investigate the spatial and variations of CO2 column-averaged dry airmole fractions, denoted XCO2 over Peninsular Malaysia from January 2013 to December 2013. The analysis of CO2 in the study area shows the significant differences between northeast monsoon (NEM) and the southwest monsoon (SWM). During NEM season, cold air outbreaks from Siberia spreads to equatorial region in the form of north-easterly cold surge winds and associated with a low-level anticyclone over Southeast Asia. Inversely, air masses from the southwest contribute to long-range air pollution due to transportation of atmospheric CO2 by wind is associated with biomass burning in Sumatra, Indonesia. The GOSAT data and the Satellite measurements are able to measure the increase of the atmosphere CO2 values over different regions.
Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch
Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.
2015-01-01
A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10−3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10−7, nO2/nN = 5.39 × 10−5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957
NASA Astrophysics Data System (ADS)
Semprini, L.; Azizian, M.
2012-12-01
The demonstration of transformation of chlorinated aliphatic compounds (CAHs) in the subsurface is a challenge, especially when the products are carbon dioxide (CO2) and chloride ion. The groundwater contaminant carbon tetrachloride (CT) is of particular interest since a broad range of transformation products can be potentially formed under anaerobic conditions. The ability to demonstrate the transformation of CT to CO2 as a non toxic endproduct, is also of great interest. Results will be presented from a continuous flow column study where 13C labeled CT was used to demonstrate its transformation to CO2. The column was packed with a quartz sand and bioaugmented the Evanite Culture (EV) that is capable of transforming tetrachloroethene (PCE) to ethene. The column was continously fed a synthetic groundwater that was amended with PCE (0.10 mM) and either formate (1.5 mM) or lactate (1.1 mM), which ferments to produce hydrogen (H2) as the ultimate electron donor. Earlier CT transformation studies with the column, in the absence of sulfate reduction, and with formate added as a donor found CT (0.015 mM) was over 98% transformed with about 20% converted to chloroform (CF) (0.003 mM) and with a transient detection of chloromethane (CM). Methane and carbon disulfide, as potential products, were not detected. Neither CT nor CF inhibited the reductive dehalogenation of PCE to ethene. A series of transient studies conducted after these initial CT transformation tests, but in the absence of CT, showed formate remained an effective substrate for maintaining sulfate reduction and PCE transformation. Lactate, which was effectively fermented prior to CT addition, was not effectively fermented, with propionate accumulating as a fermentation product. When lactate was added, PCE was mainly transformed to cis-dichloroethene (cis-DCE) and VC, and sulfate reduction did not occur. In order to restore effective lactate fermentation the column was then bioaugmented with an EV culture that was capable of lactate fermentation. After bioaugmentation, effective lactate fermentation, sulfate reduction and PCE transformation to ethene was achieved. Unlabeled CT (0.015 mM) addition was then started and complete transformation was achieved with a transient build-up of CF and chloromethane, which were subsequently removed below their detection limits. CT continued to be completely transformed after the influent concentration was increased to 0.03 mM. 13C labeled CT (0.03 mM) was then added to the column. GC-MS analysis showed that 13C labeled CO2 was formed at near stoichiometric levels to the CT that was transformed. The results clearly demonstrate that CT can being transformed to CO2 at high CT concentrations, while maintaining effective PCE dehalogenation, sulfate reduction and lactate fermentation. The results also illustrate the great potential of using 13C labeled compounds in subsurface investigations.
Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David; ...
2016-10-13
In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less
Simonin, Marie; Martins, Jean M F; Uzu, Gaëlle; Vince, Erwann; Richaume, Agnès
2016-10-04
Soils are exposed to nanoparticles (NPs) as a result of their increasing use in many commercial products. Adverse effects of NPs on soil microorganisms have been reported in several ecotoxicological studies using microcosms. Although repeated exposures are more likely to occur in soils, most of these previous studies were performed as a single exposure to NPs. Contrary to single contamination, the study of multiple NP contaminations in soils requires the use of specialized setups. Using a soil column experiment, we compared the influence of single and repeated exposures (one, two, or three exposures that resulted in the same final concentration applied) on the transport of titanium dioxide (TiO 2 ) NPs through soil and the effect of these different exposure scenarios on the abundance and activity of soil nitrifying microbial communities after a 2 month incubation. The transport of TiO 2 NPs was very limited under both single and repeated exposures and was highest for the lowest concentration injected during the first application. Significant decreases in nitrification activity and ammonia-oxidizing archaea and bacteria populations were observed only for the repeated exposure scenario (three TiO 2 NP contaminations). These results suggest that, under repeated exposures, the transport of TiO 2 NPs to deep soil layers and groundwater is limited and that a chronic contamination is more harmful for the soil microbiological functioning than a single exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David
In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less
Molybdenum-UO2 cermet irradiation at 1145 K.
NASA Technical Reports Server (NTRS)
Mcdonald, G.
1971-01-01
Two molybdenum-uranium dioxide cermet fuel pins with molybdenum clad were fission-heated in a forced-convection helium coolant for sufficient time to achieve 5.3% burnup. The cermet core contained 20 wt % of 93.2% enriched uranium dioxide. The results were as follows: there was no visible change in the appearance of the molybdenum clad during irradiation; the maximum increase in diameter of the fuel pins was 0.8%; there was no migration of uranium dioxide along grain boundaries and no evident interaction between molybdenum and uranium dioxide; and, finally, approximately 12% of the fission gas formed was released from the cermet core into the gas plenum.
NASA Technical Reports Server (NTRS)
Lee, Chulkyu; Martin Randall V.; vanDonkelaar, Aaron; Lee, Hanlim; Dickerson, RUssell R.; Hains, Jennifer C.; Krotkov, Nickolay; Richter, Andreas; Vinnikov, Konstantine; Schwab, James J.
2011-01-01
Top-down constraints on global sulfur dioxide (SO2) emissions are inferred through inverse modeling using SO2 column observations from two satellite instruments (SCIAMACHY and OMI). We first evaluated the S02 column observations with surface SO2 measurements by applying local scaling factors from a global chemical transport model (GEOS-Chem) to SO2 columns retrieved from the satellite instruments. The resulting annual mean surface SO2 mixing ratios for 2006 exhibit a significant spatial correlation (r=0.86, slope=0.91 for SCIAMACHY and r=0.80, slope = 0.79 for OMI) with coincident in situ measurements from monitoring networks throughout the United States and Canada. We evaluate the GEOS-Chem simulation of the SO2 lifetime with that inferred from in situ measurements to verity the applicability of GEOS-Chem for inversion of SO2 columns to emissions. The seasonal mean SO2 lifetime calculated with the GEOS-Chem model over the eastern United States is 13 h in summer and 48 h in winter, compared to lifetimes inferred from in situ measurements of 19 +/- 7 h in summer and 58 +/- 20 h in winter. We apply SO2 columns from SCIAMACHY and OMI to derive a top-down anthropogenic SO2 emission inventory over land by using the local GEOS-Chem relationship between SO2 columns and emissions. There is little seasonal variation in the top-down emissions (<15%) over most major industrial regions providing some confidence in the method. Our global estimate for annual land surface anthropogenic SO2 emissions (52.4 Tg S/yr from SCIAMACHY and 49.9 Tg S / yr from OMI) closely agrees with the bottom-up emissions (54.6 Tg S/yr) in the GEOS-Chem model and exhibits consistency in global distributions with the bottom-up emissions (r = 0.78 for SCIAMACHY, and r = 0.77 for OMI). However, there are significant regional differences.
Oshchepkov, Sergey; Bril, Andrey; Yokota, Tatsuya; Yoshida, Yukio; Blumenstock, Thomas; Deutscher, Nicholas M; Dohe, Susanne; Macatangay, Ronald; Morino, Isamu; Notholt, Justus; Rettinger, Markus; Petri, Christof; Schneider, Matthias; Sussman, Ralf; Uchino, Osamu; Velazco, Voltaire; Wunch, Debra; Belikov, Dmitry
2013-02-20
This paper presents an improved photon path length probability density function method that permits simultaneous retrievals of column-average greenhouse gas mole fractions and light path modifications through the atmosphere when processing high-resolution radiance spectra acquired from space. We primarily describe the methodology and retrieval setup and then apply them to the processing of spectra measured by the Greenhouse gases Observing SATellite (GOSAT). We have demonstrated substantial improvements of the data processing with simultaneous carbon dioxide and light path retrievals and reasonable agreement of the satellite-based retrievals against ground-based Fourier transform spectrometer measurements provided by the Total Carbon Column Observing Network (TCCON).
Cold Spots in the Martian Polar Regions: Evidence of Carbon Dioxide Depletion?
NASA Technical Reports Server (NTRS)
Weiss, Benjamin P.; Ingersoll, Andrew P.
2000-01-01
Regions of very low, rapidly varying brightness temperatures have been observed near the martian winter poles by several spacecraft. One possibility is that the CO2 condensation temperature is lowered by depletion of CO2 in the air at the surface. We estimate the rate at which this low-molecular-weight air would disperse into the high-molecular-weight air above and show that it is generally faster than the rate of supply. This dispersal could be prevented if there is a strong temperature inversion (warm air above colder air) near the surface. Without an inversion, the entire atmospheric column could become depleted. However, depleted columns take a long time to form, and they are inconsistent with the rapid fluctuations in the cold spot locations and temperatures. Because low-altitude temperature inversions cannot be ruled out by existing observations, CO2 depletion is still a viable explanation for the martian cold spots.
NASA Technical Reports Server (NTRS)
Mohamadinejad, H.; Knox, J. C.; Smith, James E.
1999-01-01
The importance of the wall effect on packed beds in the adsorption and desorption of carbon dioxide, nitrogen, and water on molecular sieve 5A of 0.127 cm in radius is examined experimentally and with one-dimensional computer simulations. Experimental results are presented for a 22.5-cm long by 4.5-cm diameter cylindrical column with concentration measurements taken at various radial locations. The set of partial differential equations are solved using finite differences and Newman's method. Comparison of test data with the axial-dispersed, non-isothermal, linear driving force model suggests that a two-dimensional model (submitted to Separation Science and Technology) is required for accurate simulation of the average column breakthrough concentration. Additional comparisons of test data with the model provided information on the interactive effects of carrier gas coadsorption with CO2, as well as CO2-H2O interactions.
Seasonal trends of atmospheric nitrogen dioxide and sulfur dioxide over North Santa Clara, Cuba.
Alejo, Daniellys; Morales, Mayra C; de la Torre, Jorge B; Grau, Ricardo; Bencs, László; Van Grieken, René; Van Espen, Piet; Sosa, Dismey; Nuñez, Vladimir
2013-07-01
Atmospheric nitrogen dioxide (NO2) and sulfur dioxide (SO2) levels were monitored simultaneously by means of Radiello passive samplers at six sites of Santa Clara city, Cuba, in the cold and the warm seasons in 2010. The dissolved ionic forms of NO2 and SO2 as nitrate and sulfite plus sulfate, respectively, were determined by means of ion chromatography. Analysis of NO2 as nitrite was also performed by UV-Vis spectrophotometry. For NO2, significant t tests show good agreement between the results of IC and UV-Vis methods. The NO2 and SO2 concentrations peaked in the cold season, while their minimum levels were experienced in the warm season. The pollutant levels do not exceed the maximum allowable limit of the Cuban Standard 39:1999, i.e., 40 μg/m(3) and 50 μg/m(3) for NO2 and SO2, respectively. The lowest pollutant concentrations obtained in the warm season can be attributed to an increase in their removal via precipitation (scavenging) while to the decreased traffic density and industrial emission during the summer holidays (e.g., July and August).
Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS
NASA Astrophysics Data System (ADS)
Dix, Barbara; Koenig, Theodore K.; Volkamer, Rainer
2016-11-01
We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversion of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCDref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and adding flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMRpara) and the true VMR (VMRtrue) is excellent for all trace gases. Offsets, slopes and R2 values for the linear fit of VMRpara over VMRtrue are, respectively (0.008 ± 0.001) pptv, 0.988 ± 0.001, 0.987 for BrO; (-0.0066 ± 0.0001) pptv, 1.0021 ± 0.0003, 0.9979 for IO; (-0.17 ± 0.03) pptv, 1.0036 ± 0.0001, 0.9997 for NO2. The agreement for atmospheres with aerosol shows comparable R2 values to the Rayleigh case, but slopes deviate a bit more from one: (0.093 ± 0.002) pptv, 0.933 ± 0.002, 0.907 for BrO; (0.0021 ± 0.0004) pptv, 0.887 ± 0.001, 0.973 for IO; (8.5 ± 0.1) pptv, 0.8302 ± 0.0006, 0.9923 for NO2. VMRpara from field data are further compared with optimal estimation retrievals (VMROE). Least orthogonal distance fit of the data give the following equations: BrOpara = (0.1 ± 0.2) pptv + (0.95 ± 0.14) × BrOOE; IOpara = (0.01 ± 0.02) pptv + (1.00 ± 0.12) × IOOE; NO2para = (3.9 ± 2.5) pptv + (0.87 ± 0.15) × NO2OE. Overall, we conclude that the parameterization retrieval is accurate with an uncertainty of 20 % for IO, 30 % for BrO and NO2, but not better than 0.05 pptv IO, 0.5 pptv BrO and 10 pptv NO2. The retrieval is applicable over a wide range of atmospheric conditions and measurement geometries and not limited to the interpretation of vertical profile measurements in the remote troposphere.
NASA Technical Reports Server (NTRS)
Mao, Jianping; Kawa, S. Randolph
2003-01-01
A series of sensitivity studies is carried out to explore the feasibility of space-based global carbon dioxide (CO2) measurements for global and regional carbon cycle studies. The detection method uses absorption of reflected sunlight in the CO2 vibration-rotation band at 1.58 microns. The sensitivities of the detected radiances are calculated using the line-by-line model (LBLRTM), implemented with the DISORT (Discrete Ordinates Radiative Transfer) model to include atmospheric scattering in this band. The results indicate that (a) the small (approx.1%) changes in CO2 near the Earth's surface are detectable in this CO2 band provided adequate sensor signal-to-noise ratio and spectral resolution are achievable; (b) the radiance signal or sensitivity to CO2 change near the surface is not significantly diminished even in the presence of aerosols and/or thin cirrus clouds in the atmosphere; (c) the modification of sunlight path length by scattering of aerosols and cirrus clouds could lead to large systematic errors in the retrieval; therefore, ancillary aerosol/cirrus cloud data are important to reduce retrieval errors; (d) CO2 retrieval requires good knowledge of the atmospheric temperature profile, e.g. approximately 1K RMS error in layer temperature; (e) the atmospheric path length, over which the CO2 absorption occurs, must be known in order to correctly interpret horizontal gradients of CO2 from the total column CO2 measurement; thus an additional sensor for surface pressure measurement needs to be attached for a complete measurement package.
NASA Astrophysics Data System (ADS)
Apituley, Arnoud; van Roozendael, Michel; Hendrick, Francois; Kreher, Karin; Richter, Andreas; Wagner, Thomas; Friess, Udo; Participants, Cindi-2
2017-04-01
For the validation of space borne observations of NO2 and other trace gases from hyperspectral imagers, ground based instruments based on the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the observations from orbit. In both cases, retrievals take into account the light path of scattered sunlight though the entire atmosphere. Since MAXDOAS instruments are relatively low cost and can be operated autonomously almost anywhere, they are credible candidates to form a world-wide ground based reference network for satellite observations. To ensure proper traceability of the MAXDOAS observations, a thorough intercomparison is mandatory. The Cabauw Experimental Site for Atmospheric Research (CESAR) site in centre of The Netherlands was the stage of the Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments (CINDI) in June-July 2009 and again for the second campaign, CINDI-2, in 2016. Cabauw was chosen because the flat terrain offered a free view of large parts of the horizon, needed to accommodate the viewing geometry of the MAXDOAS observations. The location is under influence of both clean as well as polluted airmasses. This gives a wide range of possible trace gas concentrations and mixtures. Furthermore, at CESAR a wide range of observations are routinely carried out that fulfil the requirement to provide the background necessary for unraveling the differences between the observations from different MAXDOAS instruments that can be quite diverse in design and data treatment. These observations include parameters needed to understand the light paths, i.e. in-situ aerosol observations of optical and microphysical properties, as well as vertical profiles of aerosol optical properties by (Raman) lidar. In addition, vertical profiles of NO2 could be measured during CINDI-2 using the unique NO2 sonde, and a NO2 lidar system. With the imminent launch of Sentinel-5 Precursor/TROPOMI, with a nadir pixelsize of 3.5 × 3.5 km2, and recent developments in MAXDOAS instruments there was a need for CINDI-2. This campaign was completed in September 2016 and had the goals to: To assess the consistency of slant column measurements of key target species (NO2, O3, O2O2 and HCHO) relevant for the validation of S5P and the future ESA atmospheric Sentinels, from a large number of DOAS and MAXDOAS instruments from all over the world, to study the relationship between remote-sensing column and profile measurements of those species and reference measurements of the same species, and to investigate the horizontal representativeness of MAXDOAS measuring systems in view of their use for the validation of satellite tropospheric measurements on the scale of 25-50 km2. A feature of recent MAXDOAS developments is the use azimuthal scanning, in addition to elevation scanning such as in e.g. the PANDORA type of instruments. This, and the number of participating instruments, that expanded to 42, posed a challenge to the design of the CINDI-2 campaign. To support the campaign goals, NO2 profiles were again provided by NO2 sondes and lidar, as well as through in-situ observations using the Cabauw meteorological tower. Extensive aerosol information was gathered using Raman aerosol lidar as well as by in situ samplers. The analysis of the CINDI-2 data is ongoing. In the presentation a campaign overview will be given. http://www.cesar-observatory.nl http://www.tropomi.eu/science/cindi-2
Constraining the uncertainty in emissions over India with a regional air quality model evaluation
NASA Astrophysics Data System (ADS)
Karambelas, Alexandra; Holloway, Tracey; Kiesewetter, Gregor; Heyes, Chris
2018-02-01
To evaluate uncertainty in the spatial distribution of air emissions over India, we compare satellite and surface observations with simulations from the U.S. Environmental Protection Agency (EPA) Community Multi-Scale Air Quality (CMAQ) model. Seasonally representative simulations were completed for January, April, July, and October 2010 at 36 km × 36 km using anthropogenic emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model following version 5a of the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants project (ECLIPSE v5a). We use both tropospheric columns from the Ozone Monitoring Instrument (OMI) and surface observations from the Central Pollution Control Board (CPCB) to closely examine modeled nitrogen dioxide (NO2) biases in urban and rural regions across India. Spatial average evaluation with satellite retrievals indicate a low bias in the modeled tropospheric column (-63.3%), which reflects broad low-biases in majority non-urban regions (-70.1% in rural areas) across the sub-continent to slightly lesser low biases reflected in semi-urban areas (-44.7%), with the threshold between semi-urban and rural defined as 400 people per km2. In contrast, modeled surface NO2 concentrations exhibit a slight high bias of +15.6% when compared to surface CPCB observations predominantly located in urban areas. Conversely, in examining extremely population dense urban regions with more than 5000 people per km2 (dense-urban), we find model overestimates in both the column (+57.8) and at the surface (+131.2%) compared to observations. Based on these results, we find that existing emission fields for India may overestimate urban emissions in densely populated regions and underestimate rural emissions. However, if we rely on model evaluation with predominantly urban surface observations from the CPCB, comparisons reflect model high biases, contradictory to the knowledge gained using satellite observations. Satellites thus serve as an important emissions and model evaluation metric where surface observations are lacking, such as rural India, and support improved emissions inventory development.
Sandstrom, Mark W.; Wydoski, Duane S.; Schroeder, Michael P.; Zamboni, Jana L.; Foreman, William T.
1992-01-01
A method for the isolation of organonitrogen herbicides from natural water samples using solid-phase extraction and analysis by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase extraction cartridges containing octadecyl-bonded porous silica to remove the herbicides. The cartridges are dried using carbon dioxide, and adsorbed herbicides are removed from the cartridges by elution with 1.8 milliliters of hexaneisopropanol (3:1). Extracts of the eluants are analyzed by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of at least three characteristic ions. The method detection limits are dependent on sample matrix and each particular herbicide. The method detection limits, based on a 100-milliliter sample size, range from 0.02 to 0.25 microgram per liter. Recoveries averaged 80 to 115 percent for the 23 herbicides and 2 metabolites in 1 reagent-water and 2 natural-water samples fortified at levels of 0.2 and 2.0 micrograms per liter.
Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Niño.
Liu, Junjie; Bowman, Kevin W; Schimel, David S; Parazoo, Nicolas C; Jiang, Zhe; Lee, Meemong; Bloom, A Anthony; Wunch, Debra; Frankenberg, Christian; Sun, Ying; O'Dell, Christopher W; Gurney, Kevin R; Menemenlis, Dimitris; Gierach, Michelle; Crisp, David; Eldering, Annmarie
2017-10-13
The 2015-2016 El Niño led to historically high temperatures and low precipitation over the tropics, while the growth rate of atmospheric carbon dioxide (CO 2 ) was the largest on record. Here we quantify the response of tropical net biosphere exchange, gross primary production, biomass burning, and respiration to these climate anomalies by assimilating column CO 2 , solar-induced chlorophyll fluorescence, and carbon monoxide observations from multiple satellites. Relative to the 2011 La Niña, the pantropical biosphere released 2.5 ± 0.34 gigatons more carbon into the atmosphere in 2015, consisting of approximately even contributions from three tropical continents but dominated by diverse carbon exchange processes. The heterogeneity of the carbon-exchange processes indicated here challenges previous studies that suggested that a single dominant process determines carbon cycle interannual variability. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Space-based observations of nitrogen dioxide: Trends in anthropogenic emissions
NASA Astrophysics Data System (ADS)
Russell, Ashley Ray
Space-based instruments provide routine global observations, offering a unique perspective on the spatial and temporal variation of atmospheric constituents. In this dissertation, trends in regional-scale anthropogenic nitrogen oxide emissions (NO + NO2 ≡ NOx) are investigated using high resolution observations from the Ozone Monitoring Instrument (OMI). By comparing trends in OMI observations with those from ground-based measurements and an emissions inventory, I show that satellite observations are well-suited for capturing changes in emissions over time. The high spatial and temporal resolutions of the observations provide a uniquely complete view of regional-scale changes in the spatial patterns of NO 2. I show that NOx concentrations have decreased significantly in urban regions of the United States between 2005 and 2011, with an average reduction of 32 ± 7%. By examining day-of-week and interannual trends, I show that these reductions can largely be attributed to improved emission control technology in the mobile source fleet; however, I also show that the economic downturn of the late 2000's has impacted emissions. Additionally, I describe the development of a high-resolution retrieval of NO2 from OMI observations known as the Berkeley High Resolution (BEHR) retrieval. The BEHR product uses higher spatial and temporal resolution terrain and profile parameters than the operational retrievals and is shown to provide a more quantitative measure of tropospheric NO2 column density. These results have important implications for future retrievals of NO2 from space-based observations.
Comparison of MAX-DOAS profiling algorithms during CINDI-2 - Part 1: aerosols
NASA Astrophysics Data System (ADS)
Friess, Udo; Hendrick, Francois; Tirpitz, Jan-Lukas; Apituley, Arnoud; van Roozendael, Michel; Kreher, Karin; Richter, Andreas; Wagner, Thomas
2017-04-01
The second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) took place at the Cabauw Experimental Site for Atmospheric Research (CESAR; Utrecht area, The Netherlands) from 25 August until 7 October 2016. CINDI-2 was aiming at assessing the consistency of MAX-DOAS slant column density measurements of tropospheric species (NO2, HCHO, O3, and O4) relevant for the validation of future ESA atmospheric Sentinel missions, through coordinated operation of a large number of DOAS and MAXDOAS instruments from all over the world. An important objective of the campaign was to study the relationship between remote-sensing column and profile measurements of the above species and collocated reference ancillary observations. For this purpose, the CINDI-2 Profiling Task Team (CPTT) was created, involving 22 groups performing aerosol and trace gas vertical profile inversion using dedicated MAX-DOAS profiling algorithms, as well as the teams responsible for ancillary profile and surface concentration measurements (NO2 analysers, NO2 sondes, NO2 and Raman LIDARs, CAPS, Long-Path DOAS, sun photometer, nephelometer, etc). The main purpose of the CPTT is to assess the consistency of the different profiling tools for retrieving aerosol extinction and trace gas vertical profiles through comparison exercises using commonly defined settings and to validate the retrievals with correlative observations. In this presentation, we give an overview of the MAX-DOAS vertical profile comparison results, focusing on the retrieval of aerosol extinction profiles, with the trace gas retrievals being presented in a companion abstract led by F. Hendrick. The performance of the different algorithms is investigated with respect to the variable visibility and cloud conditions encountered during the campaign. The consistency between optimal-estimation-based and parameterized profiling tools is also evaluated for these different conditions, together with the level of agreement with available ancillary aerosol observations, including sun photometer, nephelometer and LIDAR. This comparison study will be put in the perspective of the development of a centralized MAX-DOAS processing system within the framework of the ESA Fiducial Reference Measurements (FRM) project.
Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges
2012-08-10
The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Aheyeva, Viktoryia; Gruzdev, Aleksandr; Grishaev, Mikhail
Data of ground-based measurements of NO2 column contents are analyzed to study winter-spring NO2 anomalies associated with negative anomalies in column ozone and stratospheric temperature. Episodes of significant decrease in column NO2 contents in the winter-spring period of 2011 in the northern hemisphere (NH) were detected at European and Siberian stations of Zvenigorod (55.7°N, Moscow Region) and Tomsk (56.5°N, West Siberia) in the middle latitudes, Harestua (60.2°N), Sodankyla (67.4°N, both in North Europe), and Zhigansk (66.8°N, East Siberia) in the high latitudes, and at the Arctic station of Scoresbysund (70.5°N, Greenland). All the stations, except Tomsk, are a part of the Network of the Detection of Atmospheric Composition Change (NDACC), and the data are accesses at http://ndacc.org. The decrease in NO2 is generally accompanied by total ozone and stratospheric temperature decrease and is shown to be caused by the transport of stratospheric air from the region of the ozone hole observed that season in the Arctic. Overpass total ozone data from Giovanni service and radiosonde data were used for the analysis. Although negative NO2 anomalies due to the transport from the Arctic were also observed in some other years, the anomalies in 2011 reached record magnitudes. A significant positive correlation has been found between variations in NO2 and ozone columns as well as NO2 column and stratospheric temperature during the winter-spring period of 2011, whereas the correlation is much weaker in years without Arctic ozone depletion. The correlation becomes even stronger if only episodes with significant NO2 decrease are considered. For example the correlation coefficients between NO2 and ozone columns deviations are about 0.9 for Zvenigorod and Scoresbysund. Correlation coefficients between variations in column NO2 and total ozone and stratospheric temperature as well as coefficients of regression of NO2 on ozone and temperature in the winter-spring period of 2011 for the Siberian stations are less than those for European stations. For comparison analysis, data of column NO2, total ozone and stratospheric temperature at the southern hemisphere (SH) stations of Dumont D’Urville (66.7°S, the Antarctic), Macquarie Island (54.5°S) and Kerguelen Island (49.3°S) (all stations are NDACC stations) were used. Correlation and regression coefficients between variations in column NO2 and total ozone as well as in column NO2 and stratospheric temperature for the winter-spring periods at the SH stations depend on the phase of the quasi-biennial oscillation (QBO) in the 30 hPa equatorial wind velocity. The correlation coefficients and the coefficients of regression of NO2 on ozone and temperature for the west QBO phase are large compared to those for the east phase. The 2011 Arctic ozone hole was observed during the west phase of the 30 hPa QBO. The calculated correlation coefficients at the NH stations for the winter-spring period of 2011 associated with the Arctic ozone hole are close to similar coefficients at the SH stations in winter-spring periods for the west QBO phase. The regression coefficients at the NH stations are less than those at the SH stations for the west QBO phase but greater than similar coefficients for the east phase. We can conclude that physico-chemical processes specific for ozone hole conditions cause spatial correlation between distribution of stratospheric NO2 and distributions of total ozone and temperature in polar and adjacent regions, which is generally stronger for stronger ozone deficit in a polar region. This results in significant time correlation between NO2, ozone and temperature at observation sites due to transport processes.
Guo, Yingming; Huang, Tinglin; Wen, Gang; Cao, Xin
2015-08-01
To solve the problem of shortened backwashing intervals in groundwater plants, several disinfectants including ozone (O3), hydrogen peroxide (H2O2) and chlorine dioxide (ClO2) were examined to peel off the film from the quartz sand surface in four pilot-scale columns. An optimized oxidant dosage and oxidation time were determined by batch tests. Subsequently, the optimized conditions were tested in the four pilot-scale columns. The results demonstrated that the backwashing intervals increased from 35.17 to 54.33 (H2O2) and to 53.67 hr (ClO2) after the oxidation treatments, and the increase of backwashing interval after treatment by O3 was much less than for the other two treatments. Interestingly, the treatment efficiency of filters was not affected by O3 or H2O2 oxidation; but after oxidation by ClO2, the treatment efficiency was deteriorated, especially the ammonia removal (from 96.96% to 24.95%). The filter sands before and after the oxidation were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. Compared with the oxidation by O3 and H2O2, the structures on the surface of filter sands were seriously damaged after oxidation by ClO2. The chemical states of manganese on the surfaces of those treated sands were only changed by ClO2. The damage of the structures and the change of the chemical states of manganese might have a negative effect on the ammonia removal. In summary, H2O2 is a suitable agent for film peeling. Copyright © 2015. Published by Elsevier B.V.
Poe, Donald P
2005-06-17
A general theory for efficiency of nonuniform columns with compressible mobile phase fluids is applied to the elution of an unretained solute in packed-column supercritical fluid chromatography (pSFC). The theoretical apparent plate height under isothermal conditions is given by the Knox equation multiplied by a compressibility correction factor f1, which is equal to the ratio of the temporal-to-spatial average densities of the mobile phase. If isothermal conditions are maintained, large pressure drops in pSFC should not result in excessive efficiency losses for elution of unretained solutes.
NASA Technical Reports Server (NTRS)
Duncan, Bryan N.; Yoshida, Yasuko; Olson, Jennifer R.; Sillman, Sanford; Martin, Randall V.; Lamsal, Lok; Hu, Yongtao; Pickering, Kenneth E.; Retscher, Christian; Allen, Dale J.;
2010-01-01
We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the "Ratio") from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios less than 1 and NOx at Ratios greater than 2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria. the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2. and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g .. Chicago). the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g ., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.
NASA Astrophysics Data System (ADS)
Gruzdev, A.; Elokhov, A.
Since 1990, NO2 measurements are carried out at Zvenigorod Research Station (56°N, 37°E), Moscow region, with the help of zenith viewing spectrophotometer in spectral range 435-450 nm. The instrument and method of observations were verified in comparison campaigns within the framework of the Network for Detection of Stratospheric Change. Measurements are done during morning and evening twilight at solar zenith angles 84-96°. Slant column NO2 abundances are derived from observed spectra taking into account O3 and NO2 absorption, single molecular and aerosol scattering, and the Ring effect. The NO2 abundances in the vertical column as well as vertical NO2 profiles are derived as solution of inverse mathematical problem (with Chahine method) using a spherical single scattering model and a one-dimensional photochemical model. Derived quantities are (1) NO2 abundances within 5-km thick layers in the stratosphere and troposphere, (2) NO2 abundance in the thin atmospheric near-surface layer and (3) columnar NO2 abundances in the troposphere (0-10 km) and the stratosphere (10-50 km) as integrals over appropriate layers. Results of measurements show variability of stratospheric and tropospheric NO2 at different time scales from the diurnal to the interannual scale. Out of the period affected by the Pinatubo eruption (1992-1994), a general decline of the stratospheric column NO2 abundance is occurring, superimposed by interannual variations. A linear, statistically significant, negative annual trend of about 12% per decade has been detected for both morning and evening stratospheric column NO2 abundances. For interpretation of the observed trend, a simple photochemical model is used, which takes into account the observed changes in N2O and stratospheric ozone abundances, and in temperature. The estimated model trend of the stratospheric column NO2 abundance in the extratropical Northern Hemisphere is about -5% per decade, which is less than observed. Dynamical variability is supposed to be responsible, in particular, for the observed NO2 decline.
Nitrogen oxides in the arctic stratosphere: Implications for ozone abundances. Ph.D. Thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slusser, J.R.
1994-01-01
In the high latitude winter stratosphere, NO2 sequesters chlorine compounds which are extremely efficient at destroying ozone. During the nighttime, NO2 reacts with ozone to form N2O5 which acts as a reservoir of NO2. Under heavy aerosol loading, N2O5 may react with water on aerosol surfaces to form HNO3, a reservoir more resistant to photolysis. This heterogeneous reaction results in reduced NO2 concentration when the sun returns at the end of the winter. A spectrograph system has been developed to measure scattered zenith skylight and thereby determine stratospheric NO2 slant column abundance. Conversion of the measured slant column abundance tomore » vertical column abundance requires dividing by the air mass. The air mass is the enhancement in the optical path for the scattered twilight as compared to a vertical path. Air mass values determined using a multiple scattering radiative transfer code have been compared to those derived using a Monte Carlo code and were found to agree to within 6% at a 90 deg solar zenith angle for a stratospheric absorber. Six months of NO2 vertical column abundance measured over Fairbanks during the winter 1992-93 exhibited the daylight diminished and increased as the sunlight hours lengthened. The overall seasonal behavior was similar to high-latitude measurements made in the Southern Hemisphere. The ratios of morning to evening column abundance were consistent with predictions based on gas-phase chemistry. The possible heterogeneous reaction of N2O5 on sulfate aerosols was investigated using FTIR Spectrometer measurements of HNO3 column abundance and lidar determinations of the aerosol profile. Using an estimated N2O5 column abundance and aerosol profile as input to a simple model, significant HNO3 production was expected. No increase in HNO3 column abundance was measured. From this set of data, it was not possible to determine whether significant amounts of N2O5 were converted to HNO3 by this heterogeneous reaction.« less
NASA Astrophysics Data System (ADS)
Refaat, T. F.; Singh, U. N.; Petros, M.; Yu, J.; Remus, R.; Ismail, S.
2017-12-01
An airborne Integrated Path Differential Absorption (IPDA) lidar has been developed and validated at NASA Langley Research Center for atmospheric carbon dioxide column measurements. The instrument consists of a tunable, high-energy 2-μm double pulse laser transmitter and 0.4 m telescope receiver coupled to an InGaAs pin detection system. The instrument was validated for carbon dioxide (CO2) measurements from ground and airborne platforms, using a movable lidar trailer and the NASA B-200 aircraft. Airborne validation was conducted over the ocean by comparing the IPDA CO2 optical depth measurement to optical depth model derived using NOAA airborne CO2 air-sampling. Another airborne validation was conducted over land vegetation by comparing the IPDA measurement to a model derived using on-board in-situ measurements using an absolute, non-dispersive infrared gas analyzer (LiCor 840A). IPDA range measurements were also compared to rangefinder and Global Positioning System (GPS) records during ground and airborne validation, respectively. Range measurements from the ground indicated a 0.93 m IPDA range measurement uncertainty, which is limited by the transmitted laser pulse and detection system properties. This uncertainty increased to 2.80 and 7.40 m over ocean and land, due to fluctuations in ocean surface and ground elevations, respectively. IPDA CO2 differential optical depth measurements agree with both models. Consistent CO2 optical depth biases were well correlated with the digitizer full scale input range settings. CO2 optical depth measurements over ocean from 3.1 and 6.1 km altitudes indicated 0.95% and 0.83% uncertainty, respectively, using 10 second (100 shots) averaging. Using the same averaging 0.40% uncertainty was observed over land, from 3.4 km altitude, due to higher surface reflectivity, which increases the return signal power and enhances the signal-to-noise ratio. However, less uncertainty is observed at higher altitudes due to reduced signal shot noise, indicating that detection system noise-equivalent-power dominates the error. These results show that the IPDA technique is well suited for space-based platforms, which includes larger column content integration that enhances the measurement sensitivity.
Estimating Western U.S. Oil & Gas Emissions with OMI NO2 Data
NASA Astrophysics Data System (ADS)
Clifton, O. E.; Holloway, T.; Oberman, J.
2012-12-01
In the last ten years, there has been a steep increase in the number natural gas and oil extraction facilities in the United States due to hydraulic fracturing ("fracking"). Each facility requires a large range of equipment, such as drilling rigs, compressor engines, heaters, and pneumatic devices. These activities can lead to elevated nitrogen dioxide (NO2) emissions in rural areas, often in regions without routine NO2 surface monitoring. Furthermore, permitting rules vary from state to state, and many new extraction facilities are unpermitted and exact emissions unknown. On April 18, 2012, the EPA announced air pollution standards for volatile organic compounds (VOCs) emissions from the oil and gas industry. Until 2015, when these standards must be in effect, NOx (NO2 + NO) will continue to react with VOCs to form unhealthy levels of tropospheric ozone in regions with heavy use of hydraulic fracturing. In order to identify areas of elevated NO2 emissions and constrain associated on-road and off-road sources in areas with prominent shale basins and known drilling, we employ remote sensing estimates of column NO2 from the Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite. OMI NO2 is sensitive to the planetary boundary layer and to surface air pollution and thus has high temporal and spatial variation. These Level-2 satellite data are processed with the Wisconsin Horizontal Interpolation Program for Satellites (WHIPS), developed at the University of Wisconsin-Madison. We interpolate the data to allow further ease in mapping change in NO2 associated with drilling, and the quantification of pollution trends attributable to hydraulic-fracturing in the Western U.S. from 2004 to the present.
21 CFR 184.1240 - Carbon dioxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and....1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No. 124-38-9) occurs as a..., sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon dioxide is prepared as a byproduct...
Kaczmarski, Krzysztof; Poe, Donald P; Guiochon, Georges
2010-10-15
When chromatography is carried out with high-density carbon dioxide as the main component of the mobile phase (a method generally known as "supercritical fluid chromatography" or SFC), the required pressure gradient along the column is moderate. However, this mobile phase is highly compressible and, under certain experimental conditions, its density may decrease significantly along the column. Such an expansion absorbs heat, cooling the column, which absorbs heat from the outside. The resulting heat transfer causes the formation of axial and radial gradients of temperature that may become large under certain conditions. Due to these gradients, the mobile phase velocity and most physico-chemical parameters of the system (viscosity, diffusion coefficients, etc.) are no longer constant throughout the column, resulting in a loss of column efficiency, even at low flow rates. At high flow rates and in serious cases, systematic variations of the retention factors and the separation factors with increasing flow rates and important deformations of the elution profiles of all sample components may occur. The model previously used to account satisfactorily for the effects of the viscous friction heating of the mobile phase in HPLC is adapted here to account for the expansion cooling of the mobile phase in SFC and is applied to the modeling of the elution peak profiles of an unretained compound in SFC. The numerical solution of the combined heat and mass balance equations provides temperature and pressure profiles inside the column, and values of the retention time and efficiency for elution of this unretained compound that are in excellent agreement with independent experimental data. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Weir, B.; Chatterjee, A.; Ott, L. E.; Pawson, S.
2017-12-01
This talk presents an overview of results from the GEOS-Carb reanalysis of retrievals of average-column carbon dioxide (XCO2) from the Orbiting Carbon Observatory 2 (OCO-2) and Greenhouse Gases Observing Satellite (GOSAT) satellite missions. The reanalysis is a Level 3 (L3) product: a collection of 3D fields of carbon dioxide (CO2) mixing ratios every 6 hours beginning in April 2009 going until the present on a grid with a 0.5 degree horizontal resolution and 72 vertical levels from the surface to 0.01 hPa. Using an assimilation methodology based on the Goddard Earth Observing System (GEOS) atmospheric data assimilation system (ADAS), the L3 fields are weighted averages of the two satellite retrievals and predictions from the GEOS general circulation model driven by assimilated meteorology from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2). In places and times where there are a dense number of soundings, the observations dominate the predicted mixing ratios, while the model is used to fill in locations with fewer soundings, e.g., high latitudes and the Amazon. Blending the satellite observations with model predictions has at least two notable benefits. First, it provides a bridge for evaluating the satellite retrievals and their uncertainties against a heterogeneous collection of observations including those from surface sites, towers, aircraft, and soundings from the Total Carbon Column Observing Network (TCCON). Extensive evaluations of the L3 reanalysis clearly demonstrate both the strength and the deficiency of the satellite retrievals. Second, it is possible to estimate variables from the reanalysis without introducing bias due to spatiotemporal variability in sounding coverage. For example, the assimilated product provides robust estimates of the monthly CO2 global growth rate. These monthly growth rate estimates show significant differences from estimates based on in situ observations, which have sparse coverage, and those based on model surface fluxes, which imperfectly represent key processes. This presentation discusses the implications of this finding as well as ongoing strategies to extract more information from the satellite retrievals in future L3 reanalyses.
NASA Astrophysics Data System (ADS)
Bril, A.; Oshchepkov, S.; Yokota, T.; Yoshida, Y.; Morino, I.; Uchino, O.; Belikov, D. A.; Maksyutov, S. S.
2014-12-01
We retrieved the column-averaged dry air mole fraction of atmospheric carbon dioxide (XCO2) and methane (XCH4) from the radiance spectra measured by Greenhouse gases Observing SATellite (GOSAT) for 48 months of the satellite operation from June 2009. Recent version of the Photon path-length Probability Density Function (PPDF)-based algorithm was used to estimate XCO2 and optical path modifications in terms of PPDF parameters. We also present results of numerical simulations for over-land observations and "sharp edge" tests for sun-glint mode to discuss the algorithm accuracy under conditions of strong optical path modification. For the methane abundance retrieved from 1.67-µm-absorption band we applied optical path correction based on PPDF parameters from 1.6-µm carbon dioxide (CO2) absorption band. Similarly to CO2-proxy technique, this correction assumes identical light path modifications in 1.67-µm and 1.6-µm bands. However, proxy approach needs pre-defined XCO2 values to compute XCH4, whilst the PPDF-based approach does not use prior assumptions on CO2 concentrations.Post-processing data correction for XCO2 and XCH4 over land observations was performed using regression matrix based on multivariate analysis of variance (MANOVA). The MANOVA statistics was applied to the GOSAT retrievals using reference collocated measurements of Total Carbon Column Observing Network (TCCON). The regression matrix was constructed using the parameters that were found to correlate with GOSAT-TCCON discrepancies: PPDF parameters α and ρ, that are mainly responsible for shortening and lengthening of the optical path due to atmospheric light scattering; solar and satellite zenith angles; surface pressure; surface albedo in three GOSAT short wave infrared (SWIR) bands. Application of the post-correction generally improves statistical characteristics of the GOSAT-TCCON correlation diagrams for individual stations as well as for aggregated data.In addition to the analysis of the observations over 12 TCCON stations we estimated temporal and spatial trends (interannual XCO2 and XCH4 variations, seasonal cycles, latitudinal gradients) and compared them with modeled results as well as with similar estimates from other GOSAT retrievals.
Ambient intercomparison of direct and indirect methods for ambient nitrogen dioxide
AbstractRecent advances in measurement techniques for nitrogen dioxide (NO2), along with known interferences in the current Federal Reference Method (FRM) have created the need for NO2 measurement method research within EPA’s Office of Research and Development. Current meth...
Find tools for primary standards for Nitrogen Dioxide, maps of monitoring areas, an overview of the proposal, monitor requirements, design values for counties, and a presentation on the 2010 NO2 primary NAAQS revision.
NASA Technical Reports Server (NTRS)
Choi, S.; Joiner, J.; Choi, Y.; Duncan, B. N.; Bucsela, E.
