Sample records for dioxide partial pressures

  1. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  2. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  3. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  4. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  5. Factors associated with blood oxygen partial pressure and carbon dioxide partial pressure regulation during respiratory extracorporeal membrane oxygenation support: data from a swine model.

    PubMed

    Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes

    2016-01-01

    The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin.

  6. Factors associated with blood oxygen partial pressure and carbon dioxide partial pressure regulation during respiratory extracorporeal membrane oxygenation support: data from a swine model

    PubMed Central

    Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes

    2016-01-01

    Objective The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. Methods The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Results Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). Conclusion In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin. PMID:27096671

  7. Sulfur control in ion-conducting membrane systems

    DOEpatents

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  8. Distribution of gases in the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Striegl, Robert G.

    1988-01-01

    The unsaturated zone is a medium that provides pneumatic communication for the movement of gases from wastes buried in landfills to the atmosphere, biota, and groundwater. Gases in unsaturated glacial and eolian deposits near a waste-disposal trench at the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, were identified, and the spatial and temporal distributions of the partial pressures of those gases were determined for the period January 1984 through January 1986. Methods for the collection and analyses of the gases are described, as are geologic and hydrologic characteristics of the unsaturated zone that affect gas transport. The identified gases, which are of natural and of waste origin, include nitrogen, oxygen, and argon, carbon dioxide, methane, propane, butane, tritiated water vapor, 14carbon dioxide, and 222 radon. Concentrations of methane and 14carbon dioxide originated at the waste, as shown by partial-pressure gradients of the gases; 14carbon dioxide partial pressures exceeded natural background partial pressures by factors greater than 1 million at some locations. Variations in partial pressures of oxygen and carbon dioxide were seasonal among piezometers because of increased root and soil-microbe respiration during summer. Variations in methane and 14carbon dioxide partial pressures were apparently related to discrete releases from waste sources at unpredictable intervals of time. No greater than background partial pressures for tritiated water vapor or 222 radon were measured. (USGS)

  9. Non-invasive multiwavelength photoplethysmography under low partial pressure of oxygen.

    PubMed

    Fang, Yung Chieh; Tai, Cheng-Chi

    2016-08-01

    A reduction in partial pressure of oxygen in the environment may be caused by a gain in altitude, which reduces the atmospheric pressure; it may also be caused by the carbon dioxide generated from breathing in an enclosed space. Does inhaling oxygen of lower partial pressure affect the oxygen-carrying function of haemoglobin in vivo? This study uses non-invasive multiwavelength photoplethysmography to measure the effects that inhaling this type of oxygen can have on the plethysmography of the appendages of the body (fingertips). The results indicate that under low partial pressure of oxygen, be it the result of a gain in carbon dioxide concentration or altitude, the change in visible light absorption is the biggest for short wavelengths (approximately 620 or 640 nm) near deoxyhaemoglobin, which has higher absorption coefficient. Moreover, increasing carbon dioxide concentration from 5000 to 10,000 ppm doubly reduces the absorption rate of these short wavelengths.

  10. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. 868.1150 Section 868.1150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... “Class II Special Controls Guidance Document: Indwelling Blood Gas Analyzers; Final Guidance for Industry...

  11. Infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide.

    PubMed

    Kong, Chang Yi; Siratori, Tomoya; Funazukuri, Toshitaka; Wang, Guosheng

    2014-10-03

    The effects of temperature and density on retention of platinum(II) 2,4-pentanedionate in supercritical fluid chromatography were investigated at temperatures of 308.15-343.15K and pressure range from 8 to 40MPa by the chromatographic impulse response method with curve fitting. The retention factors were utilized to derive the infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide. The determined partial molar volumes were small and positive at high pressures but exhibited very large and negative values in the highly compressible near critical region of carbon dioxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effect of Six Days of Staging on Physiologic Adjustments and Acute Mountain Sickness During Ascent to 4300 Meters

    DTIC Science & Technology

    2009-01-01

    respiratory alkalosis due to hyperventilation that was partially compensated for by increased excretion of HCO3 to maintain a normal pH following...carbon dioxide; RER, respiratory exchange quotient; Sao2, arterial oxygen saturation; Paco2, partial pressure of capillary-arterialized carbon dioxide...dioxide production; E=O2, ventilatory equivalent for oxygen; E=CO2, ventilatory equivalent for carbon dioxide; RER, respiratory exchange quotient

  13. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1966-01-01

    Changes in the oxygen partial pressure of air over the range of 8 to 258 mm of Hg did not adversely affect the photosynthetic capacity of Chlorella pyrenoidosa. Gas exchange and growth measurements remained constant for 3-week periods and were similar to air controls (oxygen pressure of 160 mm of Hg). Oxygen partial pressures of 532 and 745 mm of Hg had an adverse effect on algal metabolism. Carbon dioxide consumption was 24% lower in the gas mixture containing oxygen at a pressure 532 mm of Hg than in the air control, and the growth rate was slightly reduced. Oxygen at a partial pressure of 745 mm of Hg decreased the photosynthetic rate 39% and the growth rate 37% over the corresponding rates in air. The lowered metabolic rates remained constant during 14 days of measurements, and the effect was reversible after this time. Substitution of helium or argon for the nitrogen in air had no effect on oxygen production, carbon dioxide consumption, or growth rate for 3-week periods. All measurements were made at a total pressure of 760 mm of Hg, and all gas mixtures were enriched with 2% carbon dioxide. Thus, the physiological functioning and reliability of a photosynthetic gas exchanger should not be adversely affected by: (i) oxygen partial pressures ranging from 8 to 258 mm of Hg; (ii) the use of pure oxygen at reduced total pressure (155 to 258 mm of Hg) unless pressure per se affects photosynthesis, or (iii) the inclusion of helium or argon in the gas environment (up to a partial pressure of 595 mm of Hg). PMID:5927028

  14. A negative feedback mechanism for the long-term stabilization of the earth's surface temperature

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Hays, P. B.; Kasting, J. F.

    1981-01-01

    It is suggested that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism, in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, which in turn depends on the carbon dioxide partial pressure through the greenhouse effect. Although the quantitative details of this mechanism are speculative, it appears able to partially stabilize the earth's surface temperature against the steady increase of solar luminosity, believed to have occurred since the origin of the solar system.

  15. THE SECRETION OF OXYGEN INTO THE SWIM-BLADDER OF FISH. 3. THE ROLE OF CARBON DIOXIDE.

    PubMed

    WITTENBERG, J B; SCHWEND, M J; WITTENBERG, B A

    1964-11-01

    The secretion of carbon dioxide accompanying the secretion of oxygen into the swim-bladder of the bluefish is examined in order to distinguish among several theories which have been proposed to describe the operation of the rete mirabile, a vascular countercurrent exchange organ. Carbon dioxide may comprise 27 per cent of the gas secreted, corresponding to a partial pressure of 275 mm Hg. This is greater than the partial pressure that would be generated by acidifying arterial blood (about 55 mm Hg). The rate of secretion is very much greater than the probable rate of metabolic formation of carbon dioxide in the gas-secreting complex. It is approximately equivalent to the probable rate of glycolytic generation of lactic acid in the gas gland. It is concluded that carbon dioxide brought into the swim-bladder is liberated from blood by the addition of lactic acid. The rete mirabile must act to multiply the primary partial pressure of carbon dioxide produced by acidification of the blood. The function of the rete mirabile as a countercurrent multiplier has been proposed by Kuhn, W., Ramel, A., Kuhn, H. J., and Marti, E., Experientia, 1963, 19, 497. Our findings provide strong support for their theory. The unique structure of the gas-secreting complex of the swim-bladder of the bluefish, Pomatomus saltatrix L., is described.

  16. The Secretion of Oxygen into the Swim-Bladder of Fish

    PubMed Central

    Wittenberg, Jonathan B.; Schwend, Mary J.; Wittenberg, Beatrice A.

    1964-01-01

    The secretion of carbon dioxide accompanying the secretion of oxygen into the swim-bladder of the bluefish is examined in order to distinguish among several theories which have been proposed to describe the operation of the rete mirabile, a vascular countercurrent exchange organ. Carbon dioxide may comprise 27 per cent of the gas secreted, corresponding to a partial pressure of 275 mm Hg. This is greater than the partial pressure that would be generated by acidifying arterial blood (about 55 mm Hg). The rate of secretion is very much greater than the probable rate of metabolic formation of carbon dioxide in the gas-secreting complex. It is approximately equivalent to the probable rate of glycolytic generation of lactic acid in the gas gland. It is concluded that carbon dioxide brought into the swim-bladder is liberated from blood by the addition of lactic acid. The rete mirabile must act to multiply the primary partial pressure of carbon dioxide produced by acidification of the blood. The function of the rete mirabile as a countercurrent multiplier has been proposed by Kuhn, W., Ramel, A., Kuhn, H. J., and Marti, E., Experientia, 1963, 19, 497. Our findings provide strong support for their theory. The unique structure of the gas-secreting complex of the swim-bladder of the bluefish, Pomatomus saltatrix L., is described. PMID:14225261

  17. Portable Unit for Metabolic Analysis

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Pitch, Nancy D.; Lewis, Mark E.; Juergens, Jeffrey R.; Lichter, Michael J.; Stuk, Peter M.; Diedrick, Dale M.; Valentine, Russell W.; Pettegrew, Richard D.

    2007-01-01

    The Portable Unit for Metabolic Analysis (PUMA) is an instrument that measures several quantities indicative of human metabolic function. Specifically, this instrument makes time-resolved measurements of temperature, pressure, flow, and the partial pressures of oxygen and carbon dioxide in breath during both inhalation and exhalation. Portable instruments for measuring these quantities have been commercially available, but the response times of those instruments are too long to enable temporal resolution of phenomena on the time scales of human respiration cycles. In contrast, the response time of the PUMA is significantly shorter than characteristic times of human respiration phenomena, making it possible to analyze varying metabolic parameters, not only on sequential breath cycles but also at successive phases of inhalation and exhalation within the same breath cycle. In operation, the PUMA is positioned to sample breath near the subject s mouth. Commercial off-the-shelf sensors are used for three of the measurements: a miniature pressure transducer for pressure, a thermistor for temperature, and an ultrasonic sensor for flow. Sensors developed at Glenn Research Center are used for measuring the partial pressures of oxygen and carbon dioxide: The carbon dioxide sensor exploits the relatively strong absorption of infrared light by carbon dioxide. Light from an infrared source passes through the stream of inhaled or exhaled gas and is focused on an infrared- sensitive photodetector. The oxygen sensor exploits the effect of oxygen in quenching the fluorescence of ruthenium-doped organic molecules in a dye on the tip of an optical fiber. A blue laser diode is used to excite the fluorescence, and the optical fiber carries the fluorescent light to a photodiode, the temporal variation of the output of which bears a known relationship with the rate of quenching of fluorescence and, hence, with the partial pressure of oxygen. The outputs of the sensors are digitized, preprocessed by a small onboard computer, and then sent wirelessly to a desktop computer, where the collected data are analyzed and displayed. In addition to the raw data on temperature, pressure, flow, and mole fractions of oxygen and carbon dioxide, the display can include volumetric oxygen consumption, volumetric carbon dioxide production, respiratory equivalent ratio, and volumetric flow rate of exhaled gas.

  18. Coral reefs and carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buddemeier, R.W.

    1996-03-01

    This commentary argues the conclusion from a previous article, which investigates diurnal changes in carbon dioxide partial pressure and community metabolism on coral reefs, that coral `reefs might serve as a sink, not a source, for atmospheric carbon dioxide.` Commentaries from two groups are given along with the response by the original authors, Kayanne et al. 27 refs.

  19. Operation and testing of Mark 10 Mod 3 underwater breathing apparatus

    NASA Technical Reports Server (NTRS)

    Milwee, W. I., Jr.

    1972-01-01

    Performance tests on a closed circuit, mixed gas underwater breathing apparatus are reported. The equipment is designed to provide a minimum diving duration of four hours at 1500 ft below sea surface; it senses oxygen partial pressure in the breathing gas mix and controls oxygen content of the breathing gas within narrow limits about a preset value. The breathing circuit subsystem provides respirable gas to the diver and removes carbon dioxide and moisture from the expired gas. Test results indicate undesirable variations in oxygen partial pressure with oxygen addition and insufficient carbon dioxide absorption.

  20. Effects of changing body position on oxygenation and arterial blood pressures in foals anesthetized with guaifenesin, ketamine, and xylazine.

    PubMed

    Braun, Christina; Trim, Cynthia M; Eggleston, Randy B

    2009-01-01

    To investigate the impact of a change in body position on blood gases and arterial blood pressures in foals anesthetized with guaifenesin, ketamine, and xylazine. Prospective, randomized experimental study. Twelve Quarter Horse foals, age of 5.4 +/-0.9 months and weighing 222 +/- 48 kg. Foals were anesthetized with guaifenesin, ketamine, and xylazine for 40 minutes in lateral recumbency and then assigned to a change in lateral recumbency after hoisting (Group 1, n = 6), or no change (Group 2, n = 6). Oxygen 15 L minute(-1) was insufflated into the endotracheal tube throughout anesthesia. Arterial blood pressure, heart rate, respiratory rate (f(R)), inspired fraction of oxygen (FIO(2)), and end-tidal carbon dioxide (PE'CO(2)) were measured every 5 minutes. Arterial pH and blood gases [arterial partial pressure of oxygen (PaO(2)), arterial partial pressure of carbon dioxide (PaCO(2))] were measured at 10, 30, and 40 minutes after induction, and 5 minutes after hoisting. Alveolar dead space ventilation and PaO(2)/FIO(2) were calculated. Two repeated measures models were used. All hypothesis tests were two-sided and significance level was alpha = 0.05. All values are presented as least square means +/- SE. Values at time-matched points from the two groups were not significantly different so they were combined. Arterial partial pressure of oxygen decreased significantly from 149 +/- 14.4 mmHg before hoisting to 92 +/- 11.6 mmHg after hoisting (p = 0.0013). The PaO(2)/FIO(2) ratio decreased from 275 +/- 30 to 175 +/- 24 (p = 0.0055). End-tidal carbon dioxide decreased significantly from 48.7 +/- 1.6 to 44.5 +/- 1.2 mmHg (p = 0.021). Arterial partial pressure of carbon dioxide, blood pressures and heart rates measured 5 minutes after hoisting were not different from measurements obtained before hoisting. Hoisting decreased PaO(2) in anesthetized healthy foals. Administration of supplemental oxygen is recommended to counter the decrease in oxygenation and PaO(2) measurement is necessary to detect early changes.

  1. Reproducibility of the exponential rise technique of CO(2) rebreathing for measuring P(v)CO(2) and C(v)CO(2 )to non-invasively estimate cardiac output during incremental, maximal treadmill exercise.

    PubMed

    Cade, W Todd; Nabar, Sharmila R; Keyser, Randall E

    2004-05-01

    The purpose of this study was to determine the reproducibility of the indirect Fick method for the measurement of mixed venous carbon dioxide partial pressure (P(v)CO(2)) and venous carbon dioxide content (C(v)CO(2)) for estimation of cardiac output (Q(c)), using the exponential rise method of carbon dioxide rebreathing, during non-steady-state treadmill exercise. Ten healthy participants (eight female and two male) performed three incremental, maximal exercise treadmill tests to exhaustion within 1 week. Non-invasive Q(c) measurements were evaluated at rest, during each 3-min stage, and at peak exercise, across three identical treadmill tests, using the exponential rise technique for measuring mixed venous PCO(2) and CCO(2) and estimating venous-arterio carbon dioxide content difference (C(v-a)CO(2)). Measurements were divided into measured or estimated variables [heart rate (HR), oxygen consumption (VO(2)), volume of expired carbon dioxide (VCO(2)), end-tidal carbon dioxide (P(ET)CO(2)), arterial carbon dioxide partial pressure (P(a)CO(2)), venous carbon dioxide partial pressure ( P(v)CO(2)), and C(v-a)CO(2)] and cardiorespiratory variables derived from the measured variables [Q(c), stroke volume (V(s)), and arteriovenous oxygen difference ( C(a-v)O(2))]. In general, the derived cardiorespiratory variables demonstrated acceptable (R=0.61) to high (R>0.80) reproducibility, especially at higher intensities and peak exercise. Measured variables, excluding P(a)CO(2) and C(v-a)CO(2), also demonstrated acceptable (R=0.6 to 0.79) to high reliability. The current study demonstrated acceptable to high reproducibility of the exponential rise indirect Fick method in measurement of mixed venous PCO(2) and CCO(2) for estimation of Q(c) during incremental treadmill exercise testing, especially at high-intensity and peak exercise.

  2. CO.sub.2 Pretreatment prevents calcium carbonate formation

    DOEpatents

    Neavel, Richard C.; Brunson, Roy J.; Chaback, Joseph J.

    1980-01-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by pretreatment with carbon dioxide. The carbon dioxide pretreatment is believed to convert the scale-forming components to the corresponding carbonate prior to liquefaction. The pretreatment is accomplished at a total pressure within the range from about 14 to about 68 atmospheres and a carbon dioxide partial pressure within the range from about 14 to about 34 atmospheres. Temperature during pretreatment will generally be within the range from about 100.degree. to about 200.degree. C.

  3. One-man electrochemical air revitalization system evaluation

    NASA Technical Reports Server (NTRS)

    Schbert, F. H.; Marshall, R. D.; Hallick, T. M.; Woods, R. R.

    1976-01-01

    A program to evaluate the performance of a one man capacity, self contained electrochemical air revitalization system was successfully completed. The technology readiness of this concept was demonstrated by characterizing the performance of this one man system over wide ranges in cabin atmospheric conditions. The electrochemical air revitalization system consists of a water vapor electrolysis module to generate oxygen from water vapor in the cabin air, and an electrochemical depolarized carbon dioxide concentrator module to remove carbon dioxide from the cabin air. A control/monitor instrumentation package that uses the electrochemical depolarized concentrator module power generated to partially offset the water vapor electrolysis module power requirements and various structural fluid routing components are also part of the system. The system was designed to meet the one man metabolic oxygen generation and carbon dioxide removal requirements, thereby controlling cabin partial pressure of oxygen at 22 kN/sq m and cabin pressure of carbon dioxide at 400 N/sq m over a wide range in cabin air relative humidity conditions.

  4. The Bohr Effect Is Not a Likely Promoter of Renal Preglomerular Oxygen Shunting

    PubMed Central

    Olgac, Ufuk; Kurtcuoglu, Vartan

    2016-01-01

    The aim of this study was to evaluate whether possible preglomerular arterial-to-venous oxygen shunting is affected by the interaction between renal preglomerular carbon dioxide and oxygen transport. We hypothesized that a reverse (venous-to-arterial) shunting of carbon dioxide will increase partial pressure of carbon dioxide and decrease pH in the arteries and thereby lead to increased oxygen offloading and consequent oxygen shunting. To test this hypothesis, we employed a segment-wise three-dimensional computational model of coupled renal oxygen and carbon dioxide transport, wherein coupling is achieved by shifting the oxygen-hemoglobin dissociation curve in dependence of local changes in partial pressure of carbon dioxide and pH. The model suggests that primarily due to the high buffering capacity of blood, there is only marginally increased acidity in the preglomerular vasculature compared to systemic arterial blood caused by carbon dioxide shunting. Furthermore, effects of carbon dioxide transport do not promote but rather impair preglomerular oxygen shunting, as the increase in acidity is higher in the veins compared to that in the arteries. We conclude that while substantial arterial-to-venous oxygen shunting might take place in the postglomerular vasculature, the net amount of oxygen shunted at the preglomerular vasculature appears to be marginal. PMID:27833564

  5. [Peroxynitrite effect on the haemoglobin oxygen affinity in vitro in presence of different partial pressure of carbon dioxide].

    PubMed

    Stepuro, T L; Zinchuk, V V

    2011-08-01

    Peroxynitrite (ONOO-) besides its toxic possesses regulatory action that includes the modulation of oxygen binding properties of blood. The aim of this work was to estimate ONOO- effect on the haemoglobin oxygen affinity (HOA) in vitro in presence of different partial pressure of carbon dioxide (CO2). The ONOO- presence in venous blood in conditions of hypercapnia induced oxyhaemoglobin dissociation curve shift leftward while in hypocapnic conditions the result of a different character was obtained. The revealed effect of ONOO- is realized, possibly, through various modifications ofhaemoglobin whose formation is dependent on the CO2 pressure. The ONOO- influences the HOA in different manner that can be important in regulation of blood oxygenation in lungs and maintenance of oxygen consumption in tissues.

  6. Sapwood development in Pinus radiata trees grown for three years at ambient and elevated carbon dioxide partial pressures.

    PubMed

    Atwell, B J; Henery, M L; Whitehead, D

    2003-01-01

    Clonal trees of Pinus radiata D. Don were grown in open-top chambers at a field site in New Zealand for 3 years at ambient (37 Pa) or elevated (65 Pa) carbon dioxide (CO2) partial pressure. Nitrogen (N) was supplied to half of the trees in each CO2 treatment, at 15 g N m-2 in the first year and 60 g N m-2 in the subsequent 2 years (high-N treatment). Trees in the low-N treatment were not supplied with N but received the same amount of other nutrients as trees in the high-N treatment. In the first year, stem basal area increased more in trees growing at elevated CO2 partial pressure and high-N supply than in control trees, suggesting a positive interaction between these resources. However, the relative rate of growth became the same across trees in all treatments after 450 days, resulting in trees growing at elevated CO2 partial pressure and high-N supply having larger basal areas than trees in the other treatments. Sapwood N content per unit dry mass was consistently about 0.09% in all treatments, indicating that N status was not suppressed by elevated CO2 partial pressure. Thus, during the first year of growth, an elevated CO2 partial pressure enhanced carbon (C) and N storage in woody stems, but there was no further stimulus to C and N deposition after the first year. The chemical composition of sapwood was unaffected by elevated CO2 partial pressure, indicating that no additional C was sequestered through lignification. However, independent of the treatments, early wood was 13% richer in lignin than late wood. Elevated CO2 partial pressure decreased the proportion of sapwood occupied by the lumina of tracheids by up to 12%, indicating increased sapwood density in response to CO2 enrichment. This effect was probably a result of thicker tracheid walls rather than narrower lumina.

  7. Thermodynamic Equilibrium Solubility of Diethanolamine – N-Butyl-1-Methylpyrrolidinium Dicyanamide [DEABMPYRR DCA] Mixtures for Carbon Dioxide Capture

    NASA Astrophysics Data System (ADS)

    Salleh, R. M.; Jamaludin, S. N.

    2018-05-01

    Solubility data of carbon dioxide (CO2) in aqueous Diethanolamine (DEA) blended with pyrrolidinium-based ionic liquid: N-Butyl-1-Methylpyrrolidinium Dıcyanamıde [Bmpyrr][DCA] are presented at various temperatures (313.15K-333.15K) and pressure up to about 700 psi. The concentration of [Bmpyrr][DCA] ranges from 0-10wt% and 30-40wt% for DEA. The solubility of CO2 was evaluated by measuring the pressure drop in high pressure stirred absorption cell reactor. The CO2 loading in all studied mixtures increases with an increase in CO2 partial pressure and decreases with temperature. It was also found that the CO2 loading capacity decrease as the concentration of [Bmpyrr][DCA] increases. The experimental data were correlated as a function of temperature and CO2 partial pressure to predict the solubility of CO2 in the mixtures. It was found that the model predicted results in a good agreement with experimental value.

  8. Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone

    Treesearch

    N.J. Karberg; K.S. Pregitzer; J.S. King; A.L. Friend; J.R. Wood

    2004-01-01

    Global emissions of atmospheric CO2 and tropospheric O3 are rising and expected to impact large areas of the Earth's forests. While CO2 stimulates net primary production, O3 reduces photosynthesis, altering plant C allocation and reducing ecosystem C storage. The effects...

  9. Alkylamine functionalized metal-organic frameworks for composite gas separations

    DOEpatents

    Long, Jeffrey R.; McDonald, Thomas M.; D'Alessandro, Deanna M.

    2018-01-09

    Functionalized metal-organic framework adsorbents with ligands containing basic nitrogen groups such as alkylamines and alkyldiamines appended to the metal centers and method of isolating carbon dioxide from a stream of combined gases and carbon dioxide partial pressures below approximately 1 and 1000 mbar. The adsorption material has an isosteric heat of carbon dioxide adsorption of greater than -60 kJ/mol at zero coverage using a dual-site Langmuir model.

  10. Is increased positive end-expiratory pressure the culprit? Autoresuscitation in a 44-year-old man after prolonged cardiopulmonary resuscitation: a case report.

    PubMed

    Hagmann, Henning; Oelmann, Katrin; Stangl, Robert; Michels, Guido

    2016-12-20

    The phenomenon of autoresuscitation is rare, yet it is known to most emergency physicians. However, the pathophysiology of the delayed return of spontaneous circulation remains enigmatic. Among other causes hyperinflation of the lungs and excessively high positive end-expiratory pressure have been suggested, but reports including cardiopulmonary monitoring during cardiopulmonary resuscitation are scarce to support this hypothesis. We report a case of autoresuscitation in a 44-year-old white man after 80 minutes of advanced cardiac life support accompanied by continuous capnometry and repeated evaluation by ultrasound and echocardiography. After prolonged cardiopulmonary resuscitation, refractory electromechanical dissociation on electrocardiogram and ventricular akinesis were recorded. In addition, a precipitous drop in end-tidal partial pressure of carbon dioxide was noted and cardiopulmonary resuscitation was discontinued. Five minutes after withdrawal of all supportive measures his breathing resumed and a perfusing rhythm ensued. Understanding the underlying pathophysiology of autoresuscitation is hampered by a lack of reports including extensive cardiopulmonary monitoring during cardiopulmonary resuscitation in a preclinical setting. In this case, continuous capnometry was combined with repetitive ultrasound evaluation, which ruled out most assumed causes of autoresuscitation. Our observation of a rapid decline in end-tidal partial pressure of carbon dioxide supports the hypothesis of increased intrathoracic pressure. Continuous capnometry can be performed easily during cardiopulmonary resuscitation, also in a preclinical setting. Knowledge of the pathophysiologic mechanisms may lead to facile interventions to be incorporated into cardiopulmonary resuscitation algorithms. A drop in end-tidal partial pressure of carbon dioxide, for example, might prompt disconnection of the ventilation to allow left ventricular filling. Further reports and research on this topic are encouraged.

  11. Randomized trial of low versus high carbon dioxide insufflation pressures in posterior retroperitoneoscopic adrenalectomy.

    PubMed

    Fraser, Sheila; Norlén, Olov; Bender, Kyle; Davidson, Joanne; Bajenov, Sonya; Fahey, David; Li, Shawn; Sidhu, Stan; Sywak, Mark

    2018-05-01

    Posterior retroperitoneoscopic adrenalectomy has gained widespread acceptance for the removal of benign adrenal tumors. Higher insufflation pressures using carbon dioxide (CO 2 ) are required, although the ideal starting pressure is unclear. This prospective, randomized, single-blinded, study aims to compare physiologic differences with 2 different CO 2 insufflation pressures during posterior retroperitoneoscopic adrenalectomy. Participants were randomly assigned to a starting insufflation pressure of 20 mm Hg (low pressure) or 25 mm Hg (high pressure). The primary outcome measure was partial pressure of arterial CO 2 at 60 minutes. Secondary outcomes included end-tidal CO 2 , arterial pH, blood pressure, and peak airway pressure. Breaches of protocol to change insufflation pressure were permitted if required and were recorded. A prospective randomized trial including 31 patients (low pressure: n = 16; high pressure: n = 15) was undertaken. At 60 minutes, the high pressure group had greater mean partial pressure of arterial CO 2 (64 vs 50 mm Hg, P = .003) and end-tidal CO 2 (54 vs 45 mm Hg, P = .008) and a lesser pH (7.21 vs 7.29, P = .0005). There were no significant differences in base excess, peak airway pressure, operative time, or duration of hospital stay. Clinically indicated protocol breaches were more common in the low pressure than the high pressure group (8 vs 3, P = .03). In posterior retroperitoneoscopic adrenalectomy, greater insufflation pressures are associated with greater partial pressure of arterial CO 2 and end-tidal CO 2 and lesser pH at 60 minutes, be significant. Commencing with lesser CO 2 insufflation pressures decreases intraoperative acidosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. SYNTHESIZING ALCOHOLS AND KETONES BY PHOTOINDUCED CATALYTIC PARTIAL-OXIDATION OF HYDROCARBONS IN TI02 FILM REACTORS PREPARED BY THREE DIFFERENT METHODS

    EPA Science Inventory

    The partial oxidation of cyclohexane to cyclohexanol and cyclohexanone on UV irradiated titanium dioxide films in the presence of molecular oxygen at ambient temperatures and pressures was studied. Three different coating methodologies (dip coating using titanium isopropoxide an...

  13. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions

    PubMed Central

    Parati, Gianfranco; Agostoni, Piergiuseppe; Basnyat, Buddha; Bilo, Grzegorz; Brugger, Hermann; Coca, Antonio; Festi, Luigi; Giardini, Guido; Lironcurti, Alessandra; Luks, Andrew M; Maggiorini, Marco; Modesti, Pietro A; Swenson, Erik R; Williams, Bryan; Bärtsch, Peter; Torlasco, Camilla

    2018-01-01

    Abstract Take home figureAdapted from Bärtsch and Gibbs2 Physiological response to hypoxia. Life-sustaining oxygen delivery, in spite of a reduction in the partial pressure of inhaled oxygen between 25% and 60% (respectively at 2500 m and 8000 m), is ensured by an increase in pulmonary ventilation, an increase in cardiac output by increasing heart rate, changes in vascular tone, as well as an increase in haemoglobin concentration. BP, blood pressure; HR, heart rate; PaCO2, partial pressure of arterial carbon dioxide. PMID:29340578

  14. Testing of Alternative Materials for Advanced Suit Bladders

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Orndoff, Evelyne; Makinen, Janice; Tang, Henry

    2011-01-01

    Several candidate advanced pressure bladder membrane materials have been developed for NASA Johnson Space Center by DSM Biomedical for selective permeability of carbon dioxide and water vapor. These materials were elasthane and two other formulations of thermoplastic polyether polyurethane. Each material was tested in two thicknesses for permeability to carbon dioxide, oxygen and water vapor. Although oxygen leaks through the suit bladder would amount to only about 60 cc/hr in a full size suit, significant amounts of carbon dioxide would not be rejected by the system to justify its use. While the ratio of carbon dioxide to oxygen permeability is about 48 to 1, this is offset by the small partial pressure of carbon dioxide in acceptable breathing atmospheres of the suit. Humidity management remains a possible use of the membranes depending on the degree to which the water permeability is inhibited by cations in the sweat. Tests are underway to explore cation fouling from sweat.

  15. Cullin 5 Expression in the Rat: Cellular and Tissue Distribution, and Changes in Response to Water Deprivation and Hemorrhagic Shock

    DTIC Science & Technology

    2003-02-28

    of Health p53 tumor suppressor PBS phosphate buffered saline PCO2 partial pressure of carbon dioxide PO2 partial pressure of oxygen PCR...buffered saline TTBS tween-20 tris buffered saline TonEBP tonicity-response enhancer binding protein TSNRP TriService Nursing Research Program...growth and metabolism (Hochstrasser, 1995; Deshaies, 1999). Although traditionally seen as no more than a means of eliminating no longer needed

  16. Development of system design information for carbon dioxide using an amine type sorber

    NASA Technical Reports Server (NTRS)

    Rankin, R. L.; Roehlich, F.; Vancheri, F.

    1971-01-01

    Development work on system design information for amine type carbon dioxide sorber is reported. Amberlite IR-45, an aminated styrene divinyl benzene matrix, was investigated to determine the influence of design parameters of sorber particle size, process flow rate, CO2 partial pressure, total pressure, and bed designs. CO2 capacity and energy requirements for a 4-man size system were related mathematically to important operational parameters. Some fundamental studies in CO2 sorber capacity, energy requirements, and process operation were also performed.

  17. Absorption of Carbon Dioxide in the aqueous solution of Diethanolamine (DEA) blended with 1-Butyl-1-Methylpyrrolidinium Trifluoromethanesulfonate [BmPyrr][OTf] at high pressure

    NASA Astrophysics Data System (ADS)

    Jamaludin, S. N.; Salleh, R. M.

    2018-03-01

    Solubility data of carbon dioxide (CO2) in aqueous Diethanolamine (DEA) blended with 1-Butyl-1-Methylpyrrolidinium Trifluoromethanesulfonate [Bmpyrr][OTf] were measured at temperature 313.15K, 323.15K, 333.15K and pressure from 500psi up to 700 psi. The experiments covered over the concentration range of 0-10wt% for [Bmpyrr][OTf] and 30-40wt% for DEA. The solubility of CO2 was evaluated by measuring the pressure drop in high pressure stirred absorption cell reactor. The experimental results showed that CO2 loading in all DEA-[BmPyrr][OTf] mixtures studied increases with increasing of CO2 partial pressure and temperature. It was also found that the CO2 loading capacity increase significantly as the concentration of [Bmpyrr][OTf] increases. Jou and Mather model was used to predict the solubility of CO2 in the mixtures where the experimental data were correlated as a function of temperature and CO2 partial pressure. It was found that the model was successful in predicting the solubility behavior of the aqueous DEA-[Bmpyrr][OTf] systems considered in this study.

  18. Thin film oxygen partial pressure sensor

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  19. Carbon Dioxide Collection and Purification System for Mars

    NASA Technical Reports Server (NTRS)

    Clark, D. Larry; Trevathan, Joseph R.

    2001-01-01

    One of the most abundant resources available on Mars is the atmosphere. The primary constituent, carbon dioxide, can be used to produce a wide variety of consumables including propellants and breathing air. The residual gases can be used for additional pressurization tasks including supplementing the oxygen partial pressure in human habitats. A system is presented that supplies pure, high-pressure carbon dioxide and a separate stream of residual gases ready for further processing. This power-efficient method freezes the carbon dioxide directly from the atmosphere using a pulse-tube cryocooler. The resulting CO2 mass is later thawed in a closed pressure vessel, resulting in a compact source of liquefied gas at the vapor pressure of the bulk fluid. Results from a demonstration system are presented along with analysis and system scaling factors for implementation at larger scales. Trace gases in the Martian atmosphere challenge the system designer for all carbon dioxide acquisitions concepts. The approximately five percent of other gases build up as local concentrations of CO2 are removed, resulting in diminished performance of the collection process. The presented system takes advantage of this fact and draws the concentrated residual gases away as a useful byproduct. The presented system represents an excelient volume and mass solution for collecting and compressing this valuable Martian resource. Recent advances in pulse-tube cryocooler technology have enabled this concept to be realized in a reliable, low power implementation.

  20. [Effect of oxygen tubing connection site on percutaneous oxygen partial pressure and percutaneous carbon dioxide partial pressure in patients with chronic obstructive pulmonary disease during noninvasive positive pressure ventilation].

    PubMed

    Mi, S; Zhang, L M

    2017-04-12

    Objective: We evaluated the effects of administering oxygen through nasal catheters inside the mask or through the mask on percutaneous oxygen partial pressure (PcO(2))and percutaneous carbon dioxide partial pressure (PcCO(2)) during noninvasive positive pressure ventilation (NPPV) to find a better way of administering oxygen, which could increase PcO(2) by increasing the inspired oxygen concentration. Methods: Ten healthy volunteers and 9 patients with chronic obstructive pulmonary disease complicated by type Ⅱ respiratory failure were included in this study. Oxygen was administered through a nasal catheter inside the mask or through the mask (oxygen flow was 3 and 5 L/min) during NPPV. PcO(2) and PcCO(2) were measured to evaluate the effects of administering oxygen through a nasal catheter inside the mask or through the mask, indirectly reflecting the effects of administering oxygen through nasal catheter inside the mask or through the mask on inspired oxygen concentration. Results: Compared to administering oxygen through the mask during NPPV, elevated PcO(2) was measured in administering oxygen through the nasal catheter inside the mask, and the differences were statistically significant ( P <0.05). At the same time, there was no significant change in PcCO(2) ( P >0.05). Conclusion: Administering oxygen through a nasal catheter inside the mask during NPPV increased PcO(2) by increasing the inspired oxygen concentration but did not increase PcCO(2). This method of administering oxygen could conserve oxygen and be suitable for family NPPV. Our results also provided theoretical basis for the development of new masks.

  1. Cerebral blood flow response to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kern, F.H.; Ungerleider, R.M.; Quill, T.J.

    1991-04-01

    We examined the relationship of changes in partial pressure of carbon dioxide on cerebral blood flow responsiveness in 20 pediatric patients undergoing hypothermic cardiopulmonary bypass. Cerebral blood flow was measured during steady-state hypothermic cardiopulmonary bypass with the use of xenon 133 clearance methodology at two different arterial carbon dioxide tensions. During these measurements there was no significant change in mean arterial pressure, nasopharyngeal temperature, pump flow rate, or hematocrit value. Cerebral blood flow was found to be significantly greater at higher arterial carbon dioxide tensions (p less than 0.01), so that for every millimeter of mercury rise in arterial carbonmore » dioxide tension there was a 1.2 ml.100 gm-1.min-1 increase in cerebral blood flow. Two factors, deep hypothermia (18 degrees to 22 degrees C) and reduced age (less than 1 year), diminished the effect carbon dioxide had on cerebral blood flow responsiveness but did not eliminate it. We conclude that cerebral blood flow remains responsive to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in infants and children; that is, increasing arterial carbon dioxide tension will independently increase cerebral blood flow.« less

  2. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  3. Toxicity of elevated partial pressures of carbon dioxide to invasive New Zealand mudsnails

    USGS Publications Warehouse

    Nielson, R. Jordan; Moffitt, Christine M.; Watten, Barnaby J.

    2012-01-01

    The authors tested the efficacy of elevated partial pressures of CO2 to kill invasive New Zealand mudsnails. The New Zealand mudsnails were exposed to 100 kPa at three water temperatures, and the survival was modeled versus dose as cumulative °C-h. We estimated an LD50 of 59.4°C-h for adult and juvenile New Zealand mudsnails. The results suggest that CO2 may be an effective and inexpensive lethal tool to treat substrates, tanks, or materials infested with New Zealand mudsnails.

  4. Sulfation of ceria-zirconia model automotive emissions control catalysts

    NASA Astrophysics Data System (ADS)

    Nelson, Alan Edwin

    Cerium-zirconium mixed metal oxides are used in automotive emissions control catalysts to regulate the partial pressure of oxygen near the catalyst surface. The near surface oxygen partial pressure is regulated through transfer of atomic oxygen from the ceria-zirconia solid matrix to the platinum group metals to form metal oxides capable of oxidizing carbon monoxide and unburned hydrocarbons. Although the addition of zirconium in the cubic lattice of ceria increases the oxygen storage capacity and thermal stability of the ceria matrix, the cerium-zirconium oxide system remains particularly susceptible to deactivation from sulfur compounds. While the overall effect of sulfur on these systems is understood (partially irreversible deactivation), the fundamental and molecular interaction of sulfur with ceria-zirconia remains a challenging problem. Ceria-zirconia metal oxide solid solutions have been prepared through co-precipitation with nitrate precursors. The prepared powders were calcined and subsequently formed into planer wafers and characterized for chemical and physical attributes. The prepared samples were subsequently exposed to a sulfur dioxide based environment and characterized with spectroscopic techniques to characterize the extent of sulfation and the nature of surface sulfur species. The extent of sulfation of the model ceria-zirconia systems was characterized with Auger electron spectroscopy (AES) prior to and after treatment in a microreactor. Strong dependencies were observed between the atomic ratio of ceria to zirconia and the extent of sulfation. In addition, the partial pressure of sulfur dioxide during treatments also correlated to the extent of sulfation, while temperature only slightly effected the extent of sulfation. The AES data suggests the gas phase sulfur dioxide preferentially chemisorbs on surface ceria atoms and the extent of sulfation is heavily dependent on sulfur dioxide concentrations and only slightly dependent on catalyst temperatures, as confirmed by thermal programmed desorption (TPD). While hydrogen exposure indicated slight sulfur removal, exposure to a redox environment or atmosphere nearly eliminated the quantity of chemisorbed surface sulfur. The nature of sulfur removal is attributed to the inherent redox properties of ceria-zirconia systems. The complete analysis provides mechanistic insight into sulfation dependencies and fundamental information regarding sulfur adsorption on ceria-zirconia model automotive emissions control systems.

  5. Respiratory gas exchange of high altitude adapted chick embryos

    NASA Technical Reports Server (NTRS)

    Wangensteen, O. D.; Rahn, H.; Burton, R. R.; Smith, A. H.

    1974-01-01

    Study of gas exchange by embryos from chickens acclimatized to an altitude of 3800 m. The oxygen partial pressure and carbon dioxide partial pressure differences across the egg shell were measured and found to be less than the values previously reported for sea-level eggs by about a factor of two. Further measurements of embryonic oxygen consumption and shell conductivity to oxygen indicated that, compared to eggs at sea level, oxygen consumption was reduced by a factor of 0.58 while conductivity to oxygen was increased only by a factor of 1.07 in the high-altitude eggs. These independent measurements predict the change in oxygen partial pressure across the egg shell of the high-altitude eggs to be only 0.54 times that of sea-level eggs; the directly measured factor was 0.53. The authors conclude that at high altitude, a major adaptation of the chick embryo is a reduced metabolism which decreases the change in oxygen partial pressure across the egg shell since its gas conductivity remains essentially unchanged.

  6. Variations in Alveolar Partial Pressure for Carbon Dioxide and Oxygen Have Additive Not Synergistic Acute Effects on Human Pulmonary Vasoconstriction

    PubMed Central

    Croft, Quentin P. P.; Formenti, Federico; Talbot, Nick P.; Lunn, Daniel; Robbins, Peter A.; Dorrington, Keith L.

    2013-01-01

    The human pulmonary vasculature constricts in response to hypercapnia and hypoxia, with important consequences for homeostasis and adaptation. One function of these responses is to direct blood flow away from poorly-ventilated regions of the lung. In humans it is not known whether the stimuli of hypercapnia and hypoxia constrict the pulmonary blood vessels independently of each other or whether they act synergistically, such that the combination of hypercapnia and hypoxia is more effective than the sum of the responses to each stimulus on its own. We independently controlled the alveolar partial pressures of carbon dioxide (Paco 2) and oxygen (Pao 2) to examine their possible interaction on human pulmonary vasoconstriction. Nine volunteers each experienced sixteen possible combinations of four levels of Paco 2 (+6, +1, −4 and −9 mmHg, relative to baseline) with four levels of Pao 2 (175, 100, 75 and 50 mmHg). During each of these sixteen protocols Doppler echocardiography was used to evaluate cardiac output and systolic tricuspid pressure gradient, an index of pulmonary vasoconstriction. The degree of constriction varied linearly with both Paco 2 and the calculated haemoglobin oxygen desaturation (1-So 2). Mixed effects modelling delivered coefficients defining the interdependence of cardiac output, systolic tricuspid pressure gradient, ventilation, Paco 2 and So 2. No interaction was observed in the effects on pulmonary vasoconstriction of carbon dioxide and oxygen (p>0.64). Direct effects of the alveolar gases on systolic tricuspid pressure gradient greatly exceeded indirect effects arising from concurrent changes in cardiac output. PMID:23935847

  7. Variations in alveolar partial pressure for carbon dioxide and oxygen have additive not synergistic acute effects on human pulmonary vasoconstriction.

    PubMed

    Croft, Quentin P P; Formenti, Federico; Talbot, Nick P; Lunn, Daniel; Robbins, Peter A; Dorrington, Keith L

    2013-01-01

    The human pulmonary vasculature constricts in response to hypercapnia and hypoxia, with important consequences for homeostasis and adaptation. One function of these responses is to direct blood flow away from poorly-ventilated regions of the lung. In humans it is not known whether the stimuli of hypercapnia and hypoxia constrict the pulmonary blood vessels independently of each other or whether they act synergistically, such that the combination of hypercapnia and hypoxia is more effective than the sum of the responses to each stimulus on its own. We independently controlled the alveolar partial pressures of carbon dioxide (Paco 2) and oxygen (Pao 2) to examine their possible interaction on human pulmonary vasoconstriction. Nine volunteers each experienced sixteen possible combinations of four levels of Paco 2 (+6, +1, -4 and -9 mmHg, relative to baseline) with four levels of Pao 2 (175, 100, 75 and 50 mmHg). During each of these sixteen protocols Doppler echocardiography was used to evaluate cardiac output and systolic tricuspid pressure gradient, an index of pulmonary vasoconstriction. The degree of constriction varied linearly with both Paco 2 and the calculated haemoglobin oxygen desaturation (1-So2). Mixed effects modelling delivered coefficients defining the interdependence of cardiac output, systolic tricuspid pressure gradient, ventilation, Paco 2 and So2. No interaction was observed in the effects on pulmonary vasoconstriction of carbon dioxide and oxygen (p>0.64). Direct effects of the alveolar gases on systolic tricuspid pressure gradient greatly exceeded indirect effects arising from concurrent changes in cardiac output.

  8. Solubilities of carbon dioxide in aqueous potassium carbonate solutions mixed with physical solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S.B.; Lee, H.; Lee, K.H.

    1998-09-01

    The removal of acidic gases such as CO{sub 2}, H{sub 2}S, and COS from gas streams is a very important operation for petrochemical, oil refineries, ammonia manufacture, coal gasification, and natural gas purification plants. Here, the solubilities of carbon dioxide in aqueous potassium carbonate (K{sub 2}CO{sub 3}) solutions mixed with physical solvents were measured at 298.2 and 323.2 K with a CO{sub 2} partial-pressure range of 5 kPa to 2 MPa. 1,2-propanediol and propylene carbonate were selected as physical solvents. The aqueous solutions treated in this study were 5 mass% K{sub 2}CO{sub 3}-15 mass% 1,2-propanediol and propylene carbonate were selectedmore » as physical solvents. The aqueous solutions treated in this study were 5 mass% K{sub 2}CO{sub 3}-15 mass% propylene carbonate. The experimental solubility results were presented by the mole ratio of CO{sub 2} and K{sub 2}CO{sub 3} contained in the liquid mixture. The addition of 1,2-propanediol to 5 mass% K{sub 2}CO{sub 3} solution lowered the solubility of CO{sub 2} at constant temperature and pressure conditions when CO{sub 2} partial-pressure range of 5 kPa to 2 MPa. In the case of propylene carbonate the addition of propylene carbonate increased the experimental solubilities in the region of low CO{sub 2} partial pressures and decreased as the CO{sub 2} partial pressure was increased above atmospheric. The solubilities of CO{sub 2} decreased with increasing temperature in the range of 298.2 to 323.2 K.« less

  9. Carbon Dioxide Fluctuations Are Associated with Changes in Cerebral Oxygenation and Electrical Activity in Infants Born Preterm.

    PubMed

    Dix, Laura Marie Louise; Weeke, Lauren Carleen; de Vries, Linda Simone; Groenendaal, Floris; Baerts, Willem; van Bel, Frank; Lemmers, Petra Maria Anna

    2017-08-01

    To evaluate the effects of acute arterial carbon dioxide partial pressure changes on cerebral oxygenation and electrical activity in infants born preterm. This retrospective observational study included ventilated infants born preterm with acute fluctuations of continuous end-tidal CO 2 (etCO 2 ) as a surrogate marker for arterial carbon dioxide partial pressure, during the first 72 hours of life. Regional cerebral oxygen saturation and fractional tissue oxygen extraction were monitored with near-infrared spectroscopy. Brain activity was monitored with 2-channel electroencephalography. Spontaneous activity transients (SATs) rate (SATs/minute) and interval between SATs (in seconds) were calculated. Ten-minute periods were selected for analysis: before, during, and after etCO 2 fluctuations of ≥5  mm Hg. Thirty-eight patients (mean ± SD gestational age of 29 ± 1.8 weeks) were included, with 60 episodes of etCO 2 increase and 70 episodes of etCO 2 decrease. During etCO 2 increases, brain oxygenation increased (regional cerebral oxygen saturation increased, fractional tissue oxygen extraction decreased; P < .01) and electrical activity decreased (SATs/minute decreased, interval between SATs increased; P < .01). All measures recovered when etCO 2 returned to baseline. During etCO 2 decreases, brain oxygenation decreased (regional cerebral oxygen saturation decreased, fractional tissue oxygen extraction decreased; P < .01) and brain activity increased (SATs/minute increased, P < .05), also with recovery after return of etCO 2 to baseline. An acute increase in etCO 2 is associated with increased cerebral oxygenation and decreased brain activity, whereas an acute decrease is associated with decreased cerebral oxygenation and slightly increased brain activity. Combining continuous CO 2 monitoring with near-infrared spectroscopy may enable the detection of otherwise undetected fluctuations in arterial carbon dioxide partial pressure that may be harmful to the neonatal brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity.

    PubMed

    Sousa, Cláudia; de Winter, Lenneke; Janssen, Marcel; Vermuë, Marian H; Wijffels, René H

    2012-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (P(O)₂= 0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06 day(-1), respectively. An increase of the P(CO)₂from 0.007 to 0.02 bar at P(O₂) of 0.84 bar resulted in an increase in the growth rate from 1.06 to 1.36 day(-1). These results confirm that the reduction of algal growth at high oxygen concentrations at sub-saturating light conditions is mainly caused by competitive inhibition of Rubisco. This negative effect on growth can be overcome by restoring the O(2)/CO(2) ratio by an increase in the partial carbon dioxide pressure. In comparison to general practice (P(O(2)) = 0.42 bar), working at partial O(2) pressure of 0.84 bar could reduce the energy requirement for degassing by a factor of 3-4. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. A Double-Blinded, Randomized Comparison of Medetomidine-Tiletamine-Zolazepam and Dexmedetomidine-Tiletamine-Zolazepam Anesthesia in Free-Ranging Brown Bears (Ursus Arctos)

    PubMed Central

    Cattet, Marc; Zedrosser, Andreas; Stenhouse, Gordon B.; Küker, Susanne; Evans, Alina L.; Arnemo, Jon M.

    2017-01-01

    We compared anesthetic features, blood parameters, and physiological responses to either medetomidine-tiletamine-zolazepam or dexmedetomidine-tiletamine-zolazepam using a double-blinded, randomized experimental design during 40 anesthetic events of free-ranging brown bears (Ursus arctos) either captured by helicopter in Sweden or by culvert trap in Canada. Induction was smooth and predictable with both anesthetic protocols. Induction time, the need for supplemental drugs to sustain anesthesia, and capture-related stress were analyzed using generalized linear models, but anesthetic protocol did not differentially affect these variables. Arterial blood gases and acid-base status, and physiological responses were examined using linear mixed models. We documented acidemia (pH of arterial blood < 7.35), hypoxemia (partial pressure of arterial oxygen < 80 mmHg), and hypercapnia (partial pressure of arterial carbon dioxide ≥ 45 mmHg) with both protocols. Arterial pH and oxygen partial pressure were similar between groups with the latter improving markedly after oxygen supplementation (p < 0.001). We documented dose-dependent effects of both anesthetic protocols on induction time and arterial oxygen partial pressure. The partial pressure of arterial carbon dioxide increased as respiratory rate increased with medetomidine-tiletamine-zolazepam, but not with dexmedetomidine-tiletamine-zolazepam, demonstrating a differential drug effect. Differences in heart rate, respiratory rate, and rectal temperature among bears could not be attributed to the anesthetic protocol. Heart rate increased with increasing rectal temperature (p < 0.001) and ordinal day of capture (p = 0.002). Respiratory rate was significantly higher in bears captured by helicopter in Sweden than in bears captured by culvert trap in Canada (p < 0.001). Rectal temperature significantly decreased over time (p ≤ 0.05). Overall, we did not find any benefit of using dexmedetomidine-tiletamine-zolazepam instead of medetomidine-tiletamine-zolazepam in the anesthesia of brown bears. Both drug combinations appeared to be safe and reliable for the anesthesia of free-ranging brown bears captured by helicopter or by culvert trap. PMID:28118413

  12. Visual and reversible carbon dioxide sensing enabled by doctor blade coated macroporous photonic crystals.

    PubMed

    Lin, Yi-Han; Suen, Shing-Yi; Yang, Hongta

    2017-11-15

    With significant impacts of carbon dioxide on global climate change, carbon dioxide sensing is of great importance. However, most of the existing sensing technologies are prone to interferences from carbon monoxide, or suffer from the use of sophisticated instruments. This research reports the development of reproducible carbon dioxide sensor using roll-to-roll compatible doctor blade coated three-dimensional macroporous photonic crystals. The pores are functionalized with amine groups to allow the reaction with carbon dioxide in the presence of humidity. The adsorption of carbon dioxide leads to red-shift and amplitude reduction of the optical stop bands, resulting in carbon dioxide detection with visible readout. The dependences of the diffraction wavelength on carbon dioxide partial pressure for various amine-functionalized photonic crystals and different humidities in the environment are systematically investigated. In addition, the reproducibility of carbon dioxide sensing has also been demonstrated in this research. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Carbon dioxide supersaturation in the surface waters of lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, J.J.; Caraco, N.F.; Kling, G.W.

    1994-09-09

    Data on the partial pressure of carbon dioxide (CO{sub 2}) in the surface waters from a large number of lakes (1835) with a worldwide distribution show that only a small proportion of the 4665 samples analyzed (less than 10 percent) were within {+-}20 percent of equilibrium with the atmosphere and that most samples (87 percent) were supersaturated. The mean partial pressure of CO{sub 2} averaged 1036 microatmospheres, about three times the value in the overlying atmosphere, indicating that lakes are sources rather than sinks of atmospheric CO{sub 2}. On a global scale, the potential efflux of CO{sub 2} from lakesmore » (about 0.14 x 10{sup 15} grams of carbon per year) is about half as large as riverine transport of organic plus inorganic carbon to the ocean. Lakes are a small but potentially important conduit for carbon for terrestrial sources to the atmospheric sink. 18 refs., 2 figs., 1 tab.« less

  14. Six-man, self-contained carbon dioxide concentrator system

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Schubert, F. H.; Marshall, R. D.; Shumar, J. W.

    1974-01-01

    A six man, self contained electrochemical carbon dioxide concentrating subsystem was successfully designed and fabricated. It was a preprototype engineering model designed to nominally remove 6.0 kg (13.2 lb) CO2/day with an inlet air CO2 partial pressure of 400 N/sq m (3 mm Hg) and an overcapacity removal capability of 12.0 kg (26.4 lb) CO2/day. The design specifications were later expanded to allow operation at space station prototype CO2 collection subsystem operating conditions.

  15. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    DOEpatents

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  16. Solubility of carbon dioxide in aqueous mixtures of alkanolamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawodu, O.F.; Meisen, A.

    1994-07-01

    The solubility of CO[sub 2] in water + N-methyldiethanolamine + monoethanolamine (MDEA + MEA) and water + N-methyldiethanolamine + diethanolamine (MDEA + DEA) are reported at two compositions of 3.4 M MDEA + 0.8 M MEA or DEA and 2.1 M MDEA + 2.1 M MEA or DEA at temperatures from 70 to 180 C and CO[sub 2] partial pressures from 100 to 3,850 kPa. The solubility of CO[sub 2] in the blends decreased with an increase in temperature but increased with an increase in CO[sub 2] partial pressure. At low partial pressures of CO[sub 2] and the same totalmore » amine concentration, the equilibrium CO[sub 2] loadings were in the order MDEA + MEA > MDEA + DEA > MDEA. However, at high CO[sub 2] partial pressures, the equilibrium CO[sub 2] loadings in the MDEA solutions were higher than those of the MDEA + MEA and MDEA + DEA blends of equal molar strengths due to the stoichiometric loading limitations of MEA and DEA. The nonadditivity of the equilibrium loadings for single amine systems highlights the need for independent measurements on amine blends.« less

  17. Toxicology

    NASA Technical Reports Server (NTRS)

    Macewen, J. W.

    1973-01-01

    Oxygen toxicity is examined, including the effects of oxygen partial pressure variations on toxicity and oxygen effects on ozone and nitrogen dioxide toxicity. Toxicity of fuels and oxidizers, such as hydrazines, are reported. Carbon monoxide, spacecraft threshold limit values, emergency exposure limits, spacecraft contaminants, and water quality standards for space missions are briefly summarized.

  18. Recovery of [CO2]T from Aqueous Bicarbonate using a Gas Permeable Membrane

    DTIC Science & Technology

    2008-06-25

    pores as a function of differential partial gas pressures. Therefore it has been assumed for gas/ liquid systems that only the dissolved carbon dioxide...and pressure [10]. Gas permeable membranes are available commercially for the removal or addition of gases to liquids . Most of these applications...measurements were conducted with a standardized Fisher combination glass electrode. A microporous polypropylene membrane commercially designated as 2400

  19. Development of a three-man preprototype CO2 collection subsystem for spacecraft application

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.; Quattrone, P. D.; Marshall, R. D.

    1977-01-01

    Future long-duration manned space missions will require regenerable carbon dioxide (CO2) collection concepts such as the Electrochemical Depolarized CO2 Concentrator (EDC). A three-man-capacity preprototype CO2 Collection Subsystem (CS-3) is being developed for eventual flight demonstration as part of the Air Revitalization System (ARS) of the Regenerative Life Support Evaluation (RLSE) experiment. The CS-3 employs an EDC to concentrate CO2 from the low partial-pressure levels required of spacecraft atmospheres to high partial-pressure levels needed for oxygen (O2) recovery through CO2 reduction processes. The CS-3 is sized to remove a nominal 3.0 kg/day (6.6 lb/day) of the CO2 to maintain the CO2 partial pressure (pCO2) of the cabin atmosphere at 400 Pa (3 mm Hg) or less. This paper presents the preprototype design, configuration, operation, and projected performance characteristics.

  20. Changes in the partial pressure of carbon dioxide in the Mauritanian-Cap Vert upwelling region between 2005 and 2012

    NASA Astrophysics Data System (ADS)

    González-Dávila, Melchor; Magdalena Santana Casiano, J.; Machín, Francisco

    2017-08-01

    Coastal upwellings along the eastern margins of major ocean basins represent regions of large ecological and economic importance due to the high biological productivity. The role of these regions for the global carbon cycle makes them essential in addressing climate change. The physical forcing of upwelling processes that favor production in these areas are already being affected by global warming, which will modify the intensity of upwelling and, consequently, the carbon dioxide cycle. Here, we present monthly high-resolution surface experimental data for temperature and partial pressure of carbon dioxide in one of the four most important upwelling regions of the planet, the Mauritanian-Cap Vert upwelling region, from 2005 to 2012. This data set provides direct evidence of seasonal and interannual changes in the physical and biochemical processes. Specifically, we show an upwelling intensification and an increase of 0.6 Tg yr-1 in CO2 outgassing due to increased wind speed, despite increased primary productivity. This increase in CO2 outgassing together with the observed decrease in sea surface temperature at the location of the Mauritanian Cap Blanc, 21° N, produced a pH rate decrease of -0.003 ± 0.001 yr-1.

  1. Time course of the establishment of uterine seawater conditions in late-term pregnant spiny dogfish (Squalus acanthias).

    PubMed

    Kormanik, G A

    1988-07-01

    The gestation period for embryos of the spiny dogfish, Squalus acanthias (L.) lasts for nearly 2 years. During the latter part of this period the pups remain in the uterus and the fluid surrounding the embryos resembles sea water with respect to the major ions, but is low in pH (approx. 6), high in partial pressure of carbon dioxide (approx. 3 mmHg; 1 mmHg = 133.3 Pa), low in total carbon dioxide content (approx. 0.2 mmol l-1), and may have a total ammonia concentration of up to 22 mmol l-1. Thus the conditions under which the pups complete their development in utero is quite remarkable. The derivation of these conditions was examined in late-term pregnant females, from whose uterine horns the pups had been removed, by monitoring changes that occurred in instilled uterine sea water. The mother is responsible for reducing the pH, reducing the total carbon dioxide content and elevating the partial pressure of carbon dioxide to the levels observed in fresh-caught females, in less than 24 h. The ammonia concentration is also elevated, but this takes rather longer. The decreased pH is responsible for the accumulation of ammonia in the uterine sea water, and it also serves to protect the pups from the toxic effects of NH3, by converting it to the relatively non-toxic ionic form, NH4+. The reasons for the establishment of these uterine seawater conditions are still not evident.

  2. Predicting Effects of Coastal Acidification on Marine Bivalve Populations

    EPA Science Inventory

    The partial pressure of carbon dioxide (pCO2) is increasing in the oceans and causing changes in seawater pH commonly described as ocean or coastal acidification. It is now well-established that, when reproduced in laboratory experiments, these increases in pCO2 can reduce survi...

  3. Formic Acid Formation by Clostridium ljungdahlii at Elevated Pressures of Carbon Dioxide and Hydrogen

    PubMed Central

    Oswald, Florian; Stoll, I. Katharina; Zwick, Michaela; Herbig, Sophia; Sauer, Jörg; Boukis, Nikolaos; Neumann, Anke

    2018-01-01

    Low productivities of bioprocesses using gaseous carbon and energy sources are usually caused by the low solubility of those gases (e.g., H2 and CO). It has been suggested that increasing the partial pressure of those gases will result in higher dissolved concentrations and should, therefore, be helpful to overcome this obstacle. Investigations of the late 1980s with mixtures of hydrogen and carbon monoxide showed inhibitory effects of carbon monoxide partial pressures above 0.8 bar. Avoiding any effects of carbon monoxide, we investigate growth and product formation of Clostridium ljungdahlii at absolute process pressures of 1, 4, and 7 bar in batch stirred tank reactor cultivations with carbon dioxide and hydrogen as sole gaseous carbon and energy source. With increasing process pressure, the product spectrum shifts from mainly acetic acid and ethanol to almost only formic acid at a total system pressure of 7 bar. On the other hand, no significant changes in overall product yield can be observed. By keeping the amount of substance flow rate constant instead of the volumetric gas feed rate when increasing the process pressure, we increased the overall product yield of 7.5 times of what has been previously reported in the literature. After 90 h of cultivation at a total pressure of 7 bar a total of 4 g L−1 of products is produced consisting of 82.7 % formic acid, 15.6 % acetic acid, and 1.7 % ethanol. PMID:29484294

  4. The Application of Transcutaneous CO2 Pressure Monitoring in the Anesthesia of Obese Patients Undergoing Laparoscopic Bariatric Surgery

    PubMed Central

    Liu, Shijiang; Sun, Jie; Chen, Xing; Yu, Yingying; Liu, Xuan; Liu, Cunming

    2014-01-01

    To investigate the correlation and accuracy of transcutaneous carbon dioxide partial pressure (PTCCO2) with regard to arterial carbon dioxide partial pressure (PaCO2) in severe obese patients undergoing laparoscopic bariatric surgery. Twenty-one patients with BMI>35 kg/m2 were enrolled in our study. Their PaCO2, end-tidal carbon dioxide partial pressure (PetCO2), as well as PTCCO2 values were measured at before pneumoperitoneum and 30 min, 60 min, 120 min after pneumoperitoneum respectively. Then the differences between each pair of values (PetCO2–PaCO2) and. (PTCCO2–PaCO2) were calculated. Bland–Altman method, correlation and regression analysis, as well as exact probability method and two way contingency table were employed for the data analysis. 21 adults (aged 19–54 yr, mean 29, SD 9 yr; weight 86–160 kg, mean119.3, SD 22.1 kg; BMI 35.3–51.1 kg/m2, mean 42.1,SD 5.4 kg/m2) were finally included in this study. One patient was eliminated due to the use of vaso-excitor material phenylephrine during anesthesia induction. Eighty-four sample sets were obtained. The average PaCO2–PTCCO2 difference was 0.9±1.3 mmHg (mean±SD). And the average PaCO2–PetCO2 difference was 10.3±2.3 mmHg (mean±SD). The linear regression equation of PaCO2–PetCO2 is PetCO2 = 11.58+0.57×PaCO2 (r2 = 0.64, P<0.01), whereas the one of PaCO2–PTCCO2 is PTCCO2 = 0.60+0.97×PaCO2 (r2 = 0.89). The LOA (limits of agreement) of 95% average PaCO2–PetCO2 difference is 10.3±4.6 mmHg (mean±1.96 SD), while the LOA of 95% average PaCO2–PTCCO2 difference is 0.9±2.6 mmHg (mean±1.96 SD). In conclusion, transcutaneous carbon dioxide monitoring provides a better estimate of PaCO2 than PetCO2 in severe obese patients undergoing laparoscopic bariatric surgery. PMID:24699267

  5. Effects of Twenty Days of the Ketogenic Diet on Metabolic and Respiratory Parameters in Healthy Subjects.

    PubMed

    Rubini, Alessandro; Bosco, Gerardo; Lodi, Alessandra; Cenci, Lorenzo; Parmagnani, Andrea; Grimaldi, Keith; Zhongjin, Yang; Paoli, Antonio

    2015-12-01

    The effects of the ketogenic diet (KD) on weight loss, metabolic, and respiratory parameters were investigated in healthy subjects. Thirty-two healthy subjects were randomized into two groups. The KD group followed a ketogenic diet for 20 days (KD t 0-t 20), then switched to a low-carbohydrate, no-ketogenic diet for 20 days (KD t 20-t 40), and finally was on a Mediterranean diet (MD) for 2 more months (KD t 40-t 2m). The MD group followed a MD for 20 days (MD t 0-t 20), then followed a MD of 1400 kcal over the next 20 days (MD t 20-t 40), and completed the study with the MD for 2 months (MD t 40-t 2m). Body weight, body fat, respiratory rate, and respiratory gas parameters (including respiratory exchange ratio (RER) and carbon dioxide end-tidal partial pressure (PETCO2), oxygen uptake (VO2), carbon dioxide production (VCO2), and resting energy expenditure (REE)) were measured at each point. A significant decrease (p < 0.05) in RER was observed after 20 and 40 days in the KD group, but not in the MD group. In the KD group, significant reductions were observed for both carbon dioxide output and PETCO2, however, there was no significant change in VO2, VCO2, and REE. While both diets significantly decreased body fat mass, the KD diet overall proved to have a higher percentage of fat loss versus the MD diet. The KD may significantly decrease carbon dioxide body stores, which may theoretically be beneficial for patients with increased carbon dioxide arterial partial pressure due to respiratory insufficiency or failure.

