Science.gov

Sample records for dioxide trace gases

  1. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  2. Carbon dioxide Information Analysis Center and World Data Center: A for Atmospheric trace gases. Annual progress report, FY 1994

    SciTech Connect

    Burtis, M.D.; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.R.; Stoss, F.W.

    1995-03-01

    This report summarizes the activities and accomplishments made by the Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases during the fiscal year 1994. Topics discussed in this report include; organization and staff, user services, systems, communications, Collaborative efforts with China, networking, ocean data and activities of the World Data Center-A.

  3. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report

    SciTech Connect

    Cushman, R.M.

    2003-08-28

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  4. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report

    SciTech Connect

    Cushman, R.M.

    2001-11-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  5. Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities

    SciTech Connect

    Cushman, R.M.; Stoss, F.W. |

    1994-01-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provide technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also presented.

  6. Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antarctica

    NASA Astrophysics Data System (ADS)

    Kyle, Philip R.; Meeker, Kimberley; Finnegan, David

    1990-11-01

    SO2 emission rates have been measured annually since 1983 at Mount Erebus, Antarctica by correlation spectrometer (COSPEC V). Following a 4 month period of sustained strombolian activity in late 1984, SO2 emissions declined from 230 Mg/day in 1983 to 25 Mg/day and then slowly increased from 16 Mg/day in 1985 to 51 Mg/day in 1987. Nine sets of filter packs containing particle and (Li-7)OH treated filters were collected in the plume in 1986 and analyzed by neutron activation. Using the COSPEC data and measured element/S ratios on the filters, emission rates have been determined for trace gases and metals. HCl and HF emissions in 1983 are inferred to be about 1200 and 500 Mg/day, respectively. Mt. Erebus has therefore been an important source of halogens to the Antarctic atmosphere and could be responsible for excess Cl found in central Antarctica snow.

  7. Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antartica

    SciTech Connect

    Kyle, P.R.; Meeker, K. ); Finnegan, D. )

    1990-11-01

    SO{sub 2} emission rates have been measured annually since 1983 at Mount Erebus, Antarctica by correlation spectrometer (COSPEC V). Following a 4 month period of sustained strombolian activity in late 1984, SO{sub 2} emissions declined from 230 Mg/day in 1983 to 25 Mg/day and then slowly increased from 16 Mg/day in 1985 to 51 Mg/day in 1987. Nine sets of filter packs containing partcle and {sup 7}LiOH treated filters were collected in the plume in 1986 and analyzed by neutron activation. Using the COSPEC data and measured element/S ratios on the filters, emission rates have been determined for trace gases and metals. The authors infer HCl and HF emissions in 1983 to be about 1200 and 500 Mg/day, respectively. Mt Erebus has therefore been an important source of halogens to the Anarctic atmosphere and could be responsible for excess Cl found in Central Antarctica snow.

  8. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 1999 Annual Report

    SciTech Connect

    Cushman, R.M.

    2000-03-31

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global-change data and information analysis center of the Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has--since its inception in 1982--enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea level. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Acting Director) of DOE's Office of Biological and Environmental Research. CDIAC's FY 1999 budget was 2.2M dollars. CDIAC represents the DOE in the multi-agency Global Change Data and Information System. Bobbi Parra, and Wanda Ferrell on an interim basis, is DOE's Program Manager with responsibility for CDIAC. CDIAC comprises three groups, Global Change Data, Computer Systems, and Information

  9. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2001 Annual Report

    SciTech Connect

    Cushman, R.M.

    2002-10-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on climate and vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Director) of DOE's Office of Biological and Environmental Research. CDIAC represents DOE in the multi-agency Global Change Data and Information System (GCDIS). Wanda Ferrell is DOE's Program Manager with overall responsibility for CDIAC. Roger Dahlman is responsible for CDIAC's AmeriFlux tasks, and Anna Palmisano for CDIAC's Ocean Data tasks. CDIAC is made up of three groups: Data

  10. An improved back-flush-to-vent gas chromatographic method for determination of trace permanent gases and carbon dioxide in ultra-high purity ammonia.

    PubMed

    Trubyanov, Maxim M; Mochalov, Georgy M; Vorotyntsev, Ilya V; Vorotyntsev, Andrey V; Suvorov, Sergey S; Smirnov, Konstantin Y; Vorotyntsev, Vladimir M

    2016-05-20

    A novel method for rapid, quantitative determination of trace permanent gases and carbon dioxide in ultra-high purity ammonia by dual-channel two-dimensional GC-PDHID is presented. An improved matrix back-flush-to-vent approach combining back-flush column switching technique with auxiliary NaHSO4 ammonia trap is described. The NaHSO4 trap prevents traces of ammonia from entering the analytical column and is shown not to affect the impurity content of the sample. The approach allows shortening the analysis time and increasing the amount of measurements without extensive maintenance of the GC-system. The performance of the configuration has been evaluated utilizing ammonia- and helium-based calibration standards. The method has been applied for the analysis of 99.9999+% ammonia purified by high-pressure distillation at the production site. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    ERIC Educational Resources Information Center

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  12. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    ERIC Educational Resources Information Center

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  13. Tropospheric trace gases

    NASA Technical Reports Server (NTRS)

    Gammon, R.; Wofsy, S. C.; Cicerone, R. J.; Delany, A. C.; Harriss, R. T.; Khalil, M. A. K.; Logan, J. A.; Midgley, P.; Prather, M.

    1985-01-01

    Trace gas concentrations in the atmosphere reflect in part the overall metabolism of the biosphere, and in part the broad range of human activities such as agriculture, production of industrial chemicals, and combustion of fossil fuels and biomass. There is compelling evidence that the composition of the atmosphere is now changing. Observed trends in trace gas levels are reviewed and implications for the chemistry of the atmosphere are discussed. Throughout the discussion, particular emphasis is given to those species which are now increasing in the atmosphere.

  14. Robust IR Remote Sensing Technique of the Total Column of Trace Gases Including Carbon Dioxide and Methane

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.

    2011-01-01

    Progress on the development of a differential radiometer based upon the Fabry-Perot interferometer (FPI) for methane (CH4) and carbon dioxide (C02) detection in the atmosphere is presented. Methane measurements are becoming increasingly important as a component of NASA's programs to understand the global carbon cycle and quantifY the threat of global warming. Methane is the third most important greenhouse gas in the Earth's radiation budget (after water vapor and carbon dioxide) and the second most important anthropogenic contributor to global warming. The importance of global warming and air quality to society caused the National Research Council to recommend that NASA develop the following missions [1]: ASCENDS (Active Sensing of C02 Emissions over Nights, Days, and Seasons), GEOCAPE (Geostationary Coastal and Air Pollution Events), and GACM (Global Atmosphere Composition Mission). Though methane measurements are not specifically called out in these missions, ongoing environmental changes have raised the importance of understanding the methane budget. In the decadal survey is stated that "to close the carbon budget, we would also address methane, but the required technology is not obvious at this time. If appropriate and cost-effective methane technology becomes available, we strongly recommend adding a methane capability". In its 2007 report the International Panel on Climate Change identified methane as a key uncertainty in our understanding saying that the causes of recent changes in the growth rate of atmospheric CH4 are not well understood. What we do know is that methane arises from a number of natural sources including wet lands and the oceans plus man made sources from agriculture, as well as coal and petroleum production and distribution. It has recently been pointed out that large amount of methane are frozen in the permafrost of Canada and Siberia. There is a fear that melting of this permafrost driven by global warming may release large amounts of

  15. Remote sensing atmospheric trace gases with infrared imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Leifer, Ira; Tratt, David M.; Realmuto, Vincent J.; Gerilowski, Konstantin; Burrows, John P.

    2012-12-01

    Atmospheric pollution affects human health, food production, and ecosystem sustainability, causing environmental and climate change. Species of concern include nitrogen oxides, sulfur dioxide (SO2 ), and the greenhouse gases (GHG) methane (CH4 ) and carbon dioxide (CO2 ). Trace gas remote sensing can provide source detection, attribution, monitoring, hazard alerts, and air quality evaluation.

  16. Carbon Dioxide Information Analysis Center and World Data Center - A for atmospheric trace gases. Fiscal year 1996, annual report

    SciTech Connect

    Cushman, R.M.; Boden, T.A.; Jones, S.B.

    1997-02-01

    Fiscal year 1996 was especially productive for the Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL). This report describes publications and statistical data from the CDIAC.

  17. Method for detecting trace impurities in gases

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1981-01-01

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (.about.2 ppm) present in commercial Xe and ppm levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  18. Method for detecting trace impurities in gases

    SciTech Connect

    Beattie, W.H.; Freund, S.M.; Holland, R.F.; Maier, W.B.

    1981-04-28

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (*2 ppm) present in commercial xe and ppm levels of freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  19. Method for detecting trace impurities in gases

    DOEpatents

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  20. Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: Fiscal year 1995 annual report

    SciTech Connect

    Burtis, M.D.; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.; Stoss, F.W.

    1996-01-01

    Fiscal year 1995 was both a very productive year for the Carbon Dioxide Information Analysis Center and a year of significant change. This document presents information about the most notable accomplishments made during the year. Topics include: high-lights; statistics; future plans; publications, presentations, and awards; and change in organization and staff.

  1. Carbon Dioxide Analysis Center and World Data Center-A for Atmospheric Trace Gases fiscal year 1997 annual report

    SciTech Connect

    Burtis, M.D.; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Kaiser, D.P.; Nelson, T.R.

    1998-03-01

    Fiscal year (FY) 1997 was another exciting and productive one for the Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory. During FY 1997, CDIAC launched the Quality Systems Science Center for the North American Research Strategy for Tropospheric Ozone (NARSTO). The purpose of NARSTO--a US-Canada-Mexico initiative of government agencies, industry, and the academic research community--is to improve the understanding of the formation and transport of tropospheric ozone.

  2. Atmospheric trace gases in antarctica.

    PubMed

    Rasmussen, R A; Khalil, M A; Dalluge, R W

    1981-01-16

    Trace gases have been measured, by electron-capture gas chromatography and gas chromatography-mass spectrometry techniques, at the South Pole (SP) in Antarctica and in the U.S. Pacific Northwest (PNW) ( approximately 45 degrees N) during January of each year from 1975 to 1980. These measurements show that the concentrations of CCl(3)F, CCl(2)F(2), and CH(3)CCl(3) have increased exponentially at substantial rates. The concentration of CCl(3)F increased at 12 percent per year at the SP and at 8 percent per year in the PNW; CCl(2)F(2) increased at about 9 percent per year at both locations, and CH(3)CCl(3) increased at 17 percent per year at the SP and 11.6 percent per year at the PNW site. There is some evidence that CCl(4) ( approximately 3 percent per year) and N(2)O (0.1 to 0.5 percent per year) may also have increased. Concentrations of nine other trace gases of importance in atmospheric chemistry are also being measured at these two locations. Results of the measurements of CHClF(2)(F-22), C(2)Cl(3)F(3)(F-113), SF(6), C(2)-hydrocarbons, and CH(3)Cl are reported here.

  3. Fiscal Year 1998 Annual Report, Carbon Dioxide Information Analysis Center, World Data Center -- A for Atmospheric Trace Gases

    SciTech Connect

    Cushman, R.M.; Boden, T.A.; Hook, L.A.; Jones, S.B.; Kaiser, D.P.; Nelson, T.R.

    1999-03-01

    Once again, the most recent fiscal year was a productive one for the Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), as well as a year for change. The FY 1998 in Review section in this report summarizes quite a few new and updated data and information products, and the ''What's Coming in FY 1999'' section describes our plans for this new fiscal year. During FY 1998, CDIAC began a data-management system for AmeriFlux, a long-term study of carbon fluxes between the terrestrial biosphere of the Western Hemisphere and the atmosphere. The specific objectives of AmeriFlux are to establish an infrastructure for guiding, collecting, synthesizing, and disseminating long-term measurements of CO{sub 2}, water, and energy exchange from a variety of ecosystems; collect critical new information to help define the current global CO{sub 2} budget; enable improved predictions of future concentrations of atmospheric CO{sub 2}; and enhance understanding of carbon fluxes. Net Ecosystem Production (NEP), and carbon sequestration in the terrestrial biosphere. The data-management system, available from CDIAC'S AmeriFlux home page (http://cdiac.esd.ornl.gov/programs/ameriflux/ ) is intended to provide consistent, quality-assured, and documented data across all AmeriFlux sites in the US, Canada, Costa Rica, and Brazil. It is being developed by Antoinette Brenkert and Tom Boden, with assistance from Susan Holladay (who joined CDIAC specifically to support the AmeriFlux data-management effort).

  4. Greenhouse Trace Gases in Deadwood

    NASA Astrophysics Data System (ADS)

    Covey, Kristofer; Bueno de Mesquita, Cliff; Oberle, Brad; Maynard, Dan; Bettigole, Charles; Crowther, Thomas; Duguid, Marlyse; Steven, Blaire; Zanne, Amy; Lapin, Marc; Ashton, Mark; Oliver, Chad; Lee, Xuhui; Bradford, Mark

    2016-04-01

    Deadwood, long recognized as playing an important role in carbon cycling in forest ecosystems, is more recently drawing attention for its potential role in the cycling of other greenhouse trace gases. We report data from four independent studies measuring internal gas concentrations in deadwood in in three Quercus dominated upland forest systems in the Northeastern and Central United States. Mean methane concentrations in deadwood were 23 times atmospheric levels, indicating a lower bound, mean radial wood surface area flux of ~6 x 10-4 μmol CH4 m-2 s-1. Site, decay class, diameter, and species were all highly significant predictors of methane abundance in deadwood, and log diameter and decay stage interacted as important controls limiting methane concentrations in the smallest and most decayed logs. Nitrous oxide concentrations were negatively correlated with methane and on average ~25% lower than ambient, indicating net consumption of nitrous oxide. These data suggest nonstructural carbohydrates fuel archaeal methanogens and confirm the potential for widespread in situ methanogenesis in both living and deadwood. Applying this understanding to estimate methane emissions from microbial activity in living trees implies a potential global flux of 65.6±12.0 Tg CH4 yr-1, more than 20 times greater than currently considered.

  5. Climate change and trace gases.

    PubMed

    Hansen, James; Sato, Makiko; Kharecha, Pushker; Russell, Gary; Lea, David W; Siddall, Mark

    2007-07-15

    Palaeoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the 'albedo flip' property of ice/water, provides a powerful trigger mechanism. A climate forcing that 'flips' the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Inertia of ice sheet and ocean provides only moderate delay to ice sheet disintegration and a burst of added global warming. Recent greenhouse gas (GHG) emissions place the Earth perilously close to dramatic climate change that could run out of our control, with great dangers for humans and other creatures. Carbon dioxide (CO2) is the largest human-made climate forcing, but other trace constituents are also important. Only intense simultaneous efforts to slow CO2 emissions and reduce non-CO2 forcings can keep climate within or near the range of the past million years. The most important of the non-CO2 forcings is methane (CH4), as it causes the second largest human-made GHG climate forcing and is the principal cause of increased tropospheric ozone (O3), which is the third largest GHG forcing. Nitrous oxide (N2O) should also be a focus of climate mitigation efforts. Black carbon ('black soot') has a high global warming potential (approx. 2000, 500 and 200 for 20, 100 and 500 years, respectively) and deserves greater attention. Some forcings are especially effective at high latitudes, so concerted efforts to reduce their emissions could preserve Arctic ice, while also having major benefits for human health, agricultural productivity and the global environment.

  6. Removing Sulphur Dioxide From Stack Gases

    ERIC Educational Resources Information Center

    Slack, A. V.

    1973-01-01

    Process types, process concepts, claims and counterclaims, cost factors, and the level of developed technology for sulfur dioxide control in stack gases are focused upon and evaluated. Wet and dry processes as well as recovery and throwaway processes are compared. (BL)

  7. Removing Sulphur Dioxide From Stack Gases

    ERIC Educational Resources Information Center

    Slack, A. V.

    1973-01-01

    Process types, process concepts, claims and counterclaims, cost factors, and the level of developed technology for sulfur dioxide control in stack gases are focused upon and evaluated. Wet and dry processes as well as recovery and throwaway processes are compared. (BL)

  8. Measurement of Selected Organic Trace Gases During TRACE-P

    NASA Technical Reports Server (NTRS)

    Atlas, Elliot

    2004-01-01

    Major goals of the TRACE-P mission were: 1) to investigate the chemical composition of radiatively important gases, aerosols, and their precursors in the Asian outflow over the western Pacific, and 2) to describe and understand the chemical evolution of the Asian outflow as it is transported and mixed into the global troposphere. The research performed as part of this proposal addressed these major goals with a study of the organic chemical composition of gases in the TRACE-P region. This work was a close collaboration with the Blake/Rowland research group at UC-Irvine, and they have provided a separate report for their funded effort.

  9. Preliminary simulations of planned experiments to study the impact of trace gases on the capacity of the Weyburn-Midale field to store carbon dioxide

    SciTech Connect

    Carroll, S; Hao, Y

    2009-11-13

    The CO{sub 2} stream injecting into the Weyburn-Midale field can be generally classified as a reducing stream with residual H{sub 2}S and low-molecular weight hydrocarbons. The composition of the CO{sub 2} gas stream from the Dakota Gasification Company is reported to be 95% CO{sub 2}, 4% hydrocarbons, and 1% H{sub 2}S by volume (Huxley 2006). In addition to the H{sub 2}S introduced at the injection wells, significant concentrations of H{sub 2}S are thought to have been produced in-situ by sulfate reducing bacteria from previous water floods for enhanced oil production. Produced gas compositions range in H{sub 2}S concentrations from 1 to 6 volume percent. The produced gas, including the trace impurities, is re-injected into the field. Although there is no evidence for inorganic reduction of SO{sub 4}{sup 2-} to H{sub 2}S at the Weyburn-Midale field, Sitchler and Kazuba (2009) suggest that SO{sub 4}{sup 2-} can be inorganically reduced to elemental sulfur in highly reducing environments based on a natural analog study of the Madison Formation in Wyoming. They propose that elevated concentrations of CO{sub 2} dissolve anhydrite to produce the sulfate that is then reduced. Oxidizing CO{sub 2} streams with residual O{sub 2} and SO{sub 2} typical of streams captured from oxyfuel and post combustion processes are not presently an issue at the Weyburn-Midale field. However it is possible that the oxidizing CO{sub 2} streams may be injected in the future in carbonate reservoirs similar to the Weyburn-Midale field. To date there are few modeling and experimental studies that have explored the impact of impurity gases in CO{sub 2} streams targeted for geologic storage (Gale 2009). Jacquemet et al (2009) reviewed select geochemical modeling studies that explored the impact of SO{sub 2} and H{sub 2}S impurities in the waste streams (Gunter et al., 2000, Knauss et al., 2005, Xu et al., 2007). These studies collectively show that SO{sub 2} significantly reduces the pH when

  10. Biological cycling of atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Hitchcock, D. R.; Wechsler, A. E.

    1972-01-01

    A detailed critical review was conducted of present knowledge of the influence of biological processes on the cycling of selected atmospheric gas constituents--methane, carbon monoxide, and gaseous compounds of nitrogen (nitrous oxide, ammonia, nitric oxide, and nitrogen dioxide) and sulfur (hydrogen sulfide and sulfur dioxide). The identification was included of biological and other sources of each gas, a survey of abundance measurements reported in the literature, and a review of the atmospheric fate of each contituent. Information is provided on which to base conclusions regarding the importance of biological processes on the atmospheric distribution and surface-atmosphere exchange of each constituent, and a basis for estimating the adequacy of present knowledge of these factors. A preliminary analysis was conducted of the feasibility of monitoring the biologically influenced temporal and spatial variations in abundance of these gases in the atmosphere from satellites.

  11. Imaging trace gases in volcanic plumes with Fabry Perot Interferometers

    NASA Astrophysics Data System (ADS)

    Kuhn, Jonas; Platt, Ulrich; Bobrowski, Nicole; Lübcke, Peter; Wagner, Thomas

    2017-04-01

    Within the last decades, progress in remote sensing of atmospheric trace gases revealed many important insights into physical and chemical processes in volcanic plumes. In particular, their evolution could be studied in more detail than by traditional in-situ techniques. A major limitation of standard techniques for volcanic trace gas remote sensing (e.g. Differential Optical Absorption Spectroscopy, DOAS) is the constraint of the measurement to a single viewing direction since they use dispersive spectroscopy with a high spectral resolution. Imaging DOAS-type approaches can overcome this limitation, but become very time consuming (of the order of minutes to record a single image) and often cannot match the timescales of the processes of interest for volcanic gas measurements (occurring at the order of seconds). Spatially resolved imaging observations with high time resolution for volcanic sulfur dioxide (SO2) emissions became possible with the introduction of the SO2-Camera. Reducing the spectral resolution to two spectral channels (using interference filters) that are matched to the SO2 absorption spectrum, the SO2-Camera is able to record full frame SO2 slant column density distributions at a temporal resolution on the order of < 1s. This for instance allows for studying variations in SO2 fluxes on very short time scales and applying them in magma dynamics models. However, the currently employed SO2-Camera technique is limited to SO2 detection and, due to its coarse spectral resolution, has a limited spectral selectivity. This limits its application to very specific, infrequently found measurement conditions. Here we present a new approach, based on matching the transmission profile of Fabry Perot Interferometers (FPIs) to periodic spectral absorption features of trace gases. The FPI's transmission spectrum is chosen to achieve a high correlation with the spectral absorption of the trace gas, allowing a high selectivity and sensitivity with still using only a

  12. Biogenic and anthropogenic trace gases in the atmosphere

    NASA Technical Reports Server (NTRS)

    Brasseur, G. P.; Prinn, R. G.

    1992-01-01

    This paper illustrates the importance of biogenic and anthropogenic trace gases for the global environment and for the climate system. The paper briefly reviews the currently available estimates of sources and strengths of the biogenic and anthropogenic gases on the global scale. One of the major concerns for the global environment is the rapid increase in the concentration of long-lived trace gases such as CO2, CH4, N2O and the chlorofluorocarbons. The trend in the carbon dioxide concentration, as a result of fossil-fuel burning, is of the order of 0.4 percent per year, and this trend is related to the CO2 uptake by the ocean and by terrestrial ecosystems, which are likely to be modified if the planet warms up in the forthcoming decades. The concentrations of methane and nitrous oxide are increasing by 0.9 and 0.25 percent per year, respectively. In the case of the most widely used chlorofluorocarbons, trends as large as 10 percent per year or more are being measured.

  13. Carbon Dioxide Information Analysis Center and World Data Center-A for atomspheric trace gases: Catalog of data bases and reports

    SciTech Connect

    Burtis, M.D.

    1995-04-01

    This document provides information about the many reports and other materials made available by the US Department of Energy`s Global Change Research Program (GCRP). Section A provides information about the activities, scope, and direction of the GCRP; Sections B,C, D, and E contain information about research that has been sponsered by GCRP; Sections F and G contains information about the numeric data packages and computer model pa kages the have been compiled by the GCRP; Section H describes reports about research dealing with the responses of vegetation to carbon dioxide; and Section I conatins reports from various workshops, symposia, and reviews.

  14. EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES

    EPA Science Inventory

    The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...

  15. EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES

    EPA Science Inventory

    The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...

  16. Somatic and genetic effects of the increase of carbon dioxide and other trace gases in the atmosphere through changes of radon and thoron exhalation rates and other factors

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuto

    Somatic and genetic effects of the increase of greenhouse gases are investigated. The exhalation rates of radon and thoron are affected by the climate change through the temperature rise itself, melting of snow and ice and the change of soil moisture, and the lung cancer rate is affected by these changes. On the other hand the greenhouse warming of the troposphere leads to cooling of the stratosphere, which protects the O 3 layer and reduces skin cancer. In the genetic side the temperature rise is harmful for sperm. The Rn increase leads to an increase of chromosome aberrations. Crude estimates of these effects show that the soil moisture effect is probably the largest, but the O 3 protection effect may also be significant.

  17. NATIONAL- AND STATE-LEVEL EMISSIONS ESTIMATES OF RADIATIVELY IMPORTANT TRACE GASES (RITGS) FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report documents the development of national- and state- level emissions estimates of radiatively important trace gases (RlTGs). Emissions estimates are presented for the principal anthropogenic sources of carbon dioxide (CO2), methane (CH4), chlorofluorocarbons (CFCs), and o...

  18. NATIONAL- AND STATE-LEVEL EMISSIONS ESTIMATES OF RADIATIVELY IMPORTANT TRACE GASES (RITGS) FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report documents the development of national- and state- level emissions estimates of radiatively important trace gases (RlTGs). Emissions estimates are presented for the principal anthropogenic sources of carbon dioxide (CO2), methane (CH4), chlorofluorocarbons (CFCs), and o...

  19. Emissions of some trace gases from biomass fires

    Treesearch

    Dean A. Hegg; Lawrence F. Radke; Peter V. Hobbs; Rei A. Rasmussen; Philip J. Riggan

    1990-01-01

    Airborne measurements of 13 trace gases from seven forest fires in North America are used to determine their average emission factors. The emission factors are then used to estimate the contributions of biomass burning to the worldwide fluxes of these gases. The estimate for NH3 (˜7 Tg N yr-1) is about 50% of the...

  20. Noble Gases Trace Earth's Subducted Water Flux

    NASA Astrophysics Data System (ADS)

    Smye, A.; Jackson, C.; Konrad-Schmolke, M.; Parman, S. W.; Ballentine, C. J.

    2016-12-01

    Volatile elements are transported from Earth's surface reservoirs back into the mantle during subduction of oceanic lithosphere [e.g. 1]. Here, we investigate the degree to which the fate of slab-bound noble gases and water are linked through the subduction process. Both water and noble gases are soluble in ring-structured minerals, such as amphibole, that are common constituents of subducted oceanic lithosphere. Heating and burial during subduction liberates noble gases and water from minerals through a combination of diffusion and dissolution. Combining a kinetic model, parameterized for noble gas fractionation in amphibole [2], with thermodynamic phase equilibria calculations, we quantify the effect of subduction dehydration on the elemental composition of slab-bound noble gases. Results show that post-arc slab water and noble gas fluxes are highly correlated. Hot subduction zones, which likely dominate over geologic history, efficiently remove noble gases and water from the down-going slab; furthermore, kinetic fractionation of noble gases is predicted to occur beneath the forearc. Conversely, hydrated portions of slab mantle in cold subduction zones transport noble gases and water to depths exceeding 200 km. Preservation of seawater-like abundances of Ar, Kr and Xe in the convecting mantle [1] implies that recycling of noble gases and water occurred during cold subduction and that the subduction efficiency of these volatile elements has increased over geological time, driven by secular cooling of the mantle. [1] Holland, G. and Ballentine, C. (2006). Nature 441, 186-191. [2] Jackson et al. (2013). Nat.Geosci. 6, 562-565.

  1. Wet precipitation scavenging of soluble atmospheric trace gases due to chemical absorption in inhomogeneous atmosphere

    NASA Astrophysics Data System (ADS)

    Elperin, Tov; Fominykh, Andrew; Krasovitov, Boris

    2017-02-01

    We analyze the effects of irreversible chemical reactions of the first and higher orders and aqueous-phase dissociation reactions on the rate of trace gas scavenging by rain in the atmosphere with non-uniform concentration and temperature. We employ an one-dimensional model of precipitation scavenging of chemically active soluble gaseous pollutants that is valid for small gradients of temperature and concentration in the atmosphere. It is demonstrated that transient altitudinal distribution of concentration under the influence of rain is determined by the partial hyperbolic differential equation of the first order. Scavenging coefficients are calculated for wet removal of chlorine, nitrogen dioxide and sulfur dioxide for the exponential and linear initial altitudinal distributions of trace gases concentration in the atmosphere and linear and uniform altitudinal temperature distributions. Theoretical predictions of the dependence of the magnitude of the scavenging coefficient on rain intensity for sulfur dioxide are in a good agreement with the available atmospheric measurements.

  2. Wet precipitation scavenging of soluble atmospheric trace gases due to chemical absorption in inhomogeneous atmosphere

    NASA Astrophysics Data System (ADS)

    Elperin, Tov; Fominykh, Andrew; Krasovitov, Boris

    2016-04-01

    We analyze the effects of irreversible chemical reactions of the first and higher orders and aqueous-phase dissociation reactions on the rate of trace gas scavenging by rain in the atmosphere with non-uniform concentration and temperature. We employ an one-dimensional model of precipitation scavenging of chemically active soluble gaseous pollutants that is valid for small gradients of temperature and concentration in the atmosphere. It is demonstrated that transient altitudinal distribution of concentration under the influence of rain is determined by the partial hyperbolic differential equation of the first order. Scavenging coefficients are calculated for wet removal of chlorine, nitrogen dioxide and sulfur dioxide for the exponential and linear initial altitudinal distributions of trace gases concentration in the atmosphere and linear and uniform altitudinal temperature distributions. Theoretical predictions of the dependence of the magnitude of the scavenging coefficient on rain intensity for sulfur dioxide are in a good agreement with the available atmospheric measurements.

  3. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use are...

  4. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use are...

  5. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use are...

  6. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use are...

  7. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use are...

  8. Greenhouse effect of trace gases, 1970-1980

    NASA Technical Reports Server (NTRS)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  9. Greenhouse effect of trace gases, 1970-1980

    NASA Technical Reports Server (NTRS)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  10. Sulfur dioxide removal from gases using a modified lime

    SciTech Connect

    Lee, Y.J.; Benson, L.B.

    1992-01-21

    This patent describes improvement in a process for removing sulfur dioxide from combustion gases by contacting the gases in a wet scrubbing unit with an aqueous scrubbing slurry, containing calcium components, for the removal of the sulfur dioxide, the calcium components provided in the slurry by adding aqueous slaked lime thereto, and a portion of the effluent from the scrubbing unit, containing calcium sulfite solids, is clarified to remove calcium sulfite solids therefrom as an aqueous sludge. The improvement comprises: the aqueous slaked lime added to the scrubbing slurry is formed by mixing lime and water, with the water containing a calcium sulfur-oxide salt in an amount sufficient to provide between about 0.3 to 5.0 percent by weight of the calcium sulfur-oxide salt based on the lime, whereby the average particle size of calcium sulfite solids in the aqueous sludge is increased to provide improved separation of water of the aqueous sludge therefrom.

  11. Soil and litter exchange of reactive trace gases

    EPA Science Inventory

    The soil and litter play an important role in the exchange of trace gases between terrestrial ecosystems and the atmosphere. - The exchange of ammonia between vegetation and the atmosphere is highly influenced by soil and litter emissions especially in managed ecosystems (grassla...

  12. Stratospheric trace gases in the spring 1986 Antarctic atmosphere

    NASA Technical Reports Server (NTRS)

    Farmer, C. B.; Toon, G. C.; Schaper, P. W.; Blavier, J.-F.; Lowes, L. L.

    1987-01-01

    The atmospheric absorption features of over 500 infrared solar spectra recorded at McMurdo Station have been analyzed to determine the vertical column abundances of trace gases crucial to understanding of the 'ozone hole' phenomenon. The techniques used to retrieve the column abundances are described. Results are reported for ozone, nitrogen species, and halogen sinks and reservoirs.

  13. Soil and litter exchange of reactive trace gases

    EPA Science Inventory

    The soil and litter play an important role in the exchange of trace gases between terrestrial ecosystems and the atmosphere. - The exchange of ammonia between vegetation and the atmosphere is highly influenced by soil and litter emissions especially in managed ecosystems (grassla...

  14. Gases and trace elements in soils at the North Silver Bell deposit, Pima County, Arizona

    USGS Publications Warehouse

    Hinkle, M.E.; Dilbert, C.A.

    1984-01-01

    Soil samples were collected over the North Silver Bell porphyry copper deposit near Tucson, Arizona. Volatile elements and compounds in gases derived from the soils and metallic elements in the soils were analyzed in order: (1) to see which volatile constituents of the soils might be indicative of the ore body or the alteration zones; and (2) to distinguish the ore and alteration zones by comparison of trace elements in the soil. Plots of analytical data on trace elements in soils indicated a typical distribution pattern for metals around a porphyry copper deposit, with copper, molybdenum, and arsenic concentrations higher over the ore body, and zinc, lead, and silver concentrations higher over the alteration zones. Higher than average concentrations of helium, carbon disulfide, and sulfur dioxide adsorbed on soils were found over the ore body, whereas higher concentrations of carbon dioxide and carbonyl sulfide were found over the alteration zones. ?? 1984.

  15. 1988 Pilot Institute on Global Change on trace gases and the biosphere

    SciTech Connect

    Eddy, J.A.; Moore, B. III

    1998-07-01

    This proposal seeks multi-agency funding to conduct an international, multidisciplinary 1988 Pilot Institute on Global Change to take place from August 7 through 21, 1988, on the topic: Trace Gases and the Biosphere. The institute, to be held in Snowmass, Colorado, is envisioned as a pilot version of a continuing series of institutes on Global Change (IGC). This proposal seeks support for the 1988 pilot institute only. The concept and structure for the continuing series, and the definition of the 1988 pilot institute, were developed at an intensive and multidisciplinary Summer Institute Planning Meeting in Boulder, Colorado, on August 24--25, 1987. The theme for the 1988 PIGC, Trace Gases and the Biosphere, will focus a concerted, high-level multidisciplinary effort on a scientific problem central to the Global Change Program. Dramatic year-to-year increases in the global concentrations of radiatively-active trace gases such as methane and carbon dioxide are now well documented. The predicted climatic effects of these changes lend special urgency to efforts to study the biospheric sources and sinks of these gases and to clarify their interactions and role in the geosphere-biosphere system.

  16. THE REMOVAL OF SULFUR DIOXIDE FROM FLUE GASES.

    PubMed

    KETTNER, H

    1965-01-01

    The growth of industrialization makes it imperative to reduce the amounts of sulfur dioxide emitted into the atmosphere. This article describes various processes for cleaning flue gases, and gives details of new methods being investigated.Wet scrubbing with water, though widely practised, has many disadvantages. Scrubbing with zinc oxide, feasible in zinc works, is more satisfactory.Dry methods use a solid absorbent; they have the advantage of a high emission temperature.Other methods are based on the addition to the fuel or the flue gases of substances such as activated metal oxides, which react with the sulfur to form compounds less harmful than sulfur dioxide. Also being investigated are a two-stage combustion system, in which the sulfur dioxide is removed in the first stage, and the injection of activated powdered dolomite into burning fuel; the resulting sulfates being removed by electrostatic precipitation.A wet catalysis process has recently been developed.Most of the cleaning processes are not yet technically mature, but first results show good efficiency and relatively low cost.

  17. The removal of sulfur dioxide from flue gases

    PubMed Central

    Kettner, Helmut

    1965-01-01

    The growth of industrialization makes it imperative to reduce the amounts of sulfur dioxide emitted into the atmosphere. This article describes various processes for cleaning flue gases, and gives details of new methods being investigated. Wet scrubbing with water, though widely practised, has many disadvantages. Scrubbing with zinc oxide, feasible in zinc works, is more satisfactory. Dry methods use a solid absorbent; they have the advantage of a high emission temperature. Other methods are based on the addition to the fuel or the flue gases of substances such as activated metal oxides, which react with the sulfur to form compounds less harmful than sulfur dioxide. Also being investigated are a two-stage combustion system, in which the sulfur dioxide is removed in the first stage, and the injection of activated powdered dolomite into burning fuel; the resulting sulfates being removed by electrostatic precipitation. A wet catalysis process has recently been developed. Most of the cleaning processes are not yet technically mature, but first results show good efficiency and relatively low cost. PMID:14315714

  18. Natural and anthropogenic trace gases in the southern hemisphere

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. A. K.; Crawford, A. J.; Fraser, P. J.

    1982-01-01

    The complexity of the global environment makes it necessary that many important trace gases in the earth's atmosphere be measured on a global scale before predictions can be made regarding the effects of human activities on the environment. A description is presented of measurements of 14 atmospheric trace gases in the lower atmosphere (0-4 km) of the southern hemisphere. Concentrations are considered of CCl3F, CCl2F2, CHClF2, C2.Cl3.F3, CH3CCl3, CCl4, C2.Cl4, CH3I, CHCl3, CO, CH3Cl, CH4, N2O, and OCS. The obtained data are analyzed and interpreted to statistically quantify the possible differences of concentrations in and above the boundary layer, to model the vertical profile of CH3I, and to use the data in support of previous findings that CH4 is increasing in the atmosphere.

  19. On contents of trace gases in the atmospheric surface layer over Moscow

    NASA Astrophysics Data System (ADS)

    Elansky, N. F.; Lokoshchenko, M. A.; Trifanova, A. V.; Belikov, I. B.; Skorokhod, A. I.

    2015-01-01

    The results of the 2002-2012 continuous once-a-minute measurements of the composition of the surface air over Moscow, which were taken at the joint ecological station of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, and the Geographic Faculty of Moscow State University, are discussed. It is shown that the annual increase (on the order of 1%) in the content of surface ozone is stable and the decrease in the content of nitric oxide is statistically significant, while the content of nitric dioxide remains almost unchanged. Reliable regularities in both diurnal and annual variations in the contents of the five trace gases O3, NO, NO2, CO, and SO2 have been studied in detail. Statistical relations of the content of sulfur dioxide with the amount of reserve fuel (black oil) used in city heating (this relation is the strongest one), wind velocity in an atmospheric layer up to a height of 200 m, and air temperature have been analyzed. The influence that wind velocity has on the surface contents of trace gases and carbon dioxide has been studied for the first time on the basis of long-term `MODOS' sodar data. It is shown that, with an increase in wind velocity, the contents of nitric and carbon oxides generally decrease, the content of ozone increases, and the content of sulfur dioxide decreases starting from an intermediate value of 1-2 m/s due to the prevalence of high sources of this gas. An additional maximum found in the content of carbon dioxide at high wind velocities may be associated with the long-range transport of CO2.

  20. Greenhouse effect of chlorofluorocarbons and other trace gases

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  1. Greenhouse effect of chlorofluorocarbons and other trace gases

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  2. Observations of atmospheric trace gases by MAX-DOAS in the coastal boundary layer over Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Li, Xianxin; Wang, Zhangjun; Meng, Xiangqian; Zhou, Haijin; Du, Libin; Qu, Junle; Chen, Chao; An, Quan; Wu, Chengxuan; Wang, Xiufen

    2014-11-01

    Atmospheric trace gases exist in the atmosphere of the earth rarely. But the atmospheric trace gases play an important role in the global atmospheric environment and ecological balance by participating in the global atmospheric cycle. And many environmental problems are caused by the atmospheric trace gases such as photochemical smog, acid rain, greenhouse effect, ozone depletion, etc. So observations of atmospheric trace gases become very important. Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) developed recently is a kind of promising passive remote sensing technology which can utilize scattered sunlight received from multiple viewing directions to derive vertical column density of lower tropospheric trace gases like ozone, sulfur dioxide and nitrogen dioxide. It has advantages of simple structure, stable running, passive remote sensing and real-time online monitoring automatically. A MAX-DOAS has been developed at Shandong Academy of Sciences Institute of Oceanographic Instrumentation (SDIOI) for remote measurements of lower tropospheric trace gases (NO2, SO2, and O3). In this paper, we mainly introduce the stucture of the instrument, calibration and results. Detailed performance analysis and calibration of the instrument were made at Qingdao. We present the results of NO2, SO2 and O3 vertical column density measured in the coastal boundary layer over Jiaozhou Bay. The diurnal variation and the daily average value comparison of vertical column density during a long-trem observation are presented. The vertical column density of NO2 and SO2 measured during Qingdao oil pipeline explosion on November 22, 2013 by MAX-DOAS is also presented. The vertical column density of NO2 reached to a high value after the explosion. Finally, the following job and the outlook for future possible improvements are given. Experimental calibration and results show that the developed MAX-DOAS system is reliable and credible.

  3. Patterns of trace gases near sources of global pollution

    SciTech Connect

    Khalil, M.A.K.; Rasmussen, R.A. )

    1990-08-01

    Many trace gases are increasing in the earth's armosphere and may couase global environmental changes in the future. Consequently there has been growing interest in the cycles of the long-lived gases that are likely to contribute the most to global change. At present there are four such gases: methane (CH{sub 4}), nitrous oxide (N{sub 2}0), trichlorofluoromethane (CCl{sub 3}F,F-11), and dichlorodifluoromethane (CCl{sub 2}F{sub 2},F-12). Methane and N{sub 2}O are involved mostly in adding to the greenhouse effect with some role in the stratospheric ozone cycle, and the two main fluorocarbons (F-11 and F-12) are involved in the depletion of the ozone layer with some role in global warming. This paper is about the patterns of these trace gases near regions of global scale pollution. Our purpose is to provide a synthesis of observations from diverse environments and ecosystems of the world and to provide readers with intuitive connections between sources and concentrations. We will consider four types of regions: rice fields in CHina that are a major source of methane, urban areas of the United States and China that are sources of fluorocarbons and other gases, rivers and surrounding wetlands, specifically the Yangtze in China and the Amazon in Brazil, and finally the environment of Boola Boola National Forest in Australia populated by many speices of termites that are a source of methane to the atmosphere. Eventually these patterns can be translated into estimeates of fluxes from the various sources of global pollution.

  4. Impact of Radiatively Active Trace Gases on Long-Term Changes in the Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Qian, L.; Marsh, D. R.; Merkel, A. W.; Solomon, S. C.

    2014-12-01

    We conduct model simulations to examine how changes in concentration of radiatively active trace gases affect long-term changes in the middle atmosphere. We focus our model study on the impact of increases in carbon dioxide and methane, and decreases in ozone, between 1983 and 2003. The increase of carbon dioxide can cool the middle atmosphere through infrared emission at 15 microns, ozone depletion can cause cooling in the stratosphere and mesosphere through reduced solar heating, whereas the enhancement of methane, which increases water vapor, can introduce a cooling through reduced chemical heating or a warming through increased solar heating. We investigate the effect of each gas separately as well as the combined effect, using the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM).

  5. Analysis of Process Gases and Trace Contaminants in Membrane-Aerated Gaseous Effluent Streams.

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Lunn, Griffin Michael; Meyer, Caitlin E.

    2015-01-01

    In membrane-aerated biofilm reactors (MABRs), hollow fibers are used to supply oxygen to the biofilms and bulk fluid. A pressure and concentration gradient between the inner volume of the fibers and the reactor reservoir drives oxygen mass transport across the fibers toward the bulk solution, providing the fiber-adhered biofilm with oxygen. Conversely, bacterial metabolic gases from the bulk liquid, as well as from the biofilm, move opposite to the flow of oxygen, entering the hollow fiber and out of the reactor. Metabolic gases are excellent indicators of biofilm vitality, and can aid in microbial identification. Certain gases can be indicative of system perturbations and control anomalies, or potentially unwanted biological processes occurring within the reactor. In confined environments, such as those found during spaceflight, it is important to understand what compounds are being stripped from the reactor and potentially released into the crew cabin to determine the appropriateness or the requirement for additional mitigation factors. Reactor effluent gas analysis focused on samples provided from Kennedy Space Center's sub-scale MABRs, as well as Johnson Space Center's full-scale MABRs, using infrared spectroscopy and gas chromatography techniques. Process gases, such as carbon dioxide, oxygen, nitrogen, nitrogen dioxide, and nitrous oxide, were quantified to monitor reactor operations. Solid Phase Microextraction (SPME) GC-MS analysis was used to identify trace volatile compounds. Compounds of interest were subsequently quantified. Reactor supply air was examined to establish target compound baseline concentrations. Concentration levels were compared to average ISS concentration values and/or Spacecraft Maximum Allowable Concentration (SMAC) levels where appropriate. Based on a review of to-date results, current trace contaminant control systems (TCCS) currently on board the ISS should be able to handle the added load from bioreactor systems without the need

  6. Remote sounding of trace gases with the EOS/AIRS instrument

    NASA Astrophysics Data System (ADS)

    Barnet, Chris D.; Goldberg, Mitchell D.; McMillin, Larry; Chahine, Moustafa T.

    2004-10-01

    The AIRS instrument was launched on the Aqua satellite in May of 2002. In addition to the core level 2 products, that include cloud cleared radiances; temperature, moisture, and ozone profiles; surface skin temperature; NDVI (from AIRS visible channels); surface spectral emissivity and reflectivity; and cloud products, the AIRS science team is also developing research algorithms for the retrieval of carbon monoxide (CO), methane (CH4), and carbon dioxide (CO2). These algorithms are being tested by the National Oceanographic and Atmosphere Administration (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS) in simulation and applied to real AIRS radiances. The trace gas retrievals require cloud free infrared radiances. In practice, we observe that AIRS measurements without cloud contamination occur less than 5% of the time. A key feature of the AIRS algorithm is the utilization of cloud cleared radiances that removes the effects of clouds and increases the yield of trace gas products to 50-60%. The increased yield should allow a better assessment of sources and sinks of these gases. Determination of sources and sinks of these trace gas requires an unprecedented precision for a remote sounding measurement. In addition, both the variability and errors in the trace gas products tend to be correlated with variability and errors in other products (e.g., clouds, temperature, moisture, and ozone profile). Multi-spectral, high-resolution measurements can minimize the effects of this correlation. Currently, for the AIRS products, we estimate a precision of 15% for CO, 0.5% for CO2 and 1% for CH4. The remote sounding methodology for these trace gases is discussed in detail. The METOP IASI and NPOESS CrIS instruments can extend the continuity of these trace gas products over the next two decades. Simulation experiments are used to assess the relative performance of the trace gas retrievals from these sounders.

  7. Mobile MAX-DOAS observations of tropospheric trace gases

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Ibrahim, O.; Shaiganfar, R.; Platt, U.

    2009-11-01

    From Multi-Axis- (MAX-) DOAS observations information on tropospheric trace gases close to the surface and up to the free troposphere can be obtained. Usually MAX-DOAS observations are performed at fixed locations, which allows to retrieve the diurnal variation of tropospheric species at that location. Alternatively, MAX-DOAS observations can also be made on mobile platforms like cars, ships or aircrafts. Then, in addition to the vertical (and temporal) distribution, also the horizontal variation of tropospheric trace gases can be measured. Such information is important for the quantitative comparison with model simulations, study of transport processes, and for the validation of tropospheric trace gas products from satellite observations. However, for MAX-DOAS observations from mobile platforms, the standard analysis techniques for MAX-DOAS observations can usually not be applied, because the probed airmasses can change rapidly between successive measurements. In this study we introduce a new technique which overcomes these problems and allows the exploitation of the full information content of mobile MAX-DOAS observations. Our method can also be applied to MAX-DOAS observations made at fixed locations in order to improve the accuracy especially in cases of strong winds. We apply the new technique to MAX-DOAS observations made during an automobile trip from Brussels to Heidelberg.

  8. Mobile MAX-DOAS observations of tropospheric trace gases

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Ibrahim, O.; Shaiganfar, R.; Platt, U.

    2010-02-01

    From Multi-Axis- (MAX-) DOAS observations, information on tropospheric trace gases close to the surface and up to the free troposphere can be obtained. Usually MAX-DOAS observations are performed at fixed locations, which allows to retrieve the diurnal variation of tropospheric species at that location. Alternatively, MAX-DOAS observations can also be made on mobile platforms like cars, ships or aircrafts. Then, in addition to the vertical (and temporal) distribution, also the horizontal variation of tropospheric trace gases can be measured. Such information is important for the quantitative comparison with model simulations, study of transport processes, and for the validation of tropospheric trace gas products from satellite observations. However, for MAX-DOAS observations from mobile platforms, the standard analysis techniques for MAX-DOAS observations can usually not be applied, because the probed airmasses can change rapidly between successive measurements. In this study we introduce a new technique which overcomes these problems and allows the exploitation of the full information content of mobile MAX-DOAS observations. Our method can also be applied to MAX-DOAS observations made at fixed locations in order to improve the accuracy especially in cases of strong winds. We apply the new technique to MAX-DOAS observations made during an automobile trip from Brussels to Heidelberg.

  9. The effects of biomass burning on the concentration of trace gases in the atmosphere

    NASA Technical Reports Server (NTRS)

    Donaldson, Leon M.

    1988-01-01

    Over the past several years, there has been considerable interest concerning the global effects of biomass burning on concentrations of trace gases in the atmosphere. The paucity of reported studies and investigations into the effects of the Greenhouse Gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), up until about a decade ago, would suggest that the topic was not then one of universal concern. Efforts are now being made to understand the biogenic, anthropogenic and photochemical sources of atmospheric trace gases. Biomass burning which includes the burning of forests for clearing, the burning of vegetative stubble after harvesting, and lightning and human-induced wildfires is but one consideration under the general paradigm of atmospheric perturbations. A team of researchers from the Langley Research Center, along with the Canadian Forest Ministry, Ontario, Canada collaborated in an experiment in a deforestration effort through a prescribed burn. Through a specially designed experimental modeling and instrumentation, a substantial pre-burn data set was collected. The primary focus of the pre-burn experimental activities was the emission of nitrous oxide (N2O) gas from selected sites.

  10. Epiphytic cryptogams as a source of bioaerosols and trace gases

    NASA Astrophysics Data System (ADS)

    Ruckteschler, Nina; Hrabe de Angelis, Isabella; Zartman, Charles E.; Araùjo, Alessandro; Pöschl, Ulrich; Manzi, Antonio O.; Andreae, Meinrat O.; Pöhlker, Christopher; Weber, Bettina

    2016-04-01

    Cryptogamic covers comprise (cyano-)bacteria, algae, lichens, bryophytes, fungi, and archaea in varying proportions. These organisms do not form flowers, but reproduce by spores or cell cleavage with these reproductive units being dispersed via the atmosphere. As so-called poikilohydric organisms they are unable to regulate their water content, and their physiological activity pattern mainly follows the external water conditions. We hypothesize, that both spore dispersal and the release of trace gases are governed by the moisture patterns of these organisms and thus they could have a greater impact on the atmosphere than previously thought. In order to test this hypothesis, we initiated experiments at the study site Amazonian Tall Tower Observatory (ATTO) in September 2014. We installed microclimate sensors in epiphytic cryptogams at four different heights of a tree to monitor the activity patterns of these organisms. Self-developed moisture probes are used to analyze the water status of the organisms accompanied by light and temperature sensors. The continuously logged data are linked to ongoing measurements of trace gases and particulate bioaerosols to analyze these for the relevance of cryptogams. Here, we are particularly interested in diurnal cycles of coarse mode particles and the atmospheric abundance of fine potassium-rich particles from a currently unknown biogenic source. Based upon the results of this field study we also investigate the bioaerosol and trace gas release patterns of cryptogamic covers under controlled conditions. With this combined approach of field and laboratory experiments we aim to disclose the role of cryptogamic covers in bioaerosol and trace gas release patterns in the Amazonian rainforest.