2014-01-01
We derive free-tropospheric NO2 volume mixing ratios (VMRs) and stratospheric column amounts of NO2 by applying a cloud slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top-of-the-atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. Estimates of stratospheric column NO2 are obtained by extrapolating the linear fits to the tropopause. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud slicing data indicates signatures of uplifted and transported anthropogenic NO2 in the middle troposphere as well as lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the Global Modeling Initiative (GMI) for cloudy conditions (cloud optical thicknesses > 10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in the seasonal variation of free-tropospheric NO2 VMRs near highly populated regions and in areas affected by lightning-generated NOx. Stratospheric column NO2 obtained from cloud slicing agrees well with other independently-generated estimates, providing further confidence in the free-tropospheric results.
Endecott, B R; Sanders, D C; Chaturvedi, A K
1996-01-01
The measurement of combustion gases produced by burning aircraft cabin materials poses a continuing limitation for smoke toxicity research. Because toxic effects of gases depend on both their concentrations and the duration of exposure, frequent atmosphere sampling is necessary to define the gas concentration-exposure time curve. A gas chromatographic (GC) method was developed for the simultaneous analyses of carbon monoxide (CO), hydrogen sulfide (H2S), sulfur dioxide (SO2), and hydrogen cyanide (HCN). The method used an MTI M200 dual-column gas chromatograph equipped with 4-m molecular sieve-5A and 8-m PoraPlot-U wall-coated capillary columns and two low-volume, high-sensitivity thermal conductivity detectors. Detectability (in parts per million [ppm]) and retention times (in seconds) for the gases were as follows: CO, 100 ppm, 28 s; H2S, 50 ppm, 26 s; SO2, 125 ppm, 76 s; and HCN, 60 ppm, 108 s. The method was effective for determining these gases in mixtures and in the combustion atmospheres generated by burning wool (CO, HCN, and H2S) and modacrylic fabrics (CO and HCN). Common atmospheric gaseous or combustion products (oxygen, carbon dioxide, nitrogen, water vapor, and other volatiles) did not interfere with the analyses. However, filtration of the combustion atmospheres was necessary to prevent restriction of the GC sampling inlet by smoke particulates. The speed, sensitivity, and selectivity of this method make it suitable for smoke toxicity research and for evaluating performance of passenger protective breathing equipment. Also, this method can potentially be modified to analyze these gases when they are liberated from biosamples.
NASA Technical Reports Server (NTRS)
Flynn, Clare; Pickering, Kenneth E.; Crawford, James H.; Lamsol, Lok; Krotkov, Nickolay; Herman, Jay; Weinheimer, Andrew; Chen, Gao; Liu, Xiong; Szykman, James;
2014-01-01
To investigate the ability of column (or partial column) information to represent surface air quality, results of linear regression analyses between surface mixing ratio data and column abundances for O3 and NO2 are presented for the July 2011 Maryland deployment of the DISCOVER-AQ mission. Data collected by the P-3B aircraft, ground-based Pandora spectrometers, Aura/OMI satellite instrument, and simulations for July 2011 from the CMAQ air quality model during this deployment provide a large and varied data set, allowing this problem to be approached from multiple perspectives. O3 columns typically exhibited a statistically significant and high degree of correlation with surface data (R(sup 2) > 0.64) in the P- 3B data set, a moderate degree of correlation (0.16 < R(sup 2) < 0.64) in the CMAQ data set, and a low degree of correlation (R(sup 2) < 0.16) in the Pandora and OMI data sets. NO2 columns typically exhibited a low to moderate degree of correlation with surface data in each data set. The results of linear regression analyses for O3 exhibited smaller errors relative to the observations than NO2 regressions. These results suggest that O3 partial column observations from future satellite instruments with sufficient sensitivity to the lower troposphere can be meaningful for surface air quality analysis.
Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed
2016-05-20
Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15 ppm with 1.02% uncertainty and 0.28% additional bias. Sensitivity analysis of environmental systematic errors correlates the additional bias to water vapor. IPDA ranging resulted in a measurement uncertainty of <3 m.
Visible and near-ultraviolet spectroscopy at Thule AFB (76.5 N) from January 28 - February 15, 1988
NASA Technical Reports Server (NTRS)
Mount, G. H.; Sanders, R. W.; Jakoubek, R. O.; Schmeltekopf, A. L.; Solomon, S.
1988-01-01
Near-ultraviolet and visible spectrographs identical to those employed at McMurdo Station, Antarctica (77.8 S) during the austral spring seasons of 1986 and 1987 were used to study the stratosphere above Thule, Greenland (76.5 N) during early spring, 1988. Observations were carried out both at night using the direct moon as a light source, and during the day by collecting the scattered light from the zenith sky when solar zenith angles were less than about 94.5 degrees. Excellent meteorological conditions prevailed in the troposphere and stratosphere at Thule. Surface weather was extremely clear over most of the period, facilitating measurements of the direct light from the moon. The lower stratospheric arctic polar vortex was located very near Thule throughout the observing period, and temperature at the 30 mbar level were typically below -80 C above Thule, according to the National Meteorological Center daily analyses. Thus conditions were favorable for polar stratospheric cloud formation above Thule. Total column ozone abundances were about 350 to 400 Dobson units, and did not suggest a clear temporal trend over the observing period. Stratospheric nitrogen dioxide measurements were complicated by the presence of a large component of tropospheric pollution on many occasions. Stratospheric nitrogen dioxide could be identified on most days using the absorption in the scattered light from the zenith sky, which greatly enhances the stratospheric airmass while suppressing the tropospheric contribution. These measurements suggest that the total vertical column abundance of nitrogen dioxide present over Thule in February was extremely low, sometimes as low as 3 x 10 to the 14th per sq cm. The abundance of nitrogen dioxide increased systemically from about 3 x 10 to the 14th in late January to 1.0 x 10 to the 15th per sq cm in mid-February, perhaps because of photolysis of N2O5 in the upper part of the stratosphere, near 25 to 35 km.
Crimi, Michelle; Quickel, Mark; Ko, Saebom
2009-02-27
In situ chemical oxidation using permanganate is an increasingly employed approach to organic contaminant remediation at hazardous waste sites. Manganese dioxide (MnO2) particles form as a by-product of the reaction of permanganate with contaminants and naturally-reduced subsurface materials. These particles are of interest because they have the potential to deposit in the subsurface and impact the flow regime in/around permanganate injection, including the well screen, filter pack, and the surrounding subsurface formation. Control of these particles can allow for improved oxidant injection and transport, and contact between the oxidant and contaminants of concern. Sodium hexametaphosphate (HMP) has previously been identified as a promising aid to stabilize MnO2 in solution when included in the oxidizing solution, increasing the potential to inhibit particle deposition and impact subsurface flow. The goal of the experimental studies described herein was to investigate the ability of HMP to prevent particle deposition in transport studies using four different types of porous media. Permanganate was delivered to a contaminant source zone (trichloroethylene) located within four different media types with variations in sand, clay, organic carbon, and iron oxides (as goethite) content. Deposition of MnO2 within the columns was quantified with distance from the source zone. Experiments were repeated in replicate columns with the inclusion of HMP directly with the oxidant delivery solution, and MnO2 deposition was again quantified. While total MnO2 deposition within the 60 cm columns did not change significantly with the addition of HMP, deposition within the contaminant source zone decreased by 25-85%, depending on the specific media type. The greatest differences in deposition were observed in the goethite-containing and clay-containing columns. Columns containing these two media types experienced completely plugged flow in the oxidant-only delivery systems; however, the addition of HMP prevented this plugging within the columns, increasing the oxidant throughput.
Carbon Dioxide Capture by Deep Eutectic Solvent Impregnated Sea Mango Activated Carbon
NASA Astrophysics Data System (ADS)
Zulkurnai, N. Z.; Ali, U. F. Md.; Ibrahim, N.; Manan, N. S. Abdul
2018-03-01
The increment amount of the CO2 emission by years has become a major concern worldwide due to the global warming issue. However, the influence modification of activated carbon (AC) has given a huge revolution in CO2 adsorption capture compare to the unmodified AC. In the present study, the Deep Eutectic Solvent (DES) modified surface AC was used for Carbon Dioxide (CO2) capture in the fixed-bed column. The AC underwent pre-carbonization and carbonization processes at 519.8 °C, respectively, with flowing of CO2 gas and then followed by impregnation with 53.75% phosphoric acid (H3PO4) at 1:2 precursor-to-activant ratios. The prepared AC known as sea mango activated carbon (SMAC) was impregnated with DES at 1:2 solid-to-liquid ratio. The DES is composing of choline chloride and urea with ratio 1:2 choline chloride to urea. The optimum adsorption capacity of SMAC was 33.46 mgco2/gsol and 39.40 mgco2/gsol for DES modified AC (DESAC).
New insights into the column CH2O/NO2 ratio as an indicator of near-surface ozone sensitivity
NASA Astrophysics Data System (ADS)
Schroeder, Jason R.; Crawford, James H.; Fried, Alan; Walega, James; Weinheimer, Andrew; Wisthaler, Armin; Müller, Markus; Mikoviny, Tomas; Chen, Gao; Shook, Michael; Blake, Donald R.; Tonnesen, Gail S.
2017-08-01
Satellite-based measurements of the column CH2O/NO2 ratio have previously been used to estimate near-surface ozone (O3) sensitivity (i.e., NOx or VOC limited), and the forthcoming launch of air quality-focused geostationary satellites provides a catalyst for reevaluating the ability of satellite-measured CH2O/NO2 to be used in this manner. In this study, we use a 0-D photochemical box model to evaluate O3 sensitivity and find that the relative rate of radical termination from radical-radical interactions to radical-NOx interactions (referred to as LROx/LNOx) provides a good indicator of maximum O3 production along NOx ridgelines. Using airborne measurements from NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relative to Air Quality (DISCOVER-AQ) deployments in Colorado, Maryland, and Houston, we show that in situ measurements of CH2O/NO2 can be used to indicate O3 sensitivity, but there is an important "transition/ambiguous" range whereby CH2O/NO2 fails to categorize O3 sensitivity, and the range and span of this transition/ambiguous range varies regionally. Then, we apply these findings to aircraft-derived column density measurements from DISCOVER-AQ and find that inhomogeneities in vertical mixing in the lower troposphere further degrades the ability of column CH2O/NO2 to indicate near-surface O3 sensitivity (i.e., the transition/ambiguous range is much larger than indicated by in situ data alone), and we hypothesize that the global transition/ambiguous range is sufficiently large to make the column CH2O/NO2 ratio unuseful for classifying near-surface O3 sensitivity. Lastly, we present a case study from DISCOVER-AQ-Houston that suggests that O3 sensitivity on exceedance days may be substantially different than on nonexceedance days (which may be observable from space) and explore the diurnal evolution of O3 sensitivity, O3 production, and the column CH2O/NO2 ratio. The results of these studies suggest that although satellite measurements of CH2O/NO2 alone may not be sufficient for accurately classifying near-surface O3 sensitivity, new techniques offered by geostationary platforms may nonetheless provide methods for using space-based measurements to develop O3 mitigation strategies.
21 CFR 173.300 - Chlorine dioxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Chlorine dioxide. 173.300 Section 173.300 Food and... Additives § 173.300 Chlorine dioxide. Chlorine dioxide (CAS Reg. No. 10049-04-4) may be safely used in food... chlorine dioxide with respect to all chlorine species as determined by Method 4500-ClO2 E in the “Standard...
Improving UK Air Quality Modelling Through Exploitation of Satellite Observations
NASA Astrophysics Data System (ADS)
Pope, Richard; Chipperfield, Martyn; Savage, Nick
2014-05-01
In this work the applicability of satellite observations to evaluate the operational UK Met Office Air Quality in the Unified Model (AQUM) have been investigated. The main focus involved the AQUM validation against satellite observations, investigation of satellite retrieval error types and of synoptic meteorological-atmospheric chemistry relationships simulated/seen by the AQUM/satellite. The AQUM is a short range forecast model of atmospheric chemistry and aerosols up to 5 days. It has been designed to predict potentially hazardous air pollution events, e.g. high concentrations of surface ozone. The AQUM has only been validated against UK atmospheric chemistry recording surface stations. Therefore, satellite observations of atmospheric chemistry have been used to further validate the model, taking advantage of better satellite spatial coverage. Observations of summer and winter 2006 tropospheric column NO2 from both OMI and SCIAMACHY show that the AQUM generally compares well with the observations. However, in northern England positive biases (AQUM - satellite) suggest that the AQUM overestimates column NO2; we present results of sensitivity experiments on UK emissions datasets suspected to be the cause. In winter, the AQUM over predicts background column NO2 when compared to both satellite instruments. We hypothesise that the cause is the AQUM winter night-time chemistry, where the NO2 sinks are not substantially defined. Satellite data are prone to errors/uncertainty such as random, systematic and smoothing errors. We have investigated these error types and developed an algorithm to calculate and reduce the random error component of DOAS NO2 retrievals, giving more robust seasonal satellite composites. The Lamb Weather Types (LWT), an objective method of classifying the daily synoptic weather over the UK, were used to create composite satellite maps of column NO2 under different synoptic conditions. Under cyclonic conditions, satellite observed UK column NO2 is reduced as the indicative south-westerly flow transports it away from the UK over the North Sea. However, under anticyclonic conditions, the satellite shows that the stable conditions enhance the build-up of column NO2 over source regions. The influence of wind direction on column NO2 can also be seen from space with transport leeward of the source regions.
Ghate, Madhav R.; Yang, Ralph T.
1987-01-01
Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.
Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antionali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme
2017-06-30
80% vinyltrimethoxysilane-based hybrid silica monoliths (80-VTMS), which have been initially developed for separation in reversed-phase liquid chromatography, have been investigated in high pressure gas chromatography separations (carrier gas pressure up to 60bar) and compared to silica monolithic columns. The behavior of both silica and 80-VTMS monolithic columns was investigated using helium, nitrogen and carbon dioxide as carrier gas. The efficiency of 80-VTMS monolithic columns was shown to vary differently than silica monolithic columns according to the temperature and the carrier gas used. Carrier gas nature was a significant parameter on the retention for both silica and vinyl columns in relation to its adsorption onto the stationary phase in such high pressure conditions. The comparison of retention and selectivity between 80-VTMS monoliths and silica was performed under helium using the logarithm of the retention factor according to the number of carbon atoms combined to Kovats indexes. The very good performances of these columns were demonstrated, allowing the separation of 8 compounds in less than 1min. Copyright © 2017 Elsevier B.V. All rights reserved.
Environmental Compliance Assessment System (ECAS). Rhode Island Supplement
1994-07-01
of Sedm aSW e• mr•iqlie 1W an e-1m 1 G srW aaOS dOme uoaw of dOM I a m 1 gpe• 0 ae sk ow -, Ig -i kaeudeni. to Washmnp Heafmii Sendo - , reoalm for h...dioxide Hg mercury NO, nitrogen oxide SO 2 sulfur dioxide NO2 nitrogen dioxide I - vii - -viii - Metric Conversion Table I in. = 25.4 mm Ift = 0.305 m I...for volatile organic compounds (VOCs) or nitrogen oxides (NO,) will be considered significant for ozone. A physical change or change in the method of
Cernei, Natalia; Lackova, Zuzana; Guran, Roman; Hynek, David; Skladanka, Jiri; Horky, Pavel; Zitka, Ondrej; Adam, Vojtech
2016-01-01
The presence of biogenic amines is a hallmark of degraded food and its products. Herein, we focused on the utilization of magnetic nanoparticles off-line coupled with ion exchange chromatography with post-column ninhydrin derivatization and Vis detection for histamine (Him) separation and detection. Primarily, we described the synthesis of magnetic nanoparticles with nanomaghemite core (γ-Fe2O3) functionalized with titanium dioxide and, then, applied these particles to specific isolation of Him. To obtain further insight into interactions between paramagnetic particles’ (PMP) surface and Him, a scanning electron microscope was employed. It was shown that binding of histamine causes an increase of relative current response of deprotonated PMPs, which confirmed formation of Him-PMPs clusters. The recovery of the isolation showed that titanium dioxide-based particles were able to bind and preconcentrate Him with recovery exceeding 90%. Finally, we successfully carried out the analyses of real samples obtained from silage. We can conclude that our modified particles are suitable for Him isolation, and thus may serve as the first isolation step of Him from biological samples, as it is demonstrated on alfalfa seed variety Tereza silage. PMID:27626434
Zhang, Zhen; Jiang, Hong; Liu, Jinxun; Zhang, Xiuying; Huang, Chunlin; Lu, Xuehe; Jin, Jiaxin; Zhou, Guomo
2014-01-01
Satellite observations of carbon dioxide (CO2) are important because of their potential for improving the scientific understanding of global carbon cycle processes and budgets. We present an analysis of the column-averaged dry air mole fractions of CO2 (denoted XCO2) of the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) retrievals, which were derived from a satellite instrument with relatively long-term records (2003–2009) and with measurements sensitive to the near surface. The spatial-temporal distributions of remotely sensed XCO2 have significant spatial heterogeneity with about 6–8% variations (367–397 ppm) during 2003–2009, challenging the traditional view that the spatial heterogeneity of atmospheric CO2 is not significant enough (2 and surface CO2 were found for major ecosystems, with the exception of tropical forest. In addition, when compared with a simulated terrestrial carbon uptake from the Integrated Biosphere Simulator (IBIS) and the Emissions Database for Global Atmospheric Research (EDGAR) carbon emission inventory, the latitudinal gradient of XCO2 seasonal amplitude was influenced by the combined effect of terrestrial carbon uptake, carbon emission, and atmospheric transport, suggesting no direct implications for terrestrial carbon sinks. From the investigation of the growth rate of XCO2 we found that the increase of CO2 concentration was dominated by temperature in the northern hemisphere (20–90°N) and by precipitation in the southern hemisphere (20–90°S), with the major contribution to global average occurring in the northern hemisphere. These findings indicated that the satellite measurements of atmospheric CO2 improve not only the estimations of atmospheric inversion, but also the understanding of the terrestrial ecosystem carbon dynamics and its feedback to atmospheric CO2.
Morris, Megan M.; Brown, Matt; Doane, Michael; Edwards, Matthew S.; Michael, Todd P.; Dinsdale, Elizabeth A.
2018-01-01
Global climate change includes rising temperatures and increased pCO2 concentrations in the ocean, with potential deleterious impacts on marine organisms. In this case study we conducted a four-week climate change incubation experiment, and tested the independent and combined effects of increased temperature and partial pressure of carbon dioxide (pCO2), on the microbiomes of a foundation species, the giant kelp Macrocystis pyrifera, and the surrounding water column. The water and kelp microbiome responded differently to each of the climate stressors. In the water microbiome, each condition caused an increase in a distinct microbial order, whereas the kelp microbiome exhibited a reduction in the dominant kelp-associated order, Alteromondales. The water column microbiomes were most disrupted by elevated pCO2, with a 7.3 fold increase in Rhizobiales. The kelp microbiome was most influenced by elevated temperature and elevated temperature in combination with elevated pCO2. Kelp growth was negatively associated with elevated temperature, and the kelp microbiome showed a 5.3 fold increase Flavobacteriales and a 2.2 fold increase alginate degrading enzymes and sulfated polysaccharides. In contrast, kelp growth was positively associated with the combination of high temperature and high pCO2 ‘future conditions’, with a 12.5 fold increase in Planctomycetales and 4.8 fold increase in Rhodobacteriales. Therefore, the water and kelp microbiomes acted as distinct communities, where the kelp was stabilizing the microbiome under changing pCO2 conditions, but lost control at high temperature. Under future conditions, a new equilibrium between the kelp and the microbiome was potentially reached, where the kelp grew rapidly and the commensal microbes responded to an increase in mucus production. PMID:29474389
NASA Astrophysics Data System (ADS)
Surendran, Divya E.; Ghude, Sachin D.; Beig, G.; Emmons, L. K.; Jena, Chinmay; Kumar, Rajesh; Pfister, G. G.; Chate, D. M.
2015-12-01
This study presents the distribution of tropospheric ozone and related species for South Asia using the Model for Ozone and Related chemical Tracers (MOZART-4) and Hemispheric Transport of Air Pollution version-2 (HTAP-v2) emission inventory. The model present-day simulated ozone (O3), carbon monoxide (CO) and nitrogen dioxide (NO2) are evaluated against surface-based, balloon-borne and satellite-based (MOPITT and OMI) observations. The model systematically overestimates surface O3 mixing ratios (range of mean bias about: 1-30 ppbv) at different ground-based measurement sites in India. Comparison between simulated and observed vertical profiles of ozone shows a positive bias from the surface up to 600 hPa and a negative bias above 600 hPa. The simulated seasonal variation in surface CO mixing ratio is consistent with the surface observations, but has a negative bias of about 50-200 ppb which can be attributed to a large part to the coarse model resolution. In contrast to the surface evaluation, the model shows a positive bias of about 15-20 × 1017 molecules/cm2 over South Asia when compared to satellite derived CO columns from the MOPITT instrument. The model also overestimates OMI retrieved tropospheric column NO2 abundance by about 100-250 × 1013 molecules/cm2. A response to 20% reduction in all anthropogenic emissions over South Asia shows a decrease in the anuual mean O3 mixing ratios by about 3-12 ppb, CO by about 10-80 ppb and NOX by about 3-6 ppb at the surface level. During summer monsoon, O3 mixing ratios at 200 hPa show a decrease of about 6-12 ppb over South Asia and about 1-4 ppb over the remote northern hemispheric western Pacific region.
NASA Astrophysics Data System (ADS)
Alhajjar, Bashar J.; Linn Gould, C.; Chesters, Gordon; Harkin, John M.
1990-12-01
The effects of phosphate (P) and zeolite (Z) -built detergents on leaching of N and P through sand columns simulating septic system drainfields were examined in laboratory columns. To simulate mound septic system drainfields, paired sets of columns were dosed intermittently with septic tank effluent from households using P- or Z-built detergent. Two other paired sets of columns were flooded with P- or Z-effluent to simulate new conventional septic system drainfields; after clogging mats or "crusts" developed at infiltration surface, the subsurfaces of the columns were aerated to simulate mature (crusted) conventional septic system drainfields. NO 3 loading in leachate was 1.1 times higher and ortho-P loading was 4.3 times lower when columns were dosed with Z- than with P-effluent. Dosed columns removed P poorly; total phosphorus (TP) loading in leachate was 81 and 19 g m -2 yr -1 with P- and Z-effluent, respectively. In flooded columns 1.3, 2.0 and 1.8 times more NH 4, organic nitrogen (ON) and total nitrogen (TN) respectively, were leached with Z- than with P-effluent; NO 3 leaching was similar. Flooded columns removed P efficiently; TP leached through flooded systems was 2.5 and 1.4 g m -2 yr -1 with P- and Z effluent, respectively. Crusted columns fed Z-effluent leached 1.2, 2.6, 1.4 and 2.1 times more NH 4, NO 3, ON and TN, respectively, than those with P-effluent but 1.8 times less TP. Crusted columns removed P satisfactorily: 8.2 and 4.6 g m -2 yr -1 TP with P- and Z-effluent, respectively. The P-built detergent substantially improves the efficiency of N removal with satisfactory P removal in columns simulating conventional septic system drainfield. Simultaneous removal of N and P under flooded conditions might be explained by precipitation of struvite-type minerals. Dosed system drainfields were less efficient in removing N and P compared to flooded and crusted system drainfelds.
Stratospheric column NO2 anomalies over Russia related to the 2011 Arctic ozone hole
NASA Astrophysics Data System (ADS)
Aheyeva, Viktoryia; Gruzdev, Aleksandr; Elokhov, Aleksandr; Grishaev, Mikhail; Salnikova, Natalia
2013-04-01
We analyze data of spectrometric measurements of stratospheric column NO2 contents at mid- and high-latitude stations of Zvenigorod (55.7°N, Moscow region), Tomsk (56.5°N, West Siberia), and Zhigansk (66.8°N, East Siberia). Measurements are done in visual spectral range with zenith-viewing spectrometers during morning and evening twilights. Alongside column NO2 contents, vertical profiles of NO2 are retrieved at the Zvenigorod station. Zvenigorod and Zhigansk are the measurement stations within the Network for the Detection of Atmospheric Composition Change (NDACC). For interpretation of results of analysis of NO2 data, data of Ozone Monitoring Instrument measurements of total column ozone and rawinsonde data are also analyzed and back trajectories calculated with the help of HYSPLIT trajectory model are used. Significant negative anomalies in stratospheric NO2 columns accompanied by episodes of significant cooling of the stratosphere and decrease in total ozone were observed at the three stations in the winter-spring period of 2011. Trajectory analysis shows that the anomalies were caused by the transport of stratospheric air from the region of the ozone hole observed that season in the Arctic. Although negative NO2 anomalies due to the transport from the Arctic were also observed in some other years, the anomalies in 2011 have had record magnitudes. Analysis of NO2 vertical profiles at Zvenigorod shows that the NO2 anomaly in 2011 compared to other years anomalies was additionally contributed by the denitrification of the Arctic lower stratosphere. NO2 profiles show that a certain degree of the denitrification probably survived even after the ozone hole.
1951-11-12
solutions of nitrogen dioxide in nitric acid where nitrosonium ions (NO+) and nitrate ions (NO-) have been identified (Cf. Ref. 4). The nitrogen...0.97 weight fraction nitric acid, hydrogen and nitrate ions are the predominant conducting species. In the range 0.97 to 1.00 weight fraction nitric...self-ionization to yield nitronium ions (NJ2) and nitratej2 ions (NO3) according to the expression 2HNO3--NO+ + NO- + H2 0 It is evident from this
Jiang, Hai; Yang, Liu; Xing, Xudong; Yan, Meiling; Guo, Xinyue; Yang, Bingyou; Wang, Qiu-Hong; Kuang, Hai-Xue
2018-05-10
Phenolic acids are important active components of certain Traditional Chinese Medicines (TCM) and have a wide range of biological effects. Separation and purification of phenolic acids remains challenging due to difficulties with quality control using existing chromatographic methods The purpose of this study was to compare the effects of different chromatographic columns and conditions for the separation of phenolic acids. The BEH column was determined to be optimal, providing efficient separation in the shortest time (17.00 min) using gradient elution with carbon dioxide as the mobile phase, methanol/acetonitrile (70:30, v/v) with 1% TFA as the modifier, and a flow rate of 0.8 mL/min. Good peak shapes were obtained, and the peak asymmetry values were close to 1.00 for all phenolic acids. The resolution was more than 2.83 for all separated peaks. The developed method was subsequently applied to the determination of phenolic acids in Xanthii Fructus. These results are beneficial for quality control and standardization of herbal drugs using UPC 2 , providing an efficient, rapid and environmentally friendly scientific basis for future analysis of phenolic acids. Copyright © 2018. Published by Elsevier B.V.
MERCURY SPECIATION IN COMBUSTION SYSTEMS: STUDIES WITH SIMULATED FLUE GASES AND MODEL FLY ASHES
The paper gives results of a bench-scale study of the effects of flue gas and fly ash parameters on the oxidation of elemental mercury in simulated flue gases containing hydrogen chloride (HCl), nitric oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and water vapor (H2O...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
...-9811-6] Approval and Promulgation of Air Quality Implementation Plans; Indiana; Sulfur Dioxide and Nitrogen Dioxide Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION... amend the national ambient air quality standards (NAAQS) for NO 2 and SO 2 to be consistent with the...
Oxygen as a driving gas for nebulisers: safe or dangerous?
Gunawardena, K A; Patel, B; Campbell, I A; MacDonald, J B; Smith, A P
1984-01-28
Changes in blood gas tensions occurring when 100% oxygen or air was used as the driving gas for nebulised salbutamol were studied in 23 patients with severe airways obstruction. The patients fell into three groups: nine had chronic bronchitis and emphysema with carbon dioxide retention, seven had emphysema and chronic bronchitis without carbon dioxide retention, and seven had severe asthma (no carbon dioxide retention). When oxygen was used as the driving gas patients who retained carbon dioxide showed a mean rise of 1.03 kPa (7.7 mm Hg) in their pressure of carbon dioxide (Pco2) after 15 minutes (p less than 0.001) but the Pco2 returned to baseline values within 20 minutes of stopping the nebuliser. The other two groups showed no rise in Pco2 with oxygen. When air was used as the driving gas none of the groups became significantly more hypoxic. Although it is safe to use oxygen as the driving gas for nebulisers in patients with obstructive airways disease with normal Pco2, caution should be exercised in those who already have carbon dioxide retention.
Rainer, Matthias; Sonderegger, Harald; Bakry, Rania; Huck, Christian W; Morandell, Sandra; Huber, Lukas A; Gjerde, Douglas T; Bonn, Günther K
2008-11-01
The potential of an organic monolith with incorporated titanium dioxide (TiO(2)) and zirconium dioxide (ZrO(2)) nanoparticles was evaluated for the selective enrichment of phosphorylated peptides from tryptic digests. A pipette tip was fitted with a monolith based on divinylbenzene (DVB) of highly porous structure, which allows sample to pass through the monolithic bed. The enrichment of phosphopeptides was enhanced by increasing the pipetting cycles during the sample preparation and a higher recovery could be achieved with adequate buffer systems. A complete automated process was developed for enrichment of phosphopeptides leading to high reproducibility and resulting in a robust method designed to minimize analytical variance while providing high sensitivity at high sample throughput. The effect of particle size on the selectivity of phosphopeptides was investigated by comparative studies with nano- and microscale TiO(2) and ZrO(2) powders. Eleven phosphopeptides from alpha-casein digest could be recovered by an optimized mixture of microscale TiO(2)/ZrO(2) particles, whereas nine additional phosphopeptides could be retained by the same mixture of nano-structured material. When compared to conventional immobilized metal-ion affinity chromatography and commercial phosphorylation-enrichment kits, higher selectivity was observed in case of self fabricated tips. About 20 phosphopeptides could be retained from alpha-casein and five from beta-casein digests by using TiO(2) and ZrO(2) based extraction tips. Further selectivity for phosphopeptides was demonstrated by enriching a digest of in vitro phosphorylated extracellular signal regulated kinase 1 (ERK1). Two phosphorylated peptides of ERK1 could be identified by MALDI-MS/MS measurements and a following MASCOT database search.
NASA Astrophysics Data System (ADS)
Murtaza, Rabbia; Fahim Khokhar, Muhammad
2016-07-01
Urban air pollution is causing huge number of diseases and deaths annually. Nitrogen dioxide is an important component of urban air pollution and a precursor to particulate matter, ground level ozone, and acid rain. The satellite based measurements of nitrogen dioxide from Ozone Monitoring Instrument (OMI) can help in analyzing spatio temporal variability in ground level concentrations within a large urban area. In this study, the spatial and temporal distributions of tropospheric nitrogen dioxide Vertical Column Densities (VCDs) over Pakistan are presented from 2004 to 2014. The results showed that the winter season is having high nitrogen dioxide levels as compared to summers. The increase can be attributed to the anthropogenic activities especially thermal power generation and traffic count. Punjab is one of the major provinces with high nitrogen dioxide levels followed by Sindh, Khyber Pakhtunkhwa and Balochistan. Six hotspots have been examined in the present study such as Lahore, Islamabad, Karachi, Faisalabad, Okara and Multan. Emissions of nitrogen compounds from thermal power plants and transportation sector represent a significant fraction of the total nitrogen dioxide emissions to the atmosphere.
Monitoring N2O Production Using a cNOR Modeled Active Site
NASA Astrophysics Data System (ADS)
Griffiths, Z. G.; Hegg, E. L.; Finders, C.; Haslun, J. A.
2017-12-01
Nitrous oxide (N2O) is a potent greenhouse gas with a 100-year global warming potential 265-296 times greater than carbon dioxide (CO2). It is the leading contributor to ozone depletion and can persist in the stratosphere for approximately 114 years. Hence, understanding the sources of atmospheric N2O emissions is critical to remediating the effects of climate change. Agricultural activities are the largest contributor to N2O emissions in the U.S. with microbial nitrification and denitrification as the dominating soil processes. The enzyme cytochrome c nitric oxide reductase (cNOR) is involved in bacterial denitrification. It is often difficult to study the enzymes involved in biotic N2O production, hence, model enzymes are a useful tool. The enzyme I107EFeBMb, a sperm whale myoglobin derivative, models the active site of cNOR and was used to simulate the anaerobic reduction of NO to N2O by cNOR. Dithionite was used to induce the catalytic activity of I107EFeBMb by reducing the enzyme. However, dithionite is a strong reductant that is capable of reducing NO to N2O directly. Therefore, the dithionite-enzyme mixture was passed through a size-exclusion column to isolate the reduced enzyme. This reduced and purified enzyme was then utilized to investigate N2O production from NO. This project will provide both an enzymatic and abiotic model to study N2O production.
Lindenmaier, Rodica; Dubey, Manvendra K.; Henderson, Bradley G.; Butterfield, Zachary T.; Herman, Jay R.; Rahn, Thom; Lee, Sang-Hyun
2014-01-01
There is a pressing need to verify air pollutant and greenhouse gas emissions from anthropogenic fossil energy sources to enforce current and future regulations. We demonstrate the feasibility of using simultaneous remote sensing observations of column abundances of CO2, CO, and NO2 to inform and verify emission inventories. We report, to our knowledge, the first ever simultaneous column enhancements in CO2 (3–10 ppm) and NO2 (1–3 Dobson Units), and evidence of δ13CO2 depletion in an urban region with two large coal-fired power plants with distinct scrubbing technologies that have resulted in ∆NOx/∆CO2 emission ratios that differ by a factor of two. Ground-based total atmospheric column trace gas abundances change synchronously and correlate well with simultaneous in situ point measurements during plume interceptions. Emission ratios of ∆NOx/∆CO2 and ∆SO2/∆CO2 derived from in situ atmospheric observations agree with those reported by in-stack monitors. Forward simulations using in-stack emissions agree with remote column CO2 and NO2 plume observations after fine scale adjustments. Both observed and simulated column ∆NO2/∆CO2 ratios indicate that a large fraction (70–75%) of the region is polluted. We demonstrate that the column emission ratios of ∆NO2/∆CO2 can resolve changes from day-to-day variation in sources with distinct emission factors (clean and dirty power plants, urban, and fires). We apportion these sources by using NO2, SO2, and CO as signatures. Our high-frequency remote sensing observations of CO2 and coemitted pollutants offer promise for the verification of power plant emission factors and abatement technologies from ground and space. PMID:24843169
Development and field testing of a rapid and ultra-stable atmospheric carbon dioxide spectrometer
Xiang, B.; Nelson, D. D.; McManus, J. B.; ...
2014-12-15
We present field test results for a new spectroscopic instrument to measure atmospheric carbon dioxide (CO 2) with high precision (0.02 μmol mol -1, or ppm at 1 Hz) and demonstrate high stability (within 0.1 ppm over more than 8 months), without the need for hourly, daily, or even monthly calibration against high-pressure gas cylinders. The technical novelty of this instrument (ABsolute Carbon dioxide, ABC) is the spectral null method using an internal quartz reference cell with known CO 2 column density. Compared to a previously described prototype, the field instrument has better stability and benefits from more precise thermalmore » control of the optics and more accurate pressure measurements in the sample cell (at the mTorr level). The instrument has been deployed at a long-term ecological research site (the Harvard Forest, USA), where it has measured for 8 months without on-site calibration and with minimal maintenance, showing drift bounds of less than 0.1 ppm. Field measurements agree well with those of a commercially available cavity ring-down CO 2 instrument (Picarro G2301) run with a standard calibration protocol. This field test demonstrates that ABC is capable of performing high-accuracy, unattended, continuous field measurements with minimal use of reference gas cylinders.« less
Development and field testing of a rapid and ultra-stable atmospheric carbon dioxide spectrometer
Xiang, B.; Nelson, D. D.; McManus, J. B.; ...
2014-08-05
We present field test results for a new spectroscopic instrument to measure atmospheric carbon dioxide (CO 2) with high precision (0.02 ppm at 1 Hz) and demonstrate high stability (within 0.1 ppm over more than 8 months), without the need for hourly, daily, or even monthly calibration against high-pressure gas cylinders. The technical novelty of this instrument ( ABsolute Carbon dioxide, ABC) is the spectral null method using an internal quartz reference cell with known CO 2 column density. Compared to a previously described prototype, the field instrument has better stability and benefits from more precise thermal control of themore » optics and more accurate pressure measurements in the sample cell (at the mTorr level). The instrument has been deployed at a long-term ecological research site (the Harvard Forest, USA), where it has measured for eight months without on-site calibration and with minimal maintenance, showing drift bounds of less than 0.1 ppm. Field measurements agree well with those of another commercially available cavity ring-down CO 2 instrument (Picarro G2301) run with a standard calibration protocol. This field test demonstrates that ABC is capable of performing high-accuracy, unattended, continuous field measurements with minimal use of calibration cylinders.« less
Development and field testing of a rapid and ultra-stable atmospheric carbon dioxide spectrometer
NASA Astrophysics Data System (ADS)
Xiang, B.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Wehr, R. A.; Wofsy, S. C.
2014-12-01
We present field test results for a new spectroscopic instrument to measure atmospheric carbon dioxide (CO2) with high precision (0.02 μmol mol-1, or ppm at 1 Hz) and demonstrate high stability (within 0.1 ppm over more than 8 months), without the need for hourly, daily, or even monthly calibration against high-pressure gas cylinders. The technical novelty of this instrument (ABsolute Carbon dioxide, ABC) is the spectral null method using an internal quartz reference cell with known CO2 column density. Compared to a previously described prototype, the field instrument has better stability and benefits from more precise thermal control of the optics and more accurate pressure measurements in the sample cell (at the mTorr level). The instrument has been deployed at a long-term ecological research site (the Harvard Forest, USA), where it has measured for 8 months without on-site calibration and with minimal maintenance, showing drift bounds of less than 0.1 ppm. Field measurements agree well with those of a commercially available cavity ring-down CO2 instrument (Picarro G2301) run with a standard calibration protocol. This field test demonstrates that ABC is capable of performing high-accuracy, unattended, continuous field measurements with minimal use of reference gas cylinders.
Development and field testing of a rapid and ultra-stable atmospheric carbon dioxide spectrometer
NASA Astrophysics Data System (ADS)
Xiang, B.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Wehr, R.; Wofsy, S. C.
2014-08-01
We present field test results for a new spectroscopic instrument to measure atmospheric carbon dioxide (CO2) with high precision (0.02 ppm at 1 Hz) and demonstrate high stability (within 0.1 ppm over more than 8 months), without the need for hourly, daily, or even monthly calibration against high-pressure gas cylinders. The technical novelty of this instrument (ABsolute Carbon dioxide, ABC) is the spectral null method using an internal quartz reference cell with known CO2 column density. Compared to a previously described prototype, the field instrument has better stability and benefits from more precise thermal control of the optics and more accurate pressure measurements in the sample cell (at the mTorr level). The instrument has been deployed at a long-term ecological research site (the Harvard Forest, USA), where it has measured for eight months without on-site calibration and with minimal maintenance, showing drift bounds of less than 0.1 ppm. Field measurements agree well with those of another commercially available cavity ring-down CO2 instrument (Picarro G2301) run with a standard calibration protocol. This field test demonstrates that ABC is capable of performing high-accuracy, unattended, continuous field measurements with minimal use of calibration cylinders.
Influence of Aerosols And Surface Reflectance On NO2 Retrieval Over China From 2005 to 2015
NASA Astrophysics Data System (ADS)
Liu, M.; Lin, J.
2016-12-01
Satellite observation is a powerful way to analysis annual and seasonal variations of nitrogen dioxide (NO2). However, much retrieval of vertical column densities (VCDs) of normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. In traditional retrieval, aerosols' effects are often considered as cloud. However, China has complicated aerosols type and aerosol loading. Their optical properties may be very different from the cloud. Furthermore, China has undergone big changes in land use type in recent 10 years. Traditional climatology surface reflectance data may not have representation. In order to study spatial-temporal variation of and influences of these two factors on variations and trends, we use an improved retrieval method of VCDs over China, called the POMINO, based on measurements from the Ozone Monitoring Instrument (OMI), and we compare the results of without aerosol, without surface reflectance treatments and without both to the original POMINO product from 2005 to 2015. Furthermore, we will study correspondent spatial-temporal variations of aerosols, represented by MODIS aerosol optical depth (AOD) data and CALIOP extinction data; surface reflectance, represented by MODIS bidirectional reflectance distribution function (BRDF) data.
A gradient of ambient nitrogen dioxide (NO2) concentration is demonstrated across metropolitan El Paso, Texas (USA), a city located on the international border between the United States and Mexico. Integrated measurements of NO2 were collected over seven days at 20 elementary sc...
NASA Astrophysics Data System (ADS)
Lin, J.-T.
2012-04-01
Nitrogen oxides (NOx ≡ NO + NO2) are important atmospheric constituents affecting the tropospheric chemistry and climate. They are emitted both from anthropogenic and from natural (soil, lightning, biomass burning, etc.) sources, and China has become a major region of increasing importance for anthropogenic sources. In a series of studies, satellite remote sensing for the vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) is used to estimate anthropogenic and natural emissions of NOx over China. Focus is set on variations of emissions over a variety of time scales in response to the economic development of China, from the general growth in recent years to the economic downturn during late 2008 - mid 2009 to the holiday associated with the Chinese New Year. An attempt is made to reduce the effect of potential systematic errors in satellite retrievals by coupling data from multiple satellite instruments flying over China at different time of day. For 2006, anthropogenic emissions are separated from lightning and soil sources over East China by exploiting their different seasonality. For the first time, a systematic evaluation is conducted to quantify uncertainties in various aspects of model meteorology and chemistry affecting emission inversion for China and implications for simulations of other air pollution (e.g., near-surface ozone).
Niu, Ying-mei; Hao, Feng-tong; Xue, Chang-jiang; Xia, Yu-jing; Zhou, Shuo; Lu, Qing-sheng; Liu, Jian-zhong; Zhang, Peng
2011-03-01
To study therapeutic effects by using different oxygen therapies in rats with acute carbon dioxide poisoning, to select the best oxygen therapy technology for patients with acute carbon dioxide poisoning on the spot. Sixty healthy male Sprague-Dawley rats were randomized into normal control group, carbon dioxide exposure group, hyperbaric oxygen treatment group (pressure 2 ATA, FiO(2)100%), high concentration of atmospheric oxygen treatment group (FiO(2)50%), low concentration of atmospheric oxygen treatment group (FiO(2)33%). After treated with different oxygen in rats with acute carbon dioxide poisoning, arterial pH, PO2 and PCO2 of rats were detected, in addition observe pathological changes of lung tissue and brain tissue. The arterial pH (7.31 ± 0.06) and PO2 [(68.50 ± 15.02) mm Hg] of carbon dioxide exposure group were lower than those of control group [pH (7.42 ± 0.02) and PO2 (92.83 ± 8.27) mm Hg], PCO2 [(71.66 ± 12.10) mm Hg] was higher than that of control group [(48.25 ± 2.59) mm Hg] (P < 0.05); the arterial pH (hyperbaric oxygen treatment group 7.37 ± 0.02, high concentration of atmospheric oxygen treatment group 7.39 ± 0.03, low concentration of atmospheric oxygen treatment group 7.38 ± 0.02) and PO2 of oxygen treatment groups [hyperbaric oxygen treatment group, high concentration of atmospheric oxygen treatment group, low concentration of atmospheric oxygen treatment group were (82.25 ± 12.98), (84.75 ± 11.24), (83.75 ± 16.77) mm Hg, respectively] were higher than that of carbon dioxide exposure group, PCO2 [hyperbaric oxygen treatment group, high concentration of atmospheric oxygen treatment group, low concentration of atmospheric oxygen treatment group were (52.25 ± 4.95), (51.75 ± 4.82), (52.66 ± 5.61) mm Hg, respectively] was lower than that of carbon dioxide exposure group (P < 0.05); there was no significant difference of the arterial pH, PO2 and PCO2 between oxygen treatment groups and control group (P > 0.05); there was no significant difference of the arterial pH, PO2 and PCO2 among oxygen treatment groups (P > 0.05). There was large area of bleeding of lungs in rats with carbon dioxide poisoning, the bleeding of lungs in rats with high concentration of atmospheric oxygen treatment and low concentration of atmospheric oxygen treatment was better than the rats with carbon dioxide poisoning, there was no abnormal appearance of lungs in rats with hyperbaric oxygen treatment. The light microscope observation showed that there were diffuse bleeding and exudation of lungs in rats with carbon dioxide poisoning, the bleeding and exudation of lungs in rats with high concentration of atmospheric oxygen treatment and low concentration of atmospheric oxygen treatment were better than the rats with carbon dioxide poisoning, there were only minor bleeding and exudation of lungs in rats with hyperbaric oxygen treatment. There was no difference of brain in anatomy and microscopy among all groups, there were no significant bleeding, edema, cell degeneration and necrosis. Lung pathology in acute carbon dioxide poisoning rats with hyperbaric oxygen treatment is better than the rats with high concentration of atmospheric oxygen treatment and low concentration of atmospheric oxygen treatment, there is no significant difference of effect between high concentration of atmospheric oxygen treatment group and low concentration of atmospheric oxygen treatment group, however, the results of blood gas analysis and lung pathology than the exposure group improved, so qualified medical unit for hyperbaric oxygen therapy as soon as possible, hyperbaric oxygen treatment facilities in the absence of circumstances, the emergency treatment of early oxygen is also a good measure.