  6. Overview of International Space Station Carbon Dioxide Removal Assembly On-Orbit Operations and Performance

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.

    2013-01-01

    Controlling Carbon Dioxide (CO2) partial pressure in the habitable vehicle environment is a critical part of operations on the International Space Station (ISS). On the United States segment of ISS, CO2 levels are primarily controlled by the Carbon Dioxide Removal Assembly (CDRA). There are two CDRAs on ISS; one in the United States Laboratory module, and one in the Node3 module. CDRA has been through several significant operational issues, performance issues and subsequent re-design of various components, primarily involving the Desiccant Adsorbent Bed (DAB) assembly and Air Selector Valves (ASV). This paper will focus on significant operational and performance issues experienced by the CDRA team from 2008-2012.

  7. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions: A joint statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine.

    PubMed

    Parati, Gianfranco; Agostoni, Piergiuseppe; Basnyat, Buddha; Bilo, Grzegorz; Brugger, Hermann; Coca, Antonio; Festi, Luigi; Giardini, Guido; Lironcurti, Alessandra; Luks, Andrew M; Maggiorini, Marco; Modesti, Pietro A; Swenson, Erik R; Williams, Bryan; Bärtsch, Peter; Torlasco, Camilla

    2018-05-01

    Take home figureAdapted from Bärtsch and Gibbs2 Physiological response to hypoxia. Life-sustaining oxygen delivery, in spite of a reduction in the partial pressure of inhaled oxygen between 25% and 60% (respectively at 2500 m and 8000 m), is ensured by an increase in pulmonary ventilation, an increase in cardiac output by increasing heart rate, changes in vascular tone, as well as an increase in haemoglobin concentration. BP, blood pressure; HR, heart rate; PaCO2, partial pressure of arterial carbon dioxide.

  8. HIGH TEMPERATURE SULFATION STUDIES IN AN ISOTHERMAL REACTOR: A COMPARISON OF THEORY AND EXPERIMENT

    EPA Science Inventory

    The paper gives high-temperature isothermal data on sulfur dioxide (SO2) capture, obtained as a function of temperature, SO2 partial pressure, and Ca/S molar ratio for a pulverized dolomite (34 micrometer mean size) and a high-purity calcite (11 micrometer mean size). The experim...

  9. CALCIUM OXIDE SINTERING IN ATMOSPHERES CONTAINING WATER AND CARBON DIOXIDE

    EPA Science Inventory

    The paper gives results of measurements of the effects of water vapor and CO2 on the sintering rate of nascent CaO, as a function of partial pressure and temperature using CaO prepared by rapid decomposition of CaCO3 and CA(OH)2. Each gas strongly catalyzed the sintering process ...

  10. Pilot study assessment of dynamic vascular changes in breast cancer with near-infrared tomography from prospectively targeted manipulations of inspired end-tidal partial pressure of oxygen and carbon dioxide.

    PubMed

    Jiang, Shudong; Pogue, Brian W; Michaelsen, Kelly E; Jermyn, Michael; Mastanduno, Michael A; Frazee, Tracy E; Kaufman, Peter A; Paulsen, Keith D

    2013-07-01

    The dynamic vascular changes in the breast resulting from manipulation of both inspired end-tidal partial pressure of oxygen and carbon dioxide were imaged using a 30 s per frame frequency-domain near-infrared spectral (NIRS) tomography system. By analyzing the images from five subjects with asymptomatic mammography under different inspired gas stimulation sequences, the mixture that maximized tissue vascular and oxygenation changes was established. These results indicate maximum changes in deoxy-hemoglobin, oxygen saturation, and total hemoglobin of 21, 9, and 3%, respectively. Using this inspired gas manipulation sequence, an individual case study of a subject with locally advanced breast cancer undergoing neoadjuvant chemotherapy (NAC) was analyzed. Dynamic NIRS imaging was performed at different time points during treatment. The maximum tumor dynamic changes in deoxy-hemoglobin increased from less than 7% at cycle 1, day 5 (C1, D5) to 17% at (C1, D28), which indicated a complete response to NAC early during treatment and was subsequently confirmed pathologically at the time of surgery.

  11. Space station molecular sieve development

    NASA Technical Reports Server (NTRS)

    Chang, C.; Rousseau, J.

    1986-01-01

    An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants.

  12. Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii.

    PubMed

    Kantzow, Christina; Weuster-Botz, Dirk

    2016-08-01

    Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L(-1) compared to 59.3 g L(-1)), but the final formate concentration was increased by a factor of 18 (7.3 g L(-1) compared to 0.4 g L(-1)). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood-Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood-Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached.

  13. Undergraduate students' misconceptions about respiratory physiology.

    PubMed

    Michael, J A; Richardson, D; Rovick, A; Modell, H; Bruce, D; Horwitz, B; Hudson, M; Silverthorn, D; Whitescarver, S; Williams, S

    1999-12-01

    Approximately 700 undergraduates studying physiology at community colleges, a liberal arts college, and universities were surveyed to determine the prevalence of our misconceptions about respiratory phenomena. A misconception about the changes in breathing frequency and tidal volume (physiological variables whose changes can be directly sensed) that result in increased minute ventilation was found to be present in this population with comparable prevalence (approximately 60%) to that seen in a previous study. Three other misconceptions involving phenomena that cannot be experienced directly and therefore were most likely learned in some educational setting were found to be of varying prevalence. Nearly 90% of the students exhibited a misconception about the relationship between arterial oxygen partial pressure and hemoglobin saturation. Sixty-six percent of the students believed that increasing alveolar oxygen partial pressure leads to a decrease in alveolar carbon dioxide partial pressure. Nearly 33% of the population misunderstood the relationship between metabolism and ventilation. The possible origins of these respiratory misconceptions are discussed and suggestions for how to prevent and/or remediate them are proposed.

  14. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors.

    PubMed

    Chen, R; Hahn, C E W; Farmery, A D

    2012-08-15

    The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Investigation of plasma dynamics during the growth of amorphous titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Jee, Hyeok; Yu, Young-Hun; Seo, Hye-Won

    2018-06-01

    We have grown amorphous titanium dioxide thin films by reactive DC sputtering method using a different argon/oxygen partial pressure at a room temperature. The plasma dynamics of the process, reactive and sputtered gas particles was investigated via optical emission spectroscopy. We then studied the correlations between the plasma states and the structural/optical properties of the films. The growth rate and morphology of the titanium dioxide thin films turned out to be contingent with the population and the energy profile of Ar, O, and TiO plasma. In particular, the films grown under energetic TiO plasma have shown a direct band-to-band transition with an optical energy band gap up to ∼4.2 eV.

  16. Solubility of mixtures of hydrogen sulfide and carbon dioxide in aqueous N-methyldiethanolamine solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jou, Fang Yuan; Carroll, J.J.; Mather, A.E.

    1993-01-01

    Aqueous solutions of alkanolamines are commonly used to strip acid gases (H[sub 2]S and CO[sub 2]) from streams contaminated with these components. The two most widely used amines are monoethanolamine (MEA) and diethanolamine (DEA). The solubilities of mixtures of hydrogen sulfide and carbon dioxide in a 35 wt% (3.04 kmol/m[sup 3]) aqueous solution of N-methyldiethanolamine at 40 and 100C have been measured. Partial pressures of the acid gases ranged from 0.006 to 101 kPa at 40C and from 4 to 530 kPa at 100C.

  17. Carbon dioxide sensor. [partial pressure measurement using monochromators

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Analytical techniques for measuring CO2 were evaluated and rated for use with the advanced extravehicular mobility unit. An infrared absorption concept using a dual-wavelength monochromator was selected for investigation. A breadboard carbon dioxide sensor (CDS) was assembled and tested. The CDS performance showed the capability of measuring CO2 over the range of 0 to 4.0 kPa (0 to 30 mmHg) P sub (CO2). The volume and weight of a flight configured CDS should be acceptable. It is recommended that development continue to complete the design of a flight prototype.

  18. Carbon dioxide dynamics in a lake and a reservoir on a tropical island (Bali, Indonesia).

    PubMed

    Macklin, Paul A; Suryaputra, I Gusti Ngurah Agung; Maher, Damien T; Santos, Isaac R

    2018-01-01

    Water-to-air carbon dioxide fluxes from tropical lakes and reservoirs (artificial lakes) may be an important but understudied component of global carbon fluxes. Here, we investigate the seasonal dissolved carbon dioxide (CO2) dynamics in a lake and a reservoir on a tropical volcanic island (Bali, Indonesia). Observations were performed over four seasonal surveys in Bali's largest natural lake (Lake Batur) and largest reservoir (Palasari Reservoir). Average CO2 partial pressures in the natural lake and reservoir were 263.7±12.2 μatm and 785.0±283.6 μatm respectively, with the highest area-weighted partial pressures in the wet season for both systems. The strong correlations between seasonal mean values of dissolved oxygen (DO) and pCO2 in the natural lake (r2 = 0.92) suggest that surface water metabolism was an important driver of CO2 dynamics in this deep system. Radon (222Rn, a natural groundwater discharge tracer) explained up to 77% of the variability in pCO2 in the shallow reservoir, suggesting that groundwater seepage was the major CO2 driver in the reservoir. Overall, the natural lake was a sink of atmospheric CO2 (average fluxes of -2.8 mmol m-2 d-1) while the reservoir was a source of CO2 to the atmosphere (average fluxes of 7.3 mmol m-2 d-1). Reservoirs are replacing river valleys and terrestrial ecosystems, particularly throughout developing tropical regions. While the net effect of this conversion on atmospheric CO2 fluxes remains to be resolved, we speculate that reservoir construction will partially offset the CO2 sink provided by deep, volcanic, natural lakes and terrestrial environments.

  19. Low-Tidal-Volume Ventilation in the Acute Respiratory Distress Syndrome

    PubMed Central

    Malhotra, Atul

    2008-01-01

    A 55-year-old man who is 178 cm tall and weighs 95 kg is hospitalized with community-acquired pneumonia and progressively severe dyspnea. His arterial oxygen saturation while breathing 100% oxygen through a face mask is 76%; a chest radiograph shows diffuse alveolar infiltrates with air bronchograms. He is intubated and receives mechanical ventilation; ventilator settings include a tidal volume of 1000 ml, a positive end-expiratory pressure (PEEP) of 5 cm of water, and a fraction of inspired oxygen (FiO2) of 0.8. With these settings, peak airway pressure is 50 to 60 cm of water, plateau airway pressure is 38 cm of water, partial pressure of arterial oxygen is 120 mm Hg, partial pressure of carbon dioxide is 37 mm Hg, and arterial blood pH is 7.47. The diagnosis of the acute respiratory distress syndrome (ARDS) is made. An intensive care specialist evaluates the patient and recommends changing the current ventilator settings and implementing a low-tidal-volume ventilation strategy. PMID:17855672

  20. Cardiopulmonary effects of thiopental versus propofol as an induction agent prior to isoflurane anesthesia in chair trained rhesus macaques (Macaca mulatta).

    PubMed

    Choi, Yun-Jung; Park, Hye-Jin; Kim, Hyeon-Ho; Lee, Yun-Jin; Jung, Kyeong-Cheon; Park, Seong-Hoe; Lee, Jae-Il

    2016-03-01

    The purpose of this study was to evaluate the effects of thiopental versus propofol on cardiopulmonary functions, when used as an induction agent prior to isoflurane anesthesia in rhesus monkeys. Eight healthy rhesus monkeys weighing 3.72 to 5.7 kg, 4-5 years old, were used in the study. Anesthesia was induced with thiopental or propofol intravenous injection, and then maintained with isoflurane in oxygen for 45 minutes. Cardiopulmonary measurements were obtained before and 5, 15, 30, 45, and 60 minutes after induction. The induction doses of thiopental and propofol were 19.41±0.54 and 9.33±1.02 mg/kg, respectively. In both groups, the values of heart rate, respiratory rate, temperature, systolic blood pressure, mean blood pressure, diastolic blood pressure, pH, and lactate were decreased, while the values of partial pressure of carbon dioxide, partial pressure of oxygen, total carbon dioxide, bicarbonate, oxygen saturation, and base excess in the extracellular fluid were increased, as compared with baseline. Systolic blood pressure was significantly lower in thiopental group compare to propofol group. Induction time was very short in both agents but not revealed a significant difference between both groups. However, recovery time was extremely faster in the propofol group. Our results demonstrated that propofol provides a minor suppression in systolic arterial blood pressure than thiopental sodium. In addition, propofol have a fast recovery effect from the anesthesia as well. Furthermore, it is suggested that thiopental sodium could also be used to induce anesthesia instead of propofol, despite slight more suppression of cardiopulmonary function compared to thiopental sodium.

  1. Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean.

    PubMed

    Dore, John E; Lukas, Roger; Sadler, Daniel W; Karl, David M

    2003-08-14

    The oceans represent a significant sink for atmospheric carbon dioxide. Variability in the strength of this sink occurs on interannual timescales, as a result of regional and basin-scale changes in the physical and biological parameters that control the flux of this greenhouse gas into and out of the surface mixed layer. Here we analyse a 13-year time series of oceanic carbon dioxide measurements from station ALOHA in the subtropical North Pacific Ocean near Hawaii, and find a significant decrease in the strength of the carbon dioxide sink over the period 1989-2001. We show that much of this reduction in sink strength can be attributed to an increase in the partial pressure of surface ocean carbon dioxide caused by excess evaporation and the accompanying concentration of solutes in the water mass. Our results suggest that carbon dioxide uptake by ocean waters can be strongly influenced by changes in regional precipitation and evaporation patterns brought on by climate variability.

  2. Efficient absorption of SO2 with low-partial pressures by environmentally benign functional deep eutectic solvents.

    PubMed

    Zhang, Kai; Ren, Shuhang; Hou, Yucui; Wu, Weize

    2017-02-15

    Sulfur dioxide (SO 2 ) emitted from the burning of fossil fuels is one of the main air contaminants. In this work, we found that environmentally benign solvents, deep eutectic solvents (DESs) could be designed with a function to absorb low-partial pressure SO 2 from simulated flue gas. Two kinds of biodegradable functional DESs based on betaine (Bet) and l-carnitine (L-car) as hydrogen bond accepters (HBA) and ethylene glycol (EG) as a hydrogen bond donor (HBD) were prepared with mole ratios of HBA to HBD from 1:3 to 1:5, and they were investigated to absorb SO 2 with different partial pressures at various temperatures. The results showed that the two DESs could absorb low-partial pressure SO 2 efficiently. SO 2 absorption capacities of the DESs with HBA/HBD mole ratio of 1:3 were 0.332mol SO 2 /mol HBA for Bet+EG DES and 0.820mol SO 2 /mol HBA for L-car+EG DES at 40°C with a SO 2 partial pressure of 0.02atm. In addition, the regeneration experiments demonstrated that the absorption capacities of DESs did not change after five absorption and desorption cycles. Furthermore, the absorption mechanism of SO 2 by DESs was studied by FT-IR, 1 H NMR and 13 C NMR spectra. It was found that there are strong acid-base interactions between SO 2 and -COO - on HBA. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Preprototype independent air revitalization subsystem

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hallick, T. M.; Woods, R. R.

    1982-01-01

    The performance and maturity of a preprototype, three-person capacity, automatically controlled and monitored, self-contained independent air revitalization subsystem were evaluated. The subsystem maintains the cabin partial pressure of oxygen at 22 kPa (3.2 psia) and that of carbon dioxide at 400 Pa (3 mm Hg) over a wide range of cabin air relative humidity conditions. Consumption of water vapor by the water vapor electrolysis module also provides partial humidity control of the cabin environment. During operation, the average carbon dioxide removal efficiency at baseline conditions remained constant throughout the test at 84%. The average electrochemical depolarized concentrator cell voltage at the end of the parametric/endurance test was 0.41 V, representing a very slowly decreasing average cell voltage. The average water vapor electrolysis cell voltage increased only at a rate of 20 mu/h from the initial level of 1.67 V to the final level of 1.69 V at conclusion of the testing.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayanne, Hajime; Suzuki, Atsushi; Saito, Hiroshi

    Coral reefs are considered to be a source of atmospheric carbon dioxide because of their high calcium carbonate production and low net primary production. This was tested by direct measurement of diurnal changes in the partial pressure of carbon dioxide (P{sub CO2}) in reef waters during two 3-day periods, one in March 1993 and one in March 1994, on Shiraho reef of the Ryukyu Islands, Japan. Although the P{sub CO2} values in reef waters exhibited large diurnal changes ranging from 160 to 520 microatmospheres, they indicate that the reef flat area is a net sink for atmospheric carbon dioxide. Thismore » suggests that the net organic production rate of the reef community exceeded its calcium carbonate production rate during the observation periods. 16 refs., 2 figs., 1 tab.« less

  5. Laying hen responses to acute heat stress and carbon dioxide supplementation: I. Blood gas changes and plasma lactate accumulation.

    PubMed

    Koelkebeck, K W; Odom, T W

    1994-04-01

    Exposure to heat stress lowered partial pressure of arterial blood carbon dioxide (paCO2), arterial blood bicarbonate ion (HCO3-), but increased arterial blood pH (pHa) and plasma lactate (LA). Increasing ambient carbon dioxide (CO2) to 1.5% increased paCO2 from hypocapnic levels to normocapnic levels, raised HCO3-, lowered pHa and plasma LA to pre-heat stress levels. Following CO2 treatment, respiratory alkalosis conditions returned. It was evident in this study that increasing ambient chamber CO2 to 1.5% was effective in ameliorating acid-base disturbances and reducing elevated levels of plasma LA which normally develops when laying hens are subjected to an acute heat stress exposure.

  6. Stability of solid oxide fuel cell materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, T.R.; Bates, J.L.; Chick, L.A.

    1996-04-01

    Interconnection materials in a solid oxide fuel cell are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. The thermal expansion characteristics of substituted lanthanum and yttrium chromite interconnect materials were evaluated by dilatometry as a function of oxygen partial pressures from 1 atm to 10{sup -18} atm, controlled using a carbon dioxide/hydrogen buffer.

  7. Application of end-tidal carbon dioxide monitoring via distal gas samples in ventilated neonates.

    PubMed

    Jin, Ziying; Yang, Maoying; Lin, Ru; Huang, Wenfang; Wang, Jiangmei; Hu, Zhiyong; Shu, Qiang

    2017-08-01

    Previous research has suggested correlations between the end-tidal partial pressure of carbon dioxide (P ET CO 2 ) and the partial pressure of arterial carbon dioxide (PaCO 2 ) in mechanically ventilated patients, but both the relationship between P ET CO 2 and PaCO 2 and whether P ET CO 2 accurately reflects PaCO 2 in neonates and infants are still controversial. This study evaluated remote sampling of P ET CO 2 via an epidural catheter within an endotracheal tube to determine the procedure's clinical safety and efficacy in the perioperative management of neonates. Abdominal surgery was performed under general anesthesia in 86 full-term newborns (age 1-30 days, weight 2.55-4.0 kg, American Society of Anesthesiologists class I or II). The infants were divided into 2 groups (n = 43 each), and carbon dioxide (CO 2 ) gas samples were collected either from the conventional position (the proximal end) or a modified position (the distal end) of the epidural catheter. The P ET CO 2 measured with the new method was significantly higher than that measured with the traditional method, and the difference between P ET CO 2 and PaCO 2 was also reduced. The accuracy of P ET CO 2 measured increased from 78.7% to 91.5% when the modified sampling method was used. The moderate correlation between P ET CO 2 and PaCO 2 by traditional measurement was 0.596, which significantly increased to 0.960 in the modified sampling group. Thus, the P ET CO 2 value was closer to that of PaCO 2 . P ET CO 2 detected via modified carbon dioxide monitoring had a better accuracy and correlation with PaCO 2 in neonates. Copyright © 2017. Published by Elsevier B.V.

  8. Does shaking increase the pressure inside a bottle of champagne?

    PubMed

    Vreme, A; Pouligny, B; Nadal, F; Liger-Belair, G

    2015-02-01

    Colas, beers and sparkling wines are all concentrated solutions of carbon dioxide in aqueous solvents. Any such carbonated liquid is ordinarily conditioned inside a closed bottle or a metal can as a liquid-gas 2-phase system. At thermodynamic equilibrium, the partial pressure of carbon-dioxide in the gas phase and its concentration in the liquid are proportional (Henry's law). In practical conditions and use (transport, opening of the container, exterior temperature change, etc.), Henry's equilibrium can be perturbed. The goal of this paper is to describe and understand how the system responds to such perturbations and evolves towards a new equilibrium state. Formally, we investigate the dynamics around Henry's equilibrium of a closed system, through dedicated experiments and modeling. We focus on the response to a sudden pressure change and to mechanical shaking (the latter point inspired the article's title). Observations are rationalized through basic considerations including molecular diffusion, bubble dynamics (based on Epstein-Plesset theory) and chemi-convective hydrodynamic instabilities. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Alveolar recruitment manoeuvre is safe in children prone to pulmonary hypertensive crises following open heart surgery: a pilot study.

    PubMed

    Amorim, Erica de Freitas; Guimaraes, Viviane Assuncao; Carmona, Fabio; Carlotti, Ana Paula de Carvalho Panzeri; Manso, Paulo Henrique; Ferreira, Cesar Augusto; Klamt, Jyrson Guilherme; Vicente, Walter Villela de Andrade

    2014-05-01

    To test the tolerance and safety of an alveolar recruitment manoeuvre performed in the immediate postoperative period of corrective open heart surgery in children with congenital heart disease associated with excessive pulmonary blood flow and pulmonary arterial hypertension due to left-to-right shunt. Ten infants aged 1-24 months with congenital heart disease associated with excessive pulmonary blood flow and pulmonary artery hypertension (mean pulmonary artery pressure ≥ 25 mmHg) were evaluated. The alveolar recruitment manoeuvre was performed in the operating theatre right after skin closure, and consisted of three successive stages of 30 s each, intercalated by a 1-min interval of baseline ventilation. Positive end-expiratory pressure was set to 10 cmH2O in the first stage and to 15 cmH2O in the two last ones, while the peak inspiratory pressure was kept at to 30 cmH2O in the first stage and at 35 cmH2O in the latter ones. Haemodynamic and respiratory variables were recorded. There was a slight but significant increase in mean pulmonary artery pressure from baseline to Stage 3 (P = 0.0009), as well as between Stages 1 and 2 (P = 0.0001), and 1 and 3 (P = 0.001), with no significant difference between Stages 2 and 3 (P = 0.06). Upon completion of the third stage, there were significant increases in arterial haemoglobin saturation as measured by pulse oximetry (P = 0.0009), arterial blood partial pressure of oxygen (P = 0.04), venous blood oxygen saturation of haemoglobin (P = 0.03) and arterial oxygen partial pressure over inspired oxygen fraction ratio (P = 0.04). A significant reduction in arterial blood partial pressure of carbon dioxide (P = 0.01) and in end tidal carbon dioxide also occurred (P = 0.009). The manoeuvre was well tolerated and besides a slight and transitory elevation in mean pulmonary artery, no other adverse haemodynamic or ventilatory effect was elicited. The alveolar recruitment manoeuvre seemed to be safe and well tolerated immediately after open heart surgery in infants liable to pulmonary hypertensive crises.

  10. High pressure solubility of carbon dioxide (CO2) in aqueous solution of piperazine (PZ) activated N-methyldiethanolamine (MDEA) solvent for CO2 capture

    NASA Astrophysics Data System (ADS)

    Khan, Saleem Nawaz; Hailegiorgis, Sintayehu Mekuria; Man, Zakaria; Shariff, Azmi Mohd

    2017-10-01

    In this study, the solubility of carbon dioxide (CO2) in the aqueous solution of piperazine (PZ) activated N-methyldiethanolamine (MDEA) was investigated. In the aqueous solution the concentrations of the N-methyldiethanolamine (MDEA) and piperazine (PZ) were kept constant at 30 wt. % and 3 wt. %, respectively. The solubility experiments were carried out between the temperatures ranges of 303.15 to 333.15 K. The pressure range was selected as 2-50 bar for solubility of carbon dioxide in the aqueous solution. The solubility of the CO2 is reported in terms of CO2 loading capacity of the solvent. The loading capacity of the solvent is the ratio between the numbers of moles of CO2 absorbed to the numbers of moles of solvent used. The experimental data showed that the CO2 loading increased with increase in CO2 partial pressure, while it decreased with increase in system's temperature. It was also observed from the experimental data that the higher pressure favors the absorption process while the increased temperature hinders the absorption process of CO2 capture. The loading capacity of the investigated solvent was compared with the loading capacity of the solvents reported in the literature. The investigated solvent showed better solubility in terms of loading capacity.

  11. Effect of CO2 partial pressure and different CO2 phases on carbon steel corrosion

    NASA Astrophysics Data System (ADS)

    Mahlobo, MGR; Premlall, K.; Olubambi, PA

    2017-12-01

    Carbon capture and storage (CCS) is the recent promising technology aimed at reducing greenhouse gas emission. Like many other developed technologies, CCS is faced with great challenges such as pipeline transportation failure due to corrosion. There are many factors contributing to steel corrosion during the pipeline transportation of carbon dioxide (CO2). This study focuses on CO2 partial pressure and different phases of CO2 as some of the factors contributing to steel corrosion. Carbon steel was used as a testing specimen. High pressure reactor was used in this study to compress CO2 from low to high pressures ultimately changing the CO2 from gaseous phase to gas/liquid phase (subcritical) and to dense phase (supercritical). Weight loss method was employed to determine the corrosion rate while scanning electron microscopy (SEM) and X-Ray diffraction (XRD) were used to study the carbon steel morphology and phase analysis. Using low magnification digital camera, the type of corrosion that took place on the carbon steel surface was identified.

  12. Comparison of cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine spontaneously breathing 50% or maximal oxygen concentrations.

    PubMed

    Karrasch, Nicole M; Hubbell, John A E; Aarnes, Turi K; Bednarski, Richard M; Lerche, Phillip

    2015-04-01

    This study compared cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine and spontaneously breathing 50% or maximal (> 90%) oxygen (O2) concentrations. Twelve healthy mares were randomly assigned to breathe 50% or maximal O2 concentrations. Horses were sedated with xylazine, induced to recumbency with ketamine-diazepam, and anesthesia was maintained with guaifenesin-ketamine-xylazine to effect. Heart rate, arterial blood pressures, respiratory rate, lithium dilution cardiac output (CO), inspired and expired O2 and carbon dioxide partial pressures, and tidal volume were measured. Arterial and mixed-venous blood samples were collected prior to sedation (baseline), during 30 minutes of anesthesia, 10 minutes after disconnection from O2, and 30 minutes after standing. Shunt fraction, O2 delivery, and alveolar-arterial O2 partial pressures difference [P(A-a)O2] were calculated. Recovery times were recorded. There were no significant differences between groups in cardiorespiratory parameters or in P(A-a)O2 at baseline or 30 minutes after standing. Oxygen partial pressure difference in the 50% group was significantly less than in the maximal O2 group during anesthesia.

  13. Comparison of cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine spontaneously breathing 50% or maximal oxygen concentrations

    PubMed Central

    Karrasch, Nicole M.; Hubbell, John A.E.; Aarnes, Turi K.; Bednarski, Richard M.; Lerche, Phillip

    2015-01-01

    This study compared cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine and spontaneously breathing 50% or maximal (> 90%) oxygen (O2) concentrations. Twelve healthy mares were randomly assigned to breathe 50% or maximal O2 concentrations. Horses were sedated with xylazine, induced to recumbency with ketamine-diazepam, and anesthesia was maintained with guaifenesin-ketamine-xylazine to effect. Heart rate, arterial blood pressures, respiratory rate, lithium dilution cardiac output (CO), inspired and expired O2 and carbon dioxide partial pressures, and tidal volume were measured. Arterial and mixed-venous blood samples were collected prior to sedation (baseline), during 30 minutes of anesthesia, 10 minutes after disconnection from O2, and 30 minutes after standing. Shunt fraction, O2 delivery, and alveolar-arterial O2 partial pressures difference [P(A-a)O2] were calculated. Recovery times were recorded. There were no significant differences between groups in cardiorespiratory parameters or in P(A-a)O2 at baseline or 30 minutes after standing. Oxygen partial pressure difference in the 50% group was significantly less than in the maximal O2 group during anesthesia. PMID:25829559

  14. Randomized Study Comparing the Effect of Carbon Dioxide Insufflation on Veins Using 2 Types of Endoscopic and Open Vein Harvesting.

    PubMed

    Krishnamoorthy, Bhuvaneswari; Critchley, William R; Nair, Janesh; Malagon, Ignacio; Carey, John; Barnard, James B; Waterworth, Paul D; Venkateswaran, Rajamiyer V; Fildes, James E; Caress, Ann L; Yonan, Nizar

    The aim of the study was to assess whether the use of carbon dioxide insufflation has any impact on integrity of long saphenous vein comparing 2 types of endoscopic vein harvesting and traditional open vein harvesting. A total of 301 patients were prospectively randomized into 3 groups. Group 1 control arm of open vein harvesting (n = 101), group 2 closed tunnel (carbon dioxide) endoscopic vein harvesting (n = 100) and Group 3 open tunnel (carbon dioxide) endoscopic vein harvesting (open tunnel endoscopic vein harvesting) (n = 100). Each group was assessed to determine the systemic level of partial arterial carbon dioxide, end-tidal carbon dioxide, and pH. Three blood samples were obtained at baseline, 10 minutes after start of endoscopic vein harvesting, and 10 minutes after the vein was retrieved. Vein samples were taken immediately after vein harvesting without further surgical handling to measure the histological level of endothelial damage. A modified validated endothelial scoring system was used to compare the extent of endothelial stretching and detachment. The level of end-tidal carbon dioxide was maintained in the open tunnel endoscopic vein harvesting and open vein harvesting groups but increased significantly in the closed tunnel endoscopic vein harvesting group (P = 0.451, P = 0.385, and P < 0.001). Interestingly, partial arterial carbon dioxide also did not differ over time in the open tunnel endoscopic vein harvesting group (P = 0.241), whereas partial arterial carbon dioxide reduced significantly over time in the open vein harvesting group (P = 0.001). A profound increase in partial arterial carbon dioxide was observed in the closed tunnel endoscopic vein harvesting group (P < 0.001). Consistent with these patterns, only the closed tunnel endoscopic vein harvesting group demonstrated a sudden drop in pH over time (P < 0.001), whereas pH remained stable for both open tunnel endoscopic vein harvesting and open vein harvesting groups (P = 0.105 and P = 0.869, respectively). Endothelial integrity was better preserved in the open vein harvesting group compared with open tunnel endoscopic vein harvesting or closed tunnel endoscopic vein harvesting groups (P = 0.012) and was not affected by changes in carbon dioxide or low pH. Significantly greater stretching of the endothelium was observed in the open tunnel endoscopic open tunnel endoscopic vein harvesting group compared with the other groups (P = 0.003). This study demonstrated that the different vein harvesting techniques impact on endothelial integrity; however, this does not seem to be related to the increase in systemic absorption of carbon dioxide or to the pressurized endoscopic tunnel. The open tunnel endoscopic harvesting technique vein had more endothelial stretching compared with the closed tunnel endoscopic technique; this may be due to manual dissection of the vein. Further research is required to evaluate the long-term clinical outcome of these vein grafts.

  15. Negative-Pressure Hydrocephalus: A Case Report on Successful Treatment Under Intracranial Pressure Monitoring with Bilateral Ventriculoperitoneal Shunts.

    PubMed

    Pandey, Sajan; Jin, Yi; Gao, Liang; Zhou, Cheng Cheng; Cui, Da Ming

    2017-03-01

    Negative-pressure hydrocephalus (NegPH), a very rare condition of unknown etiology and optimal treatment, usually presents postneurosurgery with clinical and imaging features of hydrocephalus, but with negative cerebrospinal fluid pressure. We describe a NegPH case of -3 mm Hg intracranial pressure that was successfully treated to achieve 5 mm Hg under continuous intracranial pressure monitoring with horizontal positioning, head down and legs elevated to 10°-15°, neck wrapping for controlled venous drainage, chest and abdomen bandages, infusion of 5% dextrose fluid to lower plasma osmolarity (Na + , 130-135 mmol/L), daily cerebrospinal fluid drainage >200 mL, and arterial blood gas partial pressure of carbon dioxide >40 mm Hg. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A System for Incubations at High Gas Partial Pressure

    PubMed Central

    Sauer, Patrick; Glombitza, Clemens; Kallmeyer, Jens

    2012-01-01

    High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed 1 MPa at in situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in situ conditions, but the partial pressure of dissolved gasses has to be controlled as well. We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120°C, and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. To keep costs low, the system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF (polyvinylidene fluoride) incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow-through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g., fluid–gas–rock-interactions in relation to carbon dioxide sequestration. As an application of the system we extracted organic compounds from sub-bituminous coal using H2O as well as a H2O–CO2 mixture at elevated temperature (90°C) and pressure (5 MPa). Subsamples were taken at different time points during the incubation and analyzed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulfate reduction rate upon the addition of methane to the sample. PMID:22347218

  17. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabine, C.L.; Key, R.M.; Hall, M.

    1999-08-01

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and radiocarbon (delta 14C), at hydrographic stations, as well as the underway partial pressure of CO2 (pCO2) during the R/V Thomas G. Thompson oceanographic cruise in the Pacific Ocean (Section P10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Suva, Fiji, on October 5, 1993, and ended in Yokohama, Japan, on November 10, 1993. Measurements made along WOCE Section P10 included pressure, temperature, salinity [measured by conductivity temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen,more » phosphate, nitrate, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO2, TALK, delta 14C, and underway pCO2.« less

  18. Determination of Carbon Dioxide, Carbon Monoxide, and Methane Concentrations in Cigarette Smoke by Fourier Transform Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Tan, T. L.; Lebron, G. B.

    2012-01-01

    The integrated absorbance areas of vibrational bands of CO[subscript 2], CO, and CH[subscript 4] gases in cigarette smoke were measured from Fourier transform infrared (FTIR) spectra to derive the partial pressures of these gases at different smoke times. The quantity of the three gas-phase components of cigarette smoke at different smoke times…

  19. Feasibility of measuring dissolved carbon dioxide based on head space partial pressures

    USGS Publications Warehouse

    Watten, B.J.; Boyd, C.E.; Schwartz, M.F.; Summerfelt, S.T.; Brazil, B.L.

    2004-01-01

    We describe an instrument prototype that measures dissolved carbon dioxide (DC) without need for standard wetted probe membranes or titration. DC is calculated using Henry's Law, water temperature, and the steady-state partial pressure of carbon dioxide that develops within the instrument's vertical gas-liquid contacting chamber. Gas-phase partial pressures were determined with either an infrared detector (ID) or by measuring voltage developed by a pH electrode immersed in an isolated sodium carbonate solution (SC) sparged with recirculated head space gas. Calculated DC concentrations were compared with those obtained by titration over a range of DC (2, 4, 8, 12, 16, 20, 24, and 28mg/l), total alkalinity (35, 120, and 250mg/l as CaCO3), total dissolved gas pressure (-178 to 120 mmHg), and dissolved oxygen concentrations (7, 14, and 18 mg/l). Statistically significant (P < 0.001) correlations were established between head space (ID) and titrimetrically determined DC concentrations (R2 = 0.987-0.999, N = 96). Millivolt and titrimetric values from the SC solution tests were also correlated (P < 0.001, R 2 = 0.997, N = 16). The absolute and relative error associated with the use of the ID and SC solution averaged 0.9mg/l DC and 7.0% and 0.6 mg/l DC and 9.6%, respectively. The precision of DC estimates established in a second test series was good; coefficients of variation (100(SD/mean)) for the head space (ID) and titration analyses were 0.99% and 1.7%. Precision of the SC solution method was 1.3%. In a third test series, a single ID was coupled with four replicate head space units so as to permit sequential monitoring (15 min intervals) of a common water source. Here, appropriate gas samples were secured using a series of solenoid valves (1.6 mm bore) activated by a time-based controller. This system configuration reduced the capital cost per sample site from US$ 2695 to 876. Absolute error averaged 2.9, 3.1, 3.7, and 2.7 mg/ l for replicates 1-4 (N = 36) during a 21-day test period (DC range, 36-40 mg/l). The ID meter was then modified so as to provide for DO as well as DC measurements across components of an intensive fish production system. ?? 2003 Elsevier B.V. All rights reserved.

  20. Mechanisms of scale formation and carbon dioxide partial pressure influence. Part II. Application in the study of mineral waters of reference.

    PubMed

    Gal, Jean-Yves; Fovet, Yannick; Gache, Nathalie

    2002-02-01

    In the first part, we have designed a new model of evolution for the calco-carbonic system which includes the hydrated forms of CaCO3: CaCO3 amorphous, CaCO3 x 6H2O (ikaite) and CaCO3 x H2O (monohydrate) (J. Eur. Hydr. 30 (1999) 47). According to this model, it is the precipitation of one or other of these hydrated forms which could be responsible for the breakdown of the metastable state. After this first step, the precipitates evolve to dehydrated solid forms. Through the elaboration of computer programs in which the CaCO3(0) (aq) ion pair formation was considered, this model was compared to experimental data obtained by the critical pH method applied to synthetic solutions. In the present article, the same method was applied for four French mineral waters, at 25 degrees C under study. Three samples formed a precipitation during the sodium hydroxide addition. For these three cases, this precipitation began for the CaCO3 H2O saturation. The added volume of sodium hydroxide was more than what was required for neutralizing free CO2 initially in solution. These results indicate that during a spontaneous scaling phenomenon, the pH rises at the same time by loss of the initial free CO2 and of the one produced by the hydrogen carbonate ions decomposition. Then we calculated, at various temperatures for the three studied scaling waters: CO2 partial pressures and loss of total carbon corresponding to the solubility products of CaCO3 hydrated forms. The results show that the partial pressure monitoring of the carbon dioxide is important in managing the behavior of scaling waters.

  1. Modeling the Effect of Modified Atmospheres on Conidial Germination of Fungi from Dairy Foods

    PubMed Central

    Nguyen Van Long, Nicolas; Vasseur, Valérie; Couvert, Olivier; Coroller, Louis; Burlot, Marion; Rigalma, Karim; Mounier, Jérôme

    2017-01-01

    Modified atmosphere packaging (MAP) is commonly applied to extend food shelf-life. Despite growth of a wide variety of fungal contaminants has been previously studied in relation to modified-atmospheres, few studies aimed at quantifying the effects of dioxygen (O2) and carbon dioxide (CO2) partial pressures on conidial germination in solid agar medium. In the present study, an original culture method was developed, allowing microscopic monitoring of conidial germination under modified-atmospheres in static conditions. An asymmetric model was utilized to describe germination kinetics of Paecilomyces niveus, Mucor lanceolatus, Penicillium brevicompactum, Penicillium expansum, and Penicillium roquefoti, using two main parameters, i.e., median germination time (τ) and maximum germination percentage (Pmax). These two parameters were subsequently modeled as a function of O2 partial pressure ranging from 0 to 21% and CO2 partial pressure ranging from 0.03 to 70% (8 tested levels for both O2 and CO2). Modified atmospheres with residual O2 or CO2 partial pressures below 1% and up to 70%, respectively, were not sufficient to totally inhibit conidial germination,. However, O2 levels < 1% or CO2 levels > 20% significantly increased τ and/or reduced Pmax, depending on the fungal species. Overall, the present method and results are of interest for predictive mycology applied to fungal spoilage of MAP food products. PMID:29163403

  2. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, J. K. R.; Alderman, O. L. G.; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439

    2016-07-15

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment wasmore » integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less

  3. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    DOE PAGES

    Weber, J. K. R.; Tamalonis, A.; Benmore, C. J.; ...

    2016-07-01

    We integrated an aerodynamic levitator with carbon dioxide laser beam heating with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. Furthermore, the chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The samplemore » environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. Our system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less

  4. Blood pressure long term regulation: A neural network model of the set point development

    PubMed Central

    2011-01-01

    Background The notion of the nucleus tractus solitarius (NTS) as a comparator evaluating the error signal between its rostral neural structures (RNS) and the cardiovascular receptor afferents into it has been recently presented. From this perspective, stress can cause hypertension via set point changes, so offering an answer to an old question. Even though the local blood flow to tissues is influenced by circulating vasoactive hormones and also by local factors, there is yet significant sympathetic control. It is well established that the state of maturation of sympathetic innervation of blood vessels at birth varies across animal species and it takes place mostly during the postnatal period. During ontogeny, chemoreceptors are functional; they discharge when the partial pressures of oxygen and carbon dioxide in the arterial blood are not normal. Methods The model is a simple biological plausible adaptative neural network to simulate the development of the sympathetic nervous control. It is hypothesized that during ontogeny, from the RNS afferents to the NTS, the optimal level of each sympathetic efferent discharge is learned through the chemoreceptors' feedback. Its mean discharge leads to normal oxygen and carbon dioxide levels in each tissue. Thus, the sympathetic efferent discharge sets at the optimal level if, despite maximal drift, the local blood flow is compensated for by autoregulation. Such optimal level produces minimum chemoreceptor output, which must be maintained by the nervous system. Since blood flow is controlled by arterial blood pressure, the long-term mean level is stabilized to regulate oxygen and carbon dioxide levels. After development, the cardiopulmonary reflexes play an important role in controlling efferent sympathetic nerve activity to the kidneys and modulating sodium and water excretion. Results Starting from fixed RNS afferents to the NTS and random synaptic weight values, the sympathetic efferents converged to the optimal values. When learning was completed, the output from the chemoreceptors became zero because the sympathetic efferents led to normal partial pressures of oxygen and carbon dioxide. Conclusions We introduce here a simple simulating computational theory to study, from a neurophysiologic point of view, the sympathetic development of cardiovascular regulation due to feedback signals sent off by cardiovascular receptors. The model simulates, too, how the NTS, as emergent property, acts as a comparator and how its rostral afferents behave as set point. PMID:21693057

  5. Effect of adding postoperative noninvasive ventilation to usual care to prevent pulmonary complications in patients undergoing coronary artery bypass grafting: a randomized controlled trial.

    PubMed

    Al Jaaly, Emad; Fiorentino, Francesca; Reeves, Barnaby C; Ind, Philip W; Angelini, Gianni D; Kemp, Scott; Shiner, Robert J

    2013-10-01

    We compared the efficacy of noninvasive ventilation with bilevel positive airway pressure added to usual care versus usual care alone in patients undergoing coronary artery bypass grafting. We performed a 2-group, parallel, randomized controlled trial. The primary outcome was time until fit for discharge. Secondary outcomes were partial pressure of carbon dioxide, forced expiratory volume in 1 second, atelectasis, adverse events, duration of intensive care stay, and actual postoperative stay. A total of 129 patients were randomly allocated to bilevel positive airway pressure (66) or usual care (63). Three patients allocated to bilevel positive airway pressure withdrew. The median duration of bilevel positive airway pressure was 16 hours (interquartile range, 11-19). The median duration of hospital stay until fit for discharge was 5 days for the bilevel positive airway pressure group (interquartile range, 4-6) and 6 days for the usual care group (interquartile range, 5-7; hazard ratio, 1.68; 95% confidence interval, 1.08-2.31; P = .019). There was no significant difference in duration of intensive care, actual postoperative stay, and mean percentage of predicted forced expiratory volume in 1 second on day 3. Mean partial pressure of carbon dioxide was significantly reduced 1 hour after bilevel positive airway pressure application, but there was no overall difference between the groups up to 24 hours. Basal atelectasis occurred in 15 patients (24%) in the usual care group and 2 patients (3%) in the bilevel positive airway pressure group. Overall, 30% of patients in the bilevel positive airway pressure group experienced an adverse event compared with 59% in the usual care group. Among patients undergoing elective coronary artery bypass grafting, the use of bilevel positive airway pressure at extubation reduced the recovery time. Supported by trained staff, more than 75% of all patients allocated to bilevel positive airway pressure tolerated it for more than 10 hours. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  6. Automatic Control of Veno-Venous Extracorporeal Lung Assist.

    PubMed

    Kopp, Ruedger; Bensberg, Ralf; Stollenwerk, Andre; Arens, Jutta; Grottke, Oliver; Walter, Marian; Rossaint, Rolf

    2016-10-01

    Veno-venous extracorporeal lung assist (ECLA) can provide sufficient gas exchange even in most severe cases of acute respiratory distress syndrome. Commercially available systems are manually controlled, although an automatically controlled ECLA could allow individualized and continuous adaption to clinical requirements. Therefore, we developed a demonstrator with an integrated control algorithm to keep continuously measured peripheral oxygen saturation and partial pressure of carbon dioxide constant by automatically adjusting extracorporeal blood and gas flow. The "SmartECLA" system was tested in six animal experiments with increasing pulmonary hypoventilation and hypoxic inspiratory gas mixture to simulate progressive acute respiratory failure. During a cumulative evaluation time of 32 h for all experiments, automatic ECLA control resulted in a peripheral oxygen saturation ≥90% for 98% of the time with the lowest value of 82% for 15 s. Partial pressure of venous carbon dioxide was between 40 and 49 mm Hg for 97% of the time with no value <35 mm Hg or >49 mm Hg. With decreasing inspiratory oxygen concentration, extracorporeal oxygen uptake increased from 68 ± 25 to 154 ± 34 mL/min (P < 0.05), and reducing respiratory rate resulted in increasing extracorporeal carbon dioxide elimination from 71 ± 37 to 92 ± 37 mL/min (P < 0.05). The "SmartECLA" demonstrator allowed reliable automatic control of the extracorporeal circuit. Proof of concept could be demonstrated for this novel automatically controlled veno-venous ECLA circuit. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neises, T.; Turchi, C.

    2013-09-01

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of themore » cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.« less

  8. Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops on Mars

    NASA Astrophysics Data System (ADS)

    Berk, Wolfgang; Fu, Yunjiao; Ilger, Jan-Michael

    2012-10-01

    The well defined composition of the Comanche rock's carbonate (Magnesite0.62Siderite0.25Calcite0.11Rhodochrosite0.02) and its host rock's composition, dominated by Mg-rich olivine, enable us to reproduce the atmospheric CO2partial pressure that may have triggered the formation of these carbonates. Hydrogeochemical one-dimensional transport modeling reveals that similar aqueous rock alteration conditions (including CO2partial pressure) may have led to the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops (Gusev Crater) and also in the ultramafic rocks exposed in the Nili Fossae region. Hydrogeochemical conditions enabling the formation of Mg-rich solid solution carbonate result from equilibrium species distributions involving (1) ultramafic rocks (ca. 32 wt% olivine; Fo0.72Fa0.28), (2) pure water, and (3) CO2partial pressures of ca. 0.5 to 2.0 bar at water-to-rock ratios of ca. 500 molH2O mol-1rock and ca. 5°C (278 K). Our modeled carbonate composition (Magnesite0.64Siderite0.28Calcite0.08) matches the measured composition of carbonates preserved in the Comanche rocks. Considerably different carbonate compositions are achieved at (1) higher temperature (85°C), (2) water-to-rock ratios considerably higher and lower than 500 mol mol-1 and (3) CO2partial pressures differing from 1.0 bar in the model set up. The Comanche rocks, hosting the carbonate, may have been subjected to long-lasting (>104 to 105 years) aqueous alteration processes triggered by atmospheric CO2partial pressures of ca. 1.0 bar at low temperature. Their outcrop may represent a fragment of the upper layers of an altered olivine-rich rock column, which is characterized by newly formed Mg-Fe-Ca solid solution carbonate, and phyllosilicate-rich alteration assemblages within deeper (unexposed) units.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Mark D.; McPherson, Brian J.; Grigg, Reid B.

    Numerical simulation is an invaluable analytical tool for scientists and engineers in making predictions about of the fate of carbon dioxide injected into deep geologic formations for long-term storage. Current numerical simulators for assessing storage in deep saline formations have capabilities for modeling strongly coupled processes involving multifluid flow, heat transfer, chemistry, and rock mechanics in geologic media. Except for moderate pressure conditions, numerical simulators for deep saline formations only require the tracking of two immiscible phases and a limited number of phase components, beyond those comprising the geochemical reactive system. The requirements for numerically simulating the utilization and storagemore » of carbon dioxide in partially depleted petroleum reservoirs are more numerous than those for deep saline formations. The minimum number of immiscible phases increases to three, the number of phase components may easily increase fourfold, and the coupled processes of heat transfer, geochemistry, and geomechanics remain. Public and scientific confidence in the ability of numerical simulators used for carbon dioxide sequestration in deep saline formations has advanced via a natural progression of the simulators being proven against benchmark problems, code comparisons, laboratory-scale experiments, pilot-scale injections, and commercial-scale injections. This paper describes a new numerical simulator for the scientific investigation of carbon dioxide utilization and storage in partially depleted petroleum reservoirs, with an emphasis on its unique features for scientific investigations; and documents the numerical simulation of the utilization of carbon dioxide for enhanced oil recovery in the western section of the Farnsworth Unit and represents an early stage in the progression of numerical simulators for carbon utilization and storage in depleted oil reservoirs.« less

  10. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide.

    PubMed

    Walker, J C; Kasting, J F

    1992-01-01

    We develop a numerical simulation of the global biogeochemical cycles of carbon that works over time scales extending from years to millions of years. The ocean is represented by warm and cold shallow water reservoirs, a thermocline reservoir, and deep Atlantic, Indian, and Pacific reservoirs. The atmosphere is characterized by a single carbon reservoir and the global biota by a single biomass reservoir. The simulation includes the rock cycle, distinguishing between shelf carbonate and pelagic carbonate precipitation, with distinct lysocline depths in the three deep ocean reservoirs. Dissolution of pelagic carbonates in response to decrease in lysocline depth is included. The simulation is tuned to reproduce the observed radiocarbon record resulting from atomic weapon testing. It is tuned also to reproduce the distribution of dissolved phosphate and total dissolved carbon between the ocean reservoirs as well as the carbon isotope ratios for both 13C and 14C in ocean and atmosphere. The simulation reproduces reasonably well the historical record of carbon dioxide partial pressure as well as the atmospheric isotope ratios for 13C and 14C over the last 200 yr as these have changed in response to fossil fuel burning and land use changes, principally forest clearance. The agreements between observation and calculation involves the assumption of a carbon dioxide fertilization effect in which the rate of production of biomass increases with increasing carbon dioxide partial pressure. At present the fertilization effect of increased carbon dioxide outweighs the effects of forest clearance, so the biota comprises an overall sink of atmospheric carbon dioxide sufficiently large to bring the budget approximately into balance. This simulation is used to examine the future evolution of carbon dioxide and its sensitivity to assumptions about the rate of fossil fuel burning and of forest clearance. Over times extending up to thousands of years, the results are insensitive to the formulation of the rock cycle and to the dissolution of deep sea carbonate sediments. Atmospheric carbon dioxide continues to increase as long fossil fuel is burned at a significant rate, because the rate of fossil fuel production of carbon dioxide far exceeds the rates at which geochemical processes can remove carbon dioxide from the atmosphere. The maximum concentration of carbon dioxide achieved in the atmosphere depends on the total amount of fossil fuel burned, but only weakly on the rate of burning. The future course of atmospheric carbon dioxide is, however, very sensitive to the fate of the forests in this simulation because of the important role assigned to carbon dioxide fertilization of plant growth rate. Forest clearance drives up atmospheric carbon dioxide not only by converting biomass into atmospheric carbon dioxide but more importantly by reducing the capacity of the biota to sequester fossil fuel carbon dioxide. In this simulation, atmospheric carbon dioxide levels could be sustained indefinitely below 500 parts per million (ppm) if fossil fuel combustion rates were immediately cut from their present value of 5 x 10(14) m/y to 0.2 x 10(14) m/y (a factor of 25 reduction) and if further forest clearance were halted. If neither of these conditions is met and if we consume most of the world's fossil fuel reserves, peak carbon dioxide concentrations of 1000-2000 ppm are probable within the next few centuries.

  11. Proximate nutritional composition of CELSS crops grown at different CO2 partial pressures

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1994-01-01

    Two Controlled Ecological Life Support System (CELSS) candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.

  12. ACCURACY OF NONINVASIVE ANESTHETIC MONITORING IN THE ANESTHETIZED GIRAFFE (GIRAFFA CAMELOPARDALIS).

    PubMed

    Bertelsen, Mads F; Grøndahl, Carsten; Stegmann, George F; Sauer, Cathrine; Secher, Niels H; Hasenkam, J Michael; Damkjær, Mads; Aalkjær, Christian; Wang, Tobias

    2017-09-01

    This study evaluated the accuracy of pulse oximetry, capnography, and oscillometric blood pressure during general anesthesia in giraffes (Giraffa camelopardalis). Thirty-two giraffes anesthetized for physiologic experiments were instrumented with a pulse oximeter transmittance probe positioned on the tongue and a capnograph sampling line placed at the oral end of the endotracheal tube. A human size 10 blood pressure cuff was placed around the base of the tail, and an indwelling arterial catheter in the auricular artery continuously measured blood pressure. Giraffes were intermittently ventilated using a Hudson demand valve throughout the procedures. Arterial blood for blood gas analysis was collected at multiple time points. Relationships between oxygen saturation as determined by pulse oximetry and arterial oxygen saturation, between arterial carbon dioxide partial pressure and end-tidal carbon dioxide, and between oscillometric pressure and invasive arterial blood pressure were assessed, and the accuracy of pulse oximetry, capnography, and oscillometric blood pressure monitoring evaluated using Bland-Altman analysis. All three noninvasive methods provided relatively poor estimates of the reference values. Receiver operating characteristic curve fitting was used to determine cut-off values for hypoxia, hypocapnia, hypercapnia, and hypotension for dichotomous decision-making. Applying these cut-off values, there was reasonable sensitivity for detection of hypocapnia, hypercapnia, and hypotension, but not for hypoxemia. Noninvasive anesthetic monitoring should be interpreted with caution in giraffes and, ideally, invasive monitoring should be employed.

  13. A flow-system comparison of the reactivities of calcium superoxide and potassium superoxide with carbon dioxide and water vapor

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.

    1982-01-01

    A single pass flow system was used to test the reactivity of calcium superoxide with respiratory gases and the performance was compared to that of potassium superoxide. The KO2 system is used by coal miners as a self-contained unit in rescue operations. Particular attention was given to the reactivity with carbon dioxide and water vapor at different temperatures and partial pressures of oxygen, carbon dioxide, and water vapor. The calcium superoxide beds were found to absorb CO2 and H2O vapor, releasing O2. The KO2 bed, however, released O2 at twice the rate of CO2 absorption at 37 C. It is concluded that the calcium superoxide material is not a suitable replacement for the KO2 bed, although Ca(O2)2 may be added to the KO2 bed to enhance the CO2 absorption.

  14. Pulsatile Flow and Gas Transport of Blood over an Array of Cylinders

    NASA Astrophysics Data System (ADS)

    Chan, Kit Yan

    2005-11-01

    In the artificial lung, blood passes through an array of micro-fibers and the gas transfer is strongly dependent on the flow field. The blood flow is unsteady and pulsatile. We have numerically simulated pulsatile flow and gas transfer of blood (modeled as a Casson fluid) over arrays of cylindrical micro-fibers. Oxygen and carbon dioxide are assumed to be in local equilibrium with hemoglobin in blood; and the carbon dioxide facilitated oxygen transport is incorporated into the model by allowing the coupling of carbon dioxide partial pressure and oxygen saturation. The pulsatile flow inputs considered are the sinusoidal and the cardiac waveforms. The squared and staggered arrays of arrangement of the cylinders are considered in this study. Gas transport can be enhanced by: increasing the oscillation frequency; increasing the Reynolds number; increasing the oscillation amplitude; decreasing the void fraction; the use of the cardiac pulsatile input. The overall gas transport is greatly enhanced by the presence of hemoglobin in blood even though the non-Newtonian effect of blood tends to decrease the size and strength of vortices. The pressure drop is also presented as it is an important design parameter confronting the heart.

  15. Investigation of solubility of carbon dioxide in anhydrous milk fat by lab-scale manometric method.

    PubMed

    Truong, Tuyen; Palmer, Martin; Bansal, Nidhi; Bhandari, Bhesh

    2017-12-15

    This study aims to examine the solubility of CO 2 in anhydrous milk fat (AMF) as functions of partial pressure, temperature, chemical composition and physical state of AMF. AMF was fractionated at 21°C to obtain stearin and olein fractions. The CO 2 solubility was measured using a home-made experimental apparatus based on changes of CO 2 partial pressures. The apparatus was found to be reliable as the measured and theoretical values based on the ideal gas law were comparable. The dissolved CO 2 concentration in AMF increased with an increase in CO 2 partial pressure (0-101kPa). The apparent CO 2 solubility coefficients (molkg -1 Pa -1 ) in the AMF were 5.75±0.16×10 -7 , 3.9±0.19×10 -7 and 1.19±0.14×10 -7 at 35, 24 and 4°C, respectively. Higher liquid oil proportions resulted in higher CO 2 solubility in the AMF. There was insignificant difference in the dissolved CO 2 concentration among the AMF, stearin and olein fractions in their liquid state at 40°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modeling the non-steady state respiratory effects of remifentanil in awake and propofol-sedated healthy volunteers.

    PubMed

    Olofsen, Erik; Boom, Merel; Nieuwenhuijs, Diederik; Sarton, Elise; Teppema, Luc; Aarts, Leon; Dahan, Albert

    2010-06-01

    Few studies address the dynamic effect of opioids on respiration. Models with intact feedback control of carbon dioxide on ventilation (non-steady-state models) that correctly incorporate the complex interaction among drug concentration, end-tidal partial pressure of carbon dioxide concentration, and ventilation yield reliable descriptions and predictions of the behavior of opioids. The authors measured the effect of remifentanil on respiration and developed a model of remifentanil-induced respiratory depression. Ten male healthy volunteers received remifentanil infusions with different infusion speeds (target concentrations: 4-9 ng/ml; at infusion rates: 0.17-9 ng x ml x min) while awake and at the background of low-dose propofol. The data were analyzed with a nonlinear model consisting of two additive linear parts, one describing the depressant effect of remifentanil and the other describing the stimulatory effect of carbon dioxide on ventilation. The model adequately described the data including the occurrence of apnea. Most important model parameters were as follows: C50 for respiratory depression 1.6 +/- 0.03 ng/ml, gain of the respiratory controller (G) 0.42 - 0.1 l x min x Torr, and remifentanil blood effect site equilibration half-life (t(1/2)ke0) 0.53 +/- 0.2 min. Propofol caused a 20-50% reduction of C50 and G but had no effect on t(1/2)ke0. Apnea occurred during propofol infusion only. A simulation study revealed an increase in apnea duration at infusion speeds of 2.5-0.5 ng x ml x min followed by a reduction. At an infusion speed of < or = 0.31 ng x ml x min, no apnea was seen. The effect of varying remifentanil infusions with and without a background of low-dose propofol on ventilation and end-tidal partial pressure of carbon dioxide concentration was described successfully using a non-steady-state model of the ventilatory control system. The model allows meaningful simulations and predictions.

  17. [Correlation between end-tidal carbon dioxide and partial pressure of arterial carbon dioxide in ventilated newborns].

    PubMed

    Feng, Jin-Xing; Liu, Xiao-Hong; Huang, Hui-Jun; Yu, Zhen-Zhu; Yang, Hui; He, Liu-Fang

    2014-05-01

    To study the correlation between end-tidal carbon dioxide (PetCO2) and partial pressure of arterial carbon dioxide (PaCO2) in ventilated newborns. Thirty-one ventilated newborn underwent mainstream PetCO2 monitoring; meanwhile, arterial blood gas analysis was performed. The correlation and consistency between PetCO2 and PaCO2 were assessed. A total of 85 end-tidal and arterial CO2 pairs were obtained from 31 ventilated newborns. The mean PetCO2 (41±10 mm Hg) was significantly lower than the corresponding mean PaCO2 (46±11 mm Hg) (P<0.01). There was a significant positive correlation between PetCO2 and PaCO2 (r=0.92, P<0.01). The overall PetCO2 bias was 5.1±4.3 mm Hg (95% limits of consistency, -3.3 to 13.6 mmHg), and 5% (4/85) of the points were beyond the 95%CI. When the oxygenation index (OI) was less than 300 mm Hg (n=48), there was a significant positive correlation between PetCO2 and PaCO2 (r=0.85, P<0.01); the PetCO2 bias was 5.9±4.3 mm Hg (95% limits of consistency, -2.6 to 14.5 mm Hg), and 4.2% (2/48) of the points were beyond the 95%CI. When the OI was more than 300 mm Hg (n=37), there was also a significant positive correlation between PetCO2 and PaCO2 (r=0.91, P<0.01); the PetCO2 bias was 4.1±4.1 mm Hg (95% limits of consistency, -3.9 to 12.1 mm Hg), and 5% (2/37) of the points were beyond the 95%CI. There is a good correlation and consistency between PetCO2 and PaCO2 in ventilated newborns.

  18. Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors.