  11. Climate-chemical interactions and greenhouse effects of trace gases

    NASA Technical Reports Server (NTRS)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  12. Measurements of Trace Gases Using a Tunable Diode Laser

    NASA Technical Reports Server (NTRS)

    Jost, Hans-Juerg

    2005-01-01

    This report is the final report for "Measurements of Trace Gases Using a Tunable Diode Laser." The tasks outlined in the proposal are listed below with a brief comment. The publications and the conference presentations are listed. Finally, the important publications are attached. The Cooperative Agreement made possible a research effort to produce high- precision and high-accuracy in-situ measurements of carbon monoxide, methane and nitrous oxide on the WB-57 during the CRYSTAL-FACE and pre-AVE field campaigns and to analyze these measurements. These measurements of CO and CH4 were of utmost importance to studies of the radiative effects of clouds. Some important results of the CRYSTAL-FACE program were contained in two scientific papers (attached). This Cooperative Agreement allowed the participation of the Argus instrument in the program and the analysis of the data.

  13. Atmospheric trace gases and global climate - A seasonal model study

    NASA Technical Reports Server (NTRS)

    Wang, Wei-Chyung; Molnar, Gyula; Ko, Malcolm K. W.; Goldenberg, Steven; Sze, Nien Dak

    1990-01-01

    Atmospheric models with seasonal cycles are used to study the possible near-future changes in latitudinal and vertical distributions of atmospheric ozone and temperature caused by increases of trace gases. It is found that increases of CFCs, CH4, and N2O may add to the surface warming from increased CO2. Calculations based on projected trends of CO2, N2O, CH4, and CFCs show that the annual mean and global mean surface temperature could warm by as much as 2.5 C by the year 2050, with larger warming at high latitudes. The results suggest that the warming in the lower stratosphere and upper troposphere is much larger than that at the surface, especially during the summer season.

  14. Atmospheric trace gases and global climate - A seasonal model study

    NASA Technical Reports Server (NTRS)

    Wang, Wei-Chyung; Molnar, Gyula; Ko, Malcolm K. W.; Goldenberg, Steven; Sze, Nien Dak

    1990-01-01

    Atmospheric models with seasonal cycles are used to study the possible near-future changes in latitudinal and vertical distributions of atmospheric ozone and temperature caused by increases of trace gases. It is found that increases of CFCs, CH4, and N2O may add to the surface warming from increased CO2. Calculations based on projected trends of CO2, N2O, CH4, and CFCs show that the annual mean and global mean surface temperature could warm by as much as 2.5 C by the year 2050, with larger warming at high latitudes. The results suggest that the warming in the lower stratosphere and upper troposphere is much larger than that at the surface, especially during the summer season.

  15. Measurements of Trace Gases Using a Tunable Diode Laser

    NASA Technical Reports Server (NTRS)

    Jost, Hans-Juerg

    2005-01-01

    This report is the final report for "Measurements of Trace Gases Using a Tunable Diode Laser." The tasks outlined in the proposal are listed below with a brief comment. The publications and the conference presentations are listed. Finally, the important publications are attached. The Cooperative Agreement made possible a research effort to produce high- precision and high-accuracy in-situ measurements of carbon monoxide, methane and nitrous oxide on the WB-57 during the CRYSTAL-FACE and pre-AVE field campaigns and to analyze these measurements. These measurements of CO and CH4 were of utmost importance to studies of the radiative effects of clouds. Some important results of the CRYSTAL-FACE program were contained in two scientific papers (attached). This Cooperative Agreement allowed the participation of the Argus instrument in the program and the analysis of the data.

  16. Quantum cascade laser open-path system for remote sensing of trace gases in Beijing, China

    NASA Astrophysics Data System (ADS)

    Michel, Anna P. M.; Liu, Peter Q.; Yeung, June K.; Corrigan, Paul; Baeck, Mary Lynn; Wang, Zifa; Day, Timothy; Smith, James A.

    2010-11-01

    Exploiting several key characteristics of quantum cascade (QC) lasers, including wide tunability and room-temperature operation, the Quantum Cascade Laser Open-Path System (QCLOPS) was designed for the detection of a range of trace gases and for field deployment in urban environments. Tunability over a wavelength range from 9.3 to 9.8 μm potentially provides the capability for monitoring ozone, ammonia, and carbon dioxide, a suite of trace gases important for air quality and regional climate applications in urban environments. The 2008 Olympic Games in Beijing, China drew attention to air quality problems in urban environments. Prior to and during the Olympic games, regional air quality modifications through factory shutdowns, car restrictions, and construction halts in Beijing and its surrounding areas created a unique test bed for new sensor technologies such as the QCLOPS sensor. We report the design of this novel, open-path air quality sensor and the results of both laboratory tests and field trials during the 2008 Olympic Games in Beijing, China.

  17. Behavior of carbon monoxide as a trace component of anaerobic digester gases and methanogenesis from acetate

    SciTech Connect

    Hickey, R.F. ); Switzenbaum, M.S. )

    1990-11-01

    Carbon monoxide was a normal trace component of the gases produced during anaerobic sludge digestion. The CO concentration increased in response to perturbing the digestion process by increasing organic loading or adding acetate. Reducing the headspace methane level resulted in higher measured CO concentrations. Accordingly, a thermodynamic relationship was developed by dividing the acetoclastic methane reaction into two half-cell reactions, representing production of and subsequent oxidation of CO. A constant fraction of the total free energy available for acetate conversion to methane was assigned to each half-cell based on the basis of experimental observations. It was determined that approximately 54% of the energy available for acetate conversion to methane was consistently associated with the anaerobic oxidation of CO to carbon dioxide. Estimated values compared well for measured concentrations for both mesophilic and thermophilic digesters operating under steady-state conditions.

  18. Measurements of trace gases above the tropical forests....

    NASA Astrophysics Data System (ADS)

    Nicolas-Perea, V.; Monks, P. S.

    2009-04-01

    Measurements of trace gases above the tropical forests; A comparison between ozone levels in the forest and the oil palm plantation areas using the BAe -146 aircraft. The atmospheric composition of Sabah region (Borneo) was sampled using the FAAM BAE-146 instrumented aircraft during July 2008 as part of the OP3 (Oxidant particle photochemical processes above a South East Asia tropical rain forest) project. Tropical forests play an important role in the carbon and energy balance of the Earth (which determine global climate) and are themselves vulnerable to climate change. The tropical biosphere is one of the main sources of reactive trace gas emissions into the global atmosphere, and understanding the role of ozone in these areas is of major importance given the rapid changes in land-use in the tropics. This poster presents preliminary ozone concentrations results collected using the FAAM BAE 146 instrumented aircraft over some of Malaysia most extended oil palm plantations; comparing these with the results recorded when flying over forest areas. Oil palm is becoming one of the most widespread tropical crops; in Malaysia 13% of the land area (4.3Mha) is now oil palm plantations (MPOCP, 2008) compared with 1% in 1974 (FAO, 2005). This poster is expected to show very significant ozone concentrations over the two different landscapes. The set-up of the instruments, the specific sampling sites, as well as the land cover areas will be described.

  19. Satellite-derived Signatures of Trace Gases from US. Oil and Gas Operations

    NASA Astrophysics Data System (ADS)

    Kollonige, D. E.; Thompson, A. M.

    2013-12-01

    Since 2005, there has been an increase in shale gas production, which is expected to continue through 2035, leading to heightened environmental concerns regarding increased emissions of the greenhouse gas methane (CH4) and degradation of local air quality. Emissions of CH4 and VOCs may occur at any stage of exploration and production via venting, flashing, flaring, or fugitive/non-permitted emissions. The industrial equipment used to install and maintain a well is a potential emission source of CH4, VOCs, nitrogen oxides, and other gases. Emissions from these individual point sources can accumulate and represent a substantial area source of trace gases to the atmosphere. We have begun to characterize the trace gas signatures associated with oil and natural gas (O&NG) operations in the U.S. using satellite observations over two key regions: the Marcellus and Bakkan Shale Deposits. Current satellite products, including CH4 from the Tropospheric Emission Spectrometer (TES) and nitrogen dioxide (NO2) from the Ozone Monitoring Instrument (OMI) on Aura, are compared to aircraft and ground measurements. Preliminary analysis during June 2012 shows the potential for TES in the mid-troposphere to detect and track increases in CH4 due to a gas well leak in the Marcellus Shale Region. Trace gas trends from satellite observations are analyzed in the vicinity of O&NG sites. The TES CH4 representative tropospheric volume mixing ratio (RTVMR) product, particularly used for emission detection, displays evidence of increasing methane over PA from 2006 through 2012. This analysis begins to provide improved constraints on O&NG emissions and supply a template for future geo-missions, such as TEMPO, for continued observations of air quality.

  20. Volatile organic trace gases emitted from North American wildfires

    NASA Astrophysics Data System (ADS)

    Friedli, H. R.; Atlas, E.; Stroud, V. R.; Giovanni, L.; Campos, T.; Radke, L. F.

    2001-06-01

    Trace gases from wildfires and prescribed burns were collected from the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) C-130 aircraft at fire locations in temperate forests (Montana, Colorado) and sage scrub (California). Comprehensive compositions for hydrocarbons, partially oxidized hydrocarbons (POHC), halocarbons, alkyl nitrates, and some sulfur compounds were determined in 99 samples. All of these trace gas emission groups correlated linearly with CO emissions. Fires in temperate forests emitted ˜28% more nonmethane hydrocarbons (NMHC) and 120% more POHC than the California fire and the molecular weight range of the emitted hydrocarbons was higher. The POHC contribution relative to NMHC emissions is significant: 26 and 38% for California and temperate forests, respectively. Since the observed POHCs (mostly ketones, aldehydes, and furans) typically react faster than many NMHC and undergo cascades of photochemical degradations, they should be included in calculations of the effect that fires have on the local and global oxidative capacity of the atmosphere. The composition of the hydrocarbons and POHCs in the plumes varied with combustion efficiency, displaying a distinct pattern, which reflected fire chemistry. Interfire differences were evident among fires in temperate forests. The dominant halocarbon emissions from all fires were methyl halides. The emission ratio was always largest for methyl chloride and was dependent on vegetation and fire location. C1-C5 alkyl nitrates were found in all fire emissions and showed little dependence on the location of the fire. The major organic sulfur compound measured was carbonyl sulfide. Minor amounts of dimethyl sulfide and dimethyl disulfide were observed. Budget estimates for emissions from fires in temperate forests were made based on the measured emission ratios and published carbon monoxide estimates.

  1. Remote sensing of atmospheric trace gases by diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Kan, Ruifeng; He, Yabai; He, Ying; Zhang, Yujun; Xie, Pinhua; liu, Wenqing

    2016-04-01

    Gaseous ammonia is the most abundant alkaline trace gas in the atmosphere. In order to study its role in acid deposition and aerosol formation, as well as its influence on the regional air quality and atmospheric visibility, several instruments has been developed based on TDLAS (Tunable Diode Laser Absorption Spectroscopy) techniques. In this paper, a long open path TDLAS system and a continuous-wave CRDS (Cavity-Ring down Spectroscopy) system are presented. The long open path system has been developed for NH3 in-situ monitoring by combining wavelength modulation with harmonic detection techniques to obtain the necessary detection sensitivity. The prototype instrument has been used to monitor atmospheric NH3 concentration at an urban site near Beijing National Stadium during Beijing Olympics in 2008, and recently used to measure the fluxes of NH3 from farm fields by flux-gradient method. The detection limit for ammonia is proved approximately 3ppb for a total path length of 456m. The continuous-wave, rapidly swept CRDS system has been developed for localized atmospheric sensing of trace gases at remote sites. Passive open-path optical sensor units could be coupled by optical fiber over distances of >1 km to a single transmitter/receiver console incorporating a photodetector and a swept-frequency diode laser tuned to molecule-specific near-infrared wavelengths. A noise-limited minimum detectable mixing ratio of ~11 ppbv is attained for ammonia at atmospheric pressure. The developed instruments are deployable in agricultural, industrial, and natural atmospheric environments.

  2. Measurements of Trace Gases in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Marcy, T. P.; Popp, P. J.; Gao, R. S.; Fahey, D. W.; Ray, E. A.; Richard, E. C.; Thompson, T. L.; Atlas, E. L.; Lowenstein, M.; Wofsy, S. C.; Park, S.; Weinstock, E. M.; Swartz, W. H.; Mahoney, M. J.

    2008-01-01

    A unique dataset of airborne in situ observations of HCl, O3, HNO3, H2O, CO, CO2 and CH3Cl has been made in and near the tropical tropopause layer (TTL). A total of 16 profiles across the tropopause were obtained at latitudes between 10degN and 3degs from the NASA WB-57F high-altitude aircraft flying from Costa Rica. Few in situ measurements of these gases, particularly HCl and HNO3, have been reported for the TTL. The general features of the trace gas vertical profiles are consistent with the concept of the TTL as distinct from the lower troposphere and lower stratosphere. A combination of the tracer profiles and correlations with O3 is used to show that a measurable amount of stratospheric air is mixed into this region. The HCl measurements offer an important constraint on stratospheric mixing into the TTL because once the contribution from halocarbon decomposition is quantified, the remaining HCl (>60% in this study) must have a stratospheric source. Stratospheric HCl in the TTL brings with it a proportional amount of stratospheric O3. Quantifying the sources of O3 in the TTL is important because O3 is particularly effective as a greenhouse gas in the tropopause region.

  3. Measurements of Trace Gases in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Marcy, T. P.; Popp, P. J.; Gao, R. S.; Fahey, D. W.; Ray, E. A.; Richard, E. C.; Thompson, T. L.; Atlas, E. L.; Lowenstein, M.; Wofsy, S. C.; hide

    2008-01-01

    A unique dataset of airborne in situ observations of HCl, O3, HNO3, H2O, CO, CO2 and CH3Cl has been made in and near the tropical tropopause layer (TTL). A total of 16 profiles across the tropopause were obtained at latitudes between 10degN and 3degs from the NASA WB-57F high-altitude aircraft flying from Costa Rica. Few in situ measurements of these gases, particularly HCl and HNO3, have been reported for the TTL. The general features of the trace gas vertical profiles are consistent with the concept of the TTL as distinct from the lower troposphere and lower stratosphere. A combination of the tracer profiles and correlations with O3 is used to show that a measurable amount of stratospheric air is mixed into this region. The HCl measurements offer an important constraint on stratospheric mixing into the TTL because once the contribution from halocarbon decomposition is quantified, the remaining HCl (>60% in this study) must have a stratospheric source. Stratospheric HCl in the TTL brings with it a proportional amount of stratospheric O3. Quantifying the sources of O3 in the TTL is important because O3 is particularly effective as a greenhouse gas in the tropopause region.

  4. Ultrasensitive detection of atmospheric trace gases using frequency modulation spectroscopy

    NASA Technical Reports Server (NTRS)

    Cooper, David E.

    1986-01-01

    Frequency modulation (FM) spectroscopy is a new technique that promises to significantly extend the state-of-the-art in point detection of atmospheric trace gases. FM spectroscopy is essentially a balanced bridge optical heterodyne approach in which a small optical absorption or dispersion from an atomic or molecular species of interest generates an easily detected radio frequency (RF) signal. This signal can be monitored using standard RF signal processing techniques and is, in principle, limited only by the shot noise generated in the photodetector by the laser source employed. The use of very high modulation frequencies which exceed the spectral width of the probed absorption line distinguishes this technique from the well-known derivative spectroscopy which makes use of low (kHz) modulation frequencies. FM spectroscopy was recently extended to the 10 micron infrared (IR) spectral region where numerous polyatomic molecules exhibit characteristic vibrational-rotational bands. In conjunction with tunable semiconductor diode lasers, the quantum-noise-limited sensitivity of the technique should allow for the detection of absorptions as small as .00000001 in the IR spectral region. This sensitivity would allow for the detection of H2O2 at concentrations as low as 1 pptv with an integration time of 10 seconds.

  5. Microwave limb sounder. [measuring trace gases in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Gustincic, J. J. (Inventor)

    1981-01-01

    Trace gases in the upper atmosphere can be measured by comparing spectral noise content of limb soundings with the spectral noise content of cold space. An offset Cassegrain antenna system and tiltable input mirror alternately look out at the limb and up at cold space at an elevation angle of about 22. The mirror can also be tilted to look at a black body calibration target. Reflection from the mirror is directed into a radiometer whose head functions as a diplexer to combine the input radiation and a local ocillator (klystron) beam. The radiometer head is comprised of a Fabry-Perot resonator consisting of two Fabry-Perot cavities spaced a number of half wavelengths apart. Incoming radiation received on one side is reflected and rotated 90 deg in polarization by the resonator so that it will be reflected by an input grid into a mixer, while the klystron beam received on the other side is also reflected and rotated 90 deg, but not without passing some energy to be reflected by the input grid into the mixer.

  6. Trace gases in the atmosphere over Russian cities

    NASA Astrophysics Data System (ADS)

    Elansky, Nikolai F.; Lavrova, Olga V.; Skorokhod, Andrey I.; Belikov, Igor B.

    2016-10-01

    Multiyear observational data (obtained at the mobile railroad laboratory in the course of the 1995-2010 TROICA experiments) on the composition and state of the atmosphere were used to study the features of both spatial and temporal variations in the contents of trace gases in the surface air layer over Russian cities. The obtained characteristics of urban air noticeably differ from those obtained at stationary stations. The emission fluxes of NOx, CO, and CH4 and their integral emissions from large cities have been estimated on the basis of observational data obtained at the mobile laboratory. The values of these emission fluxes reflect the state of urban infrastructure. The integral urban emissions of CO depend on the city size and vary from 50 Gg yr-1 for Yaroslavl to 130 Gg yr-1 for Yekaterinburg. For most cities, they agree with the EDGAR v4.2 data within the limits of experimental error. The agreement is worse for the emissions of NOx. The EDGAR v4.2 data on the emissions of CH4 seem to be overestimated.

  7. Biogenic trace gases in the atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Jahangeer, Muffarah

    Trace gases are known to exert a tremendous influence on planetary atmospheres. By understanding spatial and temporal trace gas behavioral patterns vast amounts of information about the celestial body can be deduced, from current conditions to past history to future evolution. The discovery of episodic methane plumes on Mars argues the presence of ethane, regardless of origin, biogenic or abiogenic, even though it has yet to be detected there. The Earth's methane is produced both by serpentinization as well as by Archaean methanogens. Methane is a potent greenhouse gas and large methane excursions on Earth have been linked with dramatic shifts in its climate, as with the Permian-Triassic extinction event. Atmospheric ethane while present on Earth at about 0.5 ppbv, results primarily from the photochemical action on methane gas. Ultraviolet photons of wavelengths shorter than 160 nm dissociate methane to a methyl radical and one hydrogen atom. When two methyl radicals recombine, the result is ethane: CH4+hv→CH3• +•H CH3•+•CH3+M→C2H6+M A small fraction of terrestrial ethane is also produced by methanogens and ethanogens. Ethane is a constituent of the atmospheres of all four outer solar system planetary bodies as well as of some moons and comets but has not yet been explored or studied in Mars. Possible mechanisms that control the synthesis, occurrence and lifetime of ethane in the atmosphere of Mars are examined in this study along with the Martian trace gas profile using a 1-D photochemical model of its atmosphere. Upper limits of the flux of ethane used are based on our understanding of the Earth's atmospheric component of ethane and vertical patterns of lifetime, mixing ratio and kinetic reaction rates probed from the regolith to 240km. Ethane molecules are heavier and exhibit "creep" and pooling on the ground, allowing it to linger at the regolith. Ethane also benefits from shielding by methane molecules, allowing some ethane to persist at higher

  8. Nitrogen dioxide observations from the Geostationary Trace ...

    EPA Pesticide Factsheets

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m  ×  250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with prelim

  9. Titan's temporal evolution in stratospheric trace gases near the poles

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena; Jennings, Donald E.; Achterberg, Richard K.; Bampasidis, Georgios; Lavvas, Panayiotis; Nixon, Conor A.; Teanby, Nicholas A.; Anderson, Carrie M.; Cottini, Valeria; Flasar, F. Michael

    2016-05-01

    We analyze spectra acquired by the Cassini/Composite Infrared Spectrometer (CIRS) at high resolution from October 2010 until September 2014 in nadir mode. Up until mid 2012, Titan's Northern atmosphere exhibited the enriched chemical content found since the Voyager days (November 1980), with a peak around the Northern Spring Equinox (NSE) in 2009. Since then, we have observed the appearance at Titan's south pole of several trace species for the first time, such as HC3N and C6H6, observed only at high northern latitudes before equinox. We investigate here latitudes poleward of 50°S and 50°N from 2010 (after the Southern Autumnal Equinox) until 2014. For some of the most abundant and longest-lived hydrocarbons (C2H2, C2H6 and C3H8) and CO2, the evolution in the past 4 years at a given latitude is not very significant within error bars especially until mid-2013. In more recent dates, these molecules show a trend for increase in the south. This trend is dramatically more pronounced for the other trace species, especially in 2013-2014, and at 70°S relative to 50°S. These two regions then demonstrate that they are subject to different dynamical processes in and out of the polar vortex region. For most species, we find higher abundances at 50°N compared to 50°S, with the exception of C3H8, CO2, C6H6 and HC3N, which arrive at similar mixing ratios after mid-2013. While the 70°N data show generally no change with a trend rather to a small decrease for most species within 2014, the 70°S results indicate a strong enhancement in trace stratospheric gases after 2012. The 663 cm-1 HC3N and the C6H6 674 cm-1 emission bands appeared in late 2011/early 2012 in the south polar regions and have since then exhibited a dramatic increase in their abundances. At 70°S HC3N, HCN and C6H6 have increased by 3 orders of magnitude over the past 3-4 years while other molecules, including C2H4, C3H4 and C4H2, have increased less sharply (by 1-2 orders of magnitude). This is a strong

  10. Observations of tropospheric trace gases from GOSAT thermal infrared spectra

    NASA Astrophysics Data System (ADS)

    Ohyama, Hirofumi; Shiomi, Kei; Kawakami, Shuji; Nakajima, Masakatsu; Maki, Takashi; Deushi, Makoto

    2013-04-01

    Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS), which is one of the sensors onboard the Greenhouse gases Observing SATellite (GOSAT), measures the sunlight backscattered by the Earth's surface and atmosphere as well as the thermal radiance emitted from the Earth. Atmospheric trace gases such as ozone (O3), water vapor (H2O and HDO), methanol (CH3OH) and ammonia (NH3) are derived from the thermal infrared spectral radiance recorded with the TANSO-FTS by an optimal estimation retrieval approach. TANSO-FTS total ozone columns are compared with Dobson spectrophotometer and Ozone Monitoring Instrument (OMI) data. The TANSO-FTS total ozone retrievals exhibit a positive bias of 3-4% with a root-mean-square difference of 2-6% compared to the Dobson and OMI measurements. We compare TANSO-FTS tropospheric ozone columns to those from ozonesonde data as well as from a three-dimensional chemical-climate model (MRI-CCM2). The TANSO-FTS data have high correlations with the ozonesonde data. The seasonal trends of the retrieved tropospheric ozone are consistent with those of the ozonesonde data. The spatial distribution of the tropospheric ozone from the TANSO-FTS and MRI-CCM2 shows good agreement, especially in the high-level tropospheric ozone regions. We also retrieve tropospheric H2O and HDO profiles simultaneously, accounting for the cross correlations between the water isotopes. The joint retrieval results in precise estimation of the isotope ratio by partial cancellation of systematic errors common to both H2O and HDO. The retrieved profiles and columns are compared with radiosonde, GPS, and ground-based high-resolution FTS data. The temporal and spatial variations of the precipitable water and the isotope ratio are consistent with those of the validation data. Finally, air pollutants such as CH3OH and NH3 are retrieved using the retrieved ozone and water vapor. We present the latitudinal and seasonal variations of CH3OH

  11. Miniaturized Gas Correlation Radiometer for the Detection of Trace Gases in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Melroy, Hilary R.; Wilson, Emily L.; Georgieva, Elena

    2012-01-01

    We present a miniaturized and simplified version of a gas correlation radiometer (GCR) capable of simultaneously mapping multiple trace gases and identifying active regions on the Mars surface. Gas correlation radiometry (GCR) has been shown to be a sensitive and versatile method for detecting trace gases in Earth's atmosphere. Reduction of the size and mass of the GCR was achieved by implementing compact, light-weight 1 mm inner diameter hollow-core optical fibers (hollow waveguides) as the gas correlation cells. In a comparison with an Earth orbiting CO2 GCR instrument, exchanging the 10 m multipass cells with hollow waveguide gas correlation cells of equivalent path length reduces the mass from approximately 150 kg to approximately 0.5 kg, and reduces the volume from 1.9 m x 1.3 m x 0.86 m to a small bundle of fiber coils approximately 1 meter in diameter by 0.05 m in height (mass and volume reductions of greater than 99%). A unique feature of this instrument is its stackable module design, with a single module for each trace gas. Each of the modules is self-contained, and fundamentally identical; differing by the bandpass filter wavelength range and gas mixtures inside the hollow-waveguide absorption cells. The current configuration contains four stacked modules for simultaneous measurements of methane (CH4), formaldehyde (H2CO), water vapor (H2O), and deuterated water vapor (HDO) but could easily be expanded to include measurements of additional species of interest including nitrous oxide (N2O), hydrogen sulfide (H2S), methanol (CH3OH), and sulfur dioxide (SO2), as well as carbon dioxide (CO2) for a simultaneous measure of mass balance. Preliminary results indicate that a 1 ppb detection limit is possible for both formaldehyde and methane with one second of averaging. Using non-optimized components, we have demonstrated an instrument sensitivity equivalent to approximately 30 ppb for formaldehyde, and approximately 500 ppb for methane. We expect custom

  12. Miniaturized Gas Correlation Radiometer for the Detection of Trace Gases in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Melroy, H.; Wilson, E. L.; Georgieva, E.

    2012-12-01

    We present a miniaturized and simplified version of a gas correlation radiometer (GCR) capable of simultaneously mapping multiple trace gases and identifying active regions on the Mars surface. Gas correlation radiometry (GCR) has been shown to be a sensitive and versatile method for detecting trace gases in Earth's atmosphere. Reduction of the size and mass of the GCR was achieved by implementing compact, light-weight 1 mm inner diameter hollow-core optical fibers (hollow waveguides) as the gas correlation cells. In a comparison with an Earth orbiting CO2 GCR instrument, exchanging the 10 m multipass cells with hollow waveguide gas correlation cells of equivalent pathlength reduces the mass from ~150 kg to ~0.5 kg, and reduces the volume from 1.9 m x 1.3 m x 0.86 m to a small bundle of fiber coils approximately 1 meter in diameter by 0.05 m in height (mass and volume reductions of >99%). A unique feature of this instrument is its stackable module design, with a single module for each trace gas. Each of the modules is self-contained, and fundamentally identical; differing by the bandpass filter wavelength range and gas mixtures inside the hollow-waveguide absorption cells. The current configuration contains four stacked modules for simultaneous measurements of methane (CH4), formaldehyde (H2CO), water vapor (H2O), and deuterated water vapor (HDO) but could easily be expanded to include measurements of additional species of interest including nitrous oxide (N2O), hydrogen sulfide (H2S), methanol (CH3OH), and sulfur dioxide (SO2), as well as carbon dioxide (CO2) for a simultaneous measure of mass balance. Preliminary results indicate that a 1 ppb detection limit is possible for both formaldehyde and methane with one second of averaging. Using non-optimized components, we have demonstrated an instrument sensitivity equivalent to ~30 ppb for formaldehyde, and ~500 ppb for methane. We expect custom bandpass filters and 6 m long waveguides to significantly improve these

  13. [Effects of elevated atmospheric CO2 on the exchange of trace gases between ecosystems and the atmosphere].

    PubMed

    Xu, Zhongjun; Zheng, Xunhua; Wang, Yuesi

    2002-10-01

    The latest researches on the effects of elevated atmospheric CO2 on the exchanges of trace gases (e.g., CO2, CH4 and N2O) between the atmosphere and ecosystems were reviewed. The techniques and methods involved in the researches were introduced firstly. Then the review mainly focused upon the results from those studies using the open-top-chamber (OTC) methods and the free-air carbon dioxide enrichment (FACE) system. Generally, elevated atmospheric CO2 may stimulate biomass accumulation, and enlarge C/N ratio in plant tissue so as to reduce the decomposition of organic matter. This action could increase CO2 sequestration in terrestrial ecosystems. Elevated atmospheric CO2 could impact on methanogenic bacteria and CH4 emissions. An increase in CH4 emissions from wetland may appear. The argument among the responses of N2O emissions to elevated CO2, however, was inconsistent. So far, no study on other trace gases was reported. More efforts should be taken in the research on the effects of elevated atmospheric CO2 on the exchange of trace gases.

  14. A new method for sampling fumarolic gases: Analysis of major, minor and metallic trace elements with ammonia solutions

    NASA Astrophysics Data System (ADS)

    Sortino, F.; Nonell, A.; Toutain, J. P.; Munoz, M.; Valladon, M.; Volpicelli, G.

    2006-11-01

    A new method using ammonia solutions in pre-evacuated quartz bottles has been experimented for volcanic gas sampling and analysing. Various tests (reproducibility, variability and comparison with known methods such as NaOH pre-evacuated bottles and acid condensates) have been performed to check for their efficiency. By using ammonia solutions, acid gases (St, HCl, HF), carbon dioxide, noncondensible gases (N 2, Ar, …) and metallic trace elements (MTE) can be measured with standard methods (HPLC, GC, titrimetry, ICP-MS). Results show that acid gases, CO 2 and noncondensible gases are sampled and analysed with similar efficiency in NH 4OH bottles than by using the known and accurate NaOH method. Moreover, a key point is that NH 4OH solutions, after undergoing adequate processing (oxidation and acidification) allow also precise MTE measurements by using standard ICP-MS methods. Such MTE measurements appear much more reliable than those performed on acid condensates. Pre-evacuated ammonia bottles appear therefore as an optimum tool to collect volcanic gases and to obtain their complete chemical composition.

  15. Pilot Institute on Global Change on Trace Gases and the Biosphere, 1988

    NASA Technical Reports Server (NTRS)

    Eddy, J. A.; Moore, B.

    1998-01-01

    Table of Contents: Summary; Background; General Framework for a Series of Institutes on Global Change; The 1988 Pilot Institute on Global Changes: Trace Gases and the Biosphere; Budget; List of Acronyms; and Attachments.

  16. Emission of climate-relevant trace gases and succession of microbial communities during open-windrow composting

    SciTech Connect

    Hellmann, B.; Zelles, L.; Palojaervi, A.; Bai, Q.

    1997-03-01

    Municipal solid-waste composting is a process of increasing importance, based primarily on augmentation of microbial activity. The composting of organic matter leads not only to a reduction in waste but a sensible recycling of residuals to their origin. Carbon dioxide derived from plant matter degradation does not contribute to global warming. However, emitted nitrous oxide and methane molecules contribute to the enhancement of the greenhouse effect. This study determined a wide variety of microbial properties during the composting processes at a whole windrow level and quantified the emission rates of the climate relevant trace gases, carbon dioxide, nitrous oxide and methane during the course of maturation of a compost row. 47 refs., 6 figs., 1 tab.

  17. Optical parametric oscillators in lidar sounding of trace atmospheric gases in the mid infrared region

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Sadovnikov, S. A.; Kharchenko, O. V.; Shumskii, V. K.; Yakovlev, S. V.

    2015-12-01

    Applicability of a KTA crystal-based laser system with optical parametric generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases is based on differential absorption (DIAL) technique and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases.

  18. Evolution of trace gases and particles emitted by a chaparral fire in California

    Treesearch

    S. K. Akagi; J. S. Craven; J. W. Taylor; G. R. McMeeking; R. J. Yokelson; I. R. Burling; S. P. Urbanski; C. E. Wold; J. H. Seinfeld; H. Coe; M. J. Alvarado; D. R. Weise

    2012-01-01

    Biomass burning (BB) is a major global source of trace gases and particles. Accurately representing the production and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 hectare prescribed fire in chaparral fuels on the central coast of California, US on 17 November...

  19. Observations and Photochemistry of Reactive Trace Gases in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Poulida, Olga

    CO and O_3 play a significant role in the oxidizing capacity of the atmosphere and thus the habitability of the Earth. NO controls the photochemical production of O_3. Reliable measurements of substantial temporal and/or spatial resolution are necessary to understand the distribution, transport, and photochemistry of these trace gases. The present work includes three experiments to study the distribution of ozone and its precursors in rural environment and during convective activity, to characterize the regional air quality, and to enrich the incomplete data base of constituents that play a key role in the photochemical production of tropospheric ozone. Standard meteorological parameters and concentrations of O_3 and CO were monitored in rural Virginia from October 1988 to October 1989. Seasonal, monthly, and diurnal variations of hourly averages are examined. Dry deposition of O_3 dominates in the winter and photochemistry in the summer. Various lines of evidence suggests that the data are little affected by local sources and are reasonably representative of the regional continental air quality. In recognition of the deleterious effects of photochemical oxidants on human health and on the economy of the southeastern U.S., we made simultaneous measurements of NO, NO _{rm x}, NO_ {rm y}, CO, O_3, and UV solar flux in rural North Carolina, in August 1991. The NO_{rm x}/NO _{rm y} ratio shows the expected diurnal variation with a mean value of 0.25. Calculated rates of O_3 production, using a simplified chemical scheme, are of the same order of magnitude as the observed increases in O_3 mixing ratios, offering confidence on the reliability of our NO_{rm x} measurements. Downward transport from the stratosphere is the major natural source of O_3 in the troposphere. Measurements taken near a Mesoscale Convective System during the North Dakota Thunderstorm Project on June 28, 1989, suggest the existence of a previously undiscovered mechanism for troposphere

  20. Trace Gases - A Warning Signs of Impending Major Seismic Activity

    NASA Astrophysics Data System (ADS)

    Baijnath, J.; Freund, F.; Li, J.

    2013-12-01

    isopropanol and with a highly reduced butyn containing triple-bonded C and an aromatic ring were used. Multiple tests were conducted to study the interaction of stressed-activated positive hole charge carriers with organic versus inorganic and dry versus moist materials. This study suggests that the appearance of certain trace gases may be useful as a pre-earthquake indicator.

  1. MIRAGE: Model Description and Evaluation of Aerosols and Trace Gases

    SciTech Connect

    Easter, Richard C.; Ghan, Steven J.; Zhang, Yang; Saylor, Rick D.; Chapman, Elaine G.; Laulainen, Nels S.; Abdul-Razzak, Hayder; Leung, Lai-Yung R.; Bian, Xindi; Zaveri, Rahul A.

    2004-10-27

    The MIRAGE (Model for Integrated Research on Atmospheric Global Exchanges) modeling system, designed to study the impacts of anthropogenic aerosols on the global environment, is described. MIRAGE consists of a chemical transport model coupled on line with a global climate model. The chemical transport model simulates trace gases, aerosol number, and aerosol chemical component mass [sulfate, MSA, organic matter, black carbon (BC), sea salt, mineral dust] for four aerosol modes (Aitken, accumulation, coarse sea salt, coarse mineral dust) using the modal aerosol dynamics approach. Cloud-phase and interstitial aerosol are predicted separately. The climate model, based on the CCM2, has physically-based treatments of aerosol direct and indirect forcing. Stratiform cloud water and droplet number are simulated using a bulk microphysics parameterization that includes aerosol activation. Aerosol and trace gas species simulated by MIRAGE are presented and evaluated using surface and aircraft measurements. Surface-level SO2 in N. American and European source regions is higher than observed. SO2 above the boundary layer is in better agreement with observations, and surface-level SO2 at marine locations is somewhat lower than observed. Comparison with other models suggests insufficient SO2 dry deposition; increasing the deposition velocity improves simulated SO2. Surface-level sulfate in N. American and European source regions is in good agreement with observations, although the seasonal cycle in Europe is stronger than observed. Surface-level sulfate at high-latitude and marine locations, and sulfate above the boundary layer, are higher than observed. This is attributed primarily to insufficient wet removal; increasing the wet removal improves simulated sulfate at remote locations and aloft. Because of the high sulfate bias, radiative forcing estimates for anthropogenic sulfur in Ghan et al. [2001c] are probably too high. Surface-level DMS is {approx}40% higher than observed

  2. MIRAGE: Model description and evaluation of aerosols and trace gases

    NASA Astrophysics Data System (ADS)

    Easter, Richard C.; Ghan, Steven J.; Zhang, Yang; Saylor, Rick D.; Chapman, Elaine G.; Laulainen, Nels S.; Abdul-Razzak, Hayder; Leung, L. Ruby; Bian, Xindi; Zaveri, Rahul A.

    2004-10-01

    The Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE) modeling system, designed to study the impacts of anthropogenic aerosols on the global environment, is described. MIRAGE consists of a chemical transport model coupled online with a global climate model. The chemical transport model simulates trace gases, aerosol number, and aerosol chemical component mass (sulfate, methane sulfonic acid (MSA), organic matter, black carbon (BC), sea salt, and mineral dust) for four aerosol modes (Aitken, accumulation, coarse sea salt, and coarse mineral dust) using the modal aerosol dynamics approach. Cloud-phase and interstitial aerosol are predicted separately. The climate model, based on Community Climate Model, Version 2 (CCM2), has physically based treatments of aerosol direct and indirect forcing. Stratiform cloud water and droplet number are simulated using a bulk microphysics parameterization that includes aerosol activation. Aerosol and trace gas species simulated by MIRAGE are presented and evaluated using surface and aircraft measurements. Surface-level SO2 in North American and European source regions is higher than observed. SO2 above the boundary layer is in better agreement with observations, and surface-level SO2 at marine locations is somewhat lower than observed. Comparison with other models suggests insufficient SO2 dry deposition; increasing the deposition velocity improves simulated SO2. Surface-level sulfate in North American and European source regions is in good agreement with observations, although the seasonal cycle in Europe is stronger than observed. Surface-level sulfate at high-latitude and marine locations, and sulfate above the boundary layer, are higher than observed. This is attributed primarily to insufficient wet removal; increasing the wet removal improves simulated sulfate at remote locations and aloft. Because of the high sulfate bias, radiative forcing estimates for anthropogenic sulfur given in 2001 by S. J. Ghan and

  3. Distribution and Sources of Trace Gases and Aerosols in the Asian Summer Monsoon Anticyclone - Aircraft Observations and Model Simulations

    NASA Astrophysics Data System (ADS)

    Schlager, H.; Klausner, T.; Aufmhoff, H.; Baumann, R.; Gottschaldt, K. D.

    2015-12-01

    We report aircraft observations of trace gases and aerosols from recent field campaigns in the Asian summer monsoon anticyclone. Measurements were performed with the DLR Falcon and HALO aircraft at altitudes up to 15 km across the boundary of the anticyclone over the Arabian Sea during June, July and September conditions. Sharp gradients in chemical tracer mixing ratios were observed at the boundary of the anticyclone. In particular, sulfur dioxide and aerosols were enhanced inside the anticyclone. Ozone and carbon monoxide were enhanced or reduced in the anticyclone depending on the degree of in-mixing of air from the stratosphere inferred from observations of the stratospheric tracer hydrochloric acid. Backward trajectory analysis, tracer dispersion calculations, and simulations with the chemistry-climate model EMAC, nudged to the meteorological conditions of the measurements, were used to investigate the origin and transport of trace gases in and in the vicinity of the anticyclone. A chemistry-aerosol box model was used to simulate the formation of sulfate aerosol from sulfur dioxide inside the anticyclone uplifted by deep convection over northern India and in the Gulf of Bengal.

  4. Quantification of Aerosol Derived Particulate Matter and Trace gases in the Coastal Belt of Kochi, Kerala, India

    NASA Astrophysics Data System (ADS)

    H, S. C.

    2016-02-01

    Aerosol chemistry is a window to unravel the various environmental health hazard problems. This open forum which deals with the study of formation, interaction, transformation of aerosol species, which could enable in the assessment of biogeochemical cycling of anthropogenic and toxic species. It also preserves the temperature balance and reservoir and sink for nutrients, trace metals and organic species. An inventory of air pollutants is a proactive and necessary first step towards the control of air pollution. Surveys and studies on the sources of pollution and their apportionment to different sources are a pre-requisite for alleviating environmental disorder. The Kochi City (The Queen of Arabian Sea), Kerala, India is a fast growing industrial region where mounting urbanization has been affecting the quality of the atmospheric environment. Cochin estuarine environment is progressively affected by marine pollution concomitant by industrial hazardous chemicals and municipal waste. Further, rapid urbanization and industrialization has lead to lofting and large scale advection of these omnipresent species in the atmosphere. Studies were conducted to assess the significance and potential impact occupied to these ubiquitous species. The major gaseous pollutants include gases like sulphur dioxide, nitrogen dioxide, ammonia and particulate matter (PM). An attempt was performed to unravel the inorganic species in the atmosphere and programmed by means of quantification of PM10 and trace gases. Their distribution pattern and outcomes are inferred.

  5. Trace gases over Northern Eurasia: background level and disturbing factors

    NASA Astrophysics Data System (ADS)

    Skorokhod, A.; Shumsky, R.; Pankratova, N.; Moiseenko, K.; Vasileva, A.; Berezina, E.; Elansky, N.

    2012-04-01

    Atmospheric air composition over the vast and low inhabited areas of Northern Eurasia is still poorly studied because of lack of the precise direct measurements. This harms to accuracy of both global and regional models which simulate climatological and ecosystem changes in that highly important region. In this work background trace gases (such as O3, NO, NO2, CO) concentrations and their variability are considered on base of results of continuous measurements at ZOTTO station in the middle of Siberia which have been carried out since March, 2007. Also factors implying background regime (like long-range transport, wild fires emissions) are analyzed. To compliment study data of TROICA train-based campaigns which have been regularly provided across Russia for many years (1995-2010) are used. The concentration of ozone has a pronounced seasonal variation with a clear peak in spring (40-45 ppbv in average and up to 80 ppbv in extreme cases) and minimum in winter. Average ozone level is about 20 ppbv that corresponds to the background conditions. Enhanced concentration in March-July is due to increased stratospheric-tropospheric exchange. In autumn and winter distribution of ozone is close to uniform. Photochemical processes under low light and air temperature does not cause the generation of ozone. Sink on the snow surface is very small, and therefore the diurnal variations are absent. In general, seasonal variations correspond to the average seasonal course, which is typical for Russia. The analysis of diurnal ozone variations in Zotino in different seasons showed that the maximum rate of ozone formation is observed in summer from 9 to 15 h local time and is 1-2 ppbv/hour. It correlates well with the data on the isoprene emissions and others biogenic VOC reacting with OH- radical. Thus they are biogenic VOC emissions that seem to be the main factor of the lower troposphere oxidation power in summer. In other seasons it is significantly lower. NOx concentration does

  6. Absorption of sulfur dioxide from gases by ferrous sulfate

    SciTech Connect

    Hansen, B.J.; Zambrano, A.R.

    1980-12-09

    This application is directed to the use of ferrous sulfate for absorption of sulfur from gases containing the same. The invention is predicated on the reaction of the sulfur oxides with ferrous sulfate in the presence of oxygen to form principally ferric sulfate.

  7. Natural sources of greenhouse gases: carbon dioxide emissions from volcanoes

    USGS Publications Warehouse

    Gerlach, Terrence

    1990-01-01

    Volcanic degassing of carbon dioxide plays an important role in keeping the atmosphere-ocean portion of the carbon geochemical cycle in balance. The atmosphere-ocean carbon deficit requires replenishment of 6??1012 mol CO2/yr, and places an upper limit on the output of carbon dioxide from volcanoes. The CO2 output of the global mid-oceanic ridge system is ca. 0.7??1012 mol/yr, thus supplying only a fraction of the amount needed to balance the carbon deficit. The carbon dioxide flux from subaerial volcanoes is poorly known, but it appears to be at least as large as the mid-oceanic ridge flux. Much (perhaps most) of the CO2 emitted from volcanoes is degassed noneruptively. This mode of degassing may lead to impacts on the environment and biosphere that are fundamentally different in character from those envisioned in published scenarios, which are based on the assumption that CO2 degassing occurs predominantly by eruptive processes. Although the flux of carbon dioxide from volcanoes is poorly constrained at present, it is clearly two orders of magnitude lower than the anthropogenic output of CO2.

  8. A search for biogenic trace gases in the atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Mckay, Christopher P.

    1989-01-01

    The detection of certain trace gases in the atmosphere of Mars may serve as a possible indicator of microbial life on the surface of Mars. Candidate biogenic gases include methane CH4, ammonia NH3, nitrous oxide N2O, and several reduced sulfur species. Chemical thermodynamic equilibrium and photochemical calculations preclude the presence of these gases in any measurable concentrations in the atmosphere of Mars in the absence of biogenic production. A search for these gases utilizing either high resolution (spectral and spatial) spectroscopy from a Mars orbiter, such as the Observer, and or in situ measurements from a Mars lander or rover, is proposed.

  9. The airborne Laser Absorption Spectrometer - A new instrument of remote measurement of atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.; Menzies, R. T.

    1978-01-01

    The Laser Absorption Spectrometer is a portable instrument developed by JPL for remote measurement of trace gases from an aircraft platform. It contains two carbon dioxide lasers, two optical heterodyne receivers, appropriate optics to aim the lasers at the ground and detect the backscattered energy, and signal processing and recording electronics. Operating in the differential-absorption mode, it is possible to monitor one atmospheric gas at a time and record the data in real time. The system can presently measure ozone, ethylene, water vapor, and chlorofluoromethanes with high sensitivity. Airborne measurements were made in early 1977 from the NASA/JPL twin-engine Beechcraft and in May 1977 from the NASA Convair 990 during the ASSESS-II Shuttle Simulation Study. These flights resulted in measurements of ozone concentrations in the lower troposphere which were compared with ground-based values provided by the Air Pollution Control District. This paper describes the details of the instrument and results of the airborne measurements.

  10. Trace water determination in gases by infrared spectroscopy

    SciTech Connect

    Stallard, B.R.; Espinoza, L.H.; Niemczyk, T.M.

    1995-05-01

    Water determination in semiconductor process gases is desirable in order to extend the life of gas delivery systems and improve wafer yields. The authors review their work in applying Fourier transform infrared spectroscopy to this problem, where a 10 ppb detection limit has been demonstrated for water in N{sub 2}, HCl, and HBr. The potential for optical determination of other contaminants in these gases is discussed. Also, alternative optical spectroscopic approaches are briefly described. Finally, they discuss methods for dealing with interference arising from water in the instrument beam path, yet outside the sample cell.

  11. Devices and methods to detect and quantify trace gases

    DOEpatents

    Allendorf, Mark D.; Robinson, Alex

    2016-05-03

    Sensing devices based on a surface acoustic wave ("SAW") device coated with an absorbent crystalline or amorphous layer for detecting at least one chemical analyte in a gaseous carrier. Methods for detecting the presence of a chemical analyte in a gaseous carrier using such devices are also disclosed. The sensing devices and methods for their use may be configured for sensing chemical analytes selected from the group consisting of water vapor, carbon dioxide, methanol, ethanol, carbon monoxide, nitric oxide, nitrous oxide, organic amines, organic compounds containing NO.sub.2 groups, halogenated hydrocarbons, acetone, hexane, toluene, isopropanol, alcohols, alkanes, alkenes, benzene, functionalized aromatics, ammonia (NH.sub.3), phosgene (COCl.sub.2), sulfur mustard, nerve agents, sulfur dioxide, tetrahydrofuran (THF) and methyltertbutyl ether (MTBE) and combinations thereof.

  12. Application of Derivative Spectrometry to the Analysis of Trace Gases

    NASA Technical Reports Server (NTRS)

    Hager, Robert N.

    1971-01-01

    A derivative spectrometer is sensitive to changes in spectral intensity over narrow wavelength internal. Specifically, a second derivative spectrometer senses the curvature of the incident spectral intensity, providing an output voltage signal proportional to the second derivative of intensity with respect to wavelength. When such an instrument is combined with multi-pass White cell, a unique trace gas analyzer results. The analyzer, operating within the middle ultraviolet spectral region, provides a highly amplified derivative spectrum of any molecular narrow band absorption which is used for trace gas identification. The intensity of any peak within a spectrum is proportional to the trace gas concentration. Such an analyzer, utilizing a 20 meter pathlength White cell, is presently being used to automatically monitor ambient air for SO2, NO, NO2, and O3 with minimum detectable concentration limits in the part per billion range.

  13. Gas phase diffusion coefficients of reactive trace gases in the atmosphere

    NASA Astrophysics Data System (ADS)

    Tang, Mingjin; Shiraiwa, Manabu; Cox, Tony; Pöschl, Ulrich; Kalberer, Markus

    2015-04-01

    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions. However, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. We have compiled and evaluated, for the first time, the diffusivities (pressure independent diffusion coefficients) of atmospheric inorganic (Tang et al., 2014) and organic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed.