Analysis of Nitrogen Dioxide and Sulphur Dioxide in Lima, Peru: Trends and Seasonal Variations
NASA Astrophysics Data System (ADS)
Pacsi, S.; Rappenglueck, B.
2007-12-01
This research was carried out to show a general analysis of the monthly and yearly variation (1996-2002) and the tendency of the nitrogen dioxide (NO2) and sulfur dioxide (SO2) for the 5 stations of the air quality network of Lima. The SO2 and NO2 concentrations were measured by the Dirección General de Salud Ambiental (DIGESA), using the active sampling method and the chemical analysis has been determined by Turbidimetry and Colorimetry for the SO2 and NO2 respectively. The monthly average variation (1996-2001) of SO2 in the Lima Center station has a small annual range (32,4 mikrograms/m3) with maximum values in autumn (April) and minimum in winter (June). The NO2 presents a higher annual range (128,2 mikrograms/m3) and its minimum values occur in the summer and the maximum in spring. The annual averages analysis (2000-2002) of the air quality monitoring network of Lima shows that the SO2 and NO2 values are maximum in the Lima Center station and exceed the Peruvian air quality standard (ECAs) in 30% and 75% respectively. The yearly variation (1996-2001) in the Lima Center station show an increasing tendency in the SO2 (significant) and NO2 (not significant) values, which indicates the critical level of the air quality in Lima, therefore the implementation of the air pollution control programs is urgent.
NASA Astrophysics Data System (ADS)
Silverman, M. L.; Szykman, J.; Chen, G.; Crawford, J. H.; Janz, S. J.; Kowalewski, M. G.; Lamsal, L. N.; Long, R.
2015-12-01
Studies have shown that satellite NO2 columns are closely related to ground level NO2 concentrations, particularly over polluted areas. This provides a means to assess surface level NO2 spatial variability over a broader area than what can be monitored from ground stations. The characterization of surface level NO2 variability is important to understand air quality in urban areas, emissions, health impacts, photochemistry, and to evaluate the performance of chemical transport models. Using data from the NASA DISCOVER-AQ campaign in Baltimore/Washington we calculate NO2 mixing ratios from the Airborne Compact Atmospheric Mapper (ACAM), through four different methods to derive surface concentration from column measurements. High spectral resolution lidar (HSRL) mixed layer heights, vertical P3B profiles, and CMAQ vertical profiles are used to scale ACAM vertical column densities. The derived NO2 mixing ratios are compared to EPA ground measurements taken at Padonia and Edgewood. We find similar results from scaling with HSRL mixed layer heights and normalized P3B vertical profiles. The HSRL mixed layer heights are then used to scale ACAM vertical column densities across the DISCOVER-AQ flight pattern to assess spatial variability of NO2 over the area. This work will help define the measurement requirements for future satellite instruments.
21 CFR 184.1240 - Carbon dioxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...
21 CFR 184.1240 - Carbon dioxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...
21 CFR 184.1240 - Carbon dioxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...
Zeolites for CO2-CO-O2 Separation to Obtain CO2-Neutral Fuels.
Perez-Carbajo, Julio; Matito-Martos, Ismael; Balestra, Salvador R G; Tsampas, Mihalis N; van de Sanden, Mauritius C M; Delgado, José A; Águeda, V Ismael; Merkling, Patrick J; Calero, Sofia
2018-06-20
Carbon dioxide release has become an important global issue due to the significant and continuous rise in atmospheric CO 2 concentrations and the depletion of carbon-based energy resources. Plasmolysis is a very energy-efficient process for reintroducing CO 2 into energy and chemical cycles by converting CO 2 into CO and O 2 utilizing renewable electricity. The bottleneck of the process is that CO remains mixed with O 2 and residual CO 2 . Therefore, efficient gas separation and recuperation are essential for obtaining pure CO, which, via water gas shift and Fischer-Tropsch reactions, can lead to the production of CO 2 -neutral fuels. The idea behind this work is to provide a separation mechanism based on zeolites to optimize the separation of carbon dioxide, carbon monoxide, and oxygen under mild operational conditions. To achieve this goal, we performed a thorough screening of available zeolites based on topology and adsorptive properties using molecular simulation and ideal adsorption solution theory. FAU, BRE, and MTW are identified as suitable topologies for these separation processes. FAU can be used for the separation of carbon dioxide from carbon monoxide and oxygen and BRE or MTW for the separation of carbon monoxide from oxygen. These results are reinforced by pressure swing adsorption simulations at room temperature combining adsorption columns with pure silica FAU zeolite and zeolite BRE at a Si/Al ratio of 3. These zeolites have the added advantage of being commercially available.
NASA Astrophysics Data System (ADS)
Raimondi, L.; Azetsu-Scott, K.; Wallace, D.
2016-02-01
This work assesses the internal consistency of ocean carbon dioxide through the comparison of discrete measurements and calculated values of four analytical parameters of the inorganic carbon system: Total Alkalinity (TA), Dissolved Inorganic Carbon (DIC), pH and Partial Pressure of CO2 (pCO2). The study is based on 486 seawater samples analyzed for TA, DIC and pH and 86 samples for pCO2 collected during the 2014 Cruise along the AR7W line in Labrador Sea. The internal consistency has been assessed using all combinations of input parameters and eight sets of thermodynamic constants (K1, K2) in calculating each parameter through the CO2SYS software. Residuals of each parameter have been calculated as the differences between measured and calculated values (reported as ΔTA, ΔDIC, ΔpH and ΔpCO2). Although differences between the selected sets of constants were observed, the largest were obtained using different pairs of input parameters. As expected the couple pH-pCO2 produced to poorest results, suggesting that measurements of either TA or DIC are needed to define the carbonate system accurately and precisely. To identify signature of organic alkalinity we isolated the residuals in the bloom area. Therefore only ΔTA from surface waters (0-30 m) along the Greenland side of the basin were selected. The residuals showed that no measured value was higher than calculations and therefore we could not observe presence of organic bases in the shallower water column. The internal consistency in characteristic water masses of Labrador Sea (Denmark Strait Overflow Water, North East Atlantic Deep Water, Newly-ventilated Labrador Sea Water, Greenland and Labrador Shelf waters) will also be discussed.
77 FR 9532 - Air Quality Designations for the 2010 Primary Nitrogen Dioxide (NO2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-17
...This rule establishes air quality designations for all areas in the United States for the 2010 Primary Nitrogen Dioxide (NO2) National Ambient Air Quality Standards (NAAQS). Based on air quality monitoring data, the EPA is issuing this rule to designate all areas of the country as ``unclassifiable/attainment'' for the 2010 NO2 NAAQS. The EPA is designating areas as ``unclassifiable/attainment'' to mean that available information does not indicate that the air quality in these areas exceeds the 2010 NO2 NAAQS.
A Broad Bank Lidar for Precise Atmospheric CO2 Column Absorption Measurement from Space
NASA Technical Reports Server (NTRS)
Georgieva, E. M.; Heaps, W. S.; Huang, W.
2010-01-01
Accurate global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. In order to uncover the "missing sink" that is responsible for the large discrepancies in the budget the critical precision for a measurement from space needs to be on the order of 1 ppm. To better understand the CO2 budget and to evaluate its impact on global warming the National Research Council (NRC) in its recent decadal survey report (NACP) to NASA recommended a laser based total CO2 mapping mission in the near future. That's the goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission - to significantly enhance the understanding of the role of CO2 in the global carbon cycle. Our current goal is to develop an ultra precise, inexpensive new lidar system for column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with a high power broadband source. This approach reduces the number of individual lasers used in the system and considerably reduces the risk of failure. It also tremendously reduces the requirement for wavelength stability in the source putting this responsibility instead on the Fabry- Perot subsystem.
Murnane, J G; Fenton, O; Healy, M G
2018-01-15
This study aimed to quantify leaching losses of nitrogen (N), phosphorus (P) and carbon (C), as well as carbon dioxide (CO 2 ) and methane (CH 4 ) emissions from stored slurry, and from packed soil columns surface applied with unamended and chemically amended dairy and pig slurries, and dairy soiled water (DSW). The amendments to the slurries, which were applied individually and together, were: polyaluminum chloride (PAC) and zeolite for pig and dairy slurry, and liquid aluminium sulfate (alum) and zeolite for DSW. Application of pig slurry resulted in the highest total nitrogen (TN) and nitrate-nitrogen (NO 3 -N) fluxes (22 and 12 kg ha -1 ), whereas corresponding fluxes from dairy slurries and DSW were not significantly (p < 0.05) higher than those from the control soil. There were no significant (p < 0.05) differences in leachate N losses between unamended and amended dairy slurries, unamended and amended pig slurries, and unamended and amended DSW. There were no leachate P losses measured over the experimental duration. Total cumulative organic (TOC) and inorganic C (TIC) losses in leachate were highest for unamended dairy slurry (82 and 142 kg ha -1 ), and these were significantly (p < 0.05) reduced when amended with PAC (38 and 104 kg ha -1 ). The highest average cumulative CO 2 emissions for all treatments were measured for pig slurries (680 kg CO 2 -C ha -1 ) followed by DSW (515 kg CO 2 -C ha -1 ) and dairy slurries (486 kg CO 2 -C ha -1 ). The results indicate that pig slurry, either in raw or chemically amended form, poses the greatest environmental threat of leaching losses and gaseous emissions of CO 2 and CH 4 and, in general, amendment of wastewater with PAC, alum or zeolite, does not mitigate the risk of these losses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Zhe; Zhang, Zengyu; Xiao, Yan; Guo, Jinsong; Wu, Shengjun; Liu, Jing
2014-05-01
Supersaturation and excess emission of greenhouse gases in freshwater reservoirs have received a great deal of attention in recent years. Although impoundment of reservoirs has been shown to contribute to the net emission of greenhouse gases, reservoir age, geographical distribution, submerged soil type and artificial regulation also have a great impact on their emissions. To examine how large scale reservoir operation impact the water column CO2 and its air-water interface flux, a field study was conducted in 2010 to evaluate potential ecological processes that regulate the partial pressure of CO2 (pCO2) in the water column in the Pengxi River backwater area (PBA), a typical tributary in the Three Gorges Reservoir, China. Measurements of total alkalinity (TA), pH and water temperature were applied to compute the pCO2. And this approach was also validated by calculation of pCO2 from the dissolved inorganic carbon data of samples. Partial least squares (PLS) regression was used to determine how the dynamics of the water pCO2 were related to the available variables. The estimated pCO2 in our sample ranged from 26 to 4,087 μatm in the surface water. During low water operation from July to early September, there was an obvious pCO2 stratification, and pCO2 in the surface was almost unsaturated. This phenomenon was also observed in the spring bloom during discharge period. Conversely, there was no significant pCO2 stratification and the entire water column was supersaturated during high water operation from November to the following February. Significant correlation was observed between the magnitude of pCO2, DO and chlorophyll a, suggesting that phytoplankton dynamics regulate pCO2 in the PBA. The average areal rate of CO2 emissions from the Pengxi River ranged from 18.06 to 48.09 mmol m(-2) day(-1), with an estimated gross CO2 emission from the water surface of 14-37 t day(-1) in this area in 2010. Photosynthesis and respiration rates by phytoplankton might be the dominant processes that regulated pCO2 in the water column. We conclude that pCO2 values in the surface water of Pengxi River could be regarded as potential sources of CO2 to the atmosphere were smaller or similar to those that have been reported for many other reservoirs to date.
Pulsed 2-micron Laser Transmitter For Carbon Dioxide Sensing From Space
NASA Astrophysics Data System (ADS)
Singh, U. N.; Yu, J.; Bai, Y.; Petros, M.
2011-12-01
Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. Studies of the carbon cycle are limited by the tools available to precisely measure CO2 concentrations by remote sensing. Active sensing, using the Integrated Path Differential Absorption (IPDA) approach, permits measurements day and night, at all latitudes and seasons. The development of a high pulse energy 2-μm laser transmitter for high-precision CO2 measurements from space leverages years of NASA investment in solid-state laser technology. Under NASA Laser Risk Reduction Program, funded by Earth Science Technology Office, researchers at NASA Langley Research Center developed an injection seeded, high repetition rate, Q-switched Ho:YLF laser transmitter for CO2 Differential Absorption Lidar/IPDA (profile/column) measurements from ground and airborne platforms. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. NASA LaRC's 2-micron pulsed laser transmitter possesses advantages over current passive and CW active sensors. First, the pulsed format provides a built-in means for determining range to the scattering target and effectively filtering out the scattering from thin clouds and aerosols, thus eliminating a source of measurement bias. Second, by concentrating the laser energy into a pulse, sufficient backscatter signal strength can be obtained from aerosol scattering rather than relying on a hard target at a known distance. Third, the absorption line at the 2.05 μm band is ideally suited for the CO2 concentration measurement. In particular, the weighting function of 2 μm is optimum for measurement in the lower troposphere where the sources and sinks of CO2 are located. The planned laser transmitter development will lead to a Tm:Fiber pumped Ho:YLF laser transmitter capable of delivering 65 mJ at 50 Hz at on-line wavelength and 50 mJ at 50 Hz at off-line wavelength. The planned laser technology development and performance capabilities are a major step forward in the laser transmitter requirements called out in recent comprehensive system studies, e.g., the European Space Agency (ESA) exploration mission studies, A-SCOPE, for future CO2 column density measurements from space. The planned laser technology development is relevant to NASA's earth science priorities, such as NASA ASCENDS mission for space-based CO2 column density measurements. This presentation will provide an overview of the current status of laser transmitter development and describe future technology development to meet the transmitter requirement for a space-based column averaged measurement of CO2 concentration.
Long-Term Trends Worldwide in Ambient NO2 Concentrations Inferred from Satellite Observations.
Geddes, Jeffrey A; Martin, Randall V; Boys, Brian L; van Donkelaar, Aaron
2016-03-01
Air pollution is associated with morbidity and premature mortality. Satellite remote sensing provides globally consistent decadal-scale observations of ambient nitrogen dioxide (NO2) pollution. We determined global population-weighted annual mean NO2 concentrations from 1996 through 2012. We used observations of NO2 tropospheric column densities from three satellite instruments in combination with chemical transport modeling to produce a global 17-year record of ground-level NO2 at 0.1° × 0.1° resolution. We calculated linear trends in population-weighted annual mean NO2 (PWMNO2) concentrations in different regions around the world. We found that PWMNO2 in high-income North America (Canada and the United States) decreased more steeply than in any other region, having declined at a rate of -4.7%/year [95% confidence interval (CI): -5.3, -4.1]. PWMNO2 decreased in western Europe at a rate of -2.5%/year (95% CI: -3.0, -2.1). The highest PWMNO2 occurred in high-income Asia Pacific (predominantly Japan and South Korea) in 1996, with a subsequent decrease of -2.1%/year (95% CI: -2.7, -1.5). In contrast, PWMNO2 almost tripled in East Asia (China, North Korea, and Taiwan) at a rate of 6.7%/year (95% CI: 6.0, 7.3). The satellite-derived estimates of trends in ground-level NO2 were consistent with regional trends inferred from data obtained from ground-station monitoring networks in North America (within 0.7%/year) and Europe (within 0.3%/year). Our rankings of regional average NO2 and long-term trends differed from the satellite-derived estimates of fine particulate matter reported elsewhere, demonstrating the utility of both indicators to describe changing pollutant mixtures. Long-term trends in satellite-derived ambient NO2 provide new information about changing global exposure to ambient air pollution. Our estimates are publicly available at http://fizz.phys.dal.ca/~atmos/martin/?page_id=232.
Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements
NASA Astrophysics Data System (ADS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron
2015-10-01
Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.
Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements
NASA Astrophysics Data System (ADS)
Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael
2015-04-01
Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.
Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron
2015-01-01
Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.
Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements
NASA Astrophysics Data System (ADS)
Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.
2015-12-01
Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.
NASA Astrophysics Data System (ADS)
Pope, R. J.; Savage, N. H.; Chipperfield, M. P.; Ordóñez, C.; Neal, L. S.
2015-07-01
Synoptic meteorology can have a significant influence on UK air quality. Cyclonic (anticyclonic) conditions lead to the dispersion (accumulation) of air pollutants away from (over) source regions. Meteorology also modifies atmospheric chemistry processes such as photolysis and wet deposition. Previous studies have shown a relationship between observed satellite tropospheric column NO2 and synoptic meteorology in different seasons. Here, we test whether the UK Met Office Air Quality in the Unified Model (AQUM) can reproduce these observations and then use the model to determine the controlling factors. We show that AQUM successfully captures the observed relationships, when sampled under the Lamb Weather Types, an objective classification of midday UK circulation patterns. By using a range of idealised NOx-like tracers with different e-folding lifetimes, we show that under different synoptic regimes the NO2 lifetime in AQUM is approximately 6 h in summer and 12 h in winter. The longer lifetime can explain why synoptic spatial column NO2 variations are more significant in winter compared to summer, due to less NO2 photochemical loss. We also show that cyclonic conditions have more seasonality in column NO2 than anticyclonic conditions as they result in more extreme spatial departures from the wintertime seasonal average. Within a season (summer or winter) under different synoptic regimes, a large proportion of the spatial pattern in the UK column NO2 field can be explained by the idealised model tracers, showing that transport is an important factor in governing the variability of UK air quality on seasonal synoptic timescales.
Procedures for Processing Requests to Redesignate Areas to Attainment
Guidance for processing requests for redesignation of nonattainment areas to attainment for ozone (O3), carbon monoxide (CO), particulate matter (PM-10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and lead (Pb).
Rod, Kenton A; Um, Wooyong; Flury, Markus
2010-11-01
We investigated the effects of water saturation and secondary precipitate formation on Sr and Cs transport through quartz sand columns under saturated and unsaturated flow. Column experiments were conducted at effective water saturation ranging from 0.2 to 1.0 under steady-state flow using either 0.1 M NaNO(3) or simulated tank waste leachate (STWL; 1 M NaNO(3) and 1 M NaOH) mimicking Hanford (Washington, USA) tank waste. In 0.1 M NaNO(3) columns, Sr transported like a conservative tracer, whereas Cs was retarded relative to Sr. The transport of Sr and Cs in the 0.1 M NaNO(3) columns under all water saturations could be described with the equilibrium convection-dispersion equation (CDE). In STWL columns, Sr mobility was significantly reduced compared to the 0.1 M NaNO(3) column, because Sr was incorporated into or sorbed to neo-formed secondary precipitates. Strontium sequestration by precipitates was confirmed by additional batch and electron micrograph analyses. In contrast(,) the transport of Cs was less affected by the STWL; retardation of Cs in STWL columns was similar to that found in 0.1 M NaNO(3) columns. Analysis of STWL column data revealed that both Sr and Cs breakthrough curves showed nonideal behavior that suggest nonequilibrium conditions, although nonlinear geochemical behavior cannot be ruled out.
Sulfur Dioxide Emissions from Congo Volcanoes
NASA Technical Reports Server (NTRS)
2002-01-01
The Earth Probe Total Ozone Mapping Spectrometer (TOMS) detected a sulfur dioxide cloud associated with the January 2002 eruption of Nyiragongo as it flew over the region at around 11 a.m. local time (0900 UTC) on January 17. The sensor detected no significant amounts of ash in the eruption cloud. At the time of the TOMS overpass the cloud extended up to roughly 200 km (124 miles) northwest of Nyiragongo and was still attached to the volcano. This observation is consistent with nearly coincident MODIS imagery which shows an opaque cloud of gas and steam in the same location. The TOMS measurements show that the amount of sulfur dioxide in the Nyiragongo's plume range from about 10 to 30 kilotons. Please note that TOMS mass retrievals are dependent on the altitude of the cloud and may be adjusted as more information becomes available. Since the cloud may still have been developing at the time of the TOMS overpass, the final sulfur dioxide burden may have been greater. Wind trajectory data (courtesy of Leslie Lait, SSAI) suggest that part of the cloud may have reached at least mid- to upper-tropospheric altitudes of up to 12 km (7 miles), but scientists suspect no significant stratospheric injection of sulfur dioxide as a result of this eruption since the gas was not visible over the Democratic Republic of the Congo region in subsequent TOMS data acquired on January 18. Production of sulfur dioxide without a significant ash cloud is commonly observed during effusive eruptions such as the Nyiragongo event. Although dense low-level ash may be produced during such eruptions, these particulates usually fall out fairly quickly and elude detection by satellite. The size of the January 17 Nyiragongo cloud and the estimated sulfur dioxide tonnage are fairly modest, and at least an order of magnitude smaller than values typically measured by TOMS during eruptions of nearby Nyamuragira during its frequent outbursts (e.g., on February 6, 2001). Sulfur dioxide column amounts (measured in Dobson Units) are much higher in the more extensive Nyamuragira cloud, which contained roughly 420 kilotons of sulfur dioxide. Although several factors could affect the size of the observed cloud in each case-such as the delay between the onset of the eruption and the TOMS overpass, and the volume of lava emitted and the lava composition-the TOMS data suggest that the Nyiragongo magma may have been largely degassed before eruption. One possible mechanism by which this could be achieved is the cyclic degassing of magma in the subaerial lava lakes that have been intermittently present in Nyiragongo's summit crater over the past few decades. Images courtesy Simon Cairn, TOMS Volcanic Emissions Group, Joint Center for Earth Systems Technology, University of Maryland-Baltimore County
Supercritical carbon dioxide: a solvent like no other
Peach, Jocelyn
2014-01-01
Summary Supercritical carbon dioxide (scCO2) could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs). Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity. PMID:25246947
Sub-Seafloor Carbon Dioxide Storage Potential on the Juan de Fuca Plate, Western North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerry Fairley; Robert Podgorney
2012-11-01
The Juan de Fuca plate, off the western coast of North America, has been suggested as a site for geological sequestration of waste carbon dioxide because of its many attractive characteristics (high permeability, large storage capacity, reactive rock types). Here we model CO2 injection into fractured basalts comprising the upper several hundred meters of the sub-seafloor basalt reservoir, overlain with low-permeability sediments and a large saline water column, to examine the feasibility of this reservoir for CO2 storage. Our simulations indicate that the sub-seafloor basalts of the Juan de Fuca plate may be an excellent CO2 storage candidate, as multiplemore » trapping mechanisms (hydrodynamic, density inversions, and mineralization) act to keep the CO2 isolated from terrestrial environments. Questions remain about the lateral extent and connectivity of the high permeability basalts; however, the lack of wells or boreholes and thick sediment cover maximize storage potential while minimizing potential leakage pathways. Although promising, more study is needed to determine the economic viability of this option.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farahani, H.; Hasan, M.
1992-02-01
The biochemical response to controlled inhalation of nitrogen dioxide (NO2) was studied in 18 male guinea pigs. Animals were exposed to 2.5, 5.0, and 10 ppm NO2 for 2h daily for 35 consecutive days, and the results compared with six control animals exposed to filtered air for 2h daily for same period. Five biochemical parameters, including triglyceride, free fatty acids, esterified fatty acid, ganglioside and lipase activity were measured immediately after the last day of exposure. At 2.5 ppm NO2 inhalation no significant changes occurred in any region of the central nervous system (CNS). While as the dose concentration wasmore » increased to 5 and 10 ppm nitrogen dioxide, significant dose-related alteration were observed in the levels of triglyceride, free fatty acid, esterified fatty acid, ganglioside and lipase activity in the different regions of the guinea pig CNS.« less
On the Hydrophobicity of Nitrogen Dioxide: Could there be a “lens” effect for NO2 reaction kinetics?
Squadrito, Giuseppe L.; Postlethwait, Edward M.
2009-01-01
Solvent “lens” effects for the reaction kinetics of NO2 can be evaluated on the basis of published Henry’s law constants for nitrogen dioxide in various solvents. Water-to-organic solvent partition coefficients were derived from Henry’s law constants and used to assess the tendencies of NO2 toward fleeing the aqueous environments and concentrating in biological hydrophobic media. It is concluded, based only on the estimated aqueous medium-to-cell membrane partition coefficient for NO2, that such tendencies will be relatively small, and that they may account for an acceleration of chemical reactions in biological hydrophobic media with reaction kinetics that are first order on NO2 by a factor of approximately 3 ± 1. Thus, kinetic effects due to mass action will be relatively small but it is also important to recognize that because NO2 will tend to dissolve in cell membranes, reactions with cell membrane components will not be hindered by lack of physical solubility at these loci. In comparison to other gases, nitrogen dioxide is less hydrophobic than NO, O2 and N2. PMID:19540354
NASA Astrophysics Data System (ADS)
Verstraeten, W. W.; Boersma, K. F.; Douros, J.; Williams, J. E.; Eskes, H.; Delcloo, A. W.
2017-12-01
High nitrogen oxides (NOX = NO + NO2) concentrations near the surface impact humans and ecosystems badly and play a key role in tropospheric chemistry. NO2 is an important precursor of tropospheric ozone (O3) which in turn affects the production of the hydroxyl radical controlling the chemical lifetime of key atmospheric pollutants and reactive greenhouse gases. Combustion from industrial, traffic and household activities in large and densely populated urban areas result in high NOX emissions. Accurate mapping of these emissions is essential but hard to do since reported emissions factors may differ from real-time emissions in order of magnitude. Modelled NO2 levels and lifetimes also have large associated uncertainties and overestimation in the chemical lifetime which may mask missing NOX chemistry in current chemistry transport models (CTM's). The simultaneously estimation of both the NO2 lifetime and as well as the concentrations by applying the Exponentially Modified Gaussian (EMG) method on tropospheric NO2 columns lines densities should improve the surface NOX emission estimates. Here we evaluate if the EMG methodology applied on the tropospheric NO2 columns simulated by the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) CTM can reproduce the NOX emissions used as model input. First we process both the modelled tropospheric NO2 columns for the period April-September 2013 for 21 selected European urban areas under windy conditions (averaged vertical wind speeds between surface and 500 m from ECMWF > 2 m s-1) as well as the accompanying OMI (Ozone Monitoring Instrument) data providing us with real-time observation-based estimates of midday NO2 columns. Then we compare the top-down derived surface NOX emissions with the 2011 MACC-III emission inventory, used in the CTM as input to simulate the NO2 columns. For cities where NOX emissions can be assumed as originating from one large source good agreement is found between the top-down derived NOX emissions from CTM and OMI with the MACC-III inventory. For cities where multiple sources of NOX are observed (e.g. Brussels, London), an adapted methodology is required. For some cities such as St-Petersburg and Moscow the top-down NOX estimates from 2013 OMI data are biased low compared to the MACC-III inventory which uses a 2011 NOX emissions update.
NASA Technical Reports Server (NTRS)
Pickering, Kenneth; Prados, Ana; Bucsela, Eric
2010-01-01
This talk will be presented in two parts: 1) an analysis of tropospheric column NO2 trends in the eastern half of the United States over the period 2005 to 2009 and 2) estimation of lightning NO(x) production rates based on OMI observations and lightning flash rate data. The air quality trends in the eastern US will be determined for specific subregions using tropospheric column NO2 data from OMI for 2005 through 2008 and from GOME-2 for 2007 through 2009. This period is characterized by significant NO(x) emission reductions at power plants within most of this region. The air quality trends will be compared with those estimated from continuous emission monitoring data from the power plants compiled by the US Environmental Protection Agency. OMI NO2 data have also been used to estimate lightning NOx production per flash in selected storms near Costa Rica and Panama during the 2007 NASA TC4 field campaign and over the continental US, Gulf of Mexico, and western Atlantic during the summers of 2005 and 2006. The lightning signal is extracted from the OMI data through a custom retrieval in which an NO2 profile representative of convective outflow is used in the airmass factor calculation and the background NO2 column is subtracted from the tropospheric column. When combined with NO(x)/NO2 ratios from the NASA GMT model and observed flash rates, the resulting estimates of NO(x) production per flash are comparable to those estimated obtained from analyses of aircraft data and cloud-resolving modeling.
Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dix, Barbara; Koenig, Theodore K.; Volkamer, Rainer
We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversionmore » of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O 4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCD ref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and adding flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO 2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMR para) and the true VMR (VMR true) is excellent for all trace gases. Offsets, slopes and R 2 values for the linear fit of VMR para over VMR true are, respectively (0.008 ± 0.001) pptv, 0.988 ± 0.001, 0.987 for BrO; (-0.0066 ± 0.0001) pptv, 1.0021 ± 0.0003, 0.9979 for IO; (-0.17 ± 0.03) pptv, 1.0036 ± 0.0001, 0.9997 for NO 2. The agreement for atmospheres with aerosol shows comparable R 2 values to the Rayleigh case, but slopes deviate a bit more from one: (0.093 ± 0.002) pptv, 0.933 ± 0.002, 0.907 for BrO; (0.0021 ± 0.0004) pptv, 0.887 ± 0.001, 0.973 for IO; (8.5 ± 0.1) pptv, 0.8302 ± 0.0006, 0.9923 for NO 2. VMR para from field data are further compared with optimal estimation retrievals (VMR OE). Least orthogonal distance fit of the data give the following equations: BrO para = (0.1 ± 0.2) pptv + (0.95 ± 0.14) × BrO OE; IO para = (0.01 ± 0.02) pptv + (1.00 ± 0.12) × IO OE; NO 2para = (3.9 ± 2.5) pptv + (0.87 ± 0.15) × NO 2OE. Overall, we conclude that the parameterization retrieval is accurate with an uncertainty of 20 % for IO, 30 % for BrO and NO 2, but not better than 0.05 pptv IO, 0.5 pptv BrO and 10 pptv NO 2. Finally, the retrieval is applicable over a wide range of atmospheric conditions and measurement geometries and not limited to the interpretation of vertical profile measurements in the remote troposphere.« less
Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS
Dix, Barbara; Koenig, Theodore K.; Volkamer, Rainer
2016-11-28
We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversionmore » of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O 4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCD ref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and adding flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO 2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMR para) and the true VMR (VMR true) is excellent for all trace gases. Offsets, slopes and R 2 values for the linear fit of VMR para over VMR true are, respectively (0.008 ± 0.001) pptv, 0.988 ± 0.001, 0.987 for BrO; (-0.0066 ± 0.0001) pptv, 1.0021 ± 0.0003, 0.9979 for IO; (-0.17 ± 0.03) pptv, 1.0036 ± 0.0001, 0.9997 for NO 2. The agreement for atmospheres with aerosol shows comparable R 2 values to the Rayleigh case, but slopes deviate a bit more from one: (0.093 ± 0.002) pptv, 0.933 ± 0.002, 0.907 for BrO; (0.0021 ± 0.0004) pptv, 0.887 ± 0.001, 0.973 for IO; (8.5 ± 0.1) pptv, 0.8302 ± 0.0006, 0.9923 for NO 2. VMR para from field data are further compared with optimal estimation retrievals (VMR OE). Least orthogonal distance fit of the data give the following equations: BrO para = (0.1 ± 0.2) pptv + (0.95 ± 0.14) × BrO OE; IO para = (0.01 ± 0.02) pptv + (1.00 ± 0.12) × IO OE; NO 2para = (3.9 ± 2.5) pptv + (0.87 ± 0.15) × NO 2OE. Overall, we conclude that the parameterization retrieval is accurate with an uncertainty of 20 % for IO, 30 % for BrO and NO 2, but not better than 0.05 pptv IO, 0.5 pptv BrO and 10 pptv NO 2. Finally, the retrieval is applicable over a wide range of atmospheric conditions and measurement geometries and not limited to the interpretation of vertical profile measurements in the remote troposphere.« less
Seow, W J; Downward, G S; Wei, H; Rothman, N; Reiss, B; Xu, J; Bassig, B A; Li, J; He, J; Hosgood, H D; Wu, G; Chapman, R S; Tian, L; Wei, F; Caporaso, N E; Vermeulen, R; Lan, Q
2016-10-01
The Chinese national pollution census has indicated that the domestic burning of solid fuels is an important contributor to nitrogen dioxide (NO2 ) and sulfur dioxide (SO2 ) emissions in China. To characterize indoor NO2 and SO2 air concentrations in relation to solid fuel use and stove ventilation in the rural counties of Xuanwei and Fuyuan, in Yunnan Province, China, which have among the highest lung cancer rates in the nation, a total of 163 participants in 30 selected villages were enrolled. Indoor 24-h NO2 and SO2 samples were collected in each household over two consecutive days. Compared to smoky coal, smokeless coal use was associated with higher NO2 concentrations [geometric mean (GM) = 132 μg/m(3) for smokeless coal and 111 μg/m(3) for smoky coal, P = 0.065] and SO2 [limit of detection = 24 μg/m(3) ; percentage detected (%Detect) = 86% for smokeless coal and 40% for smoky coal, P < 0.001]. Among smoky coal users, significant variation of NO2 and SO2 air concentrations was observed across different stove designs and smoky coal sources in both counties. Model construction indicated that the measurements of both pollutants were influenced by stove design. This exposure assessment study has identified high levels of NO2 and SO2 as a result of burning solid fuels for cooking and heating. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Biological carbon dioxide utilisation in food waste anaerobic digesters.
Fernández, Y Bajón; Green, K; Schuler, K; Soares, A; Vale, P; Alibardi, L; Cartmell, E
2015-12-15
Carbon dioxide (CO2) enrichment of anaerobic digesters (AD) was previously identified as a potential on-site carbon revalorisation strategy. This study addresses the lack of studies investigating this concept in up-scaled units and the need to understand the mechanisms of exogenous CO2 utilisation. Two pilot-scale ADs treating food waste were monitored for 225 days, with the test unit being periodically injected with CO2 using a bubble column. The test AD maintained a CH4 production rate of 0.56 ± 0.13 m(3) CH4·(kg VS(fed) d)(-1) and a CH4 concentration in biogas of 68% even when dissolved CO2 levels were increased by a 3 fold over the control unit. An additional uptake of 0.55 kg of exogenous CO2 was achieved in the test AD during the trial period. A 2.5 fold increase in hydrogen (H2) concentration was observed and attributed to CO2 dissolution and to an alteration of the acidogenesis and acetogenesis pathways. A hypothesis for conversion of exogenous CO2 has been proposed, which requires validation by microbial community analysis. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Determination of the plasma impedance of a glow discharge in carbon dioxide
NASA Astrophysics Data System (ADS)
Kiselev, A. S.; Smirnov, E. A.
2017-07-01
In this work an expression for the dynamic resistance of a glow discharge flowing in long tubes is obtained and analyzed. The expression describes the physical processes occurring in the positive column of a glow discharge. The frequency dependences of the active and reactive components as well as the dynamic resistance module for the discharge conditions corresponding to CO2-lasers have been calculated. Based on the simulation results developed a computer program in the C# programming language for modeling the dynamic resistance discharge of glow discharge lasers.
NASA Technical Reports Server (NTRS)
Kleb, Mary M.; Pippin, Margaret R.; Pierce, R. Bradley; Neil, Doreen O.; Lingenfelser, Gretchen; Szykman, James J.
2006-01-01
Nitrogen dioxide is one of the U. S. EPA s criteria pollutants, and one of the main ingredients needed for the production of ground-level ozone. Both ozone and nitrogen dioxide cause severe public health problems. Existing satellites have begun to produce observational data sets for nitrogen dioxide. Under NASAs Earth Science Applications Program, we examined the relationship between satellite observations and surface monitor observations of this air pollutant to examine if the satellite data can be used to facilitate a more capable and integrated observing network. This report provides a comparison of satellite tropospheric column nitrogen dioxide to surface monitor nitrogen dioxide concentration for the period from September 1996 through August 1997 at more than 300 individual locations in the continental US. We found that the spatial resolution and observation time of the satellite did not capture the variability of this pollutant as measured at ground level. The tools and processes developed to conduct this study will be applied to the analysis of advanced satellite observations. One advanced instrument has significantly better spatial resolution than the measurements studied here and operates with an afternoon overpass time, providing a more representative distribution for once-per-day sampling of this photochemically active atmospheric constituent.
GOME-2A retrievals of tropospheric NO2 in different spectral ranges - influence of penetration depth
NASA Astrophysics Data System (ADS)
Behrens, Lisa K.; Hilboll, Andreas; Richter, Andreas; Peters, Enno; Eskes, Henk; Burrows, John P.
2018-05-01
In this study, we present a novel nitrogen dioxide (NO2) differential optical absorption spectroscopy (DOAS) retrieval in the ultraviolet (UV) spectral range for observations from the Global Ozone Monitoring Instrument 2 on board EUMETSAT's MetOp-A (GOME-2A) satellite. We compare the results to those from an established NO2 retrieval in the visible (vis) spectral range from the same instrument and investigate how differences between the two are linked to the NO2 vertical profile shape in the troposphere. As expected, radiative transfer calculations for satellite geometries show that the sensitivity close to the ground is higher in the vis than in the UV spectral range. Consequently, NO2 slant column densities (SCDs) in the vis are usually higher than in the UV if the NO2 is close to the surface. Therefore, these differences in NO2 SCDs between the two spectral ranges contain information on the vertical distribution of NO2 in the troposphere. We combine these results with radiative transfer calculations and simulated NO2 fields from the TM5-MP chemistry transport model to evaluate the simulated NO2 vertical distribution. We investigate regions representative of both anthropogenic and biomass burning NO2 pollution. Anthropogenic air pollution is mostly located in the boundary layer close to the surface, which is reflected by large differences between UV and vis SCDs of ˜ 60 %. Biomass burning NO2 in contrast is often uplifted into elevated layers above the boundary layer. This is best seen in tropical Africa south of the Equator, where the biomass burning NO2 is well observed in the UV, and the SCD difference between the two spectral ranges is only ˜ 36 %. In tropical Africa north of the Equator, however, the biomass burning NO2 is located closer to the ground, reducing its visibility in the UV. While not enabling a full retrieval of the vertical NO2 profile shape in the troposphere, our results can help to constrain the vertical profile of NO2 in the lower troposphere and, when analysed together with simulated NO2 fields, can help to better interpret the model output.
Carbon dioxide adsorption in Brazilian coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jose Luciano Soares; Andre L.B. Oberziner; Humberto J. Jose
Carbon dioxide (CO{sub 2}) is one of the most important greenhouse gases. In the period between 1980 and 1998, CO{sub 2} emissions increased more than 21% and projections suggest that the emissions will continue to increase globally by 2.2% between 2000 and 2020 and 3.3% in the developed countries. The sequestration of CO{sub 2} in deep unminable coal beds is one of the more promising of several methods of geological sequestration that are currently being investigated. CO{sub 2} can adsorb onto coal, and there are several studies demonstrating that CO{sub 2} dissolves in coals and swells them. At very lowmore » pressures (P {lt} 1 bar), CO{sub 2} dissolution does not seem to be a problem; however, high pressures are necessary for CO{sub 2} sequestration (P {gt} 50 bar). In this study, we evaluated the kinetics and equilibrium of sorption of CO{sub 2} on Brazilian coals at low pressures. The adsorption equilibrium isotherm at room temperature (30{sup o}C) was measured through the static method. The results showed that the Freundlich model or the Langmuir model is suitable to describe the equilibrium experimental results. The CO{sub 2} adsorption capacity of Brazilian coals are in the range of 0.089-0.186 mmol CO{sub 2}/g, which are typical values for coals with high ash content. The dynamics of adsorption in a fixed-bed column that contains granular coal (particle sizes of 0.8, 2.4, and 4.8 mm) showed that the adsorption rate is fast and a mathematical model was developed to describe the CO{sub 2} dynamics of the adsorption in a fixed-bed column. The linear driving force (LDF) was used to describe the rate of adsorption and the mass-transfer constants of the LDF model (K{sub s}) are in the range of 1.0-2.0 min{sup -1}. 29 refs., 5 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Obland, M. D.; Nehrir, A. R.; Liu, Z.; Chen, S.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Fan, T. F.; Choi, Y.; Plant, J.; Yang, M. M.; Browell, E. V.; Harrison, F. W.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.
2015-12-01
This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights.
Stamou, Ioannis; Antizar-Ladislao, Blanca
2016-10-01
The study evaluated the impact of commercial silver doped titanium dioxide nanoparticles (Ag-TiO2NPs) and silver nanoparticles (AgNPs) on the in-vessel composting of municipal solid waste (MSW), using fluorescence excitation-emission matrix (EEM) spectroscopy as a tool to evaluate the microbial degradation of MSW and subsequent soil application of compost. The fate of NPs present in mature compost used as a top-layer soil conditioner was investigated using a column approach at laboratory scale. The results suggested that the presence of either Ag-TiO2NPs or AgNPs did not inhibit the microbial degradation process within the range of metal concentrations used (5/225, 10/450, 20/900, 50/2250mg Ag/Ti per kg of organic matter for Ag-TiO2NP and 5, 10, 20, 50mg Ag per kg of organic matter for AgNPs). Higher concentrations of Ag-TiO2NP and AgNPs resulted in a higher inorganic carbon removal, and lower formation of humins. Formation of humins was higher for non-contaminated MSW and compost. EEM peaks shifted towards the humic substances (HS) region during in-vessel composting, indicating that microbial degradation occurred and that NPs did not have any effect on humification and therefore on compost stability. The leaching results suggested that only a low percentage of the total NPs (in weight) in compost, up to ca. 5% for Ag and up to ca. 15% for Ti, leached out from the columns, which was assumed the amount that potentially could leach to the environment. These results suggested that NPs will mainly accumulate in soils' top layers following application of compost contaminated with NP. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Obland, M. D.; Liu, Z.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Carrion, W.; Hicks, J.; Fan, T. F.; Nehrir, A. R.; Browell, E. V.; Meadows, B.; Davis, K. J.
2016-12-01
This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights during the Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital flight campaign.
Uncertainty Analysis for the Miniaturized Laser Heterodyne Radiometer (mini-LHR)
NASA Technical Reports Server (NTRS)
Clarke, G. B.; Wilson E. L.; Miller, J. H.; Melroy, H. R.
2014-01-01
Presented here is a sensitivity analysis for the miniaturized laser heterodyne radiometer (mini-LHR). This passive, ground-based instrument measures carbon dioxide (CO2) in the atmospheric column and has been under development at NASA/GSFC since 2009. The goal of this development is to produce a low-cost, easily-deployable instrument that can extend current ground measurement networks in order to (1) validate column satellite observations, (2) provide coverage in regions of limited satellite observations, (3) target regions of interest such as thawing permafrost, and (4) support the continuity of a long-term climate record. In this paper an uncertainty analysis of the instrument performance is presented and compared with results from three sets of field measurements. The signal-to-noise ratio (SNR) and corresponding uncertainty for a single scan are calculated to be 329.4+/-1.3 by deploying error propagation through the equation governing the SNR. Reported is an absorbance noise of 0.0024 for 6 averaged scans of field data, for an instrument precision of approximately 0.2 ppmv for CO2.