    PubMed

    Ullrich, Timo; Lindner, Jonas; Bär, Katharina; Mörs, Friedemann; Graf, Frank; Lemmer, Andreas

    2018-01-01

    In order to investigate the influence of pressures up to 9bar absolute on the productivity of trickle-bed reactors for biological methanation of hydrogen and carbon dioxide, experiments were carried out in a continuously operated experimental plant with three identical reactors. The pressure increase promises a longer residence time and improved mass transfer of H 2 due to higher gas partial pressures. The study covers effects of different pressures on important parameters like gas hourly space velocity, methane formation rate, conversion rates and product gas quality. The methane content of 64.13±3.81vol-% at 1.5bar could be increased up to 86.51±0.49vol-% by raising the pressure to 9bar. Methane formation rates of up to 4.28±0.26m 3 m -3 d -1 were achieved. Thus, pressure increase could significantly improve reactor performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of one-lung ventilation on end-tidal carbon dioxide during cardiopulmonary resuscitation in a pig model of cardiac arrest.

    PubMed

    Ryu, Dong Hyun; Jung, Yong Hun; Jeung, Kyung Woon; Lee, Byung Kook; Jeong, Young Won; Yun, Jong Geun; Lee, Dong Hun; Lee, Sung Min; Heo, Tag; Min, Yong Il

    2018-01-01

    Unrecognized endobronchial intubation frequently occurs after emergency intubation. However, no study has evaluated the effect of one-lung ventilation on end-tidal carbon dioxide (ETCO2) during cardiopulmonary resuscitation (CPR). We compared the hemodynamic parameters, blood gases, and ETCO2 during one-lung ventilation with those during conventional two-lung ventilation in a pig model of CPR, to determine the effect of the former on ETCO2. A randomized crossover study was conducted in 12 pigs intubated with double-lumen endobronchial tube to achieve lung separation. During CPR, the animals underwent three 5-min ventilation trials based on a randomized crossover design: left-lung, right-lung, or two-lung ventilation. Arterial blood gases were measured at the end of each ventilation trial. Ventilation was provided using the same tidal volume throughout the ventilation trials. Comparison using generalized linear mixed model revealed no significant group effects with respect to aortic pressure, coronary perfusion pressure, and carotid blood flow; however, significant group effect in terms of ETCO2 was found (P < 0.001). In the post hoc analyses, ETCO2 was lower during the right-lung ventilation than during the two-lung (P = 0.006) or left-lung ventilation (P < 0.001). However, no difference in ETCO2 was detected between the left-lung and two-lung ventilations. The partial pressure of arterial carbon dioxide (PaCO2), partial pressure of arterial oxygen (PaO2), and oxygen saturation (SaO2) differed among the three types of ventilation (P = 0.003, P = 0.001, and P = 0.001, respectively). The post hoc analyses revealed a higher PaCO2, lower PaO2, and lower SaO2 during right-lung ventilation than during two-lung or left-lung ventilation. However, the levels of these blood gases did not differ between the left-lung and two-lung ventilations. In a pig model of CPR, ETCO2 was significantly lower during right-lung ventilation than during two-lung ventilation. However, interestingly, ETCO2 during left-lung ventilation was comparable to that during two-lung ventilation.

  20. Carbon dioxide exchange of lettuce plants under hypobaric conditions

    NASA Technical Reports Server (NTRS)

    Corey, K. A.; Bates, M. E.; Adams, S. L.; MacElroy, R. D. (Principal Investigator)

    1996-01-01

    Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of <0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS.

  1. Energy efficient solvent regeneration process for carbon dioxide capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shaojun; Meyer, Howard S.; Li, Shiguang

    A process for removing carbon dioxide from a carbon dioxide-loaded solvent uses two stages of flash apparatus. Carbon dioxide is flashed from the solvent at a higher temperature and pressure in the first stage, and a lower temperature and pressure in the second stage, and is fed to a multi-stage compression train for high pressure liquefaction. Because some of the carbon dioxide fed to the compression train is already under pressure, less energy is required to further compress the carbon dioxide to a liquid state, compared to conventional processes.

  2. Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon

    DOEpatents

    Sircar, Shivaji; Hufton, Jeffrey Raymond; Nataraj, Shankar

    2000-01-01

    In the steam reforming of hydrocarbon, particularly methane, under elevated temperature and pressure to produce hydrogen, a feed of steam and hydrocarbon is fed into a first reaction volume containing essentially only reforming catalyst to partially reform the feed. The balance of the feed and the reaction products of carbon dioxide and hydrogen are then fed into a second reaction volume containing a mixture of catalyst and adsorbent which removes the carbon dioxide from the reaction zone as it is formed. The process is conducted in a cycle which includes these reactions followed by countercurrent depressurization and purge of the adsorbent to regenerate it and repressurization of the reaction volumes preparatory to repeating the reaction-sorption phase of the cycle.

  3. Carbon dioxide: Global warning for nephrologists

    PubMed Central

    Marano, Marco; D’Amato, Anna; Cantone, Alessandra

    2016-01-01

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients’ bloodstream every hemodialysis treatment and “acidosis by dialysate” may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle. PMID:27648406

  4. Carbon dioxide: Global warning for nephrologists.

    PubMed

    Marano, Marco; D'Amato, Anna; Cantone, Alessandra

    2016-09-06

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients' bloodstream every hemodialysis treatment and "acidosis by dialysate" may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle.

  5. Effect of 1% Inspired CO2 During Head-Down Tilt on Ocular Structures, Cerebral Blood Flow, and Visual Acuity in Healthy Human Subjects

    NASA Technical Reports Server (NTRS)

    Laurie, S. S.; Hu, X.; Lee, S. M. C.; Martin, D. S.; Phillips, T. R.; Ploutz-Snyder, R.; Smith, S. M.; Stenger, M. B.; Taibbi, G.; Zwart, S. R.; hide

    2016-01-01

    The cephalad fluid shift induced by microgravity has been hypothesized to elevate intracranial pressure (ICP) and contribute to the development of the visual impairment/intracranial pressure (VIIP) syndrome experienced by many astronauts during and after long-duration space flight. In addition, elevated ambient partial pressure of carbon dioxide (PCO2) on the International Space Station (ISS) has also been hypothesized to contribute to the development of VIIP. We seek to determine if an acute, mild CO2 exposure, similar to that occurring on the ISS, combined with the cephalad fluid shift induced by head-down tilt will induce ophthalmic and ICP changes consistent with the VIIP syndrome.

  6. Krikalev at work in Node 1

    NASA Image and Video Library

    2001-02-07

    STS098-346-0032 (7-20 February 2001) --- Cosmonaut Sergei K. Krikalev, Expedition One flight engineer representing the Russian Aviation and Space Agency, carries the Vozdukh in the Unity node. Vozdukh is designed to maintain the partial pressure of carbon dioxide in the cabin air within the medically permissible range for long-duration exposure. It provides the primary means of removing CO2 from the outpost's atmosphere, and its operation is based on the use of regenerated adsorbers of CO2.

  7. Blood gas and serum biochemical RIs for healthy newborn Murrah buffaloes (Bubalus bubalis).

    PubMed

    Santana, André M; Silva, Daniela G; Clemente, Virna; Pizauro, Lucas J L; Bernardes, Priscila A; Santana, Clarissa H; Eckersall, Peter D; Fagliari, José J

    2018-03-01

    There is a lack of published work on RIs for newborn buffaloes. Establishing blood gas and serum biochemical RIs for newborn buffaloes is important for monitoring health. This study establishes blood gas and serum biochemical RIs of newborn buffaloes. Twenty-eight newborn buffaloes, 10-30 days old, were selected. Thirty blood biochemical variables were analyzed. The Anderson-Darling test was used to assess the normality of the distribution. The Dixon test and the Tukey test were used to identify outliers. The RI and 90% CI were determined using standard and robust methods and the Box-Cox transformation. A total of 30 RIs for healthy buffalo calves have been reported in this study. RIs for blood gas variables were reported for pH, partial pressure of oxygen (pO 2 ), partial pressure of carbon dioxide (pCO 2 ), saturation of O 2 (SO 2 ), bicarbonate (cHCO 3 - ), base excess (BE), total carbon dioxide (ctCO 2 ), and anion gap (AG). RIs for serum biochemical variables were reported for glucose (GLU), direct bilirubin (DB), total bilirubin (TB), AST, ALP, GGT, CK, LDH, creatinine (CREA), urea, cholesterol (CHOL), triglycerides (TG), Ca, P, Mg, Na, K, iCa, Cl, iron, total protein (TP), and albumin (ALB). This is the first reported study covering complete serum chemistry and blood gas RIs for healthy 1-month-old Murrah buffaloes. © 2018 American Society for Veterinary Clinical Pathology.

  8. Evaluating the energy performance of a hybrid membrane-solvent process for flue gas carbon dioxide capture

    DOE PAGES

    Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David; ...

    2016-10-13

    In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less

  9. Evaluating the energy performance of a hybrid membrane-solvent process for flue gas carbon dioxide capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David

    In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less

  10. Markers of Successful Extubation in Extremely Preterm Infants, and Morbidity After Failed Extubation

    PubMed Central

    Chawla, Sanjay; Natarajan, Girija; Shankaran, Seetha; Carper, Benjamin; Brion, Luc P.; Keszler, Martin; Carlo, Waldemar A.; Ambalavanan, Namasivayam; Gantz, Marie G.; Das, Abhik; Finer, Neil; Goldberg, Ronald N.; Cotten, C. Michael; Higgins, Rosemary D.

    2017-01-01

    Objectives To identify variables associated with successful elective extubation, and to determine neonatal morbidities associated with extubation failure in extremely preterm neonates. Study design This study was a secondary analysis of the National Institute of Child Health and Human Development Neonatal Research Network’s Surfactant, Positive Pressure, and Oxygenation Randomized Trial that included extremely preterm infants born at 240/7 to 276/7 weeks’ gestation. Patients were randomized either to a permissive ventilatory strategy (continuous positive airway pressure group) or intubation followed by early surfactant (surfactant group). There were prespecified intubation and extubation criteria. Extubation failure was defined as reintubation within 5 days of extubation. Results Of 1316 infants in the trial, 1071 were eligible; 926 infants had data available on extubation status; 538 were successful and 388 failed extubation. The rate of successful extubation was 50% (188/374) in the continuous positive airway pressure group and 63% (350/552) in the surfactant group. Successful extubation was associated with higher 5-minute Apgar score, and pH prior to extubation, lower peak fraction of inspired oxygen within the first 24 hours of age and prior to extubation, lower partial pressure of carbon dioxide prior to extubation, and non-small for gestational age status after adjustment for the randomization group assignment. Infants who failed extubation had higher adjusted rates of mortality (OR 2.89), bronchopulmonary dysplasia (OR 3.06), and death/bronchopulmonary dysplasia (OR 3.27). Conclusions Higher 5-minute Apgar score, and pH prior to extubation, lower peak fraction of inspired oxygen within first 24 hours of age, lower partial pressure of carbon dioxide and fraction of inspired oxygen prior to extubation, and nonsmall for gestational age status were associated with successful extubation. Failed extubation was associated with significantly higher likelihood of mortality and morbidities. Trial registration ClinicalTrials.gov: NCT00233324. PMID:28600154

  11. Markers of Successful Extubation in Extremely Preterm Infants, and Morbidity After Failed Extubation.

    PubMed

    Chawla, Sanjay; Natarajan, Girija; Shankaran, Seetha; Carper, Benjamin; Brion, Luc P; Keszler, Martin; Carlo, Waldemar A; Ambalavanan, Namasivayam; Gantz, Marie G; Das, Abhik; Finer, Neil; Goldberg, Ronald N; Cotten, C Michael; Higgins, Rosemary D

    2017-10-01

    To identify variables associated with successful elective extubation, and to determine neonatal morbidities associated with extubation failure in extremely preterm neonates. This study was a secondary analysis of the National Institute of Child Health and Human Development Neonatal Research Network's Surfactant, Positive Pressure, and Oxygenation Randomized Trial that included extremely preterm infants born at 24 0/7 to 27 6/7 weeks' gestation. Patients were randomized either to a permissive ventilatory strategy (continuous positive airway pressure group) or intubation followed by early surfactant (surfactant group). There were prespecified intubation and extubation criteria. Extubation failure was defined as reintubation within 5 days of extubation. Of 1316 infants in the trial, 1071 were eligible; 926 infants had data available on extubation status; 538 were successful and 388 failed extubation. The rate of successful extubation was 50% (188/374) in the continuous positive airway pressure group and 63% (350/552) in the surfactant group. Successful extubation was associated with higher 5-minute Apgar score, and pH prior to extubation, lower peak fraction of inspired oxygen within the first 24 hours of age and prior to extubation, lower partial pressure of carbon dioxide prior to extubation, and non-small for gestational age status after adjustment for the randomization group assignment. Infants who failed extubation had higher adjusted rates of mortality (OR 2.89), bronchopulmonary dysplasia (OR 3.06), and death/ bronchopulmonary dysplasia (OR 3.27). Higher 5-minute Apgar score, and pH prior to extubation, lower peak fraction of inspired oxygen within first 24 hours of age, lower partial pressure of carbon dioxide and fraction of inspired oxygen prior to extubation, and nonsmall for gestational age status were associated with successful extubation. Failed extubation was associated with significantly higher likelihood of mortality and morbidities. ClinicalTrials.gov: NCT00233324. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Touch-mode capacitive pressure sensor with graphene-polymer heterostructure membrane

    NASA Astrophysics Data System (ADS)

    Berger, Christian; Phillips, Rory; Pasternak, Iwona; Sobieski, Jan; Strupinski, Wlodek; Vijayaraghavan, Aravind

    2018-01-01

    We describe the fabrication and characterisation of a touch-mode capacitive pressure sensor (TMCPS) with a robust design that comprises a graphene-polymer heterostructure film, laminated onto the silicon dioxide surface of a silicon wafer, incorporating a SU-8 spacer grid structure. The spacer grid structure allows the flexible graphene-polymer film to be partially suspended above the substrate, such that a pressure on the membrane results in a reproducible deflection, even after exposing the membrane to pressures over 10 times the operating range. Sensors show reproducible pressure transduction in water submersion at varying depths under static and dynamic loading. The measured capacitance change in response to pressure is in good agreement with an analytical model of clamped plates in touch mode. The device shows a pressure sensitivity of 27.1 +/- 0.5 fF Pa-1 over a pressure range of 0.5 kPa-8.5 kPa. In addition, we demonstrate the operation of this device as a force-touch sensor in air.

  13. [Evaluation of super dwarf wheat growth and development in greenhouse "Svet" during cultivation in inhabited pressurized chamber

    NASA Technical Reports Server (NTRS)

    Sychev, V. N.; Levinskikh, M. A.; Podol'skii, I. G.; Ivanova, I. E.; Nefedova, E. L.; Livanskaia, O. G.; Derendiaeva, T. A.; Mikhailov, N. I.; Salisbury, F. B.; Bingham, G. E.; hide

    1998-01-01

    Goals of the 3-month experiment GREENHOUSE using the equipment of greenhouse SVET (ECO-PSY-95) were to feature growth and development of wheat through the entire cycle of ontogeny under the maximally mimicked MIR environment, and to try out the procedures and timeline of space experiment GREENHOUSE-2 as a part of the fundamental biology investigations within the MIR/NASA space science program. Irradiation intensity (PAR) was 65 W/m2 and 38 W/m2 in the experiment and laboratory control, respectively. Values of other environmental parameters were MIR average (18-25 degrees C, relative air humidity in the interval between 40% and 75%, total gas pressure of about 660 to 860 mm Hg, partial oxygen pressure within the range from 140 to 200 mm Hg, partial carbon dioxide pressure up to 7 mm Hg). Experimental results showed that wheat cultivation in inhabited chamber under a modified lighting unit providing greater irradiation of the crop area produced more plant mass although seed production dropped. Low grain content in ears could be the aftermath of the gaseous trace contaminants in the chamber atmosphere.

  14. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure carbon dioxide fire extinguishing systems. (b) Low pressure systems, that is, those in which the carbon dioxide...

  15. Fetal blood gas values during fetoscopic myelomeningocele repair performed under carbon dioxide insufflation.

    PubMed

    Baschat, Ahmet A; Ahn, Edward S; Murphy, Jamie; Miller, Jena L

    2018-05-10

    Fetoscopic myelomeningocele (MMC) repair is performed with intrauterine carbon dioxide (CO 2 ) insufflation. While lamb experiments have shown significant fetal acidemia following CO 2 insufflation corresponding information for human pregnancies is not available. We performed umbilical venous cord blood sampling in three patients during fetoscopic MMC repair at 25+1, 25+3 and 24+1 weeks gestation. Fetal venous pH at the beginning of CO 2 insufflation were 7.36, 7.46 and 7.37; repeat values were 7.28, 7.35, 7.36 after 181, 159 and 149 minutes respectively. The partial pressure of oxygen and carbon dioxide was maintained in the normal range at these times and pH decrease was less in patient 3 receiving humidified CO2 insufflation. Our observations suggest that in contrast to sheep experiments, CO2 insufflation during fetoscopic myelomeningocele repair does not cause fetal acidemia. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Ocean Surface Carbon Dioxide Fugacity Observed from Space

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Xie, Xiaosu

    2014-01-01

    We have developed and validated a statistical model to estimate the fugacity (or partial pressure) of carbon dioxide (CO2) at sea surface (pCO2sea) from space-based observations of sea surface temperature (SST), chlorophyll, and salinity. More than a quarter million in situ measurements coincident with satellite data were compiled to train and validate the model. We have produced and made accessible 9 years (2002-2010) of the pCO2sea at 0.5 degree resolutions daily over the global ocean. The results help to identify uncertainties in current JPL Carbon Monitoring System (CMS) model-based and bottom-up estimates over the ocean. The utility of the data to reveal multi-year and regional variability of the fugacity in relation to prevalent oceanic parameters is demonstrated.

  17. Phytoplankton-Environmental Interactions in Reservoirs. Volume I. Papers Presented at Workshop, 10-12 April 1979, Monterey, California.

    DTIC Science & Technology

    1981-09-01

    Antarctic waters. Symp. Antarctic Oceanography. Santiago , Chile . Eppley, R.W. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70:1063...photorespiration is largely dependent on the partial pressure of car- bon dioxide and oxygen concentrations . When CO2 limits photosynthesis and oxygen...hardness and alkalinity concentrations (> 200 mg/i as CaCO 3). As CO2 is removed from the alkalinity _ystem, pH increases and most alkalinity is

  18. Carbon Dioxide Sequestration in Depleted Oil/Gas Fields: Evaluation of Gas Microseepage and Carbon Dioxide Fate at Rangely, Colorado USA

    NASA Astrophysics Data System (ADS)

    Klusman, R. W.

    2002-12-01

    Large-scale CO2 dioxide injection for purposes of enhanced oil recovery (EOR) has been operational at Rangely, Colorado since 1986. The Rangely field serves as an onshore prototype for CO2 sequestration in depleted fields by production of a valuable commodity which partially offsets infrastructure costs. The injection is at pressures considerably above hydrostatic pressure, enhancing the possibility for migration of buoyant gases toward the surface. Methane and CO2 were measured in shallow soil gas, deep soil gas, and as fluxes into the atmosphere in both winter and summer seasons. There were large seasonal variations in surface biological noise. The direct measurement of CH4 flux to the atmosphere gave an estimate of 400 metric tonnes per year over the 78 km2 area, and carbon dioxide flux was between 170 and 3800 metric tonnes per year. Both stable carbon isotopes and carbon-14 were used in constructing these estimates. Computer modeling of the unsaturated zone migration, and of methanotrophic oxidation rates suggests a large portion of the CH4 is oxidized in the summer, and at a much lower rate in the winter. However, deep-sourced CH4 makes a larger contribution to the atmosphere than CO2, in terms of GWP. The 23+ million tonnes of carbon dioxide that have been injected at Rangely are largely stored as dissolved CO2 and a lesser amount as bicarbonate. Scaling problems, as a result of acid gas dissolution of carbonate cement, and subsequent precipitation of CaSO4 will be an increasing problem as the system matures. Evidence for mineral sequestration was not found in the scales. Ultimate injector and field capacities will be determined by mineral precipitation in the formation as it affects porosity and permeability.

  19. Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping

    DOEpatents

    Rochelle, Gary T [Austin, TX; Oyenekan, Babatunde A [Katy, TX

    2011-03-08

    Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.

  20. Prolonged partial upper airway obstruction during sleep – an underdiagnosed phenotype of sleep-disordered breathing

    PubMed Central

    Anttalainen, Ulla; Tenhunen, Mirja; Rimpilä, Ville; Polo, Olli; Rauhala, Esa; Himanen, Sari-Leena; Saaresranta, Tarja

    2016-01-01

    Obstructive sleep apnea syndrome (OSAS) is a well-recognized disorder conventionally diagnosed with an elevated apnea–hypopnea index. Prolonged partial upper airway obstruction is a common phenotype of sleep-disordered breathing (SDB), which however is still largely underreported. The major reasons for this are that cyclic breathing pattern coupled with arousals and arterial oxyhemoglobin saturation are easy to detect and considered more important than prolonged episodes of increased respiratory effort with increased levels of carbon dioxide in the absence of cycling breathing pattern and repetitive arousals. There is also a growing body of evidence that prolonged partial obstruction is a clinically significant form of SDB, which is associated with symptoms and co-morbidities which may partially differ from those associated with OSAS. Partial upper airway obstruction is most prevalent in women, and it is treatable with the nasal continuous positive pressure device with good adherence to therapy. This review describes the characteristics of prolonged partial upper airway obstruction during sleep in terms of diagnostics, pathophysiology, clinical presentation, and comorbidity to improve recognition of this phenotype and its timely and appropriate treatment. PMID:27608271

  1. Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: the synergistic interaction between organic and inorganic sunscreens at nanoscale.

    PubMed

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2006-09-28

    Carnauba wax is partially composed of cinnamates. The rational combination of cinnamates and titanium dioxide has shown a synergistic effect to improve the sun protection factor (SPF) of cosmetic preparations. However, the mechanism of this interaction has not been fully understood. In this study, an ethanolic extract of the carnauba wax and an ethanolic solution of a typical cinnamate derivative, ethylcinnamate, were prepared and their UV absorption and SPF either alone or in the presence of titanium dioxide were compared. The titanium dioxide crystals and the cinnamates solutions were also distributed into a matrix composed of saturated fatty acids to emulate the structure of the crystallized carnauba wax. SPF, differential scanning calorimetry (DSC) and X-ray studies of these matrices were performed. Additionally, carnauba wax nanosuspensions containing titanium dioxide either in the lipid phase or in the aqueous phase were prepared to evaluate their SPFs and their physical structure. Strong UV absorption was observed in diluted suspensions of titanium dioxide after the addition of cinnamates. The saturated fatty acid matrices probably favored the adsorption of the cinnamates at the surface of titanium dioxide crystals, which was reflected by an increase in the SPF. No modification of the crystal structure of the fatty acid matrices was observed after the addition of cinnamates or titanium dioxide. The distribution of the titanium dioxide inside the lipid phase of the nanosuspensions was more effective to reach higher SPFs than that at the aqueous phase. The close contact between the carnauba wax and the titanium dioxide crystals after the high-pressure homogenization process was confirmed by transmission electron microscopy (TEM).

  2. PROCESS FOR COOLING A NUCLEAR REACTOR

    DOEpatents

    Borst, L.B.

    1962-12-11

    This patent relates to the operation of a reactor cooled by liquid sulfur dioxide. According to the invention the pressure on the sulfur dioxide in the reactor is maintained at least at the critical pressure of the sulfur dioxide. Heating the sulfur dioxide to its critical temperature results in vaporization of the sulfur dioxide without boiling. (AEC)

  3. Powdered Magnesium-Carbon Dioxide Rocket Combustion Technology for In Situ Mars Propulsion

    NASA Technical Reports Server (NTRS)

    Foote, J. P.; Litchford, R. J.

    2007-01-01

    Powdered magnesium (Mg) carbon dioxide (CO2) combustion is examined as a potential in situ propellant combination for Mars propulsion. Although this particular combination has relatively low performance in comparison to traditional bipropellants, it remains attractive as a potential basis for future martian mobility systems, since it could be partially or wholly manufactured from indigenous planetary resources. As a means of achieving high mobility during long-duration Mars exploration missions, the poorer performing in situ combination can, in fact, become a superior alternative to conventional storable propellants, which would need to be entirely transported from Earth. Thus, the engineering aspects of powdered metal combustion devices are discussed including transport/injection of compacted powder, ignition, combustion efficiency, combustion stability, dilution effects, lean burn limits, and slag formation issues. It is suggested that these technological issues could be effectively addressed through a multiphase research and development effort beginning with basic feasibility tests using an existing dump configured atmospheric pressure burner. Follow-on phases would involve the development and testing of a pressurized research combustor and technology demonstration tests of a prototypical rocket configuration.

  4. "Powdered Magnesium: Carbon Dioxide Combustion for Mars Propulsion"

    NASA Technical Reports Server (NTRS)

    Foote, John P.; Litchford, Ron J.

    2005-01-01

    Powdered magnesium - carbon dioxide combustion is examined as a potential in-situ propellant combination for Mars propulsion. Although this particular combination has relatively low performance in comparison to traditional bi-propellants, it remains attractive as a potential basis for future Martian mobility systems since it could be partially or wholly manufactured from indigenous planetary resources. As a means of achieving high mobility during long-duration Mars exploration missions, the poorer performing in-situ combination can, in fact, become a superior alternative to conventional storable propellants, which would need to be entirely transported from earth. Thus, the engineering aspects of powdered metal combustion devices are discussed including transport/injection of compacted powder, ignition, combustion efficiency, combustion stability, dilution effects, lean burn limits, and slag formation issues. It is suggested that these technological issues could be effectively addressed through a multi-phase research and development effort beginning with basic feasibility tests using an existing dump configured atmospheric pressure burner. Follow-on phases would involve the development and testing of a pressurized research combustor and technology demonstration tests of a prototypical rocket configuration.

  5. Open-path FTIR data reduction algorithm with atmospheric absorption corrections: the NONLIN code

    NASA Astrophysics Data System (ADS)

    Phillips, William; Russwurm, George M.

    1999-02-01

    This paper describes the progress made to date in developing, testing, and refining a data reduction computer code, NONLIN, that alleviates many of the difficulties experienced in the analysis of open path FTIR data. Among the problems that currently effect FTIR open path data quality are: the inability to obtain a true I degree or background, spectral interferences of atmospheric gases such as water vapor and carbon dioxide, and matching the spectral resolution and shift of the reference spectra to a particular field instrument. This algorithm is based on a non-linear fitting scheme and is therefore not constrained by many of the assumptions required for the application of linear methods such as classical least squares (CLS). As a result, a more realistic mathematical model of the spectral absorption measurement process can be employed in the curve fitting process. Applications of the algorithm have proven successful in circumventing open path data reduction problems. However, recent studies, by one of the authors, of the temperature and pressure effects on atmospheric absorption indicate there exist temperature and water partial pressure effects that should be incorporated into the NONLIN algorithm for accurate quantification of gas concentrations. This paper investigates the sources of these phenomena. As a result of this study a partial pressure correction has been employed in NONLIN computer code. Two typical field spectra are examined to determine what effect the partial pressure correction has on gas quantification.

  6. HEALTH STATUS OF RED-FOOTED BOOBIES ( SULA SULA) DETERMINED BY HEMATOLOGY, BIOCHEMISTRY, BLOOD GASES, AND PHYSICAL EXAMINATION.

    PubMed

    Lewbart, Gregory A; Ulloa, Catalina; Deresienski, Diane; Regalado, Cristina; Muñoz-Pérez, Juan-Pablo; Garcia, Juan; Hardesty, Britta Denise; Valle, Carlos A

    2017-12-01

    The red-footed booby ( Sula sula) is a widely distributed sulid native to the Galápagos archipelago. Hematology and blood chemistry parameters have been published for this species, but not from the San Cristóbal rookery. Analyses were run on blood samples drawn from 31 manually restrained red-footed boobies that were captured by hand from their nests at Punta Pitt on San Cristóbal Island. A portable blood analyzer (iSTAT) was used to obtain near immediate field results for pH, partial pressure of oxygen, partial pressure of carbon dioxide, bicarbonate, hematocrit, hemoglobin, sodium, potassium, ionized calcium, and glucose. Blood lactate was measured using a portable Lactate Plus™ analyzer. Average heart rate, respiratory rate, body weight, body temperature, and biochemistry and hematology parameters were comparable to those of healthy individuals of other sulids. The reported results provide baseline data that can be used for comparisons among populations and in detecting changes in health status among Galápagos red-footed boobies.

  7. Post-combustion CO2 capture with activated carbons using fixed bed adsorption

    NASA Astrophysics Data System (ADS)

    Al Mesfer, Mohammed K.; Danish, Mohd; Fahmy, Yasser M.; Rashid, Md. Mamoon

    2018-03-01

    In the current work, the capturing of carbon dioxide from flue gases of post combustion emission using fixed bed adsorption has been carried out. Two grades of commercial activated carbon (sorbent-1 and sorbent-2) were used as adsorbent. Feed consisting of CO2 and N2 mixture was used for carrying out the adsorption. The influence of bed temperature, feed rate, equilibrium partial pressure and initial % CO2 in feed were considered for analyzing adsorption-desorption process. It was found that the total adsorption-desorption cycle time decreases with increased column temperature and feed rates. The time required to achieve the condition of bed saturation decreases with increased bed temperature and feed rates. The amount of CO2 adsorbed/Kg of the adsorbent declines with increased bed temperature with in studied range for sorbent-1 and sorbent-2. It was suggested that the adsorption capacity of the both the sorbents increases with increased partial pressure of the gas.

  8. Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2

    NASA Astrophysics Data System (ADS)

    Machida, Shiki; Kogiso, Tetsu; Hirano, Naoto

    2017-02-01

    The deep carbon cycle plays an important role on the chemical differentiation and physical properties of the Earth's mantle. Especially in the asthenosphere, seismic low-velocity and high electrical conductivity due to carbon dioxide (CO2)-induced partial melting are expected but not directly observed. Here we discuss the experimental results relevant to the genesis of primitive CO2-rich alkali magma forming petit-spot volcanoes at the deformation front of the outer rise of the northwestern Pacific plate. The results suggest that primitive melt last equilibrated with depleted peridotite at 1.8-2.1 GPa and 1,280-1,290 °C. Although the equilibration pressure corresponds to the pressure of the lower lithosphere, by considering an equilibration temperature higher than the solidus in the volatile-peridotite system along with the temperature of the lower lithosphere, we conclude that CO2-rich silicate melt is always produced in the asthenosphere. The melt subsequently ascends into and equilibrates with the lower lithosphere before eruption.

  9. The role of central venous oxygen saturation, blood lactate, and central venous-to-arterial carbon dioxide partial pressure difference as a goal and prognosis of sepsis treatment.

    PubMed

    Wittayachamnankul, Borwon; Chentanakij, Boriboon; Sruamsiri, Kamphee; Chattipakorn, Nipon

    2016-12-01

    The current practice in treatment of severe sepsis and septic shock is to ensure adequate oxygenation and perfusion in patients, along with prompt administration of antibiotics, within 6 hours from diagnosis, which is considered the "golden hour" for the patients. One of the goals of treatment is to restore normal tissue perfusion. With this goal in mind, some parameters have been used to determine the success of treatment and mortality rate; however, none has been proven to be the best predictor of mortality rate in sepsis patients. Despite growing evidence regarding the prognostic indicators for mortality in sepsis patients, inconsistent reports exist. This review comprehensively summarizes the reports regarding the frequently used parameters in sepsis including central venous oxygen saturation, blood lactate, and central venous-to-arterial carbon dioxide partial pressure difference, as prognostic indicators for clinical outcomes in sepsis patients. Moreover, consistent findings and inconsistent reports for their pathophysiology and the potential mechanisms for their use as well as their limitations in sepsis patients are presented and discussed. Finally, a schematic strategy for potential management and benefits in sepsis patients is proposed based upon these current available data. There is currently no ideal biomarker that can indicate prognosis, predict progression of the disease, and guide treatment in sepsis. Further studies are needed to be carried out to identify the ideal biomarker that has all the desired properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Combining central venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock.

    PubMed

    Du, Wei; Liu, Da-Wei; Wang, Xiao-Ting; Long, Yun; Chai, Wen-Zhao; Zhou, Xiang; Rui, Xi

    2013-12-01

    Central venous oxygen saturation (Scvo2) is a useful therapeutic target when treating septic shock. We hypothesized that combining Scvo2 and central venous-to-arterial partial pressure of carbon dioxide difference (△Pco2) may provide additional information about survival. We performed a retrospective analysis of 172 patients treated for septic shock. All patients were treated using goal-directed therapy to achieve Scvo2 ≥ 70%. After 6 hours of treatment, we divided patients into 4 groups based on Scvo2 (<70% or ≥ 70%) and △Pco2 (<6 mm Hg or ≥ 6 mm Hg). Overall, 28-day mortality was 35.5%. For patients in whom the Scvo2 target was not achieved at 6 hours, mortality was 50.0%, compared with 29.5% in those in whom Scvo2 exceeded 70% (P = .009). In patients with Scvo2 ≥ 70%, mortality was lower if △Pco2 was <6 mm Hg than if △Pco2 was ≥ 6 mm Hg (56.1% vs 16.1%, respectively; P < .001) and 6-hour lactate clearance was superior (0.01 ± 0.61 vs 0.21 ± 0.31, respectively; P = .016). The combination of Scvo2 and △Pco2 appears to predict outcome in critically ill patients resuscitated from septic shock better than Scvo2 alone. Patients who meet both targets appear to clear lactate more efficiently. © 2013.

  11. Effects of l-arginine pretreatment on nitric oxide metabolism and hepatosplanchnic perfusion during porcine endotoxemia1234

    PubMed Central

    Bruins, Maaike J; Kessels, Fons; Luiking, Yvette C; Lamers, Wouter H; Deutz, Nicolaas EP

    2011-01-01

    Background: Sepsis is accompanied by an increased need for and a decreased supply of arginine, reflecting a condition of arginine deficiency. Objective: The objective was to evaluate the effects of l-arginine pretreatment on arginine–nitric oxide (NO) production and hepatosplanchnic perfusion during subsequent endotoxemia. Design: In a randomized controlled trial, pigs (20–25 kg) received 3 μg ⋅ kg−1 ⋅ min−1 lipopolysaccharide (LPS; 5 endotoxin units/ng) intravenously and saline resuscitation. l-Arginine (n = 8; 5.3 μmol ⋅ kg−1 ⋅ min−1) or saline (n = 8) was infused starting 12 h before LPS infusion and continued for 24 h after the endotoxin infusion ended. Whole-body appearance rates, portal-drained viscera (PDV), and liver fluxes of arginine, citrulline, NO, and arginine de novo synthesis were measured by using stable-isotope infusion of [15N2]arginine and [13C-2H2]citrulline. Hepatosplanchnic perfusion was assessed by using a primed continuous infusion of para-aminohippuric acid and jejunal intramucosal partial pressure of carbon dioxide and was related to systemic hemodynamics. Results: Arginine supplementation before LPS increased whole-body NO production in the PDV but not in the liver. Furthermore, it increased blood flow in the portal vein but not in the aorta and hepatic artery. During endotoxin infusion, arginine pretreatment was associated with an increased whole-body arginine appearance and NO production in the gut. Additional effects included a preserved mean arterial pressure, the prevention of an increase in pulmonary arterial pressure, an attenuated metabolic acidosis, and an attenuated increase in the intramucosal partial pressure of carbon dioxide. Conclusion: Arginine treatment starting before endotoxemia appears to be beneficial because it improves hepatosplanchnic perfusion and oxygenation during prolonged endotoxemia, probably through an enhancement in NO synthesis, without causing deleterious systemic side effects. PMID:21508091

  12. Contrasting effects of lower body positive pressure on upper airways resistance and partial pressure of carbon dioxide in men with heart failure and obstructive or central sleep apnea.

    PubMed

    Kasai, Takatoshi; Motwani, Shveta S; Yumino, Dai; Gabriel, Joseph M; Montemurro, Luigi Taranto; Amirthalingam, Vinoban; Floras, John S; Bradley, T Douglas

    2013-03-19

    This study sought to test the effects of rostral fluid displacement from the legs on transpharyngeal resistance (Rph), minute volume of ventilation (Vmin), and partial pressure of carbon dioxide (PCO2) in men with heart failure (HF) and either obstructive (OSA) or central sleep apnea (CSA). Overnight rostral fluid shift relates to severity of OSA and CSA in men with HF. Rostral fluid displacement may facilitate OSA if it shifts into the neck and increases Rph, because pharyngeal obstruction causes OSA. Rostral fluid displacement may also facilitate CSA if it shifts into the lungs and induces reflex augmentation of ventilation and reduces PCO2, because a decrease in PCO2 below the apnea threshold causes CSA. Men with HF were divided into those with mainly OSA (obstructive-dominant, n = 18) and those with mainly CSA (central-dominant, n = 10). While patients were supine, antishock trousers were deflated (control) or inflated for 15 min (lower body positive pressure [LBPP]) in random order. LBPP reduced leg fluid volume and increased neck circumference in both obstructive- and central-dominant groups. However, in contrast to the obstructive-dominant group in whom LBPP induced an increase in Rph, a decrease in Vmin, and an increase in PCO2, in the central-dominant group, LBPP induced a reduction in Rph, an increase in Vmin, and a reduction in PCO2. These findings suggest mechanisms by which rostral fluid shift contributes to the pathogenesis of OSA and CSA in men with HF. Rostral fluid shift could facilitate OSA if it induces pharyngeal obstruction, but could also facilitate CSA if it augments ventilation and lowers PCO2. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. Hypercapnic respiratory acidosis: a protective or harmful strategy for critically ill newborn foals?

    PubMed

    Vengust, Modest

    2012-10-01

    This paper reviews both the beneficial and adverse effects of permissive hypercapnic respiratory acidosis in critically ill newborn foals. It has been shown that partial carbon dioxide pressure (PCO2) above the traditional safe range (hypercapnia), has beneficial effects on the physiology of the respiratory, cardiovascular, and nervous system in neonates. In human neonatal critical care medicine permissive hypercapnic acidosis is generally well-tolerated by patients and is more beneficial to their wellbeing than normal carbon dioxide (CO2) pressure or normocapnia. Even though adverse effects of hypercapnia have been reported, especially in patients with central nervous system pathology and/or chronic infection, critical care clinicians often artificially increase PCO2 to take advantage of its positive effects on compromised neonate tissues. This is referred to as therapeutic hypercapnia. Hypercapnic respiratory acidosis is common in critically ill newborn foals and has traditionally been considered as not beneficial. A search of online scientific databases was conducted to survey the literature on the effects of hypercapnia in neonates, with emphasis on newborn foals. The dynamic status of safety levels of PCO2 and data on the effectiveness of different carbon dioxide levels are not available for newborn foals and should be scientifically determined. Presently, permissive hypercapnia should be implemented or tolerated cautiously in compromised newborn foals and its use should be based on relevant data from adult horses and other species.

  14. Compositional dependent partial molar volume and compressibility of CO2 in rhyolite, phonolite and basalt glasses

    NASA Astrophysics Data System (ADS)

    Lerch, P.; Seifert, R.; Malfait, W. J.; Sanchez-Valle, C.

    2012-12-01

    Carbon dioxide is the second most abundant volatile in magmatic systems and plays an important role in many magmatic processes, e.g. partial melting, volatile saturation, outgassing. Despite this relevance, the volumetric properties of carbon-bearing silicates at relevant pressure and temperature conditions remain largely unknown because of considerable experimental difficulties associated with in situ measurements. Density and elasticity measurements on quenched glasses can provide an alternative source of information. For dissolved water, such measurements indicate that the partial molar volume is independent of compositions at ambient pressure [1], but the partial molar compressibility is not [2, 3]. Thus the partial molar volume of water may depend on melt composition at elevated pressure. For dissolved CO2, no such data is available. In order to constrain the effect of magma composition on the partial molar volume and compressibility of dissolved carbon, we determined the density and elasticity for three series of carbon-bearing basalt, phonolite and rhyolite glasses, quenched from 3.5 GPa and relaxed at ambient pressure. The CO2 content varies between 0 to 3.90 wt% depending on the glass composition. Glass densities were determined using the sink/float method in a diiodomethane (CH2I2) - acetone mixture. Brillouin measurements were conducted on relaxed and unrelaxed silicate glasses in platelet geometry to determine the compressional (VP) and shear (VS) wave velocities and elastic moduli. The partial molar volume of CO2 in rhyolite, phonolite and basalt glasses is 25.4 ± 0.9, 22.1 ± 0.6 and 26.6 ±1.8 cm3/mol, respectively. Thus, unlike for dissolved water, the partial molar volume of CO2 displays a resolvable compositional effect. Although the composition and CO2/carbonate speciation of the phonolite glasses is intermediate between that of the rhyolite and basalt glasses, the molar volume is not. Similar to dissolved water, the partial molar bulk modulus of CO2 displays a strong compositional effect. If these compositional dependencies persist in the analogue melts, the partial molar volume of dissolved CO2 will depend on melt composition, both at low and elevated pressure. Thus, for CO2-bearing melts, a full quantitative understanding of density dependent magmatic processes, such as crystal fractionation, magma mixing and melt extraction will require in situ measurements for a range of melt compositions. [1] Richet, P. et al., 2000, Contrib Mineral Petrol, 138, 337-347. [2] Malfait et al. 2011, Am. Mineral. 96, 1402-1409. [3] Whittington et al., 2012, Am. Mineral. 97, 455-467.

  15. Method for enhanced oil recovery

    DOEpatents

    Comberiati, Joseph R.; Locke, Charles D.; Kamath, Krishna I.

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  16. Counter-current carbon dioxide purification of partially deacylated sunflower oil

    USDA-ARS?s Scientific Manuscript database

    High oleic sunflower oil was partially deacylated by propanolysis to produce a mixture of diglycerides and triglycerides. To remove by-product fatty acid propyl esters (FAPEs) from this reaction mixture, a liquid carbon dioxide (L-CO2) counter-current fractionation method was developed. The fracti...

  17. 46 CFR 76.15-1 - Application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...

  18. 46 CFR 76.15-1 - Application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...

  19. 46 CFR 76.15-1 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...

  20. 46 CFR 76.15-1 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...

  1. Measurements of the broadening and shift parameters of the water vapor spectral lines in the 10,100-10,800 cm-1 region induced by pressure of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Borkov, Yu. G.; Petrova, T. M.; Solodov, A. M.; Solodov, A. A.

    2018-02-01

    The absorption spectra of a mixture of H2O with CO2 at different partial pressures of CO2 have been recorded at room temperature in the 10,100-10,800 cm-1 region using a Bruker IFS 125 HR FTIR spectrometer. The multispectrum fitting procedure has been applied to these spectra to recover the broadening and shift parameters of the water vapor spectral lines. To obtain the spectral lines parameters two models of the line shape were used: the Voigt profile and the quadratic speed-dependent Voigt profile. The CO2 pressure induced broadening and shift coefficients for 168 spectral lines with rather large values of the signal to noise ratio have been measured.

  2. Baroreflex activation therapy lowers arterial pressure without apparent stimulation of the carotid bodies.

    PubMed

    Alnima, Teba; Goedhart, Emilie J B M; Seelen, Randy; van der Grinten, Chris P M; de Leeuw, Peter W; Kroon, Abraham A

    2015-06-01

    Carotid baroreflex activation therapy produces a sustained fall in blood pressure in patients with resistant hypertension. Because the activation electrodes are implanted at the level of the carotid sinus, it is conceivable that the nearby located carotid body chemoreceptors are stimulated as well. Physiological stimulation of the carotid chemoreceptors not only stimulates respiration but also increases sympathetic activity, which may counteract the effects of baroreflex activation. The aim of this exploratory study is to investigate whether there is concomitant carotid chemoreflex activation during baroreflex activation therapy. Fifteen participants with the Rheos system were included in this single-center study. At arrival at the clinic, the device was switched off for 2 hours while patients were at rest. Subsequently, the device was switched on at 6 electric settings of high and low frequencies and amplitudes. Respiration and blood pressure measurements were performed during all device activation settings. Multilevel statistical models were adjusted for age, sex, body mass index, antihypertensive therapeutic index, sleep apnea, coronary artery disease, systolic blood pressure, and heart rate. There was no change in end-tidal carbon dioxide, partial pressure of carbon dioxide, breath duration, and breathing frequency during any of the electric settings with the device. Nevertheless, mean arterial pressure showed a highly significant decrease during electric activation (P<0.001). Carotid baroreflex activation therapy using the Rheos system did not stimulate respiration at several electric device activation energies, which suggests that there is no appreciable coactivation of carotid body chemoreceptors during device therapy. © 2015 American Heart Association, Inc.

  3. CO2 insufflation versus air insufflation for endoscopic submucosal dissection: A meta-analysis of randomized controlled trials.

    PubMed

    Li, Xuan; Dong, Hao; Zhang, Yifeng; Zhang, Guoxin

    2017-01-01

    Carbon dioxide (CO2) insufflation is increasingly used for endoscopic submucosal dissection (ESD) owing to the faster absorption of CO2 as compared to that of air. Studies comparing CO2 insufflation and air insufflation have reported conflicting results. This meta-analysis is aimed to assess the efficacy and safety of use of CO2 insufflation for ESD. Clinical trials of CO2 insufflation versus air insufflation for ESD were searched in PubMed, Embase, the Cochrane Library and Chinese Biomedical Literature Database. We performed a meta-analysis of all randomized controlled trials (RCTs). Eleven studies which compared the use of CO2 insufflation and air insufflation, with a combined study population of 1026 patients, were included in the meta-analysis (n = 506 for CO2 insufflation; n = 522 for air insufflation). Abdominal pain and VAS scores at 6h and 24h post-procedure in the CO2 insufflation group were significantly lower than those in the air insufflation group, but not at 1h and 3h after ESD. The percentage of patients who experienced pain 1h and 24h post-procedure was obviously decreased. Use of CO2 insufflation was associated with lower VAS scores for abdominal distention at 1h after ESD, but not at 24h after ESD. However, no significant differences were observed with respect to postoperative transcutaneous partial pressure carbon dioxide (PtcCO2), arterial blood carbon dioxide partial pressure (PaCO2), oxygen saturation (SpO2%), abdominal circumference, hospital stay, white blood cell (WBC) counts, C-Reactive protein (CRP) level, dosage of sedatives used, incidence of dysphagia and other complications. Use of CO2 insufflation for ESD was safe and effective with regard to abdominal discomfort, procedure time, and the residual gas volume. However, there appeared no significant differences with respect to other parameters namely, PtcCO2, PaCO2, SpO2%, abdominal circumference, hospital stay, sedation dosage, complications, WBC, CRP, and dysphagia.

  4. A study of partial pressure of arterial carbon dioxide and end-tidal carbon dioxide correlation in intraoperative and postoperative period in neurosurgical patients.

    PubMed

    Gaur, Pallavi; Harde, Minal; Gujjar, Pinakin; Deosarkar, Devanand; Bhadade, Rakesh

    2017-01-01

    Monitoring carbon dioxide (CO 2 ) is of utmost importance in neurosurgical patients. It is measured by partial pressure of arterial CO 2 (PaCO 2 ) and end-tidal CO 2 (ETCO 2 ). We aimed to study the correlation between PaCO 2 and ETCO 2 in neurosurgical patients in the intraoperative and postoperative period on mechanical ventilation in Postanesthesia Care Unit (PACU). This was prospective observational study done at tertiary care teaching public hospital over a period of 1 year. We studied 30 patients undergoing elective craniotomy intraoperatively and in the postoperative period on mechanical ventilation for 24 h. Serial measurement of ETCO 2 and PaCO 2 at baseline, hourly intraoperatively and every 6 hourly in the PACU were studied. Data analysis was done using SPSS software version 20. The mean PaCO 2 -ETCO 2 gradient intraoperatively over 4 h is 3.331 ± 2.856 and postoperatively over 24 h is 2.779 ± 2.932 and lies in 95% confidence interval. There was statistically significant correlation between PaCO 2 and ETCO 2 intraoperatively baseline, 1 h, 2 h, 3 h, and 4 h with Pearson's correlation coefficients of 0.799, 0.522, 0582, 0.439, and 0.547, respectively ( P < 0.05). In PACU at baseline, 6 h, 12 h, 18 h, and 24 h Pearson's correlation coefficients were. 534, -0.032, 0.522, 0.242, 0.592, and 0.547, respectively, which are highly significant at three instances ( P < 0.01). ETCO 2 correlates PaCO 2 with acceptable accuracy in neurosurgical patients in the intraoperative and postoperative period on mechanical ventilation in Intensive Care Unit. Thus, continuous and noninvasive ETCO 2 can be used as a reliable guide to estimate arterial PCO 2 during neurosurgical procedures and in PACU.

  5. New Method of Producing Titanium Carbide, Monoxide, and Dioxide Grains in Laboratory

    NASA Astrophysics Data System (ADS)

    Kumamoto, Akihito; Kurumada, Mami; Kimura, Yuki; Kaito, Chihiro

    By making a carbon rod covered with Ti on the surface without exposure to air, TiC grains less than 10nm in diameter were predominantly produced. The introduction of a small amount of oxygen in Ar gas (partial pressure 1/1000), allowed the continuous formation of TiO2 and TiO-TiC. The infrared spectra of TiO2, TiO, and TiC were measured. An absorption feature attributed to TiO phase in oxidized TiC grains showed a characteristic peak at 14.7 μm.

  6. New Method of Producing Titanium Carbide, Monoxide, and Dioxide Grains in Laboratory

    NASA Astrophysics Data System (ADS)

    Kumamoto, Akihito; Kurumada, Mami; Kimura, Yuki; Kaito, Chihiro

    By making a carbon rod covered with Ti on the surface without exposure to air, TiC grains less than 10 nm in diameter were predominantly produced. The introduction of a small amount of oxygen in Ar gas (partial pressure 1/1000), allowed the continuous formation of TiO2 and TiO-TiC. The infrared spectra of TiO2, TiO, and TiC were measured. An absorption feature attributed to TiO phase in oxidized TiC grains showed a characteristic peak at 14.7 μm.

  7. Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements

    USGS Publications Warehouse

    Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan

    2013-01-01

    Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10−9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).

  8. Experimental measurement and thermodynamic modeling of the solubility of carbon dioxide in aqueous blends of monoethanolamine and diethanolamine

    NASA Astrophysics Data System (ADS)

    Suleman, Humbul; Maulud, Abdulhalim Shah; Man, Zakaria

    2017-12-01

    In this study, the solubilities of carbon dioxide in aqueous mixtures of monoethanolamine (MEA) and diethanolamine (DEA) were determined using a high pressure vapor-liquid equilibrium apparatus. The carbon dioxide loadings (mole of CO2/mole of amine mixture) were reported for a wide range of temperature (303.15, 323.15, 343.15 K) and pressure (100 - 4100 kPa). The carbon dioxide solubility shows an increase with increase in pressure and amine concentration and a decrease with increase in temperature in the aqueous blends of MEA and DEA. At carbon dioxide loadings above 1.0, the carbon dioxide solubility becomes a weak function of pressure and follows the general trend of carbon dioxide solubility in aqueous alkanolamines. The new experimental data points determined in this study were correlated by using a recently developed, enhanced Kent-Eisenberg model. An average absolute relative error of 9.4 % was observed between the model results and experimental data, indicating good correlative capability of the thermodynamic model.

  9. Controlling Processes on Carbonate Chemistry across the Pacific

    NASA Astrophysics Data System (ADS)

    Hartman, S. E.

    2016-12-01

    The SWIRE NOC Ocean Monitoring System (SNOMS) project is an innovative programme helping to answer important questions about global climate change by using a commercial ship of opportunity to measure carbon in the surface of the ocean. Daily sampling coupled to continuous underway observation from a ship of opportunity (MV Shengking) provides new insights into the processes controlling variability in the carbonate system across the Pacific. The ships track runs from Vancouver (Canada) to Brisbane (Australia). Daily samples were taken on-board and measurements of Total alkalinity (TA) and total dissolved inorganic carbon (DIC) were determined. This was alongside measurements of nutrients and continuous records of temperature, salinity, chlorophyll-fluorescence, carbon dioxide and dissolved oxygen (DO). These sensor based measurements were validated using the discrete samples. Carbon dioxide calculated from DIC and TA showed an offset from the sensor data of up to 8uatm. This and comparisons with climatology were used to calibrate the sensor data. The data have been compared with previous data from the MV Pacific Celebes that ran a similar route until 2012. The data show a clear increase in seawater carbon dioxide, tracking the atmospheric increases. Along track the partial pressure of seawater carbon dioxide varied by over 150 uatm. The highest values were seen just south of the equator in the Pacific, which is an important source region for carbon dioxide to the atmosphere.

  10. Moderate hyperventilation during intravenous anesthesia increases net cerebral lactate efflux.

    PubMed

    Grüne, Frank; Kazmaier, Stephan; Sonntag, Hans; Stolker, Robert Jan; Weyland, Andreas

    2014-02-01

    Hyperventilation is known to decrease cerebral blood flow (CBF) and to impair cerebral metabolism, but the threshold in patients undergoing intravenous anesthesia is unknown. The authors hypothesized that reduced CBF associated with moderate hyperventilation might impair cerebral aerobic metabolism in patients undergoing intravenous anesthesia. Thirty male patients scheduled for coronary surgery were included in a prospective, controlled crossover trial. Measurements were performed under fentanyl-midazolam anesthesia in a randomized sequence aiming at partial pressures of carbon dioxide of 30 and 50 mmHg. Endpoints were CBF, blood flow velocity in the middle cerebral artery, and cerebral metabolic rates for oxygen, glucose, and lactate. Global CBF was measured using a modified Kety-Schmidt technique with argon as inert gas tracer. CBF velocity of the middle cerebral artery was recorded by transcranial Doppler sonography. Data were presented as mean (SD). Two-sided paired t tests and one-way ANOVA for repeated measures were used for statistical analysis. Moderate hyperventilation significantly decreased CBF by 60%, blood flow velocity by 41%, cerebral oxygen delivery by 58%, and partial pressure of oxygen of the jugular venous bulb by 45%. Cerebral metabolic rates for oxygen and glucose remained unchanged; however, net cerebral lactate efflux significantly increased from -0.38 (2.18) to -2.41(2.43) µmol min 100 g. Moderate hyperventilation, when compared with moderate hypoventilation, in patients with cardiovascular disease undergoing intravenous anesthesia increased net cerebral lactate efflux and markedly reduced CBF and partial pressure of oxygen of the jugular venous bulb, suggesting partial impairment of cerebral aerobic metabolism at clinically relevant levels of hypocapnia.

  11. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOEpatents

    Ghate, Madhav R.; Yang, Ralph T.

    1987-01-01

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

  12. 46 CFR 193.15-40 - Pressure relief.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-40 Pressure relief. (a) Where necessary... suitable means for relieving excessive pressure accumulating within the compartment when the carbon dioxide...

  13. 46 CFR 76.15-40 - Pressure relief.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-40 Pressure relief. (a) Where necessary, relatively... means for relieving excessive pressure accumulating within the compartment when the carbon dioxide is...

  14. 46 CFR 95.15-40 - Pressure relief.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-40 Pressure relief. (a) Where necessary... suitable means for relieving excessive pressure accumulating within the compartment when the carbon dioxide...

  15. 46 CFR 76.15-40 - Pressure relief.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-40 Pressure relief. (a) Where necessary, relatively... means for relieving excessive pressure accumulating within the compartment when the carbon dioxide is...

  16. 46 CFR 76.15-40 - Pressure relief.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-40 Pressure relief. (a) Where necessary, relatively... means for relieving excessive pressure accumulating within the compartment when the carbon dioxide is...

  17. 46 CFR 76.15-40 - Pressure relief.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-40 Pressure relief. (a) Where necessary, relatively... means for relieving excessive pressure accumulating within the compartment when the carbon dioxide is...

  18. 46 CFR 95.15-40 - Pressure relief.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-40 Pressure relief. (a) Where necessary... suitable means for relieving excessive pressure accumulating within the compartment when the carbon dioxide...

  19. 46 CFR 95.15-40 - Pressure relief.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-40 Pressure relief. (a) Where necessary... suitable means for relieving excessive pressure accumulating within the compartment when the carbon dioxide...

  20. 46 CFR 193.15-40 - Pressure relief.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-40 Pressure relief. (a) Where necessary... suitable means for relieving excessive pressure accumulating within the compartment when the carbon dioxide...

  1. 46 CFR 76.15-40 - Pressure relief.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-40 Pressure relief. (a) Where necessary, relatively... means for relieving excessive pressure accumulating within the compartment when the carbon dioxide is...

  2. Redifferentiation of dedifferentiated bovine articular chondrocytes enhanced by cyclic hydrostatic pressure under a gas-controlled system.

    PubMed

    Kawanishi, Makoto; Oura, Atsuhiro; Furukawa, Katsuko; Fukubayashi, Toru; Nakamura, Kozo; Tateishi, Tetsuya; Ushida, Takashi

    2007-05-01

    Hydrostatic pressure is one of the most frequently used mechanical stimuli in chondrocyte experiments. A variety of hydrostatic pressure loading devices have been used in cartilage cell experiments. However, no gas-controlled system with other than a low pressure load was used up to this time. Hence we used a polyolefin bag from which gas penetration was confirmed. Chondrocytes were extracted from bovine normal knee joint cartilage. After 3 passages, dedifferentiated chondrocytes were applied to form a pellet. These pellets were cultured in chemically defined serum-free medium with ITS+Premix for 3 days. Then 5 MPa of cyclic hydrostatic pressure was applied at 0.5 Hz for 4 h per day for 4 days. Semiquantitative reverse transcriptase-polymerase chain reaction showed a 5-fold increase in the levels of aggrecan mRNA due to cyclic hydrostatic pressure load (p<0.01). Type II collagen mRNA levels were also upregulated 4-fold by a cyclic hydrostatic pressure load (p<0.01). Type I collagen mRNA levels were similarly reduced in the cyclic hydrostatic pressure load group and in the control group. The partial oxygen pressure (PO2) and partial carbon dioxide pressure (PCO2) of the medium in the bag reached equilibrium in 24 h, and no significant change was observed for 3 days afterwards. PO2 and PCO2 were very well controlled. The loaded pellet showed better safranin O/fast green staining than did the control pellet. Metachromatic staining by Alcian blue staining was found to be stronger in the loaded than in the control pellets. The extracellular matrices excretion of loaded pellets was higher than that of control pellets. These results suggest that gas-controlled cyclic hydrostatic pressure enhanced the cartilaginous matrix formation of dedifferentiated cells differentiated in vitro.

  3. Characterization of commercial off-the shelf regenerable sorbent to scrub carbon dioxide in a portable life support system

    NASA Astrophysics Data System (ADS)

    Arai, Tatsuya; Fricker, John

    2018-06-01

    A resin bead Mitsubishi DIAION™ CR20 was identified and characterized as a first commercial off-the shelf regenerable carbon dioxide (CO2) sorbent candidate for space life support system applications at room temperature. The CO2 adsorption rates and capacities of CR20 at varying CO2 partial pressures were obtained. The data were used to numerically simulate CO2 adsorption by a swingbed, a pair of two sorbent beds that alternately adsorb and desorb CO2 in a space suit portable life support system (PLSS). The result demonstrated that a reasonable volume of CR20 would be able to continuously adsorb CO2 with bed-swing interval of 4 min at 300-W metabolic rate, and that commercial off-the shelf CR20 would have similar performance of CO2 adsorption to the proprietary swingbed sorbent SA9T for PLSS applications.

  4. Development of a six-man, self-contained carbon dioxide collection subsystem for spacecraft application

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Quattrone, P. D.

    1974-01-01

    Life Systems, working with NASA, has developed an electrochemical, six-man, self-contained carbon dioxide concentrator subsystem (CX-6) designed to normally remove 13.2 lb/day of CO2 while maintaining the CO2 partial pressure (pCO2) of the cabin atmosphere at 3 mm Hg or less. The CX-6 was subjected to extensive parametric and endurance testing. The effects of operating conditions on CO2 removal and electrical efficiencies were determined, including effects of hydrogen (H2) flow rate, process airflow rate, pCO2, operating temperature and current density. A total of 209 days of operation was accumulated. The subsystem was designed with self-contained electronic control and monitoring instrumentation. The CX-6 was redesigned and repackaged into the CO2 collection subsystem for the air revitalization group of the space station prototype.

  5. Saturation-state sensitivity of marine bivalve larvae to ocean acidification

    NASA Astrophysics Data System (ADS)

    Waldbusser, George G.; Hales, Burke; Langdon, Chris J.; Haley, Brian A.; Schrader, Paul; Brunner, Elizabeth L.; Gray, Matthew W.; Miller, Cale A.; Gimenez, Iria

    2015-03-01

    Ocean acidification results in co-varying inorganic carbon system variables. Of these, an explicit focus on pH and organismal acid-base regulation has failed to distinguish the mechanism of failure in highly sensitive bivalve larvae. With unique chemical manipulations of seawater we show definitively that larval shell development and growth are dependent on seawater saturation state, and not on carbon dioxide partial pressure or pH. Although other physiological processes are affected by pH, mineral saturation state thresholds will be crossed decades to centuries ahead of pH thresholds owing to nonlinear changes in the carbonate system variables as carbon dioxide is added. Our findings were repeatable for two species of bivalve larvae could resolve discrepancies in experimental results, are consistent with a previous model of ocean acidification impacts due to rapid calcification in bivalve larvae, and suggest a fundamental ocean acidification bottleneck at early life-history for some marine keystone species.

  6. Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, D.C.; Yu, Z.J.; Chen, Y.

    2009-06-15

    A large amount of wastewater is produced in the Lurgi coal-gasification process with the complex compounds carbon dioxide, ammonia, phenol, etc., which cause a serious environmental problem. In this paper, a novel stripper operated at elevated pressure is designed to improve the pretreatment process. In this technology, two noticeable improvements were established. First, the carbon dioxide and ammonia were removed simultaneously in a single stripper where sour gas (mainly carbon dioxide) is removed from the tower top and the ammonia vapor is drawn from the side and recovered by partial condensation. Second, the ammonia is removed before the phenol recoverymore » to reduce the pH value of the subsequent extraction units, so as the phenol removal performance of the extraction is greatly improved. To ensure the operational efficiency, some key operational parameters are analyzed and optimized though simulation. It is shown that when the top temperature is kept at 40 C and the weight ratio of the side draw to the feed is above 9%, the elevated pressures can ensure the removal efficiency of NH{sub 3} and carbon dioxide and the desired purified water as the bottom product of the unit is obtained. A real industrial application demonstrates the attractiveness of the new technique: it removes 99.9% CO{sub 2} and 99.6% ammonia, compared to known techniques which remove 66.5% and 94.4%, respectively. As a result, the pH value of the wastewater is reduced from above 9 to below 7. This ensures that the phenol removal ratio is above 93% in the following extraction units. The operating cost is lower than that of known techniques, and the operation is simplified.« less

  7. Evaluating the effect of sample type on American alligator (Alligator mississippiensis) analyte values in a point-of-care blood analyser

    PubMed Central

    Hamilton, Matthew T.; Finger, John W.; Winzeler, Megan E.; Tuberville, Tracey D.