  14. Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan

    Air pollution is a major problem worldwide that adversely a_ects human health, impacts ecosystems and climate. In the atmosphere, there are hundreds of important compounds participating in complex atmospheric reactions linked to air quality and climate. Aerosols are relevant because they modify the radiation balance, a_ect clouds, and thus Earth albedo. The amount of aerosol is often characterized by the vertical integral through the entire height of the atmosphere of the logarithm fraction of incident light that is extinguished called Aerosol Optical Depth (AOD). The AOD at 550 nm (AOD550) over land is 0.19 (multi annual global mean), and that over oceans is 0.13. About 43 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions, sample spatial scales that resemble satellite ground-pixels and atmospheric models, and help integrate remote sensing and in-situ observations to obtain optical closure on the effects of aerosols and trace gases in our changing environment. In this work, I present the recent development of the University of Colorado two dimensional (2-D) Multi-AXis Differential Optical Absorption Spectroscopy (2-D-MAX-DOAS) instrument to measure the azimuth and altitude distribution of trace gases and aerosol optical properties simultaneously with a single instrument. The instrument measures solar scattered light from any direction in the sky, including direct sun light in the hyperspectral domain. In Chapter 2, I describe the capabilities of 2-D measurements in the context of retrievals of azimuth distributions of nitrogen dioxide (NO2), formaldehyde (HCHO), and glyoxal (CHOCHO), which are precursors for tropospheric O3 and aerosols. The measurements were carried out during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign in Mainz, Germany and show the ability to bridge spatial scales to

  15. Short-lived organic trace gases in the UT/LS: Results from recent field campaigns.

    NASA Astrophysics Data System (ADS)

    Atlas, E.; Lueb, R.; Zhu, X.; Pope, L.; Schauffler, S.; Pan, L.; Bowman, K. P.; Blake, D.; Meinardi, S.

    2008-12-01

    The chemistry of the upper troposphere/lower stratosphere can be impacted by delivery of reactive trace gases that are variable in composition and depend on source emissions and transport pathway and time. Because surface emissions include gases with a range of chemical lifetimes, and because different source emissions (e.g. marine boundary layer, anthropogenic emissions, biomass burning) can have different chemical signatures, the composition of the organic trace gases that are found in the UT/LS region have the potential to provide diagnostic information on air mass sources and transport time scales. Further, the role of short-lived organic halogen gases in the UT/LS has been highlighted as a major uncertainty for defining the reactive halogen budget and the chemical boundary conditions for the stratospheric chemistry that affects ozone depletion rates. Recent campaigns in the tropics (TC-4 and AVE missions) and in the extra-tropics (START08) have included the measurement of trace gases from whole air sampling and analysis on the NASA WB-57 or NSF Gulfstream V aircraft. Measurements of a range of halocarbons, hydrocarbons, organic nitrates, and sulfur species were made to examine the role of short-lived organic gases in the UT/LS. This presentation will highlight different aspects of these measurements that deal with transport pathways, transport rates, and halogen budgets.

  16. Greenhouse effects due to man-made perturbations of trace gases

    NASA Technical Reports Server (NTRS)

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  17. Greenhouse effects due to man-made perturbations of trace gases

    NASA Technical Reports Server (NTRS)

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  18. ENSO effects on stratospheric trace gases: How do we capture reality?

    NASA Astrophysics Data System (ADS)

    Braesicke, Peter; Kirner, Oliver; Versick, Stefan; Joeckel, Patrick; Stiler, Gabriele

    2016-04-01

    The El Niño/Southern Oscillation (ENSO) phenomenon is an important pacemaker for interannual variability in the Earth's atmosphere. ENSO impacts on trace gases have been observed and modelled for the stratosphere and the troposphere. However, unambiguous attribution is often difficult due to the limited length of homogenous observational records and thus long-term (decadal) trends are sometimes difficult to detect. Generally ENSO impacts in low latitudes are easier to detect, because the response emerges close (temporally and spatially) to the forcing. Moving from low to high latitudes it becomes increasingly difficult to isolate ENSO driven variability, due to time-lags involved and many other modes of variability playing a role as well. Here, we use a nudged version of the EMAC chemistry-climate model to evaluate ENSO impacts on trace gases over the last 35 years (a so-called Ref-C1SD integration) and contrast the nudged model with its free running counterpart. We use water vapour and ozone observations from the MIPAS instrument on ENVISAT from 2002 to 2012 to test the model performance. Using lagged correlations for the longer model time-series we trace the ENSO signal from the tropical lower troposphere to the polar lower and middle stratosphere and provide a framework for simple attribution of the ENSO signal in trace gases. This concise characterisation of the ENSO impact on trace gases aids improved trend detection in temporally limited time series.

  19. Sources and sinks of trace gases in Amazonia and the Cerrado

    Treesearch

    M.M.C. Bustamante; Michael Keller; D.A. Silva

    2009-01-01

    Data for trace gas fluxes (NOx, N2O, and CH4) from the Amazon and cerrado region are presented with focus on the processes of production and consumption of these trace gases in soils and how they may be changed because of land use changes in both regions. Fluxes are controlled by seaonality, soil moisture, soil texture, topography, and fine-root dynamics. Compared to...

  20. Efficient Atmospheric Cleansing of Oxidized Organic Trace Gases by Vegetation

    NASA Astrophysics Data System (ADS)

    Karl, T.; Harley, P.; Emmons, L.; Thornton, B.; Guenther, A.; Basu, C.; Turnipseed, A.; Jardine, K.

    2010-11-01

    The biosphere is the major source and sink of nonmethane volatile organic compounds (VOCs) in the atmosphere. Gas-phase chemical reactions initiate the removal of these compounds from the atmosphere, which ultimately proceeds via deposition at the surface or direct oxidation to carbon monoxide or carbon dioxide. We performed ecosystem-scale flux measurements that show that the removal of oxygenated VOC via dry deposition is substantially larger than is currently assumed for deciduous ecosystems. Laboratory experiments indicate efficient enzymatic conversion and potential up-regulation of various stress-related genes, leading to enhanced uptake rates as a response to ozone and methyl vinyl ketone exposure or mechanical wounding. A revised scheme for the uptake of oxygenated VOCs, incorporated into a global chemistry-transport model, predicts appreciable regional changes in annual dry deposition fluxes.

  1. Effects of traces of molecular gases (hydrogen, nitrogen) in glow discharges in noble gases

    NASA Astrophysics Data System (ADS)

    Steers, E. B. M.; Smid, P.; Hoffmann, V.

    2008-07-01

    The "Grimm" type of low pressure glow discharge source, introduced some forty years ago, has proved to be a versatile analytical source. A flat sample is used as the cathode and placed about 0.2mm away from the end of a hollow tubular anode leading to an obstructed discharge. When the source was first developed, it was used for the direct analysis of solid metallic samples by optical emission spectroscopy (OES), normally with argon as the plasma gas; it was soon found that, using suitable electrical parameters, the cathode material was sputtered uniformly from a circular crater of diameter equal to that of the tubular anode, so that the technique could be used for compositional depth profile analysis (CDPA). Over the years the capability and applications of the technique have steadily increased. The use of rf powered discharges now permits the analysis of non-conducting layers and samples; improved instrumental design now allows CDPA of ever thinner layers (e.g. resolution of layers 5 nm thick in multilayer stacks is possible). For the original bulk material application, pre-sputtering could be used to remove any surface contamination but for CDPA, analysis must start immediately the discharge is ignited, so that any surface contamination can introduce molecular gases into the plasma gas and have significant analytical consequences, especially for very thin layers; in addition, many types of samples now analysed contain molecular gases as components (either as occluded gas, or e.g. as a nitride or oxide), and this gas enters the discharge when the sample is sputtered. It is therefore important to investigate the effect of such foreign gases on the discharge, in particular on the spectral intensities and hence the analytical results. The presentation will concentrate mainly on the effect of hydrogen in argon discharges, in the concentration range 0-2 % v/v but other gas mixtures (e.g. Ar/N_2, Ne/H_2) will be considered for comparison. In general, the introduction of

  2. Automatic carbon dioxide-methane gas sensor based on the solubility of gases in water.

    PubMed

    Cadena-Pereda, Raúl O; Rivera-Muñoz, Eric M; Herrera-Ruiz, Gilberto; Gomez-Melendez, Domingo J; Anaya-Rivera, Ely K

    2012-01-01

    Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0-100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA) platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible.

  3. Automatic Carbon Dioxide-Methane Gas Sensor Based on the Solubility of Gases in Water

    PubMed Central

    Cadena-Pereda, Raúl O.; Rivera-Muñoz, Eric M.; Herrera-Ruiz, Gilberto; Gomez-Melendez, Domingo J.; Anaya-Rivera, Ely K.

    2012-01-01

    Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0–100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA) platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible. PMID:23112626

  4. On the transport of trace gases by extra-tropical cyclones

    NASA Technical Reports Server (NTRS)

    Allaart, Marc A. F.; Heijboer, Lodewijk C.; Kelder, Hennie

    1994-01-01

    Extratropical cyclones are able to transport trace gases through the whole troposphere and lower stratosphere. At mid-latitudes most of the ozone transport from the lower stratosphere down into the troposphere is accomplished by depressions. The changing the total ozone contents, associated with the variable tropopause heights, are shown to be clearly visible in satellite ozone data.

  5. Airborne sulfur trace species intercomparison campaign: Sulfur dioxide, dimethylsulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Hoell, James M., Jr.; Davis, Douglas D.

    1991-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of sulfur trace gases are presented. The intercomparison was part of the NASA Global Tropospheric Experiment (GTE) and was conducted during the summer of 1989. The intercomparisons were conducted on the Wallops Electra aircraft during flights from Wallops Island, Virginia, and Natal, Brazil. Sulfur measurements intercompared included sulfur dioxide (SO2), dimethylsulfide (DMS), hydrogen sulfide (H2S), carbon disulfide (CS2), and carbonyl sulfide (OCS). Measurement techniques ranged from filter collection systems with post-flight analyses to mass spectrometer and gas chromatograph systems employing various methods for measuring and identifying the sulfur gases during flight. Sampling schedules for the techniques ranged from integrated collections over periods as long as 50 minutes to one- to three-minute samples every ten or fifteen minutes. Several of the techniques provided measurements of more than one sulfur gas. Instruments employing different detection principles were involved in each of the sulfur intercomparisons. Also included in the intercomparison measurement scenario were a host of supporting measurements (i.e., ozone, nitrogen oxides, carbon monoxide, total sulfur, aerosols, etc.) for purposes of: (1) interpreting results (i.e., correlation of any noted instrument disagreement with the chemical composition of the measurement environment); and (2) providing supporting chemical data to meet CITE-3 science objectives of studying ozone/sulfur photochemistry, diurnal cycles, etc. The results of the intercomparison study are briefly discussed.

  6. Titan's temporal evolution in stratospheric trace gases near the poles

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Jennings, D.; Achterberg, R.; Bampasidis, G.; Lavvas, P.; Nixon, C.; Teanby numeration="7">Teanby, N.; Anderson, C.; Cottini, V.; Flasar, F. M.

    2015-10-01

    We analyze spectra acquired by the Cassini/Composite Infrared Spectrometer (CIRS) at high resolution from October 2010 until September 2014 in nadir mode. Up until mid 2012, Titan's Northern atmosphere exhibited the enriched chemical content found since the Voyager days (November 1980), with a peak around the Northern Spring Equinox (NSE) in 2009. Since then, we have observed the appearance at Titan's south pole of several trace species for the first time, such as HC3N and C6H6, observed only at high northern latitudes before equinox. We investigate here latitudes poleward of 50°S and 50°N from 2010 (after the Southern Autumnal Equinox : SAE) until 2014.

  7. Interannual variability of trace gases in the subtropical winter stratosphere

    SciTech Connect

    Gray, L.J.; Russell, J.M. III

    1999-04-01

    Measurements of water vapor and methane from the Halogen Occultation Experiment instrument on board the Upper Atmosphere Research Satellite are used to study the interannual variability of trace gas distributions in the atmosphere. Particular attention is paid to the mechanisms influencing trace gas distributions in the subtropics. The study highlights the quasi-biennial oscillation (QBO) dependence of subtropical tracer distributions more clearly than in previous studies. There is a strong correlation between the equatorial wind QBO and the slope of the tracer isolines in the Northern Hemisphere subtropics, with steeper subtropical isoline slopes in the easterly phase compared with the westerly phase. This is particularly so in the lower stratosphere. Two possible mechanisms for the QBO signal in subtropical isoline slopes are identified: advection by the mean circulation and isentropic mixing. A comparison between the QBO signal in the slope of the tracer isolines and the isentropic tracer gradients is proposed as a method of determining which process is dominant. The authors suggest that the behavior of these two data diagnostics provides a stringent constraint on computer models of the atmosphere. On the basis of these diagnostics three height regions of the subtropical atmosphere are identified. (1) Below 450--500 K isentropic mixing associated with tropospheric disturbances penetrating the lower stratosphere is dominant. (2) In the region 500--750 K the data suggest that advection by the mean meridional circulation is important and that the role of isentropic mixing by eddies is relatively small. (3) Above 750 K isentropic mixing becomes increasingly important with height, and both advection and mixing are influential in determining the subtropical tracer distributions.

  8. The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2013-03-01

    The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (absorption bands at 360, 477, 577, 632 nm) simultaneously in the open atmosphere. The instrument is unique as it (1) features a motion compensation system that decouples the telescope field of view from aircraft movements in real time (<0.35° accuracy), and (2) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system. Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex (California Research at the Nexus of Air Quality and Climate Change) and CARES (Carbonaceous Aerosols and Radiative Effects Study) air quality field campaigns is presented. Horizontal distributions of NO2 VCD (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground-based MAX-DOAS instruments (slope = 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O concentrations and aerosol extinction coefficients, ɛ, at 477 nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  9. Observations of halogenated trace gases in Taiwan and Malaysia

    NASA Astrophysics Data System (ADS)

    Gooch, Lauren J.; Laube, Johannes C.; Sturges, William T.; Oram, David E.; Wang, Jia-Lin; Ou-Yang, Cheng-Feng; Lin, Neng-Huei; Mead, Iq; Rigby, Matt; White, Emily

    2015-04-01

    There are a large variety of halocarbons present in the atmosphere that significantly impact on stratospheric ozone depletion and/or global warming. Though the use of some of these compounds has been phased out and replaced under global control measures, relatively long atmospheric lifetimes, imperfect substitutes and incomplete reductions in usage mean that global concentrations of halocarbons still require regular monitoring. This is especially true for the rapidly developing East Asian region, where high emissions have been repeatedly reported in recent years. We here present results from an air sampling activity in Taiwan and Malaysia during the spring months of 2013 and 2014. A large range of halocarbons, including a number of novel gases, were investigated via high sensitivity gas chromatography mass spectrometry (GC-MS). We find periods of relatively clean air as well as episodes that appear to be impacted by urban and/or industrial emissions and examine correlations between individual species. Observed mixing ratios are compared in context with both global background data and other regional studies. Enhancements in the abundances of many halocarbons are detected with examples including the Halons 1211 and 1202 as well as the very long-lived perfluorocarbons c-C4F8, C5F12 and C7F16. We also show and evaluate unusually high mixing ratios of other globally growing halocarbons such as sulphur hexafluoride (SF6), HCFC-133a (CF3CH2Cl), and CFC-113a (CF3CCl3). Finally, we use NAME analysis to produce back-trajectories in order to assess possible regional emission sources.

  10. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  11. The Broad Band Overlap Problem in Atmospheric Trace Gases

    NASA Astrophysics Data System (ADS)

    Subasilar, Bedrettin

    In relation to a better understanding of climate change and the related greenhouse problem, one way of projecting for the next decades is through general circulation models (GCMs). The only input as a driving force in the changing atmospheric and oceanic circulation patterns is the amount of heat perturbation either due to natural or man-caused activities. Among these, CO_2 concentrations resulting from the latter has been observed to be accelerating at alarmingly high rates especially after the advent of the industrialization which just began in the last century. In addition to that, collective effects of other greenhouse gases (freons, SO_2, H_2O, CH_4, etc.) are as important as CO_2. Hence, it is evident from the above considerations that, in the predictions of climate models, the heat input which triggers changes in the atmospheric patterns, should be formulated accurately. In order to realize this objective, in this research, beginning with the available line parameter data, the problems of absorption have been investigated and attacked in the frame known as the broad band modeling since that is the only best and fastest manageable representation for GCMs. The first step was the construction of a full broad band (intra band overlap) model that was also flexible enough to accommodate the individual peculiarities of the bands. Before, the well known and very useful Ramanathan model had a limited applicability in the concentration scale, and it was also not systematically or successfully incorporated into an inter band overlap picture. Then, the established ideas that served as bases up to present, have been employed but found to have a limited practical applicability when it came to predict the inter band overlaps. This followed by the clarification of the probabilistic approach, taking into account the proper band segments, each of which are already shown to be expressible in terms of full broad bands, gave rise to the recognition of the transmittance

  12. A measurement system for the atmospheric trace gases CH4 and CO

    NASA Technical Reports Server (NTRS)

    Condon, E. P.

    1977-01-01

    A system for measuring ambient clean air levels of the atmospheric trace gases methane and carbon monoxide is described. The analytical method consists of a gas chromatographic technique that incorporates sample preconcentration with catalytic conversion of CO to CH4 and subsequent flame ionization detection of these gases. The system has sufficient sensitivity and repeatability to make the precise measurements required to establish concentration profiles for CO and CH4 in the planetary boundary layer. A discussion of the bottle sampling program being conducted to obtain the samples for the concentration profiles is also presented.

  13. Performance Evaluation of a New, Tunable-Diode Laser Trace-Gas Analyzer for Isotope Ratios of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Sargent, S.

    2015-12-01

    Newly available interband cascade lasers (ICLs) have enabled the development of a family of tunable-diode laser trace-gas analyzers that do not require liquid nitrogen to cool the laser. The lasers are available in the 3000 to 6000 nm range, providing access to the strong mid-infrared absorption lines for important gases such as methane, nitrous oxide, and carbon dioxide. These ICLs are fabricated with distributed feedback to improve their stability and spectroscopic quality. A recently released trace-gas analyzer for carbon dioxide isotopes (TGA200A, Campbell Scientific, Inc.) was evaluated for short- and long-term precision using Allan variance. Accuracy and linearity of CO2 mole fraction was assessed with a set of seven NOAA standard reference gases ranging from 298.35 to 971.48 ppm. Dilution of high-concentration CO2 with CO2-free air demonstrated the linearity of isotope ratio measurements beyond 1000 ppm CO2. Two analyzer variants were tested: one for CO2, δ13C and δ18O; and the other for CO2 and δ13C at enhanced precision.

  14. Long-Term Changes of Tropospheric Trace Gases over Pakistan Derived From Multiple Satellite Instruments

    NASA Astrophysics Data System (ADS)

    Zeb, Naila; Fahim Khokhar, Muhammad; Murtaza, Rabbia; Noreen, Asma; Khalid, Tameem

    2016-07-01

    Air pollution is the expected key environmental issue of Pakistan in coming years due to its ongoing rapid economic growth and this trend suggests only worst air quality over time. In 2014, World bank reported the Pakistan's urban air quality among the most severe in the world and intimated the government to make improvement in air quality as a priority policy agenda. In addition it is recommended to strengthen the institutional and technical capacity of organizations responsible for air quality management. Therefore, the study is designed to put efforts in highlighting air quality issues. The study will provide first database for tropospheric trace gases over Pakistan. The study aims to analyse tropospheric concentrations of CO, TOC, NO2 and HCHO over Pakistan using multisensory data from January 2005 to January 2014. Spatio-temporal and seasonal variability of tropospheric trace gases is observed over the decade to explore long term trend. Hotspots are identified to see variation of species with latitude and to highlight possible sources of trace gases over the Pakistan. High concentrations of trace gases are mainly observed over the Punjab region, which may be attributed to its metropolitan importance. It is the major agricultural, industrialized and urbanized (nearly 60% of the Pakistan's population) sector of the country. Overall significant decreasing trend of CO is identified by MOPITT with relative change of 12.4%. Tropospheric ozone column (TOC) showed insignificant increasing trend with temporal increase of 10.4% whereas NO2 exhibited a significant temporal increase of about 28%. For formaldehyde (HCHO), an increase of about 3.8% is calculated for SCIAMACHY data. Well defined seasonal cycles for these trace gases are observed over the whole study period. CO concentrations showed peak in winter months (November/December/January/February) and dip in the months of Summer/Monsoon (June/July/August). In spite of CO, TCO increases gradually in March and peaks

  15. Mobile Platforms for Continuous Spatial Measurements of Urban Trace Gases and Criteria Pollutants

    NASA Astrophysics Data System (ADS)

    Fasoli, B.; Mitchell, L.; Bares, R.; Crosman, E.; Bush, S. E.; Horel, J.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.

    2015-12-01

    Surface-based observations of atmospheric trace gases and criteria pollutants provide critical data on how emissions and pollutant concentrations vary over time. However, traditional stationary measurement sites only quantify concentrations at a single point in space, limiting our ability to understand spatial patterns. Using trace gas instrumentation capable of making continuous high-frequency (~1s) measurements, we have developed mobile platforms to complement stationary observation sites in order to better constrain the heterogeneity and complexities of urban emissions. These compact trace gas and criteria pollutant measurement systems are capable of precisely measuring CO2, CH4 PM2.5, O3, NOx, and several meteorological parameters on TRAX, Salt Lake City's light-rail system, and in a van-based mobile laboratory. Using case study observations, we discuss mobile measurement methodologies and the practical applications of mobile trace gas sampling platforms.

  16. Development of Optical Parametric Amplifier for Lidar Measurements of Trace Gases on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James

    2011-01-01

    Trace gases in planetary atmospheres offer important clues as to the origins of the planet's hydrology, geology. atmosphere. and potential for biology. Wc report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OP A output light is single frequency with high spectral purity and is widely tunable both at 1600 nm and 3300 nm with an optical-optical conversion efficiency of approximately 40%. We demonstrated open-path atmospheric measurements ofCH4 (3291 nm and 1651 nm). CO2 (1573 nm), H20 (1652 nm) with this laser source.

  17. Estimating source regions of European emissions of trace gases from observations at Mace Head

    NASA Astrophysics Data System (ADS)

    Ryall, D. B.; Derwent, R. G.; Manning, A. J.; Simmonds, P. G.; O'Doherty, S.

    A technique is described for identifying probable source locations for a range of greenhouse and ozone-depleting trace gases from the long-term measurements made at Mace Head, Ireland. The Met. Office's dispersion model NAME is used to predict concentrations at Mace Head from all possible sources in Europe, then source regions identified as those which consistently lead to elevated concentrations at Mace Head. Estimates of European emissions and their distribution are presented for a number of trace gases for the period 1995-1998. Estimated emission patterns are realistic, given the nature and varied applications of the species considered. The results indicate that whilst there are limitations, useful information about source distribution can be extracted from continuous measurements at a remote site. It is probable that much improved estimates could be derived if observations were available from a number of sites. The ability to assess emissions has obvious implications in monitoring compliance with internationally agreed quota and protocols.

  18. Aircraft observations of trace gases and aerosols in the Asian summer monsoon anticyclone

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Gottschaldt, Klaus-Dirk; Baumann, Robert; Hoor, Peter; Jurkat, Tina; Klausner, Theresa; Roiger, Anke; Stratmann, Greta; Voigt, Christiane; Zahn, Andreas; Ziereis, Helmut

    2016-04-01

    In-situ measurements of trace gases and aerosols in the Asian summer monsoon anticyclone are presented from the ESMVal and OMO field campaigns with the HALO research aircraft. Sharp gradients in chemical tracer mixing ratios are observed at the boundary of the anticyclone. In particular, SO2, reactive nitrogen, and aerosols are enhanced inside the anticyclone. SO2 and aerosols are tightly correlated indicating sulfate aerosol formation in the SO2-rich air masses. Ozone and carbon monoxide are enhanced or reduced in the anticyclone depending on the degree of in-mixing of stratospheric air inferred from observations of the stratospheric tracer HCl. Backward trajectory analysis, tracer dispersion calculations, and simulations with the chemistry-climate model EMAC are used to investigate the origin and transport of trace gases in and in the vicinity of the anticyclone.

  19. High sensitivity detection of trace gases at atmospheric pressure using tunable diode lasers

    NASA Technical Reports Server (NTRS)

    Reid, J.; Sinclair, R. L.; Grant, W. B.; Menzies, R. T.

    1985-01-01

    A detailed study of the detection of trace gases at atmospheric pressure using tunable diode lasers is described. The influence of multipass cells, retroreflectors and topographical targets is examined. The minimum detectable infrared absorption ranges from 0.1 percent for a pathlength of 1.2 km to 0.01 percent over short pathlengths. The factors which limit this sensitivity are discussed, and the techniques are illustrated by monitoring atmospehric CO2 and CH4.

  20. High sensitivity detection of trace gases at atmospheric pressure using tunable diode lasers

    NASA Technical Reports Server (NTRS)

    Reid, J.; Sinclair, R. L.; Grant, W. B.; Menzies, R. T.

    1985-01-01

    A detailed study of the detection of trace gases at atmospheric pressure using tunable diode lasers is described. The influence of multipass cells, retroreflectors and topographical targets is examined. The minimum detectable infrared absorption ranges from 0.1 percent for a pathlength of 1.2 km to 0.01 percent over short pathlengths. The factors which limit this sensitivity are discussed, and the techniques are illustrated by monitoring atmospehric CO2 and CH4.

  1. Monitoring Shipping Emissions with In-situ Measurements of Trace Gases

    NASA Astrophysics Data System (ADS)

    Kattner, Lisa; Mathieu-Üffing, Barbara; Aulinger, Armin; Burrows, John; Chirkov, Maksym; Matthias, Volker; Neumann, Daniel; Richter, Andreas; Schmolke, Stefan; Seyler, André; Theobald, Norbert; Wittrock, Folkard

    2014-05-01

    The importance of discussions about ship emissions has grown due to the increase of commercial shipping as well as the publication of studies showing their serious effects on human health and on our environment. Especially in coastal areas and harbor cities the impact of ship emissions becomes more and more relevant. The establishment of a Sulfur Emission Controlled Area (SECA) for North Sea and Baltic Sea based on the MARPOL Annex VI protocol by the International Maritime Organization (IMO) has been a first step to control and reduce sulfur dioxide (SO2) emissions by consecutively regulating the sulfur content of fuels. To reduce nitrogen oxide (NOx) emissions from shipping, the emission of newly built engines is limited according to the year the engine is built (Tier I - III regulations). The project MeSMarT (Measurements of shipping emissions in the marine troposphere) has been established as a cooperation between the University of Bremen, the German Bundesamt für Seeschifffahrt und Hydrographie (Federal Maritime and Hydrographic Agency) and the Helmholtz-Zentrum Geesthacht to estimate the influence of ship emissions on the chemistry of the atmospheric boundary layer and to establish a monitoring system for main shipping routes. Pollution relevant trace gases SO2, NO2, NO, CO2 and O3 are measured with in-situ techniques. Within the project different measurement sites have been set up. In Wedel near Hamburg measurements have been performed in close distance to the Elbe River where ships entering the Hamburg harbor are passing by. It is shown that ship emission peaks can be associated with individual ships and how this information can possibly help to monitor the compliance of ships with SECA regulations. On the island Neuwerk the measurement station is located about 6 km south of the main shipping route through the German Bight. An outlook is given on how the method of identifying ship plumes can be transferred to the Neuwerk data and how the ship emissions

  2. Distributions and Correlations of Organic Trace Gases in the Western Pacific Atmosphere

    NASA Astrophysics Data System (ADS)

    Donets, V.; Atlas, E. L.; Schauffler, S.; Navarro, M. A.; Lueb, R.; Campos, T. L.; Weinheimer, A. J.; Montzka, D.; Kaser, L.; Pan, L.; Salawitch, R. J.; Zhu, X.; Pope, L.

    2014-12-01

    The chemistry of the Tropical Western Pacific atmosphere was studied during three coordinated research missions (CONTRAST, ATTREX, CAST) during Winter, 2014. The purpose of the studies was to examine the chemical emissions of reactive gases from the marine surface, to diagnose transport characteristics of this region, and to better understand the controls of the chemical composition and reactive gas budgets of the tropical atmosphere, including the Tropical Transition Layer (TTL) and lower tropical stratosphere. As part of these studies a wide range of trace gases were measured, including various halo- and hydrocarbons, organic nitrates, methyl halides and solvents. In this presentation we will discuss results from whole air samples that were collected from NASA Global Hawk and NSF/NCAR Gulfstream-V aircrafts during ATTREX and CONTRAST, respectively. Samples were collected at altitudes from near 0.5 km to 18 km, and included latitudes from 40°N to 20°S in the Western Pacific. Combined measurements from two aircrafts produced over 1200 samples, which were subsequently analyzed in the field by means of gas chromatography combined with mass selective, flame ionization and electron capture detectors. The observed distributions of trace gases reflected the combined effects of marine emissions and convective mixing, long range transport, and slow ascent in the TTL. We will show our preliminary results featuring vertical and horizontal distributions of selected hydrocarbon and organic halogen trace species and correlations among these species that were observed during the campaigns.

  3. Quantifying sources and sinks of trace gases using space-borne measurements: current and future science.

    PubMed

    Palmer, Paul I

    2008-12-28

    We have been observing the Earth's upper atmosphere from space for several decades, but only over the past decade has the necessary technology begun to match our desire to observe surface air pollutants and climate-relevant trace gases in the lower troposphere, where we live and breathe. A new generation of Earth-observing satellites, capable of probing the lower troposphere, are already orbiting hundreds of kilometres above the Earth's surface with several more ready for launch or in the planning stages. Consequently, this is one of the most exciting times for the Earth system scientists who study the countless current-day physical, chemical and biological interactions between the Earth's land, ocean and atmosphere. First, I briefly review the theory behind measuring the atmosphere from space, and how these data can be used to infer surface sources and sinks of trace gases. I then present some of the science highlights associated with these data and how they can be used to improve fundamental understanding of the Earth's climate system. I conclude the paper by discussing the future role of satellite measurements of tropospheric trace gases in mitigating surface air pollution and carbon trading.

  4. [Study on wavelength locking technology in trace gases detection system based on laser techniques].

    PubMed

    Wang, Li-ming; Zhang, Yu-jun; He, Ying; You, Kun; Liu, Jian-guo; Liu, Wen-qing

    2012-04-01

    In the trace gases detection system with tunable diode laser absorption spectroscopy (TDLAS) technology, the measurement of trace gases concentration was influenced by the laser wavelength drift resulting from the change in ambient temperature and noise of laser control electronics. With open-path TDLAS ammonia concentration detection system as an example, in the present paper the scanning law of laser center wavelength with current was analyzed, and the adaptive locking method of scanning laser center wavelength was presented based on controlling laser current. The aligning algorithm of measurement spectroscopy with calibration reference spectroscopy was studied. The open-path ammonia concentration was achieved in real time. Experiment results show that the precision and the stability of retrieving the concentration of trace gases were improved satisfactorily by wavelength locking. The variation of ammonia concentration has an obvious diurnal periodicity, which increased in rush hour time and got to the maximum at noon, then decreased at night. The system detection limit is about 3.8 mg x m(-3) x m.

  5. Trends in source gases

    NASA Technical Reports Server (NTRS)

    Ehhalt, D. H.; Fraser, P. J.; Albritton, D.; Cicerone, R. J.; Khalil, M. A. K.; Legrand, M.; Makide, Y.; Rowland, F. S.; Steele, L. P.; Zander, R.

    1989-01-01

    Source gases are defined as those gases that, by their breakdown, introduce into the stratosphere halogen, hydrogen, and nitrogen compounds that are important in stratospheric ozone destruction. Given here is an update of the existing concentration time series for chlorocarbons, nitrous oxide, and methane. Also reviewed is information on halogen containing species and the use of these data for establishing trends. Also reviewed is evidence on trends in trace gases that influence tropospheric chemistry and thus the tropospheric lifetimes of source gases, such as carbon dioxide, carbon monoxide, or nitrogen oxides. Much of the information is given in tabular form.

  6. Scavenging of soluble trace gases by falling rain droplets in inhomogeneous atmosphere

    NASA Astrophysics Data System (ADS)

    Elperin, Tov; Fominykh, Andrew; Krasovitov, Boris

    2010-06-01

    We analyze non-isothermal absorption of trace gases by the rain droplets with internal circulation which is caused by interfacial shear stresses. It is assumed that the concentration of soluble trace gases and temperature in the atmosphere varies in a vertical direction. The rate of scavenging of soluble trace gases by falling rain droplets is determined by solving heat and mass transfer equations. In the analysis we accounted for the accumulation of the absorbate in the bulk of the falling rain droplet. The problem is solved in the approximation of a thin concentration and temperature boundary layers in the droplet and in the surrounding air. We assumed that the bulk of a droplet, beyond the diffusion boundary layer, is completely mixed and concentration of the absorbate and temperature are homogeneous and time-dependent in the bulk. By combining the generalized similarity transformation method with Duhamel's theorem, the system of transient conjugate equations of convective diffusion and energy conservation for absorbate transport in liquid and gaseous phases with time-dependent boundary conditions is reduced to a system of linear convolution Volterra integral equations of the second kind which is solved numerically. Calculations are performed using available experimental data on concentration and temperature profiles in the atmosphere. It is shown than if concentration of a trace gas in the atmosphere is homogeneous and temperature in the atmosphere decreases with height, beginning from some altitude gas absorption is replaced by gas desorption. Neglecting temperature inhomogenity in the atmosphere described by adiabatic lapse rate leads to essential overestimation of the trace gas concentration in a droplet on the ground.

  7. Atmospheric Trace Gases, Aerosols, and Cloud Data from the EOS Ozone Monitoring Instrument (OMI) on the Aura Satellite

    NASA Astrophysics Data System (ADS)

    Ahmad, S. P.; Levelt, P. F.; Hilsenrath, E.; Tamminen, J.; Bhartia, P.; Veefkind, P. J.; van den Oord, B.; Joiner, J.; Fleig, A.; Johnson, J.; Leptoukh, G.; Kempler, S.

    2005-12-01

    The Ozone Monitoring Instrument (OMI) along with the other three instruments MLS, HIRDLS and TES is flown (July 2004) on the Aura satellite. OMI is a nadir imaging sensor which measures ultraviolet and visible solar and earth-atmosphere radiances in the wavelength range of 270 to 500 nm with a spectral resolution of about 0.5 nm, and a spatial resolution of 13x24 km2 (http://www.knmi.nl/omi). OMI is the primary instrument on Aura for tracking the expected recovery of the ozone layer, the sources of aerosol and its transport over oceans and continents, and trace gases that effect air quality. The primary data product from OMI is total column ozone. The other major products are tropospheric ozone, nitrogen dioxide, sulfur dioxide, and aerosol optical depth (four of the U.S. Environmental Protection Agency's six criteria pollutants), formaldehyde, bromine monoxide, chlorine dioxide, cloud fraction and height, and surface erythemal UV-B irradiances. After preliminary validation (based on limited in-situ observations), some of these products (version 2.0) are released to the public and are available from Goddard Earth Sciences Data and Information Services Center Distributed Active Archive Center (GES DISC DAAC (http://acdisc.gsfc.nasa.gov/). This presentation will provide an overview of the OMI data products and its applications, along with the software and web based on-line tool (OMI Giovanni) that have been developed for the subsetting, manipulation and analysis of these data. Details of the data access and data mining tools will be provided in another presentation (see J. Johnson et al. at this AGU session).

  8. Mid-Infrared OPO for High Resolution Measurements of Trace Gases in the Mars Atmosphere

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Numata,Kenji; Riris, haris; Abshire, James B.; Allan, Graham; Sun, Xiaoli; Krainak, Michael A.

    2008-01-01

    The Martian atmosphere is composed primarily (>95%) of CO2 and N2 gas, with CO, O2, CH4, and inert gases such as argon comprising most of the remainder. It is surprisingly dynamic with various processes driving changes in the distribution of CO2, dust, haze, clouds and water vapor on global scales in the meteorology of Mars atmosphere [I]. The trace gases and isotopic ratios in the atmosphere offer important but subtle clues as to the origins of the planet's atmosphere, hydrology, geology, and potential for biology. In the search for life on Mars, an important process is the ability of bacteria to metabolize inorganic substrates (H2, CO2 and rock) to derive energy and produce methane as a by-product of anaerobic metabolism. Trace gases have been measured in the Mars atmosphere from Earth, Mars orbit, and from the Mars surface. The concentration of water vapor and various carbon-based trace gases are observed in variable concentrations. Within the past decade multiple groups have reported detection of CH4, with concentrations in the 10's of ppb, using spectroscopic observations from Earth [2]. Passive spectrometers in the mid-infrared (MIR) are restricted to the sunlit side of the planet, generally in the mid latitudes, and have limited spectral and spatial resolution. To accurately map the global distribution and to locate areas of possibly higher concentrations of these gases such as plumes or vents requires an instrument with high sensitivity and fine spatial resolution that also has global coverage and can measure during both day and night. Our development goal is a new MIR lidar capable of measuring, on global scales, with sensitivity, resolution and precision needed to characterize the trace gases and isotopic ratios of the Martian atmosphere. An optical parametric oscillator operating in the MIR is well suited for this instrument. The sufficient wavelength tuning range of the OPO can extend the measurements to other organic molecules, CO2, atmospheric water

  9. Mid-Infrared OPO for High Resolution Measurements of Trace Gases in the Mars Atmosphere

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Numata,Kenji; Riris, haris; Abshire, James B.; Allan, Graham; Sun, Xiaoli; Krainak, Michael A.

    2008-01-01

    The Martian atmosphere is composed primarily (>95%) of CO2 and N2 gas, with CO, O2, CH4, and inert gases such as argon comprising most of the remainder. It is surprisingly dynamic with various processes driving changes in the distribution of CO2, dust, haze, clouds and water vapor on global scales in the meteorology of Mars atmosphere [I]. The trace gases and isotopic ratios in the atmosphere offer important but subtle clues as to the origins of the planet's atmosphere, hydrology, geology, and potential for biology. In the search for life on Mars, an important process is the ability of bacteria to metabolize inorganic substrates (H2, CO2 and rock) to derive energy and produce methane as a by-product of anaerobic metabolism. Trace gases have been measured in the Mars atmosphere from Earth, Mars orbit, and from the Mars surface. The concentration of water vapor and various carbon-based trace gases are observed in variable concentrations. Within the past decade multiple groups have reported detection of CH4, with concentrations in the 10's of ppb, using spectroscopic observations from Earth [2]. Passive spectrometers in the mid-infrared (MIR) are restricted to the sunlit side of the planet, generally in the mid latitudes, and have limited spectral and spatial resolution. To accurately map the global distribution and to locate areas of possibly higher concentrations of these gases such as plumes or vents requires an instrument with high sensitivity and fine spatial resolution that also has global coverage and can measure during both day and night. Our development goal is a new MIR lidar capable of measuring, on global scales, with sensitivity, resolution and precision needed to characterize the trace gases and isotopic ratios of the Martian atmosphere. An optical parametric oscillator operating in the MIR is well suited for this instrument. The sufficient wavelength tuning range of the OPO can extend the measurements to other organic molecules, CO2, atmospheric water

  10. Greenhouse Effects due to Man-Mad Perturbations of Trace Gases.

    PubMed

    Wang, W C; Yung, Y L; Lacis, A A; Mo, T; Hansen, J E

    1976-11-12

    Nitrous oxide, methane, ammonia, and a number of other trace constituents in the earth's atmosphere have infrared absorption bands in the spectral region 7 to 14 microm and contribute to the atmospheric greenhouse effect. The concentrations of these trace gases may undergo substantial changes because of man's activities. Extensive use of chemical fertilizers and combustion of fossil fuels may perturb the nitrogen cycle, leading to increases in atmospheric N(2)O, and the same perturbing processes may increase the amounts of atmospheric CH(4) and NH(3). We use a one-dimensional radiative-convective model for the atmospheric thermal structure to compute the change in the surface temperature of the earth for large assumed increases in the trace gas concentrations; doubling the N(2)O, CH(4), and NH(3) concentrations is found to cause additive increases in the surface temperature of 0.7 degrees , 0.3 degrees , and 0.1 degrees K, respectively. These systematic effects on the earth's radiation budget would have substantial climatic significance. It is therefore important that the abundances of these trace gases be accurately monitored to determine the actual trends of their concentrations.

  11. Climate-chemical interactions and effects of changing atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.

    1987-01-01

    The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.

  12. Climate-chemical interactions and effects of changing atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.

    1987-01-01

    The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.

  13. Extractive spectrophotometric determination of trace amounts of sulfur dioxide in air

    SciTech Connect

    Kumar, B.S.M.; Balasubramanian, N.

    1992-11-01

    A sensitive spectrophotometric method was developed for the determination of trace amounts of sulfur dioxide (SO{sub 2}) in air after SO{sub 2} has been fixed in a buffered formaldehyde solution. The reaction of iodate with the fixed SO{sub 2} in the presence of an acid an an excess of chloride leads to the formation of ICI{sub 2} ions. The resulting ICI{sub 2} species forms an ion-pair with pararosaniline cation; the product is extracted into isopentyl alcohol and measured spectrophotometrically at 560 nm. The color system obeys Beer`s law over the range 0-40 {mu}g SO{sub 2}. The color is stable for 72 h from the time of extraction. The molar absorption coefficient of the color system is 4.5 {times} 10{sup 3}Lmol{sup {minus}1}cm{sup {minus}1}. The coefficient of variation is 3.6% for 10 determinations at 20 {mu}g SO{sub 2}. The effect of interfering gases on the determination is discussed. The method was applied to the determination of SO{sub 2} at low concentrations, and the results obtained were compared with the widely used West and Gaeke method. The method can be used to determine as low as 2 {mu}g SO{sub 2}. 12 refs., 2 figs., 2 tabs.

  14. Discrepancy between Measured Serum Total Carbon Dioxide Content and Bicarbonate Concentration Calculated from Arterial Blood Gases

    PubMed Central

    Kim, Youngho; Massie, Larry; Murata, Glen H

    2015-01-01

    Large differences between the concentrations of serum total carbon dioxide (TCO2) and blood gas bicarbonate (HCO3-) were observed in two consecutive simultaneously drawn sets of samples of serum and arterial blood gases in a patient who presented with severe carbon dioxide retention and profound acidemia. These differences could not be explained by the effect of the high partial pressure of carbon dioxide on TCO2, by variations in the dissociation constant of the carbonic acid/bicarbonate system or by faults caused by the algorithms of the blood gas apparatus that calculate HCO3-. A recalculation using the Henderson-Hasselbach equation revealed arterial blood gas HCO3- values close to the corresponding serum TCO2 values and clarified the diagnosis of the acid-base disorder, which had been placed in doubt by the large differences between the reported TCO2 and HCO3- values. Human error in the calculation of HCO3- was identified as the source of these differences. Recalculation of blood gas HCO3- should be the first step in identifying the source of large differences between serum TCO2 and blood gas HCO3-. PMID:26824002

  15. Discrepancy between Measured Serum Total Carbon Dioxide Content and Bicarbonate Concentration Calculated from Arterial Blood Gases.

    PubMed

    Kim, Youngho; Massie, Larry; Murata, Glen H; Tzamaloukas, Antonios H

    2015-12-07

    Large differences between the concentrations of serum total carbon dioxide (TCO2) and blood gas bicarbonate (HCO3 (-)) were observed in two consecutive simultaneously drawn sets of samples of serum and arterial blood gases in a patient who presented with severe carbon dioxide retention and profound acidemia. These differences could not be explained by the effect of the high partial pressure of carbon dioxide on TCO2, by variations in the dissociation constant of the carbonic acid/bicarbonate system or by faults caused by the algorithms of the blood gas apparatus that calculate HCO3 (-). A recalculation using the Henderson-Hasselbach equation revealed arterial blood gas HCO3 (-) values close to the corresponding serum TCO2 values and clarified the diagnosis of the acid-base disorder, which had been placed in doubt by the large differences between the reported TCO2 and HCO3 (-) values. Human error in the calculation of HCO3 (-) was identified as the source of these differences. Recalculation of blood gas HCO3 (-) should be the first step in identifying the source of large differences between serum TCO2 and blood gas HCO3 (-).

  16. Interaction of acidic trace gases with ice from a surface science perspective

    NASA Astrophysics Data System (ADS)

    Waldner, A.; Kong, X.; Ammann, M.; Orlando, F.; Birrer, M.; Artiglia, L.; Bartels-Rausch, T.

    2016-12-01

    Acidic trace gases, such as HCOOH, HCl and HONO, play important roles in atmospheric chemistry. The presence of ice is known to have the capability to modify this chemistry (Neu et al. 2012). The molecular level processes of the interaction of acidic trace gases with ice are still a matter of debate and a quantification of the uptake is difficult (Dash et al. 2006, Bartels-Rausch et al. 2014, Huthwelker et al. 2006). This hampers a proper inclusion of ice as a substrate in models of various scales as for example in global chemistry climate models that would among others allow predicting large-scale effects of ice clouds. So far, direct observations of the ice surface and of the interaction with trace gases at temperatures and concentrations relevant to the environment are very limited. In this study, we take advantage of the surface and analytical sensitivity as well as the chemical selectivity of photoemission and absorption spectroscopy performed at ambient pressure using the near ambient pressure photoemission endstation (NAPP) at Swiss Light Source to overcome this limitation in environmental science (Orlando et al. 2016). Specifically, ambient pressure X-ray Photoelectron Spectroscopy (XPS) allows us to get information about chemical state and concentration depth profiles of dopants. The combination of XPS with auger electron yield Near-Edge X-ray Absorption Fine Structure (NEXAFS) enables us to locate the dopant and analyse wheather the interaction leads to enhanced surface disorder and to what extent different disorders influences the uptake of the trace gas. For the first time, this study looks directly at the interaction of HCOOH, the strongest organic acid, with ice at 2 different temperatures (233 and 253 K) relevant for environmental science by means of electron spectroscopy. XPS depth profiles indicate that the HCOOH basically remains within the topmost ice layers and O K-edge NEXAFS analysis show that the interaction ice-HCOOH does not lead to

  17. Trace water vapor determination in nitrogen and corrosive gases using infrared spectroscopy

    SciTech Connect

    Espinoza, L.H.; Niemczyk, T.M.; Stallard, B.R.; Garcia, M.J.

    1997-06-01

    The generation of particles in gas handling systems as a result of corrosion is a major concern in the microelectronics industry. The corrosion can be caused by the presence of trace quantities of water in corrosive gases such as HCl or HBr. FTIR spectroscopy has been shown to be a method that can be made compatible with corrosive gases and is capable of detecting low ppb levels of water vapor. In this report, the application of FTIR spectroscopy combined with classical least squares multivariate calibration to detect trace H{sub 2}O in N{sub 2}, HCl and HBr is discussed. Chapter 2 discusses the gas handling system and instrumentation required to handle corrosive gases. A method of generating a background spectrum useful to the measurements discussed in this report, as well as in other application areas such as gas phase environmental monitoring, is discussed in Chapter 3. Experimental results obtained with the first system are presented in Chapter 4. Those results made it possible to optimize the design options for the construction of a dedicate system for low ppb water vapor determination. These designs options are discussed in Chapter 5. An FTIR prototype accessory was built. In addition, a commercially available evacuable FTIR system was obtained for evaluation. Test results obtained with both systems are discussed in Chapter 6. Experiments dealing with the interaction between H{sub 2}O-HCl and potential improvements to the detection system are discussed in Chapter 7.

  18. Horizonal and Vertical Spatial Patterns of Radon and Other Soil-gases Across the El Pilar Fault Trace at Guaraphiche, Edo. Surce (Venezuela)

    NASA Astrophysics Data System (ADS)

    LaBrecque, J. J.

    2002-05-01

    Soil-gases (radon, thoron, carbon dioxide and hydrogen) were measured at 63-cm depths along a transect perpendicular to the rupture (fault trace) from the 1997 Caricao earthquake (Mw=6.9) at Guarapiche, state of Sucre (Venezuela). The transect was about 40 meters long with ten sampling points with the spacings was smaller near the rupture. The shapes of the horizontal spatial patterns for radon (Rn-222), thoron (Rn-220) and total radon (Rn-222+Rn-220) were similar; the gas concentrations increased from both ends of the transect toward the rupture where a dip (valley) occurred. Both carbon dioxide and hydrogen gases showed anomalous values at the same sampling points. Twin peaks (anomalies) had been previously reported and suggested that they were due to blockage in the rupture. We have also determined soil-gases from 25-cm to 155-cm depths near the rupture and at the ends of the transect. The results showed that the soil-gas concentrations were not only higher in the upper levels (less than 65-cm) near the fault trace but were similar or greater than the lower levels. Thus, producing the twin peaks when soil-gas sampling was performed at the 65-cm depth. When the sampling was performed at only 45-cm depth the dip over the rupture was much less and the patterns looked more like a broad doublet peak. In conclusion, one can clearly see that not only positive soil-gas anomalies can occur over a fault trace but also negative ones too. 1) This work was partially funded by a research contract from the Venezuelan National Science Foundation (CONICIT Proyecto S1-95000448). 2) Mailing Address: Centro de Quimica, 8424 NW 56th Street, Suite 00204,Miami, Fl 33166 (USA). E-mail jjlabrec@ivic.ve FAX: +58-212-504-1214

  19. An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling

    SciTech Connect

    Qian, Yun; Gustafson, William I.; Fast, Jerome D.

    2010-07-29

    One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV) of trace gases and aerosols within a typical global climate model grid cell, i.e. 75x75 km2. Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs) for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV) over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV) over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases are very efficiently transported and mixed vertically by

  20. The Oceanic Source of Trace Gases Now and in the Future

    NASA Astrophysics Data System (ADS)

    Liss, P. S.; Turner, S. M.; Martin, J. T.; Frances, H. E.; Valia, A. A.; Meike, V.; Adele, C. L.