NASA Technical Reports Server (NTRS)
Hodgeson, J. A.; Bell, J. P.; Rehme, K. A.; Krost, K. J.; Stevens, R. K.
1971-01-01
By means of the thermal conversion of nitrogen dioxide to the nitric oxide, the chemiluminescent nitric oxide monitor, based on the nitric oxide plus ozone reaction, may be used for monitoring nitrogen dioxide plus nitric oxide (NO(x)). Under conditions previously described, ammonia is also converted to nitric oxide and therefore interferes. A metal surface, gold wool or stainless steel, operated at two different temperatures has been used to convert only nitrogen dioxide or nitrogen dioxide plus ammonia. Quantitative conversion of nitrogen dioxide to nitric oxide has been obtained at temperatures as low as 200 C. Conversion of ammonia is effected at temperatures of 300 C or higher. By the addition of a converter the basic nitric oxide monitor may be used for measuring NO(x) or NO(x) plus ammonia. As an alternate mode, for a fixed high temperature, a specific scrubber is described for removing NH3 without affecting NO2 concentrations.
NASA Astrophysics Data System (ADS)
Geng, Guannan; Zhang, Qiang; Martin, Randall V.; Lin, Jintai; Huo, Hong; Zheng, Bo; Wang, Siwen; He, Kebin
2017-03-01
Spatial proxies used in bottom-up emission inventories to derive the spatial distributions of emissions are usually empirical and involve additional levels of uncertainty. Although uncertainties in current emission inventories have been discussed extensively, uncertainties resulting from improper spatial proxies have rarely been evaluated. In this work, we investigate the impact of spatial proxies on the representation of gridded emissions by comparing six gridded NOx emission datasets over China developed from the same magnitude of emissions and different spatial proxies. GEOS-Chem-modeled tropospheric NO2 vertical columns simulated from different gridded emission inventories are compared with satellite-based columns. The results show that differences between modeled and satellite-based NO2 vertical columns are sensitive to the spatial proxies used in the gridded emission inventories. The total population density is less suitable for allocating NOx emissions than nighttime light data because population density tends to allocate more emissions to rural areas. Determining the exact locations of large emission sources could significantly strengthen the correlation between modeled and observed NO2 vertical columns. Using vehicle population and an updated road network for the on-road transport sector could substantially enhance urban emissions and improve the model performance. When further applying industrial gross domestic product (IGDP) values for the industrial sector, modeled NO2 vertical columns could better capture pollution hotspots in urban areas and exhibit the best performance of the six cases compared to satellite-based NO2 vertical columns (slope = 1.01 and R2 = 0. 85). This analysis provides a framework for information from satellite observations to inform bottom-up inventory development. In the future, more effort should be devoted to the representation of spatial proxies to improve spatial patterns in bottom-up emission inventories.
PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
HALGREN DL
2010-03-12
The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the samemore » six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.« less
NASA Astrophysics Data System (ADS)
Pope, R. J.; Savage, N. H.; Chipperfield, M. P.; Ordóñez, C.; Neal, L. S.
2015-10-01
Synoptic meteorology can have a significant influence on UK air quality. Cyclonic conditions lead to the dispersion of air pollutants away from source regions, while anticyclonic conditions lead to their accumulation over source regions. Meteorology also modifies atmospheric chemistry processes such as photolysis and wet deposition. Previous studies have shown a relationship between observed satellite tropospheric column NO2 and synoptic meteorology in different seasons. Here, we test whether the UK Met Office Air Quality in the Unified Model (AQUM) can reproduce these observations and then use the model to explore the relative importance of various factors. We show that AQUM successfully captures the observed relationships when sampled under the Lamb weather types, an objective classification of midday UK circulation patterns. By using a range of idealized NOx-like tracers with different e-folding lifetimes, we show that under different synoptic regimes the NO2 lifetime in AQUM is approximately 6 h in summer and 12 h in winter. The longer lifetime can explain why synoptic spatial tropospheric column NO2 variations are more significant in winter compared to summer, due to less NO2 photochemical loss. We also show that cyclonic conditions have more seasonality in tropospheric column NO2 than anticyclonic conditions as they result in more extreme spatial departures from the wintertime seasonal average. Within a season (summer or winter) under different synoptic regimes, a large proportion of the spatial pattern in the UK tropospheric column NO2 field can be explained by the idealized model tracers, showing that transport is an important factor in governing the variability of UK air quality on seasonal synoptic timescales.
Qiu, Hongdeng; Zhang, Qinghua; Chen, Limei; Liu, Xia; Jiang, Shengxiang
2008-08-01
Separations of common inorganic anions were carried out on ODS columns coated with two long-chain alkylimidazolium ionic liquids ([C(12)MIm]Br and [C(14)MIm]Br) as new cationic surfactants for ion chromatography. With phthalate buffer solution as the mobile phases and non-suppressed conductivity detection, high column efficiencies and excellent selectivity were obtained in the separation of inorganic anions. Chromatographic parameters are calculated and the results show that the coated column possesses significant potential for the analysis of some inorganic anions such as CH(3)COO(-), IO(3)(-), Cl(-), BrO(3)(-), NO(2)(-), Br(-), NO(3)(-), SO(4)(2-), I(-), BF(4)(-), and SCN(-). The effect of eluent pH values on the separation of anions has been studied on the column coated with [C(12)MIm]Br. The stability of the coated columns was also examined.
A wide field-of-view imaging DOAS instrument for continuous trace gas mapping from aircraft
NASA Astrophysics Data System (ADS)
Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.
2014-04-01
For the purpose of trace gas measurements and pollution mapping, the Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed, characterised and successfully operated from aircraft. From the observations with the AirMAP instrument nitrogen dioxide (NO2) columns were retrieved. A major benefit of the pushbroom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a frame-transfer detector. With a wide-angle entrance objective, a broad field-of-view across track of around 48° is achieved, leading to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m. From a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 single fibres, the number of viewing directions is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Exploitation of all the viewing directions yields observations at 30 m spatial resolution, making the instrument a suitable tool for mapping trace gas point sources and small scale variability. For accurate spatial mapping the position and aircraft attitude are taken into account using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken. In June 2011, AirMAP has been operated on the AWI Polar-5 aircraft in the framework of the AIRMETH2011 campaign. During a flight above a medium sized coal-fired power plant in North-West Germany, AirMAP clearly detects the emission plume downwind from the exhaust stack, with NO2 vertical columns around 2 × 1016 molecules cm-2 in the plume center. The emission estimates are consistent with reports in the pollutant transfer register. Strong spatial gradients and variability in NO2 amounts across and along flight direction are observed, and small-scale enhancements of NO2 above a motorway are detected. The present study reports on the experimental setup and characteristics of AirMAP, and the first measurements at high spatial resolution and wide spatial coverage are presented which meet the requirements for NO2 mapping to observe and account for the intrinsic variability of tropospheric NO2.
Global Land Use Regression Model for Nitrogen Dioxide Air Pollution.
Larkin, Andrew; Geddes, Jeffrey A; Martin, Randall V; Xiao, Qingyang; Liu, Yang; Marshall, Julian D; Brauer, Michael; Hystad, Perry
2017-06-20
Nitrogen dioxide is a common air pollutant with growing evidence of health impacts independent of other common pollutants such as ozone and particulate matter. However, the worldwide distribution of NO 2 exposure and associated impacts on health is still largely uncertain. To advance global exposure estimates we created a global nitrogen dioxide (NO 2 ) land use regression model for 2011 using annual measurements from 5,220 air monitors in 58 countries. The model captured 54% of global NO 2 variation, with a mean absolute error of 3.7 ppb. Regional performance varied from R 2 = 0.42 (Africa) to 0.67 (South America). Repeated 10% cross-validation using bootstrap sampling (n = 10,000) demonstrated a robust performance with respect to air monitor sampling in North America, Europe, and Asia (adjusted R 2 within 2%) but not for Africa and Oceania (adjusted R 2 within 11%) where NO 2 monitoring data are sparse. The final model included 10 variables that captured both between and within-city spatial gradients in NO 2 concentrations. Variable contributions differed between continental regions, but major roads within 100 m and satellite-derived NO 2 were consistently the strongest predictors. The resulting model can be used for global risk assessments and health studies, particularly in countries without existing NO 2 monitoring data or models.
NASA Astrophysics Data System (ADS)
ul-Haq, Zia; Rana, Asim Daud; Tariq, Salman; Mahmood, Khalid; Ali, Muhammad; Bashir, Iqra
2018-03-01
We have applied regression analyses for the modeling of tropospheric NO2 (tropo-NO2) as the function of anthropogenic nitrogen oxides (NOx) emissions, aerosol optical depth (AOD), and some important meteorological parameters such as temperature (Temp), precipitation (Preci), relative humidity (RH), wind speed (WS), cloud fraction (CLF) and outgoing long-wave radiation (OLR) over different climatic zones and land use/land cover types in South Asia during October 2004-December 2015. Simple linear regression shows that, over South Asia, tropo-NO2 variability is significantly linked to AOD, WS, NOx, Preci and CLF. Also zone-5, consisting of tropical monsoon areas of eastern India and Myanmar, is the only study zone over which all the selected parameters show their influence on tropo-NO2 at statistical significance levels. In stepwise multiple linear modeling, tropo-NO2 column over landmass of South Asia, is significantly predicted by the combination of RH (standardized regression coefficient, β = - 49), AOD (β = 0.42) and NOx (β = 0.25). The leading predictors of tropo-NO2 columns over zones 1-5 are OLR, AOD, Temp, OLR, and RH respectively. Overall, as revealed by the higher correlation coefficients (r), the multiple regressions provide reasonable models for tropo-NO2 over South Asia (r = 0.82), zone-4 (r = 0.90) and zone-5 (r = 0.93). The lowest r (of 0.66) has been found for hot semi-arid region in northwestern Indus-Ganges Basin (zone-2). The highest value of β for urban area AOD (of 0.42) is observed for megacity Lahore, located in warm semi-arid zone-2 with large scale crop-residue burning, indicating strong influence of aerosols on the modeled tropo-NO2 column. A statistical significant correlation (r = 0.22) at the 0.05 level is found between tropo-NO2 and AOD over Lahore. Also NOx emissions appear as the highest contributor (β = 0.59) for modeled tropo-NO2 column over megacity Dhaka.
NASA Astrophysics Data System (ADS)
Gruzdev, A. N.; Elokhov, A. S.
2009-08-01
Data on the NO2 content in the vertical column of the atmosphere obtained with the Ozone Monitoring Instrument (OMI) aboard the EOS Aura satellite (United States) in the period from October 2004 to October 2007 are compared with the results of ground-based measurements at the Zvenigorod Scientific Station (55.7° N, 36.8° E). The “unpolluted”; part of the total NO2 content in the atmospheric column, which mostly represents the stratosphere, and the NO2 contents in the vertical column of the troposphere, including the lower layer, which is subject to pollution, are included in the comparison. The correlation coefficient between the results of ground-based and satellite measurements of the “unpolluted” total NO2 content is ˜0.9. The content values measured with the OMI instrument are smaller than the results of ground-based measurements (on average, by (0.30 ± 0.03) × 1015 cm-2 or by (11 ± 1)%). Therms discrepancy between the satellite and ground-based data is 0.6 × 1015 cm-2. The NO2 content in the vertical column of the troposphere from the results of satellite measurements is, on average, (1.4 ± 0.5) × 1015 cm-2, (or about 35%) smaller than from the results of ground-based measurements, and the rms discrepancy between them is about 200%. The correlation coefficient between these data is ˜0.4. This considerable discrepancy is evidently caused by the strong spatial (horizontal) inhomogeneity and the temporal variability of the NO2 field during episodes of pollution, which leads to different (and often uncorrelated) estimates of the NO2 content in the lower troposphere due to different spatial resolutions of ground-based and satellite measurements.
NASA Astrophysics Data System (ADS)
Wilson, E. L.; DiGregorio, A.; Villanueva, G. L.; Miletti, K.; Grunberg, C.; Grunberg, M.; Floyd, M.; Menendez, A. R.
2017-12-01
We present a low-cost, portable, miniaturized, laser heterodyne radiometer (mini-LHR) capable of measuring column carbon dioxide (CO2) and methane (CH4) in remote locations to validate passive satellite observations. A benefit of the portability is that mini-LHR instruments can be calibrated and compared site-by-side to quantify any internal biases, or any biases in stationary column instruments such as those in the total carbon column observing network (TCCON). This is the latest iteration of an instrument that has been under development by our team since 2009. During our recent Interdisciplinary Science (IDS) effort that involved measuring carbon emissions over thawing permafrost, it became clear that our mini-LHR needed to be redesigned to be significantly smaller, lighter, and to operate from a small solar panel so that it could be easily carried to the field sites located within the Bonanza Creek Research Forest near Fairbanks, AK. The boreal peatland sites at Bonanza Creek have forests that are underlain by cold soils, permafrost, collapse scar thermokarst bogs resulting from permafrost thaw, and rich fens with various underlying sediments and gravels that are not frozen. While these sites are extremely interesting for their role in carbon storage, the practical issue with these sites is that they are very wet (the fen site for example is periodically under several inches of water) and the trails to reach these sites are extremely muddy, narrow, and populated with swarms of biting insects. The soils at these sites are delicate and easily damaged by excessive foot traffic. They are also prone to periodic wild fires - making permanent column instrument installations impractical. Here, we compare data from the permafrost field work as well as data collected as part of the Hawai'i Space Exploration Analog and Simulation (Hi-SEAS) project where crewmembers are currently testing the mini-LHR on an isolated Mars-like site on the Mauna Loa side of the saddle area on the Big Island of Hawaii at approximately 8200 feet above sea level. These different remote locations demonstrate how the portable mini-LHR could be deployed to ground sites that have not been able to be validated in the past or where key data products are missing.
Fabry-Perot Based Radiometers for Precise Measurement of Greenhouse Gases
NASA Technical Reports Server (NTRS)
Heaps, William S.; Wilson, Emily L.; Georgieva, Elena
2007-01-01
Differential radiometers based upon the Fabry-Perot interferometer have been developed and demonstrated that exhibit very great sensitivity to changes in the atmospheric column of carbon dioxide, oxygen, and water vapor. These instruments employ a solid Fabry-Perot etalon that is tuned to the proper wavelength by changing the temperature. By choosing the thickness of the etalon its multiple pass bands can be made to align with regularly space absorption features of the molecule under investigation. Use of multiple absorption features improves the optical throughput of the instrument and improves the stability of the instrument response with respect to environmental changes. Efforts are underway at Goddard to extend this technique to the carbon 13 isotope of carbon dioxide and to methane. These instruments are intrinsically rugged and can be made rather small and inexpensively. They therefore hold promise for widespread use in ground based networks for calibration of satellite instruments such as OCO and GOSAT. Results will be presented for ground based and airborne operations for these systems. The effects of atmospheric scattering, pointing errors, pressure broadening and temperature effects will be discussed with regard to achieving precision better than .5% required for validation of carbon dioxide column measured from space. Designs permitting the extension of the technique to an even larger number of atmospheric species will be discussed along with theoretical analysis of potential system performance.
Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR
Schneider, D.J.; Rose, William I.; Coke, L.R.; Bluth, G.J.S.; Sprod, I.E.; Krueger, A.J.
1999-01-01
This paper is a detailed study of remote sensing data from the total ozone mapping spectrometer (TOMS) and the advanced very high resolution radiometer (AVHRR) satellite detectors, of the 1982 eruption of El Chichón, Mexico. The volcanic cloud/atmosphere interactions in the first four days of this eruption were investigated by combining ultraviolet retrievals to estimate the mass of sulfur dioxide in the volcanic cloud [Krueger et al., 1995] with thermal infrared retrievals of the size, optical depth, and mass of fine-grained (1–10 μm radius) volcanic ash [Wen and Rose, 1994]. Our study provides the first direct evidence of gravitational separation of ash from a stratospheric, gas-rich, plinian eruption column and documents the marked differences in residence times of volcanic ash and sulfur dioxide in volcanic clouds. The eruption column reached as high as 32 km [Carey and Sigurdsson, 1986] and was injected into an atmosphere with a strong wind shear, which allowed for an observation of the separation of sulfur dioxide and volcanic ash. The upper, more sulfur dioxide-rich part of the cloud was transported to the west in the stratosphere, while the fine-grained ash traveled to the south in the troposphere. The mass of sulfur dioxide released was estimated at 7.1 × 109 kg with the mass decreasing by approximately 4% 1 day after the peak. The mass of fine-grained volcanic ash detected was estimated at 6.5 × 109 kg, amounting to about 0.7% of the estimated mass of the ash which fell out in the mapped ash blanket close to the volcano. Over the following days, 98% of this remaining fine ash was removed from the volcanic cloud, and the effective radius of ash in the volcanic cloud decreased from about 8 μm to about 4 μm.
Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR
NASA Astrophysics Data System (ADS)
Schneider, David J.; Rose, William I.; Coke, Larry R.; Bluth, Gregg J. S.; Sprod, Ian E.; Krueger, Arlin J.
1999-02-01
This paper is a detailed study of remote sensing data from the total ozone mapping spectrometer (TOMS) and the advanced very high resolution radiometer (AVHRR) satellite detectors, of the 1982 eruption of El Chichón, Mexico. The volcanic cloud/atmosphere interactions in the first four days of this eruption were investigated by combining ultraviolet retrievals to estimate the mass of sulfur dioxide in the volcanic cloud [Krueger et al., 1995] with thermal infrared retrievals of the size, optical depth, and mass of fine-grained (1-10 μm radius) volcanic ash [Wen and Rose, 1994]. Our study provides the first direct evidence of gravitational separation of ash from a stratospheric, gas-rich, plinian eruption column and documents the marked differences in residence times of volcanic ash and sulfur dioxide in volcanic clouds. The eruption column reached as high as 32 km [Carey and Sigurdsson, 1986] and was injected into an atmosphere with a strong wind shear, which allowed for an observation of the separation of sulfur dioxide and volcanic ash. The upper, more sulfur dioxide-rich part of the cloud was transported to the west in the stratosphere, while the fine-grained ash traveled to the south in the troposphere. The mass of sulfur dioxide released was estimated at 7.1 × 109 kg with the mass decreasing by approximately 4% 1 day after the peak. The mass of fine-grained volcanic ash detected was estimated at 6.5 × 109 kg, amounting to about 0.7% of the estimated mass of the ash which fell out in the mapped ash blanket close to the volcano. Over the following days, 98% of this remaining fine ash was removed from the volcanic cloud, and the effective radius of ash in the volcanic cloud decreased from about 8 μm to about 4 μm.
NASA Astrophysics Data System (ADS)
Yang, Dongxu; Zhang, Huifang; Liu, Yi; Chen, Baozhang; Cai, Zhaonan; Lü, Daren
2017-08-01
Monitoring atmospheric carbon dioxide (CO2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS), and CarbonTracker-China (CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite (GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%-30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO2 (column-averaged CO2 dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO2 product is used in carbon flux estimation by CT-China. The net ecosystem CO2 exchange is -0.34 Pg C yr-1 (±0.08 Pg C yr-1), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.
NASA Technical Reports Server (NTRS)
Witte, J. C.; Duncan, B. N.; Douglass, A. R.; Kurosu, T. P.; Chance, K.; Retscher, C.
2010-01-01
In preparation of the Beijing Summer Olympic and Paralympics Games, strict controls were imposed between July and September 2008 on motor vehicle traffic and industrial emissions to improve air quality for the competitors. We assessed chemical sensitivity of ozone production to these controls using Ozone Monitoring Instrument (OMI) column measurements of formaldehyde (HCHO) and nitrogen dioxide (NO2), where their ratio serves as a proxy for the sensitivity. During the emission controls, HCHO/NO2 increased and indicated a NOx-limited regime, in contrast to the same period in the preceding three years when the ratio indicates volatile organic carbon (VOC)-limited and mixed NOx-VOC-limited regimes. After the emission controls were lifted, observed NO2 and HCHO/NO2 returned to their previous values. The 2005-2008 OMI record shows that this transition in regimes was unique as ozone production in Beijing was rarely NOx-limited. OMI measured summertime increases in HCHO of around 13% in 2008 compared to prior years, the same time period during which MODIS vegetation indices increased. The OMI HCHO increase may be due to higher biogenic emissions of HCHO precursors, associated with Beijing's greening initiative for the Olympics. However, NO2 and HCHO were also found to be well-correlated during the summer months. This indicates an anthropogenic VOC contribution from vehicle emissions to OMI HCHO and is a plausible explanation for the relative HCHO minimum observed in August 2008, concurrent with a minimum in traffic emissions. We calculated positive trends in 2005-2008 OMI HCHO and NO2 of about +1 x 10(exp 14) Molec/ square M-2 and +3 x 10(exp 13) molec CM-2 per month, respectively. The positive trend in NO2 may be an indicator of increasing vehicular traffic since 2005, while the positive trend in HCHO may be due to a combined increase in anthropogenic and biogenic emissions since 2005.
Nitrogen dioxide sensing using a novel gas correlation detector
NASA Astrophysics Data System (ADS)
Kebabian, Paul L.; Annen, Kurt D.; Berkoff, Timothy A.; Freedman, Andrew
2000-05-01
A nitrogen dioxide point sensor, based on a novel nondispersive gas filter spectroscopic scheme, is described. The detection scheme relies on the fact that the absorption spectrum of nitrogen dioxide in the 400-550 nm region consists of a complicated line structure superimposed on an average broadband absorption. A compensating filter is used to remove the effect of the broadband absorption, making the sensor insensitive both to small particles in the optical path and to potentially interfering gases with broadband absorption features in the relevant wavelength region. Measurements are obtained using a remote optical absorption cell that is linked via multimode fibre optics to the source and detection optics. The incorporation of blue light emitting diodes which spectrally match the nitrogen dioxide absorption allows the employment of electronic (instead of mechanical) switching between optical paths. A sensitivity of better than 1.0 ppm m column density (1 s integration time) has been observed; improvements in electronics and thermal stabilization should increase this sensitivity.
Concurrent (August 2006) satellite measurements of tropospheric NO2 columns from OMI aboard Aura (13:30 local overpass time) and SCIAMACHY aboard Envisat (10:00 overpass) offer an opportunity to examine the consistency between the two instruments under tropospheric ba...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espanol, C.E.
1960-01-01
The effect of the appearance of localized perturbations on the separation factor and operation time of a thermal diffusion column is studied. The separation factor of a column was obtained experimentally and the enrichment was recorded continuously as a function of time by measurement of the thermal conductivity of the gaseous mixture at the foot and head of the column. A mixture of Ar and CO/sub 2/ was used as it behaves as an isotopic mixture. The results showed the linear decrease of the separation factor with the number of stages and the operation time practically does not vary. Themore » introduction of localized turbulences in a thermal diffusion column reduces the column yield. (J.S.R.)« less
A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft
NASA Astrophysics Data System (ADS)
Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.
2015-12-01
The Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed for the purpose of trace gas measurements and pollution mapping. The instrument has been characterized and successfully operated from aircraft. Nitrogen dioxide (NO2) columns were retrieved from the AirMAP observations. A major benefit of the push-broom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a charge coupled device (CCD) frame-transfer detector. A broad field of view across track of around 48° is achieved with wide-angle entrance optics. This leads to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible instrument positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m depending on flight altitude. The number of viewing directions is chosen from a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 individual fibres. The selection is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Observations at 30 m spatial resolution are obtained when flying at 1000 m altitude and making use of all 35 viewing directions. This makes the instrument a suitable tool for mapping trace gas point sources and small-scale variability. The position and aircraft attitude are taken into account for accurate spatial mapping using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken in June 2011. AirMAP was operated on the AWI Polar-5 aircraft in the framework of the AIRMETH-2011 campaign. During a flight above a medium-sized coal-fired power plant in north-west Germany, AirMAP clearly detected the emission plume downwind from the exhaust stack, with NO2 vertical columns around 2 × 1016 molecules cm-2 in the plume centre. NOx emissions estimated from the AirMAP observations are consistent with reports in the European Pollutant Release and Transfer Register. Strong spatial gradients and variability in NO2 amounts across and along flight direction are observed, and small-scale enhancements of NO2 above a motorway are detected.
Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements
NASA Astrophysics Data System (ADS)
Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.
2016-12-01
Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing architecture written in the C language to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs. This software is about an order of magnitude faster than the Mathematica code previously used and uses multithreaded parallel processing code that takes advantage of multicore processors.
Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus
NASA Technical Reports Server (NTRS)
Choi, K. J.; Nakhost, Z.; Krukonis, V. J.; Karel, M.
1987-01-01
Lipids were extracted from a protein concentrate of green algae (Scenedesmus obliquus), using a one-step supercritical carbon dioxide extraction procedure in presence of ethanol as an entrainer, and were characterized. The compositions of neutral lipids, glycolipids, and phospholipids, separated into individual components by column, thin-layer, and gas-liquid chromatography procedures, are presented. Fatty acid composition patterns indicated that the major fatty acids were 16:0, 16:1, 16:2, 16:3, 16:4, 18:1, 18:2, and 18:3. The lipids of S. obliquus were found to contain relatively high concentrations of polyunsaturated fatty acids and essential fatty acids.
Intercomparison of daytime stratospheric NO2 satellite retrievals and model simulations
NASA Astrophysics Data System (ADS)
Belmonte Rivas, M.; Veefkind, P.; Boersma, F.; Levelt, P.; Eskes, H.; Gille, J.
2014-01-01
This paper evaluates the agreement between stratospheric NO2 retrievals from infrared limb sounders (MIPAS and HIRDLS) and solar UV/VIS backscatter sensors (OMI, SCIAMACHY limb and nadir) over the 2005-2007 period and across the seasons. The observational agreement is contrasted with the representation of NO2 profiles in 3-D chemical transport models such as the Whole Atmosphere Community Climate Model (SD-WACCM) and TM4. A conclusion central to this work is that the definition of a reference for stratospheric NO2 columns formed by consistent agreement among SCIAMACHY, MIPAS and HIRDLS limb records (all of which agree to within 0.25 × 1015 molecules cm-2 or better than 10%) allows us to draw attention to relative errors in other datasets, e.g.: (1) the WACCM model overestimates NO2 densities in the extratropical lower stratosphere, particularly over northern latitudes by up to 35% relative to limb observations, and (2) there are remarkable discrepancies between stratospheric NO2 column estimates from limb and nadir techniques, with a characteristic seasonal and latitude dependent pattern. We find that SCIAMACHY nadir and OMI stratospheric columns show overall biases of -0.6 × 1015 molecules cm-2 (-20%) and +0.6 × 10 15 molecules cm-2 (+20%) relative to limb observations. It is highlighted that biases in nadir stratospheric columns are not expected to affect tropospheric retrievals significantly, and that they can be attributed to errors in the total slant column density, either related to algorithmic or instrumental effects. In order to obtain accurate and long time series of stratospheric NO2, a critical evaluation of the currently used Differential Optical Absorption Spectroscopy (DOAS) approaches to nadir retrievals becomes essential, as well as their agreement to limb and ground-based observations, particularly now that limb techniques are giving way to nadir observations as the next generation of climate and air quality monitoring instruments pushes forth.
NASA Astrophysics Data System (ADS)
Nelson, R. R.; Taylor, T.; O'Dell, C.; Cronk, H. Q.; Partain, P.; Frankenberg, C.; Eldering, A.; Crisp, D.; Gunson, M. R.; Chang, A.; Fisher, B.; Osterman, G. B.; Pollock, H. R.; Savtchenko, A.; Rosenthal, E. J.
2015-12-01
Effective cloud and aerosol screening is critically important to the Orbiting Carbon Observatory-2 (OCO-2), which can accurately determine column averaged dry air mole fraction of carbon dioxide (XCO2) only when scenes are sufficiently clear of scattering material. It is crucial to avoid sampling biases, in order to maintain a globally unbiased XCO2 record for inversion modeling to determine sources and sinks of carbon dioxide. This work presents analysis from the current operational B7 data set, which is identifying as clear approximately 20% of the order one million daily soundings. Of those soundings that are passed to the L2 retrieval algorithm, we find that almost 80% are yielding XCO2 estimates that converge. Two primary preprocessor algorithms are used to cloud screen the OCO-2 soundings. The A-Band Preprocessor (ABP) uses measurements in the Oxygen-A band near 0.76 microns (mm) to determine scenes with large photon path length modifications due to scattering by aerosol and clouds. The Iterative Maximum A-Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) algorithm (IDP) computes ratios of retrieved CO2 (and H2O) in the 1.6mm (weak CO2) and 2.0mm (strong CO2) spectral bands to determine scenes with spectral differences, indicating contamination by scattering materials. We demonstrate that applying these two algorithms in tandem provides robust cloud screening of the OCO-2 data set. We compare the OCO-2 cloud screening results to collocated Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask data and show that agreement between the two sensors is approximately 85-90%. A detailed statistical analysis is performed on a winter and spring 16-day repeat cycle for the nadir-land, glint-land and glint-water viewing geometries. No strong seasonal, spatial or footprint dependencies are found, although the agreement tends to be worse at high solar zenith angles and for snow and ice covered surfaces.
Standard test method for nitrogen dioxide content of the atmosphere (Griess-Saltzman reaction)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1975-01-01
This method covers the manual determination of nitrogen dioxide (NO/sub 2/) in the atmosphere in the range from 4 to 10,000 ..mu..g/m/sup 3/ (0.002 to 5 ppM) when sampling is conducted in fritted-tip bubblers. For concentrations of NO/sub 2/ in excess of 10 mg/m/sup 3/ (5 ppM), as occur in industrial atmospheres, gas burner stacks, or automotive exhaust, or for samples relatively high in sulfur dioxide content, other methods should be applied. The maximum sampling period is 60 min at a flow rate of 0.4 liter/min. The NO/sub 2/ is absorbed in an azo-dye-forming reagent. A red-violet color is producedmore » within 15 min, the intensity of which is measured spectrophotometrically at 550 nm.« less
Svan, Alfred; Hedeland, Mikael; Arvidsson, Torbjörn; Jasper, Justin T; Sedlak, David L; Pettersson, Curt E
2015-08-28
A method for enantiomeric separation of the three β-blocking agents atenolol, metoprolol, propranolol and the zwitterionic metoprolol acid, a major metabolite of both metoprolol and in environmental matrices also atenolol, has been developed. By use of supercritical fluid chromatography and the polysaccharide-based Chiralpak(®) IB-3, all four compounds were simultaneously enantiomerically separated (Rs>1.5) within 8min. Detection was performed using tandem mass spectrometry, and to avoid isobaric interference between the co-eluting metoprolol and metoprolol acid, the achiral column Acquity(®) UPC(2) BEH 2-EP was attached ahead of to the chiral column. Carbon dioxide with 18% methanol containing 0.5% (v/v) of the additives trifluoroacetic acid and ammonia in a 2:1 molar ratio were used as mobile phase. A post column make-up flow (0.3mL/min) of methanol containing 0.1% (v/v) formic acid was used to enhance the positive electrospray ionization. Detection was carried out using a triple quadrupole mass spectrometer operating in the selected reaction monitoring mode, using one transition per analyte and internal standard. The method was successfully applied for monitoring the enantiomeric fraction change over time in a laboratory scale wetland degradation study. It showed good precision, recovery, sensitivity and low effect of the sample matrix. Copyright © 2015. Published by Elsevier B.V.
Trends of total water vapor column above the Arctic from satellites observations
NASA Astrophysics Data System (ADS)
Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Claud, Chantal; Irbah, Abdenour
2016-04-01
Atmospheric water vapor (H2O) is the most important natural (as opposed to man-made) greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess. Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapor. In contrast to other important greenhouse gases like carbon dioxide (CO2) and methane, water vapor has a much higher temporal and spatial variability. Total precipitable water (TPW) or the total column of water vapor (TCWV) is the amount of liquid water that would result if all the water vapor in the atmospheric column of unit area were condensed. TCWV distribution contains valuable information on the vigor of the hydrological processes and moisture transport in the atmosphere. Measurement of TPW can be obtained based on atmospheric water vapor absorption or emission of radiation in the spectral range from UV to MW. TRENDS were found over the terrestrial Arctic by means of TCWV retrievals (using Moderate Resolution Imaging Spectro-radiometer (MODIS) near-infrared (2001-2015) records). More detailed approach was made for comparisons with ground based instruments over Sodankyla - Finland (TCWV from: SCIAMACHY 2003-2011, GOME-2A 2007-2011, SAOZ 2003-2011, GPS 2003-2011, MODIS 2003-2011)
NASA Astrophysics Data System (ADS)
Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich
2018-05-01
Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.
NASA Astrophysics Data System (ADS)
Atekwana, E.; Atekwana, E.; Werkema, D.; Duris, J.; Rossbach, S.; Sauck, W.; Koretsky, C.; Cassidy, D.; Means, J.; Sherrod, L.
2003-04-01
In this study, we describe the results of a mesoscale pilot experiment designed to investigate the influence of biogeochemical processes on electrical conductivity of soils impacted by hydrocarbons. This is an interdisciplinary study integrating geophysics, geochemistry, and microbiology which was undertaken to: 1) verify microbial hydrocarbon degradation by monitoring changes in microbial types, population, and community structure, 2) document temporal changes in the electrical conductivity of soils, and 3) document changes in pore fluid geochemistry using major ions and stable carbon isotopes. We constructed duplicate soil columns as follows: Columns 1 and 2 had no bacteria, no diesel; columns 3 and 4 had diesel and no bacteria; columns 5 and 6 had bacteria and no diesel; and columns 7 and 8 had bacteria and diesel. Soil cores were sampled at 5 cm intervals and analyzed for bacteria using the most probable number (MPN) and the rDNA intergenic spacer region analyses (RISA) techniques. The MPN method showed an increase in the percentage of alkane degraders with time, and accounted for 1.2x (120%) the number of heterotrophic bacteria in colums 7 and 8 compared to less than 15% for the other columns. The RISA analysis of the communities in columns 7 and 8 showed a shift towards less diversity over time in response to the contaminant stress to a composition that is more capable of the utilization of an alkane as a carbon source. These results confirm microbial mineralization of diesel within contaminated columns. Electrical conductivity measurements were made using a Wenner array at 2 cm spacing. The electrical measurements show an initial decrease in conductivity. This is consistent with the diesel replacing the more conductive pore waters and changes in water saturation, especially within the unsaturated zone. However, a slow increase in conductivity was observed in column 7 overtime compared to the other columns. The slight increase in electrical conductivity for the contaminated column may be attributed to microbial degradation of hydrocarbon and secondary weathering of the soil minerals. However, the magnitude in the shift of the pore fluid chemistry does not appear to directly translate to changes in soil electrical conductivity. At present, since the experiment is still ongoing, we expect that as more degradation and mineral weathering occur in the soils columns, we should be able to model the magnitude of the pore fluid chemical change on the soil conductivity.
Vo, Hoang-Nhat-Phong; Bui, Xuan-Thanh; Nguyen, Thanh-Tin; Nguyen, Dinh Duc; Dao, Thanh-Son; Cao, Ngoc-Dan-Thanh; Vo, Thi-Kim-Quyen
2018-08-01
Photobioreactor technology, especially bubble column configuration, employing microalgae cultivation (e.g., Chlorella sp.), is an ideal man-made environment to achieve sufficient microalgae biomass through its strictly operational control. Nutrients, typically N and P, are necessary elements in the cultivation process, which determine biomass yield and productivity. Specifically, N:P ratios have certain effects on microalgae's biomass growth. It is also attractive that microalgae can sequester CO 2 by using that carbon source for photosynthesis and, subsequently, reducing CO 2 emission. Therefore, this study aims to investigate the effect of N:P ratios on Chlorella sp.'s growth, and to study the dynamic of CO 2 fixation in the bubble column photobioreactor. According to our results, N:P ratio of 15:1 could produce the highest biomass yield (3568 ± 158 mg L -1 ). The maximum algae concentration was 105 × 10 6 cells mL -1 , receiving after 92 h. Chlorella sp. was also able to sequester CO 2 at 28 ± 1.2%, while the specific growth rate and carbon fixation rate were observed at 0.064 h -1 and 68.9 ± 1.91 mg L -1 h -1 , respectively. The types of carbon sources (e.g., organic and inorganic carbon) possessed potential impact on microalgae's cultivation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bashir, Wasim; McGovern, Frank; O'Brien, Phillip; Ryan, Margaret; Burke, Liam; Paull, Brett
2008-06-01
A major Irish study, based upon more than 8000 samples collected over the measurement period of 22 years, for sulfur dioxide (SO2-S), sulfate (SO4-S) and nitrogen dioxide (NO2-N) concentrations (microg m(-3)) within air, and the ionic composition of precipitation samples based on sodium (Na+), potassium (K+), magnesium (Mg2+), calcium (Ca2+), chloride (Cl-), sulfate (SO4-S), non-sea salt sulfate (nssSO4-S), ammonium (NH4-N), and nitrate (NO3-N) weighted mean concentrations (mg l(-1)), has been completed. For the air samples, the sulfur dioxide and sulfate concentrations decreased over the sampling period (1980-2004) by 75% and 45%, respectively, whereas no significant trend was observed for nitrogen dioxide. The highest concentrations for sulfur dioxide, sulfate and nitrogen dioxide were associated with wind originating from the easterly and northeasterly directions i.e. those influenced by Irish and European sources. The lowest concentrations were associated with the westerly directions i.e. for air masses originating in the North Atlantic region. This was further verified with the use of backward (back) trajectory analysis, which allowed tracing the movement of air parcels using the European Centre for Medium range Weather Forecasting (ECMWF) ERA-40 re-analysis data. High non-sea salt sulfate levels were being associated with air masses originating from Europe (easterlies) with lower levels from the Atlantic (westerlies). With the precipitation data, analysis of the non-sea salt sulfate concentrations showed a decrease by 47% since the measurements commenced.
Luong, J; Gras, R; Cortes, H J; Shellie, R A
2013-01-04
An integrated gas chromatographic system has been successfully developed and implemented for the measurement of oxygen, nitrogen, carbon monoxide, carbon dioxide and light hydrocarbons in one single analysis. These analytes are frequently encountered in critical industrial petrochemical and chemical processes like catalytic cracking of naphtha or diesel fuel to lighter components used in gasoline. The system employs a practical, effective configuration consisting of two three-port planar microfluidic devices in series with each other, having built-in fluidic gates, and a mid-point pressure source. The use of planar microfluidic devices offers intangible advantages like in-oven switching with no mechanical moving parts, an inert sample flow path, and a leak-free operation even with multiple thermal cycles. In this way, necessary features such as selectivity enhancement, column isolation, column back-flushing, and improved system cleanliness were realized. Porous layer open tubular capillary columns were employed for the separation of hydrocarbons followed by flame ionization detection. After separation has occurred, carbon monoxide and carbon dioxide were converted to methane with the use of a nickel-based methanizer for detection with flame ionization. Flow modulated thermal conductivity detection was employed to measure oxygen and nitrogen. Separation of all the target analytes was achieved in one single analysis of less than 12 min. Reproducibility of retention times for all compounds were found to be less than 0.1% (n=20). Reproducibility of area counts at two levels, namely 100 ppm(v) and 1000 ppm(v) over a period of two days were found to be less than 5.5% (n=20). Oxygen and nitrogen were found to be linear over a range from 20 ppm(v) to 10,000 ppm(v) with correlation coefficients of at least 0.998 and detection limits of less than 10 ppm(v). Hydrocarbons of interest were found to be linear over a range from 200 ppb(v) to 1000 ppm(v) with correlation coefficients of greater than 0.999 and detection limits of less than 100 ppb(v). Copyright © 2012 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
... Promulgation of Air Quality Implementation Plans; Virginia; Adoption of the Revised Nitrogen Dioxide Standard... of adding the new 1-hour nitrogen dioxide (NO 2 ) standard at a level of 100 parts per billion (ppb... Promulgation of Air Quality Implementation Plans; Virginia; Adoption of the Revised Nitrogen Dioxide Standards...
NASA Technical Reports Server (NTRS)
Swartz, W. H.; Bucesla, E. J.; Lamsal, L. N.; Celarier, E. A.; Krotkov, N. A.; Bhartia, P, K,; Strahan, S. E.; Gleason, J. F.; Herman, J.; Pickering, K.
2012-01-01
Nitrogen oxides (NOx =NO+NO2) are important atmospheric trace constituents that impact tropospheric air pollution chemistry and air quality. We have developed a new NASA algorithm for the retrieval of stratospheric and tropospheric NO2 vertical column densities using measurements from the nadir-viewing Ozone Monitoring Instrument (OMI) on NASA's Aura satellite. The new products rely on an improved approach to stratospheric NO2 column estimation and stratosphere-troposphere separation and a new monthly NO2 climatology based on the NASA Global Modeling Initiative chemistry-transport model. The retrieval does not rely on daily model profiles, minimizing the influence of a priori information. We evaluate the retrieved tropospheric NO2 columns using surface in situ (e.g., AQS/EPA), ground-based (e.g., DOAS), and airborne measurements (e.g., DISCOVER-AQ). The new, improved OMI tropospheric NO2 product is available at high spatial resolution for the years 200S-present. We believe that this product is valuable for the evaluation of chemistry-transport models, examining the spatial and temporal patterns of NOx emissions, constraining top-down NOx inventories, and for the estimation of NOx lifetimes.
NASA Astrophysics Data System (ADS)
Koukouli, MariLiza; Balis, Dimitris; Dimopoulos, Spiros; Clarisse, Lieven; Carboni, Elisa; Hedelt, Pascal; Spinetti, Claudia; Theys, Nicolas; Tampellini, Lucia; Zehner, Claus
2014-05-01
The eruption of the Icelandic volcano Eyjafjallajökull in the spring of 2010 turned the attention of both the public and the scientific community to the susceptibility of the European airspace to the outflows of large volcanic eruptions. The ash-rich plume from Eyjafjallajökull drifted towards Europe and caused major disruptions of European air traffic for several weeks affecting the everyday life of millions of people and with a strong economic impact. This unparalleled situation revealed limitations in the decision making process due to the lack of information on the tolerance to ash of commercial aircraft engines as well as limitations in the ash monitoring and prediction capabilities. The European Space Agency project Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards, was introduced to facilitate the development of an optimal End-to-End System for Volcanic Ash Plume Monitoring and Prediction. This system is based on comprehensive satellite-derived ash plume and sulphur dioxide [SO2] level estimates, as well as a widespread validation using supplementary satellite, aircraft and ground-based measurements. The validation of volcanic SO2 levels extracted from the sensors GOME-2/MetopA and IASI/MetopA are shown here with emphasis on the total column observed right before, during and after the Eyjafjallajökull 2010 eruptions. Co-located ground-based Brewer Spectrophotometer data extracted from the World Ozone and Ultraviolet Radiation Data Centre, WOUDC, were compared to the different satellite estimates. The findings are presented at length, alongside a comprehensive discussion of future scenarios.