    2016-01-01

    The assessment of wildlife health has been enhanced by the ability of point-of-care (POC) blood analysers to provide biochemical analyses of non-domesticated animals in the field. However, environmental limitations (e.g. temperature, atmospheric humidity and rain) and lack of reference values may inhibit researchers from using such a device with certain wildlife species. Evaluating the use of alternative sample types, such as plasma, in a POC device may afford researchers the opportunity to delay sample analysis and the ability to use banked samples. In this study, we examined fresh whole blood, fresh plasma and frozen plasma (sample type) pH, partial pressure of carbon dioxide (PCO2), bicarbonate (HCO3−), total carbon dioxide (TCO2), base excess (BE), partial pressure of oxygen (PO2), oxygen saturation (sO2) and lactate concentrations in 23 juvenile American alligators (Alligator mississippiensis) using an i-STAT CG4+ cartridge. Our results indicate that sample type had no effect on lactate concentration values (F2,65 = 0.37, P = 0.963), suggesting that the i-STAT analyser can be used reliably to quantify lactate concentrations in fresh and frozen plasma samples. In contrast, the other seven blood parameters measured by the CG4+ cartridge were significantly affected by sample type. Lastly, we were able to collect blood samples from all alligators within 2 min of capture to establish preliminary reference ranges for juvenile alligators based on values obtained using fresh whole blood. PMID:27382469

  8. [Relation between ultrasound-measured diaphragm movement and partial pressure of carbon dioxide in blood from patients with acute hypercapnic respiratory failure after the start of noninvasive ventilation in an emergency department].

    PubMed

    Sánchez-Nicolás, José Andrés; Cinesi-Gómez, César; Villén-Villegas, Tomás; Piñera-Salmerón, Pascual; García-Pérez, Bartolo

    2016-10-01

    To evaluate the correlation between variations in ultrasound-measured diaphragm movement and changes in the arterial partial pressure of carbon dioxide (PCO2) after the start of noninvasive ventilation (NIV). RDescriptive study of a prospective case series comprised of nonconsecutive patients aged 18 years or older with hypercapnic respiratory failure who were placed on NIV in an emergency department. We recorded clinical data, blood gas measurements, and ultrasound measurements of diaphragm movement. Twenty-one patients with a mean (SD) age of 83 (13) years were studied; 11 (52.4%) were women. The mean (SD) range of diaphragm movement and PCO2 values at 4 moments were as follows: 1) at baseline: diaphragm movement, 13.90 (7.7) mm and PCO2, 71.75 (11.4) mm Hg; 2) after 15 minutes on NIV: diaphragm movement, 17.10 (9.1) mm; 3) at 1 hour: diaphragm movement, 22.40 (10.4) mm and PCO2, 63.45 (16.0) mm Hg; and 4) at 3 hours: diaphragm movement, 26.60 (19.5) mm and PCO2, 61.85 (13.0) mm Hg. We detected a statistically significant correlation between the difference in range of diaphragm movement at baseline and at 15 minutes and the decrease in PCO2 after 1 hour of NIV (r=-0.489, P=.035). In patients with hypercapnic respiratory failure, the increase in range of diaphragm movement 15 minutes after starting NIV is associated with a decrease in PCO2 after 1 hour.

  9. Carbon dioxide partial pressure and 13C content of north temperate and boreal lakes at spring ice melt

    USGS Publications Warehouse

    Striegl, Robert G.; Kortelainen, Pirkko; Chanton, J.P.; Wickland, K.P.; Bugna, G.C.; Rantakari, M.

    2001-01-01

    Carbon dioxide (CO2) accumulates under lake ice in winter and degasses to the atmosphere after ice melt. This large springtime CO2 pulse is not typically considered in surface-atmosphere flux estimates, because most field studies have not sampled through ice during late winter. Measured CO2 partial pressure (pCO2) of lake surface water ranged from 8.6 to 4,290 Pa (85-4,230 ??atm) in 234 north temperate and boreal lakes prior to ice melt during 1998 and 1999. Only four lakes had surface pCO2 less than or equal to atmospheric pCO2, whereas 75% had pCO2 >5 times atmospheric. The ??13CDIC (DIC = ??CO2) of 142 of the lakes ranged from -26.28??? to +0.95.???. Lakes with the greatest pCO2 also had the lightest ??13CDIC, which indicates respiration as their primary CO2 source. Finnish lakes that received large amounts of dissolved organic carbon from surrounding peatlands had the greatest pCO2. Lakes set in noncarbonate till and bedrock in Minnesota and Wisconsin had the smallest pCO2 and the heaviest ??13CDIC, which indicates atmospheric and/or mineral sources of C for those lakes. Potential emissions for the period after ice melt were 2.36 ?? 1.44 mol CO2 m-2 for lakes with average pCO2 values and were as large as 13.7 ?? 8.4 mol CO2 m-2 for lakes with high pCO2 values.

  10. Effect of purity on adsorption capacities of a Mars-like clay mineral at different pressures

    NASA Technical Reports Server (NTRS)

    Jenkins, Traci; Mcdoniel, Bridgett; Bustin, Roberta; Allton, Judith H.

    1992-01-01

    There has been considerable interest in adsorption of carbon dioxide on Marslike clay minerals. Some estimates of the carbon dioxide reservoir capacity of the martian regolith were calculated from the amount of carbon dioxide adsorbed on the ironrich smectite nontronite under martian conditions. The adsorption capacity of pure nontronite could place upper limits on the regolith carbon dioxide reservoir, both at present martian atmospheric pressure and at the postulated higher pressures required to permit liquid water on the surface. Adsorption of carbon dioxide on a Clay Mineral Society standard containing nontronite was studied over a wide range of pressures in the absence of water. Similar experiments were conducted on the pure nontronite extracted from the natural sample. Heating curves were obtained to help characterize and determine the purity of the clay sample.

  11. Natural deep eutectic solvents (NADES) as green solvents for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Putri, Sylvania; Krisanti, Elsa; Nasruddin

    2017-03-01

    This study was conducted to determine the effectiveness of Natural Deep Eutectic Solvent (NADES), consisting of choline chloride and a hydrogen bonding donor (HBD) compound, in terms of carbon dioxide absorption. Solubility of carbon dioxide in NADES was found to be influenced HBD compound used and choline chloride to HBD ratio, carbon dioxide pressure, and contact time. HBD and choline/HBD ratios used were 1,2-propanediol (1:2), glycerol (1:2), and malic acid (1:1). The carbon dioxide absorption measurement was conducted using an apparatus that utilizes the volumetric method. Absorption curves were obtained up to pressures of 30 bar, showing a linear relationship between the amount absorbed and the final pressure of carbon dioxide. The choline and 1,2-propanediol eutectic mixture absorbs the highest amount of carbon dioxide, approaching 0.1 mole-fraction at 3.0 MPa and 50°C. We found that NADES ability to absorb carbon dioxide correlates with its polarity as tested using Nile Red as a solvatochromic probe.

  12. Maximizing performance in supercritical fluid chromatography using low-density mobile phases.

    PubMed

    Gritti, Fabrice; Fogwill, Michael; Gilar, Martin; Jarrell, Joseph A

    2016-10-14

    The performance of a 3.0mm×150mm column packed with 1.8μm fully porous HSS-SB-C 18 particles was investigated in supercritical fluid chromatography (SFC) with low-density, highly expansible carbon dioxide. These conditions are selected for the analysis of semi-volatile compounds. Elevated temperatures (>100°C) were then combined with low column back pressures (<100bar). In this work, the inlet temperature of pure carbon dioxide was set at 107°C, the active back pressure regulator (ABPR) pressure was fixed at 100bar, and the flow rate was set at 2.1mL/min at 12°C (liquefied carbon dioxide) and at an inlet column pressure close to 300bar. Nine n-alkylbenzenes (from benzene to octadecylbenzene) were injected under linear (no sample overload) conditions. The severe steepness of the temperature gradients across the column diameter were predicted from a simplified heat transfer model. Such conditions dramatically lower the column performance by affecting the symmetry of the peak shape. In order to cope with this problem, three different approaches were experimentally tested. They include (1) the decoupling and the proper selection of the inlet eluent temperature with respect to the oven temperature, (2) the partial thermal insulation of the column using polyethylene aerogel, and (3) the application of a high vacuum (10 -5 Torr provided by a turbo-molecular pump) in a housing chamber surrounding the whole column body. The results reveal that (1) the column efficiency can be maximized by properly selecting the difference between the eluent and the oven temperatures, (2) the mere wrapping of the column with an excellent insulating material is insufficient to fully eliminate heat exchanges by conduction and the undesirable radial density gradients across the column i.d., and (3) the complete thermal insulation of the SFC column under high vacuum allows to maximize the column efficiency by maintaining the integrity of the peak shape. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effects of outboard motor exhaust emissions on goldfish (Carassius auratus)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenniman, G.R.; Anver, M.R.; Hartung, R.

    1979-07-01

    Goldfish (Carassius auratus) were exposed to outboard exhaust products in water or to toluene (a constituent of outboard motor exhaust water) via a continuous flow bioassay dosing apparatus. Various physiologic and pathologic changes were noted. In the blood a consistent decrease (p less than 0.05) in the partial pressure of oxygen, a significant increase (p less than 0.05) in the partial pressure of carbon dioxide, and significant decreases (p less than 0.05) in pH and oxygen saturation were found in many of the blood gas experiments. Laboratory experiments also indicated that these fish are capable of metabolizing toluene to hippuricmore » acid (p less than 0.05). Exposure up to 30 days to these exhaust products produced gross and microscopic lesions in the high-, intermediate-, and low-dose fish. Grossly, livers were smaller and pale; intestines were empty of ingesta and feces; and gills were coated excessively with mucus. Microscopically, the livers of the exposed fish had a decreased cytoplasmic:nuclear ratio, gill filaments were fused, and some kidneys had tubular vacuolization.« less

  14. Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2

    PubMed Central

    Machida, Shiki; Kogiso, Tetsu; Hirano, Naoto

    2017-01-01

    The deep carbon cycle plays an important role on the chemical differentiation and physical properties of the Earth's mantle. Especially in the asthenosphere, seismic low-velocity and high electrical conductivity due to carbon dioxide (CO2)-induced partial melting are expected but not directly observed. Here we discuss the experimental results relevant to the genesis of primitive CO2-rich alkali magma forming petit-spot volcanoes at the deformation front of the outer rise of the northwestern Pacific plate. The results suggest that primitive melt last equilibrated with depleted peridotite at 1.8–2.1 GPa and 1,280–1,290 °C. Although the equilibration pressure corresponds to the pressure of the lower lithosphere, by considering an equilibration temperature higher than the solidus in the volatile–peridotite system along with the temperature of the lower lithosphere, we conclude that CO2-rich silicate melt is always produced in the asthenosphere. The melt subsequently ascends into and equilibrates with the lower lithosphere before eruption. PMID:28148927

  15. Ammonia inhibition on hydrogen enriched anaerobic digestion of manure under mesophilic and thermophilic conditions.

    PubMed

    Wang, Han; Zhang, Yifeng; Angelidaki, Irini

    2016-11-15

    Capturing of carbon dioxide by hydrogen derived from excess renewable energy (e.g., wind mills) to methane in a microbially catalyzed process offers an attractive technology for biogas production and upgrading. This bioconversion process is catalyzed by hydrogenotrophic methanogens, which are known to be sensitive to ammonia. In this study, the tolerance of the biogas process under supply of hydrogen, to ammonia toxicity was studied under mesophilic and thermophilic conditions. When the initial hydrogen partial pressure was 0.5 atm, the methane yield at high ammonia load (7 g NH 4 + -N L -1 ) was 41.0% and 22.3% lower than that at low ammonia load (1 g NH 4 + -N L -1 ) in mesophilic and thermophilic condition, respectively. Meanwhile no significant effect on the biogas composition was observed. Moreover, we found that hydrogentrophic methanogens were more tolerant to the ammonia toxicity than acetoclastic methanogens in the hydrogen enriched biogas production and upgrading processes. The highest methane production yield was achieved under 0.5 atm hydrogen partial pressure in batch reactors at all the tested ammonia levels. Furthermore, the thermophilic methanogens at 0.5 atm of hydrogen partial pressure were more tolerant to high ammonia levels (≥5 g NH 4 + -N L -1 ), compared with mesophilic methanogens. The present study offers insight in developing resistant hydrogen enriched biogas production and upgrading processes treating ammonia-rich waste streams. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The CO2 stimulus for cerebrovascular reactivity: Fixing inspired concentrations vs. targeting end-tidal partial pressures.

    PubMed

    Fisher, Joseph A

    2016-06-01

    Cerebrovascular reactivity (CVR) studies have elucidated the physiology and pathophysiology of cerebral blood flow regulation. A non-invasive, high spatial resolution approach uses carbon dioxide (CO2) as the vasoactive stimulus and magnetic resonance techniques to estimate the cerebral blood flow response. CVR is assessed as the ratio response change to stimulus change. Precise control of the stimulus is sought to minimize CVR variability between tests, and show functional differences. Computerized methods targeting end-tidal CO2 partial pressures are precise, but expensive. Simpler, improvised methods that fix the inspired CO2 concentrations have been recommended as less expensive, and so more widely accessible. However, these methods have drawbacks that have not been previously presented by those that advocate their use, or those that employ them in their studies. As one of the developers of a computerized method, I provide my perspective on the trade-offs between these two methods. The main concern is that declaring the precision of fixed inspired concentration of CO2 is misleading: it does not, as implied, translate to precise control of the actual vasoactive stimulus - the arterial partial pressure of CO2 The inherent test-to-test, and therefore subject-to-subject variability, precludes clinical application of findings. Moreover, improvised methods imply widespread duplication of development, assembly time and costs, yet lack uniformity and quality control. A tabular comparison between approaches is provided. © The Author(s) 2016.

  17. The Influence of Seal Properties on Pressure Buildup and Leakage of Carbon Dioxide from Sequestration Reservoirs (Invited)

    NASA Astrophysics Data System (ADS)

    Benson, S. M.; Chabora, E.

    2009-12-01

    The transport properties of seals, namely permeability, relative permeability, and capillary pressure control both migration of carbon dioxide and brine through the seal. Only recently has the the importance of brine migration emerged as key issue in the environmental performance of carbon dioxide sequestration projects. In this study we use numerical simulation to show that brine migration through the seal can be either advantageous or deleterious to the environmental performance of a carbon dioxide sequestration project. Brine migration through the seal can lower the pressure buildup in the storage reservoir, thereby reducing the risk of leakage or geomechanical stresses on the seal. On the other hand, if the seal is penetrated by a permeable fault it can lead to focused flow up a fault, which could lead to brine migration into drinking water aquifers. We also show that as the carbon dioxide plume grows, brine flow undergoes a complex evolution from upward flow to downward flows driven by countercurrent migration of carbon dioxide and brine in the seal and capillary pressure gradients at the base of the seal. Finally, we discuss desirable attributes seals, taking into account both carbon dioxide and brine migration through the seal. In particular, identifying seals that provide an effective capillary barrier to block the flow of carbon dioxide while allowing some brine migration through the seal can help to control pressure buildup and allow more efficient utilization of a sequestration reservoir. This could be particularly important in those settings that may be limited by the maximum allowable pressure buildup.

  18. Weaning mechanical ventilation after off-pump coronary artery bypass graft procedures directed by noninvasive gas measurements.

    PubMed

    Chakravarthy, Murali; Narayan, Sandeep; Govindarajan, Raghav; Jawali, Vivek; Rajeev, Subramanyam

    2010-06-01

    Partial pressure of carbon dioxide and oxygen were transcutaneously measured in adults after off-pump coronary artery bypass (OPCAB) surgery. The clinical use of such measurements and interchangeability with arterial blood gas measurements for weaning patients from postoperative mechanical ventilation were assessed. This was a prospective observational study. Tertiary referral heart hospital. Postoperative OPCAB surgical patients. Transcutaneous oxygen and carbon dioxide measurements. In this prospective observational study, 32 consecutive adult patients in a tertiary care medical center underwent OPCAB surgery. Noninvasive measurement of respiratory gases was performed during the postoperative period and compared with arterial blood gases. The investigator was blinded to the reports of arterial blood gas studies and weaned patients using a "weaning protocol" based on transcutaneous gas measurement. The number of patients successfully weaned based on transcutaneous measurements and the number of times the weaning process was held up were noted. A total of 212 samples (pairs of arterial and transcutaneous values of oxygen and carbon dioxide) were obtained from 32 patients. Bland-Altman plots and mountain plots were used to analyze the interchangeability of the data. Twenty-five (79%) of the patients were weaned from the ventilator based on transcutaneous gas measurements alone. Transcutaneous carbon dioxide measurements were found to be interchangeable with arterial carbon dioxide during 96% of measurements, versus 79% for oxygen measurements. More than three fourths of the patients were weaned from mechanical ventilation and extubated based on transcutaneous gas values alone after OPCAB surgery. The noninvasive transcutaneous carbon dioxide measurement can be used as a surrogate for arterial carbon dioxide measurement to manage postoperative OPCAB patients. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Effects of Mild Hypercapnia During Head-Down Bed Rest on Ocular Structures, Cerebral Blood Flow, aud Visual Acuity in Healthy Human Subjects

    NASA Technical Reports Server (NTRS)

    Laurie, S. S.; Taibbi, G.; Lee, S. M. C.; Martin, D. S.; Zanello, S.; Ploutz-Snyder, R.; Hu, X.; Stenger, M. B.; Vizzeri, G.

    2014-01-01

    The cephalad fluid shift induced by microgravity has been hypothesized to cause an elevation in intracranial pressure (ICP) and contribute to the development of the Visual Impairment/Intracranial Pressure (VIIP) syndrome, as experienced by some astronauts during long-duration space flight. Elevated ambient partial pressure of carbon dioxide (PCO2) on ISS may also raise ICP and contribute to VIIP development. We seek to determine if the combination of mild CO2 exposure, similar to that occurring on the International Space Station, with the cephalad fluid shift induced by head-down tilt, will induce ophthalmic and cerebral blood flow changes similar to those described in the VIIP syndrome. We hypothesize that mild hypercapnia in the head-down tilt position will increase choroidal blood volume and cerebral blood flow, raise intraocular pressure (IOP), and transiently reduce visual acuity as compared to the seated or the head-down tilt position without elevated CO2, respectively.

  20. Cardiopulmonary effects of medetomidine or midazolam in combination with ketamine or tiletamine/zolazepam for the immobilisation of captive cheetahs (Acinonyx jubatus).

    PubMed

    Stegmann, G F; Jago, M

    2006-12-01

    Captive cheetah (Acinonyx jubatus) scheduled for either general health examination or dental surgery were immobilised with combinations of medetomidine-ketamine (K/DET, n = 19), midazolam-ketamine (K/MID, n = 4) or medetomidine-tiletamine-zolazepam (Z/DET, n = 5). Induction time and arterial blood pressure was not statistically significantly (P > 0.05) different between treatment groups. Transient seizures were observed in the K/DET treated animals during induction. Hypertension was present in all groups during anaesthesia with mean (+/- SD) systolic pressure of 30.7 +/- 5.0 kPa for the K/DET group, 27.7 +/- 2.7 kPa for the K/MID group, and 33.1 +/- 4.6 kPa for the Z/DET group. Heart rate was statistically significantly (P < 0.05) lower in the K/DET group (69 +/- 13.2 beats/min) compared to the K/MID group (97 +/- 22.6 beats/min), and ventilation rate was statistically significantly (P < 0.05) lower in the K/MID group (15 +/- 0.0 breaths/min) compared with the K/DET group (21 +/- 4.6). A metabolic acidosis and hypoxia were observed during anaesthesia when breathing air. Oxygen (O2) administration resulted in a statistically significant (P < 0.05) increase in the arterial partial pressure of carbon dioxide (hypercapnoea), arterial partial pressure of O2, and % oxyhaemoglobin saturation.

  1. Direct computation of thermodynamic properties of chemically reacting air with consideration to CFD

    NASA Astrophysics Data System (ADS)

    Iannelli, Joe

    2003-10-01

    This paper details a two-equation procedure to calculate exactly mass and mole fractions, pressure, temperature, specific heats, speed of sound and the thermodynamic and jacobian partial derivatives of pressure and temperature for a five-species chemically reacting equilibrium air. The procedure generates these thermodynamic properties using as independent variables either pressure and temperature or density and internal energy, for CFD applications. An original element in this procedure consists in the exact physically meaningful solution of the mass-fraction and mass-action equations. Air-equivalent molecular masses for oxygen and nitrogen are then developed to account, within a mixture of only oxygen and nitrogen, for the presence of carbon dioxide, argon and the other noble gases within atmospheric air. The mathematical formulation also introduces a versatile system non-dimensionalization that makes the procedure uniformly applicable to flows ranging from shock-tube flows with zero initial velocity to aerothermodynamic flows with supersonic/hypersonic free-stream Mach numbers. Over a temperature range of more than 10000 K and pressure and density ranges corresponding to an increase in altitude in standard atmosphere of 30000 m above sea level, the predicted distributions of mole fractions, constant-volume specific heat, and speed of sound for the model five species agree with independently published results, and all the calculated thermodynamic properties, including their partial derivatives, remain continuous, smooth, and physically meaningful.

  2. Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25°C: a test of a calcite dissolution model

    USGS Publications Warehouse

    Reddy, Michael M.; Plummer, Niel; Busenberg, E.

    1981-01-01

    A highly reproducible seeded growth technique was used to study calcite crystallization from calcium bicarbonate solutions at 25°C and fixed carbon dioxide partial pressures between 0.03 and 0.3 atm. The results are not consistent with empirical crystallization models that have successfully described calcite growth at low PCO2 (< 10−3 atm). Good agreement was found between observed crystallization rates and those calculated from the calcite dissolution rate law and mechanism proposed by Plummer et al. (1978).

  3. 77 FR 14167 - Approval Tests and Standards for Closed-Circuit Escape Respirators

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... Dioxide 3. Oxygen 4. Peak Breathing Pressures 5. Wet-Bulb Temperature L. Section 84.304 Capacity Test... oxygen storage or chemical carbon dioxide scrubber can be altered by impact or any other effect must... inhaled carbon dioxide, average inhaled oxygen, peak breathing pressures, and wet-bulb temperature...

  4. Digital Architecture for a Trace Gas Sensor Platform

    NASA Technical Reports Server (NTRS)

    Gonzales, Paula; Casias, Miguel; Vakhtin, Andrei; Pilgrim, Jeffrey

    2012-01-01

    A digital architecture has been implemented for a trace gas sensor platform, as a companion to standard analog control electronics, which accommodates optical absorption whose fractional absorbance equivalent would result in excess error if assumed to be linear. In cases where the absorption (1-transmission) is not equivalent to the fractional absorbance within a few percent error, it is necessary to accommodate the actual measured absorption while reporting the measured concentration of a target analyte with reasonable accuracy. This requires incorporation of programmable intelligence into the sensor platform so that flexible interpretation of the acquired data may be accomplished. Several different digital component architectures were tested and implemented. Commercial off-the-shelf digital electronics including data acquisition cards (DAQs), complex programmable logic devices (CPLDs), field-programmable gate arrays (FPGAs), and microcontrollers have been used to achieve the desired outcome. The most completely integrated architecture achieved during the project used the CPLD along with a microcontroller. The CPLD provides the initial digital demodulation of the raw sensor signal, and then communicates over a parallel communications interface with a microcontroller. The microcontroller analyzes the digital signal from the CPLD, and applies a non-linear correction obtained through extensive data analysis at the various relevant EVA operating pressures. The microcontroller then presents the quantitatively accurate carbon dioxide partial pressure regardless of optical density. This technique could extend the linear dynamic range of typical absorption spectrometers, particularly those whose low end noise equivalent absorbance is below one-part-in-100,000. In the EVA application, it allows introduction of a path-length-enhancing architecture whose optical interference effects are well understood and quantified without sacrificing the dynamic range that allows quantitative detection at the higher carbon dioxide partial pressures. The digital components are compact and allow reasonably complete integration with separately developed analog control electronics without sacrificing size, mass, or power draw.

  5. 46 CFR 95.15-1 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-1 Application. (a) Where a carbon dioxide... are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems,” i. e., those in which the carbon...

  6. 46 CFR 95.15-1 - Application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-1 Application. (a) Where a carbon dioxide... are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems,” i. e., those in which the carbon...

  7. 46 CFR 95.15-1 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-1 Application. (a) Where a carbon dioxide... are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems,” i. e., those in which the carbon...

  8. 46 CFR 95.15-1 - Application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-1 Application. (a) Where a carbon dioxide... are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems,” i. e., those in which the carbon...

  9. Pressure pumping of carbon dioxide from soil

    Treesearch

    E. S. Takle; J. R. Brandle; R. A. Schmidt; R. Garcia; I. V. Litvina; G. Doyle; X. Zhou; Q. Hou; C. W. Rice; W. J. Massman

    2000-01-01

    Recent interest in atmospheric increases in carbon dioxide have heightened the need for improved accuracy in measurements of fluxes of carbon dioxide from soils. Diffusional movement has long been considered the dominant process by which trace gases move from the subsurface source to the surface, although there has been some indication that atmospheric pressure...

  10. Lethal and sublethal responses of native mussels (Unionidae: Lampsilis siliquoidea and L. higginsii) to elevated carbon dioxide

    USGS Publications Warehouse

    Waller, Diane L.; Bartsch, Michelle; Bartsch, Lynn; Jackson, Craig

    2018-01-01

    Levels of carbon dioxide (CO2) that have been proposed for aquatic invasive species (AIS) control [24 000 – 96 000 µatm partial pressure CO2 (PCO2); 1 atm = 101.325 kPa] were tested on juvenile mussels, the Fatmucket (Lampsilis siliquoidea) and the U.S. federally endangered Higgins Eye (L. higginsii). A suite of responses (survival, growth, behavior, and gene expression) were measured after 28-d exposure and 14-d postexposure to CO2. The 28-d LC20 (lethal concentration to 20%) was lower for L. higginsii (31 800 µatm PCO2, 95% confidence interval (CI) 15 000 – 42 800 µatm) than for L. siliquoidea (58 200 µatm PCO2, 95% CI 45 200 – 68 100 µatm). Treatment-related reductions occurred in all measures of growth and condition. Expression of chitin synthase, key for shell formation, was down-regulated at 28-d exposure. Carbon dioxide caused narcotization and unburial of mussels, behaviors that could increase mortality by predation and displacement. We conclude that survival and growth of juvenile mussels could be reduced by continuous exposure to elevated CO2, but recovery may be possible in shorter duration exposure.

  11. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOEpatents

    Ghate, M.R.; Yang, R.T.

    1985-10-03

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

  12. Effects of hyperbaric oxygen on intracranial pressure and cerebral blood flow in experimental cerebral oedema1

    PubMed Central

    Miller, J. D.; Ledingham, I. McA.; Jennett, W. B.

    1970-01-01

    Increased intracranial pressure was induced in anaesthetized dogs by application of liquid nitrogen to the dura mater. Intracranial pressure and cerebral blood flow were measured, together with arterial blood pressure and arterial and cerebral venous blood gases. Carbon dioxide was administered intermittently to test the responsiveness of the cerebral circulation, and hyperbaric oxygen was delivered at intervals in a walk-in hyperbaric chamber, pressurized to two atmospheres absolute. Hyperbaric oxygen caused a 30% reduction of intracranial pressure and a 19% reduction of cerebral blood flow in the absence of changes in arterial PCO2 or blood pressure, but only as long as administration of carbon dioxide caused an increase in both intracranial pressure and cerebral blood flow. When carbon dioxide failed to influence intracranial pressure or cerebral blood flow then hyperbaric oxygen had no effect. This unresponsive state was reached at high levels of intracranial pressure. Images PMID:5497875

  13. Time of day affects the frequency and duration of breathing events and the critical closing pressure during NREM sleep in participants with sleep apnea.

    PubMed

    El-Chami, Mohamad; Shaheen, David; Ivers, Blake; Syed, Ziauddin; Badr, M Safwan; Lin, Ho-Sheng; Mateika, Jason H

    2015-09-15

    We investigated if the number and duration of breathing events coupled to upper airway collapsibility were affected by the time of day. Male participants with obstructive sleep apnea completed a constant routine protocol that consisted of sleep sessions in the evening (10 PM to 1 AM), morning (6 AM to 9 AM), and afternoon (2 PM to 5 PM). On one occasion the number and duration of breathing events was ascertained for each sleep session. On a second occasion the critical closing pressure that demarcated upper airway collapsibility was determined. The duration of breathing events was consistently greater in the morning compared with the evening and afternoon during N1 and N2, while an increase in event frequency was evident during N1. The critical closing pressure was increased in the morning (2.68 ± 0.98 cmH2O) compared with the evening (1.29 ± 0.91 cmH2O; P ≤ 0.02) and afternoon (1.25 ± 0.79; P ≤ 0.01). The increase in the critical closing pressure was correlated to the decrease in the baseline partial pressure of carbon dioxide in the morning compared with the afternoon and evening (r = -0.73, P ≤ 0.005). Our findings indicate that time of day affects the duration and frequency of events, coupled with alterations in upper airway collapsibility. We propose that increases in airway collapsibility in the morning may be linked to an endogenous modulation of baseline carbon dioxide levels and chemoreflex sensitivity (12), which are independent of the consequences of sleep apnea.

  14. Understanding the carbon dioxide gaps.

    PubMed

    Scheeren, Thomas W L; Wicke, Jannis N; Teboul, Jean-Louis

    2018-06-01

    The current review attempts to demonstrate the value of several forms of carbon dioxide (CO2) gaps in resuscitation of the critically ill patient as monitor for the adequacy of the circulation, as target for fluid resuscitation and also as predictor for outcome. Fluid resuscitation is one of the key treatments in many intensive care patients. It remains a challenge in daily practice as both a shortage and an overload in intravascular volume are potentially harmful. Many different approaches have been developed for use as target of fluid resuscitation. CO2 gaps can be used as surrogate for the adequacy of cardiac output (CO) and as marker for tissue perfusion and are therefore a potential target for resuscitation. CO2 gaps are easily measured via point-of-care analysers. We shed light on its potential use as nowadays it is not widely used in clinical practice despite its potential. Many studies were conducted on partial CO2 pressure differences or CO2 content (cCO2) differences either alone, or in combination with other markers for outcome or resuscitation adequacy. Furthermore, some studies deal with CO2 gap to O2 gap ratios as target for goal-directed fluid therapy or as marker for outcome. CO2 gap is a sensitive marker of tissue hypoperfusion, with added value over traditional markers of tissue hypoxia in situations in which an oxygen diffusion barrier exists such as in tissue oedema and impaired microcirculation. Venous-to-arterial cCO2 or partial pressure gaps can be used to evaluate whether attempts to increase CO should be made. Considering the potential of the several forms of CO2 measurements and its ease of use via point-of-care analysers, it is recommendable to implement CO2 gaps in standard clinical practice.

  15. Supraoptimal carbon dioxide effects on growth of soybean [Glycine max (L.) Merr.

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Siegriest, L. M.; Sager, J. C.; Knott, W. M. (Principal Investigator)

    1993-01-01

    In tightly closed environments used for human life support in space, carbon dioxide (CO2) partial pressures can reach 500 to 1000 Pa, which may be supraoptimal or toxic to plants used for life support. To study this, soybeans [Glycine max (L.) Merr. cvs. McCall and Pixie] were grown for 90 days at 50, 100, 200, and 500 Pa partial pressure CO2 (500, 1000, 2000, and 5000 ppm). Plants were grown using recirculating nutrient film technique with a 12-h photoperiod, a 26 degrees C/20 degrees C thermoperiod, and approximately 300 micromoles m-2 s-1 photosynthetic photon flux (PPF). Seed yield and total biomass were greatest at 100 Pa for cv. McCall, suggesting that higher CO2 levels were supraoptimal. Seed yield and total biomass for cv. Pixie showed little difference between CO2 treatments. Average stomatal conductance of upper canopy leaves at 50 Pa CO2 approximately 500 Pa > 200 Pa > 100 Pa. Total water use over 90 d for both cultivars (combined on one recirculating system) equalled 822 kg water for 100 Pa CO2, 845 kg for 50 Pa, 879 kg for 200 Pa, and 1194 kg for 500 Pa. Water use efficiences for both cultivars combined equalled 3.03 (g biomass kg-1 water) for 100 Pa CO2, 2.54 g kg-1 for 200 Pa, 2.42 g kg-1 for 50 Pa, and 1.91 g kg-1 for 500 Pa. The increased stomatal conductance and stand water use at the highest CO2 level (500 Pa) were unexpected and pose interesting considerations for managing plants in a tightly closed system where CO2 concentrations may reach high levels.

  16. Agreement between arterial partial pressure of carbon dioxide and saturation of hemoglobin with oxygen values obtained by direct arterial blood measurements versus noninvasive methods in conscious healthy and ill foals.

    PubMed

    Wong, David M; Alcott, Cody J; Wang, Chong; Bornkamp, Jennifer L; Young, Jessica L; Sponseller, Brett A

    2011-11-15

    To determine agreement between indirect measurements of end-tidal partial pressure of carbon dioxide (PetCO(2)) and saturation of hemoglobin with oxygen as measured by pulse oximetry (SpO(2)) with direct measurements of PaCO(2) and calculated saturation of hemoglobin with oxygen in arterial blood (SaO(2)) in conscious healthy and ill foals. Validation study. 10 healthy and 21 ill neonatal foals. Arterial blood gas analysis was performed on healthy and ill foals examined at a veterinary teaching hospital to determine direct measurements of PaCO(2) and PaO(2) along with SaO(2). Concurrently, PetCO(2) was measured with a capnograph inserted into a naris, and SpO(2) was measured with a reflectance probe placed at the base of the tail. Paired values were compared by use of Pearson correlation coefficients, and level of agreement was assessed with the Bland-Altman method. Mean ± SD difference between PaCO(2) and PetCO(2) was 0.1 ± 5.0 mm Hg. There was significant strong correlation (r = 0.779) and good agreement between PaCO(2) and PetCO(2). Mean ± SD difference between SaO(2) and SpO(2) was 2.5 ± 3.5%. There was significant moderate correlation (r = 0.499) and acceptable agreement between SaO(2) and SpO(2). Both PetCO(2) obtained by use of nasal capnography and SpO(2) obtained with a reflectance probe are clinically applicable and accurate indirect methods of estimating and monitoring PaCO(2) and SaO(2) in neonatal foals. Indirect methods should not replace periodic direct measurement of corresponding parameters.

  17. The effects of graded changes in oxygen and carbon dioxide tension on coronary blood velocity independent of myocardial energy demand.

    PubMed

    Boulet, Lindsey M; Stembridge, Mike; Tymko, Michael M; Tremblay, Joshua C; Foster, Glen E

    2016-08-01

    In humans, coronary blood flow is tightly regulated by microvessels within the myocardium to match myocardial energy demand. However, evidence regarding inherent sensitivity of the microvessels to changes in arterial partial pressure of carbon dioxide and oxygen is conflicting because of the accompanied changes in myocardial energy requirements. This study aimed to investigate the changes in coronary blood velocity while manipulating partial pressures of end-tidal CO2 (Petco2) and O2 (Peto2). It was hypothesized that an increase in Petco2 (hypercapnia) or decrease in Peto2 (hypoxia) would result in a significant increase in mean blood velocity in the left anterior descending artery (LADVmean) due to an increase in both blood gases and energy demand associated with the concomitant cardiovascular response. Cardiac energy demand was assessed through noninvasive measurement of the total left ventricular mechanical energy. Healthy subjects (n = 13) underwent a euoxic CO2 test (Petco2 = -8, -4, 0, +4, and +8 mmHg from baseline) and an isocapnic hypoxia test (Peto2 = 64, 52, and 45 mmHg). LADVmean was assessed using transthoracic Doppler echocardiography. Hypercapnia evoked a 34.6 ± 8.5% (mean ± SE; P < 0.01) increase in mean LADVmean, whereas hypoxia increased LADVmean by 51.4 ± 8.8% (P < 0.05). Multiple stepwise regressions revealed that both mechanical energy and changes in arterial blood gases are important contributors to the observed changes in LADVmean (P < 0.01). In summary, regulation of the coronary vasculature in humans is mediated by metabolic changes within the heart and an inherent sensitivity to arterial blood gases. Copyright © 2016 the American Physiological Society.

  18. 49 CFR 195.303 - Risk-based alternative to pressure testing older hazardous liquid and carbon dioxide pipelines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Pressure Testing § 195.303 Risk-based alternative to pressure testing older hazardous liquid and carbon... 49 Transportation 3 2014-10-01 2014-10-01 false Risk-based alternative to pressure testing older hazardous liquid and carbon dioxide pipelines. 195.303 Section 195.303 Transportation Other Regulations...

  19. 49 CFR 195.303 - Risk-based alternative to pressure testing older hazardous liquid and carbon dioxide pipelines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Pressure Testing § 195.303 Risk-based alternative to pressure testing older hazardous liquid and carbon... 49 Transportation 3 2013-10-01 2013-10-01 false Risk-based alternative to pressure testing older hazardous liquid and carbon dioxide pipelines. 195.303 Section 195.303 Transportation Other Regulations...

  20. 49 CFR 195.303 - Risk-based alternative to pressure testing older hazardous liquid and carbon dioxide pipelines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Pressure Testing § 195.303 Risk-based alternative to pressure testing older hazardous liquid and carbon... 49 Transportation 3 2012-10-01 2012-10-01 false Risk-based alternative to pressure testing older hazardous liquid and carbon dioxide pipelines. 195.303 Section 195.303 Transportation Other Regulations...

  1. A METHOD OF PREPARING URANIUM DIOXIDE

    DOEpatents

    Scott, F.A.; Mudge, L.K.

    1963-12-17

    A process of purifying raw, in particular plutonium- and fission- products-containing, uranium dioxide is described. The uranium dioxide is dissolved in a molten chloride mixture containing potassium chloride plus sodium, lithium, magnesium, or lead chloride under anhydrous conditions; an electric current and a chlorinating gas are passed through the mixture whereby pure uranium dioxide is deposited on and at the same time partially redissolved from the cathode. (AEC)

  2. A high-pressure carbon dioxide gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Kuehn, D. M.

    1973-01-01

    A carbon dioxide gasdynamic laser was operated over a range of reservoir pressure and temperature, test-gas mixture, and nozzle geometry. A significant result is the dominant influence of nozzle geometry on laser power at high pressure. High reservoir pressure can be effectively utilized to increase laser power if nozzle geometry is chosen to efficiently freeze the test gas. Maximum power density increased from 3.3 W/cu cm of optical cavity volume for an inefficient nozzle to 83.4 W/cu cm at 115 atm for a more efficient nozzle. Variation in the composition of the test gas also caused large changes in laser power output. Most notable is the influence of the catalyst (helium or water vapor) that was used to depopulate the lower vibrational state of the carbon dioxide. Water caused an extreme deterioration of laser power at high pressure (100 atm), whereas, at low pressure the laser for the two catalysts approached similar values. It appears that at high pressure the depopulation of the upper laser level of the carbon dioxide by the water predominates over the lower state depopulation, thus destroying the inversion.

  3. 46 CFR 34.15-40 - Pressure relief-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Pressure relief-T/ALL. 34.15-40 Section 34.15-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... relieving excessive pressure accumulating within the compartment when the carbon dioxide is injected. ...

  4. 46 CFR 34.15-40 - Pressure relief-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Pressure relief-T/ALL. 34.15-40 Section 34.15-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... relieving excessive pressure accumulating within the compartment when the carbon dioxide is injected. ...

  5. 46 CFR 34.15-40 - Pressure relief-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Pressure relief-T/ALL. 34.15-40 Section 34.15-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... relieving excessive pressure accumulating within the compartment when the carbon dioxide is injected. ...

  6. 46 CFR 34.15-40 - Pressure relief-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Pressure relief-T/ALL. 34.15-40 Section 34.15-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... relieving excessive pressure accumulating within the compartment when the carbon dioxide is injected. ...

  7. Concentration of carbon dioxide by a high-temperature electrochemical membrane cell

    NASA Technical Reports Server (NTRS)

    Kang, M. P.; Winnick, J.

    1985-01-01

    The performance of a molten carbonate carbon dioxide concentrator (MCCDC) cell, as a device for removal of CO2 from manned spacecraft cabins without fuel expenditure, is investigated. The test system consists of an electrochemical cell (with an Li2CO3-38 mol pct K2CO3 membrane contained in a LiAlO2 matrix), a furnace, and a flow IR analyzer for monitoring CO2. Operation of the MCCDC-driven cell was found to be suitable for the task of CO2 removal: the cell performed at extremely low CO2 partial pressures (at or above 0.1 mm Hg); cathode CO2 efficiencies of 97 percent were achieved with 0.25 CO2 inlet concentration at 19 mA sq cm, at temperatures near 873 K. Anode concentrations of up to 5.8 percent were obtained. Simple cathode and anode performance equations applied to correlate cell performance agreed well with those measured experimentally. A flow diagram for the process is included.

  8. Investigating the effect of cardiac oscillations and deadspace gas mixing during apnea using computer simulation.

    PubMed

    Laviola, Marianna; Das, Anup; Chikhani, Marc; Bates, Declan G; Hardman, Jonathan G

    2017-07-01

    Gaseous mixing in the anatomical deadspace with stimulation of respiratory ventilation through cardiogenic oscillations is an important physiological mechanism at the onset of apnea, which has been credited with various beneficial effects, e.g. reduction of hypercapnia during the use of low flow ventilation techniques. In this paper, a novel method is proposed to investigate the effect of these mechanisms in silico. An existing computational model of cardio-pulmonary physiology is extended to include the apneic state, gas mixing within the anatomical deadspace, insufflation into the trachea and cardiogenic oscillations. The new model is validated against data published in an experimental animal (dog) study that reported an increase in arterial partial pressure of carbon dioxide (PaCO 2 ) during apnea. Computational simulations confirm that the model outputs accurately reproduce the available experimental data. This new model can be used to investigate the physiological mechanisms underlying clearance of carbon dioxide during apnea, and hence to develop more effective ventilation strategies for apneic patients.

  9. The pattern of breathing following a 10-breath voluntary hyperventilation during hyperoxic rebreathing.

    PubMed

    Chatha, D; Duffin, J

    1997-06-01

    The pattern of breathing following a 10-breath voluntary hyperventilation period during hyperoxic rebreathing was compared to that without hyperventilation in 6 subjects (3 male and 3 female). The aim was to measure the posthyperventilation short-term potentiation of ventilation without changes in respiratory chemoreflex drives induced by the voluntary hyperventilation. Hyperoxia was used to reduce the peripheral chemoreflex drive, and rebreathing to prevent the decrease in arterial carbon dioxide tension normally produced by hyperventilation. There were significant differences between the male and female responses. However, in all subjects, ventilation and heart rate were increased during hyperventilation but end-tidal partial pressures of carbon dioxide and oxygen were unchanged. Following hyperventilation, ventilation immediately returned to the values observed when hyperventilation was omitted. Hyperventilation did not induce a short-term potentiation of ventilation under these conditions; changes in chemoreflex stimuli brought about by cardiovascular changes induced by hyperventilation may play a role in the short-term potentiation observed under other circumstances.

  10. Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates.

    PubMed

    Chevrier, Vincent; Poulet, Francois; Bibring, Jean-Pierre

    2007-07-05

    Images of geomorphological features that seem to have been produced by the action of liquid water have been considered evidence for wet surface conditions on early Mars. Moreover, the recent identification of large deposits of phyllosilicates, associated with the ancient Noachian terrains suggests long-timescale weathering of the primary basaltic crust by liquid water. It has been proposed that a greenhouse effect resulting from a carbon-dioxide-rich atmosphere sustained the temperate climate required to maintain liquid water on the martian surface during the Noachian. The apparent absence of carbonates and the low escape rates of carbon dioxide, however, are indicative of an early martian atmosphere with low levels of carbon dioxide. Here we investigate the geochemical conditions prevailing on the surface of Mars during the Noachian period using calculations of the aqueous equilibria of phyllosilicates. Our results show that Fe3+-rich phyllosilicates probably precipitated under weakly acidic to alkaline pH, an environment different from that of the following period, which was dominated by strongly acid weathering that led to the sulphate deposits identified on Mars. Thermodynamic calculations demonstrate that the oxidation state of the martian surface was already high, supporting early escape of hydrogen. Finally, equilibrium with carbonates implies that phyllosilicate precipitation occurs preferentially at a very low partial pressure of carbon dioxide. We suggest that the possible absence of Noachian carbonates more probably resulted from low levels of atmospheric carbon dioxide, rather than primary acidic conditions. Other greenhouse gases may therefore have played a part in sustaining a warm and wet climate on the early Mars.

  11. The upgrading of glass microballoons. [targets for laser fusion

    NASA Technical Reports Server (NTRS)

    Dunn, S. A.; Gunter, S.

    1979-01-01

    The processes and mechanisms involved in producing glass microballoons of acceptable quality for laser fusion by gas jet levitation and manipulation were studied. Glass microballoons (GMBs) levitated at temperatures below, as well as above the liquidus, appear to diffuse sulfur dioxide, a polar molecule with a moderately large diameter, and hydrogen, a much smaller molecule at comparable rates. Rates on the order of tens of atmospheres per hour (constant volume) per atmosphere of partial pressure differential have been observed at temperatures around the liquidus. Relatively rapid and convenient filling of molten GMBs by levitation in deuterium and tritium appears to be a possibility.

  12. Photosynthetic responses to altitude: an explanation based on optimality principles

    DOE PAGES

    Wang, Han; Prentice, I. Colin; Davis, Tyler W.; ...

    2016-11-18

    Ecophysiologists have long been fascinated by the photosynthetic behaviour of alpine plants, which often have to withstand extreme environmental pressures (Gale, 1972; Friend&Woodward, 1990; Korner, 2003, 2007; Shi et al., 2006). About 8%of the world’s land surface is above 1500 maltitude (Korner, 2007). High altitudes can be climatically unusual, often with (for example) low temperatures, strong winds, and now high rates of warming (Korner, 2003; Pepin &Lundquist, 2008; Rangwala&Miller, 2012). Moreover, the low atmospheric pressure provides a set of environmental conditions unique on Earth (Table 1). There has been extensive speculation about altitudinal effects on photosynthesis and, in particular, howmore » to account for the puzzling – but consistently observed – tendencies towards higher carbon dioxide (CO 2) drawdown (low ratio of leafinternal to ambient CO 2 partial pressures (c i:c a; hereafter, v), resulting in low carbon isotope discrimination) and higher carboxylation capacity (V cmax) with increasing altitude (Gale, 1972; Korner & Diemer, 1987; Friend et al., 1989; Terashima et al., 1995; Bresson et al., 2009; Zhu et al., 2010). At first glance, it might be expected that CO 2 assimilation rates would be reduced at high altitudes due to the low partial pressure of CO 2 (Friend & Woodward, 1990). But, actual measured photosynthetic rates are usually as high as, or even higher than, those at low altitudes (Machler & Nosberger, 1977; Korner & Diemer, 1987; Cordell et al., 1999; Shi et al., 2006).« less

  13. Photosynthetic responses to altitude: an explanation based on optimality principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Han; Prentice, I. Colin; Davis, Tyler W.

    Ecophysiologists have long been fascinated by the photosynthetic behaviour of alpine plants, which often have to withstand extreme environmental pressures (Gale, 1972; Friend&Woodward, 1990; Korner, 2003, 2007; Shi et al., 2006). About 8%of the world’s land surface is above 1500 maltitude (Korner, 2007). High altitudes can be climatically unusual, often with (for example) low temperatures, strong winds, and now high rates of warming (Korner, 2003; Pepin &Lundquist, 2008; Rangwala&Miller, 2012). Moreover, the low atmospheric pressure provides a set of environmental conditions unique on Earth (Table 1). There has been extensive speculation about altitudinal effects on photosynthesis and, in particular, howmore » to account for the puzzling – but consistently observed – tendencies towards higher carbon dioxide (CO 2) drawdown (low ratio of leafinternal to ambient CO 2 partial pressures (c i:c a; hereafter, v), resulting in low carbon isotope discrimination) and higher carboxylation capacity (V cmax) with increasing altitude (Gale, 1972; Korner & Diemer, 1987; Friend et al., 1989; Terashima et al., 1995; Bresson et al., 2009; Zhu et al., 2010). At first glance, it might be expected that CO 2 assimilation rates would be reduced at high altitudes due to the low partial pressure of CO 2 (Friend & Woodward, 1990). But, actual measured photosynthetic rates are usually as high as, or even higher than, those at low altitudes (Machler & Nosberger, 1977; Korner & Diemer, 1987; Cordell et al., 1999; Shi et al., 2006).« less

  14. On the possibility to develop an advanced non-equilibrium model of depressurisation in two-phase fluids

    NASA Astrophysics Data System (ADS)

    Duc, Linh Do; Horák, Vladimír; Kulish, Vladimir; Lukáč, Tomáš

    2017-01-01

    Carbon dioxide is widely used as the power gas in the gas guns community due to its ease of handling, storability at room temperature, and high vapor pressure depending only upon temperature, but not a tank size, as long as some liquid carbon dioxide remains in the tank. This high vapor pressure can be used as the pressurant, making it what is referred to as a self-pressurising propellant. However, as a two-phase substance, carbon dioxide does have its drawbacks: (1) vaporization of liquefied CO2 inside a tank when shooting rapidly or a lot causes the tank to get cool, resulting in pressure fluctuations that makes the gun's performance and accuracy worse, (2) solid carbon dioxide that is also known as dry ice can appear on the output valve of the tank while shooting and it can cause damage or slow the gun's performance down, if it works its way into some control components, including the barrel of the gun. Hence, it is crucial to obtain a scientific understanding of carbon dioxide behavior and further the discharge characteristics of a wide range of pressure-tank configurations. For the purpose of satisfying this goal, a comprehensive discharge mathematical model for carbon dioxide tank dynamics is required. In this paper, the possibility to develop an advanced non-equilibrium model of depressurization in two-phase fluids is discussed.

  15. Effect of Transcutaneous Electrode Temperature on Accuracy and Precision of Carbon Dioxide and Oxygen Measurements in the Preterm Infants.

    PubMed

    Jakubowicz, Jessica F; Bai, Shasha; Matlock, David N; Jones, Michelle L; Hu, Zhuopei; Proffitt, Betty; Courtney, Sherry E

    2018-05-01

    High electrode temperature during transcutaneous monitoring is associated with skin burns in extremely premature infants. We evaluated the accuracy and precision of CO 2 and O 2 measurements using lower transcutaneous electrode temperatures below 42°C. We enrolled 20 neonates. Two transcutaneous monitors were placed simultaneously on each neonate, with one electrode maintained at 42°C and the other randomized to temperatures of 38, 39, 40, 41, and 42°C. Arterial blood was collected twice at each temperature. At the time of arterial blood sampling, values for transcutaneously measured partial pressure of CO 2 (P tcCO 2 ) were not significantly different among test temperatures. There was no evidence of skin burning at any temperature. For P tcCO 2 , Bland-Altman analyses of all test temperatures versus 42°C showed good precision and low bias. Transcutaneously measured partial pressure of O 2 (P tcO 2 ) values trended arterial values but had large negative bias. Transcutaneous electrode temperatures as low as 38°C allow an assessment of P tcCO 2 as accurate as that with electrodes at 42°C. Copyright © 2018 by Daedalus Enterprises.

  16. Changes of oxygen content in facial skin before and after cigarette smoking.

    PubMed

    Fan, Guo-Biao; Wu, Pei-Lan; Wang, Xue-Min

    2012-11-01

    Cigarette smoking not only causes systemic health problems, but may also be an underlying cause of premature skin aging. Cigarette smokers frequently have morphological changes in facial skin that may be attributed to reduced oxygen in this region. The purpose of this study was to measure the oxygen content in facial skin before and after smoking. Twenty-five volunteers participated in this study. Changes in oxygen content of the facial skin were measured before and after 30 min of cigarette smoking. Skin temperature and oxygen content were evaluated in the periorbital and periolar regions. There was a significant increase in temperature after smoking. The oxy hemoglobin and partial pressure of oxygen decreased in both the periocular and perioral areas after smoking. There were no changes in deoxy hemoglobin and partial pressure of carbon dioxide at these areas. Significant changes were seen in temperature and oxygen content after only 30 min of smoking. The results from this study suggest that alterations in the skin temperature and oxygen content in facial skin after smoking may be an underlying cause of premature skin aging. © 2011 John Wiley & Sons A/S.

  17. Roles of air stored in burrows of the mudskipper Boleophthalmus pectinirostris for adult respiration and embryonic development.

    PubMed

    Toba, A; Ishimatsu, A

    2014-03-01

    Air was stored in 90% of Boleophthalmus pectinirostris burrows in summer breeding months when fish were active on the mudflat surface during low tide but only in 50% of burrows in overwintering months when the fish confined themselves to burrows. The volume of gas recovered from the burrows ranged from 30 to > 400 ml. The partial pressure of oxygen (PO₂) of the gas varied from 5 to 20 kPa and was inversely related to the partial pressure of carbon dioxide (PCO₂) in all but the wintering periods. Sampling in July demonstrated that gas was stored in both male and female burrows with no difference in volume, PO₂ or PCO₂ between them. Adult fish were able to survive total submersion in hypoxic (PO₂ = 1.96 kPa) water for 8 h, but no embryos survived to hatch in the hypoxic aquatic environment. Thus, the deposited air appears to be a crucial source of oxygen for the embryos developing in the egg chamber of the burrow, but may play only a subsidiary role for adult respiration during presumed high-tide confinement. © 2014 The Fisheries Society of the British Isles.

  18. Oxygen and carbon dioxide in the marine intertidal environment: diurnal and tidal changes in rockpools.

    PubMed

    Truchot, J P; Duhamel-Jouve, A

    1980-03-01

    Water oxygen partial pressure (PO2), pH, titration alkalinity (TA), temperature and salinity were measured hourly in rockpools during emersion periods occuring at various times of the diurnal cycle. Measurements allowed calculation of oxygen concentration (CO2), CO2 partial pressure (PCO2) and concentrations of bicarbonate, carbonate and total CO2 (CCO2). During night emersion periods, water PO2 decreased to almost zero in a few hours, pH fell, TA rose and PCO2 increased up to 1-3 Torr. During day emersion periods, water PO2 rose to 400-600 Torr, pH increased to more than 10, TA decreased substantially and PCO2 fell as low as 10(-4) Torr. The direction of the observed changes depended essentially on the illumination, indicating that respiratory and photosynthetic activities were the main processes involved. The large variations of the components of the carbonate system imply considerable changes of the CO2 capacitance coefficient in water, mainly during the day-time emersion. These changes are discussed in relation to the respiratory and acid-base physiology of the animals living in these biotopes.

  19. Dry-spraying of ascorbic acid or acetaminophen solutions with supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wubbolts, F. E.; Bruinsma, O. S. L.; van Rosmalen, G. M.

    1999-03-01

    Carbon dioxide is a very poor solvent for many organic compounds, which makes it a good anti-solvent. When a solution is sprayed into carbon dioxide vapour the anti-solvent reduces the solubility within several tens of milliseconds and the solute precipitates. Two distinct regions can be identified, below and above the mixture critical pressure. Below this critical pressure the yield remains relatively low and the process is not well controlled. Above the critical pressure small crystals are obtained of about 2 μm with a yield of 90%.

  20. Selective Formation of Trimethylene Carbonate (TMC): Atmospheric Pressure Carbon Dioxide Utilization

    PubMed Central

    Buckley, Benjamin R; Patel, Anish P; Wijayantha, K G Upul

    2015-01-01

    Carbon dioxide utilisation (CDU) is currently gaining increased interest due to the abundance of CO2 and its possible application as a C1 building block. We herein report the first example of atmospheric pressure carbon dioxide incorporation into oxetane to selectively form trimethylene carbonate (TMC), which is a significant challenge as TMC is thermodynamically less favoured than its corresponding co-polymer. PMID:26213485

  1. Selective Formation of Trimethylene Carbonate (TMC): Atmospheric Pressure Carbon Dioxide Utilization.

    PubMed

    Buckley, Benjamin R; Patel, Anish P; Wijayantha, K G Upul

    2015-01-01

    Carbon dioxide utilisation (CDU) is currently gaining increased interest due to the abundance of CO 2 and its possible application as a C 1 building block. We herein report the first example of atmospheric pressure carbon dioxide incorporation into oxetane to selectively form trimethylene carbonate (TMC), which is a significant challenge as TMC is thermodynamically less favoured than its corresponding co-polymer.

  2. Establishing a gradient between partial pressure of arterial carbon dioxide and end-tidal carbon dioxide in patients with acute respiratory distress syndrome.

    PubMed

    Yousuf, Tariq; Brinton, Taylor; Murtaza, Ghulam; Wozniczka, Daniel; Ahmad, Khansa; Iskandar, Joy; Mehta, Raju; Keshmiri, Hesam; Hanif, Tabassum

    2017-02-01

    End-tidal carbon dioxide (ETCO 2 ) monitoring is useful in many situations. However, ETCO 2 monitoring is unreliable in patients with acute respiratory distress syndrome (ARDS) due to widespread lung inflammation. In our study, we attempt to establish the gradient between the arterial pressure of carbon dioxide (PaCO 2 ) and ETCO 2 in patients with ARDS, which we defined as the PaETCO 2 gradient. The main objective of the study was to establish a PaETCO 2 gradient in each severity of ARDS. We analyzed 35 patients with ARDS and a total of 88 arterial blood gases were included. PaCO 2 , PaO 2 /FiO 2 and ETCO 2 were measured. Patients were stratified into mild, moderate and severe ARDS as classified by the Berlin ARDS criteria. PaCO 2 and ETCO 2 were compared at each severity stratification. The mean PaCO 2 was 50.0, the mean ETCO 2 was 26.6 and the gradient among all samples was 23.24 (±12.02). The mean gradient for each severity is as follows: mild: 19.3 (±9.9), moderate: 27.9 (±13.2) and severe: 23.9 (±7.8). The difference between the PaETCO 2 gradient of the mild to moderate (p=0.001) and mild to severe groups (p=0.01) reached statistical significance. However, the difference between the moderate to severe groups did not reach statistical significance (p=0.48). We found the gradient between PaCO 2 and ETCO 2 in patients with ARDS is vast and tends to worsen with increasing severity of ARDS. This indicates that the gradient between the 2 may be used as an indicator of increasing severity of ARDS. Copyright © 2016 American Federation for Medical Research.

  3. 46 CFR 76.15-1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...

  4. Antibotulinal efficacy of sulfur dioxide in meat.

    PubMed Central

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulfur dioxide offers a new option for the control of botulinal outgrowth in cured or noncured meat and poultry products. PMID:6996613

  5. Effect of Heliox on Respiratory Outcomes during Rigid Bronchoscopy in Term Lambs.

    PubMed

    Sowder, Justin C; Dahl, Mar Janna; Zuspan, Kaitlin R; Albertine, Kurt H; Null, Donald M; Barneck, Mitchell D; Grimmer, J Fredrik

    2018-03-01

    Objective To (1) compare physiologic changes during rigid bronchoscopy during spontaneous and mechanical ventilation and (2) evaluate the efficacy of a helium-oxygen (heliox) gas mixture as compared with room air during rigid bronchoscopy. Study Design Crossover animal study evaluating physiologic parameters during rigid bronchoscopy. Outcomes were compared with predicted computational fluid analysis. Setting Simulated ventilation via computational fluid dynamics analysis and term lambs undergoing rigid bronchoscopy. Methods Respiratory and physiologic outcomes were analyzed in a lamb model simulating bronchoscopy during foreign body aspiration to compare heliox with room air. The main outcome measures were blood oxygen saturation, heart rate, blood pressure, partial pressure of oxygen, and partial pressure of carbon dioxide. Computational fluid dynamics analysis was performed with SOLIDWORKS within a rigid pediatric bronchoscope during simulated ventilation comparing heliox with room air. Results For room air, lambs desaturated within 3 minutes during mechanical ventilation versus normal oxygen saturation during spontaneous ventilation ( P = .01). No improvement in respiratory outcomes was seen between heliox and room air during mechanical ventilation. Computational fluid dynamics analysis demonstrates increased turbulence within size 3.5 bronchoscopes when comparing heliox and room air. Meaningful comparisons could not be made due to the intolerance of the lambs to heliox in vivo. Conclusion During mechanical ventilation on room air, lambs desaturate more quickly during rigid bronchoscopy on settings that should be adequate. Heliox does not improve ventilation during rigid bronchoscopy.

  6. Raman Line Imaging of Poly(ε-caprolactone)/Carbon Dioxide Solutions at High Pressures: A Combined Experimental and Computational Study for Interpreting Intermolecular Interactions and Free-Volume Effects.

    PubMed

    Pastore Carbone, Maria Giovanna; Musto, Pellegrino; Pannico, Marianna; Braeuer, Andreas; Scherillo, Giuseppe; Mensitieri, Giuseppe; Di Maio, Ernesto

    2016-09-01

    In the present study, a Raman line-imaging setup was employed to monitor in situ the CO2 sorption at elevated pressures (from 0.62 to 7.10 MPa) in molten PCL. The method allowed the quantitative measurement of gas concentration in both the time-resolved and the space-resolved modes. The combined experimental and theoretical approach allowed a molecular level characterization of the system. The dissolved CO2 was found to occupy a volume essentially coincident with its van der Waals volume and the estimated partial molar volume of the probe did not change with pressure. Lewis acid-Lewis base interactions with the PCL carbonyls was confirmed to be the main interaction mechanism. The geometry of the supramolecular complex and the preferential interaction site were controlled more by steric than electronic effects. On the basis of the indications emerging from Raman spectroscopy, an equation of state thermodynamic model for the PCL-CO2 system, based upon a compressible lattice fluid theory endowed with specific interactions, has been tailored to account for the interaction types detected spectroscopically. The predictions of the thermodynamic model in terms of molar volume of solution have been compared with available volumetric measurements while predictions for CO2 partial molar volume have been compared with the values estimated on the basis of Raman spectroscopy.

  7. A Multicenter Retrospective Review of Prone Position Ventilation (PPV) in Treatment of Severe Human H7N9 Avian Flu

    PubMed Central

    Han, Yun; Zhou, Lixin; He, Weiqun; Chen, Sibei; Nong, Lingbo; Huang, Huang; Zhang, Yan; Yu, Tieou; Li, Yimin; Liu, Xiaoqing

    2015-01-01

    Background Patients with H7N9 avian flu concurrent with severe acute respiratory distress syndrome (ARDS) usually have a poor clinical outcome. Prone position ventilation (PPV) has been shown to improve the prognosis of patients with severe ARDS. This study explored the effects of PPV on the respiratory and circulatory mechanics of H7N9-infected patients with severe ARDS. Methods Individuals admitted to four hospitals designated for H7N9 patients in Guangdong province were treated with PPV, and their clinical data were recorded before and after receiving PPV. Results Six of 20 critically ill patients in the ICU received PPV. After treatment with 35 PPV sessions, the oxygenation index (OI) values of the six patients when measured post-PPV and post-supine position ventilation (SPV) were significantly higher than those measured pre-PPV (P < 0.05).The six patients showed no significant differences in their values for respiratory rate (RR), peak inspiratory pressure (PIP), tidal volume (TV) or arterial partial pressure of carbon dioxide (PaCO2) when compared pre-PPV, post-PPV, and post-SPV. Additionally, there were no significant differences in the mean values for arterial pressure (MAP), cardiac index (CI), central venous pressure (CVP), heart rate (HR), lactic acid (LAC) levels or the doses of norepinephrine (NE) administered when compared pre-PPV, post-PPV, and post-SPV. Conclusion PPV provided improved oxygenation that was sustained after returning to a supine position, and resulted in decreased carbon dioxide retention. PPV can thus serve as an alternative lung protective ventilation strategy for use in patients with H7N9 avian flu concurrent with severe ARDS. PMID:26317621

  8. A Multicenter Retrospective Review of Prone Position Ventilation (PPV) in Treatment of Severe Human H7N9 Avian Flu.

    PubMed

    Xu, Yuanda; Deng, Xilong; Han, Yun; Zhou, Lixin; He, Weiqun; Chen, Sibei; Nong, Lingbo; Huang, Huang; Zhang, Yan; Yu, Tieou; Li, Yimin; Liu, Xiaoqing

    2015-01-01

    Patients with H7N9 avian flu concurrent with severe acute respiratory distress syndrome (ARDS) usually have a poor clinical outcome. Prone position ventilation (PPV) has been shown to improve the prognosis of patients with severe ARDS. This study explored the effects of PPV on the respiratory and circulatory mechanics of H7N9-infected patients with severe ARDS. Individuals admitted to four hospitals designated for H7N9 patients in Guangdong province were treated with PPV, and their clinical data were recorded before and after receiving PPV. Six of 20 critically ill patients in the ICU received PPV. After treatment with 35 PPV sessions, the oxygenation index (OI) values of the six patients when measured post-PPV and post-supine position ventilation (SPV) were significantly higher than those measured pre-PPV (P < 0.05).The six patients showed no significant differences in their values for respiratory rate (RR), peak inspiratory pressure (PIP), tidal volume (TV) or arterial partial pressure of carbon dioxide (PaCO2) when compared pre-PPV, post-PPV, and post-SPV. Additionally, there were no significant differences in the mean values for arterial pressure (MAP), cardiac index (CI), central venous pressure (CVP), heart rate (HR), lactic acid (LAC) levels or the doses of norepinephrine (NE) administered when compared pre-PPV, post-PPV, and post-SPV. PPV provided improved oxygenation that was sustained after returning to a supine position, and resulted in decreased carbon dioxide retention. PPV can thus serve as an alternative lung protective ventilation strategy for use in patients with H7N9 avian flu concurrent with severe ARDS.