    2008-12-01

    A complex cocktail of gases exchange between the atmosphere and oceans and many of the trace gases produced in seawater are considered to play important roles in climate and atmospheric chemistry. The strength of the biogenic marine source depends on a large number of factors that can be categorised as the magnitude of the net formation processes (production - destruction) and the kinetics of the sea-to-air transfer. It is recognised that the rise of anthropogenic CO2 in the atmosphere is already affecting the marine environment, with an average 30% increase in H+ ions in surface waters since pre-industrial times. The decrease in pH is only one of the factors expected to alter over the next century during which atmospheric CO2 will continue to rise. Model predictions suggest significant physical and biogeochemical changes (e.g. surface water temperature, wind speed, stratification, nutrient supply, phytoplankton community structure) that will likely affect many of the processes controlling sea-air gas exchange and fluxes to the atmosphere. We will present data showing how acidification of seawater and changes in nutrients may affect the net production of dimethyl sulphide and halogenated gases in seawater. In addition, we will discuss how the predicted changes in wind speed and seawater temperature may impinge on sea-air transfer and address the potential direction of change in the fluxes of a number of different gases, including ammonia, to the atmosphere.

  1. The temporal and spatial variability of halogenated trace gases in the upper troposphere.

    NASA Astrophysics Data System (ADS)

    Oram, D.; O'Sullivan, D.; Brenninkmeijer, C.; van Velthoven, P.; Sturges, W.

    2007-12-01

    Halogenated trace gases play an important role in stratospheric and tropospheric chemistry, particularly affecting ozone concentrations. In addition they have direct and indirect effects on radiative forcing, and impact on tropospheric reactivity. Data from the CARIBIC project (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrumented Container) have been used in conjunction with back-trajectory analysis to further our understanding of the chemical composition, inter-hemispheric distribution and source regions of halogenated compounds in the upper troposphere and lower stratosphere. Whole air samples collected within CARIBIC, have been analyzed using gas chromatography mass spectrometry for around 35 halocarbons and related trace gases, among them many potent greenhouse gases and species important for ozone depletion. The large spatial and temporal coverage of the CARIBIC project has enabled new work to be done investigating recent inter-annual trends in the CFCs, halons, and other anthropogenic halocarbons, as well as identifying clear inter-hemispheric and seasonal variability for a number of species, such as methylene chloride, HCFCs, methyl chloride, methyl bromide, methyl iodide and several reactive short lived bromo and chloro carbons. In this paper results from the CARIBIC flights to China and the Philippines will be highlighted, to discuss anthropogenic emissions of ozone depleting and greenhouse gases, from Asia and Africa. Data from flights to South America will also be presented. As production and consumption of many of these substances are being phased out in Europe and North America, emissions from Asia, Africa and also South America are becoming increasingly more important. Emissions from these regions are also of interest, as the most significant sources are often collocated with regions of convection in the tropics and sub-tropics. Thus enabling a greater proportion of the substances emitted to reach the stratosphere, where

  2. Quantum cascade laser based sensor for in situ and real time atmospheric trace gases (CO and N2O) measurements

    NASA Astrophysics Data System (ADS)

    Li, Jingsong; Parchatka, Uwe; Fischer, Horst

    2013-04-01

    In addition to the primary greenhouse gases carbon dioxide (CO2) and methane (CH4), several other atmospheric trace gases are radiatively active, and thereby can also contribute to a greenhouse warming of the lower atmosphere directly or indirectly. Nitrous oxide (N2O) is a greenhouse gas with a global warming potential about 200-300 times that of CO2. Carbon monoxide (CO) is not considered a direct greenhouse gas, mostly because it does not absorb terrestrial thermal IR energy strongly enough. However, CO plays an important role in the oxidative chemistry of Earth's atmosphere, since it is a key trace gas for controlling the budget and distribution of the hydroxyl (OH) radical, which exerts a controlling influence on the gas phase chemistry of many atmospheric species [1]. Therefore, there is a critical need to identify sources and sinks of N2O and CO in order to better understand their impact on global climate change [2]. We present a fast, compact, and precise sensor based-on a novel thermoelectrically (TE) cooled quantum cascade laser (QCL) operating at near-room temperature in CW (continuous-wave) mode for simultaneous detection of atmospheric N2O and CO. The technique is based on atmospheric absorption of these trace species in the mid-infrared region near 4.56 µm, using a single QC laser source and two TE-cooled infrared detectors. Wavelength modulation spectroscopy with second harmonic detection technique in conjunction with a compact multi-pass absorption cell has been employed to demonstrate highly sensitive and precise measurements. CO and N2O at ambient concentration levels are detected simultaneously with a high temporal response (< 1s). Preliminary results (Laboratory investigation and field application) of the sensor's performance will be presented. This completely TE-cooled system shows the capability of long-term, unattended and continuous operation at room temperature without complicated cryogenic cooling [3]. [1] J. A. Logan, M. J. Prather, S. C

  3. A cryogenically operated laser diode spectrometer for airborne measurement of stratospheric trace gases

    NASA Astrophysics Data System (ADS)

    Viciani, S.; D'Amato, F.; Mazzinghi, P.; Castagnoli, F.; Toci, G.; Werle, P.

    2008-03-01

    A cryogenically operated laser diode spectrometer (COLD) for the airborne measurement of carbon monoxide is described. The instrument is designed, and fully qualified, for operation on a high-altitude aircraft and the scientific mission is the in situ measurement of trace gases in the upper troposphere and lower stratosphere. Sensitivities achieved so far during in-flight operation are a few ppbV with a time resolution of 4 s, coupled with a good reliability. Airborne data, obtained by COLD during research campaigns in Australia and Brazil in the frame of international projects, are also presented to demonstrate COLD in-flight performance.

  4. Method and apparatus for detecting and measuring trace impurities in flowing gases

    DOEpatents

    Taylor, Gene W.; Dowdy, Edward J.

    1979-01-01

    Trace impurities in flowing gases may be detected and measured by a dynamic atomic molecular emission spectrograph utilizing as its energy source the energy transfer reactions of metastable species, atomic or molecular, with the impurities in the flowing gas. An electronically metastable species which maintains a stable afterglow is formed and mixed with the flowing gas in a region downstream from and separate from the region in which the metastable species is formed. Impurity levels are determined quantitatively by the measurement of line and/or band intensity as a function of concentration employing emission spectroscopic techniques.

  5. Measurements of stratospheric trace gases by a balloon-borne infrared spectrometer in France

    NASA Astrophysics Data System (ADS)

    Jarisch, M.; Offermann, D.

    1994-09-01

    A helium cooled balloon-borne infrared spectrometer was launched from Aire-sur-l'Adour (France) in May, 1986. The experiment used the limb scan technique to measure height profiles of nine stratospheric trace gases prior to, during, and after sunrise. Mixing ration profiles of ozone (O3) and nitrogen pentoxide (N2O5) are presented here. The ozone measurements are compared to in situ measurements taken by electrochemical Brewer/Mast sondes. The N2O5 mixing ratios deduced from predawn measurements are found to be in good agreement with observations obtained by other experiments.

  6. ASUR -- An airborne SIS receiver for atmospheric measurements of trace gases at 625--760 GHz

    SciTech Connect

    Mees, J.; Stadt, H. van de; Panhuyzen, R.A.; Crewell, S.; Nett, H.; Lange, G. de; Kuipers, J.J.

    1995-11-01

    A heterodyne receiver making use of a SIS waveguide mixer with integrated horn and single backshort tuner has been built. It has been used for a series of airborne measurements of atmospheric trace gases, such as HCl and ClO, above northern Europe during the winter of 1993 and 1994. The receiver is suitable for measurements in the range of 625--760 GHz and shows stable operation in the airplane together with high sensitivity. Best achieved noise temperature are T{sub DSB} = 310 K at 708 GHz in the laboratory and T{sub SSB} = 1,500 K at 625 GHz for the complete system in the airplane.

  7. Foliage plants for indoor removal of the primary combustion gases carbon monoxide and nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.; Mesick, H. H.

    1985-01-01

    Foliage plants were evaluated for their ability to sorb carbon monoxide and nitrogen dioxide, the two primary gases produced during the combustion of fossil fuels and tobacco. The spider plant (Chlorophytum elatum var. vittatum) could sorb 2.86 micrograms CO/sq cm leaf surface in a 6 h photoperiod. The golden pothos (Scindapsus aureus) sorbed 0.98 micrograms CO/sq cm leaf surface in the same time period. In a system with the spider plant, greater than or equal to 99 percent of an initial concentration of 47 ppm NO2 could be removed in 6 h from a void volume of approximately 0.35 cu m. One spider plant potted in a 3.8 liter container can sorb 3300 micrograms CO and effect the removal of 8500 micrograms NO2/hour, recognizing the fact that a significant fraction of NO2 at high concentrations will be lost by surface sorption, dissolving in moisture, etc.

  8. Foliage plants for indoor removal of the primary combustion gases carbon monoxide and nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.; Mesick, H. H.

    1985-01-01

    Foliage plants were evaluated for their ability to sorb carbon monoxide and nitrogen dioxide, the two primary gases produced during the combustion of fossil fuels and tobacco. The spider plant (Chlorophytum elatum var. vittatum) could sorb 2.86 micrograms CO/sq cm leaf surface in a 6 h photoperiod. The golden pothos (Scindapsus aureus) sorbed 0.98 micrograms CO/sq cm leaf surface in the same time period. In a system with the spider plant, greater than or equal to 99 percent of an initial concentration of 47 ppm NO2 could be removed in 6 h from a void volume of approximately 0.35 cu m. One spider plant potted in a 3.8 liter container can sorb 3300 micrograms CO and effect the removal of 8500 micrograms NO2/hour, recognizing the fact that a significant fraction of NO2 at high concentrations will be lost by surface sorption, dissolving in moisture, etc.

  9. Feasibility of observations of stratospheric trace gases using the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jaramillo, M.; De Zafra, R. L.

    1987-01-01

    The stellar occultation method has been successfully used in the past from orbiting observatories to measure concentrations of certain trace gases in the earth's mesosphere. The greatly improved spectroscopic capabilities of the Hubble Space Telescope (HST) have prompted recent suggestions for its use to measure stratospheric C10. This possibility is examined along with that for other species relevant to the chemistry of the ozone layer. It is concluded that stratospheric (as opposed to mesospheric) observations with HST are not practical, in part because of its orbital and pointing characteristics, but primarily because the high opacity of stratospheric ozone over most of the bandpass of the HST's most suitable spectrometer will obscure observation of other trace species, such as C10, having mixing ratios of less than 0.001.

  10. Trace analysis of aerosol bound particulates and noble gases at the BfS in Germany.

    PubMed

    Bieringer, J; Schlosser, C; Sartorius, H; Schmid, S

    2009-05-01

    The Federal Office for Radiation Protection (BfS) performs trace analysis measurements in both the frameworks of the German Integrated Measuring and Information system as well as of the International Monitoring System for verification of the Comprehensive Nuclear-Test-Ban Treaty. Therefore, different kinds of measurements of aerosol bound radionuclides as well as of radioactive noble gases in the atmosphere are performed. BfS as coordinating laboratory for trace analysis is responsible for the quality control. A quality assurance programme was set up with German institutions and expanded to European laboratories. The existing quality assurance programme of the Comprehensive Nuclear-Test-Ban Treaty Organisation for measurements of aerosol bound radionuclides will be extended for noble gas measurements. Applied methods, achieved measurement results and the different kinds of quality assurance are presented and discussed.

  11. Ground-based observations of atmospheric trace gases from 1995 to 2003

    NASA Astrophysics Data System (ADS)

    Oetjen, H.; Wittrock, F.; Fietkau, S.; Ladstätter-Weißenmayer, A.; Medeke, T.; Richter, A.; Burrows, J.

    2003-04-01

    This study presents ground-based measurements of atmospheric trace gases (ozone, NO2, BrO, HCHO and OClO) by means of UV/visible spectroscopy from 1995 to 2003. The measurements sites range from northern high latitudes (Ny-Ålesund, 79° N, 12°E) over mid-latitudes (Bremen, 53°N, 9°E) to equatorial regions (Nairobi, 1°S, 36° E). In 2002 all instruments have been substantially enhanced to use different line of sights close to the horizon as additional viewing geometries. With this MAX- DOAS (multi axis Differential Optical Absorption Spectroscopy) technique it is possible to derive profile information for the retrieved absorbers, which enables us to further investigate the consistency of trace column amounts derived from different platforms and/or from model calculations.

  12. High-sensitivity detection of trace gases using dynamic photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Wynn, Charles M.; Palmacci, Stephen; Clark, Michelle L.; Kunz, Roderick R.

    2014-02-01

    Lincoln Laboratory of Massachusetts Institute of Technology has developed a technique known as dynamic photoacoustic spectroscopy (DPAS) that could enable remote detection of trace gases via a field-portable laser-based system. A fielded DPAS system has the potential to enable rapid, early warning of airborne chemical threats. DPAS is a new form of photoacoustic spectroscopy that relies on a laser beam swept at the speed of sound to amplify an otherwise weak photoacoustic signal. We experimentally determine the sensitivity of this technique using trace quantities of SF6 gas. A clutter-limited sensitivity of ˜100 ppt is estimated for an integration path of 0.43 m. Additionally, detection at ranges over 5 m using two different detection modalities is demonstrated: a parabolic microphone and a laser vibrometer. Its utility in detecting ammonia emanating from solid samples in an ambient environment is also demonstrated.

  13. Carbon dioxide analysers: accuracy, alarm limits and effects of interfering gases.

    PubMed

    Lauber, R; Seeberger, B; Zbinden, A M

    1995-07-01

    Six mainstream and twelve sidestream infrared carbon dioxide (CO2) analysers were tested for accuracy of the CO2 display value, alarm activation and the effects of nitrous oxide (N2O), oxygen (O2) and water vapour according to the ISO Draft International Standard (DIS)#9918. Mainstream analysers (M-type): Novametrix Capnogard 1265; Hewlett Packard HP M1166A (CO2-module HP M1016A); Datascope Passport; Marquette Tramscope 12; Nellcor Ultra Cap N-6000; Hellige Vicom-sm SMU 611/612 ETC. Sidestream analysers: Brüel & Kjaer Type 1304; Datex Capnomac II; Marquette MGA-AS; Datascope Multinex; Ohmeda 4700 OxiCap (all type S1: respiratory cycles not demanded); Biochem BCI 9000; Bruker BCI 9100; Dräger Capnodig and PM 8020; Criticare Poet II; Hellige Vicom-sm SMU 611/612 A-GAS (all type S2: respiratory cycles demanded). The investigations were performed with premixed test gases (2.5, 5, 10 vol%, error < or = 1% rel.). Humidification (37 degrees C) of gases were generated by a Dräger Aquapor. Respiratory cycles were simulated by manually activated valves. All monitors complied with the tolerated accuracy bias in CO2 reading (< or = 12% or 4 mmHg of actual test gas value) for wet and dry test gases at all concentrations, except that the Marquette MGA-AS exceeded this accuracy limit with wet gases at 5 and 10 vol% CO2. Water condensed in the metal airway adapter of the HP M1166A at 37 degrees C gas temperature but not at 30 degrees C. The Servomex 2500 (nonclinical reference monitor), Passport (M-type), Multinex (S1-type) and Poet II (S2-type) showed the least bias for dry and wet gases. Nitrous oxide and O2 had practically no effect on the Capnodig and the errors in the others were max. 3.4 mmHg, still within the tolerated bias in the DIS (same as above). The difference between the display reading at alarm activation and the set point was in all monitors (except in the Capnodig: bias 1.75 mmHg at 5 vol% CO2) below the tolerated limit of the DIS (difference < or = 0.2 vol

  14. Austrian pine injury traced to ozone and sulfur dioxide pollution

    SciTech Connect

    Brennan, E.; Leone, I.; Harkov, R.; Rhoads, A.

    1981-04-01

    A foliar disorder of Austrian pine observed in New Jersey since 1967 was found to result from a mixture of ozone and sulfur dioxide. In fumigation chamber studies, a mixture of 0.2 ppm ozone and 0.1 ppm sulfur dioxide for 6 hr reproduced symptoms observed in the field. Grafted material originating from trees that exhibitied either a sensitive or resistant response in the field gave the same differential response in the experimental fumigation. Needles of resistant trees had higher stomatal resistance and higher soluble sugar content than needles of susceptible trees.

  15. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Keywood, M. D.; Galbally, I. E.; Gras, J. L.; Cainey, J. M.; Cope, M. E.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Bentley, S. T.; Meyer, C. P.; Ristovski, Z.; Goldstein, A. H.

    2015-12-01

    (ΔO3 / ΔCO 0.001-0.074). A short-lived increase in NMOCs by a factor of 10 corresponded with a large CO enhancement, an increase of the NMOC / CO emission ratio (ER) by a factor of 2-4 and a halving of the BC / CO ratio. Rainfall on Robbins Island was observed by radar during this period which likely resulted in a lower fire combustion efficiency, and higher emission of compounds associated with smouldering. This highlights the importance of relatively minor meteorological events on BB emission ratios. Emission factors (EFs) were derived for a range of trace gases, some never before reported for Australian fires, (including hydrogen, phenol and toluene) using the carbon mass balance method. This provides a unique set of EFs for Australian coastal heathland fires. Methyl halide EFs were higher than EFs reported from other studies in Australia and the Northern Hemisphere which is likely due to high halogen content in vegetation on Robbins Island. This work demonstrates the substantial impact that BB plumes can have on the composition of marine air, and the significant changes that can occur as the plume interacts with terrestrial, aged urban and marine emission sources.

  16. Joseph Black, carbon dioxide, latent heat, and the beginnings of the discovery of the respiratory gases.

    PubMed

    West, John B

    2014-06-15

    The discovery of carbon dioxide by Joseph Black (1728-1799) marked a new era of research on the respiratory gases. His initial interest was in alkalis such as limewater that were thought to be useful in the treatment of renal stone. When he studied magnesium carbonate, he found that when this was heated or exposed to acid, a gas was evolved that he called "fixed air" because it had been combined with a solid material. He showed that the new gas extinguished a flame, that it could not support life, and that it was present in gas exhaled from the lung. Within a few years of his discovery, hydrogen, nitrogen, and oxygen were also isolated. Thus arguably Black's work started the avalanche of research on the respiratory gases carried out by Priestley, Scheele, Lavoisier, and Cavendish. Black then turned his attention to heat and he was the first person to describe latent heat, that is the heat added or lost when a liquid changes its state, for example when water changes to ice or steam. Latent heat is a key concept in thermal physiology because of the heat lost when sweat evaporates. Black was a friend of the young James Watt (1736-1819) who was responsible for the development of early steam engines. Watt was puzzled why so much cooling was necessary to condense steam into water, and Black realized that the answer was the latent heat. The resulting improvements in steam engines ushered in the Industrial Revolution.

  17. Long Term Association of Tropospheric Trace gases over Pakistan by exploiting satellite observations and development of Econometric Regression based Model

    NASA Astrophysics Data System (ADS)

    Zeb, Naila; Fahim Khokhar, Muhammad; Khan, Saud Ahmed; Noreen, Asma; Murtaza, Rabbia

    2017-04-01

    Air pollution is the expected key environmental issue of Pakistan as it is ranked among top polluted countries in the region. Ongoing rapid economic growth without any adequate measures is leading to worst air quality over time. The study aims to monitor long term atmospheric composition and association of trace gases over Pakistan. Tropospheric concentrations of CO, TOC, NO2 and HCHO derived from multiple satellite instruments are used for study from year 2005 to 2014. The study will provide first database for tropospheric trace gases over Pakistan. Spatio-temporal assessment identified hotspots and possible sources of trace gases over the Pakistan. High concentrations of trace gases are mainly observed over Punjab region, which may be attributed to its metropolitan importance. It is the major agricultural, industrialized and urbanized (nearly 60 % of the Pakistan's population) sector of the country. The expected sources are the agricultural fires, biomass/fossil fuel burning for heating purposes, urbanization, industrialization and meteorological variations. Seasonal variability is observed to explore seasonal patterns over the decade. Well defined seasonal cycles of trace gases are observed over the whole study period. The observed seasonal patterns also showed some noteworthy association among trace gases, which is further explored by different statistical tests. Seasonal Mann Kendall test is applied to test the significance of trend in series whereas correlation is carried out to measure the strength of association among trace gases. Strong correlation is observed for trace gases especially between CO and TOC. Partial Mann Kendall test is used to ideally identify the impact of each covariate on long term trend of CO and TOC by partialling out each correlating trace gas (covariate). It is observed that TOC, NO2 and HCHO has significant impact on long term trend of CO whereas, TOC critically depends on NO2 concentrations for long term increase over the region

  18. Emission factors of trace gases and particles from tropical savanna fires in Australia

    NASA Astrophysics Data System (ADS)

    Desservettaz, Maximilien; Paton-Walsh, Clare; Griffith, David W. T.; Kettlewell, Graham; Keywood, Melita D.; Vanderschoot, Marcel V.; Ward, Jason; Mallet, Marc D.; Milic, Andelija; Miljevic, Branka; Ristovski, Zoran D.; Howard, Dean; Edwards, Grant C.; Atkinson, Brad

    2017-06-01

    Savanna fires contribute significantly to global aerosol loading and hence to the Earth's radiative budget. Modeling of the climatic impact of these aerosols is made difficult due to a lack of knowledge of their size distribution. Australia is the third largest source of global carbon emissions from biomass burning, with emissions dominated by tropical savanna fires. Despite this, only a few previous studies have reported emission factors of trace gases from this important ecosystem and there are no previous published emission factors for the aerosol properties reported here for Australian savanna fires. In June 2014, the SAFIRED campaign (Savanna Fires in the Early Dry season) took place in the Northern Territory of Australia, with the purpose of investigating emissions and aging of aerosols from Australian savanna fires. This paper presents observed enhancement ratios and inferred emission factors of trace gases (CO2, CO, CH4, N2O, and gaseous elemental mercury), particles over different size modes (Aitken and accumulation), and speciated aerosols components (organics, sulfate, nitrate, ammonium, and chloride). Nine smoke events were identified from the data using large enhancements in CO and/or aerosol data to indicate biomass burning event. The results reported in this paper include the first emission factors for Aitken and accumulation mode aerosols from savanna fires, providing useful size information to enable better modeling of the climatic impact of this important source of global aerosols.

  19. Assessment of a 2016 mission concept: The search for trace gases in the atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Zurek, Richard W.; Chicarro, Augustin; Allen, Mark A.; Bertaux, Jean-Loup; Clancy, R. Todd; Daerden, Frank; Formisano, Vittorio; Garvin, James B.; Neukum, Gerhard; Smith, Michael D.

    2011-02-01

    The reported detection of methane in the atmosphere of Mars as well as its potentially large seasonal spatial variations challenge our understanding of both the sources and sinks of atmospheric trace gases. The presence of methane suggests ongoing exchange between the subsurface and the atmosphere of potentially biogenic trace gases, while the spatial and temporal variations cannot be accounted for with current knowledge of martian photochemistry. A Joint Instrument Definition Team (JIDT) was asked to assess concepts for a mission that might follow up on these discoveries within the framework of a series of joint missions being considered by ESA and NASA for possible future exploration of Mars. The following is based on the report of the JIDT to the space agencies ( Zurek et al., 2009); a synopsis of the report was presented at the Workshop on Mars Methane held in Frascati, Italy, in November 2009. To summarize, the JIDT believed that a scientifically exciting and credible mission could be conducted within the evolving capabilities of the science/telecommunications orbiter being considered by ESA and NASA for possible launch in the 2016 opportunity for Mars.

  20. Mobile on-line DOAS trace-gases monitoring system with fiber spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Meng; Wen, Wuqi; Ding, Xin; Wang, Peng; Yao, Jianquan

    2005-02-01

    The article mainly focused on mobile on-line air quality monitoring system. By deeply analyzed DOAS theory, we designed this new air quality monitoring system. It is mobile and may monitoring many pollution sources on-line everyday. The Differential Optical Absorption Spectroscopy (DOAS), based on the work by U. Platt and co-workers, is becoming increasingly popular for environment monitoring. DOAS may measure many trace gases like NO2, O3, BrO, NO3 , and SO2. It is designed for the measurement of primary and secondary urban air pollutants with high precision and little cross interference. In the DOAS technique, the spectrum of an artificial light source within a given bandwidth is measured after passing through the open atmosphere for between 100 m and 10 km. After removing the emission spectrum of the light source, the remaining differential absorption features are compared with the absorption cross sections of relevant trace gases. This allows both the qualitative and quantitative determination of their concentration in the light path. After deeply research, we design this new system. It uses fiber spectroscopy, and it is mobile. User may monitor many pollution sources in a car. This makes auto-monitoring more easily. Our DOAS system has these merits: New Light Emission-Receiver Unit which united emission,receiver and collimation lenses. New Background Elimination Fiber. And dynamic-feedback self-adapting program. In our experiment by this design idea, we get accurate data.

  1. Assessment of a 2016 Mission Concept: The Search for Trace Gases in the Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Zurek, Richard W.; Chicarro, Augustin; Allen, Mark A.; Bertauz, Jean-Loup; Clancy, R. Todd; Daerden, Frank; Formisano, Vittorio; Garvin, James B.; neukum, Gerhard; Smith, Michael D.

    2011-01-01

    The reported detection of methane in the atmosphere of Mars as well as its potentially large seasonal spatial variations challenge our understanding of both the sources and sinks of atmospheric trace gases. The presence of methane suggests ongoing exchange between the subsurface and the atmosphere of potentially biogenic trace gases, while the spatial and temporal variations cannot be accounted for with current knowledge of martian photochemistry. A Joint Instrument Definition Team (JIDT) was asked to assess concepts for a mission that might follow up on these discoveries within the framework of a series of joint missions being considered by ESA and NASA for possible future exploration of Mars. The following is based on the report of the JIDT to the space agencies (Zurek et al., 2009); a synopsis of the report was presented at the Workshop on Mars Methane held in Frascati, Italy, in November 2009. To summarize, the JIDT believed that a scientifically exciting and credible mission could be conducted within the evolving capabilities of the science/telecommunications orbiter being considered by ESA and NASA for possible launch in the 2016 opportunity for Mars.

  2. Assessment of a 2016 Mission Concept: The Search for Trace Gases in the Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Zurek, Richard W.; Chicarro, Augustin; Allen, Mark A.; Bertauz, Jean-Loup; Clancy, R. Todd; Daerden, Frank; Formisano, Vittorio; Garvin, James B.; neukum, Gerhard; Smith, Michael D.

    2011-01-01

    The reported detection of methane in the atmosphere of Mars as well as its potentially large seasonal spatial variations challenge our understanding of both the sources and sinks of atmospheric trace gases. The presence of methane suggests ongoing exchange between the subsurface and the atmosphere of potentially biogenic trace gases, while the spatial and temporal variations cannot be accounted for with current knowledge of martian photochemistry. A Joint Instrument Definition Team (JIDT) was asked to assess concepts for a mission that might follow up on these discoveries within the framework of a series of joint missions being considered by ESA and NASA for possible future exploration of Mars. The following is based on the report of the JIDT to the space agencies (Zurek et al., 2009); a synopsis of the report was presented at the Workshop on Mars Methane held in Frascati, Italy, in November 2009. To summarize, the JIDT believed that a scientifically exciting and credible mission could be conducted within the evolving capabilities of the science/telecommunications orbiter being considered by ESA and NASA for possible launch in the 2016 opportunity for Mars.

  3. Arctic haze: Patterns and relationships to regional signatures of trace gases

    NASA Astrophysics Data System (ADS)

    Khalil, M. A. K.; Rasmussen, R. A.

    1993-03-01

    We took measurements of up to 30 gases in Arctic haze and in clean Arctic air. These data were obtained from some 500 flask samples taken on three expeditions of the Arctic Gas and Aerosol Sampling Program (AGASP 1, 2, and 3) during the spring of 1983, 1986, and 1989. Concentrations of many gases are significantly higher in the haze layers compared to outside the haze. To look for the possible origins of the haze, we used cluster analysis to derive regional signatures of trace gases at ground-based sites in middle and high northern latitudes. Comparison of the regional signatures with concentrations observed in Arctic haze suggest that there are no significant contributions from North America but possible influences from Russia and eastern Europe. These conclusions complement results derived from the analysis of the Arctic aerosol chemistry. It is possible, however, that Arctic haze originates from the military, industrial, and mining activities within the Arctic circle, particularly from the Russian Koala peninsula.

  4. Trace Gases and Aerosol in the Boundary Layer of the Northern Asia: TROICA Experiments

    NASA Astrophysics Data System (ADS)

    Elanksy, N. F.; Aloyan, A. E.; Berezina, E. V.; Elokhov, A. S.; Brenninkmeijer, C. A.; Kopeikin, V. M.; Moeseenko, K. B.; Lavrova, O. V.; Pankratova, N. V.; Safronov, A. N.; Shumsky, R. A.; Skorokhod, A. I.; Tarasova, O. A.; Vivchar, A. V.; Grisenko, A. M.

    2007-12-01

    The TROICA experiment (Transcontinental Observations Into the Chemistry of the Atmosphere) started in 1995. A mobile railroad laboratory is being used for measurements of atmospheric gases, aerosol, solar radiation and meteorological parameters. The laboratory wagon is directly coupled to the locomotive of a passenger train traveling along electrified railroads of Russia. Eleven expeditions have been conducted to the moment of which nine were performed along the Trans-Siberian railroad from Moscow to Vladivostok (around 9300 km). One expedition was North-South between Murmansk and Kislovodsk, and one was around the mega-city of Moscow. The huge coverage of the continental regions and the repetition of the expeditions provide unique information on processes controlling variability of the key trace gases (O3, NOx, CO, CO2, CH4, some VOCs) and aerosols with high temporal and spatial resolution over different scales from continental to local (hundreds meters). Multiple crossings of settlements allowed determining typical variations of surface gases and aerosol concentrations within cities and their plumes. 222Rn concentration data were used for estimates of CO, CH4 and CO2 nocturnal fluxes from the soil and vegetation. Impacts of different factors, like Western Siberian gas and oil industry, forest fires, transboundary air pollution transport and some other can be evaluated based on the measurement data by comparing them with results of model output and hence can be used for model validation. Emissions of the atmospheric CO and CH4 were studied in several expeditions using isotopes analysis.

  5. Airborne Measurements of Important Ozone-depleting and Climate-forcing Trace Gases from 1991 to HIPPO and Beyond

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Nance, J. D.; Moore, F. L.; Hintsa, E. J.; Dutton, G. S.; Hall, B. D.; Mondeel, D. J.; Montzka, S. A.; Hurst, D. F.; Oltmans, S. J.; Gao, R.; Fahey, D. W.; Wofsy, S. C.

    2012-12-01

    Through collaborations with the National Aeronautics and Space Administration (NASA) and the National Science Foundation, the National Oceanographic and Atmospheric Administration Earth System Research Laboratory Global Monitoring Division (NOAA/ESRL/GMD) has measured a number of trace gases from manned and unmanned aircraft up to 21 km, and balloon platforms up to 32 km since 1991 at locations spanning the globe. Over 40 trace gases, including nitrous oxide (N2O), chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), methyl halides, numerous other halocarbons, sulfur gases (COS, SF6, CS2), and selected hydrocarbons, have been measured at Earth's surface and at altitude. This presentation will highlight our recent observations of halocarbons and other trace gases during the NSF and NOAA sponsored HIAPER Pole-to-Pole Observations (HIPPO) campaigns (2009-2011) that included flyovers of NDACC (Network for the Detection of Atmospheric Composition Change), AGAGE (Advanced Global Atmospheric Gases Experiment), and NOAA stations. Other observations from the recent NASA and NOAA sponsored Unmanned Aircraft Systems (UAS) GloPac and ATTREX campaigns (2010 - present) will also be highlighted, along with comparisons to proximate NDACC and satellite observations (ACE-FTS, Aura MLS and TES instruments). Our goal is to assemble a complete data set of geolocated airborne observations of halocarbons and other important trace gases measured by NOAA/ESRL airborne gas chromatographs for the purpose of facilitating model development and studies of atmospheric chemistry and transport processes in the troposphere and lower stratosphere.

  6. Halocarbons and other trace heteroatomic organic compounds in volcanic gases from Vulcano (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Seward, Terry M.; Giże, Andrew P.; Hall, Keith; Dietrich, Volker J.

    2013-01-01

    Adsorbent-trapped volcanic gases, sublimates and condensates from active vents of the La Fossa crater on the island of Vulcano (Aeolian Islands, Italy) as well as ambient and industrial air were quantitatively analyzed by Short-Path Thermal Desorption-Solid Phase Microextraction-Cryotrapping-Gas Chromatography/Mass Spectrometry (SPTD-SPME-CF-GC-MS). Among the over 200 detected and quantified compounds are alkanes, alkenes, arenes, phenols, aldehydes, carboxylic acids, esters, ketones, nitriles, PAHs and their halogenated, methylated and sulfonated derivatives, as well as various heterocyclic compounds including thiophenes and furans. Most compounds are found at concentrations well above laboratory, ambient air, adsorbent and field blank levels. For some analytes (e.g., CFC-11, CH2Cl2, CH3Br), concentrations are up to several orders of magnitude greater than even mid-latitudinal industrial urban air maxima. Air or laboratory contamination is negligible or absent on the basis of noble gas measurements and their isotopic ratios. The organic compounds are interpreted as the product of abiogenic gas-phase radical reactions. On the basis of isomer abundances, n-alkane distributions and substitution patterns the compounds are thought to have formed by high-temperature (e.g., 900 °C) alkyl free radical reactions and halide electrophilic substitution on arenes, alkanes and alkenes. The apparent abiogenic organic chemistry of volcanic gases may give insights into metal transport processes during the formation and alteration of hydrothermal ore deposits, into the natural volcanic source strength of ozone-depleting atmospheric trace gases (i.e., halocarbons), into possibly sensitive trace gas redox pairs as potential early indicators of subsurface changes on volcanoes in the state of imminent unrest, and into the possible hydrothermal origin of early life on Earth, as indicated by the presence of simple amino acids, nitriles, and alkanoic acids.

  7. Does shift in oxygen level in soil air affect the trace gases emissions?

    NASA Astrophysics Data System (ADS)

    malghani, S.; Gleixner, G.; Trumbore, S.

    2013-12-01

    Biogenic processes in soil such as, trace gasses emissions are influenced by presence or absence of oxygen as it is a dominant final acceptor of electrons for number of biochemical processes. However, it is unknown that trace gases emissions from soil are influenced by the level of oxygen or not. To understand the impact of oxygen level on CO2, CH4 and N2O emissions, five contrasting soils which differ in land use and other properties, were incubated at constant temperature and moisture in an automated chamber measurement system. Automated system continuously (30 mL/min) flushed the chambers holding soil samples with inlet air of known composition and the outlet air, sampling the headspace of the column, was connected to an automated multiport stream selection valve (Valco) that directed the air stream from different columns sequentially to instrumental part (LiCOR6262,PICARRO2101i and PICCARO2301). Other greenhouse gases and isotopes (δ13C & D) of CH4 were sampled weekly using 2L flasks. Oxygen levels in inlet air were switched weekly, started from 20% followed by 10, 5, 2.5, 1, 0%, and all levels were repeated in reverse fashion (from 1 to 20%).The results showed that soil respiration was higher in soils that were rich in soil organic matter with higher microbial biomass. Three out of five soils exhibited a gradual decrease in soil respiration while shifting higher to lower O2 levels but no such impact was recorded during gradual increase in O2 level. The lowest respiration rates in all soil types were recorded under anaerobic conditions. Forest soils were rich in soil organic carbon and respired more CO2 than grassland or cropland soils. All soils oxidized CH4, except one grassland soil which was acidic in nature (pH=4.1), in the presence of O2 at all levels. Amount of CH4 oxidized varied among soil types and was highest in forest soils. Under anaerobic condition CH4 oxidation was not observed in any soil, while two soils (cropland and one grassland) emitted

  8. Emissions of Trace Gases and Particles from Two Ships in the Southern Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Christian, Ted J.; Kirchstetter, Thomas W.; Bruintjes, Roelof

    2003-01-01

    Measurements were made of the emissions of particles and gases from two diesel-powered ships in the southern Atlantic Ocean off the coast of Namibia. The measurements are used to derive emission factors from ships of three species not reported previously, namely, black carbon, accumulation-mode particles, and cloud condensation nuclei (CCN), as well as for carbon dioxide, carbon monoxide (CO), methane (CH4), non-methane hydrocarbons, sulfur dioxide (SO2), nitrogen oxides (NOx), and condensation nuclei. The effects of fuel grade and engine power on ship emissions are discussed. The emission factors are combined with fuel usage data to obtain estimates of global annual emissions of various particles and gases from ocean-going ships. Global emissions of black carbon, accumulation- mode particles, and CCN from ocean-going ships are estimated to be 19-26 Gg yr(sup -1), (4.4-6.1) x 10(exp 26) particles yr(sup -1), and (1.0-1.5) x l0(exp 26) particles yr(sup -1), respectively. Black carbon emissions from ocean-going ships are approximately 0.2% of total anthropogenic emissions. Emissions of NOx and SO2 from ocean-going ships are approximately 10-14% and approximately 3-4%, respectively, of the total emissions of these species from the burning of fossil fuels, and approximately 40% and approximately 70%, respectively, of the total emissions of these species from the burning of biomass. Global annual emissions of CO and CH4 from ocean-going ships are approximately 2% and approximately 2-5%, respectively, of natural oceanic emissions of these species.

  9. Emissions of Trace Gases and Particles from Two Ships in the Southern Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Christian, Ted J.; Kirchstetter, Thomas W.; Bruintjes, Roelof

    2003-01-01

    Measurements were made of the emissions of particles and gases from two diesel-powered ships in the southern Atlantic Ocean off the coast of Namibia. The measurements are used to derive emission factors from ships of three species not reported previously, namely, black carbon, accumulation-mode particles, and cloud condensation nuclei (CCN), as well as for carbon dioxide, carbon monoxide (CO), methane (CH4), non-methane hydrocarbons, sulfur dioxide (SO2), nitrogen oxides (NOx), and condensation nuclei. The effects of fuel grade and engine power on ship emissions are discussed. The emission factors are combined with fuel usage data to obtain estimates of global annual emissions of various particles and gases from ocean-going ships. Global emissions of black carbon, accumulation- mode particles, and CCN from ocean-going ships are estimated to be 19-26 Gg yr(sup -1), (4.4-6.1) x 10(exp 26) particles yr(sup -1), and (1.0-1.5) x l0(exp 26) particles yr(sup -1), respectively. Black carbon emissions from ocean-going ships are approximately 0.2% of total anthropogenic emissions. Emissions of NOx and SO2 from ocean-going ships are approximately 10-14% and approximately 3-4%, respectively, of the total emissions of these species from the burning of fossil fuels, and approximately 40% and approximately 70%, respectively, of the total emissions of these species from the burning of biomass. Global annual emissions of CO and CH4 from ocean-going ships are approximately 2% and approximately 2-5%, respectively, of natural oceanic emissions of these species.

  10. The Atmosphere of Crystal Cave: Understanding Sources and Sinks of Trace Gases

    NASA Astrophysics Data System (ADS)

    Jarnot, A. W.; Hughes, S.; Blake, D. R.

    2016-12-01

    The atmospheric chemistry of cave systems has not been previously studied in depth; however, cave systems are prime locations to study potential sources and sinks for trace gas pollutants. Relatively constant temperatures, humidity, minimal air flow, and lack of sunlight create a stable environment that allows for biogeochemical processes to go on uninterrupted for extended periods of time. Carbonyl sulfide (OCS) is one of the main contributors to air pollution globally, but many OCS sinks are not fully understood. A preliminary analysis of cave air from Crystal Cave in Sequoia National Park yielded OCS concentrations of 35.2 ± 0.7 pptv, approximately 16 times lower than the average concentration of 568 ± 8 pptv measured outside of the cave. In addition, the concentrations of several other trace gases such as alpha-pinene and methyl bromide were found to be abnormally low (10.5 ± 0.3 pptv inside and 387 ± 8 pptv for alpha-pinene, and 387 ± 8 pptv inside and 11.1 ± 0.4 pptv outside for methyl bromide). The cave air was found to be well-mixed as the concentrations of long lived halocarbons such as CFC-12 were similar inside and outside of the cave (545 ± 5 pptv and 538 ± 4 pptv, respectively). This indicates that there may be one or more factors causing the cave to act a sink for several trace gas species. Further sampling and analysis of the atmosphere in the cave is required to draw any concrete conclusions about the unique environment presented here. The information gathered will help elucidate mechanisms for trace gas degradation, which could yield information about global trace gas budgets and their effect on global air quality.

  11. Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil

    NASA Astrophysics Data System (ADS)

    Ferek, Ronald J.; Reid, Jeffrey S.; Hobbs, Peter V.; Blake, Donald R.; Liousse, Catherine

    1998-12-01

    Airborne measurements of the emissions of gases and particles from 19 individual forest, cerrado, and pasture fires in Brazil were obtained during the Smoke, Clouds, and Radiation-Brazil (SCAR-B) study in August-September 1995. Emission factors were determined for a number of major and minor gaseous and particulate species, including carbon dioxide, carbon monoxide, sulfur dioxide, nitrogen oxides, methane, nonmethane hydrocarbons, halocarbons, particulate (black and organic) carbon, and particulate ionic species. The magnitude of the emission factors for gaseous species were determined primarily by the relative amounts of flaming and smoldering combustion, rather than differences in vegetation type. Hydrocarbons and halocarbons were well correlated with CO, which is indicative of emissions primarily associated with smoldering combustion. Although there was large variability between fires, higher emission factors for SO2 and NOχ were associated with an increased ratio of flaming to smoldering combustion; this could be due to variations in the amounts of sulfur and nitrogen in the fuels. Emission factors for particles were not so clearly associated with smoldering combustion as those for hydrocarbons. The emission factors measured in this study are similar to those measured previously in Brazil and Africa. However, particle emission factors from fires in Brazil appear to be roughly 20 to 40% lower than those from North American boreal forest fires.

  12. The production of trace gases by photochemistry and lightning in the early atmosphere

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Tennille, G. M.; Towe, K. M.; Khanna, R. K.

    1986-01-01

    Recent atmospheric calculation suggest that the prebiological atmosphere was most probably composed of nitrogen, carbon dioxide, and water vapor, resulting from volatile outgassing, as opposed to the older view of a strongly reducing early atmosphere composed of methane, ammonia, and hydrogen. Photochemical calculations indicate that methane would have been readily destroyed via reaction with the hydroxyl radical produced from water vapor and that ammonia would have been readily lost via photolysis and rainout. The rapid loss of methane and ammonia, coupled with the absence of a significant source of these gases, suggest that atmospheric methane and ammonia were very short lived, if they were present at all. An early atmosphere of N2, CO2, and H2O is stable and leads to the chemical production of a number of atmospheric species of biological significance, including oxygen, ozone, carbon monoxide, formaldehyde, and hydrogen cyanide. Using a photochemical model of the early atmosphere, the chemical productionof these species over a wide range of atmospheric parameters were investigated. These calculations indicate that early atmospheric levels of O3 were significantly below the levels needed to provide UV shielding. The fate of volcanically emitted sulfur species, e.g., sulfur dioxide and hydrogen sulfide, was investigated in the early atmosphere to assess their UV shielding properties. The photochemical calculations show that these species were of insufficient levels, due in part to their short photochemical lifetimes, to provide UV shielding.

  13. The production of trace gases by photochemistry and lightning in the early atmosphere

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Tennille, G. M.; Towe, K. M.; Khanna, R. K.

    1986-01-01

    Recent atmospheric calculation suggest that the prebiological atmosphere was most probably composed of nitrogen, carbon dioxide, and water vapor, resulting from volatile outgassing, as opposed to the older view of a strongly reducing early atmosphere composed of methane, ammonia, and hydrogen. Photochemical calculations indicate that methane would have been readily destroyed via reaction with the hydroxyl radical produced from water vapor and that ammonia would have been readily lost via photolysis and rainout. The rapid loss of methane and ammonia, coupled with the absence of a significant source of these gases, suggest that atmospheric methane and ammonia were very short lived, if they were present at all. An early atmosphere of N2, CO2, and H2O is stable and leads to the chemical production of a number of atmospheric species of biological significance, including oxygen, ozone, carbon monoxide, formaldehyde, and hydrogen cyanide. Using a photochemical model of the early atmosphere, the chemical productionof these species over a wide range of atmospheric parameters were investigated. These calculations indicate that early atmospheric levels of O3 were significantly below the levels needed to provide UV shielding. The fate of volcanically emitted sulfur species, e.g., sulfur dioxide and hydrogen sulfide, was investigated in the early atmosphere to assess their UV shielding properties. The photochemical calculations show that these species were of insufficient levels, due in part to their short photochemical lifetimes, to provide UV shielding.

  14. Environmental factors controlling transient and seasonal changes of trace gases within shallow vadose zone

    NASA Astrophysics Data System (ADS)

    Pla, Concepcion; Galiana-Merino, Juan Jose; Cuezva, Soledad; Fernandez-Cortes, Angel; Garcia-Anton, Elena; Cuevas, Jaime; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio; Benavente, David

    2014-05-01

    Shallow vadose environments below soil, mainly caves, show significant seasonal and even daily variations in gas composition of ground air, which involves the exchange of large amounts of gases, e.g. greenhouse gases (GHGs) as CO2 or CH4, with the lower troposphere. To understand better the role of caves as a sink or depot of GHGs, geochemical tracing of air (atmosphere, soil and ground air) was performed at Rull cave (southeast Spain) by monitoring CH4, CO2 and the stable carbon isotopic delta13C[CO2] using cavity ring-down spectroscopy (CRDS). A comprehensive microclimatic monitoring of exterior and cave atmosphere was simultaneously conducted to GHGs-tracking, including factors as temperature, barometric pressure, relative humidity and concentration of CO2 and 222Rn. The analysis of the measured data allows understanding outgassing and isolation processes taking place in the karst cavity. Annual patterns of gases behaviour can be distinguished, depending on the prevailing relationship between outer atmosphere, indoor atmosphere and soil system. Cave air temperature fluctuates around 15.7 ºC and relative humidity remains higher than 96% the whole annual cycle. The mean concentration of 222Rn is 1584 Bq m-3 while CO2 remains 1921 ppm. When external temperature is higher of indoor temperature (April-October), the highest levels of both trace gases are reached, while levels drop to its lowest values in the coldest months. Preliminary results obtained show an annual variation in concentration of CO2 inside the cave between 3300 ppm and 900 ppm, whereas corresponding isotopic signal delta13CO2 varies between -24‰ and -21‰. The results have been studied by Keeling model that approximates the isotopic signal of the source contribution in a resulting air mix. The values registered inside the cave were represented joined to results for exterior air (average values round 410 ppm of CO2 and -9 ‰ for delta13C). Value obtained is -27‰ pointing to a high influence of

  15. Spatial Variability of Trace Gases During DISCOVER-AQ: Planning for Geostationary Observations of Atmospheric Composition

    NASA Technical Reports Server (NTRS)

    Follette-Cook, Melanie B.; Pickering, K.; Crawford, J.; Appel, W.; Diskin, G.; Fried, A.; Loughner, C.; Pfister, G.; Weinheimer, A.

    2015-01-01

    Results from an in-depth analysis of trace gas variability in MD indicated that the variability in this region was large enough to be observable by a TEMPO-like instrument. The variability observed in MD is relatively similar to the other three campaigns with a few exceptions: CO variability in CA was much higher than in the other regions; HCHO variability in CA and CO was much lower; MD showed the lowest variability in NO2All model simulations do a reasonable job simulating O3 variability. For CO, the CACO simulations largely under over estimate the variability in the observations. The variability in HCHO is underestimated for every campaign. NO2 variability is slightly overestimated in MD, more so in CO. The TX simulation underestimates the variability in each trace gas. This is most likely due to missing emissions sources (C. Loughner, manuscript in preparation).Future Work: Where reasonable, we will use these model outputs to further explore the resolvability from space of these key trace gases using analyses of tropospheric column amounts relative to satellite precision requirements, similar to Follette-Cook et al. (2015).

  16. Geostationary Fabry-Perot Imagery for the Measurement of Trace Gases and Clouds

    NASA Astrophysics Data System (ADS)

    Boldt, J.; Yee, J.; Morgan, F.; Swartz, W.; Demajistre, R.; Talaat, E.

    2008-12-01

    Long-term measurements of the global distributions of trace gases (e.g., CO, O3, CH4, H2O, N2O) and clouds are needed for the study and monitoring of global change and air quality. The Geostationary Imaging Fabry-Perot Spectrometer (GIFS) instrument is an example of a next-generation satellite concept, to be deployed on a geostationary satellite for continuous hemispheric imaging of trace gas concentrations (including the boundary layer) and clouds. GIFS uses an innovative tunable imaging triple-etalon Fabry- Perot interferometer to obtain images of very high-resolution spectral line shapes of individual lines in backscattered solar radiation, which contain trace gas and cloud information. An airborne GIFS prototype and the measurement technique have been successfully demonstrated in a recent field campaign onboard the NASA P3B over Wallops Island, Virginia. In this paper, we present the preliminary GIFS instrument design and use GIFS prototype measurements to demonstrate the instrument functionality and measurement capabilities.

  17. Reactions of Criegee Intermediates with Non-Water Greenhouse Gases: Implications for Metal Free Chemical Fixation of Carbon Dioxide.

    PubMed

    Kumar, Manoj; Francisco, Joseph S

    2017-09-07

    High-level theoretical calculations suggest that a Criegee intermediate preferably interacts with carbon dioxide compared to two other greenhouse gases, nitrous oxide and methane. The results also suggest that the interaction between Criegee intermediates and carbon dioxide involves a cycloaddition reaction, which results in the formation of a cyclic carbonate-type adduct with a barrier of 6.0-14.0 kcal/mol. These results are in contrast to a previous assumption that the reaction occurs barrierlessly. The subsequent decomposition of the cyclic adduct into formic acid and carbon dioxide follows both concerted and stepwise mechanisms. The latter mechanism has been overlooked previously. Under formic acid catalysis, the concerted decomposition of the cyclic carbonate may be favored under tropospheric conditions. Considering that there is a strong nexus between carbon dioxide levels in the atmosphere and global warming, the high reactivity of Criegee intermediates could be utilized for designing efficient carbon capture technologies.

  18. Compilation and evaluation of gas-phase diffusion coefficients of inorganic reactive trace gases in the atmosphere

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Cox, R. A.; Kalberer, M.