NASA Astrophysics Data System (ADS)
Marais, Eloise A.; Jacob, Daniel J.; Choi, Sungyeon; Joiner, Joanna; Belmonte-Rivas, Maria; Cohen, Ronald C.; Ryerson, Thomas B.; Weinheimer, Andrew J.; Volz-Thomas, Andreas
2017-04-01
Nitrogen oxides (NOx ≡ NO + NO2) are long lived in the upper troposphere (UT), and so have a large impact on ozone formation where ozone is a powerful greenhouse gas. Measurements of UT NOx are limited to summertime aircraft campaigns predominantly in North America. There are year-round NOx measurements from instruments onboard commercial aircraft, but NO2 measurements are susceptible to large interferences. Satellites provide global coverage, but traditional space-based NO2 observations only provide one piece of vertical information in the troposphere. New cloud-sliced satellite NO2 products offer additional vertical information by retrieving partial NO2 columns above clouds and further exploit differences in cloud heights to calculate UT NO2 mixing ratios. Two new cloud-sliced NO2 products from the Ozone Monitoring Instrument (OMI; 2004 launch) provide seasonal UT NO2 data centered at 350 hPa for 2005-2007 (NASA product) and 380 hPa for 2006 only (KNMI). Differences between the products include spectral fitting to obtain NO2 along the viewing path (slant column), the air mass factor calculation to convert slant columns to true vertical columns, treatment of the stratospheric NO2 component, and the choice of cloud products. The resultant NASA NO2 mixing ratios are 30% higher than KNMI NO2 and are consistent with summertime aircraft NO2 observations over North America. Comparison between NASA NO2 and the GEOS-Chem chemical transport model exposes glaring inadequacies in the model. In summer in the eastern US lightning NOx emissions are overestimated by at least a factor of 2, corroborated by comparison of GEOS-Chem and MOZAIC aircraft observations of reactive nitrogen (NOy). Too fast heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) leads to an underestimate in UT NO2 in winter across the northern hemisphere. Absence of interannual variability in lightning flashes in the lightning NOx parameterization induces biases in UT NO2 in the tropics due to anomalous lightning activity linked to the El Niño Southern Oscillation. Ongoing work is to use GEOS-Chem to investigate the implications of updated representation of UT NOx on ozone.
A Global Land Use Regression Model for Nitrogen Dioxide Air Pollution
Larkin, Andrew; Geddes, Jeffrey A.; Martin, Randall V.; Xiao, Qingyang; Liu, Yang; Marshall, Julian D.; Brauer, Michael; Hystad, Perry
2017-01-01
Nitrogen dioxide is a common air pollutant with growing evidence of health impacts independent of other common pollutants such as ozone and particulate matter. However, the global distribution of NO2 exposure and associated impacts on global health is still largely uncertain. To advance global exposure estimates we created a global nitrogen dioxide (NO2) land use regression model for 2011 using annual measurements from 5,220 air monitors in 58 countries. The model captured 54% of global NO2 variation, with a mean absolute error of 3.7 ppb. Regional performance varied from R2 = 0.42 (Africa) to 0.67 (South America). Repeated 10% cross-validation using bootstrap sampling (n=10,000) demonstrated robust performance with respect to air monitor sampling in North America, Europe, and Asia (adjusted R2 within 2%) but not for Africa and Oceania (adjusted R2 within 11%) where NO2 monitoring data are sparse. The final model included 10 variables that captured both between and within-city spatial gradients in NO2 concentrations. Variable contributions differed between continental regions but major roads within 100m and satellite-derived NO2 were consistently the strongest predictors. The resulting model will be made available and can be used for global risk assessments and health studies, particularly in countries without existing NO2 monitoring data or models. PMID:28520422
Delgado-Abad, Thais; Martínez-Ferrer, Jaime; Acerete, Rafael; Asensio, Gregorio; Mello, Rossella; González-Núñez, María Elena
2016-07-06
Ethanol () inhibits SN1 reactions of alkyl halides in supercritical carbon dioxide (scCO2) and gives no ethers as products. The unexpected behaviour of alcohols in the reaction of alkyl halides with 1,3-dimethoxybenzene () in scCO2 under different conditions is rationalised in terms of Brønsted and Lewis acid-base equilibria of reagents, intermediates, additives and products in a singular solvent characterised by: (i) the strong quadrupole and Lewis acid character of carbon dioxide, which hinders SN2 paths by strongly solvating basic solutes; (ii) the weak Lewis base character of carbon dioxide, which prevents it from behaving as a proton sink; (iii) the compressible nature of scCO2, which enhances the impact of preferential solvation on carbon dioxide availability for the solvent-demanding rate determining step.
NASA Technical Reports Server (NTRS)
Knox, J.; Fulda, P.; Howard, D.; Ritter, J.; Levan, M.
2007-01-01
The design and testing of a vacuum-swing adsorption process to remove metabolic 'water and carbon dioxide gases from NASA's Orion crew exploration vehicle atmosphere is presented. For the Orion spacecraft, the sorbent-based atmosphere revitalization (SBAR) system must remove all metabolic water, a technology approach 1Lhathas not been used in previous spacecraft life support systems. Design and testing of a prototype SBAR in sub-scale and full-scale configurations is discussed. Experimental and analytical investigations of dual-ended and single-ended vacuum desorption are presented. An experimental investigation of thermal linking between adsorbing and desorbing columns is also presented.
NASA Astrophysics Data System (ADS)
Singh, U. N.; Refaat, T. F.; Yu, J.; Petros, M.
2013-12-01
Water vapor (H2O) and carbon dioxide (CO2) are dominant greenhouse gases that are critical for Earth's radiation budget and global warming through the eco-system and the carbon cycle. NASA Langley Research Center (LaRC) has a strong heritage in atmospheric remote sensing of both gases using several instruments adopting various DIAL techniques. This communication presents a feasibility study for measuring both H2O and CO2 simultaneously and independently using a single instrument. This instrument utilizes the Integrated Path Differential Absorption (IPDA) lidar technique to measure the weighted-average column dry-air mixing ratios of CO2 (XCO2) and H2O (XH2O) independently and simultaneously from an airborne platform. The key component of this instrument is a tunable triple-pulse 2-micron laser. The three laser pulses are transmitted sequentially within a short time interval of 200 microsec. The wavelength of each of the laser pulses can be tuned separately. The IPDA receiver design is based on low-risk, commercially available components, including 300-micron diameter InGaAs 2-micron pin detector, a low-noise, high speed trans-impedance amplifier (TIA) and 12-bit 400 MHz digitizer.
Ashraf-Khorassani, M; Yang, J; Rainville, P; Jones, M D; Fountain, K J; Isaac, G; Taylor, L T
2015-03-01
Ultrahigh performance supercritical fluid chromatography (UHPSFC) in combination with sub-2μm particles and either diode array ultraviolet (UV), evaporative light scattering, (ELSD), or mass spectrometric (MS) detection has been shown to be a valuable technique for the determination of acylglycerols in soybean, corn, sesame, and tobacco seed oils. Excellent resolution on an un-endcapped single C18 column (3.0mm×150mm) with a mobile phase gradient of acetonitrile and carbon dioxide in as little as 10min served greatly as an improvement on first generation packed column SFC instrumentation. Unlike high resolution gas chromatography and high performance liquid chromatography with mass spectrometric detection, UHPSFC/MS was determined to be a superior analytical tool for both separation and detection of mono-, di-, and tri-acylglycerols as well as free glycerol itself in biodiesel without derivatization. Baseline separation of residual tri-, di-, and mono-acylglycerols alongside glycerol at 0.05% (w/w) was easily obtained employing packed column SFC. The new analytical methodology was applied to both commercial B100 biodiesel (i.e. fatty acid methyl esters) derived from vegetable oil and to an "in-house" synthetic biodiesel (i.e. fatty acid ethyl esters) derived from tobacco seed oil and ethanol both before and after purification via column chromatography on bare silica. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Galeczka, Iwona; Wolff-Boenisch, Domenik; Oelkers, Eric H.; Gislason, Sigurdur R.
2014-02-01
A novel high pressure column flow reactor was used to investigate the evolution of solute chemistry along a 2.3 m flow path during pure water- and CO2-charged water-basaltic glass interaction experiments at 22 and 50 °C and 10-5.7 to 22 bars partial pressure of CO2. Experimental results and geochemical modelling showed the pH of injected pure water evolved rapidly from 6.7 to 9-9.5 and most of the iron released to the fluid phase was subsequently consumed by secondary minerals, similar to natural meteoric water-basalt systems. In contrast to natural systems, however, the aqueous aluminium concentration remained relatively high along the entire flow path. The aqueous fluid was undersaturated with respect to basaltic glass and carbonate minerals, but supersaturated with respect to zeolites, clays, and Fe hydroxides. As CO2-charged water replaced the alkaline fluid within the column, the fluid briefly became supersaturated with respect to siderite. Basaltic glass dissolution in the column reactor, however, was insufficient to overcome the pH buffer capacity of CO2-charged water. The pH of this CO2-charged water rose from an initial 3.4 to only 4.5 in the column reactor. This acidic reactive fluid was undersaturated with respect to carbonate minerals but supersaturated with respect to clays and Fe hydroxides at 22 °C, and with respect to clays and Al hydroxides at 50 °C. Basaltic glass dissolution in the CO2-charged water was closer to stoichiometry than in pure water. The mobility and aqueous concentration of several metals increased significantly with the addition of CO2 to the inlet fluid, and some metals, including Mn, Cr, Al, and As exceeded the allowable drinking water limits. Iron became mobile and the aqueous Fe2+/Fe3+ ratio increased along the flow path. Although carbonate minerals did not precipitate in the column reactor in response to CO2-charged water-basaltic glass interaction, once this fluid exited the reactor, carbonates precipitated as the fluid degassed at the outlet. Substantial differences were found between the results of geochemical modelling calculations and the observed chemical evolution of the fluids during the experiments. These differences underscore the need to improve the models before they can be used to predict with confidence the fate and consequences of carbon dioxide injected into the subsurface. The pH increase from 3.4 to 4.5 of the CO2-rich inlet fluid does not immobilize toxic elements at ambient temperature but immobilizes Al and Cr at 50 °C. This indicates that further neutralization of CO2-charged water is required for decreased toxic element mobility. The CO2-charged water injection enhances the mobility of redox sensitive Fe2+ significantly making it available for the storage of injected carbon as iron carbonate minerals. The precipitation of aluminosilicates likely occurred at a pH of 4.2-4.5 in CO2-charged waters. These secondary phases can (1) fill the available pore space and therefore clog the host rock in the vicinity of the injection well, and (2) incorporate some divalent cations limiting their availability for carbon storage. The inability of simple reactive transport models to describe accurately the fluid evolution in this well constrained one dimensional flow system suggests that significant improvements need to be made to such models before we can predict with confidence the fate and consequences of injecting carbon dioxide into the subsurface. Column reactors such as that used in this study could be used to facilitate ex situ carbon mineral storage. Carbonate precipitation at the outlet of the reactor suggests that the harvesting of divalent metals from rocks using CO2-charged waters could potentially be upscaled to an industrial carbonation process.
NASA Astrophysics Data System (ADS)
Shinde, Pritamkumar V.; Xia, Qi Xun; Ghule, Balaji G.; Shinde, Nanasaheb M.; Seonghee, Jeong; Kim, Kwang Ho; Mane, Rajaram S.
2018-06-01
The interesting and multifunctional properties of alpha-manganese dioxide (α-MnO2) are considered to be highly sensitive and selective to nitrogen dioxide (NO2) chemresistive gas sensors. The α-MnO2 mesoporous interlocked micro-cubes composed of several interconnected nanocrystals synthesized by a facile and low-cost hydrothermal method on soda-lime glass substrate are envisaged as selective and sensitive NO2 gas sensors. Phase-purity and surface area with pore-size distribution are initially screened. The three-dimensional α-MnO2 mesoporous-cube-based gas sensors tested for NO2 gas from room-temperature (27 °C) to 250 °C have demonstrated 33% response for 100 ppm NO2 levels at 150 °C. The response and recovery time values of the α-MnO2 sensor are found to be 26 s and recovery 91 s, respectively, with high selectivity, good sensitivity, and considerable chemical and environmental stabilities, confirming the gas sensor applications potentiality of α-MnO2 morphology which is a combination of interlocked mesoporous micro-cubes and well-connected nanocrystals.
Spatio-temporal Variations of Nitrogen Dioxide Pollution in China, 2005-2015
NASA Astrophysics Data System (ADS)
Cui, Yuanzheng
China has experienced rapid economic growth in recent decades, accompanied with intensive urbanization and industrialization. This economic growth has led to many significant environmental problems, including deteriorating nitrogen dioxide (NO2) pollution. NO2 is a key air pollutant, and it plays a major role in the tropospheric chemistry. This thesis investigates the extent to which the characteristics of NO2 pollution changes at different spatial and temporal scales reflects regional inequality in economic and environmental policies enforced by Chinese governments, which has important implications for future emission control. The objective of this thesis is to investigate the spatial and temporal variability and trends of tropospheric NO2 pollution over China, by analyzing the NO2 vertical column density (VCD) data over 2005 to 2015 retrieved from the space-borne Ozone Monitoring Instrument (OMI). It is found that over most polluted regions in China, the NO2 columns increased rapidly since 2005, reached their peaks around 2011, and started to decline afterwards. Over parts of Eastern China, the NO2 levels in 2015 were close to the levels in 2005. Furthermore, severe pollution has extended from the traditional highly developed regions in Eastern China to newly emerged cities clusters in the west. Further comparisons with GEOS-Chem model simulations for 2005-2012 confirm that the OMI observed NO2 trends were driven mainly by changes in anthropogenic emissions. Then the long-term trends of NO2 over 2005-2013 from other scales of temporal variability over provincial-level regions of Western China were further distinguished, by using a wavelet decomposition analysis. The anthropogenic NO2 grew rapidly over Western China at a regional average rate of 8.6 +/- 0.9% yr-1 between 2005 and 2013. The rate of NO2 growth during 2005-2013 reached 11.3 +/- 1.0% yr-1 over Northwestern China, exceeding the rates over Southwestern China (5.9 +/- 0.6 % yr-1) and the three well-known polluted regions in the east (5.3 +/- 0.8% yr-1 over Beijing-Tianjin-Hebei, 4.0 +/- 0.6% yr-1 over the Yangtze River Delta, and -3.3 +/- 0.3% yr-1 over the Pearl River Delta). Subsequent socioeconomic analyses suggest that the rapid NO 2 growth over Northwestern China is likely related to the fast developing resource- and pollution-intensive industries along with the "Go West" movement as well as relatively weak emission controls. Finally, the signal of urbanization between 2005 and 2015 in the prefectural-level cities was identified from the OMI NO2 data, by using a high-resolution NO2 VCD dataset (with a spatial resolution of 0.125° x 0.125°) to derive three relevant metrics ("size relative trend" as a metric for urban area expansion, "mean relative trend" for mean urban pollution, and "max relative trend" for peak intensity). Additionally, the comparisons of the spatial distribution of annual mean NO 2 VCDs over China with night light data and population density data in 2010 show the similar spatial patterns of NO2, nighttime light and population density: the correlation coefficients get to 0.74 between NO 2 and night light and 0.66 between NO2 and population density. This highlights the consequences of urbanization for pollution and health impacts. Finally, a geographically and temporally weighted regression (GTWR) model is employed to explore the spatio-temporal relationship between NO 2 pollution and GDP at a city level over 2005-2013. The GTWR model results show that cities with highest positive estimated parameters were mainly those less developed cities from inland China by providing energy sources and semi-products to coastal cities in the east. For most cities, the NO2 pollution per unit of GDP has declined over 2005-2013, reflecting to some extent the success of local emission control that is accompanied with relocation of production and emissions from the east to the west and from richer to poorer areas. In summary, our results suggest that the central and local governments should move to achieve and maintain sustainable development both in Eastern China and in the west, perhaps starting by recognizing the importance of removing regional inequality in economic and environmental policies and by optimizing the eco-compensation mechanism and energy structure. More efforts should be made to alleviate NOx and other pollution to achieve sustainable development in Western China, in addition to reducing pollution in the east.
NASA Technical Reports Server (NTRS)
Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.
2013-01-01
Phytoplankton are free-floating algae that grow in the euphotic zone of the upper ocean, converting carbon dioxide, sunlight, and available nutrients into organic carbon through photosynthesis. Despite their microscopic size, these photoautotrophs are responsible for roughly half the net primary production on Earth (NPP; gross primary production minus respiration), fixing atmospheric CO2 into food that fuels our global ocean ecosystems. Phytoplankton thus play a critical role in the global carbon cycle, and their growth patterns are highly sensitive to environmental changes such as increased ocean temperatures that stratify the water column and prohibit the transfer of cold, nutrient richwaters to the upper ocean euphotic zone.
Interhemispheric survey of minor upper atmospheric constituents during October - November 1976
NASA Technical Reports Server (NTRS)
Gauntner, D. J. (Compiler); Haughney, L. C. (Compiler)
1977-01-01
The CV-990 aircraft coordinated several flights with a NASA U-2 aircraft, NOAA ground station measurements in Alaska, Hawaii, and American Samoa, and with Australian and New Zealand ground stations, aircraft, and a balloon experiment in the Southern hemisphere. Data were obtained for species including ozone, total ozone, the oxides of nitrogen, the chlorofluoromethanes, water vapor, nitric acid, carbon monoxide, carbon dioxide, hydrogen chloride, Aitken nuclei, ammonia, aerosols, temperatures, and winds. Individual experiment results and selected analyses are presented. The experimental data include total column densities, latitude variations, interhemisphere differences, and vertical profiles.
Air-sea CO2 flux pattern along the southern Bay of Bengal waters
NASA Astrophysics Data System (ADS)
Shanthi, R.; Poornima, D.; Naveen, M.; Thangaradjou, T.; Choudhury, S. B.; Rao, K. H.; Dadhwal, V. K.
2016-12-01
Physico-chemical observations made from January 2013 to March 2015 in coastal waters of the southwest Bay of Bengal show pronounced seasonal variation in physico-chemical parameters including total alkalinity (TA: 1927.390-4088.642 μmol kg-1), chlorophyll (0.13-19.41 μg l-1) and also calculated dissolved inorganic carbon (DIC: 1574.219-3790.954 μmol kg-1), partial pressure of carbon dioxide (pCO2: 155.520-1488.607 μatm) and air-sea CO2 flux (FCO2: -4.808 to 11.255 mmol Cm-2 d-1). Most of the physical parameters are at their maximum during summer due to the increased solar radiation at cloud free conditions, less or no riverine inputs, and lack of vertical mixing of water column which leads to the lowest nutrients concentration, dissolved oxygen (DO), biological production, pCO2 and negative flux of CO2 to the atmosphere. Chlorophyll and DO concentrations enhanced due to increased nutrients during premonsoon and monsoon season due to the vertical mixing of water column driven by the strong winds and external inputs at respective seasons. The constant positive loading of nutrients, TA, DIC, chlorophyll, pCO2 and FCO2 against atmospheric temperature (AT), lux, sea surface temperature (SST), pH and salinity observed in principal component analysis (PCA) suggested that physical and biological parameters play vital role in the seasonal distribution of pCO2 along the southwest Bay of Bengal. The annual variability of CO2 flux clearly depicted that the southwest Bay of Bengal switch from sink (2013) to source status in the recent years (2014 and 2015) and it act as significant source of CO2 to the atmosphere with a mean flux of 0.204 ± 1.449 mmol Cm-2 d-1.
Lower-tropospheric CO 2 from near-infrared ACOS-GOSAT observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulawik, Susan S.; O'Dell, Chris; Payne, Vivienne H.
We present two new products from near-infrared Greenhouse Gases Observing Satellite (GOSAT) observations: lowermost tropospheric (LMT, from 0 to 2.5 km) and upper tropospheric–stratospheric ( U, above 2.5 km) carbon dioxide partial column mixing ratios. We compare these new products to aircraft profiles and remote surface flask measurements and find that the seasonal and year-to-year variations in the new partial column mixing ratios significantly improve upon the Atmospheric CO 2 Observations from Space (ACOS) and GOSAT (ACOS-GOSAT) initial guess and/or a priori, with distinct patterns in the LMT and U seasonal cycles that match validation data. For land monthly averages,more » we find errors of 1.9, 0.7, and 0.8 ppm for retrieved GOSAT LMT, U, and XCO 2; for ocean monthly averages, we find errors of 0.7, 0.5, and 0.5 ppm for retrieved GOSAT LMT, U, and XCO 2. In the southern hemispheric biomass burning season, the new partial columns show similar patterns to MODIS fire maps and MOPITT multispectral CO for both vertical levels, despite a flat ACOS-GOSAT prior, and a CO–CO 2 emission factor comparable to published values. The difference of LMT and U, useful for evaluation of model transport error, has also been validated with a monthly average error of 0.8 (1.4) ppm for ocean (land). LMT is more locally influenced than U, meaning that local fluxes can now be better separated from CO 2 transported from far away.« less
Lower-tropospheric CO 2 from near-infrared ACOS-GOSAT observations
Kulawik, Susan S.; O'Dell, Chris; Payne, Vivienne H.; ...
2017-04-27
We present two new products from near-infrared Greenhouse Gases Observing Satellite (GOSAT) observations: lowermost tropospheric (LMT, from 0 to 2.5 km) and upper tropospheric–stratospheric ( U, above 2.5 km) carbon dioxide partial column mixing ratios. We compare these new products to aircraft profiles and remote surface flask measurements and find that the seasonal and year-to-year variations in the new partial column mixing ratios significantly improve upon the Atmospheric CO 2 Observations from Space (ACOS) and GOSAT (ACOS-GOSAT) initial guess and/or a priori, with distinct patterns in the LMT and U seasonal cycles that match validation data. For land monthly averages,more » we find errors of 1.9, 0.7, and 0.8 ppm for retrieved GOSAT LMT, U, and XCO 2; for ocean monthly averages, we find errors of 0.7, 0.5, and 0.5 ppm for retrieved GOSAT LMT, U, and XCO 2. In the southern hemispheric biomass burning season, the new partial columns show similar patterns to MODIS fire maps and MOPITT multispectral CO for both vertical levels, despite a flat ACOS-GOSAT prior, and a CO–CO 2 emission factor comparable to published values. The difference of LMT and U, useful for evaluation of model transport error, has also been validated with a monthly average error of 0.8 (1.4) ppm for ocean (land). LMT is more locally influenced than U, meaning that local fluxes can now be better separated from CO 2 transported from far away.« less
NASA Technical Reports Server (NTRS)
Kinnison, Douglas E.; Grant, Keith E.; Connell, Peter S.; Wuebbles, Donald J.
1994-01-01
The Lawrence Livermore National Laboratory two-dimensional zonally-averaged chemical-radiative-transport model of the global atmosphere was used to study the effects of the 15 June 1991 eruption of the Mt. Pinatubo volcano on stratospheric processes. SAGE 2 time-dependent aerosol surface area density and optical extinction data were used as input into the model. By 22 December 1991, a maximum equatorial change of -1.8 percent in column ozone was derived from heterogeneous chemical processes that convert NO(x) into HNO3 on sulfuric acid aerosols. Radiative feedbacks from increased aerosol optical thickness independently changes column ozone by approximately -3.5 percent for the same period. This occurs from increasing the net heating of the lower stratosphere, which indirectly increases chemical reaction rates via their temperature dependence and from changes in actinic fluxes, which directly modify photodissociation rates. Including both heterogeneous and radiative effects changes column ozone by -5.5 percent. The model-derived change overestimates the decrease in column ozone relative to the TOMS instrument on the Nimbus 7 satellite. Maximum local ozone decreases of 12 percent were derived in the equatorial region, at 25 km. Model-derived column NO2 peaked (-14 percent) at 30 deg S in October 1991. The timing of the NO2 peak is consistent with observation, but the model underestimates the magnitude of the decrease. Local concentrations of NO(x) (NO + NO2), ClO(x) (Cl + ClO), and HO(x) (OH + HO2), in the lower stratosphere between 30 deg S and 30 deg N, were calculated to have changed by -40 percent, +100 to +160 percent, and +120 to +140 percent respectively.
NASA Astrophysics Data System (ADS)
Ageyeva, V. Yu.; Gruzdev, A. N.; Elokhov, A. S.
2018-04-01
This paper reports on the first experimental evidence of the impact of a solar proton event on the stratospheric NO2 content derived from ground-based spectrometric measurements at middle and high latitudes of the Northern Hemisphere. In October 2003, a solar proton event caused an increase in the NO2 content in the upper stratosphere by 0.6 × 1015 cm-2, which accounted for about one-third of the increase in the column NO2 content. Solar proton events may be an essential factor for variability of the column NO2 content in the atmosphere of the high and middle latitudes.
Sensitivity Studies for Space-Based Global Measurements of Atmospheric Carbon Dioxide
NASA Technical Reports Server (NTRS)
Mao, Jian-Ping; Kawa, S. Randolph; Bhartia, P. K. (Technical Monitor)
2001-01-01
Carbon dioxide (CO2) is well known as the primary forcing agent of global warming. Although the climate forcing due to CO2 is well known, the sources and sinks of CO2 are not well understood. Currently the lack of global atmospheric CO2 observations limits our ability to diagnose the global carbon budget (e.g., finding the so-called "missing sink") and thus limits our ability to understand past climate change and predict future climate response. Space-based techniques are being developed to make high-resolution and high-precision global column CO2 measurements. One of the proposed techniques utilizes the passive remote sensing of Earth's reflected solar radiation at the weaker vibration-rotation band of CO2 in the near infrared (approx. 1.57 micron). We use a line-by-line radiative transfer model to explore the potential of this method. Results of sensitivity studies for CO2 concentration variation and geophysical conditions (i.e., atmospheric temperature, surface reflectivity, solar zenith angle, aerosol, and cirrus cloud) will be presented. We will also present sensitivity results for an O2 A-band (approx. 0.76 micron) sensor that will be needed along with CO2 to make surface pressure and cloud height measurements.
Marine biodiversity–ecosystem functions under uncertain environmental futures
Bulling, Mark T.; Hicks, Natalie; Murray, Leigh; Paterson, David M.; Raffaelli, Dave; White, Piran C. L.; Solan, Martin
2010-01-01
Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty. PMID:20513718
Marine biodiversity-ecosystem functions under uncertain environmental futures.
Bulling, Mark T; Hicks, Natalie; Murray, Leigh; Paterson, David M; Raffaelli, Dave; White, Piran C L; Solan, Martin
2010-07-12
Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.
Electrochemical processing of solid waste
NASA Technical Reports Server (NTRS)
Bockris, J. OM.; Hitchens, G. D.; Kaba, L.
1988-01-01
The investigation into electrolysis as a means of waste treatment and recycling on manned space missions is described. The electrochemical reactions of an artificial fecal waste mixture was examined. Waste electrolysis experiments were performed in a single compartment reactor, on platinum electrodes, to determine conditions likely to maximize the efficiency of oxidation of fecal waste material to CO2. The maximum current efficiencies for artificial fecal waste electrolysis to CO2 was found to be around 50 percent in the test apparatus. Experiments involving fecal waste oxidation on platinum indicates that electrodes with a higher overvoltage for oxygen evolution such as lead dioxide will give a larger effective potential range for organic oxidation reactions. An electrochemical packed column reactor was constructed with lead dioxide as electrode material. Preliminary experiments were performed using a packed-bed reactor and continuous flow techniques showing this system may be effective in complete oxidation of fecal material. The addition of redox mediator Ce(3+)/Ce(4+) enhances the oxidation process of biomass components. Scientific literature relevant to biomass and fecal waste electrolysis were reviewed.
ASSESSMENT OF CROP LOSS FROM OZONE
Past research has shown that ozone (O3) alone or in combination with sulfur dioxide (SO2), and nitrogen dioxide (NO2) is responsible for up to 90% of the crop losses in the U.S. caused by air pollution. The National Crop Loss Assessment Network (NCLAN) was set up to determine mor...
NASA Astrophysics Data System (ADS)
Aldana-Vazquez, A.; Stremme, W.; Grutter, M.
2010-12-01
There are sources of emissions of sulfur dioxide (SO2) that disperse to the Metropolitan Area of Mexico City (MCMA). The sources can be divided into three categories: a) The active Popocatepetl volcano located 70 km SE from the center of Mexico City, b) the industrial area located approximately 70 km to the and c) other local sources located in the surroundings from the measurement.. Solar absorption infrared spectra are being recorded since 2007 above the campus of the Universidad Nacional Autónoma de México (UNAM, 19.33 N, 99.18 W, 2260 m.a.s.l.). The column of SO2 was retrieved from all the spectra recorded in 2008 with the retrieval code SFIT2. Enhancement of the SO2 column could be identified in different time periods. The origin of the detected SO2 is determined by correlating the SO2 column with a) its surface concentration measured in the surroundings by the monitoring stations from the city’s monitoring network of (RAMA), b) the height of the mixing layer measured at UNAM, and c) meteorological wind data (REDMET, NCEP-NARR, and SMN). The result shows that the extraordinary events are correlated with the mentioned sources, and the analysis confirms prior studies that the plume travels at different altitudes. The plume of the Popocatepetl volcano is transported according to the wind at 5000 m.a.s.l. while emissions from the industrial area northwest of the MCMA are dispersed at lower altitudes within the mixing layer.
Intensity Modulation Techniques for Continuous-Wave Lidar for Column CO2 Measurements
NASA Astrophysics Data System (ADS)
Campbell, J. F.; Lin, B.; Obland, M. D.; Kooi, S. A.; Fan, T. F.; Meadows, B.; Browell, E. V.; Erxleben, W. H.; McGregor, D.; Dobler, J. T.; Pal, S.; O'Dell, C.
2017-12-01
Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) and Linear Swept Frequency modulations to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that take advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. We compare BPSK to linear swept frequency and introduce a new technique to eliminate sidelobes in situations from linear swept frequency where the SNR is high with results that rival BPSK. We also investigate the effects of non-linear modulators, which can in some circumstances degrade the orthogonality of the waveforms, and show how to avoid this. These techniques are used in a new data processing architecture written in the C language to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.
Estimating 40 years of nitrogen deposition in global biomes using the SCIAMACHY NO2 column
Lu, Xuehe; Zhang, Xiuying; Liu, Jinxun; Jin, Jiaxin
2016-01-01
Owing to human activity, global nitrogen (N) cycles have been altered. In the past 100 years, global N deposition has increased. Currently, the monitoring and estimating of N deposition and the evaluation of its effects on global carbon budgets are the focus of many researchers. NO2 columns retrieved by space-borne sensors provide us with a new way of exploring global N cycles and these have the ability to estimate N deposition. However, the time range limitation of NO2 columns makes the estimation of long timescale N deposition difficult. In this study we used ground-based NOx emission data to expand the density of NO2columns, and 40 years of N deposition (1970–2009) was inverted using the multivariate linear model with expanded NO2 columns. The dynamic of N deposition was examined in both global and biome scales. The results show that the average N deposition was 0.34 g N m–2 year–1 in the 2000s, which was an increase of 38.4% compared with the 1970s’. The total N deposition in different biomes is unbalanced. N deposition is only 38.0% of the global total in forest biomes; this is made up of 25.9%, 11.3, and 0.7% in tropical, temperate, and boreal forests, respectively. As N-limited biomes, there was little increase of N deposition in boreal forests. However, N deposition has increased by a total of 59.6% in tropical forests and croplands, which are N-rich biomes. Such characteristics may influence the effects on global carbon budgets.
NASA Astrophysics Data System (ADS)
Torres, A. D.; Keppel-Aleks, G.; Doney, S. C.; Feng, S.; Lauvaux, T.; Fendrock, M. A.; Rheuben, J.
2017-12-01
Remote sensing instruments provide an unprecedented density of observations of the atmospheric CO2 column average mole fraction (denoted as XCO2), which can be used to constrain regional scale carbon fluxes. Inferring fluxes from XCO2 observations is challenging, as measurements and inversion methods are sensitive to not only the imprint local and large-scale fluxes, but also mesoscale and synoptic-scale atmospheric transport. Quantifying the fine-scale variability in XCO2 from mesoscale and synoptic-scale atmospheric transport will likely improve overall error estimates from flux inversions by improving estimates of representation errors that occur when XCO2 observations are compared to modeled XCO2 in relatively coarse transport models. Here, we utilize various statistical methods to quantify the imprint of atmospheric transport on XCO2 observations. We compare spatial variations along Orbiting Carbon Observatory (OCO-2) satellite tracks to temporal variations observed by the Total Column Carbon Observing Network (TCCON). We observe a coherent seasonal cycle of both within-day temporal and fine-scale spatial variability (of order 10 km) of XCO2 from these two datasets, suggestive of the imprint of mesoscale systems. To account for other potential sources of error in XCO2 retrieval, we compare observed temporal and spatial variations of XCO2 to high-resolution output from the Weather Research and Forecasting (WRF) model run at 9 km resolution. In both simulations and observations, the Northern hemisphere mid-latitude XCO2 showed peak variability during the growing season when atmospheric gradients are largest. These results are qualitatively consistent with our expectations of seasonal variations of the imprint of synoptic and mesoscale atmospheric transport on XCO2 observations; suggesting that these statistical methods could be sensitive to the imprint of atmospheric transport on XCO2 observations.
Measuring the Spectral Expression of Carbon Dioxide in the Solar Reflected Spectrum with AVIRIS
NASA Technical Reports Server (NTRS)
Green, Robert O.
2001-01-01
Carbon dioxide is a low-concentration, but important, component of the Earth's atmosphere. This gas absorbs electromagnetic radiation (EMR) in several regions of the spectrum. Absorption of energy by carbon dioxide adds heat to the atmosphere. In the world today, the burning of fossil fuels and other anthropogenic processes adds carbon dioxide to the atmosphere. Other natural processes in the Earth's system both add and remove carbon dioxide. Overall, measurements of atmospheric carbon dioxide at selected sites around the globe show an increased carbon dioxide concentration in the atmosphere. A figure shows the measured carbon dioxide from Mauna Loa, Hawaii, from 1958 to 2000. Overall, the concentration has increased from 315 to 365 ppm at this site over this period. (There is also a yearly cycle to the concentration that is timed with and hypothesized to be related to the vegetation growing season in the Northern Hemisphere.) The overall expected effect of this increase of atmospheric carbon dioxide is trapping of heat in the atmosphere and global warming. While this overall relationship between carbon dioxide and global warming seems straightforward, many of the specific details relating to regional and local sources and sinks and gradients of carbon dioxide are not well understood. A remote sensing capability to measure carbon dioxide could provide important inputs for scientific research to better understand the distribution and change in atmospheric carbon dioxide at detailed spatial and temporal levels. In pursuit of this remote sensing of carbon dioxide objective, this paper analyzes the expression of carbon dioxide in the spectral range measured by the Airborne Visible/Infrared Imagery Spectrometer (AVIRIS). Based on these analyses, a spectral-fitting algorithm that uses AVIRIS measured spectra and MODTRAN radiative-transfer code modeled spectra to derive total column carbon dioxide abundance has been developed. This algorithm has been applied to an AVIRIS data set acquired over Pasadena, California, in 1999 and a data set acquired over the Pacific Ocean near Hawaii in 2000 with promising results. This is ongoing research; the current initial analyses, measurements, and results are reported in this paper.
Physical Controls on Carbon Flux from a Temperate Lake During Autumn Cooling
NASA Astrophysics Data System (ADS)
Czikowsky, M. J.; Miller, S. D.; Tedford, E. W.; MacIntyre, S.
2011-12-01
Seasonally-stratified temperate lakes are a source of carbon dioxide to the atmosphere during autumn overturning as CO2 trapped below the thermocline becomes available to the surface for release to the atmosphere. We made continuous measurements of the vertical profile of pCO2 in a ~600 ha temperate lake (Lake Pleasant, maximum depth ~24 m) in southwestern Adirondack Park, New York from mid-September to mid-October 2010 from a moored pontoon boat. Continuous eddy covariance flux measurements of momentum, sensible and latent heat, and CO2 were made in situ, and the water column thermal structure was measured using thermistor chains. The spatial variability (horizontal and vertical) of pCO2 throughout the lake was characterized periodically using a roving profiling system. At the beginning of the study interval, pCO2 at the pontoon boat varied from 500 ppm at the surface to > 3000 ppm below the thermocline. The vertical profile of pCO2 changed markedly during the campaign due to the effects of wind forcing and evaporation (buoyancy), with nearly uniform, high pCO2 throughout the water column at the end of the campaign (Figure 1). The elevated surface water pCO2 increased CO2 emission to the atmosphere.
Table of Historical Nitrogen Dioxide National Ambient Air Quality Standards (NAAQS)
See the history of limits to the level of nitrogen dioxide (NO2) in ambient air, set through the NAAQS review and rulemaking process under the Clean Air Act. This includes both primary and secondary standards.
NASA Technical Reports Server (NTRS)
King, R. B.; Neustadter, H. E.; Fordyce, J. S.; Burr, J. C., Jr.; Cornett, C. L.
1974-01-01
Air-quality data for metropolitan Cleveland, Ohio, from 1967 through 1972 were collated and statistically analyzed. Total suspended particulates (TSP) departed from lognormal distribution in 1972. Nitrogen dioxide and sulfur dioxide, departed significantly from lognormal distributions in 1972. In Cleveland the Ohio standards were not met. However, the data indicate a general improvement in air quality. Unusually high precipitation (43% above the average in 1972) may be responsible in lowering these values from the 1971 levels. The mean values of TSP, NO2, and SO2 are 104, 191, and 83 microgram/cu m respectively.
Intercomparison of daytime stratospheric NO2 satellite retrievals and model simulations
NASA Astrophysics Data System (ADS)
Belmonte Rivas, M.; Veefkind, P.; Boersma, F.; Levelt, P.; Eskes, H.; Gille, J.
2014-07-01
This paper evaluates the agreement between stratospheric NO2 retrievals from infrared limb sounders (Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and High Resolution Dynamics Limb Sounder (HIRDLS)) and solar UV/VIS backscatter sensors (Ozone Monitoring Instrument (OMI), Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) limb and nadir) over the 2005-2007 period and across the seasons. The observational agreement is contrasted with the representation of NO2 profiles in 3-D chemical transport models such as the Whole Atmosphere Community Climate Model (WACCM) and TM4. A conclusion central to this work is that the definition of a reference for stratospheric NO2 columns formed by consistent agreement among SCIAMACHY, MIPAS and HIRDLS limb records (all of which agree to within 0.25 × 1015 molecules cm-2 or better than 10%) allows us to draw attention to relative errors in other data sets, e.g., (1) WACCM overestimates NO2 densities in the extratropical lower stratosphere, particularly in the springtime and over northern latitudes by up to 35% relative to limb observations, and (2) there are remarkable discrepancies between stratospheric NO2 column estimates from limb and nadir techniques, with a characteristic seasonally and latitudinally dependent pattern. We find that SCIAMACHY nadir and OMI stratospheric columns show overall biases of -0.5 × 1015 molecules cm-2 (-20%) and +0.6 × 1015 molecules cm-2 (+20%) relative to limb observations, respectively. It is argued that additive biases in nadir stratospheric columns are not expected to affect tropospheric retrievals significantly, and that they can be attributed to errors in the total slant column density, related either to algorithmic or instrumental effects. In order to obtain accurate and long-term time series of stratospheric NO2, an effort towards the harmonization of currently used differential optical absorption spectroscopy (DOAS) approaches to nadir retrievals becomes essential, as well as their agreement to limb and ground-based observations, particularly now that limb techniques are giving way to nadir observations as the next generation of climate and air quality monitoring instruments pushes forth.
Leston, Alan R; Ollison, Will M
2017-11-01
Long-standing measurement techniques for determining ground-level ozone (O 3 ) and nitrogen dioxide (NO 2 ) are known to be biased by interfering compounds that result in overestimates of high O 3 and NO 2 ambient concentrations under conducive conditions. An increasing near-ground O 3 gradient (NGOG) with increasing height above ground level is also known to exist. Both the interference bias and NGOG were investigated by comparing data from a conventional Federal Equivalent Method (FEM) O 3 photometer and an identical monitor upgraded with an "interference-free" nitric oxide O 3 scrubber that alternatively sampled at 2 m and 6.2 m inlet heights above ground level (AGL). Intercomparison was also made between a conventional nitrogen oxide (NO x ) chemiluminescence Federal Reference Method (FRM) monitor and a new "direct-measure" NO 2 NO x 405 nm photometer at a near-road air quality measurement site. Results indicate that the O 3 monitor with the upgraded scrubber recorded lower regulatory-oriented concentrations than the deployed conventional metal oxide-scrubbed monitor and that O 3 concentrations 6.2 m AGL were higher than concentrations 2.0 m AGL, the nominal nose height of outdoor populations. Also, a new direct-measure NO 2 photometer recorded generally lower NO 2 regulatory-oriented concentrations than the conventional FRM chemiluminescence monitor, reporting lower daily maximum hourly average concentrations than the conventional monitor about 3 of every 5 days. Employing bias-prone instruments for measurement of ambient ozone or nitrogen dioxide from inlets at inappropriate heights above ground level may result in collection of positively biased data. This paper discusses tests of new regulatory instruments, recent developments in bias-free ozone and nitrogen dioxide measurement technology, and the presence/extent of a near-ground O 3 gradient (NGOG). Collection of unbiased monitor inlet height-appropriate data is crucial for determining accurate design values and meeting National Ambient Air Quality Standards.
FY12 ARRA-NRAP Report – Studies to Support Risk Assessment of Geologic Carbon Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.; Shao, Hongbo; Thompson, C. J.
2011-09-27
This report summarizes results of research conducted during FY2012 to support the assessment of environmental risks associated with geologic carbon dioxide (CO2) sequestration and storage. Several research focus areas are ongoing as part of this project. This includes the quantification of the leachability of metals and organic compounds from representative CO2 storage reservoir and caprock materials, the fate of metals and organic compounds after release, and the development of a method to measure pH in situ under supercritical CO2 (scCO2) conditions. Metal leachability experiments were completed on 6 different rock samples in brine in equilibrium with scCO2 at representative geologicmore » reservoir conditions. In general, the leaching of RCRA metals and other metals of concern was found to be limited and not likely to be a significant issue (at least, for the rocks tested). Metals leaching experiments were also completed on 1 rock sample with scCO2 containing oxygen at concentrations of 0, 1, 5, and 10% to simulate injection of CO2 originating from the oxy-fuel combustion process. Significant differences in the leaching behavior of certain metals were observed when oxygen is present in the CO2. These differences resulted from oxidation of sulfides, release of sulfate, ferric iron and other metals, and subsequent precipitation of iron oxides and some sulfates such as barite. Experiments to evaluate the potential for mobilization of organic compounds from representative reservoir materials and cap rock and their fate in porous media (quartz sand) have been conducted. Results with Fruitland coal and Gothic shale indicate that lighter organic compounds were more susceptible to mobilization by scCO2 compared to heavier compounds. Alkanes demonstrated very low extractability by scCO2. No significant differences were observed between the extractability of organic compounds by dry or water saturated scCO2. Reaction equilibrium appears to have been reached by 96 hours. When the scCO2 was released from the reactor, less than 60% of the injected lighter compounds (benzene, toluene) were transported through dry sand column by the CO2, while more than 90% of the heavier organics were trapped in the sand column. For wet sand columns, most (80% to 100%) of the organic compounds injected into the sand column passed through, except for naphthalene which was substantial removed from the CO2 within the column. A spectrophotometric method was developed to measure pH in brines in contact with scCO2. This method provides an alternative to fragile glass pH electrodes and thermodynamic modeling approaches for estimating pH. The method was tested in simulated reservoir fluids (CO2–NaCl–H2O) at different temperatures, pressures, and ionic strength, and the results were compared with other experimental studies and geochemical models. Measured pH values were generally in agreement with the models, but inconsistencies were present between some of the models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Foy, Benjamin; Lu, Zifeng; Streets, David G.
The Ozone Monitoring Instrument (OMI) has been estimating NO2 columns from space for over 10 years, and these have been used to estimate emissions and emission trends for point and area sources all over the world. In this study we evaluate the trends in NO2 columns over 54 cities in the USA and Canada to identify the long term trends due to air quality policies, the impact of the Great Recession, and the weekday-weekend effect. A multiple linear regression model is used to fit annual, seasonal and weekly factors for individual swath retrievals along with the impact of temperature, windmore » speed and pixel size. For most cities, the correlation coefficients of the model fit ranges from 0.47 to 0.76. There have been strong reductions in NO2 columns, with annual decreases of up to 7% per year in most cities. During the years of the Great Recession, NO2 columns were as much as 30% lower than they would have been had they followed the linear annual trend. The analysis yielded insights into the timing of the reductions, with some cities in the northwest and in the east experiencing reductions in 2008 already, and most areas back to where they would have been based on the uniform trend by 2011. The analysis also finds that reductions in columns during the weekend vary significantly from city to city, with a range in reductions of 10%-30% on Saturdays, and 20%-50% on Sundays.« less
NO2 Total and Tropospheric Vertical Column Densities from OMI on EOS Aura: Update
NASA Technical Reports Server (NTRS)
Gleason, J.F.; Bucsela, E.J.; Celarier, E.A.; Veefkind, J.P.; Kim, S.W.; Frost, G.F.