  9. Non-Intrusive, Distributed Gas Sensing Technology for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Delgado, Jesus; Phillips, Straun; Rubtsov, Vladimir; Chullen, Cinda

    2015-01-01

    Chemical sensors for monitoring gas composition, including oxygen, humidity, carbon dioxide, and trace contaminants are needed to characterize and validate spacesuit design and operating parameters. This paper reports on the first prototypes of a non-intrusive gas sensing technology based on flexible sensitive patches positioned inside spacesuit prototypes and interrogated by optical fibers routed outside the suit, taking advantage of the transparent materials of the suit prototypes. The sensitive patches are based on luminescent materials whose emission parameters vary with the partial pressure of a specific gas. Patches sensitive to carbon dioxide, humidity, oxygen, and ammonia have been developed, and their preliminary characterization in the laboratory using Mark III-like helmet parts is described. The first prototype system consists of a four-channel fiber optic luminescent detector that can be used to monitor any of the selected target gases at four locations. To switch from one gas to another we replace the (disposable) sensor patches and adjust the system settings. Repeatability among sensitive patches and of sensor performance from location to location has been confirmed, assuring that suit engineers will have flexibility in selecting multiple sensing points, fitting the sensor elements into the spacesuit, and easily repositioning the sensor elements as desired. The evaluation of the first prototype for monitoring carbon dioxide during washout studies in a space suit prototype is presented.

  10. Active Control of pH in the Bioculture System Through Carbon Dioxide Control

    NASA Technical Reports Server (NTRS)

    Monhollon, Luke; Pletcher, David; Hauss, Jessica

    2016-01-01

    For successful cell research, the growth culture environment must be tightly controlled. Deviance from the optimal conditions will mask the desired variable being analyzed or lead to inconstancies in the results. In standard laboratories, technology and procedures are readily available for the reliable control of variables such as temperature, pH, nutrient loading, and dissolved gases. Due to the nature of spaceflight, and the inherent constraints to engineering designs, these same elements become a challenge to maintain at stable values by both automated and manual approaches. Launch mass, volume, and power usage create significant constraints to cell culture systems; nonetheless, innovative solutions for active environmental controls are available. The acidity of the growth media cannot be measured through standard probes due to the degradation of electrodes and reliance on indicators for chromatography. Alternatively, carbon dioxide sensors are capable of monitoring the pH by leveraging the relationship between the partial pressure of carbon dioxide and carbonic acid in solution across a membrane. In microgravity cell growth systems, the gas delivery system can be used to actively maintain the media at the proper acidity by maintaining a suitable gas mixture around permeable tubing. Through this method, launch mass and volume are significantly reduced through the efficient use of the limited gas supply in orbit.

  11. Estimates of Phytoplankton Community Composition in the Productive Coastal Waters of Antarctica and Potential Impacts on Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Randolph, K. L.; Dierssen, H. M.; Schofield, O.; Munro, D. R.

    2016-12-01

    As a region of exchange between the major ocean basins and between the surface and deep oceans, the Southern Ocean regulates the global transport of heat, carbon, and macronutrients and thus has a profound influence on global climate. Primary production plays a fundamental role in controlling the partial pressure of carbon dioxide in the surface ocean and thus the exchange of carbon dioxide between ocean and atmosphere. Here, we evaluated the relationship between phytoplankton community composition and the optical and biogeochemical properties of the water column in the Drake Passage and along the Western Antarctic Peninsula. Profile measurements of inherent optical properties (i.e., spectral absorption, scattering and backscattering), HPLC pigments, and hyperspectral remote sensing reflectance were collected from the ARSV Gould in January 2016 near the Western Antarctic Peninsula and in the Drake Passage as a part of the Oxygen/nitrogen Ratio and Carbon dioxide Airborne Southern Ocean (ORCAS) experiment and the Palmer Long Term Ecological Research Project. Measured inherent optical properties were used to investigate phytoplankton abundance, distribution and community composition. These data were also used to assess the accuracy of algorithms to retrieve chlorophyll, absorption, and backscattering and to evaluate how carbonate chemistry can be influenced by the phytoplankton composition in this dynamic region.

  12. Non-Intrusive, Distributed Gas Sensing Technology for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Delgado, Jesus; Phillips, Straun; Rubtsov, Vladimir; Chullen, Cinda

    2015-01-01

    Chemical sensors for monitoring gas composition, including oxygen, humidity, carbon dioxide, and trace contaminants, are needed to characterize and validate spacesuit design and operating parameters. This paper reports on the first prototypes of a non-intrusive gas sensing technology based on flexible sensitive patches positioned inside spacesuit prototypes and interrogated via optical fibers routed outside the suit, taking advantage of the transparent materials of the suit prototypes. The sensitive patches are based on luminescent materials whose emission parameters vary with the partial pressure of a specific gas. Patches sensitive to carbon dioxide, humidity, and temperature have been developed, and their preliminary laboratory characterization in Mark III-like helmet parts is described. The first prototype system consists of a four-channel fiber optic luminescent detector that can be used to monitor any of the selected target gases at four locations. To switch from one gas to another we replace the (disposable) sensor patches and adjust the system settings. Repeatability among sensitive patches and of sensor performance from location to location has been confirmed, assuring that suit engineers will have flexibility in selecting multiple sensing points, fitting the sensor elements into the spacesuit, and easily repositioning the sensor elements as desired. The evaluation of the first prototype for monitoring carbon dioxide during washout studies in a spacesuit prototype is presented.

  13. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  14. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  15. High-pressure polymorphism of Pb F 2 to 75 GPa

    DOE PAGES

    Stan, Camelia V.; Dutta, Rajkrishna; White, Claire E.; ...

    2016-07-06

    Lead fluoride, PbF 2, was investigated experimentally in the laser-heated diamond anvil cell by x-ray diffraction to pressures of 75 GPa at room temperature and to 64.5 GPa and 2430 K, as well as through first-principles density functional theory calculations up to 70 GPa. During room temperature compression, no discontinuous changes in the x-ray diffraction pattern or volume were observed, but the lattice parameters displayed highly anomalous trends between 10-22 GPa with enhanced compressibility along the a direction and reduced or even negative compressibility along b and c. Theoretical calculations of valence electron densities at 22 GPa showed that α-PbFmore » 2 underwent a pressure-induced isosymmetric phase transition to a postcotunnite Co 2Si structure and also revealed the detailed atomic rearrangements associated with the development of an extra Pb-F bond in the high-pressure phase. Our x-ray results and theoretical calculations are consistent with an isosymmetric phase transition smoothly occurring over 10-22 GPa rather than abruptly as previously suggested. The characteristic values for the cell constants a/c and (a+c)/b, which are used to distinguish among cotunnite-, Co 2Si-, and Ni 2In-type phases, require modification based on our results. An equation of state fit yields a bulk modulus, K 0, of 72(3) GPa for the cotunnite-type, and an ambient-pressure volume, V 0, of 182(2)Å 3, and K 0=81(4)GPa for the Co 2Si-type phase when fixing the pressure derivative of the bulk modulus, K 0'=4. Upon heating above 1200 K at pressures at or above 25.9 GPa, PbF 2 partially transformed to the hexagonal Ni 2In-type phase but wholly or partially reverted back to Co 2Si-type phase upon temperature quench. From 43-65 GPa, nearly complete transformation to the Ni 2In-type PbF 2 was observed at high temperature, but the material partially transformed back to the orthorhombic phase upon temperature quench. Our results show that high-pressure behavior of PbF 2 is distinct from that of the alkaline earth fluorides with similar ionic radii. These results also have relevance to understanding the behavior of lanthanide and actinide dioxides, which have been predicted theoretically to exhibit similar isosymmetric transitions at Mbar pressures.« less

  16. High-pressure polymorphism of Pb F2 to 75 GPa

    NASA Astrophysics Data System (ADS)

    Stan, Camelia V.; Dutta, Rajkrishna; White, Claire E.; Prakapenka, Vitali; Duffy, Thomas S.

    2016-07-01

    Lead fluoride, Pb F2 , was investigated experimentally in the laser-heated diamond anvil cell by x-ray diffraction to pressures of 75 GPa at room temperature and to 64.5 GPa and 2430 K, as well as through first-principles density functional theory calculations up to 70 GPa. During room temperature compression, no discontinuous changes in the x-ray diffraction pattern or volume were observed, but the lattice parameters displayed highly anomalous trends between 10-22 GPa with enhanced compressibility along the a direction and reduced or even negative compressibility along b and c . Theoretical calculations of valence electron densities at 22 GPa showed that α -Pb F2 underwent a pressure-induced isosymmetric phase transition to a postcotunnite C o2Si structure and also revealed the detailed atomic rearrangements associated with the development of an extra Pb-F bond in the high-pressure phase. Our x-ray results and theoretical calculations are consistent with an isosymmetric phase transition smoothly occurring over 10-22 GPa rather than abruptly as previously suggested. The characteristic values for the cell constants a /c and (a +c )/b , which are used to distinguish among cotunnite-, C o2Si -, and N i2In -type phases, require modification based on our results. An equation of state fit yields a bulk modulus, K0, of 72(3) GPa for the cotunnite-type, and an ambient-pressure volume, V0, of 182 (2 ) Å3 , and K0=81 (4 ) GPa for the C o2Si -type phase when fixing the pressure derivative of the bulk modulus, K0 '=4 . Upon heating above 1200 K at pressures at or above 25.9 GPa, Pb F2 partially transformed to the hexagonal N i2In -type phase but wholly or partially reverted back to C o2Si -type phase upon temperature quench. From 43-65 GPa, nearly complete transformation to the N i2In -type Pb F2 was observed at high temperature, but the material partially transformed back to the orthorhombic phase upon temperature quench. Our results show that high-pressure behavior of Pb F2 is distinct from that of the alkaline earth fluorides with similar ionic radii. Our results also have relevance to understanding the behavior of lanthanide and actinide dioxides, which have been predicted theoretically to exhibit similar isosymmetric transitions at Mbar pressures.

  17. Regional Haze Plan for Texas and Oklahoma

    EPA Pesticide Factsheets

    EPA partially approved and partially disapproved the Texas regional haze plan. EPA also finalized a plan to limit sulfur dioxide emissions from eight Texas coal-fired electricity generating facilities

  18. Measurement and interpretation of the oxygen isotope composition of carbon dioxide respired by leaves in the dark.

    PubMed

    Cernusak, Lucas A; Farquhar, Graham D; Wong, S Chin; Stuart-Williams, Hilary

    2004-10-01

    We measured the oxygen isotope composition (delta(18)O) of CO(2) respired by Ricinus communis leaves in the dark. Experiments were conducted at low CO(2) partial pressure and at normal atmospheric CO(2) partial pressure. Across both experiments, the delta(18)O of dark-respired CO(2) (delta(R)) ranged from 44 per thousand to 324 per thousand (Vienna Standard Mean Ocean Water scale). This seemingly implausible range of values reflects the large flux of CO(2) that diffuses into leaves, equilibrates with leaf water via the catalytic activity of carbonic anhydrase, then diffuses out of the leaf, leaving the net CO(2) efflux rate unaltered. The impact of this process on delta(R) is modulated by the delta(18)O difference between CO(2) inside the leaf and in the air, and by variation in the CO(2) partial pressure inside the leaf relative to that in the air. We developed theoretical equations to calculate delta(18)O of CO(2) in leaf chloroplasts (delta(c)), the assumed location of carbonic anhydrase activity, during dark respiration. Their application led to sensible estimates of delta(c), suggesting that the theory adequately accounted for the labeling of CO(2) by leaf water in excess of that expected from the net CO(2) efflux. The delta(c) values were strongly correlated with delta(18)O of water at the evaporative sites within leaves. We estimated that approximately 80% of CO(2) in chloroplasts had completely exchanged oxygen atoms with chloroplast water during dark respiration, whereas approximately 100% had exchanged during photosynthesis. Incorporation of the delta(18)O of leaf dark respiration into ecosystem and global scale models of C(18)OO dynamics could affect model outputs and their interpretation.

  19. Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity.

    PubMed

    Langer, Robert; Diskin-Posner, Yael; Leitus, Gregory; Shimon, Linda J W; Ben-David, Yehoshoa; Milstein, David

    2011-10-10

    A highly active iron catalyst for the hydrogenation of carbon dioxide and bicarbonates works under remarkably low pressures and achieves activities similar to some of the best noble metal catalysts. A mechanism is proposed involving the direct attack of an iron trans-dihydride on carbon dioxide, followed by ligand exchange and dihydrogen coordination. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cyanuric Acid-Based Organocatalyst for Utilization of Carbon Dioxide at Atmospheric Pressure.

    PubMed

    Yu, Bing; Kim, Daeun; Kim, Seoksun; Hong, Soon Hyeok

    2017-03-22

    A organocatalytic system based on economical and readily available cyanuric acid has been developed for the synthesis of 2-oxazolidinones and quinazoline-2,4(1H,3H)-diones from propargylamines and 2-aminobenzonitriles under atmospheric pressure carbon dioxide. Notably, a low concentration of carbon dioxide in air was directly converted into 2-oxazolidinone in excellent yields without an external base. Through mechanistic investigation by in situ FTIR spectroscopy, cyanuric acid was demonstrated to be an efficient catalyst for carbon dioxide fixation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and....1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No. 124-38-9) occurs as a..., sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon dioxide is prepared as a byproduct...

  2. Pathophysiological effect of fat embolism in a canine model of pulmonary contusion.

    PubMed

    Elmaraghy, A W; Aksenov, S; Byrick, R J; Richards, R R; Schemitsch, E H

    1999-08-01

    The objective of this study was to determine the individual and combined effects of pulmonary contusion and fat embolism on the hemodynamics and pulmonary pathophysiology in a canine model of acute traumatic pulmonary injury. After a thoracotomy, twenty-one skeletally mature dogs were randomly assigned to one of three groups. Unilateral pulmonary contusion alone was produced in Group 1 (seven dogs); pulmonary contusion and fat embolism, in Group 2 (seven dogs); and fat embolism alone, in Group 3 (seven dogs). Pulmonary contusion was produced by standardized compression of the left lung with a piezoelectric force transducer. Fat embolism was produced by femoral and tibial reaming followed by pressurization of the intramedullary canals. Cardiac output, systolic blood pressure, peak airway pressure, pulmonary arterial pressure, pulmonary capillary wedge pressure, partial pressure of arterial oxygen, and partial pressure of carbon dioxide were monitored for all groups. From these data, several outcome parameters were calculated: total thoracic compliance, alveolar-arterial oxygen gradient, and ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration. All of the dogs were killed after eight hours, and tissue samples were obtained from the brain, kidneys, and lungs for histological analysis. Lung samples were assigned scores for pulmonary edema (the presence of fluid in the alveoli) and inflammation (the presence of neutrophils or hyaline membranes, or both). The percentage of the total area occupied by fat was determined. Pulmonary contusion alone caused a significant increase in the alveolar-arterial oxygen gradient but only after seven hours (p = 0.034). Fat embolism alone caused a significant transient decrease in systolic blood pressure (p = 0.001) and a significant transient increase in pulmonary arterial pressure (p = 0.01) and pulmonary capillary wedge pressure (p = 0.015). Fat embolism alone also caused a significant sustained decrease in the ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration (p = 0.0001) and a significant increase in the alveolar-arterial oxygen gradient (p = 0.0001). The combination of pulmonary contusion and fat embolism caused a significant transient increase in pulmonary capillary wedge pressure (p = 0.0013) as well as a significant sustained decrease in partial pressure of arterial oxygen (p = 0.0001) and a significant decrease in systolic blood pressure (p = 0.001) that lasted for an hour. Pulmonary contusion followed by fat embolism caused a significant increase in peak airway pressure (p = 0.015), alveolar-arterial oxygen gradient (p = 0.0001), and pulmonary arterial pressure (p = 0.01), and these effects persisted for five hours. Total thoracic compliance was decreased 6.4 percent by pulmonary contusion alone, 4.6 percent by fat embolism alone, and 23.5 percent by pulmonary contusion followed by fat embolism. The ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration was decreased 23.7 percent by pulmonary contusion alone, 52.3 percent by fat embolism alone, and 65.8 percent by pulmonary contusion followed by fat embolism. The mean pulmonary edema score was significantly higher with the combined injury than with either injury alone (p = 0.0001). None of the samples from the lungs demonstrated inflammation. Fat embolism combined with pulmonary contusion resulted in a significantly greater mean percentage of the area occupied by fat in the noncontused right lung than in the contused left lung (p = 0.001); however, no significant difference between the right and left lungs could be detected with fat embolism alone. The mean percentage of the glomerular and cerebral areas occupied by fat was greater with fat embolism combined with pulmonary contusion than with fat embolism alone (p = 0.0001 and p = 0.01, respectively). (ABSTRACT TRUNCATED)

  3. Carbon dioxide narcosis due to inappropriate oxygen delivery: a case report.

    PubMed

    Herren, Thomas; Achermann, Eva; Hegi, Thomas; Reber, Adrian; Stäubli, Max

    2017-07-28

    Oxygen delivery to patients with chronic obstructive pulmonary disease may be challenging because of their potential hypoxic ventilatory drive. However, some oxygen delivery systems such as non-rebreathing face masks with an oxygen reservoir bag require high oxygen flow for adequate oxygenation and to avoid carbon dioxide rebreathing. A 72-year-old Caucasian man with severe chronic obstructive pulmonary disease was admitted to the emergency department because of worsening dyspnea and an oxygen saturation of 81% measured by pulse oximetry. Oxygen was administered using a non-rebreathing mask with an oxygen reservoir bag attached. For fear of removing the hypoxic stimulus to respiration the oxygen flow was inappropriately limited to 4L/minute. The patient developed carbon dioxide narcosis and had to be intubated and mechanically ventilated. Non-rebreathing masks with oxygen reservoir bags must be fed with an oxygen flow exceeding the patient's minute ventilation (>6-10 L/minute.). If not, the amount of oxygen delivered will be too small to effectively increase the arterial oxygen saturation. Moreover, the risk of carbon dioxide rebreathing dramatically increases if the flow of oxygen to a non-rebreathing mask is lower than the minute ventilation, especially in patients with chronic obstructive pulmonary disease and low tidal volumes. Non-rebreathing masks (with oxygen reservoir bags) must be used cautiously by experienced medical staff and with an appropriately high oxygen flow of 10-15 L/minute. Nevertheless, arterial blood gases must be analyzed regularly for early detection of a rise in partial pressure of carbon dioxide in arterial blood in patients with chronic obstructive pulmonary disease and a hypoxic ventilatory drive. These patients are more safely managed using a nasal cannula with an oxygen flow of 1-2L/minute or a simple face mask with an oxygen flow of 5L/minute.

  4. High-Flow Nasal Oxygen in Patient With Obstructive Sleep Apnea Undergoing Awake Craniotomy: A Case Report.

    PubMed

    Wong, Jaclyn W M; Kong, Amy H S; Lam, Sau Yee; Woo, Peter Y M

    2017-12-15

    Patients with obstructive sleep apnea are frequently considered unsuitable candidates for awake craniotomy due to anticipated problems with oxygenation, ventilation, and a potentially difficult airway. At present, only a handful of such accounts exist in the literature. Our report describes the novel use of high-flow nasal oxygen therapy for a patient with moderate obstructive sleep apnea who underwent an awake craniotomy under deep sedation. The intraoperative application of high-flow nasal oxygen therapy achieved satisfactory oxygenation, maintained the partial carbon dioxide pressure within a reasonable range even during periods of deep sedation, permitted responsive patient monitoring during mapping, and provided excellent patient and surgeon satisfaction.

  5. Supplemental Carbon Dioxide Stabilizes the Upper Airway in Volunteers Anesthetized with Propofol.

    PubMed

    Ruscic, Katarina Jennifer; Bøgh Stokholm, Janne; Patlak, Johann; Deng, Hao; Simons, Jeroen Cedric Peter; Houle, Timothy; Peters, Jürgen; Eikermann, Matthias

    2018-05-10

    Propofol impairs upper airway dilator muscle tone and increases upper airway collapsibility. Preclinical studies show that carbon dioxide decreases propofol-mediated respiratory depression. We studied whether elevation of end-tidal carbon dioxide (PETCO2) via carbon dioxide insufflation reverses the airway collapsibility (primary hypothesis) and impaired genioglossus muscle electromyogram that accompany propofol anesthesia. We present a prespecified, secondary analysis of previously published experiments in 12 volunteers breathing via a high-flow respiratory circuit used to control upper airway pressure under propofol anesthesia at two levels, with the deep level titrated to suppression of motor response. Ventilation, mask pressure, negative pharyngeal pressure, upper airway closing pressure, genioglossus electromyogram, bispectral index, and change in end-expiratory lung volume were measured as a function of elevation of PETCO2 above baseline and depth of propofol anesthesia. PETCO2 augmentation dose-dependently lowered upper airway closing pressure with a decrease of 3.1 cm H2O (95% CI, 2.2 to 3.9; P < 0.001) under deep anesthesia, indicating improved upper airway stability. In parallel, the phasic genioglossus electromyogram increased by 28% (23 to 34; P < 0.001). We found that genioglossus electromyogram activity was a significant modifier of the effect of PETCO2 elevation on closing pressure (P = 0.005 for interaction term). Upper airway collapsibility induced by propofol anesthesia can be reversed in a dose-dependent manner by insufflation of supplemental carbon dioxide. This effect is at least partly mediated by increased genioglossus muscle activity.

  6. The effects of centrally injected arachidonic acid on respiratory system: Involvement of cyclooxygenase to thromboxane signaling pathway.

    PubMed

    Erkan, Leman Gizem; Guvenc, Gokcen; Altinbas, Burcin; Niaz, Nasir; Yalcin, Murat

    2016-05-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that is present in the phospholipids of the cell membranes of the body and is abundant in the brain. Exogenously administered AA has been shown to affect brain metabolism and to exhibit cardiovascular and neuroendocrine actions. However, little is known regarding its respiratory actions and/or central mechanism of its respiratory effects. Therefore, the present study was designed to investigate the possible effects of centrally injected AA on respiratory system and the mediation of the central cyclooxygenase (COX) to thromboxane A2 (TXA2) signaling pathway on AA-induced respiratory effects in anaesthetized rats. Intracerebroventricular (i.c.v.) administration of AA induced dose- and time-dependent increase in tidal volume, respiratory rates and respiratory minute ventilation and also caused an increase in partial oxygen pressure (pO2) and decrease in partial carbon dioxide pressure (pCO2) in male anaesthetized Spraque Dawley rats. I.c.v. pretreatment with ibuprofen, a non-selective COX inhibitor, completely blocked the hyperventilation and blood gases changes induced by AA. In addition, central pretreatment with different doses of furegrelate, a TXA2 synthesis inhibitor, also partially prevented AA-evoked hyperventilation and blood gases effects. These data explicitly show that centrally administered AA induces hyperventilation with increasing pO2 and decreasing pCO2 levels which are mediated by the activation of central COX to TXA2 signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Camelia V.; Dutta, Rajkrishna; White, Claire E.

    Lead fluoride, PbF 2, was investigated experimentally in the laser-heated diamond anvil cell by x-ray diffraction to pressures of 75 GPa at room temperature and to 64.5 GPa and 2430 K, as well as through first-principles density functional theory calculations up to 70 GPa. During room temperature compression, no discontinuous changes in the x-ray diffraction pattern or volume were observed, but the lattice parameters displayed highly anomalous trends between 10-22 GPa with enhanced compressibility along the a direction and reduced or even negative compressibility along b and c. Theoretical calculations of valence electron densities at 22 GPa showed that α-PbFmore » 2 underwent a pressure-induced isosymmetric phase transition to a postcotunnite Co 2Si structure and also revealed the detailed atomic rearrangements associated with the development of an extra Pb-F bond in the high-pressure phase. Our x-ray results and theoretical calculations are consistent with an isosymmetric phase transition smoothly occurring over 10-22 GPa rather than abruptly as previously suggested. The characteristic values for the cell constants a/c and (a+c)/b, which are used to distinguish among cotunnite-, Co 2Si-, and Ni 2In-type phases, require modification based on our results. An equation of state fit yields a bulk modulus, K 0, of 72(3) GPa for the cotunnite-type, and an ambient-pressure volume, V 0, of 182(2)Å 3, and K 0=81(4)GPa for the Co 2Si-type phase when fixing the pressure derivative of the bulk modulus, K 0'=4. Upon heating above 1200 K at pressures at or above 25.9 GPa, PbF 2 partially transformed to the hexagonal Ni 2In-type phase but wholly or partially reverted back to Co 2Si-type phase upon temperature quench. From 43-65 GPa, nearly complete transformation to the Ni 2In-type PbF 2 was observed at high temperature, but the material partially transformed back to the orthorhombic phase upon temperature quench. Our results show that high-pressure behavior of PbF 2 is distinct from that of the alkaline earth fluorides with similar ionic radii. These results also have relevance to understanding the behavior of lanthanide and actinide dioxides, which have been predicted theoretically to exhibit similar isosymmetric transitions at Mbar pressures.« less

  8. A new method of applying a controlled soil water stress, and its effect on the growth of cotton and soybean seedlings at ambient and elevated carbon dioxide

    USDA-ARS?s Scientific Manuscript database

    While numerous studies have shown that elevated carbon dioxide can delay soil water depletion by causing partial stomatal closure, few studies have compared responses of plant growth to the same soil water deficits imposed at ambient and elevated carbon dioxide. We applied a vacuum to ceramic cups ...

  9. Variations in respiratory excretion of carbon dioxide can be used to calculate pulmonary blood flow.

    PubMed

    Preiss, David A; Azami, Takafumi; Urman, Richard D

    2015-02-01

    A non-invasive means of measuring pulmonary blood flow (PBF) would have numerous benefits in medicine. Traditionally, respiratory-based methods require breathing maneuvers, partial rebreathing, or foreign gas mixing because exhaled CO2 volume on a per-breath basis does not accurately represent alveolar exchange of CO2. We hypothesized that if the dilutional effect of the functional residual capacity was accounted for, the relationship between the calculated volume of CO2 removed per breath and the alveolar partial pressure of CO2 would be reversely linear. A computer model was developed that uses variable tidal breathing to calculate CO2 removal per breath at the level of the alveoli. We iterated estimates for functional residual capacity to create the best linear fit of alveolar CO2 pressure and CO2 elimination for 10 minutes of breathing and incorporated the volume of CO2 elimination into the Fick equation to calculate PBF. The relationship between alveolar pressure of CO2 and CO2 elimination produced an R(2) = 0.83. The optimal functional residual capacity differed from the "actual" capacity by 0.25 L (8.3%). The repeatability coefficient leveled at 0.09 at 10 breaths and the difference between the PBF calculated by the model and the preset blood flow was 0.62 ± 0.53 L/minute. With variations in tidal breathing, a linear relationship exists between alveolar CO2 pressure and CO2 elimination. Existing technology may be used to calculate CO2 elimination during quiet breathing and might therefore be used to accurately calculate PBF in humans with healthy lungs.

  10. Oxidation and Condensation of Zinc Fume From Zn-CO 2-CO-H 2O Streams Relevant to Steelmaking Off-Gas Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu

    Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2-CO-H 2O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2/CO = 40/7). Rate expressions that correlate CO 2 and H 2O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Ratemore » $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 406 exp $$ \\left(\\frac{-50.2 kJ/mol}{RT}\\right) $$ (pZnpCO 2 $-$ PCO/K eqCO 2) $$\\frac{mol}{m^2 x s}$$ Rate $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 32.9 exp $$ \\left(\\frac{-13.7 kJ/mol}{RT}\\right) $$ (pZnPH 2O $-$ PH 2/K eqH 2O) $$\\frac{mol}{m^2 x s}$$. It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by carbon dioxide and water vapor as well as the homogeneous nucleation model of metallic zinc were applicable for various temperatures, zinc partial pressures, CO 2:CO ratios, and H 2O partial pressures.« less

  11. Oxidation and Condensation of Zinc Fume From Zn-CO 2-CO-H 2O Streams Relevant to Steelmaking Off-Gas Systems

    DOE PAGES

    Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu; ...

    2017-01-23

    Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2-CO-H 2O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2/CO = 40/7). Rate expressions that correlate CO 2 and H 2O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Ratemore » $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 406 exp $$ \\left(\\frac{-50.2 kJ/mol}{RT}\\right) $$ (pZnpCO 2 $-$ PCO/K eqCO 2) $$\\frac{mol}{m^2 x s}$$ Rate $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 32.9 exp $$ \\left(\\frac{-13.7 kJ/mol}{RT}\\right) $$ (pZnPH 2O $-$ PH 2/K eqH 2O) $$\\frac{mol}{m^2 x s}$$. It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by carbon dioxide and water vapor as well as the homogeneous nucleation model of metallic zinc were applicable for various temperatures, zinc partial pressures, CO 2:CO ratios, and H 2O partial pressures.« less

  12. Cedarwood: cross-over pressure research

    USDA-ARS?s Scientific Manuscript database

    A series of experiments were conducted to determine the cross-over pressure for cedarwood oil in carbon dioxide. A closed stirrer reactor with an in-line loop connected to the injector of a GC was used to measure the concentration of cedarwood oil in the carbon dioxide. Both neat cedarwood oil as ...

  13. Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide.

    PubMed

    Laruelle, Goulven G; Cai, Wei-Jun; Hu, Xinping; Gruber, Nicolas; Mackenzie, Fred T; Regnier, Pierre

    2018-01-31

    It has been speculated that the partial pressure of carbon dioxide (pCO 2 ) in shelf waters may lag the rise in atmospheric CO 2 . Here, we show that this is the case across many shelf regions, implying a tendency for enhanced shelf uptake of atmospheric CO 2 . This result is based on analysis of long-term trends in the air-sea pCO 2 gradient (ΔpCO 2 ) using a global surface ocean pCO 2 database spanning a period of up to 35 years. Using wintertime data only, we find that ΔpCO 2 increased in 653 of the 825 0.5° cells for which a trend could be calculated, with 325 of these cells showing a significant increase in excess of +0.5 μatm yr -1 (p < 0.05). Although noisier, the deseasonalized annual data suggest similar results. If this were a global trend, it would support the idea that shelves might have switched from a source to a sink of CO 2 during the last century.

  14. Altitude controls carbon dioxide in boreal lakes

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-09-01

    Organic matter present in lakes, derived either from land-based sources—such as plants, soil, and sediments—or from in situ processes—such as degrading detritus in the water—could be important in the global carbon cycle, and possibly a significant source of the atmospheric carbon dioxide (CO2) budget. The partial pressure of CO2 in surface waters (pCO2) drives the escape of CO2 to the atmosphere. Hence, scientists have long suspected that the relationship between pCO2 and the dissolved organic matter (DOC) in lake waters refects the relative contribution of the environment and in situ processes to the high-latitude carbon budget. Combining measurements of DOC and pCO2 from nearly 200 lakes across Quebec, Canada, with an additional 13 lake-based studies from temperate regions across the northern hemisphere, Lapierre and del Giorgio suggest that on a regional scale the A variety of lakes dominate the boreal landscape of Quebec, Canada. elevation of lakes is one of the strongest controls on the relationship between DOC and pCO2 in boreal lakes.

  15. Supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and ethanol for the pretreatment and enzymatic hydrolysis of sugarcane bagasse.

    PubMed

    Silveira, Marcos Henrique Luciano; Vanelli, Bruno Angelo; Corazza, Marcos Lucio; Ramos, Luiz Pereira

    2015-09-01

    The use of green solvents for the partial delignification of milled sugarcane bagasse (1mm particle size) and for the enhancement of its susceptibility to enzymatic hydrolysis was demonstrated. The experiments were carried out for 2h using 40 g of supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and 15.8 g of ethanol. The effects of temperature (110-180 °C), pressure (195-250 bar) and IL-to-bagasse mass ratio (0:1-1:1) were investigated through a factorial design in which the response variables were the extent of delignification and both anhydroglucose and anhydroxylose contents in the pretreated materials. The highest delignification degree (41%) led to the best substrate for hydrolysis, giving a 70.7 wt% glucose yield after 12h using 5 wt% and Cellic CTec2® (Novozymes) at 10 mg g(-1) total solids. Hence, excellent substrates for hydrolysis were produced with a minimal IL requirement, which could be recovered by ethanol washing for its downstream processing and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Gas Exchange Models for a Flexible Insect Tracheal System.

    PubMed

    Simelane, S M; Abelman, S; Duncan, F D

    2016-06-01

    In this paper two models for movement of respiratory gases in the insect trachea are presented. One model considers the tracheal system as a single flexible compartment while the other model considers the trachea as a single flexible compartment with gas exchange. This work represents an extension of Ben-Tal's work on compartmental gas exchange in human lungs and is applied to the insect tracheal system. The purpose of the work is to study nonlinear phenomena seen in the insect respiratory system. It is assumed that the flow inside the trachea is laminar, and that the air inside the chamber behaves as an ideal gas. Further, with the isothermal assumption, the expressions for the tracheal partial pressures of oxygen and carbon dioxide, rate of volume change, and the rates of change of oxygen concentration and carbon dioxide concentration are derived. The effects of some flow parameters such as diffusion capacities, reaction rates and air concentrations on net flow are studied. Numerical simulations of the tracheal flow characteristics are performed. The models developed provide a mathematical framework to further investigate gas exchange in insects.

  17. Analysis of Arterial and Venous Blood Gases in Healthy Gyr Falcons ( Falco rusticolus ) Under Anesthesia.

    PubMed

    Raghav, Raj; Middleton, Rachael; BSc, Rinshiya Ahamed; Arjunan, Raji; Caliendo, Valentina

    2015-12-01

    Arterial and venous blood gas analysis is useful in the assessment of tissue oxygenation and ventilation and in diagnosis of metabolic and respiratory derangements. It can be performed with a relatively small volume of blood in avian patients under emergency situations. Arterial and venous blood gas analysis was performed in 30 healthy gyr falcons ( Falco rusticolus ) under anaesthesia to establish temperature-corrected reference intervals for arterial blood gas values and to compare them to temperature-corrected venous blood gas values with a portable point-of-care blood gas analyzer (i-STAT 1, Abbott Laboratories, Abbott Park, IL, USA). Statistically significant differences were observed between the temperature-corrected values of pH, partial pressure of carbon dioxide (Pco2), and partial pressure of oxygen (Po2) and the corresponding nontemperature-corrected values of these parameters in both arterial and venous blood. Values of temperature-corrected pH, temperature-corrected Pco2, bicarbonate concentrations, and base excess of extra cellular fluid did not differ significantly between arterial and venous blood, suggesting that, in anesthetized gyr falcons, venous blood gas analysis can be used in place of arterial blood gas analysis in clinical situations. Values for hematocrit, measured by the point-of-care analyzer, were significantly lower compared with those obtained by the microhematocrit method.

  18. Late Miocene threshold response of marine algae to carbon dioxide limitation.

    PubMed

    Bolton, Clara T; Stoll, Heather M

    2013-08-29

    Coccolithophores are marine algae that use carbon for calcification and photosynthesis. The long-term adaptation of these and other marine algae to decreasing carbon dioxide levels during the Cenozoic era has resulted in modern algae capable of actively enhancing carbon dioxide at the site of photosynthesis. This enhancement occurs through the transport of dissolved bicarbonate (HCO3(-)) and with the help of enzymes whose expression can be modulated by variable aqueous carbon dioxide concentration, [CO2], in laboratory cultures. Coccolithophores preserve the geological history of this adaptation because the stable carbon and oxygen isotopic compositions of their calcite plates (coccoliths), which are preserved in the fossil record, are sensitive to active carbon uptake and transport by the cell. Here we use a model of cellular carbon fluxes and show that at low [CO2] the increased demand for HCO3(-) at the site of photosynthesis results in a diminished allocation of HCO3(-) to calcification, which is most pronounced in larger cells. This results in a large divergence between the carbon isotopic compositions of small versus large coccoliths only at low [CO2]. Our evaluation of the oxygen and carbon isotope record of size-separated fossil coccoliths reveals that this isotopic divergence first arose during the late Miocene to the earliest Pliocene epoch (about 7-5 million years ago). We interpret this to be a threshold response of the cells' carbon acquisition strategies to decreasing [CO2]. The documented coccolithophore response is synchronous with a global shift in terrestrial vegetation distribution between 8 and 5 Myr ago, which has been interpreted by some studies as a floral response to decreasing partial pressures of carbon dioxide () in the atmosphere. We infer a global decrease in carbon dioxide levels for this time interval that has not yet been identified in the sparse proxy record but is synchronous with global cooling and progressive glaciations.

  19. A new process for converting SO2 to sulfur without generating secondary pollutants through reactions involving CaS and CaSO4.

    PubMed

    Sohn, H Y; Kim, Byung-Su

    2002-07-01

    Nonferrous smelters and coal gasification processes generate environmentally harmful sulfur dioxide streams, most of which are treated to produce sulfuric acid with the accompanying problems of market shortage and transportation difficulties. Some sulfur dioxide streams are scrubbed with an alkali solution or a solid substance such as limestone or dolomite, which in turn generates wastes that pose other pollution problems. While the conversion of sulfur dioxide to elemental sulfur has many environmental advantages, no processes exist that are environmentally acceptable and economically viable. A new method for converting sulfur dioxide to elemental sulfur by a cyclic process involving calcium sulfide and calcium sulfate without generating solid wastes has been developed. In this process, calcium sulfate pellets as the starting raw material are reduced by a suitable reducing agent such as hydrogen to produce calcium sulfide pellets, which are used to reduce sulfur dioxide producing elemental sulfur vapor and calcium sulfate. The latter is then reduced to regenerate calcium sulfide. Thermodynamic analysis and experimental results indicated that the CaS-SO2 reaction produces mainly sulfur vapor and solid calcium sulfate and that the gaseous product from the CaSO4-H2 reaction is mainly water vapor. The rates of the two reactions are reasonably rapid in the temperature range 1000-1100 K, and, importantly, the physical strengths and reactivities of the pellets are maintained largely unchanged up to the tenth cycle, the last cycle tested in this work. Sulfur dioxide-containing streams from certain sources, such as the regenerator off-gas from an integrated gasification combined cycle desulfurization unit and new sulfide smelting plants, contain much higher partial pressures of SO2. In these cases, the rate of the first reaction is expected to be proportionally higher than in the test conditions reported in this paper.

  20. Sleep Transcutaneous vs. End-Tidal CO2 Monitoring for Patients with Neuromuscular Disease.

    PubMed

    Won, Yu Hui; Choi, Won Ah; Lee, Jang Woo; Bach, John Robert; Park, Jinyoung; Kang, Seong-Woong

    2016-02-01

    This study compared transcutaneous carbon dioxide partial pressure (PtcCO2) and end-tidal carbon dioxide partial pressure (PetCO2) monitoring during sleep for patients with neuromuscular disease. This is a retrospective study of patients whose PtcCO2 and PetCO2 were monitored before they began using noninvasive mechanical ventilation. The outcomes were divided into four groupings: group 1, both PtcCO2 and PetCO2 are greater than or equal to 49 mm Hg; group 2, PtcCO2 is greater than or equal to 49 mm Hg but PetCO2 is less than 49 mm Hg; group 3, PtcCO2 is less than 49 mm Hg but PetCO2 is greater than or equal to 49 mm Hg; and group 4, both PtcCO2 and PetCO2 are less than 49 mm Hg. A total of 39 subjects (mean [SD] age, 27.7 [19.3] yrs) were enrolled. PtcCO2 values were significantly higher than PetCO2 values (P < 0.001). The intraclass correlation coefficient between maximal and mean values of PtcCO2 and PetCO2 was 0.612 and 0.718, respectively. Bias and limits of agreement between PtcCO2 and PetCO2 were -7.5 mm Hg and -21.3 to 6.3 mm Hg for maximal values and -4.8 mm Hg and -14.8 to 5.3 mm Hg for mean values. Group 2 included 19 (48.7%) and group 3 included 3 (7.6%) patients who showed discrepancy of hypercapnia between two methods. Maximum PtcCO2 was significantly greater than maximum PetCO2 for both groups and, therefore, tends to be higher than PetCO2 in this population. This should be taken into consideration when assessing patients for sleep hypoventilation.

  1. Nasal continuous positive airway pressure: does bubbling improve gas exchange?

    PubMed

    Morley, C J; Lau, R; De Paoli, A; Davis, P G

    2005-07-01

    In a randomised crossover trial, 26 babies, treated with Hudson prong continuous positive airway pressure (CPAP) from a bubbling bottle, received vigorous, high amplitude, or slow bubbling for 30 minutes. Pulse oximetry, transcutaneous carbon dioxide, and respiratory rate were recorded. The bubbling rates had no effect on carbon dioxide, oxygenation, or respiratory rate.

  2. 46 CFR 193.15-1 - Application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... requirements of this subpart are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems,” i.e., those in which the carbon dioxide is stored in liquid form at a continuously controlled low temperature, may be...

  3. 46 CFR 193.15-1 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... requirements of this subpart are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems,” i.e., those in which the carbon dioxide is stored in liquid form at a continuously controlled low temperature, may be...

  4. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...

  5. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...

  6. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...

  7. Carbon dioxide separation using adsorption with steam regeneration

    DOEpatents

    Elliott, Jeannine Elizabeth; Copeland, Robert James; Leta, Daniel P.; McCall, Patrick P.; Bai, Chuansheng; DeRites, Bruce A.

    2016-11-29

    A process for separating a carbon dioxide from a gas stream is disclosed. The process can include passing the gas stream over a sorbent that adsorbs the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement. A carbon dioxide separation system is also disclosed. Neither the system nor the process rely on temperature swing or pressure swing adsorption.

  8. Iodide-Photocatalyzed Reduction of Carbon Dioxide to Formic Acid with Thiols and Hydrogen Sulfide.

    PubMed

    Berton, Mateo; Mello, Rossella; González-Núñez, María Elena

    2016-12-20

    The photolysis of iodide anions promotes the reaction of carbon dioxide with hydrogen sulfide or thiols to quantitatively yield formic acid and sulfur or disulfides. The reaction proceeds in acetonitrile and aqueous solutions, at atmospheric pressure and room temperature by irradiation using a low-pressure mercury lamp. This transition-metal-free photocatalytic process for CO 2 capture coupled with H 2 S removal may have been relevant as a prebiotic carbon dioxide fixation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Clonidine versus nitroglycerin infusion in laparoscopic cholecystectomy.

    PubMed

    Mishra, Manjaree; Mishra, Shashi Prakash; Mathur, Sharad Kumar

    2014-01-01

    Laparoscopic surgery offers the advantages of minimally invasive surgery; however, pneumoperitoneum and the patient's position induce pathophysiological changes that may complicate anesthetic management. We studied the effect of clonidine and nitroglycerin on heart rate and blood pressure, if any, in association with these drugs or the procedure, as well as the effect of these drugs, if any, on end-tidal carbon dioxide pressure and intraocular pressure. Sixty patients (minimum age of 20 years and maximum age of 65 years, American Society of Anesthesiologists class I or II) undergoing laparoscopic cholecystectomy were randomized into 3 groups and given an infusion of clonidine (group I), nitroglycerin (group II), or normal saline solution (group III) after induction and before creation of pneumoperitoneum. We observed and recorded the following parameters: heart rate, mean arterial blood pressure, end-tidal carbon dioxide pressure, and intraocular pressure. The mean and standard deviation of the parameters studied during the observation period were calculated for the 3 treatment groups and compared by use of analysis of variance tests. Intragroup comparison was performed with the paired t test. The critical value of P, indicating the probability of a significant difference, was taken as < .05 for comparisons. Statistically significant differences in heart rate were observed among the various groups, whereas comparisons of mean arterial pressure, intraocular pressure, and end-tidal carbon dioxide pressure showed statistically significant differences only between groups I and III and between groups II and III. We found clonidine to be more effective than nitroglycerin at preventing changes in hemodynamic parameters and intraocular pressure induced by carbon dioxide insufflation during laparoscopic cholecystectomy. It was also found not to cause hypotension severe enough to stop the infusion and warrant treatment.

  10. Clonidine Versus Nitroglycerin Infusion in Laparoscopic Cholecystectomy

    PubMed Central

    Mishra, Manjaree; Mishra, Shashi Prakash

    2014-01-01

    Background and Objectives: Laparoscopic surgery offers the advantages of minimally invasive surgery; however, pneumoperitoneum and the patient's position induce pathophysiological changes that may complicate anesthetic management. We studied the effect of clonidine and nitroglycerin on heart rate and blood pressure, if any, in association with these drugs or the procedure, as well as the effect of these drugs, if any, on end-tidal carbon dioxide pressure and intraocular pressure. Methods: Sixty patients (minimum age of 20 years and maximum age of 65 years, American Society of Anesthesiologists class I or II) undergoing laparoscopic cholecystectomy were randomized into 3 groups and given an infusion of clonidine (group I), nitroglycerin (group II), or normal saline solution (group III) after induction and before creation of pneumoperitoneum. We observed and recorded the following parameters: heart rate, mean arterial blood pressure, end-tidal carbon dioxide pressure, and intraocular pressure. The mean and standard deviation of the parameters studied during the observation period were calculated for the 3 treatment groups and compared by use of analysis of variance tests. Intragroup comparison was performed with the paired t test. The critical value of P, indicating the probability of a significant difference, was taken as < .05 for comparisons. Results: Statistically significant differences in heart rate were observed among the various groups, whereas comparisons of mean arterial pressure, intraocular pressure, and end-tidal carbon dioxide pressure showed statistically significant differences only between groups I and III and between groups II and III. Conclusion: We found clonidine to be more effective than nitroglycerin at preventing changes in hemodynamic parameters and intraocular pressure induced by carbon dioxide insufflation during laparoscopic cholecystectomy. It was also found not to cause hypotension severe enough to stop the infusion and warrant treatment. PMID:25392635

  11. Using semi-analytic solutions to approximate the area of potential impact for carbon dioxide injection

    EPA Science Inventory

    This study examines using the threshold critical pressure increase and the extent of the carbon dioxide (CO2) plume to delineate the area of potential impact (AoPI) for geologic CO2 storage projects. The combined area covering both the CO2 plume and the region where the pressure ...

  12. SOLUBILITIES OF CARBON DIOXIDE IN METHANOL AND METHANOL-WATER AT HIGH PRESSURES: EXPERIMENTAL DATA AND MODELING

    EPA Science Inventory

    The solubilities of carbon dioxide in methanol and in methanol-water mixtures have been measured at 243, 258, 273, and 298 K, and at pressures up to 54 atm. An extended Soave-Redlich-Kwong equation of state with Mathias' polar correction factor has been used to describe the equil...

  13. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid...

  14. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid...

  15. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid...

  16. Partition Coefficients of Organics between Water and Carbon Dioxide Revisited: Correlation with Solute Molecular Descriptors and Solvent Cohesive Properties.

    PubMed

    Roth, Michal

    2016-12-06

    High-pressure phase behavior of systems containing water, carbon dioxide and organics has been important in several environment- and energy-related fields including carbon capture and storage, CO 2 sequestration and CO 2 -assisted enhanced oil recovery. Here, partition coefficients (K-factors) of organic solutes between water and supercritical carbon dioxide have been correlated with extended linear solvation energy relationships (LSERs). In addition to the Abraham molecular descriptors of the solutes, the explanatory variables also include the logarithm of solute vapor pressure, the solubility parameters of carbon dioxide and water, and the internal pressure of water. This is the first attempt to include also the properties of water as explanatory variables in LSER correlations of K-factor data in CO 2 -water-organic systems. Increasing values of the solute hydrogen bond acidity, the solute hydrogen bond basicity, the solute dipolarity/polarizability, the internal pressure of water and the solubility parameter of water all tend to reduce the K-factor, that is, to favor the solute partitioning to the water-rich phase. On the contrary, increasing values of the solute characteristic volume, the solute vapor pressure and the solubility parameter of CO 2 tend to raise the K-factor, that is, to favor the solute partitioning to the CO 2 -rich phase.

  17. Inclined fluidized bed system for drying fine coal

    DOEpatents

    Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  18. Effective Presentation of Metabolic Rate Information for Lunar Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Mackin, Michael A.; Gonia, Philip; Lombay-Gonzalez, Jose

    2010-01-01

    During human exploration of the lunar surface, a suited crewmember needs effective and accurate information about consumable levels remaining in their life support system. The information must be presented in a manner that supports real-time consumable monitoring and route planning. Since consumable usage is closely tied to metabolic rate, the lunar suit must estimate metabolic rate from life support sensors, such as oxygen tank pressures, carbon dioxide partial pressure, and cooling water inlet and outlet temperatures. To provide adequate warnings that account for traverse time for a crewmember to return to a safe haven, accurate forecasts of consumable depletion rates are required. The forecasts must be presented to the crewmember in a straightforward, effective manner. In order to evaluate methods for displaying consumable forecasts, a desktop-based simulation of a lunar Extravehicular Activity (EVA) has been developed for the Constellation lunar suite s life-support system. The program was used to compare the effectiveness of several different data presentation methods.

  19. Ocean acidification accelerates reef bioerosion.

    PubMed

    Wisshak, Max; Schönberg, Christine H L; Form, Armin; Freiwald, André

    2012-01-01

    In the recent discussion how biotic systems may react to ocean acidification caused by the rapid rise in carbon dioxide partial pressure (pCO(2)) in the marine realm, substantial research is devoted to calcifiers such as stony corals. The antagonistic process - biologically induced carbonate dissolution via bioerosion - has largely been neglected. Unlike skeletal growth, we expect bioerosion by chemical means to be facilitated in a high-CO(2) world. This study focuses on one of the most detrimental bioeroders, the sponge Cliona orientalis, which attacks and kills live corals on Australia's Great Barrier Reef. Experimental exposure to lowered and elevated levels of pCO(2) confirms a significant enforcement of the sponges' bioerosion capacity with increasing pCO(2) under more acidic conditions. Considering the substantial contribution of sponges to carbonate bioerosion, this finding implies that tropical reef ecosystems are facing the combined effects of weakened coral calcification and accelerated bioerosion, resulting in critical pressure on the dynamic balance between biogenic carbonate build-up and degradation.

  20. An overview of Japanese CELSS research activities

    NASA Technical Reports Server (NTRS)

    Nitta, Keiji

    1987-01-01

    Development of Controlled Ecological Life Support System (CELSS) technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned Mars flight programs. CELSS functions can be divided into 2 categories, Environmental Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Japanese research activities were conducted and will be continued accordingly.

  1. Sulfur, ultraviolet radiation, and the early evolution of life

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Zahnle, K. J.; Pinto, J. P.; Young, A. T.

    1989-01-01

    The present biosphere is shielded from harmful solar near ultraviolet (UV) radiation by atmospheric ozone. It is suggested that elemental sulfur vapor could have played a similar role in an anoxic, ozone-free, primitive atmosphere. Sulfur vapor would have been produced photochemically from volcanogenic SO2 and H2S. It is composed of ring molecules, primarily S8, that absorb strongly throughout the near UV, yet are expected to be relatively stable against photolysis and chemical attack. It is also insoluble in water and would thus have been immune to rainout or surface deposition over the oceans. Since the concentration of S8 in the primitive atmosphere would have been limited by its saturation vapor pressure, surface temperatures of 45 C or higher, corresponding to carbon dioxide partial pressures exceeding 2 bars, are required to sustain an effective UV screen. A warm, sulfur-rich, primitive atmosphere is consistent with inferences drawn from molecular phylogeny, which suggest that some of the earliest organisms were thermophilic bacteria that metabolized elemental sulfur.

  2. Quality characteristics of the radish grown under reduced atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Levine, Lanfang H.; Bisbee, Patricia A.; Richards, Jeffrey T.; Birmele, Michele N.; Prior, Ronald L.; Perchonok, Michele; Dixon, Mike; Yorio, Neil C.; Stutte, Gary W.; Wheeler, Raymond M.

    This study addresses whether reduced atmospheric pressure (hypobaria) affects the quality traits of radish grown under such environments. Radish (Raphanus sativus L. cv. Cherry Bomb Hybrid II) plants were grown hydroponically in specially designed hypobaric plant growth chambers at three atmospheric pressures; 33, 66, and 96 kPa (control). Oxygen and carbon dioxide partial pressures were maintained constant at 21 and 0.12 kPa, respectively. Plants were harvested at 21 days after planting, with aerial shoots and swollen hypocotyls (edible portion of the radish referred to as the “root” hereafter) separated immediately upon removal from the chambers. Samples were subsequently evaluated for their sensory characteristics (color, taste, overall appearance, and texture), taste-determining factors (glucosinolate and soluble carbohydrate content and myrosinase activity), proximate nutrients (protein, dietary fiber, and carbohydrate) and potential health benefit attributes (antioxidant capacity). In roots of control plants, concentrations of glucosinolate, total soluble sugar, and nitrate, as well as myrosinase activity and total antioxidant capacity (measured as ORACFL), were 2.9, 20, 5.1, 9.4, and 1.9 times greater than the amount in leaves, respectively. There was no significant difference in total antioxidant capacity, sensory characteristics, carbohydrate composition, or proximate nutrient content among the three pressure treatments. However, glucosinolate content in the root and nitrate concentration in the leaf declined as the atmospheric pressure decreased, suggesting perturbation to some nitrogen-related metabolism.

  3. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, amanda; Paul, Heather L.

    2010-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA eliminates the consumable requirement related to the use of LiOH canisters and the mission duration limitations imposed by MetOx system. The concept minimizes the amount of consumable to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. Results indicate that sorbent regeneration can be accomplished by applying a 14 C temperature swing, while regenerating at 13 torr (well above the Martian atmospheric pressure), withstanding over 1,000 adsorption/regeneration cycles. This paper presents the latest results from these sorbent and system development efforts.

  4. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    PubMed

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  5. 46 CFR 34.15-1 - Application-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., shall meet the requirements of § 34.15-90. (b) The requirements of this subpart are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems,” i.e., those in which the carbon dioxide is stored in liquid form at a...

  6. 46 CFR 34.15-1 - Application-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-1 Application—T/ALL. (a) Where a carbon dioxide extinguishing system is... pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature...

  7. 46 CFR 34.15-1 - Application-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-1 Application—T/ALL. (a) Where a carbon dioxide extinguishing system is... pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature...

  8. 46 CFR 34.15-1 - Application-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-1 Application—T/ALL. (a) Where a carbon dioxide extinguishing system is... pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature...

  9. Carbon Dioxide Fountain

    ERIC Educational Resources Information Center

    Kang, Seong-Joo; Ryu, Eun-Hee

    2007-01-01

    This article presents the development of a carbon dioxide fountain. The advantages of the carbon dioxide fountain are that it is odorless and uses consumer chemicals. This experiment also is a nice visual experiment that allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available. (Contains 3 figures.)…

  10. 21 CFR 876.1620 - Urodynamics measurement system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and pressure in the urinary bladder when it is filled through a catheter with carbon dioxide or water. The device controls the supply of carbon dioxide or water and may also record the electrical activity... electromyography. This generic type of device includes the cystometric gas (carbon dioxide) device, the cystometric...

  11. Measuring Tissue Perfusion During Pressure Relief Maneuvers: Insights Into Preventing Pressure Ulcers

    PubMed Central

    Makhsous, Mohsen; Priebe, Michael; Bankard, James; Rowles, Diana; Zeigler, Mary; Chen, David; Lin, Fang

    2007-01-01

    Background/Objective: To study the effect on tissue perfusion of relieving interface pressure using standard wheelchair pushups compared with a mechanical automated dynamic pressure relief system. Design: Repeated measures in 2 protocols on 3 groups of subjects. Participants: Twenty individuals with motor-complete paraplegia below T4, 20 with motor-complete tetraplegia, and 20 able-bodied subjects. Methods: Two 1-hour sitting protocols: dynamic protocol, sitting configuration alternated every 10 minutes between a normal sitting configuration and an off-loading configuration; wheelchair pushup protocol, normal sitting configuration with standard wheelchair pushup once every 20 minutes. Main Outcome Measures: Transcutaneous partial pressures of oxygen and carbon dioxide measured from buttock overlying the ischial tuberosity and interface pressure measured at the seat back and buttocks. Perfusion deterioration and recovery times were calculated during changes in interface pressures. Results: In the off-loading configuration, concentrated interface pressure during the normal sitting configuration was significantly diminished, and tissue perfusion was significantly improved. Wheelchair pushups showed complete relief of interface pressure but incomplete recovery of tissue perfusion. Conclusions: Interface pressure analysis does not provide complete information about the effectiveness of pressure relief maneuvers. Measures of tissue perfusion may help establish more effective strategies. Relief achieved by standard wheelchair pushups may not be sufficient to recover tissue perfusion compromised during sitting; alternate maneuvers may be necessary. The dynamic seating system provided effective pressure relief with sustained reduction in interface pressure adequate for complete recovery of tissue perfusion. Differences in perfusion recovery times between subjects with spinal cord injury (SCI) and controls raise questions about the importance of changes in vascular responses to pressure after SCI. PMID:18092567

  12. Anesthetic and cardiorespiratory effects of single-bolus intravenous alfaxalone with or without intramuscular xylazine-premedication in calves

    PubMed Central

    EL-HAWARI, Sayed Fathi; SAKATA, Hisashi; OYAMA, Norihiko; TAMURA, Jun; HIGUCHI, Chika; ENDO, Yusuke; MIYOSHI, Kenjirou; SANO, Tadashi; SUZUKI, Kazuyuki; YAMASHITA, Kazuto

    2017-01-01

    The anesthetic and cardiorespiratory effects of xylazine-alfaxalone combination were evaluated in calves. Six calves (age: 6–9 months old; weight: 114–310 kg) were anesthetized with intravenous alfaxalone 15 min after administration of intramuscular saline (0.5 ml/100 kg) or xylazine (0.1 mg/kg; 0.5 ml/100 kg of a 2% xylazine solution). Anesthesia induction was smooth and orotracheal intubation was achieved in all calves. The calves anesthetized with xylazine-alfaxalone required a smaller induction dose of alfaxalone (1.23 ± 0.17 mg/kg, P=0.010) and accepted endotracheal intubation for a significantly longer period (16.8 ± 7.2 min, P=0.022) than the calves anesthetized with alfaxalone alone (2.28 ± 0.65 mg/kg 7.3 ± 1.6 min). At 5 min after induction, tachycardia (heart rate: 166 ± 47 beats/min of heart rate), hypertension (mean arterial blood pressure: 147 ± 81 mmHg) and hypoxemia (partial pressure of arterial blood oxygen [PaO2]: 43 ± 10 mmHg) were observed in the calves anesthetized with alfaxalone alone, whereas hypoxemia (PaO2: 47 ± 7 mmHg) and mild hypercapnia (partial pressure of arterial blood carbon dioxide: 54 ± 5 mmHg) were observed in the calves anesthetized with xylazine-alfaxalone. Premedication with xylazine provided a sparing effect on the induction dose of alfaxalone and a prolongation of anesthetic effect. Oxygen supplementation should be considered to prevent hypoxemia during anesthesia. PMID:29269688

  13. Bronchoalveolar lavage with diluted porcine surfactant in mechanically ventilated term infants with meconium aspiration syndrome.

    PubMed

    Lista, Gianluca; Bianchi, Silvia; Castoldi, Francesca; Fontana, Paola; Cavigioli, Francesco

    2006-01-01

    To evaluate the efficacy and safety of bronchoalveolar lavage (BAL) with diluted porcine surfactant in mechanically ventilated term infants with severe acute respiratory distress syndrome (ARDS) due to meconium aspiration syndrome (MAS). Eight consecutive mechanically ventilated term infants with severe ARDS due to MAS underwent BAL with 15 mL/kg of diluted (5.3mg phospholipid/mL) surfactant saline suspension (porcine surfactant [Curosurf]). Treatment was administered slowly in aliquots of 2.5 mL. The mean age of neonates at treatment was 3.5 (range 1-8) hours. Heart rate, systemic blood pressure and oxygen saturation were monitored continuously. Arterial blood gases were measured immediately before treatment, and again at 3 and 6 hours post-treatment. Chest x-rays were taken 6 and 24 hours after treatment. Radiological improvement was evident in all eight patients 6 hours post-treatment. Compared with pre-BAL values, significant improvements (p < 0.05) in mean values for partial pressure of oxygen in arterial blood, partial pressure of carbon dioxide in arterial blood, pH, arterial/alveolar O2 ratio and oxygenation index were documented at 3 and 6 hours after BAL. In all patients, tracheal fluids that had been meconium-stained prior to BAL were clear of meconium after BAL. Only one patient required nitric oxide therapy for transient pulmonary hypertension. No adverse sequelae of treatment occurred during the study. BAL with dilute porcine surfactant administered slowly in 2.5 mL aliquots improved oxygenation and chest x-ray findings, without causing major adverse effects, in mechanically ventilated term infants with ARDS due to MAS.

  14. Evaluating the effect of sample type on American alligator ( Alligator mississippiensis) analyte values in a point-of-care blood analyser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Matthew T.; Finger, John W.; Winzeler, Megan E.

    The assessment of wildlife health has been enhanced by the ability of point-of-care (POC) blood analysers to provide biochemical analyses of non-domesticated animals in the field. However, environmental limitations (e.g. temperature, atmospheric humidity and rain) and lack of reference values may inhibit researchers from using such a device with certain wildlife species. Evaluating the use of alternative sample types, such as plasma, in a POC device may afford researchers the opportunity to delay sample analysis and the ability to use banked samples. In this study, we examined fresh whole blood, fresh plasma and frozen plasma (sample type) pH, partial pressuremore » of carbon dioxide (PCO 2), bicarbonate (HCO 3₋), total carbon dioxide (TCO 2), base excess (BE), partial pressure of oxygen (PO 2), oxygen saturation (sO 2) and lactate concentrations in 23 juvenile American alligators (Alligator mississippiensis) using an i-STAT CG4+ cartridge. Our results indicate that sample type had no effect on lactate concentration values (F 2,65 = 0.37, P = 0.963), suggesting that the i-STAT analyser can be used reliably to quantify lactate concentrations in fresh and frozen plasma samples. In contrast, the other seven blood parameters measured by the CG4+ cartridge were significantly affected by sample type. In conclusion, we were able to collect blood samples from all alligators within 2 min of capture to establish preliminary reference ranges for juvenile alligators based on values obtained using fresh whole blood.« less

  15. Evaluating the effect of sample type on American alligator ( Alligator mississippiensis) analyte values in a point-of-care blood analyser

    DOE PAGES

    Hamilton, Matthew T.; Finger, John W.; Winzeler, Megan E.; ...