    2014-06-01

    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions; however, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. Here we compile and evaluate, for the first time, the diffusivities (pressure-independent diffusion coefficients) of atmospheric inorganic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed.

  19. CU AMAX-DOAS applications in cloud-free and cloudy atmospheres: innovative Scattered Sun Light observations of trace gases and aerosol extinction

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Baidar, S.; Coburn, S.; Dix, B. K.; Oetjen, H.; Ortega, I.; Sinreich, R.; Atmospeclab

    2011-12-01

    An innovative airborne scanning multi-axis differential optical absorption spectroscopy (CU AMAX-DOAS) instrument has been developed at the University of Colorado, Boulder. The instrument collects scattered sunlight spectra in a sequence of discrete viewing angles, and employs the DOAS method (inherently calibrated, and selective) to simultaneously retrieve multiple trace gases, e.g., nitrogen dioxide (NO2), nitrous acid (HONO), formaldehyde (HCHO), glyoxal (CHOCHO), bromine oxide (BrO), iodine oxide (IO), chlorine dioxide (OClO), water vapor (H2O), and oxygen dimers (O4, at 360nm, 477nm, and 632nm) differential slant column densities (dSCD). Vertical profiles of these gases and multi-spectral aerosol extinction are inferred by combining Monte-Carlo Radiative Transfer Modelling (RTM) and optimal estimation techniques to construct a model atmosphere that can in principle represent 3D clouds and aerosols. The atmospheric state of this model atmosphere is constrained by observations of O4 dSCDs, Raman Scattering Probability (RSP), and intensity ratios, i.e., quantities that depend solely on relative intensity changes, without need for a direct sun view, or absolute radiance calibration. We show results from ongoing validation efforts (NOAA TwinOtter aircraft during CalNex and CARES), and demonstrate vertical profile retrievals (NSF/NCAR GV over the tropical Pacific Ocean) in both cloud-free and cloudy atmospheres.

  20. Evolution of minor trace gases and isotopic ratios in Titan's stratosphere using CIRS/Cassini spectra

    NASA Astrophysics Data System (ADS)

    Bampasidis, G.; Coustenis, A.; Achterberg, R. K.; Jennings, D. E.; Nixon, C. A.; Vinatier, S.; Lavvas, P.; Carlson, R.; Teanby, N.; Flasar, F. M.; Guandique, E.; Stamogiorgos, S.

    2012-04-01

    The Cassini/Huygens mission has extensively studied Titan's environment and for the first time provided temporal and spatial variability information since 2004. Here, we focus on the stratosphere with its complex organic chemistry by using the wealth of the infrared spectra retrieved by the Composite Infrared Spectrometer (CIRS) consisting of two interferometers, aboard Cassini (1). These data cover a large part of Titan's globe in high, medium and low resolution (0.5cm-1, 2.5cm-1 and 15.5cm-1 respectively). CIRS has mapped the stratosphere in more than 70 flybys so far either in downward or horizontal viewing in the range 10-1400cm-1. First, we import large FP4 averages (1100-1400cm-1), using the nu4 methane band as a thermometer, into an inverse algorithm (2, 3) to retrieve the corresponding vertical temperature profile and apply it to our line-by-line radiative tranfer code (RTC) (4, 5). Then, through an iterative best-fit process, we construct a model spectrum fitting the relative FP3 average (600-1100cm-1). Eventually, we infer the abundances of each spectroscopic query trace gases and we can study temporal and spatial evolutions (6). We have upgraded our recipe by adopting recent laboratory spectroscopic results (7, 8) and the aerosol influence (9). The upgraded RTC with the breadth of CIRS recordings help us study the infrared signature of Titan's stratospheric weak trace gases (C6H6, C2HD, HC3N). Moreover, we look for new isotopologues (12C13CH6, H13CCCN, H12CC13CN, H12CC13CN, DC14N, H13CN, 13C16O2, C18O16O, C17O16O, 13C17O16O, 13C18O2, 13C18O16O, C18O16O) and calculate 13C/12C, D/H, 15N/14N, 17O/16O and 18O/16O isotopic ratios throughout Titan's atmosphere. We compare our results to other publications (10-14) and give upper limits for the weakest species. Since the stratospheric composition varies over a Saturnian year (6), the trace gases abundances and their isotopologues help us understand Titan's atmospheric dynamics and photochemical evolution giving

  1. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios

    SciTech Connect

    Gernaat, David; Calvin, Katherine V.; Lucas, Paul; Luderer, Gunnar; Otto, Sander; Rao, Shilpa; Strefler, Jessica; Van Vuuren, Detlef

    2015-07-01

    The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lion’s share of remaining greenhouse gas emissions. In order to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2¬ emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.

  2. Column amounts of trace gases from ground based FTIR measurements in the late north polar winters 1990 and 1991

    NASA Technical Reports Server (NTRS)

    Adrian, Gabriele; Blumenstock, Thomas; Fischer, Herbert; Frank, Eckard; Gerhardt, Lothar; Gulde, Thomas; Maucher, Guido; Oelhaf, Hermann; Thomas, Peter; Trieschmann, Olaf

    1994-01-01

    Two FTIR spectrometers were employed in the late winters 1990 and 1991 in Esrange, North Sweden, and in Ny Aalesund, Spitsbergen to detect zenith column amounts of several trace gases. Time series of column amounts of the trace gases O3, N2O, CH4, HNO3, NO2, CHl, and HF have been derived from the measured spectra. Additionally, some information on the vertical distribution of HCl could be obtained by analyzing the spectral line shapes. The results are interpreted in terms of dynamical and chemical processes.

  3. Ground-based FTIR measurements of vertical column densities of several trace gases above Spitsbergen

    NASA Astrophysics Data System (ADS)

    Notholt, J.; Schrems, O.

    During the EASOE campaign ground-based FTIR measurements have been performed in March 1992 at Ny-Ålesund (Spitsbergen, 79°N, 12°E) to derive column amounts of several trace gases. For the first part of the measurement campaign Ny-Ålesund was situated inside the polar vortex. The obtained concentrations of N2O, CH4 and HF inside the vortex are consistent with subsidence. The ratio of HClstrat/HF varied from about 2.0 inside to about 2.8 outside the vortex. Inside the vortex low values for NO2 and high values for HNO3 were found. The O3 concentrations inside the vortex are slightly lower than what was observed outside the vortex.

  4. A tunable diode laser system for aircraft measurements of trace gases

    NASA Technical Reports Server (NTRS)

    Schiff, H. I.; Karecki, D. R.; Harris, G. W.; Mackay, G. I.; Hastie, D. R.

    1990-01-01

    The advantages of tunable-diode-laser absorption spectrometry (TDLAS) for measuring trace atmospheric gases are universality, positive identification, good sensitivity, and rapid response time. A TDLAS system is described which is capable of making measurements aboard an aircraft. The instrument was employed during the Chemical Instrumentation Test and Evaluation (CITE) 2 program to measure NO2 on 11 flights and HNO3 on five flights. Detection limits were determined to be 25 parts per trillion by volume (pptv) for NO2 and 75 pptv for HNO3 with response times of 3 min. This was sufficient to permit measurements of NO2 in the free troposphere and HNO3 in the continental boundary layer a significant fraction of the time.

  5. Measurements of Long-Lived Trace Gases from Commercial Aircraft Platforms: Development of Instrumentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The upper troposphere (6-12 km altitude) is a poorly understood and highly vulnerable region of the atmosphere. It is important because many trace species, including ozone, have their greatest impact as greenhouse (infrared-absorbing) gases in this region. The addition of relatively small amounts of anthropogenic chemicals, such as nitrogen oxides, can have a dramatic effect on the abundance of ozone. Some of these pollutants are deposited directly, e.g., by aircraft, while others are transported in. The primary goal of this project was to measure several chemical compounds in the upper troposphere that will help us to understand how air is to transported to that part of the atmosphere; that is, does it come down from the stratosphere, does it rise from the surface via convection, and so on. To obtain adequate sampling to accomplish this goal, we proposed to make measurements from revenue aircraft during normal flight operations.

  6. Characteristics of Fine Particles in an Urban Atmosphere—Relationships with Meteorological Parameters and Trace Gases

    PubMed Central

    Zhang, Tianhao; Zhu, Zhongmin; Gong, Wei; Xiang, Hao; Fang, Ruimin

    2016-01-01

    Atmospheric fine particles (diameter < 1 μm) attract a growing global health concern and have increased in urban areas that have a strong link to nucleation, traffic emissions, and industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm–661 nm), meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm–30 nm), Aitken mode (30 nm–100 nm), and accumulation mode (100 nm–661 nm) reached 4923 cm−3, 12193 cm−3 and 4801 cm−3, respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of “repeated, short-lived” nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in industrial cities of

  7. Mixing ratios of trace gases in the austral polar atmosphere during August and September of 1987

    NASA Technical Reports Server (NTRS)

    Vedder, James F.; Heidt, Leroy E.; Pollock, Walter H.; Henry, Bruce E.; Lueb, Richard A.

    1988-01-01

    Mixing ratios are presented for a number of long-lived trace gases in the austral polar atmosphere during August and September of 1987. The recent discovery of a 12-year trend of increasing depletion of ozone over the Antarctic Continent in the spring of each year led to numerous theoretical interpretations and several scientific expeditions to the region. The results herein were obtained as part of a major effort involving penetration of the region of ozone depletion by NASA's multi-instrumented aircraft. One of the 14 instruments on the high-altitude ER-2 aircraft collected pressurized air samples between latitudes of 53 degrees and 72 degrees south at pressure altitudes up to 21 km in a series of 12 flights from Punta Arenas, Chile, over the Palmer Peninsula. The sampling system, located in the nose section of ER-2, has an inlet tube in the free airstream, a metal-bellows air pump, and 14 specially treated 1.6 l stainless-steel canisters for containing the pressurized air at 350 kPa. A typical flight profile consisted of a southbound path on the 428 K potential temperature surface, a descent to a pressure altitude of 13.7 km, a climb to the 460 K surface, and return on this surface. Mixing ratios for the trace gases were obtained from gas chromatographic analyses of the pressurized air samples. Of the species measured, the mixing ratios for CH4, CO, N2O, CF2 Cl2, CFCl3, CH3, CCl3, CCl4, and C2F3Cl3 are reported here.

  8. Characteristics of Fine Particles in an Urban Atmosphere-Relationships with Meteorological Parameters and Trace Gases.

    PubMed

    Zhang, Tianhao; Zhu, Zhongmin; Gong, Wei; Xiang, Hao; Fang, Ruimin

    2016-08-10

    Atmospheric fine particles (diameter < 1 μm) attract a growing global health concern and have increased in urban areas that have a strong link to nucleation, traffic emissions, and industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm-661 nm), meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm-30 nm), Aitken mode (30 nm-100 nm), and accumulation mode (100 nm-661 nm) reached 4923 cm(-3), 12193 cm(-3) and 4801 cm(-3), respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of "repeated, short-lived" nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in industrial cities of developing

  9. Atmospheric variability and emissions of halogenated trace gases near New York City

    NASA Astrophysics Data System (ADS)

    Santella, Nicholas; Ho, David T.; Schlosser, Peter; Gottlieb, Elaine; Munger, William J.; Elkins, James W.; Dutton, Geoffrey S.

    2012-02-01

    Elevated mixing ratios of chlorofluorocarbons (CFC-11 and CFC-12), and sulfur hexafluoride (SF 6) have been observed at Lamont-Doherty Earth Observatory (LDEO), located approximately 25 km north of New York City (NYC). Emissions and transport of these gases are of interest because of their global warming potential, the role of CFCs in depletion of stratospheric ozone and information they provide on the transport of atmospheric pollutants. Comparison of trace gas time series with meteorological data indicates that both NYC and the region to the southwest (New Jersey and the Philadelphia -Washington DC area) are significant sources of CFCs, and confirms that NYC is an unusually large source of SF 6. From 1996 to 2005 the elevation of CFC-12 mixing ratio above that of the remote (well mixed) atmosphere has decreased on average by 5.2 ± 0.6 ppt y -1, whereas that of CFC-11 has not changed significantly (0.0 ± 2.0 ppt y -1). From 1998 to 2006, the elevation of SF 6 mixing ratios above that of the remote atmosphere declined by 0.4 ± 0.1 ppt y -1. Time series of the same gases measured at Harvard Forest, 205 km northeast of LDEO, demonstrate transport of air masses with elevated levels of these gases from their source region to central Massachusetts. Emissions in the local area around LDEO were quantified through analysis of diurnal cycles. Local CFC-12 emissions decreased ca. 95% between 1996 and 2005 while CFC-11 emission decreased ca. 51% during the same period. Local SF 6 emissions decreased by 47% between 1998 and 2005.

  10. Increasing CO2 Coupled with Other Anthropogenic Perturbations: Effects on Ozone and Other Trace Gases

    NASA Technical Reports Server (NTRS)

    Rosenfield, J. E.; Douglass, A. R.

    1999-01-01

    The GSFC 2D interactive chemistry-radiation-dynamics model has been used to study the effects on stratospheric trace gases of past and future CO2 increases coupled with changes in CFC'S, methane, and nitrous oxide. Previous simulations with the GSFC model showed that the stratospheric cooling calculated to result from doubling atmospheric CO2 would lead, in the absence of a growth of other anthropogenic gases, to a decrease in upper stratospheric NO(y) of roughly 15%. This work has been extended to simulate changes in stratospheric chemistry and dynamics occurring between the years 1960 and 2050. The simulations have been carried out with and without changes in CO2. In the low latitude upper stratosphere ozone is predicted to be 10% greater in 2050 than in 1990 when increased CO2 is included, compared with an increase of only 2% without the inclusion of CO2. In the low latitude lower stratosphere, ozone is predicted to decrease by about 1% between 1990 and 2050 when CO2 changes are taken into account, in contrast to an approximate 3% increase when they are not. The simulated behavior of water vapor is another example of the coupled responses. Between 1990 and 2050 low latitude water vapor is predicted to increase by 4% and 2% in the upper and lower stratosphere, respectively, without the inclusion of CO2 increases. with the inclusion of CO2 changes, the water vapor increases are predicted to be roughly 12% and 8%, for the upper and lower stratosphere, respectively.

  11. The CU Airborne MAX-DOAS instrument: ground based validation, and vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2012-09-01

    The University of Colorado Airborne Multi Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light remote sensing to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (360 nm, 477 nm, 577 nm and 632 nm) simultaneously, and sensitively in the open atmosphere. The instrument is unique, in that it presents the first systematic implementation of MAX-DOAS on research aircraft, i.e. (1) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system, and (2) features a motion compensation system that decouples the telescope field of view (FOV) from aircraft movements in real-time (< 0.35° accuracy). Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex and CARES air quality field campaigns is presented. Horizontal distributions of NO2 VCDs (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground based CU MAX-DOAS instruments (slope 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O mixing ratios and aerosol extinction coefficients, ɛ, at 477nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  12. The 1997 El Niño impact on clouds, water vapour, aerosols and reactive trace gases in the troposphere, as measured by the Global Ozone Monitoring Experiment

    NASA Astrophysics Data System (ADS)

    Loyola, D.; Valks, P.; Ruppert, T.; Richter, A.; Wagner, T.; Thomas, W.; van der A, R.; Meisner, R.

    2006-03-01

    The El Niño event of 1997/1998 caused dry conditions over the Indonesian area that were followed by large scale forest and savannah fires over Kalimantan, Sumatra, Java, and parts of Irian Jaya. Biomass burning was most intense between August and October 1997, and large amounts of ozone precursors, such as nitrogen oxides, carbon monoxide and hydrocarbons were emitted into the atmosphere. In this work, we use satellite measurements from the Global Ozone Monitoring Experiment (GOME) sensor to study the teleconnections between the El Niño event of 1997 and the Indonesian fires, clouds, water vapour, aerosols and reactive trace gases (nitrogen dioxide, formaldehyde and ozone) in the troposphere.

  13. Validation of Global Climatologies of Trace Gases Using NASA Global Tropospheric Experiment (GTE) Data

    NASA Technical Reports Server (NTRS)

    Courchaine, Brian; Venable, Jessica C.

    1995-01-01

    Methane is an important trace gas because it is a greenhouse gas that affects the oxidative capacity of the atmosphere. It is produced from biological and anthropogenic sources, and is increasing globally at a rate of approximately 0.6% per year [Climate Change 1992, IPCC]. By using National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) ground station data, a global climatology of methane values was produced. Unfortunately, because the NOAA/CMDL ground stations are so sparse, the global climatology is low resolution. In order to compensate for this low resolution data, it was compared to in-situ flight data obtained from the NASA Global Tropospheric Experiment (GTE). The smoothed ground station data correlated well with the flight data. Thus, for the first time it is shown that the smoothing process used to make global contours of methane using the ground stations is a plausible way to approximate global atmospheric concentrations of the gas. These verified climatologies can be used for testing large-scale models of chemical production, destruction, and transport. This project develops the groundwork for further research in building global climatologies from sparse ground station data and studying the transport and distribution of trace gases.

  14. Measurements of stratospheric trace gases by a balloon-borne infrared spectrometer in France

    NASA Astrophysics Data System (ADS)

    Jarisch, M.; Offermann, D.; Riese, M.; Wuebbels, D. J.

    1997-09-01

    A helium cooled balloon-borne infrared spectrometer was launched twice from Aire sur l'Adour (France; 44°N, 0°E) on 23 September 1983 and 4 May 1986. The experiment used the limb scan technique to measure mixing ratios of the stratospheric trace gases H2O, O3, N2O, NO2, CH4, HNO3 and N2O5 prior to, during, and after sunrise. The first flight was performed as part of the international MAP/Globus (Middle Atmosphere Program/Global Budget of Stratospheric Trace Constituents) campaign. The height profiles obtained during both flights are presented and compared here with data from other experiments. The ozone measurements are compared with in situ measurements taken by electrochemical Brewer/Mast sondes. N2O5 mixing ratios were deduced from predawn measurements. A maximum value of 1.6 ppbv was obtained for a tangent height of 33.7 km. The N2O5 height profile is found to be in good agreement with observations obtained by other experiments, indicating little latitudinal variation at sunrise. The height profile appears to be representative of an atmosphere with background aerosol levels.

  15. Airborne multi-axis DOAS measurements of atmospheric trace gases on CARIBIC long-distance flights

    NASA Astrophysics Data System (ADS)

    Dix, B.; Brenninkmeijer, C. A. M.; Frieß, U.; Wagner, T.; Platt, U.

    2009-11-01

    A DOAS (Differential Optical Absorption Spectroscopy) instrument was implemented and operated onboard a long-distance passenger aircraft within the framework of the CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container). The instrument was designed to keep weight, size and power consumption low and to comply with civil aviation regulations. It records spectra of scattered light from three viewing directions (nadir, 10° above and below horizon) using a miniaturized telescope system. The telescopes are integrated in the main pylon of the inlet system which is mounted at the belly of the aircraft. Fibre bundles transmit light from the telescopes to spectrograph-detector units inside the DOAS container instrument. The latter is part of the removable CARIBIC instrument container, which is installed monthly on the aircraft for a series of measurement flights. During 30 flight operations within three years, measurements of HCHO, HONO, NO2, BrO, O3 and the oxygen dimer O4 were conducted. All of these trace gases except BrO could be analysed with a 30 s time resolution. HONO was detected for the first time in a deep convective cloud over central Asia, while BrO, NO2 and O3 could be observed in tropopause fold regions. Biomass burning signatures over South America could be seen and measurements during ascent and descent provided information on boundary layer trace gas profiles (e.g. NO2 or HCHO).

  16. Airborne multi-axis DOAS measurements of atmospheric trace gases on CARIBIC long-distance flights

    NASA Astrophysics Data System (ADS)

    Dix, B.; Brenninkmeijer, C. A. M.; Frieß, U.; Wagner, T.; Platt, U.

    2009-02-01

    A DOAS (Differential Optical Absorption Spectroscopy) instrument was implemented and operated onboard a long-distance passenger aircraft within the framework of the CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container). The instrument was designed to keep weight, size and power consumption low and to comply with civil aviation regulations. It records spectra of scattered light from three viewing directions (nadir, 10° above and below horizon) using a miniaturized telescope system. The telescopes are integrated in the main pylon of the inlet system which is mounted at the belly of the aircraft. Fibre bundles transmit light from the telescopes to spectrograph-detector units inside the DOAS container instrument. The latter is part of the removable CARIBIC instrument container, which is installed monthly on the aircraft for a series of measurement flights. During 30 flight operations within three years, measurements of HCHO, HONO, NO2, BrO, O3 and the oxygen dimer O4 were conducted. All of these trace gases except BrO could be analysed with a 30 s time resolution. HONO was detected for the first time in a deep convective cloud over central Asia. BrO, NO2 and O3 could be observed in tropopause fold regions, biomass burning signatures over South America could be seen and measurements during ascent and descent provided information on boundary layer trace gas profiles (e.g. NO2 or HCHO).

  17. Knudsen cell: Investigations about the uptake of important traces gases on ambient airborne mineral dust

    NASA Astrophysics Data System (ADS)

    Horn, Sabrina; Herrmann, Hartmut

    2013-04-01

    Mineral dust constitutes one of the largest mass fractions of natural aerosol. Its emission is estimated between 800 - 2000 Tg/a]. The dust is emitted through sand and dust storms in the arid regions of our planet, in particular by the great desserts such as the Sahara. The complex chemical composition of mineral dust is similar to crust material, because the dust is produced by soil erosion. The main components of mineral dust are SiO2 and Al2O3, whereas the active oxides (Fe2O3, TiO2) show some variety in content due to the dust source region. Mineral dust particles can be transported over several 1000 km and during its transport the surface can be changed by the uptake of water vapor and trace gases. On such modified surfaces homo- and heterogeneous reactions can occur. Trace gas uptakes play an important role in atmospheric chemistry as sinks or sources for several gaseous species. Hence, it is necessary to study these reactions. Among several experimental setups, the Knudsen cell is one of the promising tools to study reactive uptakes from the gas phase and the release of products formed by dust surface-mediated reactions. The Knudsen cell, implemented by Golden et al. in 1975, is a high vacuum flow reactor operating under molecular flow conditions, i.e., gas-wall collisions are highly preferred over gas-gas collisions. Despite several Knudsen cell studies examining the reaction between different traces gases and model dust surfaces constituted of not more than a few components, no measurements utilizing collected ambient mineral dust are done so far. For a better understanding of the chemistry on mineral dust surfaces gas uptake measurements will be done with a Knudsen cell. The first measurements are done with isopropanol on TiO2. Afterwards there are studies with different substrates like, Al2O3 (α- and γ-phase), FeO2, Arizona test dust, air collected mineral dust from the Cap Verde islands. In the beginning SO2, NO2 and HNO3 will be used.

  18. A chemical climatology of lower tropospheric trace gases and aerosols over the mid-Atlantic region

    NASA Astrophysics Data System (ADS)

    Hains, Jennifer Carrie

    2007-12-01

    Ozone and aerosols affect air quality, visibility and human health. The University of Maryland research aircraft conducted flights over the Mid-Atlantic region between 1995 and 2005 to characterize pollution events. I developed a chemical climatology of trace gases and aerosols that can be used to validate and improve models. O3 and SO2 measured aboard the aircraft were compared with O3 and SO2 generated with the Community Multiscale Air Quality (CMAQ). In general, CMAQ under-estimates O3 above 500 m and over-estimates O3 below 500 m (possible reasons for this include chemistry not being properly represented in the model). A sensitivity test of the rate of photolysis of NO2 was performed and improving the photochemistry did improve the modeled O3. CMAQ over-predicts the SO2 column content by about 50%, possibly because the model gives SO2 too long a lifetime. To test this theory I developed a method for calculating the SO2 lifetime using in-situ measurements. The mean SO2 lifetime was 19 +/- 7 hours for measurements made in the daytime in the summer in the Mid-Atlantic region with in-cloud processes responsible for ˜80% of the removal. I made comparisons of three aerosol sampling systems and found the uncertainty of PM2.5, sulfate, and ammonium measured with the Speciation Trends Network is larger than what has been reported and is at least 20%. I have developed clustering methodologies to group back trajectories associated with aircraft profiles as well as group trace gas and aerosol profiles by size and shape. The first clustering method produced eight distinct meteorological regimes associated with pollution and haze events. I quantified the amount of O3 transported for each meteorological regime. Using the second method, I found a strong correlation between O3 profiles and point source NOx emissions. The comparisons of model and measured profiles, comparisons of surface measurements, and clustering methods are used to explain sources, sinks and distributions

  19. Short-lived organic trace gases in the UT/LS: Results from recent field campaigns. (Invited)

    NASA Astrophysics Data System (ADS)

    Atlas, E. L.; Pan, L.; Schauffler, S.; Bowman, K. P.; Blake, D. R.; Meinardi, S.; Stone, D.; Lueb, R.; Zhu, X.; Pope, L.

    2009-12-01

    Recent research campaigns in the tropics (TC-4 and AVE missions) and in the extra-tropics (START08) have included the measurement of trace gases from whole air sampling on the NASA WB-57 or NSF Gulfstream V aircraft. Measurements of a range of halocarbons, hydrocarbons, organic nitrates, and sulfur species were made during these missions to examine the role of short-lived organic gases in the UT/LS. The trace gas composition of the upper troposphere/lower stratosphere (UT/LS) region depends on emission sources, transport pathways, mixing rates and photochemical processing time. Because surface emissions include gases with a range of chemical lifetimes, and because different source emissions (e.g. marine boundary layer, anthropogenic emissions, biomass burning) can have different chemical signatures, the composition of the organic trace gases that are found in the UT/LS region have the potential to provide diagnostic information on air mass sources and transport time scales. Also, measurement of short-lived organic halogen gases in the UT/LS during these missions provides data to define the reactive halogen budget and the chemical boundary conditions for the stratospheric chemistry that affects ozone depletion rates. This presentation will highlight different aspects of these measurements that deal with transport pathways, transport rates, and halogen budgets.

  20. Exomars orbiter science and data-relay mission / looking for trace gases on Mars

    NASA Astrophysics Data System (ADS)

    Fratacci, Olivier

    EXOMARS Orbiter Module: looking for trace gas on Mars and providing data relay support for future Mars Surface assets O.Fratacci, M.Mesrine, H.Renault, Thales Alenia Space France B.Musetti, M.Montagna, Thales Alenia Space Italy M.Kesselmann, M.Barczewski OHB P.Mitschdoerfer, D.Dellantonio Euro-pean Space Agency / ESTEC The European Space Agency (ESA) in a joint cooperation with NASA, will launch in 2016 the EXOMARS spacecraft composite to develop European landing technologies and provide a science orbiter with data-relay capability around Mars until end 2022. The spacecraft composite is composed of the Orbitr Module (OM), provided by TAS-France, an entry descent and landing demonstrator module (EDM) provided by TAS-Italy, and a set of six scientific payloads to be selected by the JPL during 2010. Recent observations of the planet Mars have indicated detection of methane as well as temporal, perhaps spatial variability in the detected signal while current photochemical models cannot explain the presence of methane in the atmosphere of Mars nor its reported rapid variations in space and time. The triple scientific objectives that drive the selection of these six instruments for the Exomars 2016 mission is to detect trace gases in Mars atmosphere, to characterise their spatial and temporal variation and to explore the source of the key trace gases (e.g. methane) on the surface. The launch is scheduled in January 2016 from Kennedy Space Center (KSC) using an ATLAS V 421 launcher with a total launch mass of 4.4 tons. After release of the EDM on Mars, the OM will perform the Mars Orbit Insertion manoeuvre and then reduce its elliptic orbit by implementing the first European Aerobraking around Mars for about 6 to 9 months, to finally end on a circular 400x400km orbit with an altitude in the range of 350km to 420km. From this orbit, a science phase will follow lasting 2 years in which the Mars atmosphere and surface is continuously observed. Science instruments composed of

  1. WET EFFLUENT PARALLEL PLATE DIFFUSION DENUDER COUPLED CAPILLARY ION CHROMATOGRAPH FOR THE DETERMINATION OF ATMOSPHERIC TRACE GASES. (R825344)

    EPA Science Inventory

    We describe an inexpensive, compact parallel plate diffusion denuder coupled capillary IC system for the determination of soluble ionogenic atmospheric trace gases. The active sampling area (0.6×10 cm) of the denuder is formed in a novel manner by thermally bonding silica ge...

  2. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing Determination of Various Atmospheric Trace Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.; Wilson, E. L.

    2007-01-01

    New type of remote sensing instrument based upon the Fabry-Perot inte rferometric technique has been developed at NASA's Goddard Space Flight Center. Fabry-Perot interferometry (FPI) is a well known, powerful spectroscopic technique and one of its many applications is to be use d to measure greenhouse gases and also some harmful species in the at mosphere. With this technique, absorption of particular species is me asured and related to its concentration. A solid Fabry-Perot etalon is used as a frequency filter to restrict the measurement to particular absorption bands of the gas of interest. With adjusting the thicknes s of the etalon that separation (in frequency) of the transmitted fri nges can be made equal to the almost constant separation of the gas a bsorption lines. By adjusting the temperature of the etalon, which changes the index of refi-action of its material, the transmission fring es can be brought into nearly exact correspondence with absorption li nes of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosph ere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The instrument that we have dev eloped detects the absorption of various atmospheric trace gases in d irect or reflected sunlight. Our instrument employing Fabry-Perot interferometer makes use of two features to achieve high sensitivity. The first is high spectral resolution enabling one to match the width of an atmospheric absorption feature by the instrumental band pass. The second is high optical throughput enabled by using multiple spectral lines simultaneously. For any species that one wishes to measure, thi s first feature is available while the use of multiple spectral features can be employed only for species with suitable spectra and freedom from interfering species in the same wavelength region. We have deve loped an instrument for use as ground based

  3. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO).

    PubMed Central

    Conrad, R

    1996-01-01

    Production and consumption processes in soils contribute to the global cycles of many trace gases (CH4, CO, OCS, H2, N2O, and NO) that are relevant for atmospheric chemistry and climate. Soil microbial processes contribute substantially to the budgets of atmospheric trace gases. The flux of trace gases between soil and atmosphere is usually the result of simultaneously operating production and consumption processes in soil: The relevant processes are not yet proven with absolute certainty, but the following are likely for trace gas consumption: H2 oxidation by abiontic soil enzymes; CO cooxidation by the ammonium monooxygenase of nitrifying bacteria; CH4 oxidation by unknown methanotrophic bacteria that utilize CH4 for growth; OCS hydrolysis by bacteria containing carbonic anhydrase; N2O reduction to N2 by denitrifying bacteria; NO consumption by either reduction to N2O in denitrifiers or oxidation to nitrate in heterotrophic bacteria. Wetland soils, in contrast to upland soils are generally anoxic and thus support the production of trace gases (H2, CO, CH4, N2O, and NO) by anaerobic bacteria such as fermenters, methanogens, acetogens, sulfate reducers, and denitrifiers. Methane is the dominant gaseous product of anaerobic degradation of organic matter and is released into the atmosphere, whereas the other trace gases are only intermediates, which are mostly cycled within the anoxic habitat. A significant percentage of the produced methane is oxidized by methanotrophic bacteria at anoxic-oxic interfaces such as the soil surface and the root surface of aquatic plants that serve as conduits for O2 transport into and CH4 transport out of the wetland soils. The dominant production processes in upland soils are different from those in wetland soils and include H2 production by biological N2 fixation, CO production by chemical decomposition of soil organic matter, and NO and N2O production by nitrification and denitrification. The processes responsible for CH4 production

  4. Global satellite analysis of the relation between aerosols and short-lived trace gases

    NASA Astrophysics Data System (ADS)

    Veefkind, J. P.; Boersma, K. F.; Wang, J.; Kurosu, T. P.; Krotkov, N.; Chance, K.; Levelt, P. F.

    2011-02-01

    The spatial and temporal correlations between concurrent satellite observations of aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and tropospheric columns of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) from the Ozone Monitoring Instrument (OMI) are used to infer information on the global composition of aerosol particles. When averaging the satellite data over large regions and longer time periods, we find significant correlation between MODIS AOT and OMI trace gas columns for various regions in the world. This shows that these enhanced aerosol and trace gas concentrations originate from common sources, such as fossil fuel combustion, biomass burning, and organic compounds released from the biosphere. This leads us to propose that satellite-inferred AOT to NO2 ratios for regions with comparable photochemical regimes can be used as indicators for the relative regional pollution control of combustion processes. Indeed, satellites observe low AOT to NO2 ratios over the eastern United States and western Europe, and high AOT to NO2 ratios over comparably industrialized regions in eastern Europe and China. Emission databases and OMI SO2 observations over these regions suggest a much stronger sulfur contribution to aerosol formation than over the well-regulated areas of the eastern United States and western Europe. Furthermore, satellite observations show AOT to NO2 ratios are a factor 100 higher over biomass burning regions than over industrialized areas, reflecting the unregulated burning practices with strong primary particle emissions in the tropics compared to the heavily controlled combustion processes in the industrialized Northern Hemisphere. Simulations with a global chemistry transport model (GEOS-Chem) capture most of these variations, although on regional scales significant differences are found. Wintertime aerosol concentrations show strongest correlations with NO2 throughout most of the

  5. Global analysis of the relation between aerosols and short-lived trace gases

    NASA Astrophysics Data System (ADS)

    Veefkind, J. P.; Boersma, K. F.; Wang, J.; Kurosu, T.; Krotkov, N.; Levelt, P. F.

    2010-08-01

    The spatial and temporal correlations between concurrent satellite observations of aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and tropospheric columns of nitrogen dioxide, sulfur dioxide, and formaldehyde from the Ozone Monitoring Instrument (OMI) are used to infer information on the global composition of aerosol particles. When averaging the satellite data over large regions and longer time periods, we find significant correlation between MODIS AOT and OMI trace gas columns for various regions in the world. This suggests that enhanced aerosol and trace gas concentrations originate from common sources, such as fossil fuel combustion, biomass burning, and organic compounds released from the biosphere. This leads us to propose that satellite-inferred AOT to NO2 ratios for regions with comparable photochemical regimes can be used as indicators for the relative (local) efficiency of combustion processes. Indeed, satellites observe low AOT to NO2 ratios over the eastern United States and western Europe, and high AOT to NO2 ratios over comparably industrialized regions in eastern Europe and China. Emission databases and OMI SO2 observations over these regions suggest a much stronger sulfur contribution to aerosol formation than over the well-regulated areas of the eastern United States and western Europe. Furthermore, satellite observations show AOT to NO2 ratios are a factor 100 higher over biomass burning regions than over industrialized areas, reflecting the unregulated burning practices with strong primary particle emissions in the tropics compared to the heavily controlled combustion processes in the industrialized Northern Hemisphere. Simulations with a global chemistry transport model (GEOS-Chem) capture most of these differences, providing some confidence in our understanding of aerosol sources, formation mechanisms, and sinks. Wintertime aerosol concentrations show strongest correlations with NO2 throughout

  6. Analysis of Trace Gases Response on the Anomalous Change in the QBO in 2015-2016

    NASA Astrophysics Data System (ADS)

    Tweedy, O.; Kramarova, N. A.; Strahan, S. E.; Newman, P. A.; Coy, L.; Nash, E.; Bhartia, P. K.; Thompson, A. M.; Witte, J. C.

    2016-12-01

    The quasi-biennial oscillation (QBO) is a quasi-periodic alternation between easterly and westerly zonal winds in the tropical stratosphere. The alternating wind regimes propagate downward from the middle stratosphere to the tropopause with a period that varies from 24 to 32 months ( 28 months on average). The QBO wind oscillations affect distribution of chemical constituents, such as ozone (O3), water vapor (H2O), nitrous oxide (N2O) and hydrochloric acid (HCl), due to QBO induced circulation changes. In the 2015-2016 winter, radiosonde observations revealed an anomaly in the downward propagation of the westerly phase, which was disrupted by the upward displacement of the westerly phase from 30 hPa up to 15 hPa, and the sudden appearance of easterlies at 40 hPa. Such a disruption has never been observed in the equatorial wind observations since 1953. In this study we show the response of trace gases to this QBO disruption and quantify statistical significance of the observed changes using O3, H2O, N2O and HCl from satellite sensors (Aura MLS, Suomi NPP OMPS and SBUV) and H2O and O3 from tropical sondes. Preliminary analysis reveals a development of positive anomalies in stratospheric equatorial ozone and hydrochloric acid 40 - 20 hPa in April-July of 2016 as a response to the unusual QBO event. An important focus of the study is on the implications of these trace gas anomalies for the dynamics and chemistry of the stratosphere. In particular, we investigate effects caused by this disrupted QBO on the seasonal transport, residual circulation and evolution of the 2016 Antarctic ozone hole.

  7. Raman Spectra and Cross Sections of Ammonia, Chlorine, Hydrogen Sulfide, Phosgene, and Sulfur Dioxide Toxic Gases in the Fingerprint Region 400-1400 cm-1

    DTIC Science & Technology

    2015-12-14

    carbon dioxide (CO2) as the reference.7 II. EXPERIMENTAL Figure 1 shows a...nitrogen) was purchased from Cross Company. Carbon dioxide (103 L of 4.97 ppm balance air), chlorine (103 L of 4.60 ppm balance air), phosgene (103 L of...1 Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region

  8. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400 1400 cm 1

    DTIC Science & Technology

    2015-11-24

    carbon dioxide (CO2) as the reference.7 II. EXPERIMENTAL Figure 1 shows a...nitrogen) was purchased from Cross Company. Carbon dioxide (103 L of 4.97 ppm balance air), chlorine (103 L 3 of 4.60 ppm balance air), phosgene (103...1 Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region

  9. Seasonal and spatial changes in trace gases over megacities from Aura TES observations: two case studies

    NASA Astrophysics Data System (ADS)

    Cady-Pereira, Karen E.; Payne, Vivienne H.; Neu, Jessica L.; Bowman, Kevin W.; Miyazaki, Kazuyuki; Marais, Eloise A.; Kulawik, Susan; Tzompa-Sosa, Zitely A.; Hegarty, Jennifer D.

    2017-08-01

    The Aura Tropospheric Emission Spectrometer (TES) is collecting closely spaced observations over 19 megacities. The objective is to obtain measurements that will lead to better understanding of the processes affecting air quality in and around these cities, and to better estimates of the seasonal and interannual variability. We explore the TES measurements of ozone, ammonia, methanol and formic acid collected around the Mexico City metropolitan area (MCMA) and in the vicinity of Lagos (Nigeria). The TES data exhibit seasonal signals that are correlated with Atmospheric Infrared Sounder (AIRS) CO and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD), with in situ measurements in the MCMA and with Goddard Earth Observing System (GEOS)-Chem model output in the Lagos area. TES was able to detect an extreme pollution event in the MCMA on 9 April 2013, which is also evident in the in situ data. TES data also show that biomass burning has a greater impact south of the city than in the caldera where Mexico City is located. TES measured enhanced values of the four species over the Gulf of Guinea south of Lagos. Since it observes many cities from the same platform with the same instrument and applies the same retrieval algorithms, TES data provide a very useful tool for easily comparing air quality measures of two or more cities. We compare the data from the MCMA and Lagos, and show that, while the MCMA has occasional extreme pollution events, Lagos consistently has higher levels of these trace gases.

  10. Emission of methane and other trace gases from the Amazon Varzea

    NASA Technical Reports Server (NTRS)

    Richey, Jeffrey E.; Devol, Allan H.

    1986-01-01

    Researchers measured the distributions and fluxes of methane and other trace gases from the various Amazon floodplain environments. These were determined during both a large scale, quasi-synoptic survey along a 2000 km reach of the Amazon river and an intensive local study (by J. Melack, R. Harriss et al.) covering a six-week period. The environments studied included the major rivers, connecting channels (paranas), floating macrophyte beds, flooded forests, open lakes and recently wetted soils. The results are summarized. Measured rates of methane emission averaged about 300 mg m-2 d-1, but with considerable variance, and were comparable to or higher than previously reported emissions from similar temperature zone environments. In general, areas covered by floating macrophytes showed the highest emissions. Individual hotspots had among the highest rates ever observed, over 10 g m-2 d-1. The high methane emissions appear to result because about 50% of the organic matter fixed on the floodplain (either terrestrial or aquatic) that is oxidized in the water is decomposed anaerobically via methanogensis. Measured fluxes of methane to the atmosphere appear to be significantly correlated with surface water dissolved methane concentrations.

  11. Retrieval of vertical profiles of multiple trace gases from MAX-DOAS observations during the MADCAT Campaign in Mainz, Germany

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Xie, Pinhua; Wagner, Thomas; Li, Ang; Luo, Yuhan; Remmers, Julia; Horbanski, Martin; Friess, Udo

    2014-05-01

    In order to promote the development of passive DOAS technique and solve some critical problems including e.g. accurate retrievals of trace gas slant column densities (SCD), profile retrievals of trace gases and aerosol, and the effects of cloud, the Multi Axis DOAS-Comparison campaign for Aerosols and Trace gases (MAD-CAT) was held at the Max-Planck institute for Chemistry in Mainz, Germany from June to August 2013. Within this campaign, spectra of scattered sun light were taken by our two-dimensional scanning MAX-DOAS (2D-MAX-DOAS) instrument and a Mini-MAX-DOAS instrument from the Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences. In this presentation, firstly we show the retrieved differential SCDs of O4, NO2, HCHO, HONO and CHOCHO based on the observations of the 2D-MAX-DOAS. Based on these dSCDs we acquired the vertical profiles of these trace gases and aerosol extinction using optimal estimation method. We compare the aerosol optical depth (AOD) from MAX-DOAS with simultaneous observations from an AERONET instrument as well as the near surface volume mixing ratio (VMR) of NO2 from MAX-DOAS with those from a CE-DOAS instrument from the IUP Heidelberg group and found in general good agreement. In addition we apply a cloud classification scheme based on our MAX-DOAS observations to identify different kinds of weather during the MAD-CAT campaign.

  12. Applications of broadband cavity enhanced spectroscopy for measurements of trace gases and aerosols

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Brock, C. A.; Brown, S. S.; Dube, W. P.; Flores, J. M.; Langford, A. O.; Min, K. E.; Rudich, Y.; Stutz, J.; Wagner, N.; Young, C.; Zarzana, K. J.

    2015-12-01

    Broadband cavity enhanced spectroscopy (BBCES) uses a broadband light source, optical cavity, and multichannel detector to measure light extinction with high sensitivity. This method differs from cavity ringdown spectroscopy, because it uses an inexpensive, incoherent light source and allows optical extinction to be determined simultaneously across a broad wavelength region.Spectral fitting methods can be used to retrieve multiple absorbers across the observed wavelength region. We have successfully used this method to measure glyoxal (CHOCHO), nitrous acid (HONO), and nitrogen dioxide (NO2) from ground-based and aircraft-based sampling platforms. The detection limit (2-sigma) in 5 s for retrievals of CHOCHO, HONO and NO2 is 32, 250 and 80 parts per trillion (pptv).Alternatively, gas-phase absorbers can be chemically removed to allow the accurate determination of aerosol extinction. In the laboratory, we have used the aerosol extinction measurements to determine scattering and absorption as a function of wavelength. We have deployed a ground-based field instrument to measure aerosol extinction, with a detection limit of approximately 0.2 Mm-1 in 1 min.BBCES methods are most widely used in the near-ultraviolet and visible spectral region. Recently, we have demonstrated measurements at 315-350 nm for formaldehyde (CH2O) and NO2. Extending the technique further into the ultraviolet spectral region will allow important additional measurements of trace gas species and aerosol extinction.

  13. Cyclic process for the removal of sulfur dioxide and the recovery of sulfur from gases

    SciTech Connect

    Lo, C.L.

    1991-11-19

    This patent describes a process for the removal of sulfur dioxide from a gas containing sulfur dioxide. It comprises contacting a gas containing sulfur dioxide with an aqueous solution comprising water, ferric chloride and a salt selected from the group consisting of barium chloride and calcium chloride to form ferrous chloride, hydrochloric acid and a precipitate selected from the group consisting of barium sulfate and calcium sulfate; and treating the aqueous solution with an oxidizing agent to convert ferrous chloride to ferric chloride.

  14. In situ measurements and modeling of reactive trace gases in a small biomass burning plume

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Anderson, Bruce E.; Beyersdorf, Andreas J.; Crawford, James H.; Diskin, Glenn S.; Eichler, Philipp; Fried, Alan; Keutsch, Frank N.; Mikoviny, Tomas; Thornhill, Kenneth L.; Walega, James G.; Weinheimer, Andrew J.; Yang, Melissa; Yokelson, Robert J.; Wisthaler, Armin

    2016-03-01

    An instrumented NASA P-3B aircraft was used for airborne sampling of trace gases in a plume that had emanated from a small forest understory fire in Georgia, USA. The plume was sampled at its origin to derive emission factors and followed ˜ 13.6 km downwind to observe chemical changes during the first hour of atmospheric aging. The P-3B payload included a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), which measured non-methane organic gases (NMOGs) at unprecedented spatiotemporal resolution (10 m spatial/0.1 s temporal). Quantitative emission data are reported for CO2, CO, NO, NO2, HONO, NH3, and 16 NMOGs (formaldehyde, methanol, acetonitrile, propene, acetaldehyde, formic acid, acetone plus its isomer propanal, acetic acid plus its isomer glycolaldehyde, furan, isoprene plus isomeric pentadienes and cyclopentene, methyl vinyl ketone plus its isomers crotonaldehyde and methacrolein, methylglyoxal, hydroxy acetone plus its isomers methyl acetate and propionic acid, benzene, 2,3-butanedione, and 2-furfural) with molar emission ratios relative to CO larger than 1 ppbV ppmV-1. Formaldehyde, acetaldehyde, 2-furfural, and methanol dominated NMOG emissions. No NMOGs with more than 10 carbon atoms were observed at mixing ratios larger than 50 pptV ppmV-1 CO. Downwind plume chemistry was investigated using the observations and a 0-D photochemical box model simulation. The model was run on a nearly explicit chemical mechanism (MCM v3.3) and initialized with measured emission data. Ozone formation during the first hour of atmospheric aging was well captured by the model, with carbonyls (formaldehyde, acetaldehyde, 2,3-butanedione, methylglyoxal, 2-furfural) in addition to CO and CH4 being the main drivers of peroxy radical chemistry. The model also accurately reproduced the sequestration of NOx into peroxyacetyl nitrate (PAN) and the OH-initiated degradation of furan and 2-furfural at an average OH concentration of 7.45 ± 1.07 × 106 cm-3 in the

  15. In situ measurements and modeling of reactive trace gases in a small biomass burning plume

    NASA Astrophysics Data System (ADS)

    Müller, M.; Anderson, B.; Beyersdorf, A.; Crawford, J. H.; Diskin, G.; Eichler, P.; Fried, A.; Keutsch, F. N.; Mikoviny, T.; Thornhill, K. L.; Walega, J. G.; Weinheimer, A. J.; Yang, M.; Yokelson, R.; Wisthaler, A.

    2015-11-01

    An instrumented NASA P-3B aircraft was used for airborne sampling of trace gases in a plume that had emanated from a small forest understory fire in Georgia, USA. The plume was sampled at its origin for deriving emission factors and followed ~ 13.6 km downwind for observing chemical changes during the first hour of atmospheric aging. The P-3B payload included a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), which measured non-methane organic gases (NMOGs) at unprecedented spatio-temporal resolution (10 m/0.1 s). Quantitative emission data are reported for CO2, CO, NO, NO2, HONO, NH3 and 16 NMOGs (formaldehyde, methanol, acetonitrile, propene, acetaldehyde, formic acid, acetone plus its isomer propanal, acetic acid plus its isomer glycolaldehyde, furan, isoprene plus isomeric pentadienes and cyclopentene, methyl vinyl ketone plus its isomers crotonaldehyde and methacrolein, methylglyoxal, hydroxy acetone plus its isomers methyl acetate and propionic acid, benzene, 2,3-butandione and 2-furfural) with molar emission ratios relative to CO larger than 1 ppbV ppmV-1. Formaldehyde, acetaldehyde, 2-furfural and methanol dominated NMOG emissions. No NMOGs with more than 10 carbon atoms were observed at mixing ratios larger than 50 ppbV ppmV-1 CO emitted. Downwind plume chemistry was investigated using the observations and a 0-D photochemical box model simulation. The model was run on a near-explicit chemical mechanism (MCM v3.3) and initialized with measured emission data. Ozone formation during the first hour of atmospheric aging was well captured by the model, with carbonyls (formaldehyde, acetaldehyde, 2,3-butanedione, methylglyoxal, 2-furfural) in addition to CO and CH4 being the main drivers of peroxy radical chemistry. The model also accurately reproduced the sequestration of NOx into PAN and the OH-initiated degradation of furan and 2-furfural at an average OH concentration of 7.45 ± 1.07 × 106 cm-3 in the plume. Formaldehyde, acetone

  16. The study of ozonosphere trace gases near St.Petersburg on the basis of FTIR solar spectra measurements

    NASA Astrophysics Data System (ADS)

    Virolainen, Yana; Timofeyev, Yury; Poberovsky, Anatoly

    2013-04-01

    The ground-based method of the direct solar IR radiance measurements by FTIR spectrometer with high spectral resolution (~0.005 cm-1) has been considered. The spectra measured at St. Petersburg State University (59.88N, 29.82E) in 2009-2012 have been analyzed. The amounts of ozone isotopes and ozone-cycle trace gases have been retrieved with PROFFIT software. The obtained data have been analyzed independently and simultaneously and compared with other remote sensing methods data as well as with models. The correlations between temporal variations of different ozonosphere trace gases have been studied. It has been shown that ground-based high-resolution FTIR-spectrometer method can be used in validation of satellite data and in refinement of models' parameters. This work has been partly supported by grant of Russian Foundation for Basic Research 12-05-00596 and 12-05-00445.