2009-01-01
The Ozone Monitoring Instrument (OMI), which is on the EOS AURA satellite, retrieves vertical column densities (VCDs) of NO2, along with those of several other trace gases. The relatively high spatial resolution and daily global coverage of the instrument make it particularly well-suited to monitoring tropospheric pollution at scales on the order of 20 km. The OMI NO2 algorithm distinguishes polluted regions from background stratospheric NO2 using a separation algorithm that relies on the smoothly varying stratospheric NO2 and estimations of both stratospheric and tropospheric air mass factors (AMFs). Version 1 of OMI NO2 data has been released for public use. An overview of OMI NO2 data, some recent results and a description of the improvements for version 2 of the algorithm will be presented.
NASA Astrophysics Data System (ADS)
Perroud, Marjorie; Goyette, StéPhane
2012-06-01
In the companion to the present paper, the one-dimensional k-ɛ lake model SIMSTRAT is coupled to a single-column atmospheric model, nicknamed FIZC, and an application of the coupled model to the deep Lake Geneva, Switzerland, is described. In this paper, the response of Lake Geneva to global warming caused by an increase in atmospheric carbon dioxide concentration (i.e., 2 × CO2) is investigated. Coupling the models allowed for feedbacks between the lake surface and the atmosphere and produced changes in atmospheric moisture and cloud cover that further modified the downward radiation fluxes. The time evolution of atmospheric variables as well as those of the lake's thermal profile could be reproduced realistically by devising a set of adjustable parameters. In a "control" 1 × CO2 climate experiment, the coupled FIZC-SIMSTRAT model demonstrated genuine skills in reproducing epilimnetic and hypolimnetic temperatures, with annual mean errors and standard deviations of 0.25°C ± 0.25°C and 0.3°C ± 0.15°C, respectively. Doubling the CO2 concentration induced an atmospheric warming that impacted the lake's thermal structure, increasing the stability of the water column and extending the stratified period by 3 weeks. Epilimnetic temperatures were seen to increase by 2.6°C to 4.2°C, while hypolimnion temperatures increased by 2.2°C. Climate change modified components of the surface energy budget through changes mainly in air temperature, moisture, and cloud cover. During summer, reduced cloud cover resulted in an increase in the annual net solar radiation budget. A larger water vapor deficit at the air-water interface induced a cooling effect in the lake.
Zare-Dorabei, Rouholah; Boroun, Shokoufeh; Noroozifar, Meissam
2018-02-01
A new and simple flow injection method followed by atomic absorption spectrometry was developed for indirect determination of sulfite. The proposed method is based on the oxidation of sulfite to sulphate ion using solid-phase manganese dioxide (30% W/W suspended on silica gel beads) reactor. MnO 2 will be reduced to Mn(II) by sample injection in to the column under acidic carrier stream of HNO 3 (pH 2) with flow rate of 3.5mLmin -1 at room temperature. Absorption measurement of Mn(II) which is proportional to the concentration of sulfite in the sample was carried out by atomic absorption spectrometry. The calibration curve was linear up to 25mgL -1 with a detection limit (DL) of 0.08mgL -1 for 400µL injection sample volume. The presented method is efficient toward sulfite determination in sugar and water samples with a relative standard deviation (RSD) less than 1.2% and a sampling rate of about 60h -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
Wong, T.-P.; Byappanahalli, M.; Yoneyama, B.; Ray, C.
2008-01-01
Laboratory column experiments were conducted to study the effects of anionic polyacrylamide (PAM) polymer and surfactant linear alkylbenzene sulfonate (LAS) on the movement of Escherichia coli and the FRNA phage MS-2. The study was designed to evaluate if PAM or PAM + LAS would enhance the mobility of human pathogens in tropical soils under unsaturated conditions. No breakthrough of phage was observed in a 10 cm column after passing 100 pore volumes of solution containing 1 ?? 108 plaque-forming units (PFU)/ml. In later experiments, after passing 10-20 pore volumes of influent containing 1 ?? 108/ml MS-2 or E. coli through 15 cm columns, the soil was sliced and the organisms eluted. Phage moved slightly deeper in the polymer-treated column than in the control column. There was no measurable difference in the movement of E. coli in either polymer-treated or control columns. The properties of the soil (high amounts of metal oxides, kaolinitic clay), unsaturated flow conditions, and relatively high ionic strengths of the leaching solution attributed to significant retention of these indicators. The impacts of PAM and LAS on the mobility of E. coli or MS-2 phage in the chosen soils were not significant. ?? IWA Publishing 2008.
Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics
NASA Astrophysics Data System (ADS)
Witte, J. C.; Schoeberl, M. R.; Douglass, A. R.; Gleason, J. F.; Krotkov, N. A.; Gille, J. C.; Pickering, K. E.; Livesey, N.
2009-09-01
For the August-September 2008 Olympic and the Paralympic Games held in Beijing, China, strict controls on pollutant emissions and motor vehicle traffic were imposed on Beijing and neighboring provinces to the South to improve the air quality in and around the city. Satellite measurements over Beijing between July and September showed 43% reductions of tropospheric column nitrogen dioxide, compared to the past three years. When neighboring provinces to the south are included in our analyses, satellite measurements show boundary layer sulfur dioxide reductions of 13% and carbon monoxide reductions of 12% at 700 hPa. Thus, based on satellites observations alone, noticeable reductions in these pollutant tracers were measured during both games.
Phase Equilibria of Stored Chemical Energy Reactants.
1984-07-25
aluminate-lithium ferrate system. Detection of a Li1 Al4/7Fe 3/704 compound: C. R. Acad. Sci., Ser. C, V. 273, No. 15, p. 888-90. McNicol, B. D. and Pott...thermodynamic properties of lithium ferrate (LiO.5Fe2 .504) and lithium aluminate (LiO 5Al 2 504) from 5 to 545 K: J. Chem. Thermodyn., V. 7, No. 7, p. 693- 2...1977, Study of low-temperature hydrothermal crystallization in lithium oxide-silicon dioxide-water, potassium oxide-silicon dioxide-water, and
NASA Technical Reports Server (NTRS)
Yang, Kau; Liu, Xiong; Bhartia, Pawan K.; Krotkov, Nickolay A.; Carn, Simon A.; Hughes, Eric J.; Krueger, Arlin J.; Spurr, Robert D.; Trahan, Samuel G.
2010-01-01
We describe the physical processes by which a vertically localized absorber perturbs the top-of-atmosphere solar backscattered ultraviolet (UV) radiance. The distinct spectral responses to perturbations of an absorber in its column amount and layer altitude provide the basis for a practical satellite retrieval technique, the Extended Iterative Spectral Fitting (EISF) algorithm, for the simultaneous retrieval of these quantities of a SO2 plume. In addition, the EISF retrieval provides an improved UV aerosol index for quantifying the spectral contrast of apparent scene reflectance at the bottom of atmosphere bounded by the surface and/or cloud; hence it can be used for detection of the presence or absence of UV absorbing aerosols. We study the performance and characterize the uncertainties of the EISF algorithm using synthetic backscattered UV radiances, retrievals from which can be compared with those used in the simulation. Our findings indicate that the presence of aerosols (both absorbing and nonabsorbing) does not cause large errors in EISF retrievals under most observing conditions when they are located below the SO2 plume. The EISF retrievals assuming a homogeneous field of view can provide accurate column amounts for inhomogeneous scenes, but they always underestimate the plume altitudes. The EISF algorithm reduces systematic errors present in existing linear retrieval algorithms that use prescribed SO2 plume heights. Applying the EISF algorithm to Ozone Monitoring Instrument satellite observations of the recent Kasatochi volcanic eruption, we demonstrate the successful retrieval of effective plume altitude of volcanic SO2, and we also show the improvement in accuracy in the corresponding SO2 columns.
The Development of a Nitrogen Dioxide Sonde
NASA Astrophysics Data System (ADS)
Sluis, Wesley; Allaart, Marc; Piters, Ankie; Gast, Lou
2010-05-01
Nitrogen dioxide is an important pollutant in the atmosphere, it is toxic for living species, it forms photochemical tropospheric ozone, and acid rain. There is a growing number of space-borne instruments to measure nitrogen dioxide concentrations in the atmosphere, but validation of these instruments is hampered by lack of ground-based and in-situ profile measurements. The Royal Netherlands Meteorological Institute (KNMI) has developed a working NO2 sonde. The sonde is attached to a small meteorological balloon and measures a tropospheric NO2 profile. The NO2 sonde has a vertical resolution of 5 meter, and a measurement range between 1 and 100 ppbv. The instrument is light in weight (±300 gram), cheap (disposable), energy efficient and not harmful to the environment or the person who finds the package after use. Therefore the popular molybdenum catalytic converter or a photomultiplier tube can not be used. Instead the sonde uses the chemiluminescent reaction of NO2 in an aqueous luminol solution. The NO2- luminol reaction produces a faint blue/purple light (± 425 nm), which is detected by an array of silicon photodiodes. The instrument is equipped with a reservoir filled with luminol solution. A small piezoelectric diaphragm pump, pumps the luminol solution into a reaction vessel. A Teflon air pump forces the ambient air into the reaction vessel. The NO2 in the ambient air reacts with the luminol solution, and the emitted light is detected by an array of silicon photodiodes which are mounted on the reaction vessel. The generated current in the photodiodes is amplified and relayed to the ground by a Vaisala (RS92) radiosonde. The reaction vessel and the amplifiers are mounted in a tin can, to shield against electrostatic and radio interference, and stray light. All the air tubes used for the instrument are made of Teflon. The luminol solution is optimised to be specific to NO2. Sodium sulphate, sodium EDTA and Triton X-100 are added to the luminol solution to exclude ozone (O3) and PAN (peroxy acetyl nitrate) interference. The efficiency of the NO2 luminol reaction depends on the pH of the solution. To avoid acidification of the system by carbon dioxide, the chemicals are refreshed constantly. Furthermore, treating the luminol solution with clean air for an extended period before the measurement, makes the luminol / NO2 reaction more efficient. The NO2 sonde is compared to a NO2 in-situ monitor with bluelight converter (M200E, BLC) of RIVM. Both instruments measure the same NO2 variations during a certain period of time during the day. During the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI) in June/July 2009 we measured six vertical profiles of NO2 from the ground to 5 km altitude. The NO2 sonde measurements will be compared with the Ozone Monitoring Instrument (OMI) on the EOS-Aura satellite, and other in-situ measurements like LIDAR and MAX Doas.
NASA Astrophysics Data System (ADS)
Folkert Boersma, K.
2017-04-01
One of the prime targets of the EU-project Quality Assurance for Essential Climate Variables (QA4ECV, www.qa4ecv.eu) is the generation and subsequent quality assurance of harmonized, long-term data records of ECVs or precursors thereof. Here we report on a new harmonized and improved retrieval algorithm for NO2 columns and its application to spectra measured by the GOME, SCIAMACHY, OMI, and GOME-2(A) sensors over the period 1996-2016. Our community 'best practices' algorithm is based on the classical 3-step DOAS method. It benefits from a thorough comparison and iteration of spectral fitting and air mass factor calculation approaches between IUP Bremen, BIRA, Max Planck Institute for Chemistry, KNMI, WUR, and a number of external partners. For step 1 of the retrieval, we show that improved spectral calibration and the inclusion of liquid water and intensity-offset correction terms in the fitting procedure, lead to 10-30% smaller NO2 slant columns, in better agreement with independent measurements. Moreover, the QA4ECV NO2 slant columns show 15-35% lower uncertainties relative to earlier versions of the spectral fitting algorithm. For step 2, the stratospheric correction, the algorithm relies on the assimilation of NO2 slant columns over remote regions in the Tracer Model 5 (TM5-MP) chemistry transport model. The representation of stratospheric NOy in the model is improved by nudging towards ODIN HNO3:O3 ratios, leading to more realistic NO2 concentrations in the free-running mode, which is relevant at high latitudes near the terminator. The coupling to TM5-Mass Parallel also allows the calculation of air mass factors (AMFs, step 3) from a priori NO2 vertical profiles simulated at a spatial resolution of 1°×1°, so that hotspot gradients are better resolved in the a priori profile shapes. Other AMF improvements include the use of improved cloud information, and a correction for photon scattering in a spherical atmosphere. Preliminary comparisons indicate that the new QA4ECV tropospheric NO2 columns are ±10% lower than operational products, and provide more spatial detail on the horizontal distribution of NO2 in the troposphere. Our comparisons provide more insight in the origin and nature of the retrieval uncertainties. The final QAECV NO2 product therefore contains overall uncertainty estimates for every measurement, but also information on the contribution of uncertainties of each retrieval sub-step to the overall uncertainty budget. We conclude with a presentation of the data format and a verification of the QA4ECV NO2 columns using the traceable quality assurance methodologies developed in the QA4ECV-project, and via validation against independent measurements (using the online QA4ECV Atmospheric Validation Server tool).
Shimada, Toyoshi; Suda, Masahiko; Nagano, Toyohiro; Kakiuchi, Kiyomi
2005-11-25
[reaction: see text] Bis(pyridine)iodonium tetrafluoroborate was successfully used for regioselective iodination of BINAP dioxide to give 5,5'-diiodoBINAP dioxide in an excellent yield of 92%, with no observed formation of 4,4'-diiodoBINAP dioxide. A Sonogashira cross-coupling reaction with 5,5'-diiodoBINAP dioxide gave the desired bis(trimethylsilylethynyl) product in 86% yield. The resulting 5,5'-disubstituted BINAP dioxides were reduced to the corresponding phosphines, which were used as chiral ligands for rhodium-catalyzed asymmetric 1,4-addition of phenylboronic acid to 2-cyclohexenone to give 3-phenylcyclohexanone in excellent yield with high enantioselectivity.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben
2015-01-01
NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a triple-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument for simultaneous measurement of water vapor and carbon-dioxide column density measurement from an air-borne platform. This presentation will give an overview of the 2 decades of 2-micron coherent and direction detection of laser/lidar development at NASA Langley Research Center and will present the ground and airborne wind and column CO2 measurement intercomparison with in-situ, balloon and flask measurements.
NASA Astrophysics Data System (ADS)
Shorter, Joanne H.; Nelson, David D.; Zahniser, Mark S.; Parrish, Milton E.; Crawford, Danielle R.; Gee, Diane L.
2006-04-01
Although nitrogen dioxide (NO 2) has been previously reported to be present in cigarette smoke, the concentration estimates were derived from kinetic calculations or from measurements of aged smoke, where NO 2 was formed some time after the puff was taken. The objective of this work was to use tunable infrared laser differential absorption spectroscopy (TILDAS) equipped with a quantum cascade (QC) laser to determine if NO 2 could be detected and quantified in a fresh puff of cigarette smoke. A temporal resolution of ˜0.16 s allowed measurements to be taken directly as the NO 2 was formed during the puff. Sidestream cigarette smoke was sampled to determine if NO 2 could be detected using TILDAS. Experiments were conducted using 2R4F Kentucky Reference cigarettes with and without a Cambridge filter pad. NO 2 was detected only in the lighting puff of whole mainstream smoke (without a Cambridge filter pad), with no NO 2 detected in the subsequent puffs. The measurement precision was ˜1.0 ppbV Hz -1/2, which allows a detection limit of ˜0.2 ng in a 35 ml puff volume. More NO 2 was generated in the lighting puff using a match or blue flame lighter (29 ± 21 ng) than when using an electric lighter (9 ± 3 ng). In the presence of a Cambridge filter pad, NO 2 was observed in the gas phase mainstream smoke for every puff (total of 200 ± 30 ng/cigarette) and is most likely due to smoke chemistry taking place on the Cambridge filter pad during the smoke collection process. Nitrogen dioxide was observed continuously in the sidestream smoke starting with the lighting puff.
Antropov, K M; Varaksin, A N
2013-01-01
This paper provides the description of Land Use Regression (LUR) modeling and the result of its application in the study of nitrogen dioxide air pollution in Ekaterinburg. The paper describes the difficulties of the modeling for air pollution caused by motor vehicles exhaust, and the ways to address these challenges. To create LUR model of the NO2 air pollution in Ekaterinburg, concentrations of NO2 were measured, data on factors affecting air pollution were collected, a statistical analysis of the data were held. A statistical model of NO2 air pollution (coefficient of determination R2 = 0.70) and a map of pollution were created.
NASA Astrophysics Data System (ADS)
Onojeghuo, A. R.; Balzter, H.; Monks, P. S.
2015-12-01
West Africa is a region with six different climatic zones including a rich savannah affected by biomass burning annually, the Niger delta oil producing region with major gas flaring sites and a long coastline. Research on atmospheric pollution using remotely sensed data over West Africa has mostly been conducted at regional scale or for individual countries, with little emphasis on the dynamics of climatic zones and the diversity of land cover types. This study analyses annual seasonal dynamics of emissions of two ozone precursors stratified by climatic zone: nitrogen dioxide (NO2) from OMI and carbon monoxide (CO) from TES. The different sources of these pollutants and their seasonality are explicitly considered. Results indicate that the highest annual wet season NO2 column concentrations were in the semi-arid zone (1.33 x 1015 molecules cm-2) after prolonged periods of low soil moisture while the highest dry season were observed in the wet sub-humid zone (2.62 x 1015 molecules cm-2) where the savannah fires occur annually. The highest annual CO concentrations (> 3.1 x 1018 molecules cm-2) were from the Niger Delta, located in the humid zone. There were indications of atmospheric transport of CO from the southern hemisphere in the west season. Climate change induced soil moisture variability was most prominent in the dry sub-humid and semi-arid climatic zones (±0.015m3m-3) . The causal effects of soil moisture variability on NO2 emissions and their seasonal cycles were tested using the Granger causality test. Causal effects of inter-zonal exchanges/transport of NO2 and CO emissions respectively were inferred using Directed Acyclic Graphs. The results indicate that NO2, CO and their seasonal ratios are strongly affected by changes in soil moisture.
Owens, J W; Swanson, S M; Birkholz, D A
1994-07-01
The environmental transport of pulp mill effluent compounds and the exposure of two fish species has been monitored by parallel analyses of effluent, water column and suspended sediment samples, and fish bile and muscle. Compounds analyzed included over 20 chlorophenolic compounds and 12 fatty and resin acids. The concentration of chlorophenols varied with seasonal river flows and mill process changes such as the substitution of chlorine dioxide (ClO2) for chlorine gas (Cl2) in the bleach plant. At 100% (ClO2) substitution, the effluent and the water column concentrations of most chlorophenolics approached the analytical detection limits of 0.1-1 parts per billion. Chlorophenolic and fatty/resin acid compounds were detected in the bile of both mountain whitefish (Prosopium williamsoni) and longnose sucker (Catostomus catostomus), but were rarely detected in fillets. Fish bile concentrations were observed in an apparent spatial gradient as far as 230 km downstream of the mill. A depuration experiment with fish held in uncontaminated water for eight days indicated a rapid decrease in chlorophenol levels. These observations corroborate previous investigations that chlorophenolic compounds are rapidly excreted and can be used as sensitive markers for recent exposure to mill effluents.
Denitrification, anammox and fixed nitrogen removal in the water column of a tropical great lake
NASA Astrophysics Data System (ADS)
Darchambeau, François; Roland, Fleur; Crowe, Sean A.; De Brabandere, Loreto; Llirós, Marc; Garcia-Armisen, Tamara; Inceoglu, Ozgul; Michiels, Céline; Servais, Pierre; Morana, Cédric D. T.; Bouillon, Steven; Meysman, Filip; Veuger, Bart; Masilya, Pascal M.; Descy, Jean-Pierre; Borges, Alberto V.
2013-04-01
If rates of microbial denitrification in aquatic systems are poorly constrained, it is much more the case for tropical water bodies. Lake Kivu [2.50° S 1.59° S, 29.37° E 28.83° E] is one of the great lakes of the East African Rift. It is an oligotrophic lake characterized by anoxic deep waters rich in dissolved gases (methane and carbon dioxide) and nutrients, and by well oxygenated and nutrient-depleted surface waters. During the seasonally stratified rainy season (October to May), a nitrogenous zone characterized by the accumulation of nitrite (NO2-) and nitrate (NO3-) is often observed in the lower layer of the mixolimnion. It results from nitrification of ammonium released by decaying organic matter. With the seasonal uplift of the oxygen minimum zone, the nitrogenous zone becomes anoxic and might be the most preferential area for fixed nitrogen (N) removal in Lake Kivu. Our work aimed at identifying and quantifying the processes of N losses by denitrification and/or anammox in the nitrogenous zone of the Lake Kivu water column. During 5 sampling campaigns (March 2010, October 2010, June 2011, February 2012 and September 2012), isotopic labelling experiments were used to quantify denitrification and anammox rates along vertical profiles at two pelagic stations of the main lake. Moreover, N2:Ar ratios were estimated during the September 2012 campaign, and 16S rDNA pyrosequencing was used to describe bacterial community composition during the last 2 campaigns. No bacteria related to organisms performing anammox was observed and labelling experiments failed to detect anammox at any locations and any depths. In Lake Kivu, denitrifying bacteria were mainly related to Denitratisoma and Thiobacillus genus. Significant denitrification rates were observed at several occasions, especially under the oxic-anoxic interface in the bottom of the nitracline. The annual average denitrification rate was estimated at ~150 μmoles N m-2 d-1. Denitrification was not the only nitrate-consuming process: dissimilative nitrate reduction to ammonium led to oxidized N removal with the same magnitude than denitrification alone. Isotopic labelling accompanied by addition of elemental sulfur evidenced that the upper vertical expansion of denitrification was limited by the abundance of reducing agents, while oxidized forms of N limited the lower expansion of denitrification.
NASA Astrophysics Data System (ADS)
Yang, E. G.; Kort, E. A.; Ware, J.; Ye, X.; Lauvaux, T.; Wu, D.; Lin, J. C.; Oda, T.
2017-12-01
Anthropogenic carbon dioxide (CO2) emissions are greatly perturbing the Earth's carbon cycle. Rising emissions from the developing world are increasing uncertainties in global CO2 emissions. With the rapid urbanization of developing regions, methods of constraining urban CO2 emissions in these areas can address critical uncertainties in the global carbon budget. In this study, we work toward constraining urban CO2 emissions in the Middle East by comparing top-down observations and bottom-up simulations of total column CO2 (XCO2) in four cities (Riyadh, Cairo, Baghdad, and Doha), both separately and in aggregate. This comparison involves quantifying the relationship for all available data in the period of September 2014 until March 2016 between observations of XCO2 from the Orbiting Carbon Observatory-2 (OCO-2) satellite and simulations of XCO2 using the Stochastic Time-Inverted Lagrangian Transport (STILT) model coupled with Global Data Assimilation System (GDAS) reanalysis products and multiple CO2 emissions inventories. We discuss the extent to which our observation/model framework can distinguish between the different emissions representations and determine optimized emissions estimates for this domain. We also highlight the implications of our comparisons on the fidelity of the bottom-up inventories used, and how these implications may inform the use of OCO-2 data for urban regions around the world.
The Orbiting Carbon Observatory: NASA's First Dedicated Carbon Dioxide Mission
NASA Technical Reports Server (NTRS)
Crisp, D.
2008-01-01
The Orbiting Carbon Observatory is scheduled for launch from Vandenberg Air Force Base in California in January 2009. This Earth System Science Pathfinder (ESSP) mission carries and points a single instrument that incorporates 3 high-resolution grating spectrometers designed to measure the absorption of reflected sunlight by near-infrared carbon dioxide (CO2) and molecular oxygen bands. These spectra will be analyzed to retrieve estimates of the column-averaged CO2 dry air mole fraction, X(sub CO2). Pre-flight qualification and calibration tests completed in early 2008 indicate that the instrument will provide high quality X(sub CO2) data. The instrument was integrated into the spacecraft, and the completed Observatory was qualified and tested during the spring and summer of 2008, in preparation for delivery to the launch site in the fall of this year. The Observatory will initially be launched into a 635 km altitude, near-polar orbit. The on-board propulsion system will then raise the orbit to 705 km and insert OCO into the Earth Observing System Afternoon Constellation (A-Train). The first routine science observations are expected about 45 days after launch. Calibrated spectral radiances will be archived starting about 6 months later. An exploratory X(sub CO2) product will be validated and then archived starting about 3 months after that.
The Orbiting Carbon Observatory: NASA's first dedicated carbon dioxide mission
NASA Astrophysics Data System (ADS)
Crisp, D.
2008-10-01
The Orbiting Carbon Observatory is scheduled for launch from Vandenberg Air Force Base in California in January 2009. This Earth System Science Pathfinder (ESSP) mission carries and points a single instrument that incorporates 3 high-resolution grating spectrometers designed to measure the absorption of reflected sunlight by near-infrared carbon dioxide (CO2) and molecular oxygen bands. These spectra will be analyzed to retrieve estimates of the column-averaged CO2 dry air mole fraction, XCO2. Pre-flight qualification and calibration tests completed in early 2008 indicate that the instrument will provide high quality XCO2 data. The instrument was integrated into the spacecraft, and the completed Observatory was qualified and tested during the spring and summer of 2008, in preparation for delivery to the launch site in the fall of this year. The Observatory will initially be launched into a 635 km altitude, near-polar orbit. The on-board propulsion system will then raise the orbit to 705 km and insert OCO into the Earth Observing System Afternoon Constellation (A-Train). The first routine science observations are expected about 45 days after launch. Calibrated spectral radiances will be archived starting about 6 months later. An exploratory XCO2 product will be validated and then archived starting about 3 months after that.
Impact of Climate Change on Air Quality and Public Health in Urban Areas.
Hassan, Noor Artika; Hashim, Zailina; Hashim, Jamal Hisham
2016-03-01
This review discusses how climate undergo changes and the effect of climate change on air quality as well as public health. It also covers the inter relationship between climate and air quality. The air quality discussed here are in relation to the 5 criteria pollutants; ozone (O3), carbon dioxide (CO2), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM). Urban air pollution is the main concern due to higher anthropogenic activities in urban areas. The implications on health are also discussed. Mitigating measures are presented with the final conclusion. © 2015 APJPH.
A Comparative Study of Alternative Controls and Displays for by the Severely Physically Handicapped
NASA Technical Reports Server (NTRS)
Williams, D.; Simpson, C.; Barker, M.
1984-01-01
A modification of a row/column scanning system was investigated in order to increase the speed and accuracy with which communication aids can be accessed with one or two switches. A selection algorithm was developed and programmed in BASIC to automatically select individuals with the characteristic difficulty in controlling time dependent control and display systems. Four systems were compared: (1) row/column directed scan (2 switches); (2) row/column auto scan (1 switch); (3) row auto scan (1 switch); and (4) column auto scan (1 switch). For this sample population, there were no significant differences among systems for scan time to select the correct target. The row/column auto scan system resulted in significantly more errors than any of the other three systems. Thus, the most widely prescribed system for severely physically disabled individuals turns out for this group to have a higher error rate and no faster communication rate than three other systems that have been considered inappropriate for this group.
An efficient absorbing system for spectrophotometric determination of nitrogen dioxide
NASA Astrophysics Data System (ADS)
Kaveeshwar, Rachana; Amlathe, Sulbha; Gupta, V. K.
A simple and sensitive spectrophotometric method for determination of atmospheric nitrogen dioxide using o-nitroaniline as an efficient absorbing, as well as diazotizing, reagent is described. o-Nitroaniline present in the absorbing medium is diazotized by the absorbed nitrite ion to form diazonium compound. This is later coupled with 1-amino-2-naphthalene sulphonic acid (ANSA) in acidic medium to give red-violet-coloured dye,having λmax = 545 nm. The isoamyl extract of the red azo dye has λmax = 530 nm. The proposed reagents has ≈ 100% collection efficiency and the stoichiometric ratio of NO 2:NO 2- is 0.74. The other important analytical parameters have been investigated. By employing solvent extraction the sensitivity of the reaction was increased and up to 0.03 mg m -3 nitrogen dioxide could be estimated.
Chen, Renjie; Samoli, Evangelia; Wong, Chit-Ming; Huang, Wei; Wang, Zongshuang; Chen, Bingheng; Kan, Haidong
2012-09-15
Few multi-city studies in Asian developing countries have examined the acute health effects of ambient nitrogen dioxide (NO(2)). In the China Air Pollution and Health Effects Study (CAPES), we investigated the short-term association between NO(2) and mortality in 17 Chinese cities. We applied two-stage Bayesian hierarchical models to obtain city-specific and national average estimates for NO(2). In each city, we used Poisson regression models incorporating natural spline smoothing functions to adjust for long-term and seasonal trend of mortality, as well as other time-varying covariates. We examined the associations by age, gender and education status. We combined the individual-city estimates of the concentration-response curves to get an overall NO(2)-mortality association in China. The averaged daily concentrations of NO(2) in the 17 Chinese cities ranged from 26 μg/m(3) to 67 μg/m(3). In the combined analysis, a 10-μg/m(3) increase in two-day moving averaged NO(2) was associated with a 1.63% [95% posterior interval (PI), 1.09 to 2.17], 1.80% (95% PI, 1.00 to 2.59) and 2.52% (95% PI, 1.44 to 3.59) increase of total, cardiovascular, and respiratory mortality, respectively. These associations remained significant after adjustment for ambient particles or sulfur dioxide (SO(2)). Older people appeared to be more vulnerable to NO(2) exposure. The combined concentration-response curves indicated a linear association. Conclusively, this largest epidemiologic study of NO(2) in Asian developing countries to date suggests that short-term exposure to NO(2) is associated with increased mortality risk. Copyright © 2012 Elsevier Ltd. All rights reserved.
Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions
NASA Astrophysics Data System (ADS)
Schmidt, Anja; Witham, Claire S.; Theys, Nicolas; Richards, Nigel A. D.; Thordarson, Thorvaldur; Szpek, Kate; Feng, Wuhu; Hort, Matthew C.; Woolley, Alan M.; Jones, Andrew R.; Redington, Alison L.; Johnson, Ben T.; Hayward, Chris L.; Carslaw, Kenneth S.
2014-12-01
Volcanic eruptions take place in Iceland about once every 3 to 5 years. Ash emissions from these eruptions can cause significant disruption to air traffic over Europe and the North Atlantic as is evident from the 2010 eruption of Eyjafjallajökull. Sulfur dioxide (SO2) is also emitted by volcanoes, but there are no criteria to define when airspace is considered hazardous or nonhazardous. However, SO2 is a well-known ground-level pollutant that can have detrimental effects on human health. We have used the United Kingdom Met Office's NAME (Numerical Atmospheric-dispersion Modelling Environment) model to simulate SO2 mass concentrations that could occur in European and North Atlantic airspace for a range of hypothetical explosive eruptions in Iceland with a probability to occur about once every 3 to 5 years. Model performance was evaluated for the 2010 Eyjafjallajökull summit eruption against SO2 vertical column density retrievals from the Ozone Monitoring Instrument and in situ measurements from the United Kingdom Facility for Airborne Atmospheric Measurements research aircraft. We show that at no time during the 2010 Eyjafjallajökull eruption did SO2 mass concentrations at flight altitudes violate European air quality standards. In contrast, during a hypothetical short-duration explosive eruption similar to Hekla in 2000 (emitting 0.2 Tg of SO2 within 2 h, or an average SO2 release rate 250 times that of Eyjafjallajökull 2010), simulated SO2 concentrations are greater than 1063 µg/m3 for about 48 h in a small area of European and North Atlantic airspace. By calculating the occurrence of aircraft encounters with the volcanic plume of a short-duration eruption, we show that a 15 min or longer exposure of aircraft and passengers to concentrations ≥500 µg/m3 has a probability of about 0.1%. Although exposure of humans to such concentrations may lead to irritations to the eyes, nose and, throat and cause increased airway resistance even in healthy individuals, the risk is very low. However, the fact that volcanic ash and sulfur species are not always collocated and that passenger comfort could be compromised might be incentives to provide real-time information on the presence or absence of volcanic SO2. Such information could aid aviation risk management during and after volcanic eruptions.
USDA-ARS?s Scientific Manuscript database
Carbon dioxide (CO2) fluxes from six winter wheat (Triticum aestivum L.) paddocks (grain only, graze-grain, and graze-out) managed under conventional till (CT) and no-till (NT) systems were synthesized for the 2016-2017 growing season to compare the magnitudes and seasonal dynamics of CO2 fluxes and...
There are a number of Federal Reference Method (FRM) and Federal Equivalent Method (FEM) systems used to monitor the six criteria air pollutants (Lead [Pb], Carbon Monoxide [CO], Sulfur Dioxide [SO2], Nitrogen Dioxide [NO2], Ozone [O3], Particulate Matter [PM]) to determine if an...
A Global Perspective of Atmospheric CO2 Concentrations
NASA Technical Reports Server (NTRS)
Putman, William M.; Ott, Lesley; Darmenov, Anton; daSilva, Arlindo
2016-01-01
Carbon dioxide (CO2) is the most important greenhouse gas affected by human activity. About half of the CO2 emitted from fossil fuel combustion remains in the atmosphere, contributing to rising temperatures, while the other half is absorbed by natural land and ocean carbon reservoirs. Despite the importance of CO2, many questions remain regarding the processes that control these fluxes and how they may change in response to a changing climate. The Orbiting Carbon Observatory-2 (OCO-2), launched on July 2, 2014, is NASA's first satellite mission designed to provide the global view of atmospheric CO2 needed to better understand both human emissions and natural fluxes. This visualization shows how column CO2 mixing ratio, the quantity observed by OCO-2, varies throughout the year. By observing spatial and temporal gradients in CO2 like those shown, OCO-2 data will improve our understanding of carbon flux estimates. But, CO2 observations can't do that alone. This visualization also shows that column CO2 mixing ratios are strongly affected by large-scale weather systems. In order to fully understand carbon flux processes, OCO-2 observations and atmospheric models will work closely together to determine when and where observed CO2 came from. Together, the combination of high-resolution data and models will guide climate models towards more reliable predictions of future conditions.
NASA Astrophysics Data System (ADS)
Eckhardt, S.; Prata, A. J.; Seibert, P.; Stebel, K.; Stohl, A.
2008-07-01
An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes the total difference between simulated and observed SO2 columns while also considering a priori information. We have tested the method with the eruption of Jebel at Tair, Yemen, on 30 September 2007 for which a comprehensive observational data set from various satellite instruments (AIRS, OMI, SEVIRI, CALIPSO) is available. Using satellite data from the first 24 h after the eruption for the inversion, we found an emission maximum near 16 km above sea level (a.s.l.), and secondary maxima near 5, 9, 12 and 14 km a.s.l. 60% of the emission occurred above the tropopause. The emission profile obtained in the inversion was then used to simulate the transport of the plume over the following week. The modeled plume agrees very well with SO2 total columns observed by OMI, and its altitude agrees with CALIPSO aerosol observations to within 1 2 km. The inversion result is robust against various changes in both the a priori and the observations. Even when using only SEVIRI data from the first 15 h after the eruption, the emission profile was reasonably well estimated. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic ash for air traffic. It could also be helpful for assessing the sulfur input into the stratosphere, be it in the context of volcanic processes or also for proposed geo-engineering techniques to counteract global warming.
NASA Astrophysics Data System (ADS)
Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Pawar, R. J.; Komatsu, M.; Jensen, K. H.; Illangasekare, T. H.
2011-12-01
Geologic sequestration of CO2 has received significant attention as a potential method for reducing the release of greenhouse gases into the atmosphere. Potential risk of leakage of the stored CO2 to the shallow zones of the subsurface is one of the critical issues that is needed to be addressed to design effective field storage systems. If a leak occurs, gaseous CO2 reaching shallow zones of the subsurface can potentially impact the surface and groundwater sources and vegetation. With a goal of developing models that can predict these impacts, a research study is underway to improve our understanding of the fundamental processes of gas-phase formation and multi-phase flow dynamics during CO2 migration in shallow porous media. The approach involves conducting a series of highly controlled experiments in soil columns and tanks to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. This paper presents the results from a set of column studies. A 3.6m long column was instrumented with 16 soil moisture sensors, 15 of which were capable of measuring electrical conductivity (EC) and temperature, eight water pressure, and two gas pressure sensors. The column was filled with test sands with known hydraulic and retention characteristics with predetermined packing configurations. Deionized water saturated with CO2 under ~0.3 kPa (roughly the same as the hydrostatic pressure at the bottom of the column) was injected at the bottom of the column using a peristaltic pump. Water and gas outflow at the top of the column were monitored continuously. The results, in general, showed that 1) gas phase formation can be triggered by multiple factors such as water pressure drop, temperature rise, and heterogeneity, 2) transition to gas phase tends to occur rather within a short period of time, 3) gas phase fraction was as high as ~40% so that gas flow was not via individual bubble movement but two-phase flow, 4) water outflow that was initially equal to the inflow rate increased when gas-phase started to form (i.e., water gets displaced), and 5) gas starts to flow upward after gas phase fraction stabilizes (i.e., buoyant force overcomes). These results suggest that the generation and migration processes of gas phase CO2 can be modelled as a traditional two-phase flow with source (when CO2 gas exsolved due to complex factors) as well as sink (when gas dissolved) terms. The experimental data will be used to develop and test the conceptual models that will guide the development of numerical simulators for applications involving CO2 storage and leakage.
NASA Astrophysics Data System (ADS)
Laughner, J.; Cohen, R. C.
2017-12-01
Recent work has identified a number of assumptions made in NO2 retrievals that lead to biases in the retrieved NO2 column density. These include the treatment of the surface as an isotropic reflector, the absence of lightning NO2 in high resolution a priori profiles, and the use of monthly averaged a priori profiles. We present a new release of the Berkeley High Resolution (BEHR) OMI NO2 retrieval based on the new NASA Standard Product (version 3) that addresses these assumptions by: accounting for surface anisotropy by using a BRDF albedo product, using an updated method of regridding NO2 data, and revised NO2 a priori profiles that better account for lightning NO2 and daily variation in the profile shape. We quantify the effect these changes have on the retrieved NO2 column densities and the resultant impact these updates have on constraints of urban NOx emissions for select cities throughout the United States.
Huang, Bin; Chi, Guangyu; Chen, Xin; Shi, Yi
2011-11-01
The performance of acetic acid-supported pH-heterogenized heterotrophic denitrification (HD) facilitated with ferrous sulfide-based autotrophic denitrification (AD) was investigated in upflow activated carbon-packed column reactors for reliable removal of highly elevated nitrate (42 mg NO(3)-Nl(-1)) in drinking water. The use of acetic acid as substrate provided sufficient internal carbon dioxide to completely eliminate the need of external pH adjustment for HD, but simultaneously created vertically heterogenized pH varying from 4.8 to 7.8 in the HD reactor. After 5-week acclimation, the HD reactor developed a moderate nitrate removal capacity with about one third of nitrate removal occurring in the acidic zone (pH 4.8-6.2). To increase the treatment reliability, acetic acid-supported HD was operated under 10% carbon limitation to remove >85% of nitrate, and ferrous sulfide-based AD was supplementally operated to remove residual nitrate and formed nitrite without excess of soluble organic carbon, nitrite or sulfate in the final effluent. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Duncan, Bryan
2012-01-01
There is now a wealth of satellite data products available with which to evaluate a model fs simulation of tropospheric composition and other model processes. All of these data products have their strengths and limitations that need to be considered for this purpose. For example, uncertainties are introduced into a data product when 1) converting a slant column to a vertical column and 2) estimating the amount of a total column of a trace gas (e.g., ozone, nitrogen dioxide) that resides in the troposphere. Oftentimes, these uncertainties are not well quantified and the satellite data products are not well evaluated against in situ observations. However, these limitations do not preclude us from using these data products to evaluate our model processes if we understand these strengths and limitations when developing diagnostics. I will show several examples of how satellite data products are being used to evaluate particular model processes with a focus on the strengths and limitations of these data products. In addition, I will introduce the goals of a newly formed team to address issues on the topic of "satellite data for improved model evaluation and process studies" that is established in support of the IGAC/SPARC Global Chemistry ]Climate Modeling and Evaluation Workshop.
EVALUATION AND USE OF STAND-ALONE COMMERCIAL PHOTOLYTIC CONVERTERS FOR CONVERSION OF NO2 AND NO
Two types of stand-alone photolytic converters of nitrogen dioxide (NO2) to nitric oxide (NO) are now commercially available for use with NO, ozone (O3) chemiluminescence detector (CLD) monitors for the measurement of NO2. Both units have been tested for interferences resulting...
Comparison of SO2 and NO2 observations from OMI and OMPS from 2012 to 2016
NASA Astrophysics Data System (ADS)
Wang, Y.; Wang, J.; Xu, X.; Yang, K.
2017-12-01
Both Sulfur dioxide (SO2) and nitrogen dioxide (NO2) are precursors of PM2.5 which has significant impacts on human health. We compare observations from Ozone Monitoring Instrument (OMI) which has data gap due to row anomaly and Ozone Mapping Profiler Suite (OMPS) that is currently the only operational UV satellite sensor providing contiguous daily global coverage. In this study, we examine changes of SO2 and NO2 in several polluted regions and see both upward trends and downward trends in different areas but trends observed by the two sensors are consistent in general. Some of these upward and downward trends are associated with economic development and implementation of emission control policy. In addition, we analyzed probability distribution function of SO2 and NO2 from the two sensors and how row anomaly effect the intercomparison.
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Ismail, Syed
2014-01-01
Global atmospheric carbon dioxide (CO2) measurements through the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) Decadal Survey recommended space mission are critical for improving our understanding of CO2 sources and sinks. IM-CW (Intensity Modulated Continuous Wave) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS science requirements. In previous laboratory and flight experiments we have successfully used linear swept frequency modulation to discriminate surface lidar returns from intermediate aerosol and cloud contamination. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate clouds, which is a requirement for the inversion of the CO2 column-mixing ratio from the instrument optical depth measurements, has been demonstrated with the linear swept frequency modulation technique. We are concurrently investigating advanced techniques to help improve the auto-correlation properties of the transmitted waveform implemented through physical hardware to make cloud rejection more robust in special restricted scenarios. Several different carrier based modulation techniques are compared including orthogonal linear swept, orthogonal non-linear swept, and Binary Phase Shift Keying (BPSK). Techniques are investigated that reduce or eliminate sidelobes. These techniques have excellent auto-correlation properties while possessing a finite bandwidth (by way of a new cyclic digital filter), which will reduce bias error in the presence of multiple scatterers. Our analyses show that the studied modulation techniques can increase the accuracy of CO2 column measurements from space. A comparison of various properties such as signal to noise ratio (SNR) and time-bandwidth product are discussed.