    2016-01-01

    The assessment of wildlife health has been enhanced by the ability of point-of-care (POC) blood analysers to provide biochemical analyses of non-domesticated animals in the field. However, environmental limitations (e.g. temperature, atmospheric humidity and rain) and lack of reference values may inhibit researchers from using such a device with certain wildlife species. Evaluating the use of alternative sample types, such as plasma, in a POC device may afford researchers the opportunity to delay sample analysis and the ability to use banked samples. In this study, we examined fresh whole blood, fresh plasma and frozen plasma (sample type) pH, partial pressuremore » of carbon dioxide (PCO 2), bicarbonate (HCO 3₋), total carbon dioxide (TCO 2), base excess (BE), partial pressure of oxygen (PO 2), oxygen saturation (sO 2) and lactate concentrations in 23 juvenile American alligators (Alligator mississippiensis) using an i-STAT CG4+ cartridge. Our results indicate that sample type had no effect on lactate concentration values (F 2,65 = 0.37, P = 0.963), suggesting that the i-STAT analyser can be used reliably to quantify lactate concentrations in fresh and frozen plasma samples. In contrast, the other seven blood parameters measured by the CG4+ cartridge were significantly affected by sample type. In conclusion, we were able to collect blood samples from all alligators within 2 min of capture to establish preliminary reference ranges for juvenile alligators based on values obtained using fresh whole blood.« less

  16. Factors associated with hospitalisation costs in patients with chronic obstructive pulmonary disease.

    PubMed

    Li, F; Sun, Z; Li, H; Yang, T; Shi, Z

    2018-04-01

    Chronic obstructive pulmonary disease (COPD) is a leading cause of hospital admissions, which can result in a significant financial burden. To determine hospitalisation costs and factors associated with higher costs in patients with acute exacerbations of COPD (AE-COPD). Patients hospitalised for a whole year formed the study cohort. Demographic features, clinical data and hospitalisation bills were evaluated retrospectively. Student's t-test or the Mann-Whitney U-test were used to compare the mean values of variables between high-cost and low-cost groups. Logistic regression analysis was used to study the relationship between hospitalisation costs with clinical factors. A total of 188 patients were evaluated. The mean length of stay in hospital (LOSH) was 8.5 days. The mean cost of AE-COPD was US$1722.0. Costs were significantly associated with LOSH and the per cent predicted value of forced expiratory volume in one second. Age, sex, smoking index, partial oxygen pressure, partial carbon dioxide pressure, haemoglobin concentration and white blood cell counts were not associated with hospitalisation costs. Medications and laboratory services are the main drivers of hospitalisation costs in AE-COPD. Longer LOSH and reduced pulmonary function determine the high costs in hospitalised patients with AE-COPD admitted to a general ward. To reduce hospitalisation costs, more emphasis should be placed on shortening LOSH and preventing the worsening of pulmonary function.

  17. PP043. Oxidative stress in the maternal body also affects the fetus in preeclamptic women with fetal growth restriction.

    PubMed

    Watanabe, Kazushi; Iwasaki, Ai; Mori, Toshitaka; Kimura, Chiharu; Matsushita, Hiroshi; Shinohara, Koichi; Wakatsuki, Akihiko

    2013-04-01

    The purpose of the present study was to determine whether oxidative stress occurring in the maternal body also affects the fetus in preeclamptic women with FGR. We ∥@consecutively recruited 17 preeclamptic women with FGR, 16 preeclamptic women without FGR, and 16 healthy pregnant women with uncomplicated pregnancy. We measured concentrations of derivatives of reactive oxygen metabolites (d-ROMs) as a marker of oxygen free radicals in a maternal vein, umbilical artery, and umbilical vein. ∥@Maternal d-ROM levels were higher in preeclamptic groups compared to the control group. Umbilical artery and vein d-ROM levels were elevated in preeclamptic women with FGR compared to the control group. Umbilical artery d-ROM levels were significantly higher than in the vein in preeclamptic women with FGR, but not in those without FGR. Umbilical arterial blood pH was significantly lower in preeclamptic women with FGR. The partial pressure of oxygen (PaO2) in umbilical arterial blood tended to be lower in preeclamptic women with FGR (p=0.08). The partial pressure of carbon dioxide (PaCO2) in umbilical arterial blood was significantly higher in preeclamptic women with FGR. These results indicate that oxidative stress occurring in the maternal body also affects the fetus in preeclamptic women with FGR. Copyright © 2013. Published by Elsevier B.V.

  18. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    DOEpatents

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2014-10-07

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  19. Modeling carbon dioxide effect in a controlled atmosphere and its interactions with temperature and pH on the growth of L. monocytogenes and P. fluorescens.

    PubMed

    Couvert, Olivier; Guégan, Stéphanie; Hézard, Bernard; Huchet, Véronique; Lintz, Adrienne; Thuault, Dominique; Stahl, Valérie

    2017-12-01

    The effect of carbon dioxide, temperature, and pH on growth of Listeria monocytogenes and Pseudomonas fluorescens was studied, following a protocol to monitor microbial growth under a constant gas composition. In this way, the CO 2 dissolution didn't modify the partial pressures in the gas phase. Growth curves were acquired at different temperatures (8, 12, 22 and 37 °C), pH (5.5 and 7) and CO 2 concentration in the gas phase (0, 20, 40, 60, 80, 100% of the atmospheric pressure, and over 1 bar). These three factors greatly influenced the growth rate of L. monocytogenes and P. fluorescens, and significant interactions have been observed between the carbon dioxide and the temperature effects. Results showed no significant effect of the CO 2 concentration at 37 °C, which may be attributed to low CO2 solubility at high temperature. An inhibitory effect of CO 2 appeared at lower temperatures (8 and 12 °C). Regardless of the temperature, the gaseous CO 2 is sparingly soluble at acid pH. However, the CO 2 inhibition was not significantly different between pH 5.5 and pH 7. Considering the pKa of the carbonic acid, these results showed the dissolved carbon under HCO 3 - form didn't affect the bacterial inhibition. Finally, a global model was proposed to estimate the growth rate vs. CO 2 concentration in the aqueous phase. This dissolved concentration is calculated according to the physical equations related to the CO 2 equilibriums, involving temperature and pH interactions. This developed model is a new tool available to manage the food safety of MAP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Temperature-pressure conditions in coalbed methane reservoirs of the Black Warrior basin: Implications for carbon sequestration and enhanced coalbed methane recovery

    USGS Publications Warehouse

    Pashin, J.C.; McIntyre, M.R.

    2003-01-01

    Sorption of gas onto coal is sensitive to pressure and temperature, and carbon dioxide can be a potentially volatile supercritical fluid in coalbed methane reservoirs. More than 5000 wells have been drilled in the coalbed methane fields of the Black Warrior basin in west-central Alabama, and the hydrologic and geothermic information from geophysical well logs provides a robust database that can be used to assess the potential for carbon sequestration in coal-bearing strata.Reservoir temperature within the coalbed methane target zone generally ranges from 80 to 125 ??F (27-52 ??C), and geothermal gradient ranges from 6.0 to 19.9 ??F/1000 ft (10.9-36.2 ??C/km). Geothermal gradient data have a strong central tendency about a mean of 9.0 ??F/1000 ft (16.4 ??C/km). Hydrostatic pressure gradients in the coalbed methane fields range from normal (0.43 psi/ft) to extremely underpressured (<0.05 psi/ft). Pressure-depth plots establish a bimodal regime in which 70% of the wells have pressure gradients greater than 0.30 psi/ft, and 20% have pressure gradients lower than 0.10 psi/ft. Pockets of underpressure are developed around deep longwall coal mines and in areas distal to the main hydrologic recharge zone, which is developed in structurally upturned strata along the southeastern margin of the basin.Geothermal gradients within the coalbed methane fields are high enough that reservoirs never cross the gas-liquid condensation line for carbon dioxide. However, reservoirs have potential for supercritical fluid conditions beyond a depth of 2480 ft (756 m) under normally pressured conditions. All target coal beds are subcritically pressured in the northeastern half of the coalbed methane exploration fairway, whereas those same beds were in the supercritical phase window prior to gas production in the southwestern half of the fairway. Although mature reservoirs are dewatered and thus are in the carbon dioxide gas window, supercritical conditions may develop as reservoirs equilibrate toward a normal hydrostatic pressure gradient after abandonment. Coal can hold large quantities of carbon dioxide under supercritical conditions, and supercritical isotherms indicate non-Langmiur conditions under which some carbon dioxide may remain mobile in coal or may react with formation fluids or minerals. Hence, carbon sequestration and enhanced coalbed methane recovery show great promise in subcritical reservoirs, and additional research is required to assess the behavior of carbon dioxide in coal under supercritical conditions where additional sequestration capacity may exist. ?? 2003 Elsevier Science B.V. All rights reserved.

  1. Extraction of ewe's milk cream with supercritical carbon dioxide.

    PubMed

    González Hierro, M T; Ruiz-Sala, P; Alonso, L; Santa-María, G

    1995-04-01

    The extraction of ewe's milk cream by supercritical carbon dioxide in the pressure range 9-30 MPa (90-300 bar) and at temperatures of 40 degrees C and 50 degrees C was studied. The solubility of total fat increased with pressure at both temperatures until a plateau was reached. The extraction of cholesterol also increased with pressure until a plateau was reached and it was higher at 50 degrees C than at 40 degrees C when the pressure was > or = 15 MPa (150 bar). The triglyceride composition of each extract, determined by GC, showed that extracts obtained at lower pressures were enriched in short-chain triglycerides and their concentration decreased as the pressure increased. In the other hand, long-chain triglycerides were enriched in the extracts obtained at higher pressures and their concentration rose with increasing pressure.

  2. Suppressing bullfrog larvae with carbon dioxide

    USGS Publications Warehouse

    Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,

    2014-01-01

    Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.

  3. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, Amanda; Paul, Heather L.

    2011-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA minimizes the amount of consumables to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. This paper presents the latest results from these sorbent and system development efforts.

  4. 46 CFR 193.15-1 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-1 Application. (a) The provisions of this... this subpart are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in... carbon dioxide is stored in liquid form at a continuously controlled low temperature, may be specifically...

  5. 46 CFR 193.15-1 - Application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-1 Application. (a) The... requirements of this subpart are based on a “high pressure system,” i.e., one in which the carbon dioxide is... which the carbon dioxide is stored in liquid form at a continuously controlled low temperature, may be...

  6. Synthesis, characterization and thermodynamic study of carbon dioxide adsorption on akaganéite

    DOE PAGES

    Roque-Malherbe, R.; Lugo, F.; Rivera-Maldonado, C.; ...

    2015-04-01

    A mixture of akaganeite nanoparticles and sodium salts was synthesized and modi fied, first by washing, and then by Li exchange. The structural characterization of the produced materials was performed with: powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, thermogravimetric analysis, diffuse reflectance infrared Fourier transform spectrometry, Mossbauer spectros- € copy and magnetization measurements. Additionally low pressure nitrogen and high pressure carbon dioxide adsorption experiments were performed. The sum of the characterization information made possible to conclude that the produced akaganeite phases crystallized in a structure exhibiting the symmetry of the I2/m space group, where the measured equivalentmore » spherical diameter of the akaganeite crystallites yielded 9 nm, as well, the tested phases exhibited a standard behaviour under heating and displayed a superparamagnetic behaviour. Finally the high pressure carbon dioxide adsorption experiments demonstrated a pressure-responsive framework opening event due to a structural transformation of the adsorbent framework induced by the guest molecules. This fact opens new applications for akaganeite as a high pressure adsorbent.« less

  7. The effects of arterial carbon dioxide partial pressure and sevoflurane on capillary venous cerebral blood flow and oxygen saturation during craniotomy.

    PubMed

    Klein, Klaus Ulrich; Glaser, Martin; Reisch, Robert; Tresch, Achim; Werner, Christian; Engelhard, Kristin

    2009-07-01

    Intraoperative routine monitoring of cerebral blood flow and oxygenation remains a technological challenge. Using the physiological principle of carbon dioxide reactivity of cerebral vasculature, we investigated a recently developed neuromonitoring device (oxygen-to-see, O2C device) for simultaneous measurements of regional cerebral blood flow (rvCBF), blood flow velocity (rvVelo), oxygen saturation (srvO2), and hemoglobin amount (rvHb) at the capillary venous level in patients subjected to craniotomy. Twenty-six neurosurgical patients were randomly assigned to anesthesia with 1.4% or 2.0% sevoflurane end-tidal concentration. After craniotomy, a fiberoptic probe was applied on a macroscopically healthy surface of cerebral tissue next to the site of surgery. Simultaneous measurements in 2 and 8 mm cerebral depth were performed in each patient during lower (35 mm Hg) and higher (45 mm Hg) levels (random order) of arterial carbon dioxide partial pressure (PaCO2). The principle of these measurements relies on the combination of laser-Doppler flowmetry (rvCBF, rvVelo) and photo-spectrometry (srvO2, rvHb). Linear models were fitted to test changes of end points (rvCBF, rvVelo, srvO2, rvHb) in response to lower and higher levels of PaCO2, 1.4% and 2.0% sevoflurane end-tidal concentration, and 2 and 8 mm cerebral depth. RvCBF and rvVelo were elevated by PaCO2 independent of sevoflurane concentration in 2 and 8 mm depth of cerebral tissue (P < 0.001). Higher PaCO2 induced an increase in mean srvO2 from 50% to 68% (P < 0.001). RvVelo (P < 0.001) and srvO2 (P = 0.007) were higher in 8 compared with 2 mm cerebral depth. RvHb was not influenced by alterations in PaCO2 but positively correlated to sevoflurane concentration (P = 0.005). Increases in rvCBF and rvVelo by PaCO2 suggest preserved hypercapnic vasodilation under anesthesia with sevoflurane 1.4% and 2.0% end-tidal concentration. A consecutive increase in srvO2 implies that cerebral arteriovenous difference in oxygen was decreased by elevated PaCO2. Unchanged levels of rvHb signify that there was no blood loss during measurements. Data suggest that the device allows detection of local changes in blood flow and oxygen saturation in response to different PaCO2 levels in predominant venous cerebral microvessels.

  8. Paleobotanical Evidence for Near Present-Day Levels of Atmospheric CO2 During Part of the Tertiary

    NASA Astrophysics Data System (ADS)

    Royer, Dana L.; Wing, Scott L.; Beerling, David J.; Jolley, David W.; Koch, Paul L.; Hickey, Leo J.; Berner, Robert A.

    2001-06-01

    Understanding the link between the greenhouse gas carbon dioxide (CO2) and Earth's temperature underpins much of paleoclimatology and our predictions of future global warming. Here, we use the inverse relationship between leaf stomatal indices and the partial pressure of CO2 in modern Ginkgo biloba and Metasequoia glyptostroboides to develop a CO2 reconstruction based on fossil Ginkgo and Metasequoia cuticles for the middle Paleocene to early Eocene and middle Miocene. Our reconstruction indicates that CO2 remained between 300 and 450 parts per million by volume for these intervals with the exception of a single high estimate near the Paleocene/Eocene boundary. These results suggest that factors in addition to CO2 are required to explain these past intervals of global warmth.

  9. Paleobotanical evidence for near present-day levels of atmospheric Co2 during part of the tertiary.

    PubMed

    Royer, D L; Wing, S L; Beerling, D J; Jolley, D W; Koch, P L; Hickey, L J; Berner, R A

    2001-06-22

    Understanding the link between the greenhouse gas carbon dioxide (CO(2)) and Earth's temperature underpins much of paleoclimatology and our predictions of future global warming. Here, we use the inverse relationship between leaf stomatal indices and the partial pressure of CO(2) in modern Ginkgo biloba and Metasequoia glyptostroboides to develop a CO(2) reconstruction based on fossil Ginkgo and Metasequoia cuticles for the middle Paleocene to early Eocene and middle Miocene. Our reconstruction indicates that CO(2) remained between 300 and 450 parts per million by volume for these intervals with the exception of a single high estimate near the Paleocene/Eocene boundary. These results suggest that factors in addition to CO(2) are required to explain these past intervals of global warmth.

  10. Concentration-dependence of the explosion characteristics of chlorine dioxide gas.

    PubMed

    Jin, Ri-ya; Hu, Shuang-qi; Zhang, Yin-ghao; Bo, Tao

    2009-07-30

    The explosion characteristics of chlorine dioxide gas have been studied for the first time in a cylindrical exploder with a shell capacity of 20 L. The experimental results have indicated that the lower concentration limit for the explosive decomposition of chlorine dioxide gas is 9.5% ([ClO(2)]/[air]), whereas there is no corresponding upper concentration limit. Under the experimental conditions, and within the explosion limits, the pressure of explosion increases with increasing concentration of chlorine dioxide gas; the maximum pressure of explosion relative to the initial pressure was measured as 0.024 MPa at 10% ClO(2) and 0.641 MPa at 90% ClO(2). The induction time (the time from the moment of sparking to explosion) has also been found to depend on the concentration of chlorine dioxide gas; thus, at 10% ClO(2) the induction time was 2195 ms, but at 90% ClO(2) the induction time was just 8 ms. The explosion reaction mechanism of ClO(2) is of a degenerate chain-branching type involving the formation of a stable intermediate (Cl(2)O(3)), from which the chain-branching occurs. Chain initiation takes place at the point of ignition and termination takes place at the inner walls of the exploder.

  11. Cerebral Hemodynamic Effects of Acute Hyperoxia and Hyperventilation after Severe Traumatic Brain Injury

    PubMed Central

    Rangel-Castilla, Leonardo; Lara, Lucia Rivera; Gopinath, Shankar; Swank, Paul R.; Valadka, Alex

    2010-01-01

    Abstract The purpose of this study was to examine the effects of hyperventilation or hyperoxia on cerebral hemodynamic parameters over time in patients with severe traumatic brain injury (TBI). We prospectively studied 186 patients with severe TBI. CO2 and O2 reactivity tests were conducted twice a day on days 1–5 and once daily on days 6–10 after injury. During hyperventilation there was a significant decrease in intracranial pressure (ICP), mean arterial pressure (MAP), jugular venous oxygen saturation (Sjvo2), brain tissue Po2 (Pbto2), and flow velocity (FV). During hyperoxia there was an increase in Sjvo2 and Pbto2, and a small but consistent decrease in ICP, end-tidal carbon dioxide (etco2), partial arterial carbon dioxide pressure (Paco2), and FV. Brain tissue oxygen reactivity during the first 12 h after injury averaged 19.7 ± 3.0%, and slowly decreased over the next 7 days. The autoregulatory index (ARI; normal = 5.3 ± 1.3) averaged 2.2 ± 1.5 on day 1 post-injury, and gradually improved over the 10 days of monitoring. The ARI significantly improved during hyperoxia, by an average of 0.4 ± 1.8 on the left, and by 0.5 ± 1.8 on the right. However, the change in ARI with hyperoxia was much smaller than that observed with hyperventilation. Hyperventilation increased ARI by an average of 1.3 ± 1.9 on the left, and 1.5 ± 2.0 on the right. Pressure autoregulation, as assessed by dynamic testing, was impaired in these head-injured patients. Acute hyperoxia significantly improved pressure autoregulation, although the effect was smaller than that induced by hyperventilation. The very small change in Paco2 induced by hyperoxia does not appear to explain this finding. Rather, the vasoconstriction induced by acute hyperoxia may allow the cerebral vessels to respond better to transient hypotension. Further studies are needed to define the clinical significance of these observations. PMID:20684672

  12. Thin film devices used as oxygen partial pressure sensors

    NASA Technical Reports Server (NTRS)

    Canady, K. S.; Wortman, J. J.

    1970-01-01

    Electrical conductivity of zinc oxide films to be used in an oxygen partial pressure sensor is measured as a function of temperature, oxygen partial pressure, and other atmospheric constituents. Time response following partial pressure changes is studied as a function of temperature and environmental changes.

  13. Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature

    DOEpatents

    Kamath, Krishna

    1984-08-14

    The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7.degree. F. at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88.degree. F. it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products.

  14. Carbon dioxide removal process

    DOEpatents

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  15. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream,more » to a destination where it is used or confined, preferably in an environmentally benign manner.« less

  16. Using FIA data to inform United States forest carbon national-level accounting needs: 1990-2010

    Treesearch

    Linda S. Heath

    2013-01-01

    Forests are partially made up of carbon. Live vegetation, dead wood, forest floor, and soil all contain carbon. Through the process of photosynthesis, trees reduce carbon dioxide to carbohydrates and store the carbon in wood. By removing carbon dioxide from the atmosphere, forests mitigate climate change that may be brought on by increased atmospheric CO2...

  17. Commercial Hy-Line W-36 pullet and laying hen venous blood gas and chemistry profiles utilizing the portable i-STAT®1 analyzer.

    PubMed

    Schaal, T P; Arango, J; Wolc, A; Brady, J V; Fulton, J E; Rubinoff, I; Ehr, I J; Persia, M E; O'Sullivan, N P

    2016-02-01

    Venous blood gas and chemistry reference ranges were determined for commercial Hy-Line W-36 pullets and laying hens utilizing the portable i-STAT®1 analyzer and CG8+ cartridges. A total of 632 samples were analyzed from birds between 4 and 110 wk of age. Reference ranges were established for pullets (4 to 15 wk), first cycle laying hens (20 to 68 wk), and second cycle (post molt) laying hens (70 to 110 wk) for the following traits: sodium (Na mmol/L), potassium (K mmol/L), ionized calcium (iCa mmol/L), glucose (Glu mg/dl), hematocrit (Hct% Packed Cell Volume [PCV]), pH, partial pressure carbon dioxide (PCO2 mm Hg), partial pressure oxygen (PO2 mm Hg), total concentration carbon dioxide (TCO2 mmol/L), bicarbonate (HCO3 mmol/L), base excess (BE mmol/L), oxygen saturation (sO2%), and hemoglobin (Hb g/dl). Data were analyzed using ANOVA to investigate the effect of production status as categorized by bird age. Trait relationships were evaluated by linear correlation and their spectral decomposition. All traits differed significantly among pullets and mature laying hens in both first and second lay cycles. Levels for K, iCa, Hct, pH, TCO2, HCO3, BE, sO2, and Hb differed significantly between first cycle and second cycle laying hens. Many venous blood gas and chemistry parameters were significantly correlated. The first 3 eigenvalues explained ∼2/3 of total variation. The first 2 principal components (PC) explained 51% of the total variation and indicated acid-balance and relationship between blood O2 and CO2. The third PC explained 16% of variation and seems to be related to blood iCa. Establishing reference ranges for pullet and laying hen blood gas and chemistry with the i-STAT®1 handheld unit provides a mechanism to further investigate pullet and layer physiology, evaluate metabolic disturbances, and may potentially serve as a means to select breeder candidates with optimal blood gas or chemistry levels on-farm. © The Author 2015. Published by Oxford University Press on behalf of the Poultry Science Association.

  18. Carbon dioxide, hydrographic, and chemical data obtained in the South Pacific Ocean (WOCE Sections P16A/P17A, P17E/P19S, and P19C, R/V Knorr, October 1992--April 1993)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, S.; Goddard, J.G.; Chipman, D.W.

    1998-06-01

    This data documentation discusses the procedures and methods used to measure total carbon dioxide concentration (TCO{sub 2}) and partial pressure of CO{sub 2} (pCO{sub 2}) in discrete water samples collected during three expeditions of the Research Vessel (R/V) Knorr in the South Pacific Ocean. Conducted as part of the World Ocean Circulation Experiment (WOCE), the first cruise (WOCE Section P16A/P17A) began in Papeete, Tahiti, French Polynesia, on October 6, 1992, and returned to Papeete on November 25, 1992. The second cruise (WOCE Section P17E/P19S) began in Papeete on December 4, 1992, and finished in Punta Arenas, Chile, on January 22,more » 1993. The third expedition (WOCE Section P19C) started in Punta Arenas, on February 22 and finished in Panama City, Panama, on April 13, 1993. During the three expeditions, 422 hydrographic stations were occupied. Hydrographic and chemical measurements made along WOCE Sections P16A/P17A, P17E/P19S, and P19C included pressure, temperature, salinity, and oxygen [measured by conductivity, temperature, and depth (CTD) sensor], as well as discrete measurements of salinity, oxygen, phosphate, nitrate, nitrite, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO{sub 2}, and pCO{sub 2} measured at 4 and 20 C. In addition, potential temperatures were calculated from the measured variables.« less

  19. [An experimental study on the effects of rhythmic abdominal lifting and compression during cardiopulmonary resuscitation in a swine model of asphyxia].

    PubMed

    Li, Xiu-man; Wang, Li-xiang; Liu, Ya-hua; Sun, Kun; Ma, Li-zhi; Guo, Xiao-dong; Li, Hui-qing

    2012-04-01

    To compare the hemodynamic and respiratory influences of chest compression- cardiopulmonary resuscitation (CC-CPR) and rhythmic abdominal lifting and compression-cardiopulmonary resuscitation (ALC-CPR) in a swine model of asphyxia cardiac arrest (CA), and evaluate the effectiveness of rhythmic abdominal lifting and compression. Thirty swines were randomly divided into two groups, with 15 swines in each group. CA model was reproduced by asphyxia as a result of clamping the trachea, and CC-CPR and ALC-CPR was conducted in two groups, respectively. Electrocardiogram (ECG), pulse oxygen saturation [SpO(2)], end-tidal partial pressure of carbon dioxide [P(ET)CO(2)], aorta systolic blood pressure (SBP), diastolic blood pressure (DBP), central venous pressure (CVP), and tidal volume (VT) were monitored continuously from 10 minutes before asphyxia to the end of experiment. The aorta mean arterial pressure (MAP), coronary perfusion pressure (CPP) and minute ventilation (MV) were calculated. Artery blood samples were collected to determine the blood gas analysis at 10 minutes before asphyxia, 10 minutes after asphyxia, and 5, 10, 20 minutes after resuscitation. The restoration of spontaneous circulation (ROSC) rate, 24-hour survival rate and 24-hour neurological function score were observed. There were no significant differences in all mentioned indexes between two groups at 10 minutes before and 10 minutes after asphyxia. At 2 minutes after the resuscitation, the MAP (mm Hg, 1 mm Hg = 0.133 kPa) and CPP (mm Hg) in CC-CPR group were significantly higher than those in ALC-CPR group (MAP: 43.60 ± 12.91 vs. 33.40 ± 6.59, P < 0.05; CPP: 21.67 ± 11.28 vs. 11.80 ± 4.16, P < 0.01), the VT (ml) and MV (L/min)in ALC-CPR group were significantly higher than those in CC-CPR group (VT: 111.67 ± 18.12 vs. 56.60 ± 7.76; MV: 11.17 ± 1.81 vs. 5.54 ± 0.79, both P < 0.01). At 5, 10, 20 minutes after resuscitation, in ALC-CPR group, pH value, arterial partial pressure of oxygen [PaO(2), mm Hg] and arterial oxygen saturation [SaO(2)] were increased, and HCO(3)(-) (mmol/L) and base excess (BE, mmol/L) were decreased, which significantly higher than those in CC-CPR group [pH at 20 minutes after resuscitation: 7.16 ± 0.16 vs. 7.01 ± 0.14; PaO(2): 82.73 ± 13.20 vs. 58.33 ± 17.77; HCO(3)(-): 27.71 ± 3.11 vs. 21.04 ± 3.62; BE: -4.78 ± 4.30 vs. -10.23 ± 2.12; SaO(2): 0.893 ± 0.088 vs. 0.764 ± 0.122], and arterial partial pressure of carbon dioxide [PaCO(2), mm Hg], K(+) (mmol/L) and lactic acid (Lac,mmol/L) were significantly lower than those in CC-CPR group [PaCO(2) at 20 minutes after resuscitation: 49.40 ± 15.60 vs. 79.80 ± 15.35; K(+): 7.18 ± 1.76 vs. 8.55 ± 1.02; Lac: 8.17 ± 1.46 vs. 10.39 ± 1.92], with statistical significant (P < 0.05 or P < 0.01). But the ROSC rate and 24-hour survival rate in ALC-CPR group were significantly higher than those in CC-CPR group (ROSC rate: 80.0% vs. 26.7%, P < 0.01; 24-hour survival rate: 60.0% vs. 13.3%, P < 0.05), and the 24-hour neurological function score was significantly lower than that in CC-CPR group (1.11 ± 0.33 vs. 3.50 ± 0.70, P < 0.01). In the incipient stage of cardiopulmonary resuscitation of the swine CA model of asphyxia, compared with CC-CPR, ALC-CPR can be more effective.

  20. Vapor pressures and calculated heats of vaporization of concentrated nitric acid solutions in the composition range 71 to 89 percent nitrogen dioxide, 1 to 10 percent water, and in the temperature range 10 to 60 degrees C

    NASA Technical Reports Server (NTRS)

    Mckeown, A B; Belles, Frank E

    1954-01-01

    Total vapor pressures were measured for 16 acid mixtures of the ternary system nitric acid, nitrogen dioxide, and water within the temperature range 10 degrees to 60 degrees Celsius, and with the composition range 71 to 89 weight percent nitric acid, 7 to 20 weight percent nitrogen dioxide, and 1 to 10 weight percent water. Heats of vaporization were calculated from the vapor pressure measurements for each sample for the temperatures 25, 40, and 60 degrees Celsius. The ullage of the apparatus used for the measurements was 0.46. Ternary diagrams showing isobars as a function of composition of the system were constructed from experimental and interpolated data for the temperatures 25, 40, 45, and 60 degrees C and are presented herein.

  1. From oligomers to molecular giants of soybean oil in supercritical carbon dioxide medium: 1. Preparation of polymers with lower molecular weight from soybean oil.

    PubMed

    Liu, Zengshe; Sharma, Brajendra K; Erhan, Sevim Z

    2007-01-01

    Polymers with a low molecular weight derived from soybean oil have been prepared in a supercritical carbon dioxide medium by cationic polymerization. Boron trifluoride diethyl etherate was used as an initiator. Influences of polymerization temperature, amount of initiator, and carbon dioxide pressure on the molecular weight were investigated. It is shown that the higher polymerization temperature favors polymers with relatively higher molecular weights. Larger amounts of initiator also provide polymers with higher molecular weights. Higher pressure favors polymers with relatively higher molecular weights. The applications of these soy-based materials will be in the lubrication and hydraulic fluid areas.

  2. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  3. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  4. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  5. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  6. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  7. Phase diagram and high-pressure boundary of hydrate formation in the carbon dioxide-water system.

    PubMed

    Manakov, Andrej Yu; Dyadin, Yuriy A; Ogienko, Andrey G; Kurnosov, Alexander V; Aladko, Eugeny Ya; Larionov, Eduard G; Zhurko, Fridrih V; Voronin, Vladimir I; Berger, Ivan F; Goryainov, Sergei V; Lihacheva, Anna Yu; Ancharov, Aleksei I

    2009-05-21

    Experimental investigation of the phase diagram of the system carbon dioxide-water at pressures up to 2.7 GPa has been carried out in order to explain earlier controversial results on the decomposition curves of the hydrates formed in this system. According to X-ray diffraction data, solid and/or liquid phases of water and CO2 coexist in the system at room temperature within the pressure range from 0.8 to 2.6 GPa; no clathrate hydrates are observed. The results of neutron diffraction experiments involving the samples with different CO2/H2O molar ratios, and the data on the phase diagram of the system carbon dioxide-water show that CO2 hydrate of cubic structure I is the only clathrate phase present in this system under studied P-T conditions. We suppose that in the cubic structure I hydrate of CO2 multiple occupation of the large hydrate cavities with CO2 molecules takes place. At pressure of about 0.8 GPa this hydrate decomposes into components indicating the presence of the upper pressure boundary of the existence of clathrate hydrates in the system.

  8. Implementation of a Goal-Directed Mechanical Ventilation Order Set Driven by Respiratory Therapists Improves Compliance With Best Practices for Mechanical Ventilation.

    PubMed

    Radosevich, Misty A; Wanta, Brendan T; Meyer, Todd J; Weber, Verlin W; Brown, Daniel R; Smischney, Nathan J; Diedrich, Daniel A

    2017-01-01

    Data regarding best practices for ventilator management strategies that improve outcomes in acute respiratory distress syndrome (ARDS) are readily available. However, little is known regarding processes to ensure compliance with these strategies. We developed a goal-directed mechanical ventilation order set that included physician-specified lung-protective ventilation and oxygenation goals to be implemented by respiratory therapists (RTs). We sought as a primary outcome to determine whether an RT-driven order set with predefined oxygenation and ventilation goals could be implemented and associated with improved adherence with best practice. We evaluated 1302 patients undergoing invasive mechanical ventilation (1693 separate episodes of invasive mechanical ventilation) prior to and after institution of a standardized, goal-directed mechanical ventilation order set using a controlled before-and-after study design. Patient-specific goals for oxygenation partial pressure of oxygen in arterial blood (Pao 2 ), ARDS Network [Net] positive end-expiratory pressure [PEEP]/fraction of inspired oxygen [Fio 2 ] table use) and ventilation (pH, partial pressure of carbon dioxide) were selected by prescribers and implemented by RTs. Compliance with the new mechanical ventilation order set was high: 88.2% compliance versus 3.8% before implementation of the order set ( P < .001). Adherence to the PEEP/Fio 2 table after implementation of the order set was significantly greater (86.0% after vs 82.9% before, P = .02). There was no difference in duration of mechanical ventilation, intensive care unit (ICU) length of stay, and in-hospital or ICU mortality. A standardized best practice mechanical ventilation order set can be implemented by a multidisciplinary team and is associated with improved compliance to written orders and adherence to the ARDSNet PEEP/Fio 2 table.

  9. Development of an Animal Model for Burn-Blast Combined Injury and Cardiopulmonary System Changes in the Early Shock Stage.

    PubMed

    Hu, Quan; Chai, Jiake; Hu, Sen; Fan, Jun; Wang, Hong-Wei; Ma, Li; Duan, Hong-Jie; Liu, Lingying; Yang, Hongming; Li, Bai-Ling; Wang, Yi-He

    2015-12-01

    The purposes of this study were to establish an animal model for burn-blast combined injury research and elaborate cardiopulmonary system changes in the early shock stage. In this study, royal demolition explosive or RDX (hexagon, ring trimethylene nitramine) was used as an explosive source, and the injury conditions of the canine test subjects at various distances to the explosion (30, 50, and 70 cm) were observed by gross anatomy and pathology to determine a larger animal model of moderate blast injury. The canines were then subjected to a 35 % total body surface area (TBSA) full-thickness flame injury using napalm, which completed the development of a burn-blast combined injury model. Based on this model, the hemodynamic changes and arterial blood gas analysis after the burn-blast combined injury were measured to identify the cardiopulmonary system characteristics. In this research, RDX explosion and flame injury were used to develop a severe burn-blast injury animal model that was stable, close to reality, and easily controllable. The hemodynamic and arterial blood gas changes in the canine subjects after burn-blast injury changed distinctly from the burn and blast injuries. Blood pressure and cardiac output fluctuated, and the preload was significantly reduced, whereas the afterload significantly increased. Meanwhile, the oxygen saturation (SO2) decreased markedly with carbon dioxide partial pressure (PCO2), and lactic acid (Lac) rose, and oxygen partial pressure (PO2) reduced. These changes suggested that immediate clinical treatment is important during burn-blast injury both to stabilize cardiac function and supply blood volume and to reduce the vascular permeability, thereby preventing acute pneumonedema or other complications.

  10. Clinical characteristics and risk factors of pulmonary hypertension associated with chronic respiratory diseases: a retrospective study.

    PubMed

    Chen, Yonghua; Liu, Chunli; Lu, Wenju; Li, Mengxi; Hadadi, Cyrus; Wang, Elizabeth Wenqian; Yang, Kai; Lai, Ning; Huang, Junyi; Li, Shiyue; Zhong, Nanshan; Zhang, Nuofu; Wang, Jian

    2016-03-01

    Chronic respiratory disease-associated pulmonary hypertension (PH) is an important subtype of PH, which lacks clinical epidemiological data in China. Six hundred and ninety three patients hospitalized from 2010 to 2013 were classified by echocardiography according to pulmonary arterial systolic pressure (PASP): mild (36≤ PASP <50 mmHg); moderate (50≤ PASP <70 mmHg) and severe (PASP ≥70 mmHg). Dyspnea (93.51%) was the most common symptom. Hemoptysis observed in the severe group (6.42%) was significantly higher than the other two groups (P<0.05). COPD (78.35%), lung bullae (44.16%), tuberculosis (including obsolete pulmonary tuberculosis) (38.82%), and bronchiectasis (30.45%) were frequently present. Mild group occupied the highest proportion (84.7%) in COPD, while severe group occupied the highest proportion (19.3%) in pulmonary embolism (P<0.01). Age, partial pressure of oxygen (PaO2), hematocrit (HCT), partial pressure of carbon dioxide (PaCO2), increase of N-terminal pro brain natriuretic peptide (NT-proBNP) and right ventricular (RV) diameter (>20 mm) were associated with moderate-to-severe PH, while RV [odds ratio (OR) =3.53, 95% CI, 2.17-5.74], NT-proBNP (OR=2.44, 95% CI, 1.51-3.95), HCT (OR=1.03, 95% CI, 1.00-1.07) and PaCO2 (OR=1.01, 95% CI, 1.00-1.03) were independent risk factors. PH related to respiratory diseases is mostly mild to moderate, and the severity is associated with the category of respiratory disease. Increased HCT can be an independent risk factor for PH related to chronic respiratory diseases.

  11. Cardiovascular effects of medetomidine, detomidine and xylazine in horses.

    PubMed

    Yamashita, K; Tsubakishita, S; Futaok, S; Ueda, I; Hamaguchi, H; Seno, T; Katoh, S; Izumisawa, Y; Kotani, T; Muir, W W

    2000-10-01

    The cardiovascular effects of medetomidine, detomidine, and xylazine in horses were studied. Fifteen horses, whose right carotid arteries had previously been surgically raised to a subcutaneous position during general anesthesia were used. Five horses each were given the following 8 treatments: an intravenous injection of 4 doses of medetomidine (3, 5, 7.5, and 10 microg/kg), 3 doses of detomidine (10, 20, and 40 microg/kg), and one dose of xylazine (1 mg/kg). Heart rate decreased, but not statistically significant. Atrio-ventricular block was observed following all treatments and prolonged with detomidine. Cardiac index (CI) and stroke volume (SV) were decreased with all treatments. The CI decreased to about 50% of baseline values for 5 min after 7.5 and 10 microg/kg medetomidine and 1 mg/kg xylazine, for 20 min after 20 microg/kg detomidine, and for 50 min after 40 microg/kg detomidine. All treatments produced an initial hypertension within 2 min of drug administration followed by a significant decrease in arterial blood pressure (ABP) in horses administered 3 to 7.5 microg/kg medetomidine and 1 mg/kg xylazine. Hypertension was significantly prolonged in 20 and 40 microg/kg detomidine. The hypotensive phase was not observed in 10 microg/kg medetomidine or detomidine. The changes in ABP were associated with an increase in peripheral vascular resistance. Respiratory rate was decreased for 40 to 120 min in 5, 7.5, and 10 microg/kg medetomidine and detomidine. The partial pressure of arterial oxygen decreased significantly in 10 microg/kg medetomidine and detomidine, while the partial pressure of arterial carbon dioxide did not change significantly. Medetomidine induced dose-dependent cardiovascular depression similar to detomidine. The cardiovascular effects of medetomidine and xylazine were not as prolonged as that of detomidine.

  12. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H.J.

    2000-01-01

    An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.

  13. High performance hydrophobic solvent, carbon dioxide capture

    DOEpatents

    Nulwala, Hunaid; Luebke, David

    2017-05-09

    Methods and compositions useful, for example, for physical solvent carbon capture. A method comprising: contacting at least one first composition comprising carbon dioxide with at least one second composition to at least partially dissolve the carbon dioxide of the first composition in the second composition, wherein the second composition comprises at least one siloxane compound which is covalently modified with at least one non-siloxane group comprising at least one heteroatom. Polydimethylsiloxane (PDMS) materials and ethylene-glycol based materials have high carbon dioxide solubility but suffer from various problems. PDMS is hydrophobic but suffers from low selectivity. Ethylene-glycol based systems have good solubility and selectivity, but suffer from high affinity to water. Solvents were developed which keep the desired combinations of properties, and result in a simplified, overall process for carbon dioxide removal from a mixed gas stream.

  14. Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption

    USGS Publications Warehouse

    Mastalerz, Maria; Solano-Acosta, W.; Schimmelmann, A.; Drobniak, A.

    2009-01-01

    This paper investigates changes in the high-volatile bituminous Lower Block Coal Member from Indiana owing to moisture availability and oxidation in air at ambient pressure and temperature over storage time. Specifically, it investigates changes in chemistry, in surface area, and pore structure, as well as changes in methane and carbon dioxide adsorption capacities. Our results document that the methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% during a 13-month time period. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal. The observed changes in adsorption capacity indicate that special care must be taken when collecting samples and preserving coals until adsorption characteristics are measured in the laboratory. High-pressure isotherms from partially dried coal samples would likely cause overestimation of gas adsorption capacities, lead to a miscalculation of coal-bed methane prospects, and provide deceptively optimistic prognoses for recovery of coal-bed methane or capture of anthropogenic CO2. ?? 2009 Elsevier B.V. All rights reserved.

  15. Effects of supercritical carbon dioxide (SC-CO(2)) oil extraction on the cell wall composition of almond fruits.

    PubMed

    Femenia, A; García-Marín, M; Simal, S; Rosselló, C; Blasco, M

    2001-12-01

    Extraction of oil from almond fruits using supercritical carbon dioxide (SC-CO(2)) was carried out at 50 degrees C and 330 bar on three sets of almonds: raw almond seeds, raw almond kernels, and toasted almond seeds. Three different oil extraction percentages were applied on each set ranging from approximately 15 to 16%, from approximately 27 to 33%, and from approximately 49 to 64%. Although no major changes were detected in the fatty acid composition between fresh and partially defatted samples, carbohydrate analysis of partially defatted materials revealed important changes in cell wall polysaccharides from almond tissues. Thus, at low extraction percentages (up to approximately 33%), pectic polysaccharides and hemicellulosic xyloglucans were the main type of polymers affected, suggesting the modification of the cell wall matrix, although without breakage of the walls. Then, as supercritical fluid extraction (SCFE) continues and higher extraction rates are achieved (up to approximately 64%), a major disruption of the cell wall occurred as indicated by the losses of all major types of cell wall polysaccharides, including cellulose. These results suggest that, under the conditions used for oil extraction using SC-CO(2), fatty acid chains are able to exit the cells through nonbroken walls; the modification of the pectin-hemicellulose network might have increased the porosity of the wall. However, as high pressure is being applied, there is a progressive breakage of the cell walls allowing the free transfer of the fatty acid chains from inside the cells. These findings might contribute to providing the basis for the optimization of SCFE procedures based on plant food sources.

  16. A comparison of synchronized intermittent mandatory ventilation and pressure-regulated volume control ventilation in elderly patients with acute exacerbations of COPD and respiratory failure

    PubMed Central

    Chang, Suchi; Shi, Jindong; Fu, Cuiping; Wu, Xu; Li, Shanqun

    2016-01-01

    Background COPD is the third leading cause of death worldwide. Acute exacerbations of COPD may cause respiratory failure, requiring intensive care unit admission and mechanical ventilation. Intensive care unit patients with acute exacerbations of COPD requiring mechanical ventilation have higher mortality rates than other hospitalized patients. Although mechanical ventilation is the most effective intervention for these conditions, invasive ventilation techniques have yielded variable effects. Objective We evaluated pressure-regulated volume control (PRVC) ventilation treatment efficacy and preventive effects on pulmonary barotrauma in elderly COPD patients with respiratory failure. Patients and methods Thirty-nine intubated patients were divided into experimental and control groups and treated with the PRVC and synchronized intermittent mandatory ventilation – volume control methods, respectively. Vital signs, respiratory mechanics, and arterial blood gas analyses were monitored for 2–4 hours and 48 hours. Results Both groups showed rapidly improved pH, partial pressure of oxygen (PaO2), and PaO2 per fraction of inspired O2 levels and lower partial pressure of carbon dioxide (PaCO2) levels. The pH and PaCO2 levels at 2–4 hours were lower and higher, respectively, in the test group than those in the control group (P<0.05 for both); after 48 hours, blood gas analyses showed no statistical difference in any marker (P>0.05). Vital signs during 2–4 hours and 48 hours of treatment showed no statistical difference in either group (P>0.05). The level of peak inspiratory pressure in the experimental group after mechanical ventilation for 2–4 hours and 48 hours was significantly lower than that in the control group (P<0.05), while other variables were not significantly different between groups (P>0.05). Conclusion Among elderly COPD patients with respiratory failure, application of PRVC resulted in rapid improvement in arterial blood gas analyses while maintaining a low peak inspiratory pressure. PRVC can reduce pulmonary barotrauma risk, making it a safer protective ventilation mode than synchronized intermittent mandatory ventilation – volume control. PMID:27274223

  17. Prevention of Hypoxemia During Apnea Testing: A Comparison of Oxygen Insufflation And Continuous Positive Airway Pressure.

    PubMed

    Kramer, Andreas H; Couillard, Philippe; Bader, Ryan; Dhillon, Peter; Kutsogiannis, Demetrios J; Doig, Christopher J

    2017-08-01

    Apnea testing is an essential step in the clinical diagnosis of brain death. Current international guidelines recommend placement of an oxygen (O 2 ) insufflation catheter into the endotracheal tube to prevent hypoxemia, but use of a continuous positive airway pressure (CPAP) valve may be more effective at limiting arterial partial pressure of O 2 (PO 2 ) reduction. We performed a multicenter study assessing consecutive apnea tests in 14 intensive care units (ICUs) in two cities utilizing differing protocols. In one city, O 2 catheters are placed and arterial blood gases (ABGs) performed at intervals determined by the attending physician. In the other city, a resuscitation bag with CPAP valve is attached to the endotracheal tube, and ABGs performed every 3-5 min. We assessed arterial PO 2 , partial pressure of carbon dioxide (PCO 2 ), pH, and blood pressure at the beginning and termination of each apnea test. Thirty-six apnea tests were performed using an O 2 catheter and 50 with a CPAP valve. One test per group was aborted because of physiological instability. There were no significant differences in the degree of PO 2 reduction (-59 vs. -32 mmHg, p = 0.72), rate of PCO 2 rise (3.2 vs. 3.9 mmHg per min, p = 0.22), or pH decline (-0.02 vs. -0.03 per min, p = 0.06). Performance of ABGs at regular intervals was associated with shorter test duration (10 vs. 7 min, p < 0.0001), smaller PCO 2 rise (30 vs. 26 mmHg, p = 0.0007), and less pH reduction (-0.20 vs. -0.17, p = 0.0012). Lower pH at completion of the apnea test was associated with greater blood pressure decline (p = 0.006). Both methods of O 2 supplementation are associated with similar changes in arterial PO 2 and PCO 2 . Performance of ABGs at regular intervals shortens apnea test duration and may avoid excessive pH reduction and consequent hemodynamic effects.

  18. A comparison of synchronized intermittent mandatory ventilation and pressure-regulated volume control ventilation in elderly patients with acute exacerbations of COPD and respiratory failure.

    PubMed

    Chang, Suchi; Shi, Jindong; Fu, Cuiping; Wu, Xu; Li, Shanqun

    2016-01-01

    COPD is the third leading cause of death worldwide. Acute exacerbations of COPD may cause respiratory failure, requiring intensive care unit admission and mechanical ventilation. Intensive care unit patients with acute exacerbations of COPD requiring mechanical ventilation have higher mortality rates than other hospitalized patients. Although mechanical ventilation is the most effective intervention for these conditions, invasive ventilation techniques have yielded variable effects. We evaluated pressure-regulated volume control (PRVC) ventilation treatment efficacy and preventive effects on pulmonary barotrauma in elderly COPD patients with respiratory failure. Thirty-nine intubated patients were divided into experimental and control groups and treated with the PRVC and synchronized intermittent mandatory ventilation - volume control methods, respectively. Vital signs, respiratory mechanics, and arterial blood gas analyses were monitored for 2-4 hours and 48 hours. Both groups showed rapidly improved pH, partial pressure of oxygen (PaO2), and PaO2 per fraction of inspired O2 levels and lower partial pressure of carbon dioxide (PaCO2) levels. The pH and PaCO2 levels at 2-4 hours were lower and higher, respectively, in the test group than those in the control group (P<0.05 for both); after 48 hours, blood gas analyses showed no statistical difference in any marker (P>0.05). Vital signs during 2-4 hours and 48 hours of treatment showed no statistical difference in either group (P>0.05). The level of peak inspiratory pressure in the experimental group after mechanical ventilation for 2-4 hours and 48 hours was significantly lower than that in the control group (P<0.05), while other variables were not significantly different between groups (P>0.05). Among elderly COPD patients with respiratory failure, application of PRVC resulted in rapid improvement in arterial blood gas analyses while maintaining a low peak inspiratory pressure. PRVC can reduce pulmonary barotrauma risk, making it a safer protective ventilation mode than synchronized intermittent mandatory ventilation - volume control.

  19. Chemical pump study for Pioneer Venus program

    NASA Technical Reports Server (NTRS)

    Rotheram, M.

    1973-01-01

    Two chemical pumps were designed for the Pioneer Venus large probe mass spectrometer. Factors involved in the design selection are reviewed. One pump is designed to process a sample of the Venus atmosphere to remove the major component, carbon dioxide, so that the minor, inert components may be measured with greater sensitivity. The other pump is designed to promote flow of atmospheric gas through a pressure reduction inlet system. This pump, located downstream from the mass spectrometer sampling point, provides the pressure differential required for flow through the inlet system. Both pumps utilize the reaction of carbon dioxide with lithium hydroxide. The available data for this reaction was reviewed with respect to the proposed applications, and certain deficiencies in reaction rate data at higher carbon dioxide pressures noted. The chemical pump designed for the inert gas experiment has an estimated volume of 30 cu cm and weight of 80 grams, exclusive of the four valves required for the operation. The chemical pump for the pressure reduction inlet system is designed for a total sample of 0.3 bar liter during the Venus descent.

  20. Comparison of biochemical stress indicators in juvenile captive estuarine crocodiles (Crocodylus porosus) following physical restraint or chemical restraint by midazolam injection.

    PubMed

    Olsson, Annabelle; Phalen, David

    2013-07-01

    Using a prospective, randomized study design we demonstrate that midazolam sedation minimizes acidosis compared with physical restraint in captive juvenile estuarine crocodiles during handling or noninvasive procedures at preferred body temperature. A dose of midazolam (5.0 mg/kg) was administered intramuscularly into the forelimb of 20 male estuarine crocodiles weighing 2-3.5 kg. Their heart and respiratory rate and degree of sedation were monitored until recovery and then daily for 7 subsequent days. Blood samples were taken at 30, 60, 90, 180, and 360 min. We recorded lactate, partial pressure of carbon dioxide (CO2), hematocrit, glucose, and blood pH. A second group (1.9-2.6 kg) was physically restrained for 5 min and the same parameters recorded. Physically restrained animals demonstrated elevated heart rate, respiratory rate, glucose, lactate, and anion gap compared with the midazolam-treated group. Physically restrained animals had lower pH, bicarbonate, and partial pressure of CO2 compared with the midazolam-treated group. Behavior in the physically restrained group in the days following the study was disrupted, with reluctance to feed and bask, compared with midazolam-treated animals whose behavior was normal. We conclude that midazolam administered in the forelimb of captive estuarine crocodiles of 2-3.5 kg provides predictable onset and duration of sedation enabling physical examination, sample collection, and translocation of the animals with minimal disturbance to lactate, pH, and CO2. Behavior following recovery appears normal.

  1. Comparison of the cardio-respiratory effects of methadone and morphine in conscious dogs.

    PubMed

    Maiante, A A; Teixeira Neto, F J; Beier, S L; Corrente, J E; Pedroso, C E B P

    2009-08-01

    The effects of methadone and morphine were compared in conscious dogs. Six animals received morphine sulfate (1 mg/kg) or methadone hydrochloride (0.5 mg/kg [MET0.5] or 1.0 mg/kg [MET1.0]) intravenously (i.v.) in a randomized complete block design. Cardiopulmonary variables were recorded before (baseline), and for 120 min after drug administration. One outlier was not included in the statistical analysis for hemodynamic data. Morphine decreased heart rate (HR) compared to baseline from 30 to 120 min (-15% to -26%), while cardiac index (CI) was reduced only at 120 min (-19%). Greater and more prolonged reductions in HR (-32% to -46%) and in CI (-24% to -52%) were observed after MET1.0, while intermediate reductions were recorded after MET0.5 (-19 to -28% for HR and -17% to -27% for CI). The systemic vascular resistance index (SVRI) was increased after methadone; MET1.0 produced higher SVRI values than MET0.5 (maximum increases: 57% and 165% for MET0.5 and MET1.0, respectively). Compared to morphine, oxygen partial pressure (PaO(2)) was lower (-12% to -13%) at 5 min of methadone (0.5 and 1.0 mg/kg), while carbon dioxide partial pressure (PaCO(2)) did not change significantly. It was concluded that methadone induces cardiovascular changes that are dose-related and is a more potent cardiovascular depressant agent than morphine in conscious dogs.

  2. Alterations of Mg2+ After Hemorrhagic Shock.

    PubMed

    Lee, Mun-Young; Yang, Dong Kwon; Kim, Shang-Jin

    2017-11-01

    Hemorrhagic shock is generally characterized by hemodynamic instability with cellular hypoxia and diminishing cellular function, resulting from an imbalance between systemic oxygen delivery and consumption and redistribution of fluid and electrolytes. Magnesium (Mg) is the fourth most abundant cation overall and second most abundant intracellular cation in the body and an essential cofactor for the energy production and cellular metabolism. Data for blood total Mg (tMg; free-ionized, protein-bound, and anion-bound forms) and free Mg 2+ levels after a traumatic injury are inconsistent and only limited information is available on hemorrhagic effects on free Mg 2+ as the physiologically active form. The aim of this study was to determine changes in blood Mg 2+ and tMg after hemorrhage in rats identifying mechanism and origin of the changes in blood Mg 2+ . Hemorrhagic shock produced significant increases in blood Mg 2+ , plasma tMg, Na + , K + , Cl - , anion gap, partial pressures of oxygen, glucose, and blood urea nitrogen but significant decreases in RBC tMg, blood Ca 2+ , HCO 3 - , pH, partial pressures of carbon dioxide, hematocrit, hemoglobin, total cholesterol, and plasma/RBC ATP. During hemorrhagic shock, K + , anion gap, and BUN showed significant positive correlations with changes in blood Mg 2+ level, while Ca 2+ , pH, and T-CHO correlated to Mg 2+ in a negative manner. In conclusion, hemorrhagic shock induced an increase in both blood-free Mg 2+ and tMg, resulted from Mg 2+ efflux from metabolic damaged cell with acidosis and ATP depletion.

  3. Development of an Optimal Diaphragmatic Hernia Rabbit Model for Pediatric Thoracoscopic Training

    PubMed Central

    Pérez-Merino, Eva M.; Usón-Casaús, Jesús M.; Zaragoza-Bayle, Concepción; Rivera-Barreno, Ramón; Rodríguez-Alarcón, Carlos A.; Palme, Rupert; Sánchez-Margallo, Francisco M.

    2014-01-01

    Our objectives were to standarize the procedure needed to reproduce a similar surgical scene which a pediatric surgeon would face on repairing a Bochdalek hernia in newborns and to define the optimal time period for hernia development that achieve a realistic surgical scenario with minimimal animal suffering. Twenty New Zealand white rabbits weighing 3–3.5 kg were divided into four groups depending on the time frame since hernia creation to thoracoscopic repair: 48 h, 72 h, 96 h and 30 days. Bochdalek trigono was identified and procedures for hernia creation and thoracoscopic repair were standarized. Blood was collected for hematology (red blood cells, white blood cells, platelets, hemoglobin and hematocrit), biochemistry (blood urea nitrogen, creatinine, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and creatine kinase) and gas analysis (arterial blood pH, partial pressure of oxygen, partial pressure of carbón dioxide, oxygen saturation and bicarbonate) at baseline and before the surgial repairment. Glucocorticoid metabolites concentration in faeces was measured. Thoracoscopy video recordings were evaluated by six pediatric surgeons and rated from 0 to 10 according to similarities with congenital diaphragmatic hernia in newborn and with its thoracoscopic approach. Statistical methods included the analysis of variance, and comparisons between groups were followed by a post-hoc Tukey’s test. Fourty -eight h showed to be the optimal time frame to obtain a diaphragmatic hernia similar to newborn scenario from a surgical point of view with minimal stress for the animals. PMID:24521868

  4. Case 254: Posttraumatic Migrating Fat Embolus Causing Fat Emboli Syndrome.

    PubMed

    Molière, Sébastien; Kremer, Stéphane; Bierry, Guillaume

    2018-06-01

    History An otherwise healthy 18-year-old man was admitted to the emergency department with a closed displaced fracture of the left femoral shaft ( Fig 1 ) after a high-velocity motorbike accident. At admission, other physical examination findings were unremarkable. Initial unenhanced and contrast material-enhanced (120 mL of Iomeron 400; Bracco Imaging, Milan, Italy) computed tomography (CT) was performed in the arterial and venous phases from the head to the knees. No abnormalities were noted in the brain or chest at initial CT. [Figure: see text] Within a few hours, the patient developed sudden mental confusion and severe hypoxemia, with rapidly worsening tachypnea and perturbed arterial blood gas with low partial pressure of oxygen (61 mmHg [8.1 kPa]; normal range, 75-100 mmHg [10.0-13.3 kPa]) and low partial pressure of carbon dioxide (32 mmHg [4.3 kPa]; normal range, 38-42 mmHg [5.1-5.6 kPa]). A second contrast-enhanced chest CT examination and initial brain magnetic resonance (MR) imaging were performed. Femoral fracture was stabilized with external fixation, and the patient was admitted to the intensive care unit, with progressive neurologic recovery at day 3 and respiratory improvement at day 4. Treatment included intubation with mechanical ventilation and intravenous administration of steroids and noradrenaline. Afterward, the femoral fracture was stabilized with an intramedullary nail. The patient made a full neurologic recovery 1 month after the accident.

  5. Development of a carbonate absorption-based process for post-combustion CO2 capture: The role of biocatalyst to promote CO2 absorption rate

    USGS Publications Warehouse

    Lu, Y.; Ye, X.; Zhang, Z.; Khodayari, A.; Djukadi, T.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) for post-combustion carbon dioxide (CO2) capture is described. IVCAP employs potassium carbonate (PC) as a solvent, uses waste or low quality steam from the power plant for CO2 stripping, and employs a biocatalyst, carbonic anhydrase (CA) enzyme, for promoting the CO2 absorption into PC solution. A series of experiments were performed to evaluate the activity of CA enzyme mixed in PC solutions in a stirred tank reactor system under various temperatures, CA dosages, CO2 loadings, CO2 partial pressures, and the presence of major flue gas contaminants. It was demonstrated that CA enzyme is an effective biocatalyst for CO2 absorption under IVCAP conditions. ?? 2011 Published by Elsevier Ltd.

  6. Bleaching and mortality of a photosymbiotic bioeroding sponge under future carbon dioxide emission scenarios.

    PubMed

    Fang, James K H; Schönberg, Christine H L; Mello-Athayde, Matheus A; Achlatis, Michelle; Hoegh-Guldberg, Ove; Dove, Sophie

    2018-05-01

    The bioeroding sponge Cliona orientalis is photosymbiotic with dinoflagellates of the genus Symbiodinium and is pervasive on the Great Barrier Reef. We investigated how C. orientalis responded to past and future ocean conditions in a simulated community setting. The experiment lasted over an Austral summer under four carbon dioxide emission scenarios: a pre-industrial scenario (PI), a present-day scenario (PD; control), and two future scenarios of combined ocean acidification and ocean warming, i.e., B1 (intermediate) and A1FI (extreme). The four scenarios also simulated natural variability of carbon dioxide partial pressure and temperature in seawater. Responses of C. orientalis generally remained similar between the PI and PD treatments. C. orientalis under B1 displayed a dramatic increase in lateral tissue extension, but bleached and displayed reduced rates of respiration and photosynthesis. Some B1 sponge replicates died by the end of the experiment. Under A1FI, strong bleaching and subsequent mortality of all C. orientalis replicates occurred at an early stage of the experiment. Mortality arrested bioerosion by C. orientalis under B1 and A1FI. Overall, the absolute amount of calcium carbonate eroded by C. orientalis under B1 or A1FI was similar to that under PI or PD at the end of the experiment. Although bioerosion rates were raised by short-term experimental acidification in previous studies, our findings from the photosymbiotic C. orientalis imply that the effects of bioerosion on reef carbonate budgets may only be temporary if the bioeroders cannot survive long-term in the future oceans.

  7. Fixation of CO 2 by chrysotile in low-pressure dry and moist carbonation: Ex-situ and in-situ characterizations

    NASA Astrophysics Data System (ADS)

    Larachi, Faïçal; Daldoul, Insaf; Beaudoin, Georges

    2010-06-01

    A detailed study of low-pressure gas-solid carbonation of chrysotile in dry and humid environments has been carried out. The evolving structure of chrysotile and its reactivity as a function of temperature (300-1200 °C), humidity (0-10 mol %) and CO 2 partial pressure (20-67 mol %), thermal preconditioning, and alkali metal doping (Li, Na, K, Cs) have been monitored through in-situ X-ray photoelectron spectroscopy, isothermal thermogravimetry/mass spectrometry, ex-situ X-ray powder diffraction, and water and nitrogen adsorption/desorption. Based on chrysotile crystalline structure and its nanofibrilar orderliness, a multistep carbonation mechanism was elaborated to explain the role of water during chrysotile partial amorphisation, formation of periclase, brucite, and hydromagnesite crystalline phases, and surface passivation thereof, during humid carbonation. The weak carbonation reactivity was rationalized in terms of incongruent CO 2 van der Waals molecular diameters with the octahedral-tetrahedral lattice constants of chrysotile. This lack of reactivity appeared to be relatively indifferent to the facilitated water crisscrossing during chrysotile core dehydroxylation/pseudo-amorphisation and surface hydroxylation induced product stabilization during humid carbonation. Thermodynamic stability domains of the species observed at low pressure have been thoroughly discussed on the basis of X-ray powder diffraction patterns and X-ray photoelectron spectroscopy evidence. The highest carbon dioxide uptake occurred at 375 °C in moist atmospheres. On the basis of chrysotile fresh N 2 BET area, nearly 15 atoms out of 100 of the surface chrysotile brucitic Mg moiety have been carbonated at this temperature which was tantamount to the carbonation of about 2.5 at. % of the total brucitic Mg moiety in chrysotile. The carbonation of brucite (Mg(OH) 2) impurities coexisting in chrysotile was minor and estimated to contribute by less than 17.6 at. % of the total converted magnesium. The presence of cesium traces (3 Cs atoms per 100 Mg atoms) was found to boost chrysotile carbonation capacity by a factor 2.7.

  8. Carbon dioxide-water clathrate as a reservoir of CO2 on Mars

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, A.; Ingersell, A. P.