  17. OH reactivity and potential SOA yields from volatile organic compounds and other trace gases measured in controlled laboratory biomass burns

    Treesearch

    J. B. Gilman; C. Warneke; W. C. Kuster; P. D. Goldan; P. R. Veres; J. M. Roberts; J. A. de Gouw; I. R. Burling; R. J. Yokelson

    2010-01-01

    A comprehensive suite of instruments were used to characterize volatile organic compounds (VOCs) and other trace gases (e.g., CO, CH4, NO2, etc.) emitted from controlled burns of various fuel types common to the Southeastern and Southwestern United States. These laboratory-based measurements were conducted in February 2009 at the U.S. Department of Agriculture’s Fire...

  18. Long-term MAX-DOAS measurement of aerosol and trace gases in the Environmental Research Station Schneefernerhaus, Germany

    NASA Astrophysics Data System (ADS)

    Wang, Zhuoru; Hao, Nan; Hendrick, François; Van Roozendael, Michel; Frieß, Udo; Holla, Robert; Doicu, Adrian; Trautmann, Thomas

    2017-04-01

    The Environmental Research Station Schneefernerhaus (Umwelt Forschungsstation Schneefernerhaus, UFS) is located immediately under the summit of Zugspitze (2962 m), the highest mountain of Germany, at a height of 2650 m. The UFS is a rare observation site in Germany with mostly clean and unpolluted air. It is ideal for both stratospheric composition measurements and trace gas measurements in the free-troposphere. It is optimal for detecting pollution events in the free-troposphere, which are indications of short- or long-range transport of air pollutants. A MAX-DOAS instrument has been working in the UFS since February 2011. With the zenith spectrum of each cycle used as the reference, the differential slant column densities (DSCDs) of trace gases are calculated from the spectra with Differential Optical Absorption Spectroscopy (DOAS) method. The DSCDs of both O4 and NO2 are calculated in two different wavelength intervals, 338-370 nm in the UV region and 440-490 nm in the VIS region. For HCHO and other trace gases, optimal fitting windows have been determined. The aerosol vertical profiles and AODs are derived from O4 DSCDs using both the bePRO retrieval algorithm and the HEIPRO retrieval algorithm. The two algorithms are both based on the optimal estimation technique. BePRO uses the LIDOR radiative transfer model as the forward model, while HEIPRO uses the SCIATRAN radiative transfer model. The vertical column densities (VCDs) as well as vertical profiles of trace gases are then derived from the DSCDs of trace gases and the aerosol profiles, also using both bePRO and HEIPRO. This work presents the results of the MAX-DOAS measurement in the UFS from 2012 to 2016, including aerosol, NO2, and HCHO, etc. The vertical profiles as well as the seasonal and diurnal variation patterns of tropospheric aerosol and trace gases will be shown. The cloud screening method based on the MAX-DOAS measurement in the UFS will also be discussed. In the end, high NO2 episodes in the UFS

  19. Luminescence studies of trace gases through metastable transfer in cold helium jets

    NASA Astrophysics Data System (ADS)

    Wilde, Scott Colton

    Among the elements, Helium has the largest steps among its internal energy structure that can keep for long periods of time, hence the metastable helium moniker. It is referred to as a "nano-grenade" in some circles because of how much energy it can deliver to a space roughly the size of an atom. This work demonstrates a method to create metastable helium abundantly and it is used to excite trace amounts of oxygen to the point where the signal received from the oxygen was larger than the signal received from the helium in a cold atomized jet. Further cooling of the jet and turbulence added by a liquid helium surface worked to increase the oxygen signal and decrease the helium signal. This work investigates the possibility of forming a strong metastable helium source from a flowing helium gas jet excited by passing through ring electrodes introduced into a cryogenic environment using evaporated helium as a buffer gas. Prior study of luminescence from trace gases at cold helium temperatures is virtually absent and so it is the motivation for this work to blaze the trail in this subject. The absence of ionic oxygen spectral lines from the transfer of energy that was well over the first ionization potential of oxygen made for a deeper understanding of collision dynamics with multiple collision partners. This opened the possibility of using the high energy states of oxygen after metastable transfer as a lasing transition previously unavailable and a preliminary analysis suggested that the threshold for lasing action should be easily overcome if feedback were introduced by an optical cavity. To better understand the thermodynamics of the jet it was proposed to use diatomic nitrogen as an in situ thermometer, investigating whether the rotational degrees of freedom of the nitrogen molecule were in thermal equilibrium with the surrounding environment. If the gas was truly in thermodynamic equilibrium then the temperature given by the method of using collisions of a buffer

  20. Comparison of MAX-DOAS profiling algorithms during CINDI-2 - Part 2: trace gases

    NASA Astrophysics Data System (ADS)

    Hendrick, Francois; Friess, Udo; Tirpitz, Lukas; Apituley, Arnoud; Van Roozendael, Michel; Kreher, Karin; Richter, Andreas; Wagner, Thomas

    2017-04-01

    The second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) took place at the Cabauw Experimental Site for Atmospheric Research (CESAR; Utrecht area, The Netherlands) from 25 August until 7 October 2016. CINDI-2 was aiming at assessing the consistency of MAX-DOAS slant column density measurements of tropospheric species (NO2, HCHO, O3, and O4) relevant for the validation of future ESA atmospheric Sentinel missions, through coordinated operation of a large number of DOAS and MAXDOAS instruments from all over the world. An important objective of the campaign was to study the relationship between remote-sensing column and profile measurements of the above species and collocated reference ancillary observations. For this purpose, the CINDI-2 Profiling Task Team (CPTT) was created, involving 22 groups performing aerosol and trace gas vertical profile inversion using dedicated MAX-DOAS profiling algorithms, as well as the teams responsible for ancillary profile and surface concentration measurements (NO2 analysers, NO2 sondes, NO2 and Raman LIDARs, CAPS, Long-Path DOAS, sunphotometer, nephelometer, etc). The main purpose of the CPTT is to assess the consistency of the different profiling tools for retrieving aerosol extinction and trace gas vertical profiles through comparison exercises using commonly defined settings and to validate the retrievals with correlative observations. In this presentation, we give an overview of the MAX-DOAS vertical profile comparison results, focusing on NO2 and HCHO, the aerosol retrievals being presented in a companion abstract led by U. Frieß. The performance of the different algorithms is investigated with respect to the various sky and weather conditions and aerosol loadings encountered during the campaign. The consistency between optimal-estimation-based and parameterized profiling tools is also evaluated for these different conditions, together with the level of agreement with available NO2 and

  1. Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria

    PubMed Central

    Lynch, Ryan C.; Darcy, John L.; Kane, Nolan C.; Nemergut, Diana R.; Schmidt, Steve K.

    2014-01-01

    Previous surveys of very dry Atacama Desert mineral soils have consistently revealed sparse communities of non-photosynthetic microbes. The functional nature of these microorganisms remains debatable given the harshness of the environment and low levels of biomass and diversity. The aim of this study was to gain an understanding of the phylogenetic community structure and metabolic potential of a low-diversity mineral soil metagenome that was collected from a high-elevation Atacama Desert volcano debris field. We pooled DNA extractions from over 15 g of volcanic material, and using whole genome shotgun sequencing, observed only 75–78 total 16S rRNA gene OTUs3%. The phylogenetic structure of this community is significantly under dispersed, with actinobacterial lineages making up 97.9–98.6% of the 16S rRNA genes, suggesting a high degree of environmental selection. Due to this low diversity and uneven community composition, we assembled and analyzed the metabolic pathways of the most abundant genome, a Pseudonocardia sp. (56–72% of total 16S genes). Our assembly and binning efforts yielded almost 4.9 Mb of Pseudonocardia sp. contigs, which accounts for an estimated 99.3% of its non-repetitive genomic content. This genome contains a limited array of carbohydrate catabolic pathways, but encodes for CO2 fixation via the Calvin cycle. The genome also encodes complete pathways for the catabolism of various trace gases (H2, CO and several organic C1 compounds) and the assimilation of ammonia and nitrate. We compared genomic content among related Pseudonocardia spp. and estimated rates of non-synonymous and synonymous nucleic acid substitutions between protein coding homologs. Collectively, these comparative analyses suggest that the community structure and various functional genes have undergone strong selection in the nutrient poor desert mineral soils and high-elevation atmospheric conditions. PMID:25566214

  2. Interannual variability of tropospheric trace gases and aerosols: The role of biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Voulgarakis, Apostolos; Marlier, Miriam E.; Faluvegi, Greg; Shindell, Drew T.; Tsigaridis, Kostas; Mangeon, Stéphane

    2015-07-01

    Fires are responsible for a range of gaseous and aerosol emissions. However, their influence on the interannual variability of atmospheric trace gases and aerosols has not been systematically investigated from a global perspective. We examine biomass burning emissions as a driver of interannual variability of large-scale abundances of short-lived constituents such as carbon monoxide (CO), hydroxyl radicals (OH), ozone, and aerosols using the Goddard Institute for Space Studies ModelE composition-climate model and a range of observations, with an emphasis on satellite information. Our model captures the observed variability of the constituents examined in most cases, but with substantial underestimates in boreal regions. The strongest interannual variability on a global scale is found for carbon monoxide (~10% for its global annual burden), while the lowest is found for tropospheric ozone (~1% for its global annual burden). Regionally, aerosol optical depth shows the largest variability which exceeds 50%. Areas of strong variability of both aerosols and CO include the tropical land regions (especially Equatorial Asia and South America) and northern high latitudes, while even regions in the northern midlatitudes experience substantial interannual variability of aerosols. Ozone variability peaks over equatorial Asia in boreal autumn, partly due to varying biomass burning emissions, and over the western and central Pacific in the rest of the year, mainly due to meteorological fluctuations. We find that biomass burning emissions are almost entirely responsible for global CO interannual variability, and similarly important for OH variability. The same is true for global and regional aerosol variability, especially when not taking into account dust and sea-salt particles. We show that important implications can arise from such interannual influences for regional climate and air quality.

  3. Transport and physico-chemical impact of trace gases and aerosols over Indian Ocean

    NASA Astrophysics Data System (ADS)

    Baray, Jean-Luc; Duflot, Valentin; Posny, Françoise; De Maziere, Martine; Courcoux, Yann; Metzger, Jean-Marc; Gabarrot, Franck; Chazette, Patrick; Bègue, Nelson; Liousse, Cathy; Cammas, Jean-Pierre

    2013-04-01

    Observations of ozone are performed with lidar and ozonesondes at Reunion Island University (21°S,55°E) since the 90s. These observations display the annual cycle of free tropospheric ozone, in relation with the seasonnality of austral biomass burning and stratosphere-troposphere exchange (Clain et al., 2010). In order to further characterize the transport and physico-chemical impact of trace gases and aerosols over Indian Ocean, we analyse : - African biomass burning emission GFED2 and GDRIBB inventories in 2009-2010. - carbon monoxide partial columns obtained with FTIR at Reunion Island in 2007. - aerosol measurements with lidar and photometer on board the Marion Dufresne vessel in Indian ocean in 2009. ozonesonde measurements at Kerguelen Island (49°S,70°E) from 2008 to 2009. These observations are analysed using FLEXPART dispersion model calculations and allow : - to establish differences in African biomass burning emission GFED2 and GDRIBB inventories. - to evidence an case of inter-hemispheric transport from south east Asia in the upper troposphere in July 2007. - to determinate the composition, expansion and origin of a biomass burning aerosol plume in september 2009 - to highlight the variations of the ozone baseline in the free troposphere at Kerguelen, in link with biomass burning in South Africa and America. Since 2012, a new altitude station is open at the Maïdo Mount and hosts remote sensing (lidar, spectrometers) and in situ measurements. The Maïdo observatory will allow to enhance southern hemispheric atmospheric observations in the framework of NDACC and AERONET. It is open to transnational access through the participation to the European project ACTRIS.

  4. Interactions between inorganic trace gases and supermicrometer particles at a coastal site

    NASA Astrophysics Data System (ADS)

    Kerminen, Veli-Matti; Pakkanen, Tuomo A.; Hillamo, Risto E.

    Interactions between inorganic trace gases and supermicrometer aerosol particles were studied at a coastal site of Finland. The measurements revealed two supermicron mass modes for both nitrate and non-sea-salt sulfate. The lower-size modes were likely formed when sulfate and nitrate, or their precursor vapors, reacted with sea-salt particles. The upper-size modes were primarily due to accumulation of sulfate and nitrate into particles of continental origin. Chloride displayed only one supermicron mode centered at somewhat larger size than the sea-salt particle mode due to the more efficient evaporation of hydrochloric acid from smaller sea-salt particles. The average chloride losses were calculated to vary from over 95% for 1 μm particles to about 30% for particles greater than 10 μm in diameter. Supermicrometer particles were a net source o f gaseous hydrochloric acid at our site, even though some indications of the reactions between HCl(g) and continental particles could be identified. The estimated chloride loss from sea-salt particles was balanced quite accurately by the additional sulfate and nitrate formed on these particles. It was hypothesized that sea-salt particles collected mostly sulfate in marine air masses, with nitrate collection becoming more important as the particles interact with polluted air. The dry deposition of supermicron particulate nitrate accounted for a significant fraction of total nitrate flux (NO 3- + HNO 3(g)) into the ground, and dominated the overall particulate nitrate flux. Both sea-salt and continental particles were important contributors to this flux. The role of supermicron particles in overall nitrogen and sulfur budgets was of less importance when one considers the relatively large deposition fluxes of NO 2 and SO 2 at the site.

  5. Response of trace gases to the disrupted 2015-2016 quasi-biennial oscillation

    NASA Astrophysics Data System (ADS)

    Tweedy, Olga V.; Kramarova, Natalya A.; Strahan, Susan E.; Newman, Paul A.; Coy, Lawrence; Randel, William J.; Park, Mijeong; Waugh, Darryn W.; Frith, Stacey M.

    2017-06-01

    The quasi-biennial oscillation (QBO) is a quasiperiodic alternation between easterly and westerly zonal winds in the tropical stratosphere, propagating downward from the middle stratosphere to the tropopause with a period that varies from 24 to 32 months ( ˜ 28 months on average). The QBO wind oscillations affect the distribution of chemical constituents, such as ozone (O3), water vapor (H2O), nitrous oxide (N2O), and hydrochloric acid (HCl), through the QBO-induced meridional circulation. In the 2015-2016 winter, radiosonde observations revealed an anomaly in the downward propagation of the westerly phase, which was disrupted by the upward displacement of the westerly phase from ˜ 30 hPa up to 15 hPa and the sudden appearance of easterlies at 40 hPa. Such a disruption is unprecedented in the observational record from 1953 to the present. In this study we show the response of trace gases to this QBO disruption using O3, HCl, H2O, and temperature from the Aura Microwave Limb Sounder (MLS) and total ozone measurements from the Solar Backscatter Ultraviolet (SBUV) Merged Ozone Data Set (MOD). Results reveal the development of positive anomalies in stratospheric equatorial O3 and HCl over ˜ 50-30 hPa in May-September of 2016 and a substantial decrease in O3 in the subtropics of both hemispheres. The SBUV observations show near-record low levels of column ozone in the subtropics in 2016, resulting in an increase in the surface UV index during northern summer. Furthermore, cold temperature anomalies near the tropical tropopause result in a global decrease in stratospheric water vapor.

  6. Emissions of trace gases and aerosol particles due to vegetation burning in southern hemisphere Africa

    NASA Astrophysics Data System (ADS)

    Scholes, R. J.; Ward, D. E.; Justice, C. O.

    1996-10-01

    The emissions of trace gases and particles resulting from extensive vegetation fires in southern and central Africa are estimated from the amount of fuel consumed and emission factors determined during the Southern Africa Fire-Atmosphere Research Initiative (SAFARI-92) field campaign. The fuel consumption estimates are from the modeling approach of Scholes et al. [this issue]. The emission factors are a function of the "combustion efficiency," a measure of the oxygenation state of the fire. Combustion efficiency is in turn related to the types of fuel consumed. Most of the burning in southern Africa takes place in savannas during the dry season. The main fuel is dry grass, which burns with high efficiency and produces relatively low emissions of methane, carbon monoxide, and aerosols per unit mass of fuel consumed. The combination of the reduced estimates of amount of biomass burned and the low emission factors results in subcontinental emission estimates for CH4, CO, NOx, and aerosols which are substantially lower than previous estimates. The estimates for the nominal year 1989 are 14.9 Tg CO, 0.500 Tg CH4, 1.06 Tg NOx, and 1.08 Tg particles (<2.5 μm). Approximately 324 Tg CO2 is released by vegetation fires and, in the absence of evidence to the contrary, is assumed to be reabsorbed by subsequent regrowth. The pyrogenic emissions are concentrated in the area between 5° and 20°S and in the months between June and October, with a peak in August.

  7. Surface fluxes of trace gases derived from convective-layer profiles

    SciTech Connect

    Davis, K.J.

    1992-01-01

    Non-local gradient and variance functions relating the surface and entrainment fluxes of a passive scalar to the mean mixing ratio and variance profiles in the cloud-free, convective boundary layer have been determined from large eddy simulations. These functions can be used to calculate the surface and entrainment fluxes of trace gases over a large area, given profile measurements within the convective boundary layer. This dissertation develops the convective layer gradient technique for estimating fluxes and demonstrates two potentially valuable applications. An attempt is made to verify the large eddy simulation gradient functions with aircraft observations from the First ISLSCP Field Experiment and the San Joaquin Valley Air Quality Study. Results show general agreement with the simulated gradient functions but precise comparison is made difficult by scatter in the aircraft derived functions. The gradient functions are used to estimate forest emissions of nonmethane hydrocarbons using tethered balloon profiles. Mean emission estimates from profiles collected during the Amazon Boundary Layer Experiment 2A and the Rural Oxidants in the Southern Environment I experiment show good agreement with estimates made from budget arguments. Daytime isoprene emissions from the dry season Amazon are estimated. Summer, daytime isoprene, alpha-pinene, and beta-pinene emissions from an Alabama pine-oak forest are estimated. This technique provides a valuable means of measuring biogenic hydrocarbon emissions, a precursor to photochemical ozone production. The convective layer gradient technique holds the potential for remote estimation of surface fluxes over large areas using remote profiling technology, such as Differential Absorption Lidar (DIAL). The minimum signal-to-noise ratio for successful ozone deposition estimates using this DIAL system and the convective layer gradient technique was less than the signal-to-noise level in the analyzed DIAL observations.

  8. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Cox, R. A.; Kalberer, M.

    2014-09-01

    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions; however, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. Here we compile and evaluate, for the first time, the diffusivities (pressure-independent diffusion coefficients) of atmospheric inorganic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed. A different version of this compilation/evaluation, which will be updated when new data become available, is uploaded online (https://sites.google.com/site/mingjintang/home/diffusion).

  9. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture

    PubMed Central

    Shekhah, Osama; Belmabkhout, Youssef; Chen, Zhijie; Guillerm, Vincent; Cairns, Amy; Adil, Karim; Eddaoudi, Mohamed

    2014-01-01

    Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 44 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. PMID:24964404

  10. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture

    NASA Astrophysics Data System (ADS)

    Shekhah, Osama; Belmabkhout, Youssef; Chen, Zhijie; Guillerm, Vincent; Cairns, Amy; Adil, Karim; Eddaoudi, Mohamed

    2014-06-01

    Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 44 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials.

  11. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture.

    PubMed

    Shekhah, Osama; Belmabkhout, Youssef; Chen, Zhijie; Guillerm, Vincent; Cairns, Amy; Adil, Karim; Eddaoudi, Mohamed

    2014-06-25

    Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4(4) square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials.

  12. Pressure pumping of carbon dioxide from soil

    Treesearch

    E. S. Takle; J. R. Brandle; R. A. Schmidt; R. Garcia; I. V. Litvina; G. Doyle; X. Zhou; Q. Hou; C. W. Rice; W. J. Massman

    2000-01-01

    Recent interest in atmospheric increases in carbon dioxide have heightened the need for improved accuracy in measurements of fluxes of carbon dioxide from soils. Diffusional movement has long been considered the dominant process by which trace gases move from the subsurface source to the surface, although there has been some indication that atmospheric pressure...

  13. Resistively-Heated Microlith-based Adsorber for Carbon Dioxide and Trace Contaminant Removal

    NASA Technical Reports Server (NTRS)

    Roychoudhury, S.; Walsh, D.; Perry, J.

    2005-01-01

    An integrated sorber-based Trace Contaminant Control System (TCCS) and Carbon Dioxide Removal Assembly (CDRA) prototype was designed, fabricated and tested. It corresponds to a 7-person load. Performance over several adsorption/regeneration cycles was examined. Vacuum regenerations at effective time/temperature conditions, and estimated power requirements were experimentally verified for the combined CO2/trace contaminant removal prototype. The current paper details the design and performance of this prototype during initial testing at CO2 and trace contaminant concentrations in the existing CDRA, downstream of the drier. Additional long-term performance characterization is planned at NASA. Potential system design options permitting associated weight, volume savings and logistic benefits, especially as relevant for long-duration space flight, are reviewed. The technology consisted of a sorption bed with sorbent- coated metal meshes, trademarked and patented as Microlith by Precision Combustion, Inc. (PCI). By contrast the current CO2 removal system on the International Space Station employs pellet beds. Preliminary bench scale performance data (without direct resistive heating) for simultaneous CO2 and trace contaminant removal was reviewed in SAE 2004-01-2442. In the prototype, the meshes were directly electrically heated for rapid response and accurate temperature control. This allowed regeneration via resistive heating with the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. A novel flow arrangement, for removing both CO2 and trace contaminants within the same bed, was demonstrated. Thus, the need for a separate trace contaminant unit was eliminated resulting in an opportunity for significant weight savings. Unlike the current disposable charcoal bed, zeolites for trace contaminant removal are amenable to periodic regeneration.

  14. Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide.

    PubMed

    Huangfu, Xiaoliu; Ma, Chengxue; Ma, Jun; He, Qiang; Yang, Chun; Jiang, Jin; Wang, Yaan; Wu, Zhengsong

    2017-02-01

    Thallium (Tl) is an element of high toxicity and significant accumulation in human body. There is an urgent need for the development of appropriate strategies for trace Tl removal in drinking water treatment plants. In this study, the efficiency and mechanism of trace Tl (0.5 μg/L) removal by conventional coagulation enhanced by nanosized manganese dioxide (nMnO2) were explored in simulated water and two representative surface waters (a river water and a reservoir water obtained from Northeast China). Experimental results showed that nMnO2 significantly improve Tl(I) removal from selected waters. The removal efficiency was dramatically higher in the simulated water, demonstrating by less than 0.1 μg/L Tl residual. The enhancement of trace Tl removal in the surface waters decreased to a certain extent. Both adjusting water pH to alkaline condition and preoxidation of Tl(I) to Tl(III) benefit trace Tl removal from surface waters. Data also indicated that competitive cation of Ca(2+) decreased the efficiency of trace Tl removal, resulting from the reduction of Tl adsorption on nMnO2. Humic acid could largely low Tl removal efficiency during nMnO2 enhanced coagulation processes. Trace elemental Tl firstly adsorbed on nMnO2 and then removed accompanying with nMnO2 settling. The information obtained in the present study may provide a potential strategy for drinking water treatment plants threatened by trace Tl.

  15. Solubility selective membrane materials for carbon dioxide removal from mixtures with light gases

    NASA Astrophysics Data System (ADS)

    Lin, Haiqing

    Membrane technology has attracted interest for the selective removal of carbon dioxide from mixtures with light gases such as H2, CH4 and N2. While conventional structure-property correlations have focused mainly on improving the separation performance by increasing polymer size sieving ability (i.e., diffusivity selectivity), this project explores the possibility of harnessing favorable interactions between CO 2 and polymers containing polar groups to improve permeability/selectivity properties. Ether oxide groups are discovered to be among the best moieties known to interact with CO2, leading to high CO2 solubility and CO2/light gas solubility selectivity, while still providing polymer chain flexibility, leading to high CO2 diffusivity and favorable CO2/H2 diffusivity selectivity. Poly(ethylene oxide) (PEO) has a high concentration of ether oxygen groups and exhibits high CO2/light gas selectivities. However, gas permeability is low due to the high crystallinity in PEO. Crosslinking and introduction of short chain branching are efficient methods to inhibit crystallization. Three series of crosslinked poly(ethylene oxide) rubbers have been prepared using prepolymer solutions containing: (1) poly(ethylene glycol) diacrylate (PEGDA) and H2O, (2) PEGDA and poly(ethylene glycol) methyl ether acrylate (PEGMEA), and (3) PEGDA and poly(ethylene glycol) acrylate (PEGA). Independent of the prepolymer composition, all of these polymers have similar ethylene oxide (EO) content (approximately 82 wt.%). Crosslink density decreases with decreasing PEGDA content in the prepolymer solution, which is estimated from water swelling experiments and/or dynamic mechanical testing and has essentially no effect on gas transport properties. Increasing PEGMEA content increases the average size of free volume elements, resulting in a decreased glass transition temperature, and increased CO 2 permeability and CO2/H2 selectivity. In contrast, the presence of PEGA or water has a negligible

  16. Development of an Amine-based System for Combined Carbon Dioxide, Humidity, and Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Reiss, Julie; Filburn, Tom; Seery, Thomas; Smith, Fred; Perry, Jay

    2005-01-01

    A number of amine-based carbon dioxide (CO2) removal systems have been developed for atmosphere revitalization in closed loop life support systems. Most recently, Hamilton Sundstrand developed an amine-based sorbent, designated SA9T, possessing approximately 2-fold greater capacity compared to previous formulations. This new formulation has demonstrated applicability for controlling CO2 levels within vehicles and habitats as well as during extravehicular activity (EVA). System volume is competitive with existing technologies. Further enhancements in system performance can be realized by incorporating humidity and trace contaminant control functions within an amine-based atmosphere revitalization system. A 3-year effort to develop prototype hardware capable of removing CO2, H2O, and trace contaminants from a cabin atmosphere has been initiated. Progress pertaining to defining system requirements and identifying alternative amine formulations and substrates is presented.

  17. Adsorption of sulfur dioxide from coal combustion gases on natural zeolite

    SciTech Connect

    Demirbas, A.

    2006-10-15

    In this study, better efficiency of SO{sub 2} removal in flue gas from lignite coal combustion by adding of NZ in the gas phase was achieved. Natural zeolite was exposed to flue gas containing sulfur dioxide at varying conditions of relative humidity and temperature. It was found that the amount of sulfate on the zeolite increased with increasing relative humidity and temperature. The percents of adsorbed sulfur dioxide were 86, 74, 56, and 35, while the values of relative humidity (RH) were 75, 60, 45, and 30% for 40 minutes, respectively. The percents of adsorbed sulfur dioxide sharply increased within the first 40 min for the values of RH were 75 and 60, and after 40 min, slightly increased, then reached a plateau. In general, as increasing the RH increased the amount of sulfur dioxide adsorbed by natural zeolite. The amounts of adsorbed sulfur dioxide increased with exposure time. It increased and reached 30.2 mg/g for 40 min. After 40 min, it slightly increased and then reached a plateau. The NZ adsorbs 35.1 mg SO{sub 2} per gram adsorbent with 75% RH at 298 K from a simulated coal combustion flue gas. The amounts of adsorbed sulfur dioxide increased with increasing temperature. The NZ adsorbs 71.5 mg SO{sub 2} per gram adsorbent with 75% RH for 100 min exposure time from the flue gas mixture.

  18. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania, 41° S

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Keywood, M. D.; Galbally, I. E.; Gras, J. L.; Cainey, J. M.; Cope, M. E.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Bentley, S. T.; Meyer, C. P.; Ristovski, Z.; Goldstein, A. H.

    2015-07-01

    with a large CO enhancement, an increase of the NMOC / CO emission ratio (ER) by a factor of 2-4 and a halving of the BC / CO ratio. Rainfall on Robbins Island was observed by radar during this period which likely resulted in a lower fire combustion efficiency, and higher emission of compounds associated with smouldering. This highlights the importance of relatively minor meterological events on BB emissions. Emission factors (EF) were derived for a range of trace gases, some never before reported for Australian conditions, (including hydrogen, phenol and toluene) using a calculated ER to CO and a published CO EF. The EF derived for most species are comparable to other temperate Australian studies but lower than Northern Hemisphere temperate studies. This work demonstrates the substantial impact that BB plumes have on the composition of marine air, and the significant changes that can occur as the plume is diluted and interacts with other emission sources. We also provide new trace gas and particle EF for temperate southern Australia.

  19. Distribution of trace gases and aerosols in the Siberian air shed during wildfires of summer 2012

    NASA Astrophysics Data System (ADS)

    Belan, Boris D.; Paris, Jean-Daiel; Nedelec, Philippe; Antokhin, Pavel N.; Arshinova, Victoriya; Arshinov, Mikhail Yu.; Belan, Sergey B.; Davydov, Denis K.; Ivlev, Georgii A.; Fofonov, Alexandre V.; Kozlov, Artem V.; Rasskazchikova, Tatyana M.; Savkin, Denis E.; Simonenkov, Denis V.; Sklyadneva, Tatyana K.; Tolmachev, Gennadii N.

    2017-04-01

    During the last two decades, three strong biomass burning events have been observed in Russia: two of them in 2002 and 2010 in the European part of Russia, and another one in 2012 in West and East Siberia. In this paper we present results of the extensive airborne study of the vertical distribution of trace gases and aerosols carried out during strong wildfire event happened in summer 2012 in Siberia. For this purpose, the Optik TU-134 aircraft laboratory was used as a research platform. A large-scale airborne campaign has been undertaken along the route Novosibirsk-Mirny-Yakutsk-Bratsk-Novosibirsk on 31st of July and 1st of August, 2012. Flight pattern consisted of a number of ascents and descents between close to the ground and 8 km altitude that enabled 20 vertical profiles to be obtained. Campaign was conducted under the weather conditions of low-gradient baric field that determined the low speed transport of air masses, as well as the accumulation of biomass burning emissions in the region under study. Highest concentrations of CO2, CH4 and CO over wildfire spots reached 432 ppm, 2367 ppb, and 4036 ppb, correspondingly. If we exclude from the analysis the data obtained when crossing smoke plumes, we can find a difference between background concentrations measured in the atmosphere over regions affected by biomass burning and clean areas. Enhancement of CO2 over the wildfire areas changed with altitude. On average, it was 10.5 ppm in the atmospheric boundary layer (ABL) and 5-6 ppm in the free troposphere. Maximum CO2 enhancements reached 27 ppm and 24 ppm, correspondingly. The averaged CH4 enhancement varied from 75 ppb in the boundary layer to 30 ppb in the upper troposphere, and a little bit lower than 30 ppb in the middle troposphere. Maximum CH4 enhancements reached 202 ppb, 108 ppb, and 50-60 ppb, correspondingly. The averaged and maximum enhancements of CO differed by an order of magnitude. Thus, in the ABL the maximum difference in concentration between

  20. Climate relevant trace gases (N2O and CH4) in the Eurasian Basin (Arctic Ocean)

    NASA Astrophysics Data System (ADS)

    Verdugo, Josefa; Damm, Ellen; Snoeijs, Pauline; Díez, Beatriz; Farías, Laura

    2016-11-01

    The concentration of greenhouse gases, including nitrous oxide (N2O), methane (CH4), and compounds such as total dimethylsulfoniopropionate (DMSPt), along with other oceanographic variables were measured in the ice-covered Arctic Ocean within the Eurasian Basin (EAB). The EAB is affected by the perennial ice-pack and has seasonal microalgal blooms, which in turn may stimulate microbes involved in trace gas cycling. Data collection was carried out on board the LOMROG III cruise during the boreal summer of 2012. Water samples were collected from the surface to the bottom layer (reaching 4300 m depth) along a South-North transect (SNT), from 82.19°N, 8.75°E to 89.26°N, 58.84°W, crossing the EAB through the Nansen and Amundsen Basins. The Polar Mixed Layer and halocline waters along the SNT showed a heterogeneous distribution of N2O, CH4 and DMSPt, fluctuating between 42-111 and 27-649% saturation for N2O and CH4, respectively; and from 3.5 to 58.9 nmol L-1 for DMSPt. Spatial patterns revealed that while CH4 and DMSPt peaked in the Nansen Basin, N2O was higher in the Amundsen Basin. In the Atlantic Intermediate Water and Arctic Deep Water N2O and CH4 distributions were also heterogeneous with saturations between 52% and 106% and 28% and 340%, respectively. Remarkably, the Amundsen Basin contained less CH4 than the Nansen Basin and while both basins were mostly under-saturated in N2O. We propose that part of the CH4 and N2O may be microbiologically consumed via methanotrophy, denitrification, or even diazotrophy, as intermediate and deep waters move throughout EAB associated with the overturning water mass circulation. This study contributes to baseline information on gas distribution in a region that is increasingly subject to rapid environmental changes, and that has an important role on global ocean circulation and climate regulation.

  1. Shear lines facilitate transport of reactive trace gases from East Asia into the deep tropics.

    NASA Astrophysics Data System (ADS)

    Donets, V.; Atlas, E. L.; Pan, L.; Schauffler, S.; Honomichl, S.; Hornbrook, R. S.; Apel, E. C.; Weinheimer, A. J.; Campos, T. L.; Hall, S. R.; Ullmann, K.; Navarro, M. A.

    2016-12-01

    Rapid industrialization and economic development in Eastern Asia (EA) has in recent decades led to increases in anthropogenic pollutants in the regional atmosphere. This pollutant burden is transported from local and regional sources into the global atmosphere and has been shown to be a significant source of intercontinental and cross-border anthropogenic pollution. This presentation focuses on one significant mechanism of such pollutant transport from EA into the deep tropics. Meteorology of the EA is dominated by the monsoonal low-level wind reversal, which in its winter phase facilitates episodic incursions of cold air masses from Siberia into the Philippine and South China Seas and to the Western Pacific (WP). In that phase cold surface temperatures give rise to stable low-level inversions, resulting in the capping of the boundary layer. In this flow regime wet deposition is almost completely absent, allowing regional pollution to build-up in the lower troposphere. As the cold air surges are carried eastward across EA and into the WP, sweeping off low-level pollution in the process, they also advance equatorward. As the cold air advances southward, heating from the ocean surface reduces the thermal gradient across the frontal boundary, and by the time that air reaches tropical latitudes all that remains of the front is a wind shift referred to as the shear line. North of the shear line, an air mass still contains the diluted pollutants picked up over the source regions in EA. Here we present measurements of chemically reactive trace gases collected during the CONTRAST mission, an airborne research study conducted during January-February, 2014, over the tropical WP Ocean. This presentation describes shear line facilitated transport of pollution into the tropics during boreal winter and its effects on chemical composition of the troposphere in the deep tropics. This is the first analysis that links the phenomenon of shear lines to pollution transport out of EA

  2. Black carbon and trace gases over South Asia: Measurements and Regional Climate model simulations

    NASA Astrophysics Data System (ADS)

    Bhuyan, Pradip; Pathak, Binita; Parottil, Ajay

    2016-07-01

    Trace gases and aerosols are simulated with 50 km spatial resolution over South Asian CORDEX domain enclosing the Indian sub-continent and North-East India for the year 2012 using two regional climate models RegCM4 coupled with CLM4.5 and WRF-Chem 3.5. Both models are found to capture the seasonality in the simulated O3 and its precursors, NOx and CO and black carbon concentrations together with the meteorological variables over the Indian Subcontinent as well as over the sub-Himalayan North-Eastern region of India including Bangladesh. The model simulations are compared with the measurements made at Dibrugarh (27.3°N, 94.6°E, 111 m amsl). Both the models are found to capture the observed diurnal and seasonal variations in O3 concentrations with maximum in spring and minimum in monsoon, the correlation being better for WRF-Chem (R~0.77) than RegCM (R~0.54). Simulated NOx and CO is underestimated in all the seasons by both the models, the performance being better in the case of WRF-Chem. The observed difference may be contributed by the bias in the estimation of the O3 precursors NOx and CO in the emission inventories or the error in the simulation of the meteorological variables which influences O3 concentration in both the models. For example, in the pre-monsoon and winter season, the WRF-Chem model simulated shortwave flux overestimates the observation by ~500 Wm-2 while in the monsoon and post monsoon season, simulated shortwave flux is equivalent to the observation. The model predicts higher wind speed in all the seasons especially during night-time. In the post-monsoon and winter season, the simulated wind pattern is reverse to observation with daytime low and night-time high values. Rainfall is overestimated in all the seasons. RegCM-CLM4.5 is found to underestimate rainfall and other meteorological parameters. The WRF-Chem model closely captured the observed values of black carbon mass concentrations during pre-monsoon and summer monsoon seasons, but

  3. The airborne mass spectrometer AIMS - Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS

    NASA Astrophysics Data System (ADS)

    Jurkat, Tina; Kaufmann, Stefan; Voigt, Christiane; Schäuble, Dominik; Jeßberger, Philipp; Ziereis, Helmut

    2016-04-01

    Understanding the role of climate-sensitive trace gas variabilities in the upper troposphere and lower stratosphere region (UTLS) and their impact on its radiative budget requires accurate measurements. The composition of the UTLS is governed by transport and chemistry of stratospheric and tropospheric constituents, such as chlorine, nitrogen oxide and sulfur compounds. The Atmospheric chemical Ionization Mass Spectrometer AIMS has been developed to accurately measure a set of these constituents on aircraft by means of chemical ionization. Here we present a setup using SF5- reagent ions for the simultaneous measurement of trace gas concentrations of HCl, HNO3 and SO2 in the pptv to ppmv (10-12 to 10-6 mol mol-1) range with in-flight and online calibration called AIMS-TG (Atmospheric chemical Ionization Mass Spectrometer for measurements of trace gases). Part 1 of this paper (Kaufmann et al., 2016) reports on the UTLS water vapor measurements with the AIMS-H2O configuration. The instrument can be flexibly switched between two configurations depending on the scientific objective of the mission. For AIMS-TG, a custom-made gas discharge ion source has been developed for generation of reagent ions that selectively react with HCl, HNO3, SO2 and HONO. HNO3 and HCl are routinely calibrated in-flight using permeation devices; SO2 is continuously calibrated during flight adding an isotopically labeled 34SO2 standard. In addition, we report on trace gas measurements of HONO, which is sensitive to the reaction with SF5-. The detection limit for the various trace gases is in the low 10 pptv range at a 1 s time resolution with an overall uncertainty of the measurement of the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO (High Altitude LOng range research aircraft). As an example, measurements conducted during the TACTS/ESMVal (Transport and Composition of the LMS/UT and Earth System Model Validation) mission with

  4. Characteristics of aerosol particles and trace gases in ship exhaust plumes

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.; Borrmann, S.

    2011-12-01

    Gaseous and particulate matter from marine vessels gain increasing attention due to their significant contribution to the anthropogenic burden of the atmosphere, implying the change of the atmospheric composition and the impact on local and regional air quality and climate (Eyring et al., 2010). As ship emissions significantly affect air quality of onshore regions, this study deals with various aspects of gas and particulate plumes from marine traffic measured near the Elbe river mouth in northern Germany. In addition to a detailed investigation of the chemical and physical particle properties from different types of commercial marine vessels, we will focus on the chemistry of ship plumes and their changes while undergoing atmospheric processing. Measurements of the ambient aerosol, various trace gases and meteorological parameters using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe which is passed on average, daily by 30 ocean-going vessels reaching the port of Hamburg, the second largest freight port of Europe. During 5 days of sampling from April 25-30, 2011 170 commercial marine vessels were probed at a distance of about 1.5-2 km with high temporal resolution. Mass concentrations in PM1, PM2.5 and PM10 and number as well as PAH and black carbon (BC) concentrations in PM1 were measured; size distribution instruments covered the size range from 6 nm up to 32 μm. The chemical composition of the non-refractory aerosol in the submicron range was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gas concentrations in the air and a weather station provided meteorological parameters. Additionally, a wide spectrum of ship information for each vessel including speed, size, vessel type, fuel type, gross tonnage and engine power was recorded via Automatic Identification System (AIS) broadcasts. Although commercial marine vessels powered by diesel engines consume high

  5. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste.

    PubMed

    Wiedinmyer, Christine; Yokelson, Robert J; Gullett, Brian K

    2014-08-19

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used for chemistry and climate modeling applications. This paper presents the first comprehensive and consistent estimates of the global emissions of greenhouse gases, particulate matter, reactive trace gases, and toxic compounds from open waste burning. Global emissions of CO2 from open waste burning are relatively small compared to total anthropogenic CO2; however, regional CO2 emissions, particularly in many developing countries in Asia and Africa, are substantial. Further, emissions of reactive trace gases and particulate matter from open waste burning are more significant on regional scales. For example, the emissions of PM10 from open domestic waste burning in China is equivalent to 22% of China's total reported anthropogenic PM10 emissions. The results of the emissions model presented here suggest that emissions of many air pollutants are significantly underestimated in current inventories because open waste burning is not included, consistent with studies that compare model results with available observations.

  6. Separation of carbon dioxide and sulfur dioxide gases using room-temperature ionic liquid (hmim)(Tf2N)

    SciTech Connect

    A. Yokozeki; Mark B. Shiflett

    2009-09-15

    To understand capturing and/or enhanced gaseous selectivity of industrial flue gases containing CO{sub 2} and SO{sub 2} using room-temperature ionic liquids, we have developed a ternary equation of state (EOS) model for a CO{sub 2}/SO{sub 2}/1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ((hmim)(Tf2N)) system. The present model is based on a generic RK (Redlich-Kwong) EOS, with empirical binary interaction parameters of each binary system. These interaction parameters have been determined using our measured VLE (vapor-liquid-equilibrium) data for SO{sub 2}/(hmim)(Tf2N) and CO{sub 2}/(hmim)(Tf2N) and literature data for CO{sub 2}/SO{sub 2}. The validity of the present EOS has been checked by conducting ternary VLE experiments for the present system. With this EOS, isothermal ternary phase diagrams and solubility (VLE) behaviors have been calculated for various (T, P, and feed compositions) conditions. For large and equimolar CO{sub 2}/SO{sub 2} mole ratios, the gaseous selectivity is nearly independent of the amount of the ionic liquid addition. However, for small CO{sub 2}/SO{sub 2} mole ratios the addition of the ionic liquid significantly increases the selectivity. The strong absorption of CO{sub 2} and SO{sub 2} in this ionic liquid may be practical for the simultaneous capture of these acid gases. 39 refs., 8 figs., 4 tabs.

  7. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath

    NASA Astrophysics Data System (ADS)

    Smith, David; Španěl, Patrik

    Our major objective in this paper is to describe a new method we have developed for the analysis of trace gases at partial pressures down to the ppb level in atmospheric air, with special emphasis on the detection and quantification of trace gases on human breath. It involves the use of our selected ion flow tube (Sift) technique which we previously developed and used extensively for the study of gas phase ionic reactions occurring in ionized media such as the terrestrial atmosphere and interstellar gas clouds. Before discussing this analytical technique we describe the results of our very recent Sift and flowing afterglow (FA) studies of the reactions of the H3O+ and OH- ions, of their hydrates H3O+(H2O)1,2,3 and OH- (H2O)1,2, and of NO+ and O2+, with several hydrocarbons and oxygen-bearing organic molecules, studies that are very relevant to our trace gas analytical studies. Then follows a detailed discussion of the application of our Sift technique to trace gas analysis, after which we present some results obtained for the analyses of laboratory air, the breath of a healthy non-smoking person, the breath of a person who regularly smokes cigarettes, the complex vapours emitted by banana and onion, and the molecules present in a butane/air flame. We show how the quantitative analysis of breath can be achieved from only a single exhalation and in real time (the time response of the instrument is only about 20 ms). We also show how the time variation of breath gases over long time periods can be followed, using the decay of ethanol on the breath after the ingestion of distilled liquor as an example, yet simultaneously following several other trace gases including acetone and isoprene which are very easily detected on the breath of all individuals because of their relatively high partial pressures (typically 100 to 1000 ppb). The breath of a smoker is richer in complex molecules, some nitrogen containing organics apparently being very evident at the 5 to 50 ppb level

  8. Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere

    DOEpatents

    Wamsley, Paula R.; Weimer, Carl S.; Nelson, Loren D.; O'Brien, Martin J.

    2003-01-01

    An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

  9. The air we breathe: three vital respiratory gases and the red blood cell: oxygen, nitric oxide, and carbon dioxide.

    PubMed

    Dzik, Walter H

    2011-04-01

    Three vital respiratory gases-oxygen (O(2)), nitric oxide (NO), and carbon dioxide (CO(2))-intersect at the level of the human red blood cell (RBC). In addition to hemoglobin (Hb)'s central role in O(2) transport, interaction of Hb with the Band 3 metabolon balances RBC energy flow. 2,3-Diphosphoglycerate enhances O(2) transport across the placenta and plays an important role in regulating RBC plasticity. NO is a key mediator of hypoxic vasodilation, but the precise role of RBC Hb remains controversial. In addition to established theories that depend on RBC uptake, delivery, and discharge of NO or its metabolites, an alternative hypothesis based on RBC permeability is suggested. NO depletion by free Hb may account for several clinical features seen during intravascular hemolysis or during deliberate infusion of Hb solutions used as RBC substitutes. CO(2) released by tissues triggers oxygen release through a series of well-coordinated reactions centered on the Band 3 metabolon. While RBC carbonic anhydrase and the Band 3 anion exchanger are central to this process, there is surprisingly little research on the kinetics of CO(2) clearance by transfusion. The three RBC gases are directly related to the three principal gases of Earth's atmosphere. Human fossil fuel consumption dumps 90 million metric tons of carbon into the atmosphere annually. Increasing CO(2) levels are linked to global warming, melting Arctic ice, rising sea levels, and climate instability. Just as individual cells depend on balance of the three vital gases, so too will their balance determine survival of life on Earth.

  10. Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases

    NASA Astrophysics Data System (ADS)

    Ganzeveld, Laurens; Lelieveld, Jos

    1995-10-01

    A dry deposition scheme has been developed for the chemistry general circulation model to improve the description of the removal of chemically reactive trace gases at the earth's surface. The chemistry scheme simulates background CH4-CO-NOx- HOx photochemistry and calculates concentrations of, for example, HNO3, NOx, and O3. A resistance analog is used to parameterize the dry deposition velocity for these gases. The aerodynamic resistance is calculated from the model boundary layer stability, wind speed, and surface roughness, and a quasi-laminar boundary layer resistance is incorporated. The stomatal resistance is explicitly calculated and combined with representative cuticle and mesophyll resistances for each trace gas. The new scheme contributes to internal consistency in the model, in particular with respect to diurnal and seasonal cycles in both the chemistry and the planetary boundary layer processes and surface characteristics that control dry deposition. Evaluation of the model indicates satisfactory agreement between calculated and observed deposition velocities. Comparison of the results with model simulations in which the deposition velocity was kept constant indicates significant relative differences in deposition fluxes and surface layer trace gas concentrations up to about ±35%. Shortcomings are discussed, for example, violation of the constant flux approach for the surface layer, the lacking canopy description, and effects of surface water layers.

  11. New spectral features of stratospheric trace gases identified from high-resolution infrared balloon-borne and laboratory spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1989-01-01

    A new Michelson-type interferometer system operating in the infrared at very high resolution has been used to record numerous balloon-borne solar absorption spectra of the stratosphere, ground-based solar absorption spectra, and laboratory spectra of molecules of atmospheric interest. In the present work results obtained for several important stratospheric trace gases, HNO3, CIONO2, HO2NO2, NO2, and COF2, in the 8- to 12-micron spectral region are reported. Many new features of these gases have been identified in the stratospheric spectra. Comparison of the new spectra with line-by-line simulations shows that previous spectral line parameters are often inadequate and that new analysis of high-resolution laboratory and atmospheric spectra and improved theoretical calculations will be required for many bands. Preliminary versions of several sets of improved line parameters under development are discussed.

  12. Effective removal of trace thallium from surface water by nanosized manganese dioxide enhanced quartz sand filtration.

    PubMed

    Huangfu, Xiaoliu; Ma, Chengxue; Ma, Jun; He, Qiang; Yang, Chun; Zhou, Jian; Jiang, Jin; Wang, Yaan

    2017-09-12

    Thallium (Tl) has drawn wide concern due to its high toxicity even at extremely low concentrations, as well as its tendency for significant accumulation in the human body and other organisms. The need to develop effective strategies for trace Tl removal from drinking water is urgent. In this study, the removal of trace Tl (0.5 μg L(-1)) by conventional quartz sand filtration enhanced by nanosized manganese dioxide (nMnO2) has been investigated using typical surface water obtained from northeast China. The results indicate that nMnO2 enhanced quartz sand filtration could remove trace Tl(I) and Tl(III) efficiently through the adsorption of Tl onto nMnO2 added to a water matrix and onto nMnO2 attached on quartz sand surfaces. Tl(III)-HA complexes might be responsible for higher residual Tl(III) in the effluent compared to residual Tl(I). Competitive Ca(2+) cations inhibit Tl removal to a certain extent because the Ca(2+) ions will occupy the Tl adsorption site on nMnO2. Moreover, high concentrations of HA (10 mgTOC L(-1)), which notably complexes with and dissolves nMnO2 (more than 78%), resulted in higher residual Tl(I) and Tl(III). Tl(III)-HA complexes might also enhance Tl(III) penetration to a certain extent. Additionally, a higher pH level could enhance the removal of trace Tl from surface water. Finally, a slight increase of residual Tl was observed after backwash, followed by the reduction of the Tl concentration in the effluent to a "steady" state again. The knowledge obtained here may provide a potential strategy for drinking water treatment plants threatened by trace Tl. Copyright © 2017. Published by Elsevier Ltd.

  13. Shock-tube thermochemistry tables for high-temperature gases. Volume 5: Carbon dioxide

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Horton, T. E.

    1971-01-01

    Equilibrium thermodynamic properties and species concentrations for carbon dioxide are tabulated for moving, standing, and reflected shock waves. Initial pressures range from 6.665 to 6665 N/sq m (0.05 to 50.0 torr), and temperatures from 2,000 to over 80,000K. In this study, 20 molecular and atomic species were considered.