Geochemical monitoring for detection of CO_{2} leakage from subsea storage sites
NASA Astrophysics Data System (ADS)
García-Ibáñez, Maribel I.; Omar, Abdirahman M.; Johannessen, Truls
2017-04-01
Carbon Capture and Storage (CCS) in subsea geological formations is a promising large-scale technology for mitigating the increases of carbon dioxide (CO2) in the atmosphere. However, detection and quantification of potential leakage of the stored CO2 remains as one of the main challenges of this technology. Geochemical monitoring of the water column is specially demanding because the leakage CO2 once in the seawater may be rapidly dispersed by dissolution, dilution and currents. In situ sensors capture CO2 leakage signal if they are deployed very close to the leakage point. For regions with vigorous mixing and/or deep water column, and for areas far away from the leakage point, a highly sensitive carbon tracer (Cseep tracer) was developed based on the back-calculation techniques used to estimate anthropogenic CO2 in the water column. Originally, the Cseep tracer was computed using accurate discrete measurements of total dissolved inorganic carbon (DIC) and total alkalinity (AT) in the Norwegian Sea to isolate the effect of natural submarine vents in the water column. In this work we assess the effect of measurement variables on the performance of the method by computing the Cseep tracer twice: first using DIC and AT, and second using partial pressure of CO2 (pCO2) and pH. The assessment was performed through the calculation of the signal to noise ratios (STNR). We found that the use of the Cseep tracer increases the STNR ten times compared to the raw measurement data, regardless of the variables used. Thus, while traditionally the pH-pCO2 pair generates the greatest uncertainties in the oceanic CO2 system, it seems that the Cseep technique is insensitive to that issue. On the contrary, the use of the pCO2-pH pair has the highest CO2 leakage detection and localization potential due to the fact that both pCO2 and pH can currently be measured at high frequency and in an autonomous mode.
Effect of Vertical Annealing on the Nitrogen Dioxide Response of Organic Thin Film Transistors
Hou, Sihui; Zhuang, Xinming; Yang, Zuchong
2018-01-01
Nitrogen dioxide (NO2) sensors based on organic thin-film transistors (OTFTs) were fabricated by conventional annealing (horizontal) and vertical annealing processes of organic semiconductor (OSC) films. The NO2 responsivity of OTFTs to 15 ppm of NO2 is 1408% under conditions of vertical annealing and only 72% when conventional annealing is applied. Moreover, gas sensors obtained by vertical annealing achieve a high sensing performance of 589% already at 1 ppm of NO2, while showing a preferential response to NO2 compared with SO2, NH3, CO, and H2S. To analyze the mechanism of performance improvement of OTFT gas sensors, the morphologies of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) films were characterized by atomic force microscopy (AFM) in tapping mode. The results show that, in well-aligned TIPS-pentacene films, a large number of effective grain boundaries inside the conducting channel contribute to the enhancement of NO2 gas sensing performance. PMID:29596331
NASA Astrophysics Data System (ADS)
Paetzold, Johannes C.; Chen, Jia; Ruisinger, Veronika
2017-04-01
The Orbiting Carbon Observatory 2 (OCO-2) is a NASA satellite mission dedicated to make global, space-based observations of atmospheric, column-averaged carbon dioxide (XCO2). In addition, the OCO-2 also measures Solar Induced Chlorophyll Fluorescence (SIF). In our research we have studied the combination of OCO-2's XCO2 and SIF measurements for numerous urban areas on the different continents. Applying GIS and KML visualization techniques as well as statistical approaches we are able to reliably detect anthropogenic CO2 emissions in CO2 column concentration enhancements over urban areas. Moreover, we detect SIF decreases over urban areas compared to their rural vicinities. We are able to obtain those findings for urban areas on different continents, of diverse sizes, dissimilar topographies and urban constructions. Our statistical analysis finds robust XCO2 enhancements of up to 3 ppm for urban areas in Europe, Asia and North America. Furthermore, the analysis of SIF indicates that urban construction, population density and seasonality influence urban vegetation, which can be observed from space. Additionally, we find that OCO-2's SIF measurements have the potential to identify and approximate green areas within cities. For Berlin's Grunewald Forest as well as Mumbai's Sanjay Gandhi and Tungareshwar National Parks we observe enhancements in SIF measurements at sub-city scales.
Ito, Kazuaki; Nomura, Ryosuke; Fujii, Takuya; Tanaka, Masahito; Tsumura, Tomoaki; Shibata, Hiroyuki; Hirokawa, Takeshi
2012-11-01
A method was developed for determination of inorganic anions, including nitrite (NO(2)(-)), nitrate (NO(3)(-)), bromide (Br(-)), and iodide (I(-)), in seawater by ion chromatography (IC). The IC system used two dilauryldimethylammonium bromide (DDAB)-coated monolithic ODS columns (50 × 4.6 mm i.d. and 100 × 4.6 mm i.d.) connected in series for separation of the ions. Aqueous NaCl (0.5 mol/L; flow rate, 3 mL/min) containing 5 mmol/L phosphate buffer (pH 5) was used as the eluent, and detection was with a UV detector at 225 nm. The monolithic ODS columns were coated and equilibrated with a 1-mmol/L DDAB solution (in H(2)O/methanol, 90:10 v/v). The hydrophilic ions (NO(2)(-), NO(3)(-), and Br(-)) were separated within 3 min and the retention time of I(-) was 16 min. No interferences from matrix ions, such as chloride and sulfate ions, were observed in 35 ‰ artificial seawater. The detection limits were 0.6 μg/L for NO(2)(-), 1.1 μg/L for NO(3)(-), 70 μg/L for Br(-), and 1.6 μg/L for I(-) with a 200-μL sample injection. The performance of the coated columns was maintained without addition of DDAB in the eluent. The IC system was successfully applied to real seawater samples with recovery rates of 94-108 % for all ions.
Using NDACC column measurements of carbonyl sulfide to estimate its sources and sinks
NASA Astrophysics Data System (ADS)
Wang, Yuting; Marshall, Julia; Palm, Mathias; Deutscher, Nicholas; Roedenbeck, Christian; Warneke, Thorsten; Notholt, Justus; Baker, Ian; Berry, Joe; Suntharalingam, Parvadha; Jones, Nicholas; Mahieu, Emmanuel; Lejeune, Bernard; Hannigan, James; Conway, Stephanie; Strong, Kimberly; Campbell, Elliott; Wolf, Adam; Kremser, Stefanie
2016-04-01
Carbonyl sulfide (OCS) is taken up by plants during photosynthesis through a similar pathway as carbon dioxide (CO2), but is not emitted by respiration, and thus holds great promise as an additional constraint on the carbon cycle. It might act as a sort of tracer of photosynthesis, a way to separate gross primary productivity (GPP) from the net ecosystem exchange (NEE) that is typically derived from flux modeling. However the estimates of OCS sources and sinks still have significant uncertainties, which make it difficult to use OCS as a photosynthetic tracer, and the existing long-term surface-based measurements are sparse. The NDACC-IRWG measures the absorption of OCS in the atmosphere, and provides a potential long-term database of OCS total/partial columns, which can be used to evaluate OCS fluxes. We have retrieved OCS columns from several NDACC sites around the globe, and compared them to model simulation with OCS land fluxes based on the simple biosphere model (SiB). The disagreement between the measurements and the forward simulations indicates that (1) the OCS land fluxes from SiB are too low in the northern boreal region; (2) the ocean fluxes need to be optimized. A statistical linear flux model describing OCS is developed in the TM3 inversion system, and is used to estimate the OCS fluxes. We performed flux inversions using only NOAA OCS surface measurements as an observational constraint and with both surface and NDACC OCS column measurements, and assessed the differences. The posterior uncertainties of the inverted OCS fluxes decreased with the inclusion of NDACC data comparing to those using surface data only, and could be further reduced if more NDACC sites were included.
Operational trace gas column observations from GOME-2 on MetOp
NASA Astrophysics Data System (ADS)
Valks, Pieter; Hao, Nan; Pinardi, Gaia; Hedelt, Pascal; Liu, Song; Van Roozendael, Michel; De Smedt, Isabelle; Theys, Nicolas; Koukouli, MariLiza; Balis, Dimitris
2017-04-01
This contribution focuses on the operational GOME-2 trace gas column products developed in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Composition Monitoring (AC-SAF). We present an overview of the retrieval algorithms for ozone, OClO, NO2, SO2 and formaldehyde, and we show examples of various applications such as air quality and climate monitoring, using observations from the GOME-2 instruments on MetOp-A and MetOp-B. Total ozone and the minor trace gas columns from GOME-2 are retrieved with the latest version 4.8 of the GOME Data Processor (GDP), which uses an optimized Differential Optical Absorption Spectroscopy (DOAS) algorithm, with air mass factor conversions based on the LIDORT model. Improved total and tropospheric NO2 columns are retrieved in the visible wavelength region between 425 and 497 nm. SO2 emissions from volcanic and anthropogenic sources can be measured by GOME-2 using the UV wavelength region around 320 nm. For formaldehyde, an optimal DOAS fitting window around 335 nm has been determined for GOME-2. The GOME-2 trace gas columns have reached the operational EUMETSAT product status, and are available to the users in near real time (within two hours after sensing by GOME-2). The use of trace gas observations from the GOME-2 instruments on MetOp-A and MetOp-B for air quality purposed will be illustrated, e.g. for South-East Asia and Europe. Furthermore, comparisons of the GOME-2 satellite observations with ground-based measurements will be shown. Finally, the use of GOME-2 trace-gas column data in the Copernicus Atmosphere Monitoring Service (CAMS) will be presented.
Ground based NO2 and O3 measurements by visible spectrometer at Syowa Base (69 deg S), Antarctica
NASA Technical Reports Server (NTRS)
Kondo, Y.; Matthews, W. A.; Johnston, Paul V.; Hayashi, M.; Koike, M.; Iwasaka, Y.; Shimizu, A.; Budiyono, A.; Yamanouchi, T.; Aoki, S.
1994-01-01
The column amounts of NO2 and ozone have been measured using visible spectroscopy at Syowa Base (69 deg S) since March 1990. Ozone was also measured at the same location with a Dobson spectrometer as well as ozonesondes being flown regularly. The characteristic features of the seasonal and diurnal variations of NO2 are presented. The column ozone values from the visible spectrometers are compared with the Dobson data. The very low values of NO2 in midwinter and early spring are consistent with the conditions predicted to be needed for heterogeneous ozone destruction in early spring. In late spring and summer of 1991, NO2 amounts were considerably smaller than in 1990, presumably due to the effect of Mt. Pinatubo eruption.
NASA Astrophysics Data System (ADS)
Rivera, C.; Stremme, W.; Grutter, M.
2012-04-01
The combination of satellite data and ground based measurements can provide valuable information about atmospheric chemistry and air quality. In this work we present a comparison between measured ground based NO2 differential columns at the Universidad Nacional Autónoma de México (UNAM) in Mexico City, using the Differential Optical Absorption Spectroscopy (DOAS) technique and NO2 total columns measured by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite using the same measurement technique. From these data, distribution maps of average NO2 above the Mexico basin were constructed and hot spots inside the city could be identified. In addition, a clear footprint was detected from the Tula industrial area, ~50 km northwest of Mexico City, where a refinery, a power plant and other industries are located. A less defined footprint was identified in the Cuernavaca basin, South of Mexico City, and the nearby cities of Toluca and Puebla do not present strong enhancements in the NO2 total columns. With this study we expect to cross-validate space and ground measurements and provide useful information for future studies.
Estimation of Chinese surface NO2 concentrations combining satellite data and Land Use Regression
NASA Astrophysics Data System (ADS)
Anand, J.; Monks, P.
2016-12-01
Monitoring surface-level air quality is often limited by in-situ instrument placement and issues arising from harmonisation over long timescales. Satellite instruments can offer a synoptic view of regional pollution sources, but in many cases only a total or tropospheric column can be measured. In this work a new technique of estimating surface NO2 combining both satellite and in-situ data is presented, in which a Land Use Regression (LUR) model is used to create high resolution pollution maps based on known predictor variables such as population density, road networks, and land cover. By employing a mixed effects approach, it is possible to take advantage of the spatiotemporal variability in the satellite-derived column densities to account for daily and regional variations in surface NO2 caused by factors such as temperature, elevation, and wind advection. In this work, surface NO2 maps are modelled over the North China Plain and Pearl River Delta during high-pollution episodes by combining in-situ measurements and tropospheric columns from the Ozone Monitoring Instrument (OMI). The modelled concentrations show good agreement with in-situ data and surface NO2 concentrations derived from the MACC-II global reanalysis.
NASA Astrophysics Data System (ADS)
Borovski, A.; Postylyakov, O.; Elokhov, A.; Bruchkovski, I.
2017-11-01
An instrument for measuring atmospheric trace gases by DOAS method using scattered solar radiation was developed in A.M.Obukhov IAP RAS. The instrument layout is based on the lab Shamrock 303i spectrograph supplemented by 2-port radiation input system employing optical fiber. Optical ports may be used with a telescope with fixed field of view or with a scanning MAX-DOAS unit. MAX-DOAS unit port will be used for investigation of gas contents and profiles in the low troposphere. In September 2016 the IAP instrument participated in the CINDI-2 campaign, held in the Netherlands. CINDI 2 (2nd Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments) involves about 40 instruments quasi-synchronously performing DOAS measurements of NO2 and other trace gases. During the campaign the instrument ports had telescopes A and B with similar field of view of about 0.3°. Telescope A was always directed to the zenith. Telescope B was directed at 5° elevation angle. Two gratings were installed in the spectrometer. They provide different spectral resolution (FWHM 0.4 and 0.8 nm respectively) and spectral window width ( 70 and 140 nm respectively). During CINDI-2 campaign we performed test measurements in UV and visible wavelength ranges to investigate instrument stability and retrieval errors of NO2 and HCHO contents. We perform the preliminary error analysis of retrieval of the NO2 and HCHO differential slant column densities using spectra measured in four modes of the instrument basing on residual noise analysis in this paper. It was found that rotation of grating turret does not significantly affected on quality of NO2 DSCD retrieval from spectra which measured in visible spectral region. Influence of grating turret rotation is much more significant for gas DSCD retrieval from spectra which measured in UV spectral region. Standard deviation of retrieval error points to presence of some systematic error.
Keles, Engin; Grenfell, John Lee; Godolt, Mareike; Stracke, Barbara; Rauer, Heike
2018-02-01
Understanding the possible climatic conditions on rocky extrasolar planets, and thereby their potential habitability, is one of the major subjects of exoplanet research. Determining how the climate, as well as potential atmospheric biosignatures, changes under different conditions is a key aspect when studying Earth-like exoplanets. One important property is the atmospheric mass, hence pressure and its influence on the climatic conditions. Therefore, the aim of the present study is to understand the influence of atmospheric mass on climate, hence habitability, and the spectral appearance of planets with Earth-like, that is, N 2 -O 2 dominated, atmospheres orbiting the Sun at 1 AU. This work utilizes a 1D coupled, cloud-free, climate-photochemical atmospheric column model; varies atmospheric surface pressure from 0.5 to 30 bar; and investigates temperature and key species profiles, as well as emission and brightness temperature spectra in a range between 2 and 20 μm. Increasing the surface pressure up to 4 bar leads to an increase in the surface temperature due to increased greenhouse warming. Above this point, Rayleigh scattering dominates, and the surface temperature decreases, reaching surface temperatures below 273 K (approximately at ∼34 bar surface pressure). For ozone, nitrous oxide, water, methane, and carbon dioxide, the spectral response either increases with surface temperature or pressure depending on the species. Masking effects occur, for example, for the bands of the biosignatures ozone and nitrous oxide by carbon dioxide, which could be visible in low carbon dioxide atmospheres. Key Words: Planetary habitability and biosignatures-Atmospheres-Radiative transfer. Astrobiology 18, 116-132.
Nitrogen Species in the Post-Pinatubo Stratosphere: Model Analysis Utilizing UARS Measurements
NASA Technical Reports Server (NTRS)
Danilin, M. Y.; Rodriquez, J. M.; Hu, W.; Ko, M. K. W.; Weisenstein, D. K.; Mergenthaler, J. L.; Russell, J. M., III; Koike, M.; Yue, G. K.
1998-01-01
We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include: N2O, HNO3 and ClONO2 (Cryogen Limb Array Etalon Spectrometer (CLAES), version 7), temperature, methane, ozone, H2O, HCl, NO and NO2 (HALogen Occultation Experiment (HALOE), version 18). The analysis is carried out for the data from January 1992 to September 1994 in the 100-1 mbar (approx.17-47 km) altitude range and over 10 degree latitude bins from 70degS to 70degN. Temporal-spatial evolution of aerosol surface area density (SAD) is adopted according to the Stratospheric Aerosol and Gas Experiment (SAGE) 11 data. A diurnal steady-state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NO(y)) is obtained by three different methods: (1) as a sum of the UARS measured NO, NO2, HNO3, and ClONO2; (2) from the N2O-NO(y) correlation, and (3) from the CH4-NO(y) correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated NO(x)/NO(y) ratios and the NO, NO2, and HNO3 profiles are compared to the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years. However, the model underestimates the NO2 content, particularly, in the 30-7 mbar (approx. 23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground based measurements at 45degS and 45degN are also presented. Our analysis indicates that ground-based and HALOE v. 18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at mid-latitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45degS suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed.
Optical Remote Sensing Measurements of Air Pollution in Mexico City During MCMA- 2006
NASA Astrophysics Data System (ADS)
Galle, B.; Mellqvist, J.; Johansson, M.; Rivera, C.; Samuelsson, J.; Zhang, Y.
2007-05-01
During March 2006 the Optical Remote sensing group at Chalmers University of Technology participated in the MCMA-2006 field campaign in Mexico City, performing measurements of air pollution using a set of different optical remote sensing instruments. This poster gives an overview of the techniques applied and results obtained. The techniques applied were: Solar Occultation FTIR and UV spectroscopy from fixed locations throughout the MCMA area, yielding total columns of CO, CH2O, SO2 and NO2. Long Path FTIR measurements from site T0 located in the north part of central Mexico City. With this instrument line-averaged concentration measurements of CO and CO2 was obtained in parallel with DOAS measurements performed by other partners. MAX-DOAS measurements from site T0, yielding total column and spatial distributions of SO2 and NO2. Mobile DOAS scattered Sunlight measurements of total columns of SO2 and NO2 in and around the MCMA area. Mobile and stationary DOAS measurements in the vicinity of Tula and Popocatépetl in order to quantify emissions from industry and volcano.
Nitrogen Dioxide (NO2) and other nitrogen oxides (NOx) damage the human respiratory system and contribute to acid rain. These air pollutants are regulated as part of EPA's National Ambient Air Quality Standards (NAAQS).
NASA Astrophysics Data System (ADS)
Masieri, S.; Petritoli, A.; Kostadinov, I.; Bortoli, D.; Premuda, M.; Ravegnani, F.; Giovanelli, G.
2009-04-01
In the frame of QUITSAT Italian pilot project (Air QUality with InTegration of ground-based and SAtellite measurement and chemical Transport model), two field campaigns were made in S.Pietro Capofiume (44.65Ë N; 11.37Ë E) and Bologna (44.52Ë N; 11.34Ë E) to provide concentration of ground particular matter and gaseous pollutants, namely nitrogen dioxide (NO2), formaldehyde (HCHO), sulphur dioxide (SO2) and ozone (O3). The aim of the campaigns was to provide experimental data need for tests and improvement of algorithms developed for integration of satellite and ground-based data together with chemical transport model data in order to retrieve air quality in the QUITSAT domain. Ground based measurements were carried out within a network of in-situ analyser in the Po Valley and with a scanning multi-axis DOAS (Differential Optical Absorption Spectroscopy) spectrometer system developed at ISAC-CNR institute [1], in collaboration with Geophysics Center of Evora [2]. TropoGAS (TROPOspheric Gas Analyser Spectrometer) spectrometer permits active and passive DOAS measurements at the chosen angles: α =1,2,3,6,10,15,20,90 and another measurement was taken along the sun direction. A Xenon lamp installed at 1km of distance from spectrometer was used as a reference concentration measured in the same place, and these values shows good agreement with in-situ analyser concentration. Gas spectral absorption was evaluated with DOAS [3] algorithms from 430 to 500 nm in two different windows: first from 436 to 460 nm for NO2 retrieval; second from 460 to 500 nm for O4 (best line at 477 nm) and NO2. Air Mass Factor (AMF) was calculated using PROMSAR (PROcessing of Multi-Scattered Atmospheric Radiation) model [4], that is a backward Montecarlo Radiative Transfer Model (RTM). An apposite inversion method [5][6], was applied to retrieve profiles of the target gases from their Slant Column Densities (SCD), using advanced approaches involving measurement of the atmospheric O4 whose profile depends strongly on altitude [7][8]. Due to this it is also possible gain information about the atmospheric aerosol profile to set better the parameters in AMF Calculation, and then retrieve gas concentration's profiles. The NO2 concentrations measured were in the range of 0.5-25 ppb, as we expect for summer periods in rural area. GAMES (Gas Aerosol Modelling Evaluation System) model [9] was used in this work to have a reference about vertical distribution of gases (the model provides concentration profiles along 4km of altitude, with 11 growing thickness levels). Result of comparison with profile caculate by the model and profile calulate by the Multi-axis DOAS technique, is presented and then it is compared with Satellite column retrieved (with our satellite Data processor) from SCIAMACHY sensor (onboard on ENVISAT platform) and (directly NO2 Tropospheric Vertical Column provided by KNMI) from OMI (onboard on AURA platform). Good agreements between used series are shown and improvements for this methodology are discussed. One month of measurement has been taken in consideration starting from 15 May to 15 June of 2007. Vertical structure of most important trace gases calculated with model has strong correlation with the off-axis DOAS one (in some cases with R2=0,8), so better understanding of profiles and chemistry behaviour can be studied. The experience acquired within QUITSAT activity appears valuable contribution for enlargement of the DOAS applications what concern atmospheric chemistry studies, operative monitoring of the air quality over regional scale as well as satellite data validation. Deployed approaches are not restricted to NO2 but could be applied to other gases e.g. ozone, formaldehyde etc.. Key words: Off axis DOAS, NO2, CTM, AMF, gas profiles, satellite data validation, 1 2. BIBLIOGRAPHY [1] F. Evangelisti, A. Baroncelli, P. Bonasoni, G. Giovanelli, And F. Ravegnani, "Differential optical absorption spectrometer for measurement of tropospheric pollutants," Applied Optics, 34, pp. 2737-2744, 1995. [2] D. Bortoli, "SPATRAM - Spectrometer for ATmospheric TRAcers Measurements, a Prototype Equipment for the monitoring of minor compounds of the atmosphere," PhD dissertation, University of Evora, Evora, Portugal, 2005. [3] U. Platt, "Modern methods of the measurements of atmospheric trace gases," Phys. Chem., 1, pp. 5409-5415, 1999. [4] E. Palazzi, A. Petritoli, G. Giovanelli, I. Kostadinov, D. Bortoli, and F. Ravegnani, "PROMSAR: A multiple scattering atmospheric model for the analysis of DOAS remote sensing measurements," Adv. Space. Res., 36, pp. 1007-1014, 2005. [5] M. Chahine, "A general relaxation method for inverse solutionof the full radiative transfer equation," J. Atmos. Sci., 29, 4, pp. 741-747, 1972. [6] E. Palazzi, A. Petritoli, F. Ravegnani, I. Kostadinov, D. Bortoli, S. Masieri, M. Premuda, and G. Giovanelli, "Retrieval of Gas Pollutants Vertical Profile in the Boundary Layer by Means of Multiple Axis DOAS," IEEE Transaction on Geoscience and Remote Sensing. Vol. 46, pp. 2796-2802, 10.1109/TGRS.2008.2000927, 2008. [7] T. Wagner, B. Dix, C. von Friedeburg, U. Frieß, S. Sanghavi, R. Sinreich, and U. Platt, "MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols—Principles and information content," J. Geophys. Res., 109, D22205, doi:10.1029/2004JD004904, 2004. [8] A. Petritoli, Bonasoni P., Giovanelli G., Ravegnani F., Kostadinov I., Bortoli D., Weiss A., Schaub D., Richter A. and F. Fortezza, "First comparison between ground-based and satellite-borne measurements of tropospheric nitrogen dioxide in the Po basin," J. Geophys. Res., 109, D15307, doi: 10.1029/2004JD004547, 2004. [9] M. Volta, and G. Finzi, "GAMES, a comprehensive Gas Aerosol Modelling Evaluation System," Environ. Model. Software, 21, pp. 587-594, 2006.
NASA Astrophysics Data System (ADS)
Chevallier, Frédéric; Broquet, Grégoire; Pierangelo, Clémence; Crisp, David
2017-07-01
The column-average dry air-mole fraction of carbon dioxide in the atmosphere (XCO2) is measured by scattered satellite measurements like those from the Orbiting Carbon Observatory (OCO-2). We show that global continuous maps of XCO2 (corresponding to level 3 of the satellite data) at daily or coarser temporal resolution can be inferred from these data with a Kalman filter built on a model of persistence. Our application of this approach on 2 years of OCO-2 retrievals indicates that the filter provides better information than a climatology of XCO2 at both daily and monthly scales. Provided that the assigned observation uncertainty statistics are tuned in each grid cell of the XCO2 maps from an objective method (based on consistency diagnostics), the errors predicted by the filter at daily and monthly scales represent the true error statistics reasonably well, except for a bias in the high latitudes of the winter hemisphere and a lack of resolution (i.e., a too small discrimination skill) of the predicted error standard deviations. Due to the sparse satellite sampling, the broad-scale patterns of XCO2 described by the filter seem to lag behind the real signals by a few weeks. Finally, the filter offers interesting insights into the quality of the retrievals, both in terms of random and systematic errors.
Nitrogen dioxide/oxides of nitrogen (NO2/NOX) ratios are an important surrogate for nitric oxide (NO) NO-to-NO2 chemistry in dispersion models when estimating NOX emissions in a near-road environment. Existing dispersion models use different techniques and assumptions to represe...
NASA Astrophysics Data System (ADS)
Osterman, G. B.; Fisher, B.; Roehl, C. M.; Wunch, D.; Wennberg, P. O.; Eldering, A.; Naylor, B. J.; Crisp, D.; Pollock, H. R.; Gunson, M. R.
2014-12-01
The NASA Orbiting Carbon Observatory-2 (OCO-2) successfully launched from Vandenberg Air Force Base in California on July 2, 2014. The OCO-2 mission is designed to provide remotely sensed measurements of the column averaged dry air mole fraction of carbon dioxide from space. OCO-2 is capable of making measurements in three observation modes: Nadir, glint and target. The standard operational mode for OCO-2 alternates between nadir and glint mode every 16 days, but target mode observations are possible by commanding the spacecraft to point to specific surface location. In this presentation we provide information on the preliminary observations and plans for OCO-2 2015. In particular, we will also provide an update on the pointing capabilities and accuracy for OCO-2. We provide updates on OCO-2 target mode including possible target mode locations. We will show calendars for the different viewing geometries and target mode possibilities.
2006-09-01
mode" among all the Korea, Tsugaru, and Soya Straits gov- onance (Garrett, 1983; Lyu et al., 2002; the pressure records shown in Figure 2. ern JES sea...31, 2000 (first column); Winter-2 is from No- 3 vember 1, 2000 to March 31, 2001 LA (second column). Both monthly 2 ....... . .,................. irms
Evaluation of a Colorimetric Personal Dosimeter for Nitrogen Oxide.
ERIC Educational Resources Information Center
Diamond, Philip
A personal colorimetric dosimeter for nitrogen dioxide was developed. Tests were performed to determine the response of these strips to various concentrations of NO2. The dosimeter strips were satisfactory for approximate determinations of total exposure (concentration + time) of nitrogen dioxide. The total exposure was calculated in terms of time…
This study evaluates performance of nitrogen dioxide NO2 and volatile organic compounds (VOC) passive samplers with corresponding reference monitors at two sites in the Detroit, Michigan area during the summer of 2005.
Spatial analysis studies have included application of land use regression models (LURs) for health and air quality assessments. Recent LUR studies have collected nitrogen dioxide (NO2) and volatile organic compounds (VOCs) using passive samplers at urban air monitoring networks ...
Photoproduction of halogens using platinized TiO2
NASA Technical Reports Server (NTRS)
Reichman, B.; Byvik, C. E.
1981-01-01
Unlike electrolysis of halide salt solutions, technique using powdered titanium dioxide catalyst requires no external power other than ultraviolet radiation source. Semiconductor powders photocatalyze and photosynthesize many useful reactions; applications are production of halogen molecules, oxidation of hazardous materials in wastewater, and conversion of carbon monoxide to carbon dioxide.
Near-road measurements for nitrogen dioxide and its association with traffic exposure zones
Near-road measurements for nitrogen dioxide (NO2) using passive air samplers were collected weekly in traffic exposure zones (TEZs) in the Research Triangle area of North Carolina (USA) during Fall 2014. Land use regression (LUR) analysis and pairwise comparisons of T...
Comparison of modeled traffic exposure zones using on-road air pollution measurements
Modeled traffic data were used to develop traffic exposure zones (TEZs) such as traffic delay, high volume, and transit routes in the Research Triangle area of North Carolina (USA). On-road air pollution measurements of nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxid...
Hu, Yanbo; Bellaloui, Nacer; Sun, Guangyu; Tigabu, Mulualem; Wang, Jinghong
2014-06-15
Gaseous nitrogen dioxide (NO2) can disturb normal plant growth and trigger complex physiological responses. NO2-induced responses are influenced by biotic or abiotic factors. In this study, we investigated the effects of exogenous sodium sulfide (Na2S, 5mmolL(-1)) on epidermis and stomata related physico-chemical responses of hybrid poplar cuttings (Pouplus alba×P. berolinensis) to gaseous NO2 (4μl1(-1)) for three time periods (0, 14 and 48h). We also investigated hydrogen sulfide (H2S), nitrate-nitrogen and nitrate reductase activity (NR) in control and Na2S treated plants. Our results showed that NO2 exposure for 48h led to the decline of NR, maximal PSII quantum yield (Fv/Fm), net photosynthetic rate (Pn), and dark respiration rate (Rd). The maximum rate for the post-illumination carbon dioxide burst (PIB) occurred in 48-h exposed leaves 13-15s after darkening. Moreover, NO2 exposure resulted in a significant increase in nitrogen percentage (from 0 to 33%) and a decrease in the macro and micro-elements of leaf surface. Spraying Na2S aqueous solution on the leaf surfaces significantly increased the thicknesses of palisade/spongy tissue and H2S content. Na2S pretreatment alleviated NO2-caused toxic effects as indicated by increased NR and higher values of Pn, Fv/Fm, and actual photochemical efficiency in light (ФPSII) compared with the control. Na2S pretreatment had no significant impacts on PIB-based photorespiration or elements composition of a leaf surface. Copyright © 2013 Elsevier GmbH. All rights reserved.
40 CFR 52.2575 - Control strategy: Sulfur dioxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy: Sulfur dioxide. 52... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart, the Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part D—No action—USEPA takes no action on...
40 CFR 52.2575 - Control strategy: Sulfur dioxide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Sulfur dioxide. 52... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart, the Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part D—No action—USEPA takes no action on...
40 CFR 52.2575 - Control strategy: Sulfur dioxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy: Sulfur dioxide. 52... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart, the Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part D—No action—USEPA takes no action on...
40 CFR 52.2575 - Control strategy: Sulfur dioxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart, the Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part D—No action—USEPA takes no action on...
40 CFR 52.2575 - Control strategy: Sulfur dioxide.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy: Sulfur dioxide. 52... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart, the Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part D—No action—USEPA takes no action on...
Hemispherical Scanning Imaging DOAS: Resolving nitrogen dioxide in the urban environment
NASA Astrophysics Data System (ADS)
Leigh, R. J.; Graves, R. R.; Lawrence, J.; Faloon, K.; Monks, P. S.
2012-12-01
Imaging DOAS techniques have been used for nitrogen dioxide and sulfer dioxide for a number of years. This presentation describes a novel system which images concentrations of nitrogen dioxide by scanning an imaging spectrometer 360 degrees azimuthally, covering a region from 5 degrees below the horizon, to the zenith. The instrument has been built at the University of Leicester (UK), on optical designs by Surrey Satellite Technologies Ltd, and incorporates an Offner relay with Schwarzchild fore-optics, in a rotating mount. The spectrometer offers high fidelity spectroscopic retrievals of nitrogen dioxide as a result of a reliable Gaussian line shape, zero smile and low chromatic aberration. The full hemispherical scanning provides complete coverage of nitrogen dioxide concentrations above approximately 5 ppbv in urban environments. Through the use of multiple instruments, the three-dimensional structure of nitrogen dioxide can be sampled and tomographically reconstructed, providing valuable information on nitrogen dioxide emissions and downwind exposure, in addition to new understanding of boundary layer dynamics through the use of nitrogen dioxide as a tracer. Furthermore, certain aerosol information can be retrieved through absolute intensity measurements in each azimuthal direction supplemented by traditional techniques of O4 spectroscopy. Such measurements provide a new tool for boundary layer measurement and monitoring at a time when air quality implications on human health and climate are under significant scrutiny. This presentation will describe the instrument and tomographic potential of this technique. First measurements were taken as part of the international PEGASOS campaign in Bologna, Italy. Results from these measurements will be shown, including imaging of enhanced NO2 in the Bologna urban boundary layer during a severe thunderstorm. A Hemispherical Scanning Imaging DOAS instrument operating in Bologna, Italy in June 2012. Visible in the background over Bologna is an instrumented Zepplin measuring NO2 and ozone among other species. A hemispherical panorama of nitrogen dioxide concentrations, as measured by the HSI-DOAS instrument in Bologna.
Responses of susceptible subpopulations to nitrogen dioxide. Research report, June 1983-January 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, P.E.; Utell, M.J.
1989-02-01
Symptom responses and changes in pulmonary function were investigated in people with asthma or chronic obstructive pulmonary disease (COPD) exposed to 0.3 ppm nitrogen dioxide (NO{sub 2}) for four hours. Nonrespiratory-impaired (normal) subjects of comparable ages constituted the control groups. All exposures included periods of exercise and pulmonary function measurements. No significant symptomatic or physiological responses to NO{sub 2} could be detected in either the young or elderly control group. The asthmatic group did not manifest significant reductions in lung function after exposure to 0.3 ppm NO{sub 2}, compared to their preexposure baseline data or to their responses after amore » comparable four-hour exposure to air. During light exercise, subjects with COPD were progressively responsive to 0.3 ppm NO{sub 2}. Subgroup analyses within the asthmatic, COPD, and elderly normal subject groups and intergroup comparisons yielded significant findings and associations.« less
NASA Astrophysics Data System (ADS)
Drosoglou, Theano; Kouremeti, Natalia; Bais, Alkis; Zyrichidou, Irene; Li, Shu; Balis, Dimitris; Huang, Zhonghui
2016-04-01
A miniature MAX-DOAS system, Phaethon, has been developed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece, for ground-based monitoring of column densities of atmospheric gases. Simultaneous measurements with two Phaethon systems at the city centre of Thessaloniki and at a rural location about 30 km away have shown that Phaethon provides NO2 and HCHO tropospheric column measurements of acceptable accuracy under both low and high air-pollution levels. Currently three systems have been deployed in areas with different pollution patterns to support air quality and satellite validation studies. In the framework of the EU FP7 Monitoring and Assessment of Regional air quality in China using space Observations, Project Of Long-term sino-european co-Operation, MarcoPolo project, one of the Phaethon systems has been installed since April 2015 in the Guangzhou region in China. Tropospheric NO2 and HCHO columns derived at Guangzhou during the first 10 months of operation are compared with corresponding retrievals from OMI/Aura and GOME-2/Metop-A and /Metop-B satellite sensors. The area is characterized by humid subtropical monsoon climate and cloud-free conditions are rather rare from early March to mid-October. Despite this limitation and the short period of operation of Phaethon in Guangzhou, the agreement between ground-based and satellite observations is generally good for both NO2 and HCHO. It appears that GOME-2 sensors seem to underestimate the tropospheric NO2, possibly due to their large pixel size, whereas the comparison with OMI data is better, especially when a small cloud fraction (< 0.2) is used for cloud screening.
The impact of add-on catalytic devices on pollutant emissions from unvented kerosene heaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apte, M.G.; Traynor, G.W.; Froehlich, D.A.
1989-09-01
Many studies have documented pollutant emission rates from kerosene heaters. Carbon monoxide (CO), carbon dioxide (CO{sub 2}), nitric oxide (NO), nitrogen dioxide (NO{sub 2}), formaldehyde (HCHO), suspended particles, and semivolatile and nonvolatile organic compounds, including some nitrated and non-nitrated polycyclic aromatic hydrocarbons, can be emitted by kerosene heaters. Recently, several add-on catalytic devices designed to reduce some pollutant emissions have become commercially available. The tests described here were designed to measure the impact of these devices on pollutant emissions from unvented kerosene heaters. Emissions of CO, NO, NO{sub 2}, HCHO, and total suspended particles were investigated in this study. Inmore » addition, analyses of particulate sulfur and chromium were conducted for some tests.« less
Pulse radiolysis study of the reactions of catechins with nitrogen dioxide
NASA Astrophysics Data System (ADS)
Gebicki, Jerzy L.; Meisner, Piotr; Stawowska, Katarzyna; Gebicka, Lidia
2012-12-01
Nitrogen dioxide (•NO2), one of the oxidizing radicals formed in vivo is suspected to play a role in various pathophysiological processes. The reactions of •NO2 with dietary catechins, the group of flavonoids present in high amounts in green tea and red wine, have been investigated by pulse radiolysis method. The kinetics of the reaction of •NO2 with gallic acid have been also studied for comparison. The spectra of transient intermediates are presented. The rate constants of the reaction of •NO2 with catechin, epigallocatechin, epigallocatechin gallate and gallic acid determined by the competition method with 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) at pH 7.0 and room temperature have been found to be 0.9, 1.0, 2.3 and 0.5×108 M-1 s-1, respectively. The values for catechins are among the highest reported for the reactions of •NO2 with non-radical compounds.
Worldwide biogenic soil NOx emission estimates from OMI NO2 observations and the GEOS-Chem model
NASA Astrophysics Data System (ADS)
Vinken, Geert; Boersma, Folkert; Maasakkers, Bram; Martin, Randall
2014-05-01
Bacteria in soils are an important source of biogenic nitrogen oxides (NOx = NO + NO2), which are important precursors for ozone (O3) formation. Furthermore NOx emissions contribute to increased nitrogen deposition and particulate matter formation. Bottom-up estimates of global soil NOx emissions range from 4 to 27 Tg N / yr, reflecting our incomplete knowledge of emission factors and processes driving these emissions. In this study we used, for the first time, OMI NO2 columns on all continents to reduce the uncertainty in soil NOx emissions. Regions and months dominated by soil NOx emissions were identified using a filtering scheme in the GEOS-Chem chemistry transport model. Consequently, we compared OMI observed NO2 observed columns to GEOS-Chem simulated columns and provide constraints for these months in 11 regions. This allows us to provide a top-down emission inventory for 2005 for soil NOx emissions from all continents. Our total global soil NOx emission inventory amounts to 10 Tg N / yr. Our estimate is 4% higher than the GEOS-Chem a priori (Hudman et al., 2012), but substantial regional differences exist (e.g. +20% for Sahel and India; and -40% for mid-USA). We furthermore observed a stronger seasonal cycle in the Sahel region, indicating directions for possible future improvements to the parameterization currently used in GEOS-Chem. We validated NO2 concentrations simulated with this new top-down inventory against surface NO2 measurements from monitoring stations in Africa, the USA and Europe. On the whole, we conclude that simulations with our new top-down inventory better agree with measurements. Our work shows that satellite retrieved NO2 columns can improve estimates of soil NOx emissions over sparsely monitored remote rural areas. We show that the range in previous estimates of soil NOx emissions is too large, and global emissions are most likely around 10 Tg N/yr, in agreement with the most recent parameterizations.
40 CFR 89.3 - Acronyms and abbreviations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... National Technical Information Service NO Nitric oxide NO2 Nitrogen dioxide NOX Oxides of nitrogen O2... Selective Enforcement Auditing SI Spark-ignition THC Total hydrocarbon U.S.C. United States Code VOC...
40 CFR 89.3 - Acronyms and abbreviations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... National Technical Information Service NO Nitric oxide NO2 Nitrogen dioxide NOX Oxides of nitrogen O2... Selective Enforcement Auditing SI Spark-ignition THC Total hydrocarbon U.S.C. United States Code VOC...
40 CFR 89.3 - Acronyms and abbreviations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... National Technical Information Service NO Nitric oxide NO2 Nitrogen dioxide NOX Oxides of nitrogen O2... Selective Enforcement Auditing SI Spark-ignition THC Total hydrocarbon U.S.C. United States Code VOC...
Megalla, S E
1983-12-01
A good correlation of four components of aflatoxins was accomplished by using the dry column chromatography method. The decolorization process of interfering substances, by 0.01 N KOH and defatting the extract with petroleum ether yields a clean residue for DCC separation. It is clear that the dry column chromatography is a very simple and time-saving procedure for separation of aflatoxins. DCC columns are more economical than precoated 'thick layer' preparative plates and, in DCC, no large developing tanks need to be used. Hazards associated with the use of large volumes of flammable solvents are greatly reduced.
Dry Particulate Nitrate Deposition in China.
Liu, Lei; Zhang, Xiuying; Zhang, Yan; Xu, Wen; Liu, Xuejun; Zhang, Xiaomin; Feng, Junlan; Chen, Xinrui; Zhang, Yuehan; Lu, Xuehe; Wang, Shanqian; Zhang, Wuting; Zhao, Limin
2017-05-16
A limited number of ground measurements of dry particulate nitrate deposition (NO 3 - ) makes it difficult and challenging to fully know the status of the spatial and temporal variations of dry NO 3 - depositions over China. This study tries to expand the ground measurements of NO 3 - concentrations at monitoring sites to a national scale, based on the Ozone Monitoring Instrument (OMI) NO 2 columns, NO 2 profiles from an atmospheric chemistry transport model (Model for Ozone and Related chemical Tracers, version 4, MOZART-4) and monitor-based sources, and then estimates the NO 3 - depositions on a regional scale based on an inferred model. The ground NO 2 concentrations were first derived from NO 2 columns and the NO 2 profiles, and then the ground NO 3 - concentrations were derived from the ground NO 2 concentrations and the relationship between NO 2 and NO 3 - based on Chinese Nationwide Nitrogen Deposition Monitoring Network (NNDMN). This estimated dry NO 3 - depositions over China will be helpful in determining the magnitude and pollution status in regions without ground measurements, supporting the construction plan of environmental monitoring in future.
Column-to-column packing variation of disposable pre-packed columns for protein chromatography.
Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois
2017-12-08
In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Belikov, D. A.; Maksyutov, S.; Sherlock, V.; Aoki, S.; Deutscher, N. M.; Dohe, S.; Griffith, D.; Kyro, E.; Morino, I.; Nakazawa, T.; Notholt, J.; Rettinger, M.; Schneider, M.; Sussmann, R.; Toon, G. C.; Wennberg, P. O.; Wunch, D.
2013-02-01
We have developed an improved version of the National Institute for Environmental Studies (NIES) three-dimensional chemical transport model (TM) designed for accurate tracer transport simulations in the stratosphere, using a hybrid sigma-isentropic (σ-θ) vertical coordinate that employs both terrain-following and isentropic parts switched smoothly around the tropopause. The air-ascending rate was derived from the effective heating rate and was used to simulate vertical motion in the isentropic part of the grid (above level 350 K), which was adjusted to fit to the observed age of the air in the stratosphere. Multi-annual simulations were conducted using the NIES TM to evaluate vertical profiles and dry-air column-averaged mole fractions of CO2 and CH4. Comparisons with balloon-borne observations over Sanriku (Japan) in 2000-2007 revealed that the tracer transport simulations in the upper troposphere and lower stratosphere are performed with accuracies of ~5% for CH4 and SF6, and ~1% for CO2 compared with the observed volume-mixing ratios. The simulated column-averaged dry air mole fractions of atmospheric carbon dioxide (XCO2) and methane (XCH4) were evaluated against daily ground-based high-resolution Fourier Transform Spectrometer (FTS) observations measured at twelve sites of the Total Carbon Column Observing Network (TCCON) (Bialystok, Bremen, Darwin, Garmisch, Izaña, Lamont, Lauder, Orleans, Park Falls, Sodankylä, Tsukuba, and Wollongong) between January 2009 and January 2011. The comparison shows the model's ability to reproduce the site-dependent seasonal cycles as observed by TCCON, with correlation coefficients typically on the order 0.8-0.9 and 0.4-0.8 for XCO2 and XCH4, respectively, and mean model biases of ±0.2% and ±0.5%, excluding Sodankylä, where strong biases are found. The ability of the model to capture the tracer total column mole fractions is strongly dependent on the model's ability to reproduce seasonal variations in tracer concentrations in the planetary boundary layer (PBL). We found a marked difference in the model's ability to reproduce near-surface concentrations at sites located some distance from multiple emission sources and where high emissions play a notable role in the tracer's budget. Comparisons with aircraft observations over Surgut (West Siberia), in an area with high emissions of methane from wetlands, show contrasting model performance in the PBL and in the free troposphere. Thus, the PBL is another critical region for simulating the tracer total column mole fractions.