    1975-01-01

    It has been suggested that the residual polar caps of Mars contain a resorvoir of permanently frozen carbon dioxide which is controlling the atmospheric pressure. However, observational data and models of the polar heat balance suggest that the temperatures of the Martian poles are too high for solid CO2 to survive permanently. On the other hand, the icelike compound carbon dioxide-water clathrate could function as a CO2 reservoir instead of solid CO2, because it is stable at higher temperatures. This paper shows that the permanent polar caps may contain several millibars of CO2 in the form of clathrate, and discusses the implications of this permanent clathrate reservoir for the present and past atmospheric pressure on Mars.

  9. Carbon dioxide dissociation in non-thermal radiofrequency and microwave plasma

    NASA Astrophysics Data System (ADS)

    Huang, Qiang; Zhang, Diyu; Wang, Dongping; Liu, Kezhao; Kleyn, Aart W.

    2017-07-01

    We have studied carbon dioxide dissociation in inductively coupled radiofrequency plasma and microwave plasma at low gas pressure. Both systems exhibit features of non-thermal plasma. The highest energy efficiency observed is 59.3% (2.13 mmol kJ-1), exceeding the maximum value of about 45% in case of thermodynamic equilibrium, and a maximum conversion of 80.6% is achieved. Different discharge conditions, such as the source frequency, discharge gas pressure and the addition of argon, will affect the plasma parameters, especially the electron energy distribution. This plays a great role in the energy transfer from non-thermal plasma to the molecular dissociation reaction channel by enabling the ladder climbing of the carbon dioxide molecular vibration. The results indicate the importance of ladder climbing.

  10. Effect of Greenhouse Gases Dissolved in Seawater

    PubMed Central

    Matsunaga, Shigeki

    2015-01-01

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region. PMID:26729101

  11. Effect of Greenhouse Gases Dissolved in Seawater.

    PubMed

    Matsunaga, Shigeki

    2015-12-30

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  12. Comparing Hemodynamic Symptoms and the Level of Abdominal Pain in High- Versus Low-Pressure Carbon Dioxide in Patients Undergoing Laparoscopic Cholecystectomy.

    PubMed

    Mohammadzade, A R; Esmaili, F

    2018-02-01

    The laparoscopic cholecystectomy (LC) is the gold standard to treat gallstone. To view the surgical site in this type of operations better, carbon dioxide is used with a certain pressure. The current study aimed to compare the hemodynamic symptoms and the level of abdominal pain due to using high- and low-pressure carbon dioxide in patients undergoing LC. The current double-blind randomized clinical trial was conducted on 60 patients with the age range of 20-70 years old undergoing LC. The first and second groups experienced PaCO 2 of 7-10 and 12-14 mmHg, respectively. The hemodynamic symptoms, abdominal pain, shoulder-tip pain, nausea and vomiting after the surgery, and the mean of liver function tests were evaluated. Data were analyzed using T test, Chi-square test, and repeated measures ANOVA by SPSS 16. Information of 60 patients in two groups was analyzed. There was a significant difference between the groups regarding the mean of systolic blood pressure ( P  < 0.05). The mean of heart rate was significantly higher in the high-pressure group during surgery and 1 h after that ( P  < 0.05). The frequency of pain in shoulder-tip and abdomen was higher in the high-pressure group. Frequency of nausea and vomiting 12 h after the surgery between two groups was significant ( P  < 0.05). The mean of alkaline phosphatase was higher in the low-pressure group than the high-pressure group ( P  < 0.05). Considering the good performance and low side effects of low-pressure laparoscopic cholecystectomy compared to those of high-pressure, this method can be replaced by high-pressure in LC.

  13. Atmospheric carbon dioxide concentrations before 2.2 billion years ago

    NASA Technical Reports Server (NTRS)

    Rye, R.; Kuo, P. H.; Holland, H. D.

    1995-01-01

    The composition of the Earth's early atmosphere is a subject of continuing debate. In particular, it has been suggested that elevated concentrations of atmospheric carbon dioxide would have been necessary to maintain normal surface temperatures in the face of lower solar luminosity in early Earth history. Fossil weathering profiles, known as palaeosols, have provided semi-quantitative constraints on atmospheric oxygen partial pressure (pO2) before 2.2 Gyr ago. Here we use the same well studied palaeosols to constrain atmospheric pCO2 between 2.75 and 2.2 Gyr ago. The observation that iron lost from the tops of these profiles was reprecipitated lower down as iron silicate minerals, rather than as iron carbonate, indicates that atmospheric pCO2 must have been less than 10(-1.4) atm--about 100 times today's level of 360 p.p.m., and at least five times lower than that required in one-dimensional climate models to compensate for lower solar luminosity at 2.75 Gyr. Our results suggest that either the Earth's early climate was much more sensitive to increases in pCO2 than has been thought, or that one or more greenhouse gases other than CO2 contributed significantly to the atmosphere's radiative balance during the late Archaean and early Proterozoic eons.

  14. KINETICS OF THE DISSOLUTION OF URANIUM DIOXIDE IN CARBONATE-BICARBONATE SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schortmann, W.E.; DeSesa, M.A.

    The kinetics of the dissolution of uranium dioxide in sodium carbonate- sodium bicarbonate solutions were determined. The study was undertaken in order to obtain fundamental information about the commercial carbonate process for leaching uranium from its ores. A rate equation incorporating the effects of surface area oxygen partial pressure, temperature, and reagent concentrations was empirically developed. A mechanism consisting essentially of two consecutive reactions at steady state is proposed. These reactions are the oxidation of U/ sup 4+/ to U/sup 6+/ and the subsequent formation of the uranyl dicarbonate complexion. Depending on the conditions, either or both of these reactionsmore » can determine the over-all rate. The conversion of uranyl dicarbonate to the uranyl tricarbonate complexion is postulated to be very rapid. In the suggested mechanism, the rate-determining phase of the oxidation is the dissociation of adsorbed molecular oxygen. and both the carbonate and bicarbonate ions play equivalent roles in the formation of the uranyl dicarbonate. As indicated by their high activation energies of about 13 and 14 kcal per mole uranium, both reactions are chemical rather than diffusional processes. A mathematical examination of the proposed mechanism produced a rate equation consistent with the experimental information. The credibility of the mechanism was thereby strengthened. (auth)« less

  15. Selective free radical reactions using supercritical carbon dioxide.

    PubMed

    Cormier, Philip J; Clarke, Ryan M; McFadden, Ryan M L; Ghandi, Khashayar

    2014-02-12

    We report herein a means to modify the reactivity of alkenes, and particularly to modify their selectivity toward reactions with nonpolar reactants (e.g., nonpolar free radicals) in supercritical carbon dioxide near the critical point. Rate constants for free radical addition of the light hydrogen isotope muonium to ethylene, vinylidene fluoride, and vinylidene chloride in supercritical carbon dioxide are compared over a range of pressures and temperatures. Near carbon dioxide's critical point, the addition to ethylene exhibits critical speeding up, while the halogenated analogues display critical slowing. This suggests that supercritical carbon dioxide as a solvent may be used to tune alkene chemistry in near-critical conditions.

  16. Use of a new generation of adaptive servo ventilation for sleep-disordered breathing in patients with multiple system atrophy.

    PubMed

    Hamada, Satoshi; Takahashi, Ryosuke; Mishima, Michiaki; Chin, Kazuo

    2015-11-06

    A 70-year-old man (case 1) and a 64-year-old woman (case 2) with multiple system atrophy (MSA) and snoring were admitted for polysomnography. Their awake PaCO2 indicated normocapnia. Apnoea-hypopnoea index (AHI), max transcutaneous carbon dioxide partial pressure (PtcCO2) and ΔPtcCO2 (max PtcCO2 (during sleep)-baseline PtcCO2 (while awake)) were 11.4/h, 63 mm Hg and 18 mm Hg, respectively, in case 1 and 53.1/h, 59 mm Hg and 13 mm Hg, respectively, in case 2. Their sleep-disordered breathing (SDB) was diagnosed as obstructive sleep apnoea with hypoventilation. We thought that variable expiratory positive airway pressure and pressure support ventilation (advanced-adaptive servo ventilation (ASV)) might be favourable for their SDB. Polysomnography after introducing advanced-ASV revealed that AHI, max PtcCO2 and ΔPtcCO2 were 0.2/h, 53 mm Hg and 5 mm Hg, respectively, in case 1 and 1.5/h, 56 mm Hg and 9 mm Hg, respectively, in case 2. Advanced-ASV for treating Cheyne-Stokes breathing may be helpful in SDB in patients with MSA. 2015 BMJ Publishing Group Ltd.

  17. Comparison of Comfort and Effectiveness of Total Face Mask and Oronasal Mask in Noninvasive Positive Pressure Ventilation in Patients with Acute Respiratory Failure: A Clinical Trial.

    PubMed

    Sadeghi, Somayeh; Fakharian, Atefeh; Nasri, Peiman; Kiani, Arda

    2017-01-01

    Background . There is a growing controversy about the use of oronasal masks (ONM) or total facemask (TFM) in noninvasive positive pressure ventilation (NPPV), so we designed a trial to compare the uses of these two masks in terms of effectiveness and comfort. Methods . Between February and November 2014, a total of 48 patients with respiratory failure were studied. Patients were randomized to receive NPPV via ONM or TFM. Data were recorded at 60 minutes and six and 24 hours after intervention. Patient comfort was assessed using a questionnaire. Data were analyzed using t -test and chi-square test. Repeated measures ANOVA and Mann-Whitney U test were used to compare clinical and laboratory data. Results . There were no differences in venous blood gas (VBG) values between the two groups ( P > 0.05). However, at six hours, TFM was much more effective in reducing the partial pressure of carbon dioxide (PCO2) ( P = 0.04). Patient comfort and acceptance were statistically similar in both groups ( P > 0.05). Total time of NPPV was also similar in the two groups ( P > 0.05). Conclusions . TFM was superior to ONM in acute phase of respiratory failure but not once the patients were out of acute phase.

  18. Concepts and data-collection techniques used in a study of the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Healy, R.W.; DeVries, M.P.; Striegl, Robert G.

    1986-01-01

    A study of water and radionuclide movement through the unsaturated zone is being conducted at the low level radioactive waste disposal site near Sheffield, Illinois. Included in the study are detailed investigations of evapotranspiration, movement of water through waste trench covers, and movement of water and radionuclides (dissolved and gaseous) from the trenches. An energy balance/Bowen ratio approach is used to determine evapotranspiration. Precipitation, net radiation, soil-heat flux, air temperature and water vapor content gradients, wind speed, and wind direction are measured. Soil water tension is measured with tensiometers which are connected to pressure transducers. Meteorological sensors and tensiometers which are connected to pressure transducers. Meteorological sensors and tensiometers are monitored with automatic data loggers. Soil moisture contents are measured through small-diameter access tubes with neutron and gamma-ray attenuation gages. Data beneath the trenches are obtained through a 130-meter-long tunnel which extends under four of the trenches. Water samples are obtained with suction lysimeters, and samples of the geologic material are obtained with core tubes. These samples are analyzed for radiometric and inorganic chemistry. Gas samples are obtained from gas piezometers and analyzed for partial pressures of major constituents, Radon-222, tritiated water vapor, and carbon-14 dioxide. (USGS)

  19. Postural hypocapnic hyperventilation is associated with enhanced peripheral vasoconstriction in postural tachycardia syndrome with normal supine blood flow

    PubMed Central

    Stewart, Julian M.; Medow, Marvin S.; Cherniack, Neil S.; Natelson, Benjamin H.

    2015-01-01

    Previous investigations have demonstrated a subset of postural tachycardia syndrome (POTS) patients characterized by normal peripheral resistance and blood volume while supine but thoracic hypovolemia and splanchnic blood pooling while upright secondary to splanchnic hyperemia. Such “normal-flow” POTS patients often demonstrate hypocapnia during orthostatic stress. We studied 20 POTS patients (14–23 yr of age) and compared them with 10 comparably aged healthy volunteers. We measured changes in heart rate, blood pressure, heart rate and blood pressure variability, arm and leg strain-gauge occlusion plethysmography, respiratory impedance plethysmography calibrated against pneumotachography, end-tidal partial pressure of carbon dioxide (PetCO2), and impedance plethysmographic indexes of blood volume and blood flow within the thoracic, splanchnic, pelvic (upper leg), and lower leg regional circulations while supine and during upright tilt to 70°. Ten POTS patients demonstrated significant hyperventilation and hypocapnia (POTSHC) while 10 were normocapnic with minimal increase in postural ventilation, comparable to control. While relative splanchnic hypervolemia and hyperemia occurred in both POTS groups compared with controls, marked enhancement in peripheral vasoconstriction occurred only in POTSHC and was related to thoracic blood flow. Variability indexes suggested enhanced sympathetic activation in POTSHC compared with other subjects. The data suggest enhanced cardiac and peripheral sympathetic excitation in POTSHC. PMID:16565300

  20. Proton conduction in electrolyte made of manganese dioxide for hydrogen gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanaka, Hideki; Ueda, Yoshikatsu; Takeuchi, K

    2012-01-01

    We propose a network model of oxygen-pairs to store and conduct protons on the surface of manganese dioxide with a weak covalent bond like protons stored in pressured ice. The atomic distances of oxygen-pairs were estimated between 2.57 and 2.60 angstroms in crystal structures of ramsdellite-type and lambda-type manganese dioxides by using protonated samples and inelastic neutron scattering measurements. Good properties for a hydrogen gas sensor using electrolytes made of manganese dioxides that contain such oxygen-pairs were confirmed experimentally.

  1. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, Richard; Steinberg, Meyer

    1981-01-01

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  2. Method for carbon dioxide sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC-CO.sub.2) and water or bine into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation.

  3. Occurrence and attempted mitigation of carbon dioxide in a home constructed on reclaimed coal-mine spoil, Pike County, Indiana

    USGS Publications Warehouse

    Robinson, Bret A.

    2010-01-01

    In recent years carbon dioxide intrusion has become recognized as a potentially serious health threat where homes are constructed on or near reclaimed surface coal mines. When carbon dioxide invades the living space of a home, it can collect near the floor, displace the oxygen there, and produce an oxygen-deficient environment. In this investigation, several lines of inquiry were pursued to determine the environmental factors that most influence carbon dioxide intrusion at a Pike County, Ind., home where this phenomenon is known to occur. It was found that carbon dioxide intrusion events at the home are most closely tied to rapid drops in barometric pressure and rainfall. Other researchers have shown that windy conditions and periods of cold weather also can contribute to soil-gas intrusion to structures. From this, a conceptual model was developed to illustrate the influence of these four meteorological conditions. Additionally, three mitigation methods-block-wall depressurization, block-wall and sub-slab depressurization, and block-wall and sub-slab pressurization-were applied successively to the study-site home, and environmental data were collected to evaluate the effectiveness of each mitigation method. In each case, it was found that these methods did not ensure a safe environment when meteorological conditions were favorable for carbon dioxide intrusion.

  4. Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.

  5. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-01-01

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  6. Carbon dioxide conversion over carbon-based nanocatalysts.

    PubMed

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  7. The impact of energy, agriculture, macroeconomic and human-induced indicators on environmental pollution: evidence from Ghana.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2017-03-01

    In this study, the impact of energy, agriculture, macroeconomic and human-induced indicators on environmental pollution from 1971 to 2011 is investigated using the statistically inspired modification of partial least squares (SIMPLS) regression model. There was evidence of a linear relationship between energy, agriculture, macroeconomic and human-induced indicators and carbon dioxide emissions. Evidence from the SIMPLS regression shows that a 1% increase in crop production index will reduce carbon dioxide emissions by 0.71%. Economic growth increased by 1% will reduce carbon dioxide emissions by 0.46%, which means that an increase in Ghana's economic growth may lead to a reduction in environmental pollution. The increase in electricity production from hydroelectric sources by 1% will reduce carbon dioxide emissions by 0.30%; thus, increasing renewable energy sources in Ghana's energy portfolio will help mitigate carbon dioxide emissions. Increasing enteric emissions by 1% will increase carbon dioxide emissions by 4.22%, and a 1% increase in the nitrogen content of manure management will increase carbon dioxide emissions by 6.69%. The SIMPLS regression forecasting exhibited a 5% MAPE from the prediction of carbon dioxide emissions.

  8. The role of respiratory measures to assess mental load in pilot selection.

    PubMed

    Grassmann, Mariel; Vlemincx, Elke; von Leupoldt, Andreas; Van den Bergh, Omer

    2016-06-01

    While cardiovascular measures have a long tradition of being used to determine operator load, responsiveness of the respiratory system to mental load has rarely been investigated. In this study, we assessed basic and variability measures of respiration rate (RR), partial pressure of end-tidal carbon dioxide (petCO2) as well as performance measures in 63 male pilot candidates during completion of a complex cognitive task and subsequent recovery. Mental load was associated with an increase in RR and a decrease in respiratory variability. A significant decrease was also found for petCO2. RR and respiratory variability showed partial and complete effects of recovery, respectively, whereas petCO2 did not return to baseline level. Overall, a good performance was related to a stronger reactivity in RR. Our findings suggest that respiratory parameters would be a useful supplement to common measures for the assessment of mental load in pilot selection. Practitioner Summary: Respiratory measures are a promising yet poorly investigated approach to monitor operator load. For pilot selection, we assessed respiration in response to multitasking in 63 candidates. Task-related changes as well as covariation with performance strongly support the consideration of respiratory parameters when evaluating reactivity to mental load.

  9. FIRE_CI2_CITATN_1HZ

    Atmospheric Science Data Center

    2015-11-25

    ... Flow Angle Sensors Hot-Wire Icing Rate Detector Pressure Transducer Reverse Flow Temperature Probes Spatial ... Condensation Nuclei Dew/Frost Point Temperature Liquid Water Content Nitrogen Dioxide Ozone Pressure Supercooled ...

  10. Investigation of CO2 release pressures in pipeline cracks

    NASA Astrophysics Data System (ADS)

    Gorenz, Paul; Herzog, Nicoleta; Egbers, Christoph

    2013-04-01

    The CCS (Carbon Capture and Storage) technology can prevent or reduce the emissions of carbon dioxide. The main idea of this technology is the segregation and collection of CO2 from facilities with a high emission of that greenhouse gas, i.e. power plants which burn fossil fuels. To segregate CO2 from the exhaust gas the power plant must be upgraded. Up to now there are three possible procedures to segregate the carbon dioxide with different advantages and disadvantages. After segregation the carbon dioxide will be transported by pipeline to a subsurface storage location. As CO2 is at normal conditions (1013,25 Pa; 20 °C) in a gaseous phase state it must be set under high pressure to enter denser phase states to make a more efficient pipeline transport possible. Normally the carbon dioxide is set into the liquid or supercritical phase state by compressor stations which compress the gas up to 15 MPa. The pressure drop makes booster stations along the pipeline necessary which keep the CO2 in a dens phase state. Depending on the compression pressure CO2 can be transported over 300km without any booster station. The goal of this work is the investigation of release pressures in pipeline cracks. The high pressurised pipeline system consists of different parts with different failure probabilities. In most cases corrosion or obsolescence is the reason for pipeline damages. In case of a crack CO2 will escape from the pipeline and disperse into the atmosphere. Due to its nature CO2 can remain unattended for a long time. There are some studies of the CO2 dispersion process, e.g. Mazzoldi et al. (2007, 2008 and 2011) and Wang et al. (2008), but with different assumptions concerning the pipeline release pressures. To give an idea of realistic release pressures investigations with the CFD tool OpenFOAM were carried out and are presented within this work. To cover such a scenario with an accidental release of carbon dioxide a pipeline section with different diameters and leakage release holes were modelled. This pipeline section is 10m long with the leakage hole in the middle. Additionally a small environment subdomain is simulated around the crack. For computation a multiphase solver was utilised. In a first step incompressible and isothermal fluids with no phase change were assumed.

  11. Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?

    NASA Technical Reports Server (NTRS)

    Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.

    2016-01-01

    NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.

  12. Membrane Separation Processes at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde

    2002-01-01

    The primary focus of Kennedy Space Center's gas separation activities has been for carbon dioxide, nitrogen, and argon used in oxygen production technologies for Martian in-situ resource utilization (ISRU) projects. Recently, these studies were expanded to include oxygen for regenerative life support systems. Since commercial membrane systems have been developed for separation of carbon dioxide, nitrogen, and oxygen, initially the studies focused on these membrane systems, but at lower operating temperatures and pressures. Current investigations art examining immobilized liquids and solid sorbents that have the potential for higher selectivity and lower operating temperatures. The gas separation studies reported here use hollow fiber membranes to separate carbon dioxide, nitrogen, and argon in the temperature range from 230 to 300 K. Four commercial membrane materials were used to obtain data at low feed and permeate pressures. These data were used with a commercial solution-diffusion modeling tool to design a system to prepare a buffer gas from the byproduct of a process to capture Martian carbon dioxide. The system was designed to operate, at 230 K with a production rate 0.1 sLpm; Feed composition 30% CO2, 44% N2, and 26% Ar; Feed pressure 104 kPa (780); and Permeate pressure 1 kPa (6 torr); Product concentration 600 ppm CO2. This new system was compared with a similar system designed to operate at ambient temperatures (298 K). The systems described above, along with data, test apparatus, and models are presented.

  13. SELECTIVE OXIDATION IN SUPERCRITICAL CARBON DIOXIDE USING CLEAN OXIDANTS

    EPA Science Inventory

    We have systematically investigated heterogeneous catalytic oxidation of different substrates in supercritical carbon dioxide (SC-CO2). Three types of catagysts: a metal complex, 0.5% platinum g-alumina and 0.5% palladium g-alumina were used at a pressure of 200 bar, temperatures...

  14. Gas-liquid chromatography with a volatile "stationary" liquid phase.

    PubMed

    Wells, P S; Zhou, S; Parcher, J F

    2002-05-01

    A unique type of gas-liquid chromatography is described in which both mobile and "stationary" phases are composed of synthetic mixtures of helium and carbon dioxide. At temperatures below the critical point of the binary mixture and pressures above the vapor pressure of pure liquid carbon dioxide, helium and carbon dioxide can form two immiscible phases over extended composition ranges. A binary vapor phase enriched in helium can act as the mobile phase for chromatographic separations, whereas a CO2-rich liquid in equilibrium with the vapor phase, but condensed on the column wall, can act as a pseudostationary phase. Several examples of chromatographic separations obtained in "empty" capillary columns with no ordinary stationary liquid phase illustrate the range of conditions that produce such separations. In addition, several experiments are reported that confirm the proposed two-phase hypothesis. The possible consequences of the observed chromatographic phenomenon in the field of supercritical fluid chromatography with helium headspace carbon dioxide are discussed.

  15. An Impact of Mechanical Stress in Coal Briquettes on Sorption of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Mirosław

    2017-09-01

    The presence of gases (methane or carbon dioxide) in hard coal is connected with numerous threats for miners employed in underground mining facilities. When analyzing the coal-methane system, it is necessary to determine the relationship between pressure and gas sorption. Such a relationship should be determined under conditions similar to the natural ones - when it comes to both temperature and pressure. The present paper discusses the results of research conducted with the use of coal briquettes under the state of mechanical stress. Carbon dioxide sorption isotherms were determined for different values of stress affecting the coal material. For five coal samples collected in different mines of the Upper Silesian Coal Basin, Langmuir's sorption isotherms were determined. The results point to significant impact that mechanical stress has upon the sorption process. It is about 1 percent of the value obtained for coal not subjected to stress per 1 MPa. The research results can also prove useful when analyzing hard coal seams from the perspective of their carbon dioxide sequestration abilities.

  16. Relationship of structure and function of the avian respiratory system to disease susceptibility.

    PubMed

    Fedde, M R

    1998-08-01

    The avian respiratory system exchanges oxygen and carbon dioxide between the gas and the blood utilizing a relatively small, rigid, flow-through lung, and a system of air sacs that act as bellows to move the gas through the lung. Gas movement through the paleopulmonic parabronchi, the main gas exchanging bronchi, in the lung is in the same direction during both inspiration and expiration, i.e., from the mediodorsal secondary bronchi to the medioventral secondary bronchi. During inspiration, acceleration of the gas at the segmentum accelerans of the primary bronchus increases gas velocity so it does not enter the medioventral secondary bronchi. During expiration, airway resistance is increased in he intrapulmonary primary bronchus because of dynamic compression causing gas to enter the mediodorsal secondary bronchi. Reduction in air flow velocity may decrease the efficiency of this aerodynamic valving and thereby decrease the efficiency of gas exchange. The convective gas flow in the avian parabronchus is orientated at a 90 degree angle with respect to the parabronchial blood flow; hence, the cross-current designation of this gas exchanger. With this design, the partial pressure of oxygen in the blood leaving the parabronchus can be higher than that in the gas exiting this structure, giving the avian lung a high gas exchange efficacy. The relationship of the partial pressure of oxygen in the moist inspired gas to that in the blood leaving the lung is dependent on he rate of ventilation. A low ventilation rate may produce a ow oxygen partial pressure in part of the parabronchus, thereby inducing hypoxic vasoconstriction in the pulmonary arterioles supplying this region. Inhaled foreign particles are removed by nasal mucociliary action, by escalator in the trachea, primary bronchi, and secondary bronchi. Small particles that enter parabronchi appear to be phagocytized by the epithelial cells in eh atria and infundibulum. These particles can e transported to interstitial macrophages but the disposition of the particles from this site is unknown. The predominant site of respiratory infections in the caudal air sacs, compared to other parts of the respiratory system, can be explained by the gas flow pathway and the mechanisms present in the parabronchi for particle removal.

  17. The Effect of Ethanol Addition to Gasoline on Low- and Intermediate-Temperature Heat Release under Boosted Conditions in Kinetically Controlled Engines

    NASA Astrophysics Data System (ADS)

    Vuilleumier, David Malcolm

    The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines. Low-Temperature Heat Release significantly enhances the auto-ignition process, which limits the conditions under which advanced combustion strategies may operate. As these advanced combustion strategies are required to meet emissions and fuel-economy regulations, the findings of this dissertation may benefit and be incorporated into future engine design toolkits, such as detailed chemical kinetic mechanisms.

  18. Corrosion Behavior of FBR Structural Materials in High Temperature Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Furukawa, Tomohiro; Inagaki, Yoshiyuki; Aritomi, Masanori

    A key problem in the application of a supercritical carbon dioxide (CO2) turbine cycle to a fast breeder reactor (FBR) is the corrosion of structural material by supercritical CO2 at high temperature. In this study, corrosion test of high-chromium martensitic steel (12Cr-steel) and FBR grade type 316 stainless steel (316FR), which are candidate materials for FBRs, were performed at 400-600°C in supercritical CO2 pressurized at 20MPa. Corrosion due to the high temperature oxidation in exposed surface was measured up to approximately 2000h in both steels. In the case of 12Cr-steel, the weight gain showed parabolic growth with exposure time at each temperature. The oxidation coefficient could be estimated by the Arrhenius function. The specimens were covered by two successive oxide layers, an Fe-Cr-O layer (inside) and an Fe-O layer (outside). A partial thin oxide diffusion layer appeared between the base metal and the Fe-Cr-O layer. The corrosion behavior was equivalent to that in supercritical CO2 at 10MPa, and no effects of CO2 pressure on oxidation were observed in this study. In the case of 316FR specimens, the weight gain was significantly lower than that of 12Cr-steel. Dependency of neither temperature nor exposed time on oxidation was not observed, and the value of all tested specimens was within 2g/m2. Nodule shape oxides which consisted of two structures, Fe-Cr-O and Fe-O were observed on the surface of the 316FR specimen. Carburizing, known as a factor in the occurrence of breakaway corrosion and/or the degradation of ductility, was observed on the surface of both steels.

  19. Simulation and Optimization of Vacuum Swing Adsorption Units for Spacesuit Carbon Dioxide and Humidity Control

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly; McMillin, Summer; Broerman, Craig

    2010-01-01

    Controlling carbon dioxide (CO2) and humidity levels in a spacesuit is critical to ensuring both the safety and comfort of an astronaut during extra-vehicular activity (EVA). Traditionally, this has been accomplished utilizing non-regenerative lithium hydroxide (LiOH) or regenerative metal oxide (MetOx) canisters which pose a significant weight burden. Although such technology enables air revitalization, the volume requirements to store the waste canisters as well as the mass to transport multiple units become prohibitive as mission durations increase. Consequently, motivation exists toward developing a fully regenerative technology for environmental control. The application of solid amine materials with vacuum swing adsorption technology has shown the capacity to control CO2 and concomitantly manage humidity levels through a fully regenerative cycle eliminating mission constraints imposed with non-regenerative technologies. Experimental results for full-size and sub-scale test articles have been collected and are described herein. In order to accelerate the developmental efforts, an axially-dispersed plug ow model with an accompanying energy balance has been established and correlated with the experimental data. The experimental and simulation results display good agreement for a variety of ow rates (110-170 SLM), replicated metabolic challenges (100-590 Watts), and atmosphere pressures under consideration for the spacesuit (248 and 760 mm Hg). The relationship between swing adsorption cycles for an outlet criterion of 6.0 mm Hg of CO2 partial pressure has been established for each metabolic challenge. In addition, variable metabolic profiles were imposed on the test articles in order to assess the ability of the technology to transition to new operational constraints. The advent of the model provides the capacity to apply computer-aided engineering practices to support the ongoing efforts to optimize and mature this technology for future application to space exploration.

  20. Pressure (Or No Royal Road)

    ERIC Educational Resources Information Center

    Bradley, J.

    1973-01-01

    Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)

  1. Interaction of sulfur dioxide and carbon dioxide with clean silver in ultrahigh vacuum.

    NASA Technical Reports Server (NTRS)

    Lassiter, W. S.

    1972-01-01

    It is shown that when a clean polycrystalline silver surface is subjected to sulfur dioxide at a pressure of 1 nanotorr, sulfur is chemisorbed to the silver. Heating the contaminated silver leads to an estimation of the minimum heat of desorption of 59 kcal/mol. Sulfur Auger peak height and relative function measurements of the surface during exposure show that adsorption occurs during 6 microtorr/sec exposure at 1 nanotorr.

  2. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, R.H.; Dingman, J.C.; Cronin, D.B.

    1998-05-01

    Very little information is available concerning the effect of acid gas loading on the physical properties of amine-treating solutions flowing through the absorption and regeneration columns used in gas processing. The densities and viscosities of partially carbonated monoethanolamine (MEA), diethanolamine (DEA), and N-methyldiethanolamine (MDEA) solutions were measured at 298 K. With increasing carbon dioxide loadings, significant increases in both density and viscosity were observed. These results were combined with literature data to produce correlations for alkanolamine solution density and viscosity as a function of amine concentration, carbon dioxide loading, and temperature. The resulting single-amine correlations were used to predict themore » densities and viscosities of DEA + MDEA and MEA + MDEA blends. Predictions are compared with data measured for these blends.« less

  3. Plant growth modeling at the JSC variable pressure growth chamber - An application of experimental design

    NASA Technical Reports Server (NTRS)

    Miller, Adam M.; Edeen, Marybeth; Sirko, Robert J.

    1992-01-01

    This paper describes the approach and results of an effort to characterize plant growth under various environmental conditions at the Johnson Space Center variable pressure growth chamber. Using a field of applied mathematics and statistics known as design of experiments (DOE), we developed a test plan for varying environmental parameters during a lettuce growth experiment. The test plan was developed using a Box-Behnken approach to DOE. As a result of the experimental runs, we have developed empirical models of both the transpiration process and carbon dioxide assimilation for Waldman's Green lettuce over specified ranges of environmental parameters including carbon dioxide concentration, light intensity, dew-point temperature, and air velocity. This model also predicts transpiration and carbon dioxide assimilation for different ages of the plant canopy.

  4. Solubility of carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol and N-methyldiethanolamine and their mixtures in the temperature range of 313 to 353 K and pressures up to 2.7 MPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silkenbaeumer, D.; Lichtenthaler, R.N.; Rumpf, B.

    1998-08-01

    The solubility of carbon dioxide in aqueous solutions containing 2-amino-2-methyl-1-propanol (AMP) was measured in the temperature range from 313 to 353 K at total pressures up to 2.7 MPa using an analytical method. A model taking into account chemical reactions in the liquid phase as well as physical interactions is used to correlate the new data. To test the predictive capability of the model, the solubility of carbon dioxide in an aqueous solution containing AMP and N-methyldiethanolamine (MDEA) was measured at 313 K. Experimental results are reported and compared to literature data and calculations.

  5. GASP: A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. [enthalpy, entropy, thermal conductivity, and specific heat

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Baron, A. K.; Peller, I. C.

    1975-01-01

    A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.

  6. Significant solubility of carbon dioxide in Soluplus® facilitates impregnation of ibuprofen using supercritical fluid technology.

    PubMed

    Obaidat, Rana; Alnaief, Mohammed; Jaeger, Philip

    2017-04-13

    Treatment of Soluplus ® with supercritical carbon dioxide allows promising applications in preparing dispersions of amorphous solids. Several characterization techniques were employed to reveal this effect, including CO 2 gas sorption under high pressure and physicochemical characterizations techniques. A gravimetric method was used to determine the solubility of carbon dioxide in the polymer at elevated pressure. The following physicochemical characterizations were used: thermal analysis, X-ray diffraction, Fourier transform, infrared spectroscopy and scanning electron microscopy. Drug loading of the polymer with ibuprofen as a model drug was also investigated. The proposed treatment with supercritical carbon dioxide allows to prepare solid solutions of Soluplus ® in less than two hours at temperatures that do not exceed 45 °C, which is a great advantage to be used for thermolabile drugs. The advantages of using this technology for Soluplus ® formulations lies behind the high sorption capability of carbon dioxide inside the polymer. This will ensure rapid diffusion of the dissolved/dispersed drug inside the polymer under process conditions and rapid precipitation of the drug in the amorphous form during depressurization accompanied by foaming of the polymer.

  7. Speed-of-Sound Measurements in (Argon + Carbon Dioxide) over the Temperature Range from (275 to 500) K at Pressures up to 8 MPa.

    PubMed

    Wegge, Robin; McLinden, Mark O; Perkins, Richard A; Richter, Markus; Span, Roland

    2016-08-01

    The speed of sound of two (argon + carbon dioxide) mixtures was measured over the temperature range from (275 to 500) K with pressures up to 8 MPa utilizing a spherical acoustic resonator. The compositions of the gravimetrically prepared mixtures were (0.50104 and 0.74981) mole fraction carbon dioxide. The vibrational relaxation of pure carbon dioxide led to high sound absorption, which significantly impeded the sound-speed measurements on carbon dioxide and its mixtures; pre-condensation may have also affected the results for some measurements near the dew line. Thus, in contrast to the standard operating procedure for speed-of-sound measurements with a spherical resonator, non-radial resonances at lower frequencies were taken into account. Still, the data show a comparatively large scatter, and the usual repeatability of this general type of instrument could not be realized with the present measurements. Nonetheless, the average relative combined expanded uncertainty ( k = 2) in speed of sound ranged from (0.042 to 0.056)% for both mixtures, with individual state-point uncertainties increasing to 0.1%. These uncertainties are adequate for our intended purpose of evaluating thermodynamic models. The results are compared to a Helmholtz energy equation of state for carbon capture and storage applications; relative deviations of (-0.64 to 0.08)% for the (0.49896 argon + 0.50104 carbon dioxide) mixture, and of (-1.52 to 0.77)% for the (0.25019 argon + 0.74981 carbon dioxide) mixture were observed.

  8. Current Development in Treatment and Hydrogen Energy Conversion of Organic Solid Waste

    NASA Astrophysics Data System (ADS)

    Shin, Hang-Sik

    2008-02-01

    This manuscript summarized current developments on continuous hydrogen production technologies researched in Korea advanced institute of science and technology (KAIST). Long-term continuous pilot-scale operation of hydrogen producing processes fed with non-sterile food waste exhibited successful results. Experimental findings obtained by the optimization processes of growth environments for hydrogen producing bacteria, the development of high-rate hydrogen producing strategies, and the feasibility tests for real field application could contribute to the progress of fermentative hydrogen production technologies. Three major technologies such as controlling dilution rate depending on the progress of acidogenesis, maintaining solid retention time independently from hydraulic retention time, and decreasing hydrogen partial pressure by carbon dioxide sparging could enhance hydrogen production using anaerobic leaching beds reactors and anaerobic sequencing batch reactors. These findings could contribute to stable, reliable and effective performances of pilot-scale reactors treating organic wastes.

  9. Hydrogen production from alcohol reforming in a microwave ‘tornado’-type plasma

    NASA Astrophysics Data System (ADS)

    Tatarova, E.; Bundaleska, N.; Dias, F. M.; Tsyganov, D.; Saavedra, R.; Ferreira, C. M.

    2013-12-01

    In this work, an experimental investigation of microwave plasma-assisted reforming of different alcohols is presented. A microwave (2.45 GHz) ‘tornado’-type plasma with a high-speed tangential gas injection (swirl) at atmospheric pressure is applied to decompose alcohol molecules, namely methanol, ethanol and propanol, and to produce hydrogen-rich gas. The reforming efficiency is investigated both in Ar and Ar+ water vapor plasma environments. The hydrogen yield dependence on the partial alcohol flux is analyzed. Mass spectrometry and Fourier transform infrared spectroscopy are used to detect the outlet gas products from the decomposition process. Hydrogen, carbon monoxide, carbon dioxide and solid carbon are the main decomposition by-products. A significant increase in the hydrogen production rate is observed with the addition of a small amount of water. Furthermore, optical emission spectroscopy is applied to detect the radiation emitted by the plasma and to estimate the gas temperature and electron density.

  10. Emergency strategy optimization for the environmental control system in manned spacecraft

    NASA Astrophysics Data System (ADS)

    Li, Guoxiang; Pang, Liping; Liu, Meng; Fang, Yufeng; Zhang, Helin

    2018-02-01

    It is very important for a manned environmental control system (ECS) to be able to reconfigure its operation strategy in emergency conditions. In this article, a multi-objective optimization is established to design the optimal emergency strategy for an ECS in an insufficient power supply condition. The maximum ECS lifetime and the minimum power consumption are chosen as the optimization objectives. Some adjustable key variables are chosen as the optimization variables, which finally represent the reconfigured emergency strategy. The non-dominated sorting genetic algorithm-II is adopted to solve this multi-objective optimization problem. Optimization processes are conducted at four different carbon dioxide partial pressure control levels. The study results show that the Pareto-optimal frontiers obtained from this multi-objective optimization can represent the relationship between the lifetime and the power consumption of the ECS. Hence, the preferred emergency operation strategy can be recommended for situations when there is suddenly insufficient power.

  11. Stoichiometry of Silicon Dioxide Films Obtained by Ion-Beam Sputtering

    NASA Astrophysics Data System (ADS)

    Telesh, E. V.; Dostanko, A. P.; Gurevich, O. V.

    2018-03-01

    The composition of SiOx films produced by ion-beam sputtering (IBS) of silicon and quartz targets were studied by infrared spectrometry. Films with thicknesses of 150-390 nm were formed on silicon substrates. It was found that increase in the partial pressure of oxygen in the working gas, increase in the temperature of the substrate, and the presence of a positive potential on the target during reactive IBS of silicon shifted the main absorption band νas into the high-frequency region and increased the composition index from 1.41 to 1.85. During IBS of a quartz target the stoichiometry of the films deteriorates with increase of the energy of the sputtering argon ions. This may be due to increase of the deposition rate. Increase in the current of the thermionic compensator, increase of the substrate temperature, and addition of oxygen led to the formation of SiOx films with improved stoichiometry.

  12. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  13. Solubility of single gases carbon dioxide and hydrogen sulfide in aqueous solutions of N-methyldiethanolamine in the temperature range 313--413 K at pressures up to 5 MPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuranov, G.; Smirnova, N.A.; Rumpf, B.

    1996-06-01

    Experimental results for the solubility of the single gases carbon dioxide and hydrogen sulfide in aqueous solutions of 2,2{prime}-methyliminodiethanol (N-methyldiethanolamine (MDEA)) at temperatures between 313 and 413 K and total pressures up to 5 MPa are reported. A model taking into account chemical reactions as well as physical interactions is used to correlate the new data. The correlation is also used to compare the new experimental data with literature data.

  14. A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management.

    PubMed

    Tseng, Shih-Chang; Hung, Shiu-Wan

    2014-01-15

    Incorporating sustainability into supply chain management has become a critical issue driven by pressures from governments, customers, and various stakeholder groups over the past decade. This study proposes a strategic decision-making model considering both the operational costs and social costs caused by the carbon dioxide emissions from operating such a supply chain network for sustainable supply chain management. This model was used to evaluate carbon dioxide emissions and operational costs under different scenarios in an apparel manufacturing supply chain network. The results showed that the higher the social cost rate of carbon dioxide emissions, the lower the amount of the emission of carbon dioxide. The results also suggested that a legislation that forces the enterprises to bear the social costs of carbon dioxide emissions resulting from their economic activities is an effective approach to reducing carbon dioxide emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Influence of Wind Pressure on the Carbonation of Concrete

    PubMed Central

    Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun

    2015-01-01

    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth. PMID:28793462

  16. Influence of Wind Pressure on the Carbonation of Concrete.

    PubMed

    Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun

    2015-07-24

    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth.

  17. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1 Section 179.102-1 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car...

  18. 46 CFR 13.121 - Courses for tankerman endorsements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (open and closed). (vii) Rules of the Coast Guard governing operations in general and prevention of..., carbon dioxide (CO2), foam... X Halogenated hydrocarbons X Pressure-water spray system in special..., spray, fog, and flooding) X Foam (high, medium and low expansion) X Carbon dioxide (CO2) X X Halon X...

  19. 46 CFR 13.121 - Courses for tankerman endorsements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (open and closed). (vii) Rules of the Coast Guard governing operations in general and prevention of..., carbon dioxide (CO2), foam... X Halogenated hydrocarbons X Pressure-water spray system in special..., spray, fog, and flooding) X Foam (high, medium and low expansion) X Carbon dioxide (CO2) X X Halon X...

  20. 46 CFR 13.121 - Courses for tankerman endorsements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (open and closed). (vii) Rules of the Coast Guard governing operations in general and prevention of..., carbon dioxide (CO2), foam... X Halogenated hydrocarbons X Pressure-water spray system in special..., spray, fog, and flooding) X Foam (high, medium and low expansion) X Carbon dioxide (CO2) X X Halon X...

  1. Pressures of Partial Crystallization of Magmas Along Transforms: Implications for Crustal Accretion

    NASA Astrophysics Data System (ADS)

    Scott, J. L.; Zerda, C.; Brown, D.; Ciaramitaro, S. C.; Barton, M.

    2016-12-01

    Plate spreading at mid-ocean ridges is responsible for the creation of most of the crust on earth. The ridge system is very complex and many questions remain unresolved. Among these is the nature of magma plumbing systems beneath transform faults. Pervious workers have suggested that increased conductive cooling along transforms promotes higher pressures of partial crystallization, and that this explains the higher partial pressures of crystallization inferred for magmas erupted along slow spreading ridges compared to magmas erupted along faster spreading ridges. To test this hypothesis, we undertook a detailed analysis of pressures of partial crystallization for magmas erupted at 3 transforms along the fast to intermediate spreading East Pacific Rise(Blanco, Clipperton, and Siqueiros) and 3 transforms along the slow spreading Mid Atlantic Ridge(Famous Transform B, Kane, and 15°20'N). Pressures of partial crystallization were calculated from the compositions of glasses (quenched liquids) lying along the P (and T) dependent olivine, plagioclase, and augite cotectic using the method described by Kelley and Barton (2008). Published analyses of mid-ocean ridge basalt glasses sampled from these transforms and surrounding ridge segments were used as input data. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The pressures of partial crystallization for the remaining 916 samples ranged from 0 to 520 MPa with the great majority ( 95%) of sample returning pressures of less than 300 MPa. Pressures of < 300 MPa are within error of the pressure range associated with partial crystallization within oceanic crust with a thickness of 7 km. Higher (sub-crustal) pressures (>300 MPa) are associated with a small number of samples from the Pacific segments. Except for the Blanco, pressures of partial crystallization do not increase as transforms are approached. These observations contrast with those of previous workers, who reported anomalously high pressures (up to 1000 MPa) for a large number of samples erupted near both Atlantic and Pacific Transforms. We conclude that higher rates of cooling along transform does not have a major effect on the onset of partial crystallization along the mid-ocean ridges

  2. Influence of N2 partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N2 vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Abdallah, B.; Ahmad, M.; A-Kharroub, M.

    2016-08-01

    The influence of N2 partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N2 partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N2 partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N2 partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N2 partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N2 partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N2 partial pressure.

  3. Results of coalbed-methane drilling, Mylan Park, Monongalia County, West Virginia: Chapter G.3 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Fedorko, Nick; Warwick, Peter D.; Grady, William C.; Britton, James Q.; Schuller, William A.; Crangle, Robert D.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    High-pressure carbon-dioxide adsorption isotherms were measured on composite coal samples of the Upper Kittanning coal bed and the Middle Kittanning and Clarion coal zones. Assuming that the reservoir pressure in the Mylan Park coals is equivalent to the normal hydrostatic pressure, the estimated maximum carbon-dioxide adsorption pressures range from a low of about 300 pounds per square inch (lb/in2 ) in coals from the Clarion coal zone to 500 lb/in2 for coals from the Upper Kittanning coal bed. The estimated maximum methane adsorption isotherms show that the coals from the Upper Kittanning coal bed and the Middle Kittanning coal zone are undersaturated in methane, but coals from the Clarion coal zone are close to saturation.

  4. Rapamycin reverses paraquat-induced acute lung injury in a rat model through inhibition of NFκB activation

    PubMed Central

    Chen, Da; Ma, Tao; Liu, Xiao-Wei; Yang, Chen; Liu, Zhi

    2015-01-01

    Objective: To evaluate the role of rapamycin (RAPA) in paraquat (PQ)-induced acute lung injury. Methods: Lung tissues were stained with HE and lung histology was observed. Mortality rate, and neutrophil and leukocyte count in blood and bronchoalveolar lavage fluid (BALF) were recorded. Protein content in BALF was determined by Coomassie blue staining. Malondialdehyde (MDA) content, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activity in blood were determined by thiobarbituric acid (TBA) assay, pyrogallol autoxidation method, and modified Haefman method, respectively. The NF-κB activity was measured by gel electrophoretic mobility shift assay (EMSA). Carbon dioxide partial pressure (PaCO2), partial pressure of oxygen (PaO2) and pH values were measured by automated blood gas analyzer. Results: HE staining results demonstrated RAPA alleviated pathological changes of acute alveolitis in SD rats. Trend of protein content in BALF was PQ group > RAPA treatment group > control group (P < 0.05). Neutrophil and leukocyte count in RAPA treatment group was significantly lower than PQ group at 3, 5, and 7 days after injection (P < 0.05). Trend of MDA content was RAPA treatment group > PQ group > control group (P < 0.05). Trend of GSH-Px and SOD activity was control group > RAPA treatment group > PQ group (P < 0.05). Compared with PQ group, PaO2 in RAPA treatment group was markedly higher and PaCO2 was lower (P < 0.05). Conclusion: PQ-induced acute lung injury was effectively reversed with RAPA, through inhibition of NF-κB activation. PMID:26191153

  5. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    NASA Astrophysics Data System (ADS)

    Kiko, R.; Hauss, H.; Buchholz, F.; Melzner, F.

    2015-10-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2 and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply considerably fuels bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a downregulation of ammonium excretion. Here we show that exposure to OMZ conditions can result in strong depression of respiration and ammonium excretion in calanoid copepods and euphausiids from the Eastern Tropical North Atlantic and the Eastern Tropical South Pacific. These physiological responses need to be taken into account when estimating DVM-mediated fluxes of carbon and nitrogen into OMZs.

  6. Effects of elevated oxygen and carbon dioxide partial pressures on respiratory function and cognitive performance.

    PubMed

    Gill, Matthew; Natoli, Michael J; Vacchiano, Charles; MacLeod, David B; Ikeda, Keita; Qin, Michael; Pollock, Neal W; Moon, Richard E; Pieper, Carl; Vann, Richard D

    2014-08-15

    Hyperoxia during diving has been suggested to exacerbate hypercapnic narcosis and promote unconsciousness. We tested this hypothesis in male volunteers (12 at rest, 10 at 75 W cycle ergometer exercise) breathing each of four gases in a hyperbaric chamber. Inspired Po2 (PiO2 ) was 0.21 and 1.3 atmospheres (atm) without or with an individual subject's maximum tolerable inspired CO2 (PiO2 = 0.055-0.085 atm). Measurements included end-tidal CO2 partial pressure (PetCO2 ), rating of perceived discomfort (RPD), expired minute ventilation (V̇e), and cognitive function assessed by auditory n-back test. The most prominent finding was, irrespective of PetCO2 , that minute ventilation was 8-9 l/min greater for rest or exercise with a PiO2 of 1.3 atm compared with 0.21 atm (P < 0.0001). For hyperoxic gases, PetCO2 was consistently less than for normoxic gases (P < 0.01). For hyperoxic hypercapnic gases, n-back scores were higher than for normoxic gases (P < 0.01), and RPD was lower for exercise but not rest (P < 0.02). Subjects completed 66 hyperoxic hypercapnic trials without incident, but five stopped prematurely because of serious symptoms (tunnel vision, vision loss, dizziness, panic, exhaustion, or near syncope) during 69 normoxic hypercapnic trials (P = 0.0582). Serious symptoms during hypercapnic trials occurred only during normoxia. We conclude serious symptoms with hyperoxic hypercapnia were absent because of decreased PetCO2 consequent to increased ventilation. Copyright © 2014 the American Physiological Society.

  7. Determination of Carbon Dioxide, Hydrograohic, and Chemical Parameters During the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 3 May - 4 July, 1996)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozyr, Alex

    This report discusses the procedures and methods used to measure total carbon dioxide (TCO 2), total alkalinity (TALK), and partial pressure of CO 2 (pCO 2) at hydrographic stations during the cruise of research vessel (R/V) Nathaniel B. Palmer in the Southern Indian Ocean on the S04I Section as a part of the Joint Global Ocean Flux Study (JGOFS)/World Ocean Circulation Experiment (WOCE). The carbon-related measurements were sponsored by the U.S. Department of Energy (DOE). The expedition started in Cape Town, South Africa, on May 3, 1996, and ended in Hobart, Australia, on July 4, 1996. Instructions for accessing themore » data are provided. The TCO 2 was measured in discrete water samples using the Lamont-Doherty Earth Observatory (LDEO) coulomteric system with an overall precision of ±1.7 μmol/kg. TALK was determined by potentiometric titration with an overall precision of ±1.7 μmol/kg. During the S04I cruise pCO 2 was also measured using the LDEO equilibrator-gas chromatograph system with a precision of 0.5% (including the station-to-station reproducibility) at a constant temperature of 4.0ºC. The R/V Nathaniel B. Palmer S04I data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of the oceanographic data files and this printed documentation, which describes the contents and format of all files as well as the procedures and methods used to obtain the data.« less

  8. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1987-01-01

    Simple (one-dimensional) climate models suggest that carbon dioxide concentrations during the Archean must have been at least 100-1000 times the present level to keep the Earth's surface temperature above freezing in the face of decreased solar luminosity. Such models provide only lower bounds on CO2, so it is possible that CO2 levels were substantially higher than this and that the Archean climate was much warmer than today. Periods of extensive glaciation during the early and late Proterozoic, on the other hand, indicate that the climate at these times was relatively cool. To be consistent with climate models CO2 partial pressures must have declined from approximately 0.03 to 0.3 bar around 2.5 Ga ago to between 10(-3) and 10(-2) bar at 0.8 Ga ago. This steep decrease in carbon dioxide concentrations may be inconsistent with paleosol data, which implies that pCO2 did not change appreciably during that time. Oxygen was essentially absent from the Earth's atmosphere and oceans prior to the emergence of a photosynthetic source, probably during the late Archean. During the early Proterozoic the atmosphere and surface ocean were apparently oxidizing, while the deep ocean remained reducing. An upper limit of 6 x 10(-3) bar for pO2 at this time can be derived by balancing the burial rate of organic carbon with the rate of oxidation of ferrous iron in the deep ocean. The establishment of oxidizing conditions in the deep ocean, marked by the disappearance of banded iron formations approximately 1.7 Ga ago, permitted atmospheric oxygen to climb to its present level. O2 concentrations may have remained substantially lower than today, however, until well into the Phanerozoic.

  9. The Southern Ocean biogeochemical divide.

    PubMed

    Marinov, I; Gnanadesikan, A; Toggweiler, J R; Sarmiento, J L

    2006-06-22

    Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.

  10. Effects of different pressure levels of CO2 pneumoperitoneum on liver regeneration after liver resection in a rat model.

    PubMed

    Komori, Yoko; Iwashita, Yukio; Ohta, Masayuki; Kawano, Yuichiro; Inomata, Masafumi; Kitano, Seigo

    2014-08-01

    A recent study demonstrated that high pressure of carbon dioxide (CO2) pneumoperitoneum before liver resection impairs postoperative liver regeneration. This study was aimed to investigate effects of varying insufflation pressures of CO2 pneumoperitoneum on liver regeneration using a rat model. 180 male Wistar rats were randomly divided into three groups: control group (without preoperative pneumoperitoneum), low-pressure group (with preoperative pneumoperitoneum at 5 mmHg), and high-pressure group (with preoperative pneumoperitoneum at 10 mmHg). After pneumoperitoneum, all rats were subjected to 70% partial hepatic resection and then euthanized at 0 min, 12 h, and on postoperative days (PODs) 1, 2, 4, and 7. Following outcome parameters were used: liver regeneration (liver regeneration rate, mitotic count, Ki-67 labeling index), hepatocellular damage (serum aminotransferases), oxidative stress [serum malondialdehyde (MDA)], interleukin-6 (IL-6), and hepatocyte growth factor (HGF) expression in the liver tissue. No significant differences were observed for all parameters between control and low-pressure groups. The liver regeneration rate and mitotic count were significantly decreased in the high-pressure group than in control and low-pressure groups on PODs 2 and 4. Postoperative hepatocellular damage was significantly greater in the high-pressure group on PODs 1, 2, 4, and 7 compared with control and/or low-pressure groups. Serum MDA levels were significantly higher in the high-pressure group on PODs 1 and 2, and serum IL-6 levels were significantly higher in the high-pressure group at 12 h and on POD 1, compared with control and/or low-pressure groups. The HGF tissue expression was significantly lower in the high-pressure group at 12 h and on PODs 1 and 4, compared with that in control and/or low-pressure groups. High-pressure pneumoperitoneum before 70% liver resection impairs postoperative liver regeneration, but low-pressure pneumoperitoneum has no adverse effects. This study suggests that following laparoscopic liver resection using appropriate pneumoperitoneum pressure, no impairment of liver regeneration occurs.

  11. Laboratory study of adsorption and deliquescence on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Nikolakakos, George; Whiteway, James A.

    2018-07-01

    A sample of the zeolitic mineral chabazite was subjected to a range of water vapor pressures and temperatures found on present day Mars. Laser Raman scattering was applied to detect the relative amounts of water and carbon dioxide adsorbed by the sample. Results show that zeolites are capable of adsorbing water from the atmosphere on diurnal time scales and that Raman scattering spectroscopy provides a promising method for detecting this process during a landed mission. When the water vapor pressure and temperature were sufficiently low, the zeolite sample also adsorbed carbon dioxide, resulting in the simultaneous adsorption of water and carbon dioxide on the surface mineral grains. Additional experiments were carried out using a mixture of magnesium perchlorate and chabazite. The sample of mixed surface material remained visually unchanged during water adsorption, but was found to darken during deliquescence.

  12. [Regional cerebral oxygen saturation as a marker of hemodynamic state following cardiac surgery].

    PubMed

    García-Hernández, J A; Aldemira-Liz, A; Martínez-López, A I; Cayuela, A; Charlo-Molina, M T; Cano-Franco, J; Loscertales-Abril, M

    2013-10-01

    Regional cerebral oxygen saturation (rSO₂) is a measure of the general state of perfusion and oxygenation. We aim to analyze the relationship between this and various hemodynamic and respiratory parameters. Forty-three patients, operated on between October 2011 and July 2012, were included in this prospective observational descriptive study. The following parameters were measured: mean arterial pressure, both arterial and central venous oxygen saturation and partial pressures of oxygen and carbon dioxide, and lactate levels. From these parameters, the oxygenation index and the oxygen extraction ratio were calculated. These measurements were studied to evaluate whether rSO₂ correlated significantly with the other parameters. The average age and weight of the patients were 27.3 months and 9.2 kg, respectively. The rSO₂ correlated positively with both central venous oxygen saturation (r=0.73, P<.01) and mean arterial pressure (r=0.59, P<.01), and negatively with the oxygen extraction ratio (r=-0.7, P<.01). No correlation was found with the respiratory parameters. Concordance analysis established an acceptable Kappa index (> 0.4) between the rSO₂ and central venous oxygen saturation, and between the rSO₂ and oxygen extraction ratio. Regional cerebral oxygen saturation correlates well with hemodynamic parameters - mean arterial pressure, venous saturation, and the tissue oxygen extraction. However, it does not correlate with respiratory parameters. Copyright © 2012 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  13. Modeling a CO2 mineralization experiment of fractured peridotite from the Semail ophiolite/ Oman

    NASA Astrophysics Data System (ADS)

    Muller, Nadja; Zhang, Guoxiang; van Noort, Reinier; Spiers, Chris; Ten Grotenhuis, Saskia; Hoedeman, Gerco

    2010-05-01

    Most geologic CO2 sequestration technologies focus on sedimentary rocks, where the carbon dioxide is stored in a fluid phase. A possible alternative is to trap it as a mineral in the subsurface (in-situ) in basaltic or even (ultra)mafic rocks. Carbon dioxide in aqueous solution reacts with Mg-, Ca-, and Fe-bearing silicate minerals, precipitates as (MgCa,Fe)CO3 (carbonate), and can thus be permanently sequestered. The cation donors are silicate minerals such as olivine and pyroxene which are abundant in (ultra)mafic rocks, such as peridotite. Investigations are underway to evaluate the sequestration potential of the Semail Ophiolite in Oman, utilizing the large volumes of partially serpentinized peridotite that are present. Key factors are the rate of mineralization due to dissolution of the peridotite and precipitation of carbonate, the extent of the natural and hydraulic fracture network and the accessibility of the rock to reactive fluids. To quantify the influence of dissolution rates on the overall CO2 mineralization process, small, fractured peridotite samples were exposed to supercritical CO2 and water in laboratory experiments. The samples are cored from a large rock sample in the dimension of small cylinders with 1 cm in height and diameter, with a mass of ~2g. Several experimental conditions were tested with different equipment, from large volume autoclave to small volume cold seal vessel. The 650 ml autoclave contained 400-500g of water and a sample under 10 MPa of partial CO2 pressure up to 150. The small capsules in the cold seal vessel held 1-1.5g of water and the sample under CO2 partial pressure from 15MPa to 70 MPa and temperature from 60 to 200°C. The samples remained for two weeks in the reaction vessels. In addition, bench acid bath experiments in 150 ml vials were performed open to the atmosphere at 50-80°C and pH of ~3. The main observation was that the peridotite dissolved two orders of magnitude slower in the high pressure and temperature cell of the cold seal vessel than comparative experiments in large volume autoclaves and bench acid bath vials under lower and atmospheric pressure conditions. We attributed this observation to the limited water availability in the cold seal vessel, limiting the aqueous reaction of bi-carbonate formation and magnesite precipitation. To test this hypothesis, one of the cold seal vessel experiments at 20 MPa and 100°C was simulated with a reactive transport model, using TOUGHREACT. To simulate the actual experimental conditions, the model used a grid on mm and 100's of μm scale and a fractured peridotite medium with serpentine filling the fractures. The simulation produced dissolution comparable to the experiment and showed an effective shut down of the bi-carbonation reaction within one day after the start of the experiment. If the conditions of limited water supply seen in our experiments are applicable in a field setting, we could expect dissolution may be limited by the buffering of the pH and shut down of the bi-carbonate formation. Under field conditions water and CO2 will only flow in hydraulic induced fractures and the natural fracture network that is filled with serpentine and some carbonate. The simulation result and potential implication for the field application will require further experimental investigation in the lab or field in the future.

  14. Comparative evolution of oxygen, carbon dioxide, nitrogen, and sulfites during storage of a rosé wine bottled in PET and glass.

    PubMed

    Toussaint, Marie; Vidal, Jean-Claude; Salmon, Jean-Michel

    2014-04-02

    The management of dissolved and headspace gases during bottling and the choice of packaging are both key factors for the shelf life of wine. Two kinds of 75 cL polyethylene terephthalate (PET) bottles (with or without recycled PET) were compared to glass bottles filled with a rosé wine, closed with the same screwcaps and stored upright at 20 °C in light or in the dark. Analytical monitoring (aphrometric pressure, headspace volume, O2, N2, CO2, and SO2) was carried out for 372 days. After the consumption of O2 trapped during bottling, the total O2 content in glass bottles remained stable. A substantial decrease of CO2 and SO2 concentration and an increase of O2 concentration were observed in the PET bottles after 6 months because of the considerable gas permeability of monolayer PET. Light accelerated O2 consumption during the early months. Finally, the kinetic monitoring of partial pressures in gas and liquid phases in bottles showed contrasting behavior of O2 and N2 in comparison with CO2.

  15. High-pressure carbon dioxide/water pre-treatment of sugarcane bagasse and elephant grass: Assessment of the effect of biomass composition on process efficiency.

    PubMed

    Toscan, Andréia; Morais, Ana Rita C; Paixão, Susana M; Alves, Luís; Andreaus, Jürgen; Camassola, Marli; Dillon, Aldo José Pinheiro; Lukasik, Rafal M

    2017-01-01

    The performance of two lignocellulosic biomasses was studied in high-pressure carbon dioxide/water pre-treatment. Sugarcane bagasse and elephant grass were used to produce C 5 -sugars from hemicellulose and, simultaneously, to promote cellulose digestibility for enzymatic saccharification. Different pre-treatment conditions, with combined severity factor ranging from -1.17 to -0.04, were evaluated and maximal total xylan to xylose yields of 59.2wt.% (34.4wt.% xylooligomers) and 46.4wt.% (34.9wt.% xylooligomers) were attained for sugarcane bagasse and elephant grass, respectively. Furthermore, pre-treated biomasses were highly digestible, with glucan to glucose yields of 77.2mol% and 72.4mol% for sugarcane bagasse and elephant grass, respectively. High-pressure carbon dioxide/water pre-treatment provides high total C 5 -sugars and glucose recovery from both lignocellulosic biomasses; however it is highly influenced by composition and intrinsic features of each biomass. The obtained results confirm this approach as an effective and greener alternative to conventional pre-treatment processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Behavior of short silica monolithic columns in high pressure gas chromatography.

    PubMed

    Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antoniali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme

    2016-08-19

    In order to analyze light hydrocarbons mixtures with silica monolithic columns, a conventional gas chromatograph was modified to work with carrier gas pressure as high as 60bar. To understand hydrodynamic flow and retention with short columns (less than 30cm), special attention was required due to the temperature difference between the oven area and the FID detector which contain a significant length of the column. Efficiency and selectivity using various carrier gases (helium, nitrogen and carbon dioxide) at different inlet pressure for different oven temperature were studied. Carrier gas nature was a very significant parameter: on one side, linked to adsorption mechanism for gases like nitrogen and carbon dioxide onto the stationary phase modifying retention and selectivity, on the other side in relation to the minimum theoretical plate height which was as low as 15μm (66 000 platem(-1)) using carbon dioxide as carrier gas. The chromatographic system was then used to separate methane, ethane, ethylene, acetylene, propane, cyclopropane, and butane in less than 30s. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effect of feed withdrawal and handling intensity on longissimus muscle glycolytic potential and blood measurements in slaughter weight pigs.