  14. Adsorption and dissociation of acidic trace gases on ice surfaces - caught in the act with core level spectroscopy

    NASA Astrophysics Data System (ADS)

    Waldner, Astrid; Orlando, Fabrizio; Ammann, Markus; Kleibert, Armin; Huthwelker, Thomas; Peter, Thomas; Bartels-Rausch, Thorsten

    2015-04-01

    Chemistry and physical processes in Earth's ice and snow cover can change the composition of the atmosphere and the contaminant content of the cryosphere. They have thus direct impacts on geochemical cycles and the climate system. Our ability to predict the fate of chemicals in snow or air masses in exchange with the cryosphere on a regional scale or to model those in snow chemistry models is currently hampered by our limited understanding of the underlying mechanisms on a molecular level. So far, direct experimental observations under environmentally relevant conditions of the ice surface and of the adsorption of trace gases to it are very limited. The unique approach of this study is to combine two surface sensitive spectroscopic methods to directly probe the hydrogen-bonding network at the ice surface ( ~1 nm depth) and the concentration, depth profile (~1 to 10 nm), and dissociation degree of the dopant. We present first core-electron photoemission (XPS) and partial electron yield X-ray absorption (NEXAFS) measurements of formic acid adsorbed to ice at 240 K. The analysis of oxygen NEXAFS spectra reveals information on changes in the hydrogen-bonding network of the ice surface upon adsorption of formic acid. Depth profiles based on XPS measurements indicate that the adsorbed acid stays at the ice surface. Furthermore we obtained a preliminary estimation of the degree of formic acid dissociation at the ice surface. Results are compared to earlier core-electron studies of several trace gases adsorbed to ice at 240 K and compared to results from more traditional method to and snow to reveal fundamental aspects of the ice surface and how it interacts with dopants. Even with the focus on adsorption of acidic trace gases to ice, results of this study will thus be of high relevance also for other chemical processes in ice and snow. This is of interest not only in environmental science but also in material science, cryobiology, and astrophysics.

  15. Oceanic Trace Gases Numeric Data Packages from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. The collection provides access to the Oceanographic Numeric Data Packages (NDPs).

  16. Note: A dual temperature closed loop batch reactor for determining the partitioning of trace gases within CO2-water systems.

    PubMed

    Warr, Oliver; Rochelle, Christopher A; Masters, Andrew J; Ballentine, Christopher J

    2016-01-01

    An experimental approach is presented which can be used to determine partitioning of trace gases within CO2-water systems. The key advantages of this system are (1) The system can be isolated with no external exchange, making it ideal for experiments with conservative tracers. (2) Both phases can be sampled concurrently to give an accurate composition at each phase at any given time. (3) Use of a lower temperature flow loop outside of the reactor removes contamination and facilitates sampling. (4) Rapid equilibration at given pressure/temperature conditions is significantly aided by stirring and circulating the water phase using a magnetic stirrer and high-pressure liquid chromatography pump, respectively.

  17. Note: A dual temperature closed loop batch reactor for determining the partitioning of trace gases within CO2-water systems

    NASA Astrophysics Data System (ADS)

    Warr, Oliver; Rochelle, Christopher A.; Masters, Andrew J.; Ballentine, Christopher J.

    2016-01-01

    An experimental approach is presented which can be used to determine partitioning of trace gases within CO2-water systems. The key advantages of this system are (1) The system can be isolated with no external exchange, making it ideal for experiments with conservative tracers. (2) Both phases can be sampled concurrently to give an accurate composition at each phase at any given time. (3) Use of a lower temperature flow loop outside of the reactor removes contamination and facilitates sampling. (4) Rapid equilibration at given pressure/temperature conditions is significantly aided by stirring and circulating the water phase using a magnetic stirrer and high-pressure liquid chromatography pump, respectively.

  18. Raman Spectra and Cross Sections of Ammonia, Chlorine, Hydrogen Sulfide, Phosgene, and Sulfur Dioxide Toxic Gases in the Fingerprint Region 400-1400 cm-1

    DTIC Science & Technology

    2016-02-11

    region 400-1400 cm−1 using the Raman cross section of the 1285 cm−1 mode of carbon dioxide (CO2) as the reference.9 Raman cross sections of NH3, Cl2...Safety. Hydrogen sulfide (34 L of 50 ppm balance nitrogen) was purchased from Cross Company. Carbon dioxide (103 L of 4.97 ppm balance air), chlorine...AIP ADVANCES 6, 025310 (2016) Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in

  19. Characteristics of trace gases and aerosols at top of urban canopy layer in Nanjing of China from one year observational study

    NASA Astrophysics Data System (ADS)

    Wang, Tijian

    2013-04-01

    To understand the physical and chemical processes of air pollution formation in urban and their linkage with climate change in Yangtze River Delta(YRD), the fast developing area in China, a monitoring site was built on the top of a high building in the center of Nanjing. The site was set up to investigate the long term variations of trace gases and aerosols, which may play important roles in air pollution and climate change in regional scale. From one year measurement records, the annual average concentrations of ozone, sulfur dioxide, carbon monoxide, carbon dioxide, nitric oxide, total reactive nitrogen, water vapor are reported as 161.9±19.4 ppb, 93.8±8.9 ppb, 3856.7±412.1 ppb, 565.1±20.0 ppm, 173.6±15.6 ppb, 230.8±24.9 ppb, 34.76±7.2x10-3, respectively. PM10, PM2.5, visibility, black carbon, back scattering of particles(BSP), single scattering albedo(SSA), aerosol optical depth(AOD) and Angstrom wavelength exponent (AWE) are 115±113.1 μg/m3, 54±46.1 μg/m3, 9780±5594 m, 3055.9±2102.3 ng/m3, 66.3±97.5 Mm-1, 0.5±2.4, 0.7±0.38 and 1.22±0.28, respectively. Measurement show that the levels of air pollutants in YRD in East China are high compared to Pearl River Delta(PRD) in South China and Jing-Jin-Ji (JJJ) in North China, suggesting a possible stronger effect on atmospheric environment, climate change and human health in this region, which should be further addressed in the future study.

  20. Dynamics of a geothermal field traced by noble gases: Cerro Prieto, Mexico

    SciTech Connect

    Mazor, E.; Truesdell, A.H.

    1981-01-01

    Noble gases have been measured mass spectrometrically in samples collected during 1977 from producing wells at Cerro Prieto. Positive correlations between concentrations of radiogenic (He, /sup 40/Ar) and atmospheric noble gases (Ne, Ar, and Kr) suggest the following dynamic model: the geothermal fluids originated from meteoric water penetrated to more than 2500 m depth (below the level of first boiling) and mixed with radiogenic helium and argon-40 formed in the aquifer rocks. Subsequently, small amounts of steam were lost by a Raleigh process (0 to 3%) and mixing with shallow cold water occurred (0 to 30%). Noble gases are sensitive tracers of boiling in the initial stages of 0 to 3% steam separation and complement other tracers, such as Cl or temperature, which are effective only beyond this range.

  1. Dynamics of a geothermal field traced by noble gases: Cerro Prieto, Mexico

    USGS Publications Warehouse

    Mazor, E.; Truesdell, A.H.

    1984-01-01

    Noble gases have been measured mass spectrometrically in samples collected during 1977 from producing wells at Cerro Prieto. Positive correlations between concentrations of radiogenic (He and 40Ar) and atmospheric noble gases (Ne, Ar and Kr) suggest the following dynamic model: the geothermal fluids originated from meteoric water that penetrated to more than 2500 m depth (below the level of first boiling) and mixed with radiogenic He and 40Ar formed in the aquifer rocks. Subsequently, small amounts of steam were lost by a Raleigh process (0 - 30%) and mixing with shallow cold water occurred (0 - 30%). Noble gases are sensitive tracers of boiling in the initial stages of 0 - 3% steam separation and complement other tracers, such as C1 or temperature, which are effective only beyond this range. ?? 1984.

  2. Azimuthal variability of trace gases and aerosols measured during the MADCAT campaign in summer 2013 in Mainz, Germany

    NASA Astrophysics Data System (ADS)

    Remmers, Julia; Wagner, Thomas

    2015-04-01

    With the MAX-DOAS technique it is possible to retrieve vertical profiles of trace gases and aerosols in the lower troposphere. Often these instruments monitor the atmosphere in one azimuthal direction only. Therefore horizontal variability is not resolved. Especially the comparison to satellite data close to strong emission sources (one main application of MAX-DOAS) is possibly biased. MADCAT (Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases) took place in summer 2013 in Mainz, a city in the Rhine-Main region close to Frankfurt, with high population density and many industrial complexes. The main focus of this campaign was on the comparison of the results from the different instruments. Therefore 16 MAX-DOAS instruments from 10 different institutes were operated on the roof of the MPI for Chemistry. In standard operation mode, vertical scans at one or several selected azimuth viewing direction were performed. In addition, 6 instruments scanned the sky also in azimuth direction every two hours. These scans were performed under a low elevation angle (2°) to capture the pollution close to the ground. A comparison of the trace gas columns derived from these instruments will be shown for NO2 and O4, the latter is used to retrieve information about aerosols. The observed variation for different azimuth angles does not only reflect a gradient in the trace gas, but also differences in the light path length, which is affected by sun and viewing geometry as well as aerosols. To distinguish between the different effects comparisons with radiative transfer models are performed. The results of the azimuth scans are also compared to car-DOAS measurements around Mainz, which were conducted at least twice a day.

  3. Biological Effects of Short, High-Level Exposure to Gases: Sulfur Dioxide.

    DTIC Science & Technology

    1980-05-01

    experience \\ coughing , moderate irritation of the ey nose, and throat, and broncho- constriction. At about 10 ppm (26 mg _3),moderate to severe eye...bronchoconstrtction, epistaxis, sneezing, coughing , and hemoptysis may occur. With nasal breathing, about 99% of inspired sulfur dioxide is ab...individuals will experience coughing , a moderate degree of irritation to the eyes, nose, and throat, and bronchoconstriction. However, these effects may

  4. Distributions of C 2-C 5 NMHCs and related trace gases at a tropical urban site in India

    NASA Astrophysics Data System (ADS)

    Sahu, L. K.; Lal, S.

    Simultaneous surface measurements of C 2-C 5 non-methane hydrocarbons (NMHCs), O 3, CO and CH 4 were made during the year 2002 at a tropical urban site, Ahmedabad. This is the first time that NMHCs levels have been characterized in detail in India. The diurnal distributions of these species show pronounced variations in the winter months and less during the summer months. The seasonal variations of all these species show substantially higher levels during the winter and lowest during the summer season. The strength (winter to summer ratios) of seasonal variations in NMHCs are observed to be higher than other reported measurements elsewhere. The seasonal changes in transport patterns, boundary layer height and OH concentrations, all contribute in the seasonal variations of these trace gases. The correlation studies of various NMHCs and CO indicate dominant role of local emissions in the observed distributions of trace gases. The natural gas emission and leakage of liquid petroleum gas contribute to elevated levels of ethane and propane. While emissions from vehicular exhaust are found to be dominant sources of ethene, propene and acetylene. The higher C 2H 2/CO ratio of about 6.4 pptv/ppbv indicates influences of fresh emissions at Ahmedabad.

  5. Atmos/Atlas 3 Infrared Profile Measurements of Trace Gases in The November 1994 Tropical and Subtropical Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Wang, P.-H.; Arduini, R. F.; Baum, B. A.; Minnis, P.; Minnis, P.; Goldman, A.; Abrams, M. C.; Zander, R.; Mahieu, E.; Mahieu, E.; Salawitch, R. J.; Michelsen, H. A.; Irion, F. W.; Newchurch, M. J.

    1998-01-01

    Vertical mixing ratio profiles of four relatively long-lives gases, HCN, C2H2, CO, and C2H6, have been retrieved from 0.01/cm resolution infrared solar occultation spectra recorded between latitudes of 5.3degN and 31.4degN. The observations were obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer during the Atmospheric Laboratory for Applications and Science (ATLAS) 3 shuttle flight, 3-12 November 1994. Elevated mixing ratios below the tropopause were measured for these gases during several of the occultations. The positive correlations obtained between the simultaneously measured mixing ratios suggest that the enhancements are likely the result of surface emissions, most likely biomass burning and/or urban industrial activities, followed by common injection via deep convective transport of the gases to the upper troposphere. The elevated levels of HCN may account for at least part of the "missing NO," in the upper troposphere. Comparisons of the observations with values measured during a recent aircraft campaign are presented.

  6. Atmos/Atlas 3 Infrared Profile Measurements of Trace Gases in The November 1994 Tropical and Subtropical Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Wang, P.-H.; Arduini, R. F.; Baum, B. A.; Minnis, P.; Minnis, P.; Goldman, A.; Abrams, M. C.; Zander, R.; hide

    1998-01-01

    Vertical mixing ratio profiles of four relatively long-lives gases, HCN, C2H2, CO, and C2H6, have been retrieved from 0.01/cm resolution infrared solar occultation spectra recorded between latitudes of 5.3degN and 31.4degN. The observations were obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer during the Atmospheric Laboratory for Applications and Science (ATLAS) 3 shuttle flight, 3-12 November 1994. Elevated mixing ratios below the tropopause were measured for these gases during several of the occultations. The positive correlations obtained between the simultaneously measured mixing ratios suggest that the enhancements are likely the result of surface emissions, most likely biomass burning and/or urban industrial activities, followed by common injection via deep convective transport of the gases to the upper troposphere. The elevated levels of HCN may account for at least part of the "missing NO," in the upper troposphere. Comparisons of the observations with values measured during a recent aircraft campaign are presented.

  7. The airborne mass spectrometer AIMS - Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS

    NASA Astrophysics Data System (ADS)

    Jurkat, T.; Kaufmann, S.; Voigt, C.; Schäuble, D.; Jeßberger, P.; Ziereis, H.

    2015-12-01

    Understanding the role of climate-sensitive trace gas variabilities in the upper troposphere and lower stratosphere region (UTLS) and their impact on its radiative budget requires accurate measurements. The composition of the UTLS is governed by transport and chemistry of stratospheric and tropospheric constituents, such as chlorine, nitrogen oxide and sulphur components. The Airborne chemical Ionization Mass Spectrometer AIMS has been developed to accurately measure a set of these constituents on aircraft by means of chemical ionization. Here we present a setup using chemical ionization with SF5- reagent ions for the simultaneous measurement of trace gas concentrations in the pptv to ppmv (10-12 to 10-6 mol mol-1) range of HCl, HNO3 and SO2 with in-flight and online calibration called AIMS-TG. Part 1 of this paper (Kaufmann et al., 2015) reports on the UTLS water vapour measurements with the AIMS-H2O configuration. The instrument can be flexibly switched between two configurations depending on the scientific objective of the mission. For AIMS-TG, a custom-made gas discharge ion source has been developed generating a characteristic ionization scheme. HNO3 and HCl are routinely calibrated in-flight using permeation devices, SO2 is permanently calibrated during flight adding an isotopically labelled 34SO2 standard. In addition, we report on trace gas measurements of HONO which is sensitive to the reaction with SF5-. The detection limit for the various trace gases is in the low ten pptv range at a 1 s time resolution with an overall uncertainty of the measurement in the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO. Exemplarily, measurements conducted during the TACTS/ESMVal mission with HALO in 2012 are presented, focusing on a classification of tropospheric and stratospheric influences in the UTLS region. Comparison of AIMS measurements with other measurement techniques allow to draw a comprehensive

  8. Long-term MAX-DOAS measurement of trace gases and aerosol in the Environmental Research Station Schneefernerhaus

    NASA Astrophysics Data System (ADS)

    Wang, Zhuoru; Hao, Nan; Hendrick, François; Van Roozendael, Michel; Holla, Robert; Valks, Pieter

    2016-04-01

    The Environmental Research Station Schneefernerhaus (Umwelt Forschungsstation Schneefernerhaus, UFS) is located immediately under the summit of Zugspitze (2962 m), the highest mountain of Germany, at a height of 2650 m. The UFS is a rare observation site in Germany with mostly clean and unpolluted air. It is ideal for both stratospheric composition measurements and trace gas measurements in the free-troposphere. It is optimal for detecting pollution events in the free-troposphere, which are indications of short- or long-range transport of air pollutants. A MAX-DOAS instrument has been working in the UFS since February 2011. With the zenith spectrum of each cycle used as the reference, the differential slant column densities (DSCDs) of trace gases are calculated from the spectra with Differential Optical Absorption Spectroscopy (DOAS) method. The DSCDs of both O4 and NO2 are calculated in two different wavelength intervals, 338-370 nm in the UV region and 440-490 nm in the VIS region. For HCHO and HONO, optimal fitting windows have been determined in the UV region. A retrieval algorithm, based on the radiative transfer model LIDORT and the optimal estimation technique, is used to provide information on the vertical profiles and vertical column densities (VCDs) of aerosol and trace gases. Meanwhile, zenith-sky radiance spectra during twilight hours are analyzed using DOAS method to derive the total vertical column densities (VCDs) of O3 and NO2. A zenith spectrum measured in the noon of a summer day was chosen as the reference spectrum. The slant column densities (SCDs) of O3 and NO2, which are the direct product of the DOAS analysis, are then converted into VCDs using the air mass factors (AMFs) derived by radiative transfer calculations. This work presents the results of the MAX-DOAS measurement in the UFS from 2012 to 2015, including aerosol (derived from O4 measurement), NO2, HCHO, and HONO, etc. The vertical profiles as well as the seasonal and diurnal variation

  9. Origin and migration of hydrocarbon gases and carbon dioxide, Bekes Basin, southeastern Hungary

    USGS Publications Warehouse

    Clayton, J.L.; Spencer, C.W.; Koncz, I.; Szalay, A.

    1990-01-01

    The Bekes Basin is a sub-basin within the Pannonian Basin, containing about 7000 m of post-Cretaceous sedimentary rocks. Natural gases are produced from reservoirs (Precambrian to Tertiary in age) located on structural highs around the margins of the basin. Gas composition and stable carbon isotopic data indicate that most of the flammable gases were derived from humic kerogen contained in source rocks located in the deep basin. The depth of gas generation and vertical migration distances were estimated using quantitative source rock maturity-carbon isotope relationships for methane compared to known Neogene source rock maturity-depth relationships in the basin. These calculations indicate that as much as 3500 m of vertical migration has occured in some cases. Isotopically heavy (> - 7 > 0) CO2 is the predominant species present in some shallow reservoirs located on basin-margin structural highs and has probably been derived via long-distance vertical and lateral migration from thermal decompositon of carbonate minerals in Mesozoic and older rocks in the deepest parts of the basin. A few shallow reservoirs (< 2000m) contain isotopically light (-50 to -60%0) methane with only minor amounts of C2+ homologs (< 3% v/v). This methane is probably mostly microbial in origin. Above-normal pressures, occuring at depths greater than 1800 m, are believed to be the principal driving force for lateral and vertical gas migration. These pressures are caused in part by active hydrocarbon generation, undercompaction, and thermal decomposition of carbonates. 

  10. The characteristic properties of DOAS technique for retrieval of trace gases

    NASA Astrophysics Data System (ADS)

    Bruchkousky, I. I.; Demin, V. S.; Svetashev, A. G.; Turishev, L. N.; Krasouski, A. M.

    2012-04-01

    Nowadays the significant influence on a composition of the atmosphere and, hence, on a climate and human health is exerted through the anthropogenous emission of nitrogen oxides resulted from the burning of organic fuel. Nitrogen dioxide is considered among the strongest pollutants of the atmosphere. To maintain atmosphere monitoring, an automated device has been originated on the basis of a lab spectrograph ORIEL MS257. A system of radiation input has been realized in the device enabling to register the scattered solar light at different angles of elevation in the range of 0 - 90°. The instrument has a remote control and can operate in the automated mode. To protect the instrument from the external influence and to enhance the measurement accuracy, the spectrograph has been placed into a thermostabilizing case. Analysis of the received spectra in the region of 410 - 480 nm is conducted aiming to retrieve nitrogen dioxide concentration profiles for Minsk area. Utilizing WinDOAS package, slant column densities of nitrogen dioxide, water vapor, ozone, OBrO and oxygen dimer are retrieved for different meteorological conditions. The impact of radiation polarization and atmosphere state over results of measurements is discussed.

  11. Coherent differential absorption lidar for combined measurement of wind and trace atmospheric gases

    NASA Astrophysics Data System (ADS)

    Koch, Grady James

    A lidar system was developed for making combined range-resolved measurements of wind speed and direction, water vapor concentration, and carbon dioxide concentration in the atmosphere. This lidar combines the coherent Doppler technique for wind detection and the differential absorption lidar (DIAL) technique to provide a multifunctional capability. DIAL and coherent lidars have traditionally been thought of and implemented as separate instruments, but the research reported here has shown a demonstration of combining the coherent and DIAL techniques into a single instrument using solid-state lasers. The lasers used are of Ho:Tm:YLF, which operates at a wavelength of 2 mum. This wavelength is a further advantage to the lidar, as this wavelength offers a much higher level of eyesafety than shorter wavelengths conventionally used for DIAL. Two generations are lidars are described, with the first design making combined measurement of wind and water vapor. Wind speed measurements are shown of a precision better than 1 m/s, making it useful for many meteorological applications. Water vapor concentration measurements were of 86% accuracy, requiring improvement for scientific applications. This preliminary experiment revealed the largest source of error in concentration measurement to be a lack of stability in the wavelength of the laser. This problem was solved by implementing a means to precisely control the continuous-wave laser that injection seeds a pulsed laser. The finely tunable Ho:Tm:YLF laser was stabilized to absorption lines of both carbon dioxide and water vapor using a wavelength modulation technique. Long-term stabilization to within 13.5 MHz of absorption line center is shown, representing the first frequency-stabilized laser at or within 500 run of 2mum wavelength. Results are presented on injection seeding a pulsed Ho:Tm:YLF laser to impart the tunability and stabilization to the pulsed laser output. The stabilized laser system was incorporated into a

  12. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions.

    PubMed

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

  13. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    PubMed Central

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  14. Carbon dioxide removal from flue gases by absorption/ desorption in aqueous diethanolamine solutions.

    PubMed

    Kierzkowska-Pawlak, Hanna; Chacuk, Andrzej

    2010-08-01

    The carbon dioxide (CO2) desorption rate from CO2- loaded aqueous diethanolamine (DEA) solutions was measured using a stirred cell with a flat gas-liquid interface. The measurements were performed in the temperature range of 293.15-313.15 K and an amine concentration range of 10-20% mass DEA. Measurements were based on a semibatch isothermal absorption of the gas until the equilibrium state was reached, followed by desorption, which was initiated by the pressure release in the system. A simplified mass transfer model based on the film theory coupled with CO2, mass balance was developed to interpret the experimental data. On the basis of the proposed model, the initial mass transfer rates were calculated from the experimental results. The calculated initial desorption rates enabled estimation of the enhancement factor for CO2 mass transfer from aqueous DEA solutions. Analysis of the experimental data showed that desorption took place in the diffusive mass transfer regime.

  15. Analysis and Modeling of Trace Gases and Aerosols in Severe Convection: The 22 June 2012 DC3 Case

    NASA Astrophysics Data System (ADS)

    Barth, M. C.; Apel, E. C.; Bela, M.; Fried, A.; Fuchs, B.; Pickering, K. E.; Pollack, I. B.; Rutledge, S. A.

    2016-12-01

    The Deep Convective Clouds and Chemistry (DC3) field campaign aimed to quantify and characterize the dynamics, physics, lightning, and transport of trace gases and aerosols in convection, as well as the chemical aging of convective outflow plumes in the upper troposphere. These goals were met by deploying radars, lightning mapping arrays, weather balloons, and aircraft to sample storms in northeast Colorado, west Texas to central Oklahoma, and northern Alabama. Here, we use one case, 22 June 2012 severe convection in northeast Colorado and southwest Nebraska, as an example for quantifying and predicting convective transport of trace gases and aerosols, lightning flash rate, lightning production of nitrogen oxides, and subsequent ozone production downwind of the storms. This case was unique in that one severe storm ingested a wildfire smoke plume at 7 km altitude while other storms in the area did not. Several analyses of this case have been done using the aircraft composition measurements, dual-Doppler and polarimetric radar products, and lightning mapping array data. It was determined that the storm unaffected by the High Park fire smoke plume had a 4.8±0.9%/km entrainment rate and estimated scavenging efficiencies of CH2O, H2O2, CH3OOH, SO2, and HNO3 of 41±4%, 79±19, 44±47%, 92±4%, 95±12%, respectively. Total (intracloud and cloud-to-ground) lightning flash rates were 98-106 flashes per minute when the aircraft were sampling the outflow of the storms, resulting in an estimate of lightning-NOx production of 142±25 moles NO per flash. Box modeling simulations estimate the production of O3 in the convective outflow of these storms to be 11-14 ppbv over 2 days. These results are used to evaluate the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to learn how well a state-of-the-art model represents the storm processing of trace gases. The WRF-Chem simulations are analyzed further to examine the effect of aerosols in the smoke plume on

  16. CARBON TRACE GASES IN LAKE AND BEAVER POND ICE NEAR THOMPSON, MANITOBA, CANADA

    EPA Science Inventory

    Concentrations of CO2, CO, and CH4 were measured in beaver pond and lake ice in April 1996 near Thompson, Manitoba to derive information on possible impacts of ice melting on corresponding atmospheric trace gas concentrations. CH4 concentrations in beaver pond and lake ice ranged...

  17. CARBON TRACE GASES IN LAKE AND BEAVER POND ICE NEAR THOMPSON, MANITOBA, CANADA

    EPA Science Inventory

    Concentrations of CO2, CO, and CH4 were measured in beaver pond and lake ice in April 1996 near Thompson, Manitoba to derive information on possible impacts of ice melting on corresponding atmospheric trace gas concentrations. CH4 concentrations in beaver pond and lake ice ranged...

  18. Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide.

    PubMed

    Voigt, Carolina; Lamprecht, Richard E; Marushchak, Maija E; Lind, Saara E; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J; Biasi, Christina

    2017-08-01

    Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open-top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of -300 to -198 g CO2 -eq m(-2) to a source of 105 to 144 g CO2 -eq m(-2) . At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO2 , we provide here the first in situ evidence of increasing N2 O emissions from tundra soils with warming. Warming promoted N2 O release not only from bare peat, previously identified as a strong N2 O source, but also from the abundant, vegetated peat surfaces that do not emit N2 O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO2, and CH4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic. © 2016 John Wiley & Sons Ltd.

  19. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: Insights into magma degassing and fumarolic processes

    NASA Astrophysics Data System (ADS)

    Symonds, Robert B.; Reed, Mark H.; Rose, William I.

    1992-02-01

    Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a

  20. The interannual variability of trace gases in the stratosphere: A comparative study of the LIMS and UARS measurement periods

    NASA Astrophysics Data System (ADS)

    Gray, L. J.; Ruth, S.

    1992-04-01

    The inter-annual variability of trace gases in the equatorial lower stratosphere is examined in order to explore the usefulness of comparisons between measurements from LIMS and the UARS satellite instruments. The quasi biennial oscillation (QBO) is simulated in a two dimensional model by relaxing the modelled equatorial winds towards observed values. It is shown that during the LIMS data period the QBO was in the opposite phase to that expected during the first winter of the UARS measurements. The model predicts that LIMS measurements of ozone, NO2, and HNO3 may have been up to 30% less than the long-term average in the equatorial lower stratosphere while the first few months of UARS measurements may observe abundances up to 30% more than the long-term average. The importance of taking this variability into account and the desirability of several complete cycles of the QBO in the derivation of climatological values is noted.

  1. Laboratory studies of interaction between trace gases and sulphuric acid or sulphate aerosols using flow-tube reactors

    NASA Astrophysics Data System (ADS)

    Leu, Ming-Taun

    Stratospheric ozone provides a protective shield for humanity and the global biosphere from harmful ultraviolet solar radiation. In past decades, theoretical models for the calculation of ozone balance frequently used gas-phase reactions alone in their studies. Since the discovery of the Antarctic ozone hole in 1985, however, it has been demonstrated that knowledge of heterogeneous reactions is needed to understand this significant natural event owing to the anthropogenic emission of chlorofluorocarbons. In this review I will briefly discuss the experimental techniques for the research of heterogeneous chemistry carried out in our laboratory. These experimental instruments include flow-tube reactors, an electron-impact ionization mass spectrometer, a chemical ionization mass spectrometer and a scanning mobility particle spectrometer. Numerous measurements of uptake coefficient (or reaction probability) and solubility of trace gases in liquid sulphuric acid have been performed under the ambient conditions in the upper troposphere and lower stratosphere, mainly 190-250 K and 40-80 wt% of H

  2. Emissions of Trace Gases and Particles from Savanna Fires in Southern Africa

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Bertschi, Isaac T.; Blake, Donald R.; Simpson, Isobel J.; Gao, Song; Kirchstetter, Thomas W.; Novakov, Tica

    2003-01-01

    Airborne measurements made on initial smoke from 10 savanna fires in southern Africa provide quantitative data on emissions of 50 gaseous and particulate species, including carbon dioxide, carbon monoxide, sulfur dioxide, nitrogen oxides, methane, ammonia, dimethyl sulfide, nonmethane organic compounds, halocarbons, gaseous organic acids, aerosol ionic components, carbonaceous aerosols, and condensation nuclei (CN). Measurements of several of the gaseous species by gas chromatography and Fourier transform infrared spectroscopy are compared. Emission ratios and emission factors are given for eight species that have not been reported previously for biomass burning of savanna in southern Africa (namely, dimethyl sulfide, methyl nitrate, five hydrocarbons, and particles with diameters from 0.1 to 3 microns). The emission factor that we measured for ammonia is lower by a factor of 4, and the emission factors for formaldehyde, hydrogen cyanide, and CN are greater by factors of about 3, 20, and 3 - 15, respectively, than previously reported values. The new emission factors are used to estimate annual emissions of these species from savanna fires in Africa and worldwide.

  3. In-Situ Monitoring of Trace Gases in a Non-Urban Environment

    SciTech Connect

    Mioduszewski, John R; Yu, Xiao-Ying; Morris, Victor R; Berkowitz, Carl M; Flaherty, Julia E

    2011-01-01

    A set of commercial instruments measuring carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), and nitrogen oxides [nitric oxide (NO), nitrogen dioxide (NO2), and odd nitrogens (NOX)] was integrated and deployed in a non–urban environment. The deployment occurred between July 2, 2007 and August 7, 2007 in Richland, WA. The mixing ratios of all species were lower than in most rural–suburban environments, and strong diurnal patterns were observed. NO2 was depleted by photochemically formed ozone during the day and replenished at night as ozone was destroyed. The highest ozone concentration during these episodes was 45 ppb. The overall average was 15 ppb with readings approaching near zero at times. This observation is low compared to average daytime summer readings of 60–80 ppb in highly populated and industrialized urban areas in the Pacific Northwest region. Back-trajectory analysis and prevailing weather conditions both indicated that much of the ozone was transported locally or was produced in–situ. Analysis of SO2 as a tracer for O3 advection further indicated lack of long–range regional transport of pollutants to Richland. We also present results of analysis of high ozone episodes and comparisons relative to other areas in the Pacific Northwest region. These results provide a useful sample data set to study the historical record of air quality in rural Eastern Washington.

  4. Alternative carbon dioxide modelling approaches accounting for high residual gases in LandGEM.

    PubMed

    Bruce, Nathan; Ng, Kelvin Tsun Wai; Richter, Amy

    2017-06-01

    High Canadian waste disposal rates necessitate landfill gas monitoring and accurate forecasting. CO2 estimates in LandGEM version 3.02 currently rest on the assumptions that CO2 is a function of CH4, where the two gases make up nearly 100% of landfill gas content, leading to overestimated CO2 collection estimates. A total of 25 cases (five formulas, five approaches) compared annual CO2 collection at four western Canadian landfills. Despite common use in literature, the 1:1 ratio of CH4 to CO2 was not recommended to forecast landfill gas collection in cold climates. The existing modelling approach significantly overestimated CO2 production in three of four sites, resulting in the highest residual sum of squares. Optimization resulted in the most accurate results for all formulas and approaches, which had the greatest reduction in residual sums of squares (RSS) over the default approach (60.1 to 97.7%). The 1.4 Ratio approach for L o:L o-CO2 yielded the second most accurate results for CO2 flow (mean RSS reduction of 50.2% for all sites and subsection models). The annual k-modified LandGEM calculated k's via two empirical formulas (based on precipitation) and yielded the lowest accuracy in 12 of 20 approaches. Unlike other studies, strong relationships between optimized annual k's and precipitation were not observed.

  5. Capture of carbon dioxide from flue gases by amine-functionalized TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Song, Fujiao; Zhao, Yunxia; Cao, Yan; Ding, Jie; Bu, Yunfei; Zhong, Qin

    2013-03-01

    The novel carbon dioxide (CO2) adsorbents with high capture efficiency were prepared through impregnating TiO2 nanotubes (TiNT) with four kinds of amines, namely monoethanolamine (MEA), ethylenediamine (EDA), triethylenetetramine (TETA) and tetraethylenepentamine (TEPA), respectively. The samples were characterized by thermogravimetric analysis, low temperature N2 adsorption and transmission electron microscopy. CO2 capture was investigated in a dynamic packed column. The TEPA-loaded sample showed a better adsorption capacity due to its higher amino-groups content. In condition, TiNT-TEPA-69 shows the highest CO2 adsorption capacity among the four TEPA-loaded samples, approximately 4.37 mmol/g at 60 °C. The adsorption capacity was enhanced to 5.24 mmol/g under moisture conditions. TiNT-TEPA-69 was selected as adsorbent to study the adsorption/desorption behavior in the absence of moisture and in the presence of moisture. While the former is fairly stable after 5 adsorption/desorption cycles, the latter decreases dramatically.

  6. Long term measurements of trace gases at the Weybourne Atmospheric Observatory, seasonal variation and long range transport

    NASA Astrophysics Data System (ADS)

    Fleming, Z. L.; Monks, P. S.; Bandy, B. J.; Penkett, S. A.; Koumoutsaris, S.; Bey, I.

    2009-04-01

    Fifteen years of data from the UK NCAS (National Centre for Atmospheric Science) funded atmospheric observatory in Weybourne in North Norfolk, UK, on the North Sea have been analysed to study long term changes of a series of trace gases. The site's coastal location is ideal for dividing the air masses into clean North Sea/Arctic, polluted North European and urban UK sectors. A more detailed analysis of the exact pathway of the air arriving at the site has been studied using back trajectories, wind sectors and output from the UK Met office's NAME (Atmospheric dispersion) model. The dataset is not continuous for all species during the whole 15 year period but several intensive field campaigns with comprehensive VOC measurements have proved to be an essential addition. Ratios of various hydrocarbons and trace gases at the site show the origin and age of the air masses arriving at the site and division of the datasets by air mass direction and season illustrate the changing air composition of Northern Europe. The GEOS-Chem model was used to model ozone levels at the site and compare well to observations, especially for the clean air masses from the Northerly and Easterly North Sea and Arctic sectors. Other UK monitoring sites (Harwell and Great Dun Fell) ozone trends were compared to those at Weybourne, revealing a certain regional difference but a similar trend peak ozone values declining and background levels gradually increasing. The marine influence at Weybourne also show periods that represent non UK pollution emissions and Arctic air that contains relatively high background ozone levels. Ozone levels at Weybourne have changed considerably over this period due to changes in their precursors.

  7. A 10 micron laser heterodyne spectrometer for remote detection of trace gases

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Kostiuk, T.; Buhl, D.

    1978-01-01

    Infrared heterodyne spectroscopy provides a means of measuring the intensity profiles of individual rotation-vibration spectral lines with high sensitivity. Considerable effort has been expended on optimizing these instruments for remote measurements of gases in planetary atmospheres with the result that present-generation spectrometers are beginning to provide new and startling results on the planets. The fundamental principles of laser heterodyne spectroscopy are discussed. Detailed considerations of the optical design and the electronic design of the spectral-line receiver are given. Representative results obtained with this spectrometer are discussed, including precision frequency measurements of NH3 (nu-2) lines, detection of auroral emission from Jupiter, and measurements of terrestrial O3 and CO2.

  8. Differences in the concentrations of atmospheric trace gases in and above the tropical boundary layer

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. A. K.

    1981-01-01

    Weekly air samples were collected at Cape Kumakahi (0 km) and at nearby Mauna Loa Observatory (3.4 km) which is above the boundary layer. EC/GC and GC/FID techniques were used to measure CH3I, CHCl3, CO and CH4 which are largely natural in origin, and C2Cl4, CCl4, CH3CCl3, (F-11), CCl2F2, (F-12), CHClF, (F-22) and C2F3Cl3 (F-113), which are due to anthropogenic (CCl3F) etc. activities. It was found that all these gases are significantly (alpha is equal to or less than 0.05) more abundant in the boundary layer than above it.

  9. Apparatus and a method for detecting and measuring trace gases in air or other gaseous backgrounds

    SciTech Connect

    Castleman, B.; Wyatt, G.B.

    1980-12-09

    Method and apparatus for detecting the presence of very small concentrations of certain vapors and gases in air or other gaseous backgrounds. A gas sample is ionized by a source of ionizing radiation. The ionized gas is then directed through a first drift region where the ions are subjected to a drift potential. Electrical biased grid means are provided to allow only heavier ions of lower mobility to pass through the first drift region into a second drift region, where electrical shutter means are provided to allow discrete packets of ions to pass and to drift at speeds depending upon their mobilities and be detected. In an alternate embodiment, the first draft region is positioned downstream from the second drift region.

  10. Differences in the concentrations of atmospheric trace gases in and above the tropical boundary layer

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. A. K.

    1981-01-01

    Weekly air samples were collected at Cape Kumakahi (0 km) and at nearby Mauna Loa Observatory (3.4 km) which is above the boundary layer. EC/GC and GC/FID techniques were used to measure CH3I, CHCl3, CO and CH4 which are largely natural in origin, and C2Cl4, CCl4, CH3CCl3, (F-11), CCl2F2, (F-12), CHClF, (F-22) and C2F3Cl3 (F-113), which are due to anthropogenic (CCl3F) etc. activities. It was found that all these gases are significantly (alpha is equal to or less than 0.05) more abundant in the boundary layer than above it.

  11. Effect of variation in argon content of calibration gases on determination of atmospheric carbon dioxide.

    PubMed

    Min, Deullae; Kang, Namgoo; Moon, Dong Min; Lee, Jin Bok; Lee, Dong Soo; Kim, Jin Seog

    2009-12-15

    Carbon dioxide (CO(2)) is a greenhouse gas that makes by far the largest contribution to the global warming of the Earth's atmosphere. For the measurements of atmospheric CO(2) a non-dispersive infrared analyzer (NDIR) and gas chromatography are conventionally being used. We explored whether and to what degree argon content can influence the determination of atmospheric CO(2) using the comparison of CO(2) concentrations between the sample gas mixtures with varying Ar amounts at 0 and 18.6 mmol mol(-1) and the calibration gas mixtures with Ar at 8.4, 9.1, and 9.3 mmol mol(-1). We newly discovered that variation of Ar content in calibration gas mixtures could undermine accuracy for precise and accurate determination of atmospheric CO(2) in background air. The differences in CO(2) concentration due to the variation of Ar content in the calibration gas mixtures were negligible (<+/-0.03 micromol mol(-1)) for NDIR systems whereas they noticeably increased (<+/-1.09 micromol mol(-1)) especially for the modified GC systems to enhance instrumental sensitivity. We found that the thermal mass flow controller is the main source of the differences although such differences appeared only in the presence of a flow restrictor in GC systems. For reliable monitoring of real atmospheric CO(2) samples, one should use calibration gas mixtures that contain Ar content close to the level (9.332 mmol mol(-1)) in the ambient air as possible. Practical guidelines were highlighted relating to selection of appropriate analytical approaches for the accurate and precise measurements of atmospheric CO(2). In addition, theoretical implications from the findings were addressed.

  12. Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño

    NASA Astrophysics Data System (ADS)

    Stockwell, Chelsea E.; Jayarathne, Thilina; Cochrane, Mark A.; Ryan, Kevin C.; Putra, Erianto I.; Saharjo, Bambang H.; Nurhayati, Ati D.; Albar, Israr; Blake, Donald R.; Simpson, Isobel J.; Stone, Elizabeth A.; Yokelson, Robert J.

    2016-09-01

    Peat fires in Southeast Asia have become a major annual source of trace gases and particles to the regional-global atmosphere. The assessment of their influence on atmospheric chemistry, climate, air quality, and health has been uncertain partly due to a lack of field measurements of the smoke characteristics. During the strong 2015 El Niño event we deployed a mobile smoke sampling team in the Indonesian province of Central Kalimantan on the island of Borneo and made the first, or rare, field measurements of trace gases, aerosol optical properties, and aerosol mass emissions for authentic peat fires burning at various depths in different peat types. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared spectroscopy, whole air sampling, photoacoustic extinctiometers (405 and 870 nm), and a small subset of the data from analyses of particulate filters. The trace gas measurements provide emission factors (EFs; grams of a compound per kilogram biomass burned) for up to ˜ 90 gases, including CO2, CO, CH4, non-methane hydrocarbons up to C10, 15 oxygenated organic compounds, NH3, HCN, NOx, OCS, HCl, etc. The modified combustion efficiency (MCE) of the smoke sources ranged from 0.693 to 0.835 with an average of 0.772 ± 0.053 (n = 35), indicating essentially pure smoldering combustion, and the emissions were not initially strongly lofted. The major trace gas emissions by mass (EF as g kg-1) were carbon dioxide (1564 ± 77), carbon monoxide (291 ± 49), methane (9.51 ± 4.74), hydrogen cyanide (5.75 ± 1.60), acetic acid (3.89 ± 1.65), ammonia (2.86 ± 1.00), methanol (2.14 ± 1.22), ethane (1.52 ± 0.66), dihydrogen (1.22 ± 1.01), propylene (1.07 ± 0.53), propane (0.989 ± 0.644), ethylene (0.961 ± 0.528), benzene (0.954 ± 0.394), formaldehyde (0.867 ± 0.479), hydroxyacetone (0.860 ± 0.433), furan (0.772 ± 0.035), acetaldehyde (0.697 ± 0.460), and acetone (0.691 ± 0.356). These field data support significant revision

  13. Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona

    USGS Publications Warehouse

    Hinkle, M.E.; Ryder, J.L.; Sutley, S.J.; Botinelly, T.

    1990-01-01

    Samples of ground drill cores from the southern part of the Santa Cruz porphyry copper deposit, Casa Grande, Arizona, were oxidized in simulated weathering experiments. The samples were also separated into various mineral fractions and analyzed for contents of metals and sulfide minerals. The principal sulfide mineral present was pyrite. Gases produced in the weathering experiments were measured by gas chromatography. Carbon dioxide, oxygen, carbonyl sulfide, sulfur dioxide and carbon disulfide were found in the gases; no hydrogen sulfide, organic sulfides, or mercaptans were detected. Oxygen concentration was very important for production of the volatiles measured; in general, oxygen concentration was more important to gas production than were metallic element content, sulfide mineral content, or mineral fraction (oxide or sulfide) of the sample. The various volatile species also appeared to be interactive; some of the volatiles measured may have been formed through gas reactions. ?? 1990.

  14. High resolution infrared absorption spectra of various trace gases present in the upper atmosphere of the Earth

    NASA Technical Reports Server (NTRS)

    Hunt, Robert H.

    1988-01-01

    The objective of NASA Grant NsG 7473 was to obtain and analyze high resolution infrared absorption spectra of various trace gases present in the Earth's upper atmosphere. The goal of the spectral analysis was to obtain values of absorption line strengths, widths and frequencies of sufficient accuracy for use in upper atmosphere trace gas monitoring. During the early phase of the grant, high resolution spectra were obtained from two instruments. One was the 0.02/cm resolution vacuum grating spectrometer at the Florida State University and the other was the 0.01/cm resolution Fourier transform spectrometer at the McMath solar telescope at the Kitt Peak Observatory. Using these instruments, a considerable amount of spectra of methane and hydrogen peroxide were obtained and analyzed. During the latter years of the project, data taking was halted while efforts were devoted to building a new 0.0025/cm resolution vacuum Fourier transform spectrometer. Progress during this phase of the grant then became greatly slowed due to a lack of suitable graduate students in the program. However, the instrument was completed and brought to the point of producing interferograms.

  15. Using FLEXPART-WRF to Identify Source Regions Influencing Arctic Trace Gases and Aerosols During the Summer 2014 NETCARE Campaign

    NASA Astrophysics Data System (ADS)

    Thomas, J. L.

    2015-12-01

    In July and August 2014 the Canadian Network on Aerosols and Climate: Addressing Key Uncertainties in Remote Canadian Regions (NETCARE) project conducted aircraft and ship based campaigns with the goal of identifying both emissions and atmospheric processes influencing Arctic trace gas and aerosol concentrations. The aircraft campaign was conducted using the Alfred Wegener Institute's POLAR 6 aircraft (based in Resolute Bay, Canada) and the ship based campaign was conducted onboard the CCGS Amundsen (icebreaker and Arctic Ocean research vessel). Here, we use the Weather Research and Forecasting Model (WRF) to study meteorology and transport patterns that influence airmasses sampled during the aircraft campaign (5-21 July 2012) and research Legs 1a and 1b for Amundsen (1a: 8 - 24 July Quebec City to Resolute and 24 July - 14 August Resolute to Kugluktuk). The FLEXible PARTicle dispersion model driven by WRF meteorology (FLEXPART-WRF) run in backwards mode is used to study source regions that influenced enhanced concentrations in trace gases including DMS and NH3 as well as aerosols. Links between biomass burning in Northern Canada and measurements during the campaign are discussed. Finally FLEXPART-WRF run in forward mode is used to study links between shipping emissions from the Amundsen and enhanced pollution sampled by the POLAR 6 aircraft when both were operating in the same region of Lancaster Sound during the campaigns.

  16. Data Preparation and Analysis for Annex III, USA/PRC Cooperation in the Field of Atmospheric Trace Gases

    SciTech Connect

    Easterling, D.R.; Karl, T.R.

    1999-04-13

    The National Climatic Data Center (NCDC) has been a long-time and very active participant in the joint research program on the Greenhouse Effect created by the bilateral agreement Annex III to the Protocol on Fossil Energy Research and Development on Cooperation in the Field of Atmospheric Trace Gases. This agreement between the US Department of Energy (DOE) and the People's Republic of China, Chinese Academy of Sciences (CAS) has fostered a large amount of data set development and research (Riches et al., 1992) as well as science exchange between the two countries. Within the agreement there have been four basic tasks: (1) to analyze general circulation models, (2) to prepare, validate, and analyze data, (3) analyze the relationship between large scale and local climate, and (4) atmospheric trace gas measurements, particularly methane (Riches et al. 1992). Within this framework the NCDC has had two basic tasks in this program: to develop, validate, analyze and exchange long-term climate data sets suitable for analyzing past climate change, and to perform research into past climate change and linking large-scale and regional climates. Following is a brief review of NCDC's accomplishments in the project.

  17. Sulfur dioxide and other cloud-related gases as the source of the microwave opacity of the middle atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.; Eshleman, V. R.

    1981-01-01

    Spacecraft radio occultation measurements imply the presence of a nonuniformly mixed gaseous absorber within, but mostly below, the main cloud layer of sulfuric acid-water droplets measured by Pioneer-Venus. Preliminary considerations of the amount, distribution, and effects of sulfur dioxide and other gases, which apparently are associated with and produce the cloud, indicate that they constitute an important, and probably the predominant, source of the observed microwave opacity of the middle atmosphere of Venus.

  18. The Influence of Trace Gases Absorption on Differential Ring Cross Sections

    NASA Astrophysics Data System (ADS)

    Han, Dong; Zhao, Keyi

    2017-04-01

    The Ring effect refers to the filling in of Fraunhofer lines, which is known as solar absorption lines, caused almost entirely by rotational Raman scattering. The rotational Raman scattering by N2 and O2 in the atmosphere is the main factor that leads to Ring effect. The Ring effect is one significant limitation to the accuracy of the retrieval of trace gas constituents in atmosphere, while using satellite data with Differential Optical Absorption Spectroscopy technique. In this study, firstly the solar spectrum is convolved with rotational Raman cross sections of atmosphere, which is calculated with rotational Raman cross sections of N2 and O2, divided by the original solar spectrum, with a cubic polynomial subtracted off, to create differential Ring spectrum Ring1. Secondly, the Ring effect for pure Raman scattering of the Fraunhofer spectrum plus the contribution from interference by terrestrial absorption which always comes from a kind of trace gas (e.g., O3) are derived. To allow for more generality, the optically thin term as well as the next term in the expansion for the Beer-Lambert law are calculated.Ring1, Ring2, and Ring3are the Fraunhofer only, 1st terrestrial correction, and 2nd terrestrial correction for DOAS fitting.

  19. Measurement of gas/water uptake coefficients for trace gases active in the marine environment

    SciTech Connect

    Davidovits, P. . Dept. of Chemistry); Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. . Center for Chemical and Environmental Physics)

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean's surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry's law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  20. Atmospheric transport and chemistry of trace gases in LMDz5B: evaluation and implications for inverse modelling

    NASA Astrophysics Data System (ADS)

    Locatelli, R.; Bousquet, P.; Hourdin, F.; Saunois, M.; Cozic, A.; Couvreux, F.; Grandpeix, J.-Y.; Lefebvre, M.-P.; Rio, C.; Bergamaschi, P.; Chambers, S. D.; Karstens, U.; Kazan, V.; van der Laan, S.; Meijer, H. A. J.; Moncrieff, J.; Ramonet, M.; Scheeren, H. A.; Schlosser, C.; Schmidt, M.; Vermeulen, A.; Williams, A. G.