NASA Astrophysics Data System (ADS)
Bucsela, E. J.; Perring, A. E.; Cohen, R. C.; Boersma, K. F.; Celarier, E. A.; Gleason, J. F.; Wenig, M. O.; Bertram, T. H.; Wooldridge, P. J.; Dirksen, R.; Veefkind, J. P.
2008-08-01
We present an analysis of in situ NO2 measurements from aircraft experiments between summer 2004 and spring 2006. The data are from the INTEX-A, PAVE, and INTEX-B campaigns and constitute the most comprehensive set of tropospheric NO2 profiles to date. Profile shapes from INTEX-A and PAVE are found to be qualitatively similar to annual mean profiles from the GEOS-Chem model. Using profiles from the INTEX-B campaign, we perform error-weighted linear regressions to compare the Ozone Monitoring Instrument (OMI) tropospheric NO2 columns from the near-real-time product (NRT) and standard product (SP) with the integrated in situ columns. Results indicate that the OMI SP algorithm yields NO2 amounts lower than the in situ columns by a factor of 0.86 (±0.2) and that NO2 amounts from the NRT algorithm are higher than the in situ data by a factor of 1.68 (±0.6). The correlation between the satellite and in situ data is good (r = 0.83) for both algorithms. Using averaging kernels, the influence of the algorithm's a priori profiles on the satellite retrieval is explored. Results imply that air mass factors from the a priori profiles are on average slightly larger (˜10%) than those from the measured profiles, but the differences are not significant.
Estimated global nitrogen deposition using NO2 column density
Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao
2013-01-01
Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.
Rubini, Alessandro; Bosco, Gerardo; Lodi, Alessandra; Cenci, Lorenzo; Parmagnani, Andrea; Grimaldi, Keith; Zhongjin, Yang; Paoli, Antonio
2015-12-01
The effects of the ketogenic diet (KD) on weight loss, metabolic, and respiratory parameters were investigated in healthy subjects. Thirty-two healthy subjects were randomized into two groups. The KD group followed a ketogenic diet for 20 days (KD t 0-t 20), then switched to a low-carbohydrate, no-ketogenic diet for 20 days (KD t 20-t 40), and finally was on a Mediterranean diet (MD) for 2 more months (KD t 40-t 2m). The MD group followed a MD for 20 days (MD t 0-t 20), then followed a MD of 1400 kcal over the next 20 days (MD t 20-t 40), and completed the study with the MD for 2 months (MD t 40-t 2m). Body weight, body fat, respiratory rate, and respiratory gas parameters (including respiratory exchange ratio (RER) and carbon dioxide end-tidal partial pressure (PETCO2), oxygen uptake (VO2), carbon dioxide production (VCO2), and resting energy expenditure (REE)) were measured at each point. A significant decrease (p < 0.05) in RER was observed after 20 and 40 days in the KD group, but not in the MD group. In the KD group, significant reductions were observed for both carbon dioxide output and PETCO2, however, there was no significant change in VO2, VCO2, and REE. While both diets significantly decreased body fat mass, the KD diet overall proved to have a higher percentage of fat loss versus the MD diet. The KD may significantly decrease carbon dioxide body stores, which may theoretically be beneficial for patients with increased carbon dioxide arterial partial pressure due to respiratory insufficiency or failure.
Weekly cycle of NO2 by GOME measurements: a signature of anthropogenic sources
NASA Astrophysics Data System (ADS)
Beirle, S.; Platt, U.; Wenig, M.; Wagner, T.
2003-12-01
Nitrogen oxides (NO+NO2=NOx and reservoir species) are important trace gases in the troposphere with impact on human health, atmospheric chemistry and climate. Besides natural sources (lightning, soil emissions) and biomass burning, fossil fuel combustion is estimated to be responsible for about 50% of the total production of NOx. Since human activity in industrialized countries largely follows a seven-day cycle, fossil fuel combustion is expected to be reduced during weekends. This "weekend effect" is well known from local, ground based measurements, but has never been analysed on a global scale before. The Global Ozone Monitoring Experiment (GOME) on board the ESA-satellite ERS-2 allows measurements of NO2 column densities. By estimating and subtracting the stratospheric column, and considering radiative transfer, vertical column densities (VCD) of tropospheric NO2 can be determined (e.g. Leue et al., 2001). We demonstrate the statistical analysis of weekly cycles of tropospheric NO2 VCDs for different regions of the world. In the cycles of the industrialized regions and cities in the US, Europe and Japan a clear Sunday minimum of tropospheric NO2 VCD can be seen. Sunday NO2 VCDs are about 25-50% lower than working day levels. Metropolitan areas with other religious and cultural backgrounds (Jerusalem, Mecca) show different weekly patterns corresponding to different days of rest. In China, no weekly pattern can be found. The presence of a weekly cycle in the measured tropospheric NO2 VCD may help to identify the different anthropogenic source categories. Furthermore, we estimated the lifetime of tropospheric NO2 by analysing the mean weekly cycle exemplarily over Germany, obtaining a value of about 6 h in summer and 18-24 h in winter.
Malingappa, Pandurangappa; Yarradoddappa, Venkataramanappa
2014-01-01
A new chemosensor has been used to monitor atmospheric nitrogen oxides [NO + NO2] at parts per billion (ppb) level. It is based on the catalytic reaction of nitrogen oxides with rhodamine B hydrazide (RBH) to produce a colored compound through the hydrolysis of the amide bond of the molecule. A simple colorimeter has been used to monitor atmospheric nitrogen dioxide at ppb level. The air samples were purged through a sampling cuvette containing RBH solution using peristaltic pump. The proposed method has been successfully applied to monitor the ambient nitrogen dioxide levels at traffic junction points within the city limits and the results obtained are compared with the standard Griess-Ilosvay method.
Guillossou, Gaëlle; Neukirch, Catherine; Dehoux, Monique; Koscielny, Serge; Bonay, Marcel; Cabanes, Pierre-André; Samet, Jonathan M.; Mure, Patrick; Ropert, Luc; Tokarek, Sandra; Lambrozo, Jacques; Aubier, Michel
2014-01-01
Background: Nitrogen dioxide (NO2), a ubiquitous atmospheric pollutant, may enhance the asthmatic response to allergens through eosinophilic activation in the airways. However, the effect of NO2 on inflammation without allergen exposure is poorly studied. Objectives: We investigated whether repeated peaks of NO2, at various realistic concentrations, induce changes in airway inflammation in asthmatics. Methods: Nineteen nonsmokers with asthma were exposed at rest in a double-blind, crossover study, in randomized order, to 200 ppb NO2, 600 ppb NO2, or clean air once for 30 min on day 1 and twice for 30 min on day 2. The three series of exposures were separated by 2 weeks. The inflammatory response in sputum was measured 6 hr (day 1), 32 hr (day 2), and 48 hr (day 3) after the first exposure, and compared with baseline values measured twice 10–30 days before the first exposure. Results: Compared with baseline measurements, the percentage of eosinophils in sputum increased by 57% after exposure to 600 ppb NO2 (p = 0.003) but did not change significantly after exposure to 200 ppb. The slope of the association between the percentage of eosinophils and NO2 exposure level was significant (p = 0.04). Eosinophil cationic protein in sputum was highly correlated with eosinophil count and increased significantly after exposure to 600 ppb NO2 (p = 0.001). Lung function, which was assessed daily, was not affected by NO2 exposure. Conclusions: We observed that repeated peak exposures of NO2 performed without allergen exposure were associated with airway eosinophilic inflammation in asthmatics in a dose-related manner. Citation: Ezratty V, Guillossou G, Neukirch C, Dehoux M, Koscielny S, Bonay M, Cabanes PA, Samet JM, Mure P, Ropert L, Tokarek S, Lambrozo J, Aubier M. 2014. Repeated nitrogen dioxide exposures and eosinophilic airway inflammation in asthmatics: a randomized crossover study. Environ Health Perspect 122:850–855; http://dx.doi.org/10.1289/ehp.1307240 PMID:24747297
NASA Astrophysics Data System (ADS)
Zhou, Yipin; Brunner, Dominik; Hueglin, Christoph; Henne, Stephan; Staehelin, Johannes
2012-01-01
This study analyzes the changes of NO 2 vertical tropospheric columns (VTCs) over Europe during the period 2004-2009 using a statistical model, based on a homogeneous high-quality data set of observations of the Ozone Monitoring Instrument OMI. At each point of a regular grid, a Generalized Additive regression Model (GAM) with non-parametric model terms was fitted to the observed columns to describe the most relevant factors contributing to the observed variability in NO 2 VTCs. These factors include annual cycle, day of week, wind, precipitation, retrieved cloud radiance fraction, and trend. Significant negative changes are found in areas with large anthropogenic sources over Western Europe (mostly from -4 to -8% year -1). The overall negative changes are consistent with EMEP/CEIP (European Monitoring and Evaluation Programme/Center on Emission Inventories and Projections) emission estimations and previous trend studies. However, we found remarkably large spatial variations in NO 2 column changes within individual regions. Our analysis shows that in particular the NO x emissions from Spanish power plants (from -10 to approx. -20% year -1) and over the center of England (up to approx. -12% year -1) have been strongly reduced in the past few years, at a rate exceeding the reported emission changes averaged over the individual country. A number of other features of the temporal behavior of the time series of tropospheric NO 2 distributions over Europe were quantified, including clear annual and weekly cycles. Modeling the influence of wind considering both wind direction and wind speed not only improves the accuracy of the trend results, but can be particularly interesting for identifying the sources of the NO 2 VTCs and the transport pathways of air pollutants. The effects of precipitation are observed to vary obviously during warm and cold months, due to the strong seasonal dependence of soil NO x emissions.
Scaravilli, Vittorio; Kreyer, Stefan; Belenkiy, Slava; Linden, Katharina; Zanella, Alberto; Li, Yansong; Dubick, Michael A; Cancio, Leopoldo C; Pesenti, Antonio; Batchinsky, Andriy I
2016-03-01
The authors studied the effects on membrane lung carbon dioxide extraction (VCO2ML), spontaneous ventilation, and energy expenditure (EE) of an innovative extracorporeal carbon dioxide removal (ECCO2R) technique enhanced by acidification (acid load carbon dioxide removal [ALCO2R]) via lactic acid. Six spontaneously breathing healthy ewes were connected to an extracorporeal circuit with blood flow 250 ml/min and gas flow 10 l/min. Sheep underwent two randomly ordered experimental sequences, each consisting of two 12-h alternating phases of ALCO2R and ECCO2R. During ALCO2R, lactic acid (1.5 mEq/min) was infused before the membrane lung. Caloric intake was not controlled, and animals were freely fed. VCO2ML, natural lung carbon dioxide extraction, total carbon dioxide production, and minute ventilation were recorded. Oxygen consumption and EE were calculated. ALCO2R enhanced VCO2ML by 48% relative to ECCO2R (55.3 ± 3.1 vs. 37.2 ± 3.2 ml/min; P less than 0.001). During ALCO2R, minute ventilation and natural lung carbon dioxide extraction were not affected (7.88 ± 2.00 vs. 7.51 ± 1.89 l/min, P = 0.146; 167.9 ± 41.6 vs. 159.6 ± 51.8 ml/min, P = 0.063), whereas total carbon dioxide production, oxygen consumption, and EE rose by 12% each (223.53 ± 42.68 vs. 196.64 ± 50.92 ml/min, 215.3 ± 96.9 vs. 189.1 ± 89.0 ml/min, 67.5 ± 24.0 vs. 60.3 ± 20.1 kcal/h; P less than 0.001). ALCO2R was effective in enhancing VCO2ML. However, lactic acid caused a rise in EE that made ALCO2R no different from standard ECCO2R with respect to ventilation. The authors suggest coupling lactic acid-enhanced ALCO2R with active measures to control metabolism.
Association of indoor nitrogen dioxide with respiratory symptoms and pulmonary function in children
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neas, L.M.; Dockery, D.W.; Ware, J.H.
1991-07-15
The effect of indoor nitrogen dioxide on the cumulative incidence of respiratory symptoms and pulmonary function level was studied in a cohort of 1,567 white children aged 7-11 years examined in six US cities from 1983 through 1988. Week-long measurements of nitrogen dioxide were obtained at three indoor locations over 2 consecutive weeks in both the winter and the summer months. The household annual average nitrogen dioxide concentration was modeled as a continuous variable and as four ordered categories. Multiple logistic regression analysis of symptom reports from a questionnaire administered after indoor monitoring showed that a 15-ppb increase in themore » household annual nitrogen dioxide mean was associated with an increased cumulative incidence of lower respiratory symptoms (odds ratio (OR) = 1.4, 95% confidence interval (95% Cl) 1.1-1.7). The response variable indicated the report of one or more of the following symptoms: attacks of shortness of breath with wheeze, chronic wheeze, chronic cough, chronic phlegm, or bronchitis. Girls showed a stronger association (OR = 1.7, 95% Cl 1.3-2.2) than did boys (OR = 1.2, 95% Cl 0.9-1.5). An analysis of pulmonary function measurements showed no consistent effect of nitrogen dioxide. These results are consistent with earlier reports based on categorical indicators of household nitrogen dioxide sources and provide a more specific association with nitrogen dioxide as measured in children's homes.« less
NASA Astrophysics Data System (ADS)
Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan
2017-04-01
Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed in a microcosm system under a constant temperature of 10°C. The water-saturated soil columns will be drained via suction plates at the bottom of the columns by stepwise increase of the suction. The head space of the soil columns will be permanently flushed with moistened synthetic air and CO2 concentrations will be measured via online gas chromatography. First results will be presented.
High temperature decomposition of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2005-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
High Temperature Decomposition of Hydrogen Peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2004-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydropemxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments
NASA Astrophysics Data System (ADS)
Larson, T. E.
2012-12-01
Transport of carbon dioxide through porous media can be affected by diffusion, advection and adsorption processes. Developing new tools to understand which of these processes dominates migration of CO2 or other gases in the subsurface is important to a wide range of applications including CO2 storage. Whereas advection rates are not affected by isotope substitution in CO2, adsorption and diffusion constants are. For example, differences in the binary diffusion constant calculated between C12O2-He and C13O2-He results in a carbon isotope fractionation whereby the front of the chromatographic peak is enriched in carbon-12 and the tail of the peak is enriched in carbon-13. Interestingly, adsorption is shown to have an opposite, apparent inverse affect whereby the lighter isotopologues of CO2 are preferentially retained by the chromatographic column and the heavier isotopologues are eluted first. This apparent inverse chromatographic effect has been ascribed to Van der Waals dispersion forces. Smaller molar volumes of the heavier isotopologues resulting from increased bond strength (shorter bond length) effectively decreases Van der Waals forces in heavier isotopologues compared to lighter isotopologues. Here we discuss the possible application of stable isotope values measured across chromatographic peaks to differentiate diffusion-dominated from adsorption-dominated transport processes for CO2. Separate 1-dimensional flow-through columns were packed with quartz and illite, and one remained empty. Dry helium was used as a carrier gas. Constant flow rate, temperature and column pressure were maintained. After background CO2 concentrations were minimized and constant, a sustained pulse of CO2 was injected at the head of the column and the effluent was sampled at 4 minute intervals for CO2 concentration, and carbon and oxygen isotope ratios. The quartz-sand packed and empty columns resulted in similar trends in concentration and isotope ratios whereby CO2 concentrations steadily increased and became constant after two pore volumes of CO2 flushed through the column. Carbon and oxygen isotope values of the front of the peak (first pore volume) are 2‰ and 5‰ lower than the injected CO2 values, respectively. These results are fit very well using a mass transfer model that only includes binary diffusion between CO2 and helium that account for isotope substitution in the reduced mass coefficient. In contrast to these diffusion-dominated systems, CO2 break through curves from the illite packed column show strong adsorption effects that include a +180‰ increase in the carbon isotope ratio at the front of the peak followed by a 20‰ decrease. Up to 20 pore volumes of CO2 were flushed through the column before the carbon and oxygen isotope values stabilized to their starting values. These adsorption effects cannot be modeled using mass isotope effects alone, and instead must include additional parameters such as volume effects. These results demonstrate the importance of understanding the isotopic effects of CO2 in different substrates, and potentially offers a tracer tool that can be used to quantify surface area, transport distance, and surface reactivity of CO2. Additional applications may include more affectively determining transfer rates of CO2 across low permeability zones.
Chong, Andrea D; Mayer, K Ulrich
2017-09-01
Historical heavy use of chlorinated solvents in conjunction with improper disposal practices and accidental releases has resulted in widespread contamination of soils and groundwater in North America and worldwide. As a result, remediation of chlorinated solvents is required at many sites. For source zone treatment, common remediation strategies include in-situ chemical oxidation (ISCO) using potassium or sodium permanganate, and the enhancement of biodegradation by primary substrate addition. It is well known that these remediation methods tend to generate gas (carbon dioxide (CO 2 ) in the case of ISCO using permanganate, CO 2 and methane (CH 4 ) in the case of bioremediation). Vigorous gas generation in the presence of chlorinated solvents, which are categorized as volatile organic contaminants (VOCs), may cause gas exsolution, ebullition and stripping of the contaminants from the treatment zone. This process may lead to unintentional 'compartment transfer', whereby VOCs are transported away from the contaminated zone into overlying clean sediments and into the vadose zone. To this extent, benchtop column experiments were conducted to quantify the effect of gas generation during remediation of the common chlorinated solvent trichloroethylene (TCE/C 2 Cl 3 H). Both ISCO and enhanced bioremediation were considered as treatment methods. Results show that gas exsolution and ebullition occurs for both remediation technologies. Facilitated by ebullition, TCE was transported from the source zone into overlying clean groundwater and was subsequently released into the column headspace. For the case of enhanced bioremediation, the intermediate degradation product vinyl chloride (VC) was also stripped from the treatment zone. The concentrations measured in the headspace of the columns (TCE ∼300ppm in the ISCO column, TCE ∼500ppm and VC ∼1380ppm in the bioremediation column) indicate that substantial transfer of VOCs to the vadose zone is possible. These findings provide direct evidence for the unintended spreading of contaminants as a result of remediation efforts, which can, under some circumstances, result in enhanced risks for soil vapour intrusion. Copyright © 2017 Elsevier B.V. All rights reserved.
Although nitrogen dioxide (NO2) is a priority pollutant, the Federal Reference Method is based on the chemiluminescent measurement of nitric oxide (NO) with the assumption that NO2 is the difference between nitrogen oxides (NOx) reduced to NO w...
NASA Astrophysics Data System (ADS)
Chaparro-Suarez, I. G.; Meixner, F. X.; Kesselmeier, J.
2011-10-01
Nitrogen dioxide (NO2) exchange between the atmosphere and five European tree species was investigated in the laboratory using a dynamic branch enclosure system (consisting of two cuvettes) and a highly specific NO2 analyzer. NO2 measurements were performed with a sensitive gas phase chemiluminescence NO detector combined with a NO2 specific (photolytic) converter, both from Eco-Physics (Switzerland). This highly specific detection system excluded bias from other nitrogen compounds. Investigations were performed at two light intensities (Photosynthetic Active Radiation, PAR, 450 and 900 μmol m-2 s-1) and NO2 concentrations between 0 and 5 ppb. Ambient parameters (air temperature and relative humidity) were held constant. The data showed dominant NO2 uptake by the respective tree species under all conditions. The results did not confirm the existence of a compensation point within a 95% confidence level, though we cannot completely exclude emission of NO2 under very low atmospheric concentrations. Induced stomatal stricture, or total closure, by changing light conditions, as well as by application of the plant hormone ABA (Abscisic Acid) caused a corresponding decrease of NO2 uptake. No loss of NO2 to plant surfaces was observed under stomatal closure and species dependent differences in uptake rates could be clearly related to stomatal behavior.
NASA Astrophysics Data System (ADS)
Brent, L. C.; Stehr, J. W.; Thorn, W.; Leen, J.; Gupta, M.; Luke, W. T.; Kelley, P.; Ren, X.; He, H.; Arkinson, H.; Weinheimer, A. J.; Pusede, S. E.; Cohen, R. C.; Dickerson, R. R.; Discover AQ science Team
2011-12-01
Real time, atmospheric NO2 column profiles from the Mid-Atlantic region, during the NASA Discover AQ air campaign, demonstrate that cavity ring down spectroscopy, with a LED light source, is a suitable technique for the detection NO2 in the boundary layer and lower free troposphere. Preliminary results from this air campaign indicate that 0.5 to 30 ppb of NO2 can be observed and that the results were similar to NO2 measurements obtained via laser induced fluorescence and chemiluminescence. The cavity ringdown instrument is relatively inexpensive, weighs 40 lbs, and relies on a built in zeroing method to account for drift with respect to time and altitude. Follow on collaboration with NOAA and NIST will consist of side by side ambient air comparison and calibration. In this field experiment the NOAA modified Thermo 42s which uses a UV light source to selectively convert NO2 to NO and chemiluminecsent detection, and a NIST Thermo 42I with a molybdenum NO2 to NO converter and chemiluminescent detection will be compared to NO2 measured by the Los Gatos Research cavity ringdown detector. Part of the calibration procedure will include testing for interferences of nitric acid, n-propyl nitrate and HONO. The altitude integral of NO2 concentrations provide column content suitable for comparison to measurements made from space and for remotely sensing spectrometers. This data helps in the understanding of transport and is necessary for drawing policy relevant conclusions with respect to pollution control.
The U.S. Environmental Protection Agency (EPA) is conducting a review of the air quality criteria and the primary (health-based) national ambient air quality standards (NAAQS) for nitrogen dioxide (NO2). The major phases of the process for reviewing NAAQS include the following: (...
Satellite Mapping of Rain-Induced Nitric Oxide Emissions from Soils
NASA Technical Reports Server (NTRS)
Jaegle, L.; Martin, R. V.; Chance, K.; Steinberger, L.; Kurosu, T. P.; Jacob, D. J.; Modi, A. I.; Yoboue, V.; Sigha-Nkamdjou, L.; Galy-Lacaux, C.
2004-01-01
We use space-based observations of NO2 columns from the Global Ozone Monitoring Experiment (GOME) to map the spatial and seasonal variations of NOx emissions over Africa during 2000. The GOME observations show not only enhanced tropospheric NO2 columns from biomass burning during the dry season but also comparable enhancements from soil emissions during the rainy season over the Sahel. These soil emissions occur in strong pulses lasting 1-3 weeks following the onset of rain, and affect 3 million sq km of semiarid sub-Saharan savanna. Surface observations of NO2 from the International Global Atmospheric Chemistry (IGAC)/Deposition of Biochemically Important Trace Species (DEBITS)/Africa (IDAF) network over West Africa provide further evidence for a strong role for microbial soil sources. By combining inverse modeling of GOME NO2 columns with space-based observations of fires, we estimate that soils contribute 3.3+/-1.8 TgN/year, similar to the biomass burning source (3.8+/-2.1 TgN/year), and thus account for 40% of surface NO(x) emissions over Africa. Extrapolating to all the tropics, we estimate a 7.3 TgN/year biogenic soil source, which is a factor of 2 larger compared to model-based inventories but agrees with observation-based inventories. These large soil NO(x) emissions are likely to significantly contribute to the ozone enhancement originating from tropical Africa.
Ashu-Arrah, Benjamin A; Glennon, Jeremy D; Albert, Klaus
2013-07-12
This research uses solid-state nuclear magnetic resonance (NMR) spectroscopy to characterise the nature and amount of different surface species, and chromatography to evaluate phase properties of a pentafluorophenylpropyl (PFPP) bonded silica phase prepared and end-capped using supercritical carbon dioxide (sc-CO2) as a reaction solvent. Under sc-CO2 reaction conditions (at temperature of 100 °C and pressure of 414 bar), a PFPP silica phase was prepared using 3-[(pentafluorophenyl)propyldimethylchlorosilane] within 1h. The bonded PFPP phase was subsequently end-capped with bis-N,O-trimethylsilylacetamide (BSA), hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS) within 1h under the same sc-CO2 reaction conditions (100 °C/4141 bar). Elemental microanalysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to provide support data to solid-state NMR and chromatographic evaluation. Results revealed a surface coverage of 2.2 μmol/m(2) for the non-end-capped PFPP silica phase while the PFPP phase end-capped with BSA gave a higher surface coverage (3.9 μmol/m(2)) compared to HMDS (2.9 μmol/m(2)) and TMCS (2.8 μmol/m(2)). (29)Si CP/MAS NMR analysis of the PFPP end-capped with BSA shows a significant decrease in the amount of Q(3) (free silanols) and Q(4) (siloxane groups) species, coupled with the absence of the most reactive Q(2) (geminal silanols) in addition to increased amount of a single resonance peak centred at +13 ppm (MH) corresponding to -Si-O-*Si-CH3 bond. (13)C CP/MAS NMR shows the resonance corresponding to the propyl linkage (CH3CH2CH2-) and methyl groups (Si(CH3)n) confirming successful silanisation and endcapping reactions in sc-CO2. Chromatographic evaluation of the BSA end-capped PFPP phase with Neue text mixture revealed improved chromatographic separation as evidenced in the enhanced retention of hydrophobic markers and decreased retention for basic solutes. Moreover, chromatography revealed a change in column selectivity for the BSA end-capped PFPP phase with dipropylphthalate eluting before naphthalene, indicating decreased silanol groups and increased hydrophobicity. The extend of BSA end-capping as measured by the increase in column efficiency (67,260 N/m vs. 60,480 N/m) on a 2.1 i.d.×50 mm column, methylene group selectivity (α(CH(2)) = 2.27 vs. 2.14) and decreased silanophilic interactions (S=3.7 vs. 4.10) indicate that the increase in carbon loading (3.9 μmol/m(2) vs. 2.2 μmol/m(2)) and improvement in chromatography in good peak shape and symmetry is attributed to end-capping with trimethylsilyl groups. Copyright © 2013 Elsevier B.V. All rights reserved.
Vehicle exhaust exposure in an incident case-control study of adult asthma.
Modig, L; Järvholm, B; Rönnmark, E; Nyström, L; Lundbäck, B; Andersson, C; Forsberg, B
2006-07-01
The objective of this case-control study was to evaluate whether traffic-related air pollution exposure at home increases the risk of asthma in adults and to compare two commonly used exposure variables and differences between urban and rural living. Incident cases of asthma and matched controls of subjects aged 20-60 yrs were recruited in Luleå, Sweden. In total 203 cases and 203 controls were enrolled in the study. Exposure was estimated by traffic flow and measured levels of outdoor nitrogen dioxide (NO2) in the surrounding environment of each home, respectively. The relationship between measured levels of NO2 and traffic flow was studied using linear regression. The results indicated a nonsignificant tendency between living in a home close to a high traffic flow and an increased risk of asthma. The association between asthma and measured NO2 was weak and not significant, but the skin-prick test result acted as an effect modifier with a borderline significant association among positives. The correlation between traffic flow and outdoor NO2 was low. The results suggest that living close to high traffic flows might increase the asthma incidence in adults, while the tendency for nitrogen dioxide was only seen among atopics. Traffic flow and nitrogen dioxide had a lower than expected correlation.
Impact of Future Volcanic Eruptions on Stratospheric Ozone
NASA Astrophysics Data System (ADS)
Wilmouth, D. M.; Klobas, J. E.; Weisenstein, D.; Anderson, J. G.; Salawitch, R. J.
2017-12-01
Due to the anthropogenic release of chlorine-containing chemicals such as chlorofluorocarbons into the atmosphere in the twentieth century, a large volcanic eruption occurring today would initiate chemical reactions that reduce the thickness of the ozone layer. In the future, when atmospheric levels of chlorine are reduced, large volcanic eruptions are instead expected to increase the thickness of the ozone layer, but important details relevant to this shift in volcanic impact are not well known. Here we use the AER-2D chemical transport model to simulate a Pinatubo-like volcanic eruption in contemporary and future atmospheres. In particular, we explore the sensitivity of column ozone to volcanic eruption for four different climate change scenarios over the remainder of this century and also establish the importance of bromine-containing very short-lived substances (VSLS) in determining whether future eruptions will lead to ozone depletion. We find that the ozone layer will be vulnerable to volcanic perturbation for considerably longer than previously believed. Finally, we consider the impact on column ozone of inorganic halogens being co-injected into the stratosphere following future explosive eruptions using realistic hydrogen halide to sulfur dioxide ratios.
NASA Astrophysics Data System (ADS)
Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong
2015-08-01
A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.
Nitrification in a zeoponic substrate
NASA Technical Reports Server (NTRS)
McGilloway, R. L.; Weaver, R. W.; Ming, D. W.; Gruener, J. E.
2003-01-01
Clinoptilolite is a zeolite mineral with high cation exchange capacity used in zeoponic substrates that have been proposed as a solid medium for growing plants or as a fertilizer material. The kinetics of nitrification has not been measured for NH4+ saturated zeoponic substrate. Experiments were conducted to evaluate the production of NO2- and NO3-, and nitrifier populations in zeoponic substrates. Small columns were filled with zeoponic substrate inoculated with a commercial inoculum or soil enrichment culture of nitrifying bacteria. In addition to column studies, a growth chamber study was conducted to evaluate the kinetics of nitrification in zeoponic substrates used to grow radishes (Raphanus sativus L.). The zeoponic substrate provided a readily available source of NH4+, and nitrifying bacteria were active in the substrate. Ammonium oxidation rates in column studies ranged from 5 to 10 micrograms N g-1 substrate h-1, and NO2- oxidation rates were 2 to 9.5 micrograms N g-1 substrate h-1. Rates determined from the growth chamber study were approximately 1.2 micrograms N g-1 substrate h-1. Quantities of NH4+ oxidized to NO2- and NO3- in inoculated zeoponic substrate were in excess of plant up-take. Acidification as a result of NH4+ oxidation resulted in a pH decline, and the zeoponic substrate showed limited buffering capacity.
Global observations of tropospheric BrO columns using GOME-2 satellite data
NASA Astrophysics Data System (ADS)
Theys, N.; van Roozendael, M.; Hendrick, F.; Yang, X.; de Smedt, I.; Richter, A.; Begoin, M.; Errera, Q.; Johnston, P. V.; Kreher, K.; de Mazière, M.
2011-02-01
Measurements from the GOME-2 satellite instrument have been analyzed for tropospheric BrO using a residual technique that combines measured BrO columns and estimates of the stratospheric BrO content from a climatological approach driven by O3 and NO2 observations. Comparisons between the GOME-2 results and BrO vertical columns derived from correlative ground-based and SCIAMACHY nadir observations, present a good level of consistency. We show that the adopted technique enables separation of stratospheric and tropospheric fractions of the measured total BrO columns and allows quantitative study of the BrO plumes in polar regions. While some satellite observed plumes of enhanced BrO can be explained by stratospheric descending air, we show that most BrO hotspots are of tropospheric origin, although they are often associated to regions with low tropopause heights as well. Elaborating on simulations using the p-TOMCAT tropospheric chemical transport model, this result is found to be consistent with the mechanism of bromine release through sea salt aerosols production during blowing snow events. No definitive conclusion can be drawn however on the importance of blowing snow sources in comparison to other bromine release mechanisms. Outside polar regions, evidence is provided for a global tropospheric BrO background with column of 1-3 × 1013 molec cm-2, consistent with previous estimates.
Kinetics of the reaction between nitrogen dioxide and water vapour
NASA Astrophysics Data System (ADS)
Svensson, R.; Ljungström, E.; Lindqvist, O.
The rate of disappearance of nitrogen dioxide (NO 2) with water vapour and formation of nitrous acid (HONO) in the dark has been investigated in batch experiments. IR spectroscopy was used to determine the concentrations of NO 2, HONO and NO. The reaction is first order both with respect to NO 2 and water vapour and proceeds heterogenously on most unpoisoned surfaces. Initially, the amount of HONO formed is close to half the NO 2 which has disappeared. When the surface in the present reactor (surface to volume ratio = 14 m -1) has reached its limiting state of poisoning, the reaction is still active and the NO 2 disappearance follows the expression: -d[NO 2] /dt = 2k 1[NO 2] [H 2O] where k1 = 4.1 (± 0.8) 10 -8 ppm -1 min -1 (22°C). The S/V ratio dependence of the rate shows that a heterogenous reaction proceeds but the existing evidence is not conclusive about a possible homogenous contribution to the remaining activity. A rate expression which describes the overall reaction at temperatures around 25°C, when the surface present is made passive, is: -d[NO 2] /dt = ( S/V5.6(±0.9)10 -9 + 2.3(±6.5)10 -9)[NO 2][H 2O] .
Greenberg, N; Carel, R S; Derazne, E; Tiktinsky, A; Tzur, D; Portnov, B A
2017-01-01
Studies have provided extensive documentation that acutely elevated environmental exposures contribute to chronic health problems. However, only attention has been paid to the effects of modificate of exposure assessment methods in environmental health investigations, leading to uncertainty and gaps in our understanding of exposure- and dose-response relationships. The goal of the present study was to evaluate whether average or peak concentration exerts a greater influence on asthma outcome, and which of the exposure models may better explain various physiological responses generated by nitrogen dioxide (NO 2 ) or sulfur dioxide (SO 2 ) air pollutants. The effects of annual NO 2 and SO 2 exposures on asthma prevalence were determined in 137,040 17-year-old males in Israel, who underwent standard health examinations before induction to military service during 1999-2008. Three alternative models of cumulative exposure were used: arithmetic mean level (AM), average peak concentration (APC), and total number of air pollution exposure episodes (NEP). Air pollution data for NO 2 and SO 2 levels were linked to the residence of each subject and asthma prevalence was predicted using bivariate logistic regression. There was significant increased risk for asthma occurrence attributed to NO 2 exposure in all models with the highest correlations demonstrated using the APC model. Data suggested that exposure-response is better correlated with NO 2 peak concentration than with average exposure concentration in subjects with asthma. For SO 2 , there was a weaker but still significant exposure response association in all models. These differences may be related to differences in physiological responses including effects on different regions of the airways following exposure to these pollutants. NO 2 , which is poorly soluble in water, penetrates deep into the bronchial tree, producing asthmatic manifestations such as inflammation and increased mucus production as a result of high gaseous concentrations in the lung parenchyma. In contrast, SO 2 , which is highly water soluble, exerts its effects rapidly in the upper airways, leading to similar limited correlations at all levels of exposure with fewer asthmatic manifestations observed. These data indicate that differing exposure assessment methods may be needed to capture specific disease consequences associated with these air pollutants.
NASA Astrophysics Data System (ADS)
Barron, Keiron Robert Philip
Available from UMI in association with The British Library. The need to monitor corrosion products in the primary circuit of a pressurised water reactor (PWR), at a concentration of 10pg ml^{-1} is discussed. A review of trace and ultra-trace metal analysis, relevant to the specific requirements imposed by primary coolant chemistry, indicated that high performance liquid chromatography (HPLC), coupled with preconcentration of sample was an ideal technique. A HPLC system was developed to determine trace metal species in simulated PWR primary coolant. In order to achieve the desired detection limit an on-line preconcentration system had to be developed. Separations were performed on Aminex A9 and Benson BC-X10 analytical columns. Detection was by post column reaction with Eriochrome Black T and Calmagite Linear calibrations of 2.5-100ng of cobalt (the main species of interest), were achieved using up to 200ml samples. The detection limit for a 200ml sample was 10pg ml^{-1}. In order to achieve the desired aim of on-line collection of species at 300^circ C, the use of inorganic ion-exchangers is essential. A novel application, utilising the attractive features of the inorganic ion-exchangers titanium dioxide, zirconium dioxide, zirconium arsenophosphate and pore controlled glass beads, was developed for the preconcentration of trace metal species at temperature and pressure. The performance of these exchangers, at ambient and 300^ circC was assessed by their inclusion in the developed analytical system and by the use of radioisotopes. The particular emphasis during the development has been upon accuracy, reproducibility of recovery, stability of reagents and system contamination, studied by the use of radioisotopes and response to post column reagents. This study in conjunction with work carried out at Winfrith, resulted in a monitoring system that could follow changes in coolant chemistry, on deposition and release of metal species in simulated PWR water loops. On -line detection of cobalt at 11pg ml^{ -1} was recorded, something which previously could not be performed by other techniques.
Spectral Evidence for Ionization in Air-Filled Glow Discharge Tubes: Application to Sprites
NASA Astrophysics Data System (ADS)
Armstrong, R. A.; Williams, E. R.; Golka, R. K.; Williams, D. R.
2001-12-01
The question of ionization in sprites and the evidence for VLF backscatter from sprites has motivated a quantitative spectral analysis of the various (classical) regions of the glow discharge tube under DC excitation and at air densities appropriate for sprites in the mesosphere. A PR-650 colorimeter (Photo Research, Inc.) has enabled calibrated irradiance measurements for localized zones along the axis of the discharge tube--in the dominantly blue negative glow, in the Faraday dark space and in the red/pink positive column. Consistent with historical nomenclature, nitrogen first and second positive emission is dominant in the positive column (associated with neutral N2), and nitrogen first negative emission, with a prominent peak at 4278 A, is dominant in the blue negative glow (associated with ionized N2+). Whereas nitrogen first and second positive emission are also detected in the negative glow, no spectral evidence for ionization (no 4279, no 3914, no Meinel) is found in the red/pink positive column. This negative result is attributed not to an absence of ionization in the positive column, but rather to a sparse population of N2+ relative to neutral nitrogen in this region, and to the prominent emission in the blue part of the spectrum due to nitrogen second positive. A similar interpretation may be appropriate for the time-integrated spectra from the red body of sprites, also lacking direct evidence for ionization.
Impact of anthropogenic CO2 on the CaCO3 system in the oceans.
Feely, Richard A; Sabine, Christopher L; Lee, Kitack; Berelson, Will; Kleypas, Joanie; Fabry, Victoria J; Millero, Frank J
2004-07-16
Rising atmospheric carbon dioxide (CO2) concentrations over the past two centuries have led to greater CO2 uptake by the oceans. This acidification process has changed the saturation state of the oceans with respect to calcium carbonate (CaCO3) particles. Here we estimate the in situ CaCO3 dissolution rates for the global oceans from total alkalinity and chlorofluorocarbon data, and we also discuss the future impacts of anthropogenic CO2 on CaCO3 shell-forming species. CaCO3 dissolution rates, ranging from 0.003 to 1.2 micromoles per kilogram per year, are observed beginning near the aragonite saturation horizon. The total water column CaCO3 dissolution rate for the global oceans is approximately 0.5 +/- 0.2 petagrams of CaCO3-C per year, which is approximately 45 to 65% of the export production of CaCO3.
Fisheries Aspects of Seamounts and Taylor Columns
1986-09-01
the armorhead population. Due to a probable combination of overfishing and poor recruitment, the large fishery of the early 1970’s began a rapid...ACCESSION NO T I TLE (include Security Classification) FISHERIES ASPECTS OF SEAMOUNTS AND TAYLOR COLUMNS 2 PERSONAL AUTHOR(S) Brainard, Russell E. 13a...retention Seamount oceanography Taylor column Fisheries Nutrient enrichment 3ASTRACT (Continue on reverse of necessary and identify by block number
Lucchini, R E; Springall, D R; Chitano, P; Fabbri, L M; Polak, J M; Mapp, C E
1996-09-01
The mammalian respiratory tract is densely innervated by sensory and autonomic fibres. Subsets of the nerves contain bioactive regulatory peptides, such as substance P, calcitonin gene-related peptide (CGRP), and neurokinins. The sensory nervous system responds to inhaled irritants, resulting in a release of neuropeptides and, thus, a decrease in the peptide immunoreactivity of the fibres. We examined the effects of inhaled nitrogen dioxide (NO2), a well-known indoor and outdoor air pollutant, on pulmonary sensory neuropeptides. Guinea-pigs were exposed for 4 h to 18 parts per million (ppm) NO2 or to air (n = 5 each). At the end of the exposure, they were killed with urethane and their lungs were fixed in 1% paraformaldehyde in phosphate-buffered saline. Cryostat sections were stained with antisera to an anatomical nerve marker, protein gene product (PGP) 9.5, and to CGRP and tachykinins, utilizing the avidin-biotinylated peroxidase method. In the noncartilaginous airways (diameter < 250 microns) of NO2-exposed animals, less tachykinin- and CGRP-immunoreactive nerve fibres were found compared with controls. No change was seen in the total nerve fibre distribution (PGP 9.5). It is concluded that the peptidergic nerves of guinea-pig peripheral airways are a sensitive indicator of exposure to nitrogen dioxide.
NASA Astrophysics Data System (ADS)
Verstraeten, Willem W.; Folkert Boersma, K.; Douros, John; Williams, Jason E.; Eskes, Henk H.; Delcloo, Andy
2017-04-01
High nitrogen oxides concentrations at the surface (NOX = NO + NO2) impact humans and ecosystem badly and play a key role in tropospheric chemistry. Surface NOX emissions drive major processes in regional and global chemistry transport models (CTM). NOX contributes to the formation of acid rain, act as aerosol precursors and is an important trace gas for the formation of tropospheric ozone (O3). Via tropospheric O3, NOX indirectly affects the production of the hydroxyl radical which controls the chemical lifetime of key atmospheric pollutants and reactive greenhouse gases. High NOX emissions are mainly observed in polluted regions produced by anthropogenic combustion from industrial, traffic and household activities typically observed in large and densely populated urban areas. Accurate NOX inventories are essential, but state-of the- art emission databases may vary substantially and uncertainties are high since reported emissions factors may differ in order of magnitude and more. To date, the modelled NO2 concentrations and lifetimes have large associated uncertainties due to the highly non-linear small-scale chemistry that occurs in urban areas and uncertainties in the reaction rate data, missing nitrogen (N) species and volatile organic compounds (VOC) emissions, and incomplete knowledge of nitrogen oxides chemistry. Any overestimation in the chemical lifetime may mask missing NOX chemistry in current CTM's. By simultaneously estimating both the NO2 lifetime and concentrations, for instance by using the Exponentially Modified Gaussian (EMG), a better surface NOX emission flux estimate can be obtained. Here we evaluate if the EMG methodology can reproduce the emissions input from the tropospheric NO2 columns simulated by the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) CTM model. We apply the EMG methodology on LOTOS-EUROS simulated tropospheric NO2 columns for the period April-September 2013 for 21 selected European urban areas under windy conditions (surface wind speeds > 3 m s-1). We then compare the top-down derived surface NOX emissions with the 2011 MACC-III emission inventory, used in the LOTOS-EUROS model as input to simulate the NO2 columns. We also apply the EMG methodology on OMI (Ozone Monitoring Instrument) tropospheric NO2 column data, providing us with real-time observation-based estimates of midday NO2 lifetime and NOX emissions over 21 European cities in 2013. Results indicate that the top-down derived NOX emissions from LOTOS-EUROS (respectively OMI) are comparable with the MACC-III inventory with a R2 of 0.99 (respectively R2 = 0.79). For St-Petersburg and Moscow the top-down NOX estimates from 2013 OMI data are biased low compared to the MACC-III inventory which uses a 2011 NOX emissions update.