    PubMed

    Bertol, T M; Ellis, M; Ritter, M J; McKeith, F K

    2005-07-01

    This study was carried out to evaluate the effect of feed withdrawal and handling intensity on blood acid-base responses and muscle glycolytic potential in slaughter-weight pigs. Sixty crossbred pigs (BW = 107.7 +/- 0.56 kg; 44 barrows and 16 gilts) were used in a randomized complete block design with a 2 x 2 factorial arrangement of treatments: 1) feed withdrawal (0 vs. 24 h), and 2) handling intensity (low vs. high). The high-intensity handling treatment consisted of moving the pigs through a passage (12.2 m long x 0.91 m wide) for eight laps using an electric goad two times per lap. Pigs in the low-intensity handling treatment were moved at their own pace through the passage for eight laps using a livestock panel and paddle. Biopsy samples were collected from the LM at the beginning of feed withdrawal, at the end of the handling procedure, and 4 h after handling. Blood samples were collected 2 h before and immediately after the handling procedure. There were no interactions between feed withdrawal and handling intensity for any of the variables measured. Feed withdrawal decreased (P < 0.05) baseline and posthandling body temperature (38.85 vs. 38.65 degrees C; SEM = 0.060 and 39.70 vs. 39.37 degrees C; SEM = 0.04, respectively) and blood glucose, lowered (P < 0.05) baseline partial pressure of oxygen and partial pressure of carbon dioxide, and increased (P < 0.01) baseline and posthandling plasma free fatty acid concentrations. High-intensity handling produced higher (P < 0.01) posthandling lactate and glucose, and lower (P < 0.01) posthandling blood pH (7.33 vs. 7.18 +/- 0.02, respectively), bicarbonate, base excess, and total carbon dioxide than low-intensity handling. Longissimus muscle glycolytic potential of fasted pigs was lower (P < 0.01) than in fed pigs at the end of the handling procedure (177.2 vs. 137.0 micromol/g of wet tissue; SEM = 10.08, respectively). There was no effect of handling intensity on longissimus muscle glycolytic potential. Feed withdrawal did not attenuate the blood acid-base changes caused by handling; however, the combination of feed withdrawal and handling decreased muscle glycolytic potential.

  18. Evaluation of the saturation state of Aragonite, at Baja California Coast, Mexico

    NASA Astrophysics Data System (ADS)

    Oliva, N. L.; Hernandez, J. M.; Camacho, V.; Deldagillo, F.; Torres, V.; Siqueiros-Valencia, A.; Castro, R.

    2012-12-01

    The carbonate ion is in excess in the surface waters of the world's ocean, and is necessary for the formation of carbonate structures such as oyster shells and echinoderm skeletons. Seasonal upwelling in the California Current system brings dense water with high partial pressure of carbon dioxide to the sea surface and into contact with the atmosphere in the near shore. In order to evaluate the saturation state of Aragonite (ΩA), from November 2009 to November 2011, biweekly monitoring of dissolved inorganic carbon (CID), total alkalinity (TA), temperature (T) and salinity (S), in the intertidal zone at "Arbolitos" was conducted. During the same period, a mooring buoy located 3 km from Arbolitos recorded data every 3 hours for T and carbon dioxide partial pressure (pCO2), at the sea and in the air 1 meter above the sea surface.The ΩA was calculated for both study sites where upwelling events occurred during the spring-summer months. The data at both Arbolitos and mooring buoy shows that during the upwelling season maximum DIC concentration (2150μmol kg -1) and maximum pCO2 (863 μatm) correspond to the lowest temperature (11°C) and ΩA values (1; equilibrium). During the ten upwelling events identified (T < 15 °C, pCO2 > 387 μatm), the ΩA values (3 to 1) were not lower than the saturation limit (value of 1).The results show that the calcifying organisms in this region are persisting in an environment with variable ΩA conditions. It was determined that the longer the duration of the upwelling event, the lower the ΩA value, and the higher the change in pCO2. The ΩA interval (approximately 3 to 1) is not the same from year to year. This suggests interannual variations in upwelling, possibly due to El Niño (present during the first six months of 2010), and La Niña conditions (from July 2010 to November 2011).; t; Characteristics of the ten events of upwelling, at arbolitos and at the moorign buoy. For both study sites it shows the duration, pCO2, ΩA y pH values.

  19. Iron-catalyzed hydrogenation of bicarbonates and carbon dioxide to formates.

    PubMed

    Zhu, Fengxiang; Zhu-Ge, Ling; Yang, Guangfu; Zhou, Shaolin

    2015-02-01

    The catalytic hydrogenation of carbon dioxide and bicarbonate to formate has been explored extensively. The vast majority of the known active catalyst systems are based on precious metals. Herein, we describe an effective, phosphine-free, air- and moisture-tolerant catalyst system based on Knölker's iron complex for the hydrogenation of bicarbonate and carbon dioxide to formate. The catalyst system can hydrogenate bicarbonate at remarkably low hydrogen pressures (1-5 bar). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Carbon dioxide hydrate and floods on Mars

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1974-01-01

    Ground ice on Mars probably consists largely of carbon dioxide hydrate. This hydrate dissociates upon release of pressure at temperatures between 0 and 10 C. The heat capacity of the ground would be sufficient to produce up to 4% (by volume) of water at a rate equal to that at which it can be drained away. Catastrophic dissociation of carbon dioxide hydrate during some past epoch when the near-surface temperature was in this range would have produced chaotic terrain and flood channels.

  1. Testing of Lithium-Sulfur Dioxide Cells for Waste Disposal Hazards.

    DTIC Science & Technology

    1980-10-01

    r AD-AO90 785 WAPORA INC CHEVY CHASE NO F/G 10/3 TESTING OF LITHIUM-SULFUR DIOXIDE CELLS FOR WASTE DISPOSAL HAZA-ETC(U) OCT 80 D B BOIES OAAK20-79-C... TESTING ION T HUM -SUFU DIXD-EL ORWSEDSOA Daved B. pBli else 69stributonsi nlmied.e OCTOBELE198 Fia PRepr for Peio OCT 23198008 STRYUIO AELETOISRSA...34 cell Toxic waste Sulfur dioxide vapor pressure Structural Integrity Test Ignitable waste Extraction procedure results Corrosive waste ftactive waste

  2. Speed-of-Sound Measurements in (Argon + Carbon Dioxide) over the Temperature Range from (275 to 500) K at Pressures up to 8 MPa

    PubMed Central

    Wegge, Robin; McLinden, Mark O.; Perkins, Richard A.; Richter, Markus; Span, Roland

    2016-01-01

    The speed of sound of two (argon + carbon dioxide) mixtures was measured over the temperature range from (275 to 500) K with pressures up to 8 MPa utilizing a spherical acoustic resonator. The compositions of the gravimetrically prepared mixtures were (0.50104 and 0.74981) mole fraction carbon dioxide. The vibrational relaxation of pure carbon dioxide led to high sound absorption, which significantly impeded the sound-speed measurements on carbon dioxide and its mixtures; pre-condensation may have also affected the results for some measurements near the dew line. Thus, in contrast to the standard operating procedure for speed-of-sound measurements with a spherical resonator, non-radial resonances at lower frequencies were taken into account. Still, the data show a comparatively large scatter, and the usual repeatability of this general type of instrument could not be realized with the present measurements. Nonetheless, the average relative combined expanded uncertainty (k = 2) in speed of sound ranged from (0.042 to 0.056)% for both mixtures, with individual state-point uncertainties increasing to 0.1%. These uncertainties are adequate for our intended purpose of evaluating thermodynamic models. The results are compared to a Helmholtz energy equation of state for carbon capture and storage applications; relative deviations of (−0.64 to 0.08)% for the (0.49896 argon + 0.50104 carbon dioxide) mixture, and of (−1.52 to 0.77)% for the (0.25019 argon + 0.74981 carbon dioxide) mixture were observed. PMID:27458321

  3. Cerebrovascular response to the cold pressor test - the critical role of carbon dioxide.

    PubMed

    Tymko, Michael M; Kerstens, Thijs P; Wildfong, Kevin W; Ainslie, Philip N

    2017-12-01

    What is the central question of this study? What is the role of carbon dioxide in the cerebral blood flow (CBF) response to the cold pressor test (CPT)? What is the main finding and its importance? The CBF response was elevated during the isocapnic (controlled CO 2 ) CPT in the middle cerebral artery and the internal carotid artery compared with the poikilocapnic (uncontrolled CO 2 ) CPT, owing to ventilation-associated reductions in end-tidal CO 2 . Furthermore, the common carotid artery vasodilated to a greater extent during the isocapnic compared with the poikilocapnic CPT, whereas the internal carotid artery vasoconstricted during both CPTs. Our data highlight the importance of CO 2 control when investigating the CBF response to the CPT. In addition to increasing sympathetic nervous activity, blood pressure and cerebral blood flow (CBF), the cold pressor test (CPT) stimulates pain receptors, which may increase ventilation above metabolic demand; this response is likely to reduce the partial pressure of end-tidal carbon dioxide (P ET ,CO2) and will attenuate elevations in CBF. Our hypotheses were as follows: (i) the CPT will elicit hyperventilation, effectively lowering P ET ,CO2; (ii) the CBF response will be elevated during an isocapnic (controlled P ET ,CO2) compared with a poikilocapnic CPT (uncontrolled P ET ,CO2); and (iii) in response to the CPT, the common carotid artery (CCA) will vasodilate, while the internal carotid artery (ICA) will remain unchanged to help regulate CBF. Using a new, randomized experimental design, we measured the cerebrovascular response in the middle cerebral artery (MCA), CCA and internal carotid artery (ICA), during an isocapnic and poikilocapnic CPT in 15 participants. Blood pressure and cardiac output (finger photoplethysmography), heart rate (ECG), MCA mean velocity (transcranial Doppler ultrasound) and CCA and ICA CBF (Duplex ultrasound) were recorded during both CPT trials. Our findings were as follows: (i) ventilation increased, which reduced P ET ,CO2 (-5.3 ± 6.4 mmHg) during the poikilocapnic compared with the isocapnic CPT; (ii) the CBF response was elevated during the isocapnic compared with the poikilocapnic CPT in the MCA and ICA, but not in the CCA; and (iii) the CCA dilated to a greater extent during the isocapnic compared with the poikilocapnic CPT, and the ICA vasoconstricted during both trials. Our data emphasize the importance of P ET ,CO2 control in the CBF response to the CPT and in the differential vasomotor regulation between the CCA and ICA. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  4. 46 CFR 34.15-40 - Pressure relief-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Pressure relief-T/ALL. 34.15-40 Section 34.15-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-40 Pressure relief—T/ALL. (a) Where necessary, relatively tight...

  5. Pulmonary NO and C18O2 uptake during pressure-induced lung expansion in rabbits.

    PubMed

    Heller, Hartmut; Schuster, Klaus-Dieter

    2007-01-01

    In artificially ventilated animals we investigated the dependence of the pulmonary diffusing capacities of nitric oxide (NO) and doubly 18O-labeled carbon dioxide (DLNO, DLC18O2) on lung expansion with respect to ventilator-driven increases in intrapulmonary pressure. For this purpose we applied computerized single-breath experiments to 11 anesthetized paralyzed rabbits (weight 2.8-3.8 kg) at various alveolar volumes (45-72 ml) by studying the almost entire inspiratory limb of the respective pressure/volume curves (intrapulmonary pressure: 6-27 cmH2O). The animals were ventilated with room air, employing a computerized ventilatory servo-system that we designed to maintain mechanical ventilation and to execute the particular lung function tests automatically. Each single-breath maneuver was started from residual volume (13.5+/-2 ml, mean+/-SD) by inflating the rabbit lungs with 35-55 ml indicator gas mixture containing 0.05% NO in N2 or 0.9% C18O2 in N2. Alveolar partial pressures of NO and C18O2 were measured by respiratory mass spectrometry. Values of DLNO and DLC18O2 ranged between 1.55 and 2.49 ml/(mmHg min) and 11.7 and 16.6 ml/(mmHg min), respectively. Linear regression analyses yielded a significant increase in DLNO with simultaneous increase in alveolar volume (P<0.005) and intrapulmonary pressure (P<0.023) whereas DLC18O2 was not improved. Our results suggest that the ventilator-driven lung expansion impaired the C18O2 blood uptake conductance, finally compensating for the beneficial effect of the increase in alveolar volume on DLC18O2 values.

  6. Targeted Pressure Management During CO 2 Sequestration: Optimization of Well Placement and Brine Extraction

    DOE PAGES

    Cihan, Abdullah; Birkholzer, Jens; Bianchi, Marco

    2014-12-31

    Large-scale pressure increases resulting from carbon dioxide (CO 2) injection in the subsurface can potentially impact caprock integrity, induce reactivation of critically stressed faults, and drive CO 2 or brine through conductive features into shallow groundwater. Pressure management involving the extraction of native fluids from storage formations can be used to minimize pressure increases while maximizing CO2 storage. However, brine extraction requires pumping, transportation, possibly treatment, and disposal of substantial volumes of extracted brackish or saline water, all of which can be technically challenging and expensive. This paper describes a constrained differential evolution (CDE) algorithm for optimal well placement andmore » injection/ extraction control with the goal of minimizing brine extraction while achieving predefined pressure contraints. The CDE methodology was tested for a simple optimization problem whose solution can be partially obtained with a gradient-based optimization methodology. The CDE successfully estimated the true global optimum for both extraction well location and extraction rate, needed for the test problem. A more complex example application of the developed strategy was also presented for a hypothetical CO 2 storage scenario in a heterogeneous reservoir consisting of a critically stressed fault nearby an injection zone. Through the CDE optimization algorithm coupled to a numerical vertically-averaged reservoir model, we successfully estimated optimal rates and locations for CO 2 injection and brine extraction wells while simultaneously satisfying multiple pressure buildup constraints to avoid fault activation and caprock fracturing. The study shows that the CDE methodology is a very promising tool to solve also other optimization problems related to GCS, such as reducing ‘Area of Review’, monitoring design, reducing risk of leakage and increasing storage capacity and trapping.« less

  7. Organic-inorganic interactions at oil-water contacts: quantitative retracing of processes controlling the CO2 occurrence in Norwegian oil reservoirs

    NASA Astrophysics Data System (ADS)

    van Berk, Wolfgang; Schulz, Hans-Martin

    2010-05-01

    Crude oil quality in reservoirs can be modified by degradation processes at oil-water contacts (OWC). Mineral phase assemblages, composition of coexisting pore water, and type and amount of hydrocarbon degradation products (HDP) are controlling factors in complex hydrogeochemical processes in hydrocarbon-bearing siliciclastic reservoirs, which have undergone different degrees of biodegradation. Moreover, the composition of coexisting gas (particularly CO2 partial pressure) results from different pathways of hydrogeochemical equilibration. In a first step we analysed recent and palaeo-OWCs in the Heidrun field. Anaerobic decomposition of oil components at the OWC resulted in the release of methane and carbon dioxide and subsequent dissolution of feldspars (anorthite and adularia) leading to the formation of secondary kaolinite and carbonate phases. Less intensively degraded hydrocarbons co-occur with calcite, whereas strongly degraded hydrocarbons co-occur with solid solution carbonate phase (siderite, magnesite, calcite) enriched in δ13C. To test such processes quantitatively in a second step, CO2 equilibria and mass transfers induced by organic-inorganic interactions have been hydrogeochemically modelled in different semi-generic scenarios with data from the Norwegian continental shelf (acc. Smith & Ehrenberg 1989). The model is based on chemical thermodynamics and includes irreversible reactions representing hydrolytic disproportionation of hydrocarbons according to Seewald's (2006) overall reaction (1a) which is additionally applied in our modelling work in an extended form including acetic acid (1b): (1) R-CH2-CH2-CH3 + 4H2O -> R + 2CO2 + CH4 + 5H2, (2) R-CH2-CH2-CH3 + 4H2O -> R + 1.9CO2 + 0.1CH3COOH + 0.9CH4 + 5H2. Equilibrating mineral assemblages (different feldspar types, quartz, kaolinite, calcite) are based on the observed primary reservoir composition at 72 °C. Modelled equilibration and coupled mass transfer were triggered by the addition and reaction of different amounts of HDP. Modelled CO2 partial pressure values in a multicomponent gas phase equilibrated with K-feldspar, quartz, kaolinite, and calcite resemble measured data. Similar CO2 contents result from acetic acid addition (eq. 1b). Equilibration with albite or anorthite reduces the release of CO2 into the multicomponent gas phase dramatically, by 1 or 4 orders of magnitude compared with the equilibration with K-feldspar (van Berk et al., 2009). Third and based on data by Ehrenberg & Jakobsen (2001), the effects of organic-inorganic interactions at OWCs in Brent Group reservoir sandstones from the Gullfaks Oilfield (offshore Norway) have been hydrogeochemically modelled. Observed local changes in mineral phase assemblage compositions (content of different feldspar types, kaolinite, carbonate) and CO2 partial pressures are attributed to varying degrees of oil-biodegradation (up to more than 10 %; Horstadt et al. 1992). Modelling results are congruent with observations and indicate that (i) intense dissolution of anorthite, (ii) less intense dissolution of albite, (iii) minor dissolution of K-feldspar, (iv) intense precipitation of kaolinite and quartz, (v) less intense precipitation of carbonate, and (vi) formation of CO2 partial pressures are driven by the release of HDP. References Ehrenberg SN & Jakobsen KG (2001) Plagioclase dissolution related to biodegradation of oil in Brent Group sandstones (Middle Jurassic) of Gullfaks Field, northern North Sea. Sedimentology, 48, 703-721. Smith JT & Ehrenberg SN (1989) Correlation of carbon dioxide abundance with temperature in clastic hydrocarbon reservoirs: relationship to inorganic chemical equilibrium. Marine and Petroleum Geology, 6, 129-135. Seewald JS (2003) Organic-inorganic interactions in petroleum-producing sedimentary basins. Nature, 426, 327-333. van Berk, W, Schulz, H-M & Fu, Y (2009) Hydrogeochemical modelling of CO2 equilibria and mass transfer induced by organic-inorganic interactions in siliciclastic petroleum reservoirs. Geofluids, 9, 253-262.

  8. 46 CFR 31.10-18 - Firefighting equipment: General-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... extinguishing agent is needed. Carbon dioxide Weigh cylinders. Recharge if weight loss exceeds 10 percent of... ascertain that the system is in good operating condition. For carbon dioxide or clean agent systems as... be tested with at least 50 pounds per square inch of air pressure or by blowing steam through the...

  9. 46 CFR 31.10-18 - Firefighting equipment: General-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... extinguishing agent is needed. Carbon dioxide Weigh cylinders. Recharge if weight loss exceeds 10 percent of... ascertain that the system is in good operating condition. For carbon dioxide or clean agent systems as... be tested with at least 50 pounds per square inch of air pressure or by blowing steam through the...

  10. 49 CFR Appendix B to Part 195 - Risk-Based Alternative to Pressure Testing Older Hazardous Liquid and Carbon Dioxide Pipelines

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) (Propane, butane, Natural Gas Liquid (NGL), ammonia) Highly toxic (Benzene, high Hydrogen Sulfide content... Hazardous Liquid and Carbon Dioxide Pipelines B Appendix B to Part 195 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pt. 195...

  11. 49 CFR Appendix B to Part 195 - Risk-Based Alternative to Pressure Testing Older Hazardous Liquid and Carbon Dioxide Pipelines

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) (Propane, butane, Natural Gas Liquid (NGL), ammonia) Highly toxic (Benzene, high Hydrogen Sulfide content... Hazardous Liquid and Carbon Dioxide Pipelines B Appendix B to Part 195 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pt. 195...

  12. 49 CFR Appendix B to Part 195 - Risk-Based Alternative to Pressure Testing Older Hazardous Liquid and Carbon Dioxide Pipelines

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) (Propane, butane, Natural Gas Liquid (NGL), ammonia) Highly toxic (Benzene, high Hydrogen Sulfide content... Hazardous Liquid and Carbon Dioxide Pipelines B Appendix B to Part 195 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pt. 195...

  13. 49 CFR Appendix B to Part 195 - Risk-Based Alternative to Pressure Testing Older Hazardous Liquid and Carbon Dioxide Pipelines

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) (Propane, butane, Natural Gas Liquid (NGL), ammonia) Highly toxic (Benzene, high Hydrogen Sulfide content... Hazardous Liquid and Carbon Dioxide Pipelines B Appendix B to Part 195 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pt. 195...

  14. 49 CFR Appendix B to Part 195 - Risk-Based Alternative to Pressure Testing Older Hazardous Liquid and Carbon Dioxide Pipelines

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) (Propane, butane, Natural Gas Liquid (NGL), ammonia) Highly toxic (Benzene, high Hydrogen Sulfide content... Hazardous Liquid and Carbon Dioxide Pipelines B Appendix B to Part 195 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pt. 195...

  15. Siphonic Concepts Examined: A Carbon Dioxide Gas Siphon and Siphons in Vacuum

    ERIC Educational Resources Information Center

    Ramette, Joshua J.; Ramette, Richard W.

    2011-01-01

    Misconceptions of siphon action include assumptions that intermolecular attractions play a key role and that siphons will operate in a vacuum. These are belied by the siphoning of gaseous carbon dioxide and behaviour of siphons under reduced pressure. These procedures are suitable for classroom demonstrations. The principles of siphon action are…

  16. Effects of Chamber Pressure and Partial Pressure of Water Vapor on Secondary Drying in Lyophilization.

    PubMed

    Searles, James A; Aravapalli, Sridhar; Hodge, Cody

    2017-10-01

    Secondary drying is the final step of lyophilization before stoppering, during which water is desorbed from the product to yield the final moisture content. We studied how chamber pressure and partial pressure of water vapor during this step affected the time course of water content of aqueous solutions of polyvinylpyrrolidone (PVP) in glass vials. The total chamber pressure had no effect when the partial pressure of water vapor was very low. However, when the vapor phase contained a substantial fraction of water vapor, the PVP moisture content was much higher. We carried out dynamic vapor sorption experiments (DVS) to demonstrate that the higher PVP moisture content was a straightforward result of the higher water vapor content in the lyophilizer. The results highlight that the partial pressure of water vapor is extremely important during secondary drying in lyophilization, and that lower chamber pressure set points for secondary drying may sometimes be justified as a strategy for ensuring low partial pressure of water vapor, especially for lyophilizers that do not inject dry gas to control pressure. These findings have direct application for process transfers/scale ups from freeze-dryers that do not inject dry gas for pressure control to those that do, and vice versa.

  17. Molecular dynamics studies of water deposition on hematite surfaces

    NASA Astrophysics Data System (ADS)

    Kvamme, Bjørn; Kuznetsova, Tatiana; Haynes, Martin

    2012-12-01

    The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decrease in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide to the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures which may lead to the formation of hydrate between residual water dissolved in carbon dioxide. The critical question is whether the water at some condition of temperature and pressure will drop out as liquid droplets or as water adsorbed on the surfaces of the pipeline and then subsequently form hydrates heterogeneously. In this work we have used the 6-311G basis set with B3LYP to estimate the charge distribution of different sizes of hematite crystals. The obtained surface charge distribution were kept unchanged while the inner charge distribution where scaled so as to result in an overall neutral crystal. These rust particles were embedded in water and chemical potential for adsorbed water molecules were estimated through thermodynamic integration and compared to similar estimates for same size water cluster. Estimated values of water chemical potentials indicate that it is thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based this sequence of processes.

  18. High-Temperature and Pressure Aluminum Reactions in Carbon Dioxide Rich Post-Detonation Environments

    NASA Astrophysics Data System (ADS)

    Tappan, Bryce; Manner, Virginia; Pemberton, Steven; Lieber, Mark; Johnson, Carl; Sanders, Eric

    2013-06-01

    Powdered aluminum is a common additive to energetic materials, but little is understood regarding its reaction rate at very high temperatures and pressures in specific oxidizing gases such as carbon dioxide. Aluminum reaction kinetics in carbon dioxide have been studied in various reaction conditions, but difficulties arise in the more specific study of Al oxidation at the high pressures and temperatures in detonation reactions. To study these reactions, small particle size Al or the inert surrogate, LiF, was added to the energetic material benzotrifuroxan (BTF). BTF is a hydrogen-free material that selectively forms CO2 as the major oxidizing species for post-detonation Al oxidation. High-fidelity PDV measurements were utilized for early wall velocity expansion measurements in 12.7 mm copper cylinders. The JWL equation of state was solved to determine temperature, pressure and energies at specific time periods. A genetic algorithm was used in conjunction with a numerical simulation hydrocode, ALE3D, which enables the elucidation of aluminum reaction extent. By comparison of the Al oxidation with LiF, data indicate that Al oxidation occurs on an extremely fast time scale, beginning and completing between 1 and 25 microseconds. Unconfined, 6.4 mm diameter rate-sticks were also utilized to determine the effect of Al compared to LiF on detonation velocity.

  19. High-temperature and pressure aluminum reactions in carbon dioxide rich post-detonation environments

    NASA Astrophysics Data System (ADS)

    Tappan, B. C.; Hill, L. G.; Manner, V. W.; Pemberton, S. J.; Lieber, M. A.; Johnson, C. E.; Sanders, V. E.

    2014-05-01

    Powdered aluminum is a common additive to energetic materials, but little is understood regarding its reaction rate at very high temperatures and pressures in specific oxidizing gases such as carbon dioxide. Aluminum reaction kinetics in carbon dioxide have been studied in various reaction conditions, but difficulties arise in the more specific study of Al oxidation at the high pressures and temperatures in detonation reactions. To study these reactions, small particle size Al or the inert surrogate, LiF, was added to the energetic material benzotrifuroxan (BTF). BTF is a hydrogen-free material that selectively forms CO2 as the major oxidizing species for post-detonation Al oxidation. High-fidelity PDV measurements were utilized for early wall velocity expansion measurements in 12.7 mm copper cylinders. The JWL equation of state was solved to determine temperature, pressure and energies at specific time periods. A genetic algorithm was used in conjunction with a numerical simulation hydrocode, ALE3D, which enables the elucidation of aluminum reaction extent. By comparison of the Al oxidation with LiF, data indicate that Al oxidation occurs on an extremely fast time scale, beginning and completing between 1 and 25 microseconds. Unconfined, 6.4 mm diameter rate-sticks were also utilized to determine the effect of Al compared to LiF on detonation velocity.

  20. Applying Chemical Potential and Partial Pressure Concepts to Understand the Spontaneous Mixing of Helium and Air in a Helium-Inflated Balloon

    ERIC Educational Resources Information Center

    Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim

    2005-01-01

    The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…

  1. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  2. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, Rama R.; Mericle, Gerald E.

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  3. Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid.

    PubMed

    Melo, Catarina I; Szczepańska, Anna; Bogel-Łukasik, Ewa; Nunes da Ponte, Manuel; Branco, Luís C

    2016-05-23

    The efficient transformation of carbon dioxide into fuels can be an excellent alternative to sequestration. In this work, we describe CO2 hydrogenation to methane in imidazolium-based ionic liquid media, using ruthenium nanoparticles prepared in situ as catalyst. The best yield of methane (69 %) was achieved using 0.24 mol % ruthenium catalyst (in [omim][NTf2 ], 1-octyl-3-methylimidazolium bistrifluoromethanesulfonylimide, at 40 bar of hydrogen pressure plus 40 bar of CO2 pressure, and at 150 °C. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Reproducibility of blood oxygen level-dependent signal changes with end-tidal carbon dioxide alterations.

    PubMed

    Dengel, Donald R; Evanoff, Nicholas G; Marlatt, Kara L; Geijer, Justin R; Mueller, Bryon A; Lim, Kelvin O

    2017-11-01

    Hypercapnia has been utilized as a stimulus to elicit changes in cerebral blood flow (CBF). However, in many instances it has been delivered in a non-controlled method that is often difficult to reproduce. The purpose of this study was to examine the within- and between-visit reproducibility of blood oxygen level-dependent (BOLD) signal changes to an iso-oxic square wave alteration in end-tidal carbon dioxide partial pressure (P et CO 2 ). Two 3-Tesla (3T) MRI scans were performed on the same visit, with two square wave alterations administered per scan. The protocol was repeated on a separate visit with minimum of 3 days between scanning sessions. P et CO 2 was altered to stimulate changes in cerebral vascular reactivity (CVR), while P et O 2 was held constant. Eleven subjects (six females; mean age 26·5 ± 5·7 years) completed the full testing protocol. Excellent within-visit square wave reproducibility (ICC > 0·75) was observed. Similarly, square waves were reproducible between scanning sessions (ICC > 0·7). This study demonstrates BOLD signal changes in response to alterations in P et CO 2 are reproducible both within- and between-visit MRI scans. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  5. Valve movement of three species of North American freshwater mussels exposed to elevated carbon dioxide.

    PubMed

    Hasler, Caleb T; Hannan, Kelly D; Jeffrey, Jennifer D; Suski, Cory D

    2017-06-01

    Freshwater mussels are at-risk taxa and may be exposed to high levels of carbon dioxide (CO 2 ) because of the potential use of CO 2 to control the movement of invasive aquatic fish species. One potential behavioral response to a change in the partial pressure of CO 2 (pCO 2 ) may be altered valve movement. In this study, three species of mussels were fitted with modified sensors and exposed to two regimes of pCO 2 to define thresholds of impaired valve movement. The first experiment demonstrated that Pyganodon grandis were much more tolerant to rising pCO 2 relative to Lampsilis siliquoidea (acute closure at ∼200,000 μatm in comparison to ∼80,000 μatm). The second experiment consisted of monitoring mussels for 6 days and exposing them to elevated pCO 2 (∼70,000 μatm) over a 2-day period. During exposure to high pCO 2 , Lampsilis cardium were open for nearly the entire high pCO 2 period. Conversely, P. grandis were closed for most of the period following exposure to high pCO 2 . For L. siliquoidea, the number of closures decreased nearly 40-fold during high pCO 2 . The valve movement responses observed suggest species differences, and exposure to elevated pCO 2 requires a reactive response.

  6. A carbon isotope challenge to the snowball Earth.

    PubMed

    Sansjofre, P; Ader, M; Trindade, R I F; Elie, M; Lyons, J; Cartigny, P; Nogueira, A C R

    2011-10-05

    The snowball Earth hypothesis postulates that the planet was entirely covered by ice for millions of years in the Neoproterozoic era, in a self-enhanced glaciation caused by the high albedo of the ice-covered planet. In a hard-snowball picture, the subsequent rapid unfreezing resulted from an ultra-greenhouse event attributed to the buildup of volcanic carbon dioxide (CO(2)) during glaciation. High partial pressures of atmospheric CO(2) (pCO2; from 20,000 to 90,000 p.p.m.v.) in the aftermath of the Marinoan glaciation (∼635 Myr ago) have been inferred from both boron and triple oxygen isotopes. These pCO2 values are 50 to 225 times higher than present-day levels. Here, we re-evaluate these estimates using paired carbon isotopic data for carbonate layers that cap Neoproterozoic glacial deposits and are considered to record post-glacial sea level rise. The new data reported here for Brazilian cap carbonates, together with previous ones for time-equivalent units, provide estimates lower than 3,200 p.p.m.v.--and possibly as low as the current value of ∼400 p.p.m.v. Our new constraint, and our re-interpretation of the boron and triple oxygen isotope data, provide a completely different picture of the late Neoproterozoic environment, with low atmospheric concentrations of carbon dioxide and oxygen that are inconsistent with a hard-snowball Earth.

  7. Vaporization chemistry of hypo-stoichiometric (U,Pu)O 2

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Krishnaiah, M. V.

    2001-04-01

    Calculations were performed on hypo-stoichiometric uranium plutonium di-oxide to examine its vaporization behavior as a function of O/ M ( M= U+ Pu) ratio and plutonium content. The phase U (1- y) Pu yO z was treated as an ideal solid solution of (1- y)UO 2+ yPuO (2- x) such that x=(2- z)/ y. Oxygen potentials for different desired values of y, z, and temperature were used as the primary input to calculate the corresponding partial pressures of various O-, U-, and Pu-bearing gaseous species. Relevant thermodynamic data for the solid phases UO 2 and PuO (2- x) , and the gaseous species were taken from the literature. Total vapor pressure varies with O/M and goes through a minimum. This minimum does not indicate a congruently vaporizing composition. Vaporization behavior of this system can at best be quasi-congruent. Two quasi-congruently vaporizing compositions (QCVCs) exist, representing the equalities (O/M) vapor=(O/M) mixed-oxide and (U/Pu) vapor=(U/Pu) mixed-oxide, respectively. The (O/M) corresponding to QCVC1 is lower than that corresponding to QCVC2, but very close to the value where vapor pressure minimum occurs. The O/M values of both QCVCs increase with decrease in plutonium content. The vaporization chemistry of this system, on continuous vaporization under dynamic condition, is discussed.

  8. 46 CFR 95.15-1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems,” i. e., those in which the carbon...

  9. Central Sleep Apnea with Cheyne-Stokes Breathing in Heart Failure - From Research to Clinical Practice and Beyond.

    PubMed

    Terziyski, K; Draganova, A

    2018-01-01

    Characterized by periodic crescendo-decrescendo pattern of breathing alternating with central apneas, Central sleep apnea (CSA) with Cheyne-Stokes Breathing represents a highly prevalent, yet underdiagnosed comorbidity in chronic heart failure (CHF). A diverse body of evidence demonstrates increased morbidity and mortality in the presence of CSB. CSB has been described in both CHF patients with preserved and reduced ejection fraction, regardless of drug treatment. Risk factors for CSB are older age, male gender, high BMI, atrial fibrillation and hypocapnia.The pathophysiology of CSB has been explained by the loop gain theory, where a controller (the respiratory center) and a plant (the lungs) are operating in a reciprocal relationship (negative feedback) to regulate a key parameter (partial pressure of carbon dioxide (pCO 2 )). The temporal interaction between these elements is dependent on the circulatory delay. Increased chemosensitivity/chemoresponsiveness of the respiratory center and/or augmented ascending non- CO 2 stimuli from the C-fibers in the lungs (interstitial pulmonary edema), overly efficient ventilation when breathing at low volumes and prolonged circulation time are involved. An alternative hypothesis of CSB being an adaptive response of the failing heart has its merits as well. The clinical manifestation of CSB is usually poor, lacking striking symptoms and complaints. Witnessed apneas and snoring are infrequently reported by the sleep partner. Sometimes patients may report poor sleep quality with frequent awakenings, paroxysmal nocturnal dyspnea and frequent urination at night. Standard instrumental and laboratory studies, performed in CHF patients, may present clues to the presence of CSB. Concentric remodeling of the left ventricle and dilated left atrium (echocardiography), high BNP and C-reactive protein levels, increased ventilation-carbon dioxide output (VEVCO 2 ) and lower end-tidal CO 2 (cardiopulmonary exercise testing), reduced diffusion capacity (pulmonary function testing) and hypocapnia (blood-gas analysis) may indicate the presence of CSB.CSB and cardiovascular disease are probably linked through bidirectional causality. Cyclic variations in heart rate, blood pressure, respiratory volume, partial pressure of arterial oxygen (pO 2 ) and pCO 2 lead to sympathetic-adrenal activation. The latter worsens ventricular energetism and survival of cardiomyocytes and exerts antiarhythmogenic effects. It causes cardiac remodeling, potentiating the progression and the lethal outcome in CHF patients. Several treatment modalities have been proposed in CSB. The most commonly used are continuous positive airway pressure (CPAP), adaptive servoventilation (ASV) and nocturnal home oxygen therapy (HOT). Novel therapies like nocturnal supplemental CO 2 and phrenic nerve stimulation are being tested recently. The current treatment recommendations (by the American Academy of Sleep Medicine) are for CPAP and HOT as standard therapies, while ASV is an option only in patients with EF > 45%. BPAP (bilevel device) remains an option only when there is no adequate response to previous modes of treatment. Acetazolamide and theophylline are options only after failing the above modalities and if accompanied by a close follow-up.

  10. Novel high-pressure phase of ZrO{sub 2}: An ab initio prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durandurdu, Murat, E-mail: murat.durandurdu@agu.edu.tr

    2015-10-15

    The high-pressure behavior of the orthorhombic cotunnite type ZrO{sub 2} is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni{sub 2}In type) within P6{sub 3}/mmc symmetry is predicted through the simulation. The Ni{sub 2}In type crystal is the densest high-pressure phase of ZrO{sub 2} proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni{sub 2}In type hexagonal phase forms in zirconia atmore » high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO{sub 2} through an ab initio simulation. • Cotunnite ZrO{sub 2} adopts the Ni{sub 2}In type structure at high pressure. • The Ni{sub 2}In type structure is the densest high-pressure phase of ZrO{sub 2} proposed so far. • The preferred mechanism in ZrO{sub 2} differs from the other metal dioxides.« less

  11. Thermal design of a Mars oxygen production plant

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Iyer, Venkatesh A.

    1991-01-01

    The optimal design of the thermal components of a system that uses carbon dioxide from the Martian atmosphere to produce oxygen for spacecraft propulsion and/or life support is discussed. The gases are pressurized, heated and passed through an electrochemical cell. Carbon dioxide is reduced to carbon monoxide and oxygen due to thermal dissociation and electrocatalysis. The oxygen thus formed is separated from the gas mixture by the electrochemical cell. The objective of the design is to optimize both the overall mass and the power consumption of the system. The analysis shows that at electrochemical cell efficiencies of about 50 percent and lower, the optimal system would require unspent carbon dioxide in the exhaust gases to be separated and recycled. Various methods of efficiently compressing the intake gases to system pressures of 0.1 MPa are investigated. The total power requirement for oxygen production rates of 1, 5, and 10 kg/day at various cell efficiencies are presented.

  12. Numerical investigation on the expansion of supercritical carbon dioxide jet

    NASA Astrophysics Data System (ADS)

    Lv, Q.; Long, X. P.; Kang, Y.; Xiao, L. Z.; Wu, W.

    2013-12-01

    Supercritical carbon dioxide (SC-CO2) fluid is characterized by low rock breaking threshold pressure and high rock breaking rate. Meanwhile, SC-CO2 fluid has relatively low viscosity near to gas and high density near to liquid. So, it has great advantages in drilling and rock breaking over water. In this paper, numerical study of SC-CO2 flowing through a nozzle is presented. The purpose of this simulation is to ascertain why the SC-CO2 jet flow has better ability in drilling and rock breaking than the water jet flow. The simulation model was controlled by the RANS equations together with the continuity equation as well as the energy equation. The realizable k-epsilon turbulence model was adopted to govern the turbulent characteristics. Pressure boundary conditions were applied to the inlet and outlet boundary. The properties of carbon dioxide and water were described by UDF. It is found that: (1) under the same boundary conditions, the decay of dimensionless central axial velocity and dynamic pressure of water is quicker than that of the SC-CO2, and the core length of SC-CO2 jet is about 4.5 times of the nozzle diameter, which is 1 times longer than that of the water; (2) With the increase of inlet pressure or the decrease of outlet pressure, the dimensionless central axial velocity and dynamic pressure attenuation of water keeps the same, while the decay of central axial velocity of SC-CO2 turns gentle; (3) the change of central axial temperature of SC-CO2 is more complex than that of the water.

  13. A review of the contrasting behavior of two magmatic volatiles: Chlorine and carbon dioxide

    USGS Publications Warehouse

    Lowenstern, J. B.

    2000-01-01

    Chlorine (Cl) and carbon dioxide (CO2) are common magmatic volatiles with contrasting behaviors. CO2 solubility increases with pressure whereas Cl solubility shows relatively little pressure or temperature effect. CO2 speciation changes with silicate melt composition, dissolving as carbonate in basaltic magmas and molecular CO2 in more silicic compositions. In H2O-bearing systems, the strongly non-ideal behavior of alkali chlorides causes unmixing of the volatile phase to form a H2O-rich vapor and a hydrosaline phase with important implications for the maximum concentration of Cl in magmas. Addition of CO2 to magma hastens immiscibility at crustal pressures (<500 MPa), inducing the formation of CO2-rich vapors and Cl-rich hydrosaline melts. (C) 2000 Elsevier Science B.V. All rights reserved.Chlorine (Cl) and carbon dioxide (CO2) are common magmatic volatiles with contrasting behaviors. CO2 solubility increases with pressure whereas Cl solubility shows relatively little pressure or temperature effect. CO2 speciation changes with silicate melt composition, dissolving as carbonate in basaltic magmas and molecular CO2 in more silicic compositions. In H2O-bearing systems, the strongly non-ideal behavior of alkali chlorides causes unmixing of the volatile phase to form a H2O-rich vapor and a hydrosaline phase with important implications for the maximum concentration of Cl in magmas. Addition of CO2 to magma hastens immiscibility at crustal pressures (<500 MPa), inducing the formation of CO2-rich vapors and Cl-rich hydrosaline melts.

  14. The Effect of Varying Atmospheric Pressure upon Habitability and Biosignatures of Earth-like Planets.

    PubMed

    Keles, Engin; Grenfell, John Lee; Godolt, Mareike; Stracke, Barbara; Rauer, Heike

    2018-02-01

    Understanding the possible climatic conditions on rocky extrasolar planets, and thereby their potential habitability, is one of the major subjects of exoplanet research. Determining how the climate, as well as potential atmospheric biosignatures, changes under different conditions is a key aspect when studying Earth-like exoplanets. One important property is the atmospheric mass, hence pressure and its influence on the climatic conditions. Therefore, the aim of the present study is to understand the influence of atmospheric mass on climate, hence habitability, and the spectral appearance of planets with Earth-like, that is, N 2 -O 2 dominated, atmospheres orbiting the Sun at 1 AU. This work utilizes a 1D coupled, cloud-free, climate-photochemical atmospheric column model; varies atmospheric surface pressure from 0.5 to 30 bar; and investigates temperature and key species profiles, as well as emission and brightness temperature spectra in a range between 2 and 20 μm. Increasing the surface pressure up to 4 bar leads to an increase in the surface temperature due to increased greenhouse warming. Above this point, Rayleigh scattering dominates, and the surface temperature decreases, reaching surface temperatures below 273 K (approximately at ∼34 bar surface pressure). For ozone, nitrous oxide, water, methane, and carbon dioxide, the spectral response either increases with surface temperature or pressure depending on the species. Masking effects occur, for example, for the bands of the biosignatures ozone and nitrous oxide by carbon dioxide, which could be visible in low carbon dioxide atmospheres. Key Words: Planetary habitability and biosignatures-Atmospheres-Radiative transfer. Astrobiology 18, 116-132.

  15. Factors to inform clinicians about the end of life in severe chronic obstructive pulmonary disease.

    PubMed

    Benzo, Roberto; Siemion, Wendy; Novotny, Paul; Sternberg, Alice; Kaplan, Robert M; Ries, Andrew; Wise, Robert; Martinez, Fernando; Utz, James; Sciurba, Frank

    2013-10-01

    Palliative services have historically been offered to terminal patients with cancer, but much less so in other chronic illnesses such as chronic obstructive pulmonary disease (COPD) because of difficulties in predicting the trajectory to death. The goal of this study was to determine if the change over time of the key parameters (trajectory) in patients with severe COPD can independently predict short-term mortality. We analyzed data from 1218 patients with severe COPD. Multivariate models for trajectory change were used to forecast mortality at 12 months. Changes in several variables by defined cutpoints increase significantly and independently the odds of dying in 12 months. The earliest and strongest predictors were the decrease in gait speed by 0.14 m/s or six-minute walk by 50 m (odds ratio [OR] 4.40, P<0.0001). Alternatively, if six-minute walk or gait speed were not used, change toward perceiving a very sedentary state using a single question (OR 3.56, P=0.0007) and decrease in maximal inspiratory pressure greater than 11 cmH2O (OR 2.19, P=0.0217) were predictive, followed by change toward feeling upset or downhearted (OR 2.44, P=0.0250), decrease in room air resting partial pressure of oxygen greater than 5 mmHg (OR 2.46, P=0.0156), and increase in room air resting partial pressure of carbon dioxide greater than 3 mmHg (OR 2.8, P=0.0039). Change over time models were more discriminative (higher c-statistics) than change from baseline models. The changes in defined variables and patient-reported outcomes by defined cutpoints were independently associated with increased 12-month mortality in patients with severe COPD. These results may inform clinicians when to initiate end-of-life communications and palliative care. Copyright © 2013 U.S. Cancer Pain Relief Committee. All rights reserved.

  16. Structural, mechanical, electrical and wetting properties of ZrNx films deposited by Ar/N2 vacuum arc discharge: Effect of nitrogen partial pressure

    NASA Astrophysics Data System (ADS)

    Abdallah, B.; Naddaf, M.; A-Kharroub, M.

    2013-03-01

    Non-stiochiometric zirconium nitride (ZrNx) thin films have been deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures at different N2 partial pressure ratio. The microstructure, mechanical, electrical and wetting properties of these films are studied by means of X-ray diffraction (XRD), micro-Raman spectroscopy, Rutherford back scattering (RBS) technique, conventional micro-hardness testing, electrical resistivity, atomic force microscopy (AFM) and contact angle (CA) measurements. RBS results and analysis show that the (N/Zr) ratio in the film increases with increasing the N2 partial pressure. A ZrNx film with (Zr/N) ratio in the vicinity of stoichiometric ZrN is obtained at N2 partial pressure of 10%. XRD and Raman results indicate that all deposited films have strained cubic crystal phase of ZrN, regardless of the N2 partial pressure. On increasing the N2 partial pressure, the relative intensity of (1 1 1) orientation with respect to (2 0 0) orientation is seen to decrease. The effect of N2 partial pressure on micro-hardness and the resistivity of the deposited film is revealed and correlated to the alteration of grain size, crystallographic texture, stoichiometry and residual stress developed in the film. In particular, it is found that residual stress and nitrogen incorporation in the film play crucial role in the alteration of micro-hardness and resistivity respectively. In addition, CA and AFM results demonstrate that as N2 partial pressure increases, both the surface hydrophobicity and roughness of the deposited film increase, leading to a significant decrease in the film surface free energy (SFE).

  17. Effect of methane partial pressure on the performance of a membrane biofilm reactor coupling methane-dependent denitrification and anammox.

    PubMed

    Cai, Chen; Hu, Shihu; Chen, Xueming; Ni, Bing-Jie; Pu, Jiaoyang; Yuan, Zhiguo

    2018-10-15

    Complete nitrogen removal has recently been demonstrated by integrating anaerobic ammonium oxidation (anammox) and denitrifying anaerobic methane oxidation (DAMO) processes. In this work, the effect of methane partial pressure on the performance of a membrane biofilm reactor (MBfR) consisting of DAMO and anammox microorganisms was evaluated. The activities of DAMO archaea and DAMO bacteria in the biofilm increased significantly with increased methane partial pressure, from 367 ± 9 and 58 ± 22 mg-N L -1 d -1 to 580 ± 12 and 222 ± 22 mg-N L -1 d -1 , respectively, while the activity of anammox bacteria only increased slightly, when the methane partial pressure was elevated from 0.24 to 1.39 atm in the short-term batch tests. The results were supported by a long-term (seven weeks) continuous test, when the methane partial pressure was dropped from 1.39 to 0.78 atm. The methane utilization efficiency was always above 96% during both short-term and long-term tests. Taken together, nitrogen removal rate (especially the nitrate reduction rate by DAMO archaea) and methane utilization efficiency could be maintained at high levels in a broad range of methane partial pressure (0.24-1.39 atm in this study). In addition, a previously established DAMO/anammox biofilm model was used to analyze the experimental data. The observed impacts of methane partial pressure on biofilm activity were well explained by the modeling results. These results suggest that methane partial pressure can potentially be used as a manipulated variable to control reaction rates, ultimately to maintain high nitrogen removal efficiency, according to nitrogen loading rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. 46 CFR 193.15-1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this subpart are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems,” i.e., those in which the...

  19. Contribution of water vapor pressure to pressurization of plutonium dioxide storage containers

    NASA Astrophysics Data System (ADS)

    Veirs, D. Kirk; Morris, John S.; Spearing, Dane R.

    2000-07-01

    Pressurization of long-term storage containers filled with materials meeting the US DOE storage standard is of concern.1,2 For example, temperatures within storage containers packaged according to the standard and contained in 9975 shipping packages that are stored in full view of the sun can reach internal temperatures of 250 °C.3 Twenty five grams of water (0.5 wt.%) at 250 °C in the storage container with no other material present would result in a pressure of 412 psia, which is limited by the amount of water. The pressure due to the water can be substantially reduced due to interactions with the stored material. Studies of the adsorption of water by PuO2 and surface interactions of water with PuO2 show that adsorption of 0.5 wt.% of water is feasible under many conditions and probable under high humidity conditions.4,5,6 However, no data are available on the vapor pressure of water over plutonium dioxide containing materials that have been exposed to water.

  20. Isoprene/methyl acrylate Diels-Alder reaction in supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, B.; Akgerman, A.

    1999-12-01

    The Diels-Alder reaction between isoprene and methyl acrylate was carried out in supercritical carbon dioxide in the temperature range 110--140 C and the pressure range 95.2--176.9 atm in a 300 cm{sup 3} autoclave. The high-pressure phase behavior of the reaction mixture in the vicinity of its critical region was determined in a mixed vessel with a sight window to ensure that all the experiments were performed in the supercritical single-phase region. Kinetic data were obtained at different temperatures, pressures, and reaction times. It was observed that in the vicinity of the critical point the reaction rate constant decreases with increasingmore » pressure. It was also determined that the reaction selectivity does not change with operating conditions. Transition-state theory was used to explain the effect of pressure on reaction rate and product selectivity. Additional experiments were conducted at constant temperature but different phase behaviors (two-phase region, liquid phase, supercritical phase) by adjusting the initial composition and pressure. It was shown that the highest reaction rate is in the supercritical region.« less

  1. METHOD OF FORMING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Layer, E.H. Jr.; Peet, C.S.

    1962-01-23

    A method is given for preparing a fuel element for a nuclear reactor. The method includes the steps of sandblasting a body of uranium dioxide to roughen the surface thereof, depositing a thin layer of carbon thereon by thermal decomposition of methane, and cladding the uranium dioxide body with zirconium by gas pressure bonding. (AEC)

  2. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deo, Milind D.

    2002-02-21

    This project was undertaken to understand fundamental aspects of carbon dioxide (CO2) induced asphaltene precipitation. Oil and asphaltene samples from the Rangely field in Colorado were used for most of the project. The project consisted of pure component and high-pressure, thermodynamic experiments, thermodynamic modeling, kinetic experiments and modeling, targeted corefloods and compositional modeling.

  3. Comparing (Semi-) Analytic Solutions Used to Model the Impact of Deep Carbon Injection on the Displacement and Pressurization of the Resident Brine

    EPA Science Inventory

    Injection of carbon dioxide into deep saline formations is seen as one possible technology for mitigating carbon emissions from utilities. The safety of the sequestered carbon dioxide is the focus of many studies with leakage through faults or abandoned wells as some of the main...

  4. Shock-tube thermochemistry tables for high-temperature gases. Volume 5: Carbon dioxide

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Horton, T. E.

    1971-01-01

    Equilibrium thermodynamic properties and species concentrations for carbon dioxide are tabulated for moving, standing, and reflected shock waves. Initial pressures range from 6.665 to 6665 N/sq m (0.05 to 50.0 torr), and temperatures from 2,000 to over 80,000K. In this study, 20 molecular and atomic species were considered.

  5. SEMICONDUCTOR TECHNOLOGY Supercritical carbon dioxide process for releasing stuck cantilever beams

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Chaoqun, Gao; Lei, Wang; Yupeng, Jing

    2010-10-01

    The multi-SCCO2 (supercritical carbon dioxide) release and dry process based on our specialized SCCO2 semiconductor process equipment is investigated and the releasing mechanism is discussed. The experiment results show that stuck cantilever beams were held up again under SCCO2 high pressure treatment and the repeatability of this process is nearly 100%.

  6. Video-Assisted Thoracoscopic Resection of a Noninvasive Thymoma in a Cat with Myasthenia Gravis Using Low-Pressure Carbon Dioxide Insufflation.

    PubMed

    Griffin, Maureen A; Sutton, Jessie S; Hunt, Geraldine B; Pypendop, Bruno H; Mayhew, Philipp D

    2016-11-01

    To report the use of low-pressure carbon dioxide insufflation during video-assisted thoracoscopic surgery for resection of a noninvasive thymoma in a cat with secondary myasthenia gravis. Clinical case report. Client-owned cat. An 11-year-old castrated male domestic shorthair cat was examined for generalized weakness, voice change, hypersalivation, hyporexia, vomiting, coughing, and gagging. Thoracic ultrasound revealed a cranial mediastinal mass for which cytology was consistent with a thymoma (or lymphoid tissue). Acetylcholine receptor antibody concentration was elevated at 3.16 mmol/L (reference interval < 0.3 mmol/L). Thoracic computed tomography showed two round, contrast-enhancing structures in the cranioventral mediastinum identified as the sternal lymph node and a cranial mediastinal mass (11 × 17 × 24 mm). A presumptive diagnosis of thymoma with paraneoplastic myasthenia gravis was made and surgical resection of both mediastinal masses was recommended. Video-assisted thoracoscopic resection of the cranial mediastinal mass and sternal lymph node were performed with low-pressure carbon dioxide insufflation maintained at an intrathoracic pressure of 2-3 mmHg. The cat recovered from surgery without serious complications. Nineteen months after surgery, the cat developed hind limb stiffness. Thoracic radiographs ruled out a cranial mediastinal mass or megaesophagus. Acetylcholine receptor antibody concentration remained elevated at 2.72 mmol/L. Low-pressure thoracic insufflation facilitated video-assisted thoracoscopic resection of cranial mediastinal masses in this cat. © Copyright 2016 by The American College of Veterinary Surgeons.

  7. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    NASA Technical Reports Server (NTRS)

    Abney, Morgan; Miller, Lee; Greenwood, Zach; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported.

  8. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Greenwood, Zachary; Miller, Lee A.; Alvarez, Giraldo; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported

  9. Hydro-isomerization of n-hexane on bi-functional catalyst: Effect of total and hydrogen partial pressures

    NASA Astrophysics Data System (ADS)

    Thoa, Dao Thi Kim; Loc, Luu Cam

    2017-09-01

    The effect of both total pressure and hydrogen partial pressure during n-hexane hydro-isomerization over platinum impregnated on HZSM-5 was studied. n-Hexane hydro-isomerization was conducted at atmospheric pressure and 0.7 MPa to observe the influence of total pressure. In order to see the effect of hydrogen partial pressure, the reaction was taken place at different partial pressure of hydrogen varied from 307 hPa to 718 hPa by dilution with nitrogen to keep the total pressure at 0.1 MPa. Physico-chemical characteristics of catalyst were determined by the methods of nitrogen physi-sorption BET, SEM, XRD, TEM, NH3-TPD, TPR, and Hydrogen Pulse Chemi-sorption. Activity of catalyst in the hydro-isomerization of n-hexane was studied in a micro-flow reactor in the temperature range of 225-325 °C; the molar ratio H2/ hydrocarbon: 5.92, concentration of n-hexane: 9.2 mol.%, GHSV 2698 h-1. The obtained catalyst expressed high acid density, good reducing property, high metal dispersion, and good balance between metallic and acidic sites. It is excellent contact for n-hexane hydro-isomerization. At 250 °C, n-hexane conversion and selectivity were as high as 59-76 % and 85-99 %, respectively. It was found that catalytic activity was promoted either by total pressure or hydrogen partial pressure. At total pressure of 0.7 MPa while hydrogen partial pressure of 718 hPa, catalyst produced 63 RON liquid product containing friendly environmental iso-paraffins which is superior blending stock for green gasoline. Hydrogen did not only preserve catalyst actives by depressing hydrocracking and removing coke precursors but also facilitated hydride transfer step in the bi-functional bi-molecular mechanism.

  10. Pressure Effects on Oxygen Concentration Flammability Thresholds of Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2006-01-01

    Spacecraft materials selection is based on an upward flammability test conducted in a quiescent environment in the highest-expected oxygen-concentration environment. However, NASA s advanced space exploration program is anticipating using various habitable environments. Because limited data is available to support current program requirements, a different test logic is suggested to address these expanded atmospheric environments through the determination of materials self-extinguishment limits. This paper provides additional pressure effects data on oxygen concentration and partial pressure self-extinguishment limits under quiescent conditions. For the range of total pressures tested, the oxygen concentration and oxygen partial pressure flammability thresholds show a near linear function of total pressure. The oxygen concentration/oxygen partial pressure flammability thresholds depend on the total pressure and appear to increase with increasing oxygen concentration (and oxygen partial pressure). For the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk because of oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats.

  11. Carbon Dioxide Absorption Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  12. Carbon Dioxide Adsorption on a 5A Zeolite Designed for CO2 Removal in Spacecraft Cabins

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Finn, John E.

    1998-01-01

    Carbon dioxide adsorption data were obtained for a 5A zeolite manufactured by AlliedSignal Inc. (Des Plaines, Illinois). The material is planned for use in the Carbon Dioxide Removal Assembly (CDRA) for U.S. elements of the International Space Station. The family of adsorption isotherms covers a temperature range of O to 250 C, and a pressure range of 0.001 to 800 torr. Coefficients of the Toth equation are fit to the data. Isosteric heats of adsorption are derived from the equilibrium loading data.

  13. Toxicity of Nitrogen Dioxide: An Introduction

    DTIC Science & Technology

    1994-01-01

    3- A q t 19794 ( Final. NIA 4. TITLE AND SUTCLEt1 5 9FUNDING NUM8(RS ’ Toxicity of nitrogen dioxide: an introduction SJ6. AUTHOR(S) NabilI M. Elsayed...limited interest in the toxicity of high-level exposures, and partly due to the public pressure and interest to study the effects of low...2e0-5500 Star’dara :orm 298 (Rev .-89) - - ’• - .•*" ,y ’ S~iO~COMS E L SEVIER Toxicology 89 (19;4) 161-174 Toxicity of nitrogen dioxide: an

  14. Direct Carboxylation of the Diazo Group ipso-C(sp2)-H bond with Carbon Dioxide: Access to Unsymmetrical Diazomalonates and Derivatives.

    PubMed

    Liu, Qianyi; Li, Man; Xiong, Rui; Mo, Fanyang

    2017-12-15

    The direct carboxylation of the ipso-C(sp 2 )-H bond of a diazo compound with carbon dioxide under mild reaction conditions is described. This method is transition-metal-free, uses a weak base, and proceeds at ambient temperature under atmospheric pressure in carbon dioxide. The carboxylation exhibits high reactivity and is amenable to subsequent diversification. A series of unsymmetrical 1,3-diester/keto/amide diazo compounds are obtained with moderate to excellent yields (up to 99%) with good functional group compatibility.

  15. Method and apparatus for monitoring oxygen partial pressure in air masks

    NASA Technical Reports Server (NTRS)

    Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)

    2006-01-01

    Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.

  16. Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films

    NASA Astrophysics Data System (ADS)

    Cheemadan, Saheer; Santhosh Kumar, M. C.

    2018-04-01

    Nickel oxide (NiO) thin films were deposited by RF sputtering process and the physical properties were investigated for varying substrate temperatures and oxygen partial pressure. The variation of the crystallographic orientation and microstructure of the NiO thin films with an increase in substrate temperature were studied. It was observed that NiO thin films deposited at 350 °C shows relatively good crystalline characteristics with a preferential orientation along (111) plane. With the optimum substrate temperature of 350 °C, the NiO thin films were deposited under various oxygen partial pressures at the same experimental conditions. The structural, optical and electrical properties of NiO thin films under varying oxygen partial pressure of 10%–50% were investigated. From XRD it is clear that the films prepared in the pure argon atmosphere were amorphous while the films in oxygen partial pressure exhibited polycrystalline NiO phase. SEM and AFM investigations unveil that the higher substrate temperature improves the microstructure of the thin films. It is revealed that the NiO thin films deposited at oxygen partial pressure of 40% and a substrate temperature of 350 °C, showed higher electrical conductivity with p-type characteristics.

  17. Characterization of solid fuels at pressurized fluidized bed gasification conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevenhoven, R.; Hupa, M.

    1998-07-01

    The gasification of co-gasification of solid fuel (coal, peat, wood) in air-blown fluidized bed gasifiers is receiving continued attention as an alternative to entrained flow gasifiers which in general are oxygen-blown. Fluidized bed gasification of wood and wood-waste at elevated pressures, and the so-called air-blown gasification cycle are examples of processes which are under development in Europe. based on complete or partial gasification of a solid fuel in a pressurized fluidized bed. At the same time, fuel characterization data for the combination of temperature, pressure and fuel particle heating rate that is encountered in fluidized bed gasification are very scarce.more » In this paper, quantitative data on the characterization of fuels for advanced combustion and gasification technologies based on fluidized beds are given, as a result from the authors participation in the JOULE 2 extension project on clean coal technology of the European community. Eleven solid fuels, ranging from coal via peat to wood, have been studied under typical fluidized bed gasification conditions: 800--1,000 C, 1--25 bar, fuel heating rate in the order of 100--1,000 C/s. Carbon dioxide was used as gasifying agent. A pressurized thermogravimetric reactor was used for the experiments. The results show that the solid residue yield after pyrolysis/devolatilization increases with pressure and decreases with temperature. For coal, the gasification reactivity of the char increases by a factor of 3 to 4 when pressurizing from 1 to 25 bar, for the younger fuels such as peat and wood, this effect is negligible. Several empirical engineering equations are given which relate the fuel performance to the process parameters and the proximate and chemical analyses of the fuel. A pressure maximum was found at which a maximum gasification reactivity occurs, for practically all fuels, and depending on temperature. It is shown that this can be explained and modeled using a Langmuir-Hinshelwood model.« less

  18. Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors

    NASA Astrophysics Data System (ADS)

    Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre

    2018-03-01

    NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.

  19. [Effects of gap junction blocking on the oxygen partial pressure in acupoints of the bladder meridian].

    PubMed

    Wang, Qi; Yu, Wei-Chang; Jiang, Hong-Zhi; Chen, Sheng-Li; Zhang, Ming-Min; Kong, E-Sheng; Huang, Guang-Ying

    2010-12-01

    To explore the relation between gap junction and meridian phenomenon. The oxygen partial pressure in acupoints [see text for formula] and in their corresponding non-acupoints of the Bladder Meridian was observed with the needle-type tissue oxygen tension sensor in the gap junction blocking goats by 1-Heptanol injection and the Connexin 43 (Cx43) gene knockout mice. (1) The oxygen partial pressure in acupoints of Bladder Meridian on goats was higher than that in non-acupoints after 1-Heptanol injection with significant differences between them (both P < 0.01). (2) The oxygen partial pressure in acupoints of Bladder Meridian on goats increased significantly after injecting 1-Heptanol as compare with that either injecting normal saline or injecting nothing with significant differences between them (all P < 0.01). (3) The oxygen partial pressure in acupoints of the Bladder Meridian was significantly higher than that in the non-acupoint controls in Cx43 wild type (WT) mice (all P < 0.01). In Cx43 heterozygote (HT) mice, the oxygen partial pressure between acupoints and non-acupoint controls showed no significant differences (all P > 0.05). (4) In acupoints, the oxygen partial pressure in Cx43 WT mice was significantly higher than that in Cx43 HT mice (all P < 0.05), while in the corresponding non-acupoints, this difference had no statistically significant (all P > 0.05). Gap junction maybe the essential factor in signal transduction of acupuncture.

  20. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

Top