    2015-02-01

    Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterizations recently implemented in the atmospheric global climate model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL), and deep convection in the troposphere. At the same time, the horizontal and vertical resolution of the model used in the inverse system has been increased. The aim of this paper is to evaluate the impact of these developments on the representation of trace gas transport and chemistry, and to anticipate the implications for inversions of greenhouse gas emissions using such an updated model. Comparison of a one-dimensional version of LMDz with large eddy simulations shows that the thermal scheme simulates shallow convective tracer transport in the PBL over land very efficiently, and much better than previous versions of the model. This result is confirmed in three-dimensional simulations, by a much improved reproduction of the radon-222 diurnal cycle. However, the enhanced dynamics of tracer concentrations induces a stronger sensitivity of the new LMDz configuration to external meteorological forcings. At larger scales, the inter-hemispheric exchange is slightly slower when using the new version of the model, bringing them closer to observations. The increase in the vertical resolution (from 19 to 39 layers) significantly improves the representation of stratosphere/troposphere exchange. Furthermore, changes in atmospheric thermodynamic variables, such as temperature, due to changes in the PBL mixing modify chemical reaction rates, which perturb chemical equilibriums of reactive trace gases. One implication of LMDz model developments for future inversions of greenhouse gas emissions is the ability of the updated system to assimilate a larger amount of high

  1. Air Quality Impacts of Atmospheric Particles & Trace Gases: Field Studies in Diverse Environments

    NASA Astrophysics Data System (ADS)

    Mwaniki, George R.

    Air pollution impacts occur at all scales, meaning that policies and air quality management practices must be implemented and coordinated at the local, regional, national, and global scales. This dissertation is part of a continuing effort to improve our understanding of various air quality related issues in different environments. The dissertation consists of four studies. In the first study, wintertime chemical composition of water-soluble particulate matter with aerodynamic diameter less than 2.5 microm (PM2.5) was monitored in the Treasure Valley region near Boise, Idaho. This study was aimed at understanding the major drivers of wintertime PM2.5 within the locality of Boise and its suburbs. From this study, organics and particulate nitrate were the dominant contributors to the PM2.5 mass during wintertime. In the second study, particle size distribution, light scattering coefficient, speciated water soluble PM2.5, and cloud condensation nuclei (CCN) concentration were monitored in a mixed deciduous forest in Northern Michigan during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX-2009). The overall goal of this study was to understand on how emissions of biogenic volatile organic compounds (BVOC) affect the gas-phase and particle-phase chemistry in the near-canopy environment, and the implications on local and regional air quality. From this study aerosol derived from the oxidation of BVOCs exhibited reduced hygroscopicity and CCN activation potential compared to aerosols derived from anthropogenic activities. The third study employed the eddy covariance (EC) technique to understand source-sink interactions of carbon dioxide (CO2), methane (CH 4), carbon monoxide (CO) and nitrous oxide (N2O) in Xi'an, China. In this study urban vegetation were found to play a major role in regulating CO2 emissions within the city while vehicular activities were a major driver for CO and CH4 fluxes. In the fourth study, visibility degradation effects of

  2. Distributions of Trace Gases and Aerosols during the Dry Biomass Burning Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.

    2003-01-01

    Vertical profiles in the lower troposphere of temperature, relative humidity, sulfur dioxide (SO2), ozone (O3), condensation nuclei (CN), and carbon monoxide (CO), and horizontal distributions of twenty gaseous and particulate species, are presented for five regions of southern Africa during the dry biomass burning season of 2000. The regions are the semiarid savannas of northeast South Africa and northern Botswana, the savanna-forest mosaic of coastal Mozambique, the humid savanna of southern Zambia, and the desert of western Namibia. The highest average concentrations of carbon dioxide (CO2), CO, methane (CH4), O3, black particulate carbon, and total particulate carbon were in the Botswana and Zambia sectors (388 and 392 ppmv, 369 and 453 ppbv, 1753 and 1758 ppbv, 79 and 88 ppbv, 2.6 and 5.5 micrograms /cubic meter and 13.2 and 14.3 micrograms/cubic meter). This was due to intense biomass burning in Zambia and surrounding regions. The South Africa sector had the highest average concentrations of SO2, sulfate particles, and CN (5.1 ppbv, 8.3 micrograms/cubic meter, and per 6400 cubic meter , respectively), which derived from biomass burning and electric generation plants and mining operations within this sector. Air quality in the Mozambique sector was similar to the neighboring South Africa sector. Over the arid Namibia sector there were polluted layers aloft, in which average SO2, O3, and CO mixing ratios (1.2 ppbv, 76 ppbv, and 3 10 ppbv, respectively) were similar to those measured over the other more polluted sectors. This was due to transport of biomass smoke from regions of widespread savanna burning in southern Angola. Average concentrations over all sectors of CO2 (386 +/- 8 ppmv), CO (261 +/- 81 ppbv), SO2 (2.5 +/- 1.6 ppbv), O3 (64 +/- 13 ppbv), black particulate carbon (2.3 +/- 1.9 microgram/cubic meter), organic particulate carbon (6.2 +/- 5.2 microgram/cubic meter), total particle mass (26.0 +/- 4.7 microgram/cubic meter), and potassium particles (0

  3. Distributions of Trace Gases and Aerosols during the Dry Biomass Burning Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.

    2003-01-01

    Vertical profiles in the lower troposphere of temperature, relative humidity, sulfur dioxide (SO2), ozone (O3), condensation nuclei (CN), and carbon monoxide (CO), and horizontal distributions of twenty gaseous and particulate species, are presented for five regions of southern Africa during the dry biomass burning season of 2000. The regions are the semiarid savannas of northeast South Africa and northern Botswana, the savanna-forest mosaic of coastal Mozambique, the humid savanna of southern Zambia, and the desert of western Namibia. The highest average concentrations of carbon dioxide (CO2), CO, methane (CH4), O3, black particulate carbon, and total particulate carbon were in the Botswana and Zambia sectors (388 and 392 ppmv, 369 and 453 ppbv, 1753 and 1758 ppbv, 79 and 88 ppbv, 2.6 and 5.5 micrograms /cubic meter and 13.2 and 14.3 micrograms/cubic meter). This was due to intense biomass burning in Zambia and surrounding regions. The South Africa sector had the highest average concentrations of SO2, sulfate particles, and CN (5.1 ppbv, 8.3 micrograms/cubic meter, and per 6400 cubic meter , respectively), which derived from biomass burning and electric generation plants and mining operations within this sector. Air quality in the Mozambique sector was similar to the neighboring South Africa sector. Over the arid Namibia sector there were polluted layers aloft, in which average SO2, O3, and CO mixing ratios (1.2 ppbv, 76 ppbv, and 3 10 ppbv, respectively) were similar to those measured over the other more polluted sectors. This was due to transport of biomass smoke from regions of widespread savanna burning in southern Angola. Average concentrations over all sectors of CO2 (386 +/- 8 ppmv), CO (261 +/- 81 ppbv), SO2 (2.5 +/- 1.6 ppbv), O3 (64 +/- 13 ppbv), black particulate carbon (2.3 +/- 1.9 microgram/cubic meter), organic particulate carbon (6.2 +/- 5.2 microgram/cubic meter), total particle mass (26.0 +/- 4.7 microgram/cubic meter), and potassium particles (0

  4. Initial Composition, Transformations, and Transport of Particles and Trace Gases From Mexican Biomass Burning

    NASA Astrophysics Data System (ADS)

    Burling, I. R.; Yokelson, R. J.; Christian, T. J.; Akagi, S.; Urbanski, S.; Wiedinmyer, C.; Crounse, J. D.; Decarlo, P.; Clarke, A. D.

    2008-12-01

    As part of the MILAGRO project we investigated the amount, transport, and chemical composition of emissions from biomass burning (BB) in Mexico. Up to 48 trace gas and particle species were measured. BB near Mexico City (MC) and in the Yucatan was sampled from the NCAR C-130 in March 2006. During the same month, a Twin Otter aircraft deployed by the University of Montana was used to sample fires in the above areas and also forest, grass, and agricultural fires throughout much of the rest of Mexico. BB adjacent to MC accounted for about 30% of the CO and half or more of the fine particle mass in the MC-area outflow. The Yucatan measurements now provide the most comprehensive data available on the emissions from BB in tropical dry forests: the ecosystem that accounts for the most biomass burned globally. Rapid changes in ozone and many other trace gas species were observed in one BB plume. The Δ PM2.5/Δ CO ratio increased by a factor of ~ 2.6 in < 2 hours after emission as measured by both light scattering and an aerosol mass spectrometer. This is the best field evidence to date of significant secondary aerosol formation in BB plumes. During April-May 2007, ground-based, portable FTIR and particle measuring systems were deployed throughout central Mexico to characterize the emissions from garbage burning, cooking fires, brick-making kilns, and other ubiquitous, but poorly characterized sources. The first detailed chemical speciation of garbage burning emissions included the observation of extremely high HCl levels (Δ HCl/Δ CO 3.5-18%). Thus, garbage burning could be an important source of atmospheric chlorine in some regions. In addition, the HCl results suggest that large amounts of other chlorinated compounds may be emitted. Further measurements are needed, especially for highly toxic chlorinated organic compounds. Cooking fires are the second largest global source of BB emissions. The measurements of trace gas and particle emissions from cooking fires included

  5. Airborne Observations of Ozone and Other Trace Gases Upwind of National Parks in California and Nevada

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.

    2016-01-01

    The Alpha Jet Atmospheric eXperiment (AJAX) is a research project based at Moffett Field, CA, which collects airborne measurements of ozone, carbon dioxide, methane, water vapor, and formaldehyde, as well as 3-D winds, temperature, pressure, and location. Since its first science flight in 2011, AJAX has developed a wide a variety of mission types, combining vertical profiles (from approximately 8 km to near surface), boundary layer legs, and plume sampling as needed. With an ongoing five-year data set, the team has sampled over 160 vertical profiles, a dozen wildfires, and numerous stratospheric ozone intrusions. Our largest data collection includes 55 vertical profiles at Railroad Valley, NV, approximately 100 miles southwest of Great Basin National Park, and many of those flights include comparisons to surface monitors in the Nevada Rural Ozone Initiative network. We have also collected a smaller set of measurements northwest of Joshua Tree National Park, and are looking to develop partnerships that can put this data to use to assess or improve air quality in nearby Parks. AJAX also studies the plumes emitted by wildfires in California, as most emissions inventories are based on prescribed fires. We have sampled a dozen fires, and results will be presented from several, including the Rim (2013), Soberanes and Cedar (2016) Fires.

  6. Fourier Transform Infrared (FT-IR) Spectroscopy of Atmospheric Trace Gases HCl, NO and SO2

    NASA Technical Reports Server (NTRS)

    Haridass, C.; Aw-Musse, A.; Dowdye, E.; Bandyopadhyay, C.; Misra, P.; Okabe, H.

    1998-01-01

    Fourier Transform Infrared (FT-IR) spectral data have been recorded in the spectral region 400-4000/cm of hydrogen chloride and sulfur dioxide with I/cm resolution and of nitric oxide with 0.25 cm-i resolution, under quasi-static conditions, when the sample gas was passed through tubings of aluminum, copper, stainless steel and teflon. The absorbance was measured for the rotational lines of the fundamental bands of (1)H(35)Cl and (1)H(37)Cl for pressures in the range 100-1000 Torr and for the (14)N(16)O molecule in the range 100-300 Torr. The absorbance was also measured for individual rotational lines corresponding to the three modes of vibrations (upsilon(sub 1) - symmetric stretch, upsilon(sub 2) - symmetric bend, upsilon(sub 3) - anti-symmetric stretch) of the SO2 molecule in the pressure range 25-150 Torr. A graph of absorbance versus pressure was plotted for the observed rotational transitions of the three atmospherically significant molecules, and it was found that the absorbance was linearly proportional to the pressure range chosen, thereby validating Beer's law. The absorption cross-sections were determined from the graphical slopes for each rotational transition recorded for the HCl, NO and SO2 species. Qualitative and quantitative spectral changes in the FT-IR data will be discussed to identify and characterize various tubing materials with respect to their absorption features.

  7. Fourier Transform Infrared (FT-IR) Spectroscopy of Atmospheric Trace Gases HCl, NO and SO2

    NASA Technical Reports Server (NTRS)

    Haridass, C.; Aw-Musse, A.; Dowdye, E.; Bandyopadhyay, C.; Misra, P.; Okabe, H.

    1998-01-01

    Fourier Transform Infrared (FT-IR) spectral data have been recorded in the spectral region 400-4000/cm of hydrogen chloride and sulfur dioxide with I/cm resolution and of nitric oxide with 0.25 cm-i resolution, under quasi-static conditions, when the sample gas was passed through tubings of aluminum, copper, stainless steel and teflon. The absorbance was measured for the rotational lines of the fundamental bands of (1)H(35)Cl and (1)H(37)Cl for pressures in the range 100-1000 Torr and for the (14)N(16)O molecule in the range 100-300 Torr. The absorbance was also measured for individual rotational lines corresponding to the three modes of vibrations (upsilon(sub 1) - symmetric stretch, upsilon(sub 2) - symmetric bend, upsilon(sub 3) - anti-symmetric stretch) of the SO2 molecule in the pressure range 25-150 Torr. A graph of absorbance versus pressure was plotted for the observed rotational transitions of the three atmospherically significant molecules, and it was found that the absorbance was linearly proportional to the pressure range chosen, thereby validating Beer's law. The absorption cross-sections were determined from the graphical slopes for each rotational transition recorded for the HCl, NO and SO2 species. Qualitative and quantitative spectral changes in the FT-IR data will be discussed to identify and characterize various tubing materials with respect to their absorption features.

  8. Correction for water vapor in the measurement of atmospheric trace gases.

    PubMed

    Butenhoff, C L; Khalil, M A K

    2002-06-01

    The presence of water vapor in a sample of air reduces the concentration of a trace gas measured from the sample. We present a methodology to correct for this effect for those cases when the concentration of the trace gas has already been measured from a wet sample. The conversion or correction factor that takes the wet mole fraction to a dry mole fraction is determined by the mixing ratio of water vapor inside the sampling canister. For those samples where the water vapor is saturated inside the canister, the water vapor mixing ratio is largely determined by laboratory conditions; for the unsaturated samples, the mixing ratio is determined by station conditions. If the meteorology at the sampling station is known, the equations presented here can be used directly to calculate the appropriate correction factor. For convenience, we use climatological data to derive average monthly correction factors for seven common global sampling sites: Barrow, AK, US (71 degrees N, 157degrees W); Cape Meares, OR, US (45 degrees N, 124 degrees W); Mauna Loa, HI, US (19 degrees N, 155 degrees W); Ragged Point, Barbados (13 degrees N, 59 degrees W); American Samoa (14 degrees S, 171 degrees W); Cape Grim, Tasmania, Australia (41 degrees S, 145 degrees E); South Pole (90 degrees S). These factors adjust wet mole fractions upwards within a range of 0.002% for the South Pole to over 0.8% for saturated sites. We apply the correction factors to wet nitrous oxide (N2O) mole fractions. The corrected data are more consistent with our understanding of N2O sources.

  9. South African EUCAARI measurements: seasonal variation of trace gases and aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Laakso, L.; Vakkari, V.; Virkkula, A.; Laakso, H.; Backman, J.; Kulmala, M.; Beukes, J. P.; van Zyl, P. G.; Tiitta, P.; Josipovic, M.; Pienaar, J. J.; Chiloane, K.; Gilardoni, S.; Vignati, E.; Wiedensohler, A.; Tuch, T.; Birmili, W.; Piketh, S.; Collett, K.; Fourie, G. D.; Komppula, M.; Lihavainen, H.; de Leeuw, G.; Kerminen, V.-M.

    2012-02-01

    In this paper we introduce new in situ observations of atmospheric aerosols, especially chemical composition, physical and optical properties, on the eastern brink of the heavily polluted Highveld area in South Africa. During the observation period between 11 February 2009 and 31 January 2011, the mean particle number concentration (size range 10-840 nm) was 6310 cm3 and the estimated volume of sub-10 μm particles 9.3 μm3 m-3. The aerosol absorption and scattering coefficients at 637 nm were 8.3 Mm-1 and 49.5 Mm-1, respectively. The mean single-scattering albedo at 637 nm was 0.84 and the Ångström exponent of scattering was 1.5 over the wavelength range 450-635 nm. The mean O3, SO2, NOx and H2S-concentrations were 37.1, 11.5, 15.1 and 3.2 ppb, respectively. The observed range of concentrations was large and attributed to the seasonal variation of sources and regional meteorological effects, especially the anticyclonic re-circulation and strong winter-time inversions. In a global context, the levels of gases and particulates were typical for continental sites with strong anthropogenic influence, but clearly lower than the most polluted areas of south-eastern Asia. Of all pollutants observed at the site, ozone is the most likely to have adverse environmental effects, as the concentrations were high also during the growing season. The measurements presented here will help to close existing gaps in the ground-based global atmosphere observation system, since very little long-term data of this nature is available for southern Africa.

  10. Distributions of trace gases and aerosols during the dry biomass burning season in southern Africa

    NASA Astrophysics Data System (ADS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.

    2003-09-01

    Vertical profiles in the lower troposphere of temperature, relative humidity, sulfur dioxide (SO2), ozone (O3), condensation nuclei (CN), and carbon monoxide (CO), and horizontal distributions of twenty gaseous and particulate species, are presented for five regions of southern Africa during the dry biomass burning season of 2000. The regions are the semiarid savannas of northeast South Africa and northern Botswana, the savanna-forest mosaic of coastal Mozambique, the humid savanna of southern Zambia, and the desert of western Namibia. The highest average concentrations of carbon dioxide (CO2), CO, methane (CH4), O3, black particulate carbon, and total particulate carbon were in the Botswana and Zambia sectors (388 and 392 ppmv, 369 and 453 ppbv, 1753 and 1758 ppbv, 79 and 88 ppbv, 2.6 and 5.5 μg m-3, and 13.2 and 14.3 μg m-3). This was due to intense biomass burning in Zambia and surrounding regions. The South Africa sector had the highest average concentrations of SO2, sulfate particles, and CN (5.1 ppbv, 8.3 μg m-3, and 6400 cm-3, respectively), which derived from biomass burning and electric generation plants and mining operations within this sector. Air quality in the Mozambique sector was similar to the neighboring South Africa sector. Over the arid Namibia sector there were polluted layers aloft, in which average SO2, O3, and CO mixing ratios (1.2 ppbv, 76 ppbv, and 310 ppbv, respectively) were similar to those measured over the other more polluted sectors. This was due to transport of biomass smoke from regions of widespread savanna burning in southern Angola. Average concentrations over all sectors of CO2 (386 ± 8 ppmv), CO (261 ± 81 ppbv), SO2 (2.5 ± 1.6 ppbv), O3 (64 ± 13 ppbv), black particulate carbon (2.3 ± 1.9 μg m-3), organic particulate carbon (6.2 ± 5.2 μg m-3), total particle mass (26.0 ± 4.7 μg m-3), and potassium particles (0.4 ± 0.1 μg m-3) were comparable to those in polluted, urban air. Since the majority of the measurements

  11. Determination of carbon monoxide, methane and carbon dioxide in refinery hydrogen gases and air by gas chromatography.

    PubMed

    Kamiński, Marian; Kartanowicz, Rafal; Jastrzebski, Daniel; Kamiński, Marcin M

    2003-03-14

    This paper illustrates a method for determining trace amounts of CO, CH4 and CO2 with the detection limit of 0.15, 0.15 and 0.20 microg/l, respectively, in refinery hydrogen gases or in air. A simple modification of a gas chromatograph equipped with a flame-ionization detector is presented. A Porapak Q column, additionally connected with a short molecular sieve 5A packed column and a catalytic hydrogenation reactor on the Ni catalyst have been applied. The principle of the analytical method proposed is the separation of CO from O2 before the introduction of CO to the methanizer. The analytical procedure and examples of the results obtained have been presented. The modification applied makes it possible to use the GC instrument for other determinations, requiring utilization of the Porapak Q column and the flame-ionization detector. In such cases, the short molecular sieve 5A column and the methanizer can be by-passed.

  12. Flux measurements of energy and trace gases in urban Houston, Texas

    NASA Astrophysics Data System (ADS)

    Boedeker, I.; Schade, G. W.; Adams, S.; Park, C.

    2008-12-01

    We describe the setup and some first year results of a new flux measurements tower in an urban area. An existing radio communications tower 4 km north of downtown Houston was equipped with micrometeorological instrumentation and trace gas sampling lines in spring 2007. Wind speed, temperature and relative humidity are recorded at five levels between 12 and 60 m above ground; 3-D wind speed measurements, solar and net radiances, and trace gas sampling are established from the 60 m level. A closed path IRGA is used for CO2 and water vapor fluxes, and independent instrumentation for criteria pollutant and VOC fluxes. Two CSI data loggers and software control the measurements, and EdiRe software is used to analyze turbulence data and compute fluxes. A project description is provided at http://atmo.tamu.edu/yellowcabtower. Surface properties as calculated from the gradient measurements show the site to be surprisingly uniform, with displacement heights between 5 and 9 m and roughness lengths between 0.4 and 0.7 m, despite urban heterogeneity. The latter is investigated through visible/near IR orthoimagery and LIDAR data, which are incorporated into a local GIS. Net radiation was also only marginally affected by surface heterogeneity. At this urban location it is balanced by roughly equal amounts of sensible heat, latent heat, and storage fluxes. Latent heat flux, however, is smaller outside the growing season, with an equivalent increase in winter storage fluxes, as expected. Significant differences are also observed with direction during summer, showing decreased Bowen ratios and lower CO2 emissions from sectors with a larger urban tree canopy cover in the footprint. The largely mature, dominantly oak urban canopy cover alleviates approximately 100 W m- 2 during typical summer days. On the other hand, anthropogenic CO2 emissions dominate over photosynthetic uptake all year round. Measured carbon fluxes peak during morning rush-hour traffic, especially when increasing

  13. High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Duren, Riley M.; Hopkins, Francesca M.; Hook, Simon J.; Vance, Nick; Guillevic, Pierre; Johnson, William R.; Eng, Bjorn T.; Mihaly, Jonathan M.; Jovanovic, Veljko M.; Chazanoff, Seth L.; Staniszewski, Zak K.; Kuai, Le; Worden, John; Frankenberg, Christian; Rivera, Gerardo; Aubrey, Andrew D.; Miller, Charles E.; Malakar, Nabin K.; Sánchez Tomás, Juan M.; Holmes, Kendall T.

    2016-06-01

    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1-2 km), and high spatial resolution (˜ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH4, H2S, NH3, NO2, and SO2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions.

  14. Laser photoacoustic analysis of trace gases emitted during electro-knife surgery on human tissue

    NASA Astrophysics Data System (ADS)

    Sigrist, Markus W.; Naegele, Markus; Lauchenauer, Daniel; Hollmann, Ralph; Kammer, Erich

    2002-06-01

    We present a fully automated mobile laser spectrometer with photoacoustic (PA) detection for trace gas analysis. A novel PA cell design permits extracavity measurements with detection limits in the sub-ppb concentration range. The setup also allows measurements with low-power sources such as quantum cascade lasers (QCL). The multicomponent capability as an important feature of the spectrometer is realized by the implementation of two sealed-off CO2 lasers with 12CO2 and 13CO2 fillings covering the spectral range between 868 cm-1 and 1088 cm-1 with 132 laser lines. The performance is demonstrated with measurements on air samples with a priori unknown composition. In particular we report on the analysis of samples taken during surgery on human breast tissue with a high-frequency (HF) electro-knife in a hospital. Besides advantages of less bleeding and lower risk of infection, the drawback of this technique is the generated fume, which in general contains dozens of species at low concentrations, some of them presumably harmful to the patient and the medical team. Our analysis of an unfiltered fume sample revealed a total of 15 species. Most of their concentrations were below the allowed workplace concentrations (if at all available). 2-Furan-carboxaldehyde (C5H4O2), however, exceeded this value of 2 ppm considerably.

  15. Use of Molecular Modeling to Determine the Interaction and Competition of Gases within Coal for Carbon Dioxide Sequestration

    SciTech Connect

    Jeffrey D. Evanseck; Jeffry D. Madura

    2003-02-23

    A 3-dimensional coal structural model for the Argonne Premium Coal Pocahontas No. 3 has been generated. The model was constructed based on the wealth of structural information available in the literature with the enhancement that the structural diversity within the structure was represented implicitly (for the first time) based on image analysis of HRTEM in combination with LDMS data. The complex and large structural model (>10,000 carbon atoms) will serve as a basis for examining the interaction of gases within this low volatile bituminous coal. Simulations are of interest to permit reasonable simulations of the host-guest interactions with regard to carbon dioxide sequestration within coal and methane displacement from coal. The molecular structure will also prove useful in examining other coal related behavior such as solvent swelling, liquefaction and other properties. Molecular models of CO{sub 2} have been evaluated with water to analyze which classical molecular force-field parameters are the most reasonable to predict the interactions of CO{sub 2} with water. The comparison of the molecular force field models was for a single CO{sub 2}-H{sub 2}O complex and was compared against first principles quantum mechanical calculations. The interaction energies and the electrostatic interaction distances were used as criteria in the comparison. The ab initio calculations included Hartree-Fock, B3LYP, and Moeller-Plesset 2nd, 3rd, and 4th order perturbation theories with basis sets up to the aug-cc-pvtz basis set. The Steele model was the best literature model, when compared to the ab initio data, however, our new CO{sub 2} model reproduces the QM data significantly better than the Steele force-field model.

  16. Development of optical spectroscopic instruments and application to field measurements of marine trace gases

    NASA Astrophysics Data System (ADS)

    Coburn, Sean Christopher

    Halogens (X = Cl, Br, I) and organic carbon are relevant to the oxidative capacity of the atmosphere, are linked to atmospheric sulfur and nitrogen cycles, modify aerosols, and oxidize atmospheric mercury. The abundance of halogen radical species in the atmosphere is very low, but even concentrations of parts per trillion (1 ppt = 10-12 volume mixing ratio) or parts per quadrillion (1 ppq = 10-15 volume mixing ratio) are relevant for the aforementioned processes. Halogen radicals can be traced through measurements of halogen oxides (XO, where X = Cl, Br, I), that are ~1-10 times more abundant. However, measurements of halogen oxides are sparse, partly due to the lack of analytical techniques that enable their routine detection. In Chapters II-IV, I describe the development of a research grade Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument to measure bromine monoxide (BrO) and iodine monoxide (IO) routinely in the troposphere. I present autonomous measurements of BrO and IO in Pensacola, Florida that maximize sensitivity towards the detection of BrO in the free troposphere (altitudes >2km) from ground. The measurements are then coupled to a box-model to assess their impact on the oxidation of mercury in the atmosphere. Chapter V describes the Fast Light-Emitting-Diode Cavity-Enhanced DOAS (Fast LED-CE-DOAS) instrument and first measurements of glyoxal diurnal cycles and Eddy Covariance (EC) fluxes of glyoxal in the marine atmosphere. Glyoxal is the smallest alpha-dicarbonyl and a useful tracer molecule for fast photochemistry of hydrocarbons over oceans. The unique physical and chemical properties of glyoxal pose challenges in explaining this soluble gas over the remote ocean, and recent measurements over the open ocean currently remain unexplained by models. Results from a first cruise deployment over the tropical Pacific Ocean (TORERO field campaign) are presented.

  17. Sub-millimetre spectroscopy of Saturn's trace gases from Herschel/SPIRE

    NASA Astrophysics Data System (ADS)

    Fletcher, L. N.; Swinyard, B.; Salji, C.; Polehampton, E.; Fulton, T.; Sidher, S.; Lellouch, E.; Moreno, R.; Orton, G.; Cavalié, T.; Courtin, R.; Rengel, M.; Sagawa, H.; Davis, G. R.; Hartogh, P.; Naylor, D.; Walker, H.; Lim, T.

    2012-03-01

    Aims: We provide an extensive new sub-millimetre survey of the trace gas composition of Saturn's atmosphere using the broad spectral range (15-51 cm-1) and high spectral resolution (0.048 cm-1) offered by Fourier transform spectroscopy by the Herschel/SPIRE instrument (Spectral and Photometric Imaging REceiver). Observations were acquired in June 2010, shortly after equinox, with negligible contribution from Saturn's ring emission. Methods: Tropospheric temperatures and the vertical distributions of phosphine and ammonia are derived using an optimal estimation retrieval algorithm to reproduce the sub-millimetre data. The abundance of methane, water and upper limits on a range of different species are estimated using a line-by-line forward model. Results: Saturn's disc-averaged temperature profile is found to be quasi-isothermal between 60 and 300 mbar, with uncertainties of 7 K due to the absolute calibration of SPIRE. Modelling of PH3 rotational lines confirms the vertical profile derived in previous studies and shows that negligible PH3 is present above the 10- to 20-mbar level. The upper tropospheric abundance of NH3 appears to follow a vapour pressure distribution throughout the region of sensitivity in the SPIRE data, but the degree of saturation is highly uncertain. The tropospheric CH4 abundance and Saturn's bulk C/H ratio are consistent with Cassini studies. We improve the upper limits on several species (H2S, HCN, HCP and HI); provide the first observational constraints on others (SO2, CS, methanol, formaldehyde, CH3Cl); and confirm previous upper limits on HF, HCl and HBr. Stratospheric emission from H2O is suggested at 36.6 and 38.8 cm-1 with a 1σ significance level, and these lines are used to derive mole fractions and column abundances consistent with ISO and SWAS estimations a decade earlier.

  18. Numerical modelling of the transport of trace gases including methane in the subsurface of Mars

    NASA Astrophysics Data System (ADS)

    Stevens, Adam H.; Patel, Manish R.; Lewis, Stephen R.

    2015-04-01

    We model the transport of gas through the martian subsurface in order to quantify the timescales of release of a trace gas with a source at depth using a Fickian model of diffusion through a putative martian regolith column. The model is then applied to the case of methane to determine if diffusive transport of gas can explain previous observations of methane in the martian atmosphere. We investigate which parameters in the model have the greatest effect on transport timescales and show that the calculated diffusivity is very sensitive to the pressure profile of the subsurface, but relatively insensitive to the temperature profile, though diffusive transport may be affected by other temperature dependent properties of the subsurface such as the local vapour pressure. Uncertainties in the structure and physical conditions of the martian subsurface also introduce uncertainties in the timescales calculated. It was found that methane may take several hundred thousand Mars-years to diffuse from a source at depth. Purely diffusive transport cannot explain transient release that varies on timescales of less than one martian year from sources such as serpentinization or methanogenic organisms at depths of more than 2 km. However, diffusion of gas released by the destabilisation of methane clathrate hydrates close to the surface, for example caused by transient mass wasting events or erosion, could produce a rapidly varying flux of methane into the atmosphere of more than 10-3 kg m-2 s-1 over a duration of less than half a martian year, consistent with observations of martian methane variability. Seismic events, magmatic intrusions or impacts could also potentially produce similar patterns of release, but are far more complex to simulate.

  19. Linking aerosol size and optical properties to trace gases emitted from biomass burning in real-time

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Carrico, C. M.; Stockwell, C.; Yokelson, R. J.; Veres, P. R.; DeMott, P. J.; Kreidenweis, S. M.

    2014-12-01

    Biomass burning aerosols have large impacts on regional and global climate that are partly determined by their optical properties. The optical properties of aerosol depend on their size and composition, which in turn are related to fire combustion processes. Here we investigate relationships between a large suite of trace gases and aerosol size and optical properties to better understand processes governing the optical properties of fresh biomass burning aerosol emissions. We examined over 100 individual burns of biomass fuels during the Fire Laboratory at Missoula Experiment 4 (FLAME 4). Emissions were measured directly from an exhaust stack designed to capture all emissions from relatively small-scale fires burned at the base of a large burn chamber. Trace gas species were measured using a combination of an open-path Fourier transform infrared spectrometer (OP-FTIR) and proton-transfer mass spectrometer (PTR-MS). Aerosol optical properties at 870 nm were measured using a photoacoustic extinctiometer (PAX) and particle size distributions were measured using a Fast Mobility Particle Sizer (FMPS) and Aerodynamic Particle Sizer. The rapid response of the instruments allowed for comparisons of the emissions and particle properties over the duration of the fire. For example, we observed correlations between aerosol absorption, particle size, and gas-phase species associated with different types of combustion such as flaming and smoldering. We also report fire-integrated emissions for aerosol absorption and scattering coefficients and compare these to other fire-integrated properties. Many of our burn experiments examined a number of fuels that had not before been characterized in laboratory conditions, including a number of peat fuels, African savanna grasses and crop residuals.

  20. Application of Gauss's theorem to quantify localized surface emissions from airborne measurements of wind and trace gases

    NASA Astrophysics Data System (ADS)

    Conley, Stephen; Faloona, Ian; Mehrotra, Shobhit; Suard, Maxime; Lenschow, Donald H.; Sweeney, Colm; Herndon, Scott; Schwietzke, Stefan; Pétron, Gabrielle; Pifer, Justin; Kort, Eric A.; Schnell, Russell

    2017-09-01

    Airborne estimates of greenhouse gas emissions are becoming more prevalent with the advent of rapid commercial development of trace gas instrumentation featuring increased measurement accuracy, precision, and frequency, and the swelling interest in the verification of current emission inventories. Multiple airborne studies have indicated that emission inventories may underestimate some hydrocarbon emission sources in US oil- and gas-producing basins. Consequently, a proper assessment of the accuracy of these airborne methods is crucial to interpreting the meaning of such discrepancies. We present a new method of sampling surface sources of any trace gas for which fast and precise measurements can be made and apply it to methane, ethane, and carbon dioxide on spatial scales of ˜ 1000 m, where consecutive loops are flown around a targeted source region at multiple altitudes. Using Reynolds decomposition for the scalar concentrations, along with Gauss's theorem, we show that the method accurately accounts for the smaller-scale turbulent dispersion of the local plume, which is often ignored in other average mass balance methods. With the help of large eddy simulations (LES) we further show how the circling radius can be optimized for the micrometeorological conditions encountered during any flight. Furthermore, by sampling controlled releases of methane and ethane on the ground we can ascertain that the accuracy of the method, in appropriate meteorological conditions, is often better than 10 %, with limits of detection below 5 kg h-1 for both methane and ethane. Because of the FAA-mandated minimum flight safe altitude of 150 m, placement of the aircraft is critical to preventing a large portion of the emission plume from flowing underneath the lowest aircraft sampling altitude, which is generally the leading source of uncertainty in these measurements. Finally, we show how the accuracy of the method is strongly dependent on the number of sampling loops

  1. HITRAN2016 Database Part II: Overview of the Spectroscopic Parameters of the Trace Gases

    NASA Astrophysics Data System (ADS)

    Tan, Yan; Gordon, Iouli E.; Rothman, Laurence S.; Kochanov, Roman V.; Hill, Christian

    2017-06-01

    The 2016 edition of HITRAN database is available now. This new edition of the database takes advantage of the new structure and can be accessed through HITRANonline (www.hitran.org). The line-by-line lists for almost all of the trace atmospheric species were updated in comparison with the previous edition HITRAN2012. These extended update covers not only updating few transitions of the certain molecules, but also complete replacements of the whole line lists, and as well as introduction of new spectroscopic parameters for non-Voigt line shape. The new line lists for NH_3, HNO_3, OCS, HCN, CH_3Cl, C_2H_2, C_2H_6, PH_3, C_2H_4, CH_3CN, CF_4, C_4H_2, and SO_3 feature substantial expansion of the spectral and dynamic ranges in addition of the improved accuracy of the parameters for already existing lines. A semi-empirical procedure was developed to update the air-broadening and self-broadening coefficients of N_2O, SO_2, NH_3, CH_3Cl, H_2S, and HO_2. We draw particular attention to flaws in the commonly used expression n_{air}=0.79n_{N_2}+0.21n_{O_2} to determine the air-broadening temperature dependence exponent in the power law from those for nitrogen and oxygen broadening. A more meaningful approach will be presented. The semi-empirical line width, pressure shifts and temperature-dependence exponents of CO, NH_3, HF, HCl, OCS, C_2H_2, SO_2 perturbed by H_2, He, and CO_2 have been added to the database based on the algorithm described in Wilzewski et al.. The new spectroscopic parameters for HT profile were implemented into the database for hydrogen molecule. The HITRAN database is supported by the NASA AURA program grant NNX14AI55G and NASA PDART grant NNX16AG51G. I. E. Gordon, L. S. Rothman, et al., J Quant Spectrosc Radiat Transf 2017; submitted. Hill C, et al., J Quant Spectrosc Radiat Transf 2013;130:51-61. Wilzewski JS,et al., J Quant Spectrosc Radiat Transf 2016;168:193-206. Wcislo P, et al., J Quant Spectrosc Radiat Transf 2016;177:75-91.

  2. Spatiotemporal Patterns of Urban Trace Gases and Pollutants Observed with a Light Rail Vehicle Platform in Salt Lake City, UT

    NASA Astrophysics Data System (ADS)

    Mitchell, L.; Crosman, E.; Fasoli, B.; Leclair-Marzolf, L.; Jacques, A.; Horel, J.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.

    2015-12-01

    Urban environments are characterized by both spatial complexity and temporal variability, each of which present challenges for measurement strategies aimed at constraining estimates of greenhouse gas emissions and air quality. To address these challenges we initiated a project in December 2014 to measure trace species (CO2, CH4, O3, and Particulate Matter) by way of a Utah Transit Authority (UTA) light rail vehicle whose route traverses the Salt Lake Valley in Utah on an hourly basis, retracing the same route through commercial, residential, suburban, and rural typologies. Light rail vehicles present advantages as a measurement platform, including the absence of in-situ fossil fuel emissions, repeated transects across a urban region that provides both spatial and temporal information, and relatively low operating costs. We present initial results from the first year of operations including the spatiotemporal patterns of greenhouse gases and pollutants across Salt Lake City, UT with an emphasis on criteria pollutants, identification of sources, and future applications of this measurement platform.

  3. Investigating atmospheric transport processes of trace gases with ICON-ART on different scales

    NASA Astrophysics Data System (ADS)

    Schröter, Jennifer; Ruhnke, Roland; Rieger, Daniel; Vogel, Heike; Vogel, Bernhard

    2016-04-01

    We have extended the global ICON [1] (ICOsahedral Nonhydrostatic) modelling framework by introducing ICON-ART [2]. ICON is jointly developed by the German Weather Service (DWD) and Max-Planck-Institute for Meteorology (MPI-M), and is used for numerical weather prediction as well as for future climate predictions. ICON-ART is developed at the KIT with the goal to simulate interactions between trace substances and the state of the atmosphere. For the dynamics (transport and diffusion) of gaseous tracers, the original ICON tracer framework is used. A process splitting approach separates the physical processes. In this study, we present results of the ICON-ART extension, including the full gas-phase chemistry module. This module uses the kpp formalism [3] to generate chemistry modules and the photolysis module is based on Cloud-J7.3 [4]. Photolysis rates are calculated online based on the meteorological state of the atmosphere, as well as on the actual ozone profile and cloud optical parameters. Two simulations are performed with ICON-ART. The first one with physics parameterisations for the numerical weather prediction (NWP) and the second one with that for climate simulation in order to investigate the dynamical influence on the distribution of long-lived as well as of short-lived species by comparing both simulations. The results are evaluated with other model results and with observation. In addition to that, we use aircraft campaign data to validate the results on the regional scale for short term simulations by using the NWP physics. [1] Zängl, G., Reinert, D., Ripodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamicalcore, Q. J. Roy. Meteor. Soc,141, 563-579, doi:10.1002/qj.2378, 2015 [2] Rieger, D., Bangert, M., Bischoff-Gauss, I., Förstner, J., Lundgren, K., Reinert, D., Schröter, J., Vogel, H., Zängl, G., Ruhnke, R., and Vogel, B.: ICON-ART 1.0 - a new online

  4. A fiber optic sensor with a metal organic framework as a sensing material for trace levels of water in industrial gases.

    PubMed

    Ohira, Shin-Ichi; Miki, Yusuke; Matsuzaki, Toru; Nakamura, Nao; Sato, Yu-ki; Hirose, Yasuo; Toda, Kei

    2015-07-30

    Industrial gases such as nitrogen, oxygen, argon, and helium are easily contaminated with water during production, transfer and use, because there is a high volume fraction of water in the atmosphere (approximately 1.2% estimated with the average annual atmospheric temperature and relative humidity). Even trace water (<1 parts per million by volume (ppmv) of H2O, dew point < -76 °C) in the industrial gases can cause quality problems in the process such as production of semiconductors. Therefore, it is important to monitor and to control trace water levels in industrial gases at each supplying step, and especially during their use. In the present study, a fiber optic gas sensor was investigated for monitoring trace water levels in industrial gases. The sensor consists of a film containing a metal organic framework (MOF). MOFs are made of metals coordinated to organic ligands, and have mesoscale pores that adsorb gas molecules. When the MOF, copper benzene-1,3,5-tricarboxylate (Cu-BTC), was used as a sensing material, we investigated the color of Cu-BTC with water adsorption changed both in depth and tone. Cu-BTC crystals appeared deep blue in dry gases, and then changed to light blue in wet gases. An optical gas sensor with the Cu-BTC film was developed using a light emitting diode as the light source and a photodiode as the light intensity detector. The sensor showed a reversible response to trace water, did not require heating to remove the adsorbed water molecules. The sample gas flow rate did not affect the sensitivity. The obtained limit of detection was 40 parts per billion by volume (ppbv). The response time for sample gas containing 2.5 ppmvH2O was 23 s. The standard deviation obtained for daily analysis of 1.0 ppmvH2O standard gas over 20 days was 9%. Furthermore, the type of industrial gas did not affect the sensitivity. These properties mean the sensor will be applicable to trace water detection in various industrial gases. Copyright © 2015 Elsevier B

  5. Pi-MAX: a new parametrized algorithm to retrieve vertical profiles of trace gases and aerosols from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Remmers, Julia; Beirle, Steffen; Doerner, Steffen; Wagner, Thomas

    2013-04-01

    Multi-Axis (MAX-) DOAS instruments observe scattered sunlight under various mostly slant elevation angles. From such observations information on tropospheric profiles of trace gases and aerosols can be retrieved. MAX-DOAS observations can be used to quantify emissions and to study chemical processes in the atmosphere. Measuring (horizontally and vertically) averaged concentrations the technique can be used as a link between in-situ and satellite measurements. Thus satellite observations of tropospheric trace gases can be validated. IMAX (Parametrized Inversion for MAX-DOAS measurements) is a parametrized method to retrieve vertical profiles of trace gases (such as H2O, NO2, HCHO, CHOCHO) and aerosols. No online calculations are necessary, since look-up tables (LUT) calculated with a Monte Carlo based radiative Transport Model are used. In this manner it is user-friendly, easy to distribute and applicable to every measurement location. The here shown measurements took place in the Maldives in March, 2012, during the CARDEX campaign. Simultaneous sun photometry-, Lidar- and UAV-measurements provide the possibility to validate the new algorithm. We present time series of profiles of trace gas concentrations and aerosol extinction We discuss the effects of clouds on the retrieved results.

  6. A new UK Greenhouse Gas measurement network providing ultra high-frequency measurements of key radiatively active trace gases taken from a network of tall towers

    NASA Astrophysics Data System (ADS)

    Grant, A.; O'Doherty, S.; Manning, A. J.; Simmonds, P. G.; Derwent, R. G.; Moncrieff, J. B.; Sturges, W. T.

    2012-04-01

    Monitoring of atmospheric concentrations of gases is important in assessing the impact of international policies related to the atmospheric environment. The effects of control measures on greenhouse gases introduced under the Montreal and Kyoto Protocols are now being observed. Continued monitoring is required to assess the overall success of the Protocols. For over 15 years the UK Government have funded high-frequency measurements of greenhouse gases and ozone depleting gases at Mace Head, a global background measurement station on the west coast of Ireland. These continuous, high-frequency, high-precision measurements are used to estimate regional (country-scale) emissions of greenhouse gases across the UK using an inversion methodology (NAME-Inversion) that links the Met Office atmospheric dispersion model (Numerical Atmospheric dispersion Modelling Environment - NAME) with the Mace Head observations. This unique inversion method acts to independently verify bottom up emission estimates of radiatively active and ozone-depleting trace gases. In 2011 the UK government (DECC) funded the establishment and integration of three new tall tower measurements stations in the UK, to provide enhanced resolution emission maps and decrease uncertainty of regional emission estimates produced using the NAME-Inversion. One station included in this new UK network was already established in Scotland and was used in collaboration with Edinburgh University. The two other new stations are in England and were set-up early in 2012, they contain brand new instrumentation for measurements of greenhouse gases. All three additional stations provide ultra high-frequency (1 sec) data of CO2 and CH4 using the Picarro© Cavity Ring Down Spectrometer and high frequency (20 min) measurements of N2O and SF6 from custom built sample modules with GC-ECD. We will present the new tall tower UK measurement network in detail. Using high-frequency measurements at new operational sites, including Mace

  7. Shallow borehole array for measuring fluxes of reduced trace gases in Greenland as an analogue for volatile emission on Mars

    NASA Astrophysics Data System (ADS)

    Pratt, L. M.

    2011-12-01

    -packer-optic-capillary system as a technology demonstration of semi-autonomous drilling for planetary exploration. Carbon and hydrogen isotopic compositions for methane and ethane will be determined in the field using Integrated Cavity Output Spectroscopy and Cavity Ring Down Spectroscopy. Continuous permafrost is present at the study site down to 300 m depth with temperatures dropping to -3 degrees C at a depth of about 4 meters, providing a relatively shallow and pristine setting for an instrumented study of reduced trace gases in soil, fractured bedrock, and groundwater constituting the active layer.

  8. Chemical gradient of selected organic trace gases in the Tropical Tropopause Layer observed during the Airborne Tropical Tropopause Experiment 2013 (ATTREX-2013)

    NASA Astrophysics Data System (ADS)

    Navarro, M. A.; Atlas, E. L.; Lueb, R.; Hendershot, R.; Gabbard, S.; Zhu, X.; Pope, L.

    2013-12-01

    Hydrocarbons and short-lived organic halogen gases play an important role in the chemistry of the upper troposphere/lower stratosphere (UT/LS) region. The characterization of these gases not only provides information on air mass sources and transport time scales, but also defines the reactive halogen budget and the conditions for the stratospheric chemistry that affects ozone depletion rates. As part of the transition between troposphere and stratosphere, nonmethane hydrocarbons (NMHC) and halocarbons reach the Tropical Tropopause Layer (TTL) where chemical and physical processes determine their fate. However, very limited data are available regarding composition, seasonality and variability of these gases, since only high altitude aircraft can reach this region of the atmosphere (>13-14 Km). A new whole air sampler (GWAS) was developed to study the trace gas chemistry in this region of the upper troposphere and lower stratosphere. The sampler collects up to 90 samples per flight for measurement of a wide range of hydrocarbons, halocarbons, organic nitrates and solvents. During the Airborne Tropical Tropopause Experiment (ATTREX) field project, carried out during February-March 2013, we flew the GWAS system on 5 research flights. A total of 388 samples were collected during flights of approximately 24 hours, which sampled air over the tropical Pacific Ocean at altitudes from 9 to 19 km. The sample collection focused on obtaining measurements across the TTL region. Approximately 45 vertical profiles of the TTL were sampled with our instrument during this mission. Measurements of trace gases were carried out at Dryden Flight Research Center using a combination of gas chromatography with mass spectrometric, flame ionization, and electron capture detectors. Supporting measurements were done at the University of Miami (UM) laboratory. The distribution, vertical structure, and variability of selected hydrocarbon and organic halogen trace gases in the TTL region will be

  9. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    NASA Astrophysics Data System (ADS)

    Akagi, S. K.; Yokelson, R. J.; Burling, I. R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, G. R.; Sullivan, A.; Lee, T.; Kreidenweis, S.; Urbanski, S.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Weise, D. R.

    2012-09-01

    In October-November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling platforms, making this one of the most detailed field studies of fire emissions to date. The measurements include the first emission factors for a suite of monoterpenes produced by heating vegetative fuels during field fires. The first quantitative FTIR observations of limonene in smoke are reported along with an expanded suite of monoterpenes measured by WAS including α-pinene, β-pinene, limonene, camphene, 4-carene, and myrcene. The known chemistry of the monoterpenes and their measured abundance of 0.4-27.9% of non-methane organic compounds (NMOCs) and ~21% of organic aerosol (mass basis) suggests that they impacted secondary formation of ozone (O3), aerosols, and small organic trace gases such as methanol and formaldehyde in the sampled plumes in first few hours after emission. The variability in the initial terpene emissions in the SC fire plumes was high and, in general, the speciation of the initially emitted gas-phase NMOCs was 13-195% different from that observed in a similar study in nominally similar pine forests in North Carolina ~20 months earlier. It is likely that differences in stand structure and environmental conditions contributed to the high variability observed within and between these studies. Similar factors may explain much of the variability in initial emissions in the literature. The ΔHCN/ΔCO emission ratio, however, was found to be fairly consistent with previous airborne fire measurements in other coniferous-dominated ecosystems, with the mean for these studies being 0.90 ± 0.06%, further confirming the value of HCN as a biomass burning tracer. The SC results also support an

  10. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    NASA Astrophysics Data System (ADS)

    Akagi, S. K.; Yokelson, R. J.; Burling, I. R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, G. R.; Sullivan, A.; Lee, T.; Kreidenweis, S.; Urbanski, S.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Weise, D. R.

    2013-02-01

    In October-November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling platforms, making this one of the most detailed field studies of fire emissions to date. The measurements include the first emission factors for a suite of monoterpenes produced by heating vegetative fuels during field fires. The first quantitative FTIR observations of limonene in smoke are reported along with an expanded suite of monoterpenes measured by WAS including α-pinene, β-pinene, limonene, camphene, 4-carene, and myrcene. The known chemistry of the monoterpenes and their measured abundance of 0.4-27.9% of non-methane organic compounds (NMOCs) and ~ 21% of organic aerosol (mass basis) suggests that they impacted secondary formation of ozone (O3), aerosols, and small organic trace gases such as methanol and formaldehyde in the sampled plumes in the first few hours after emission. The variability in the initial terpene emissions in the SC fire plumes was high and, in general, the speciation of the initially emitted gas-phase NMOCs was 13-195% different from that observed in a similar study in nominally similar pine forests in North Carolina ~ 20 months earlier. It is likely that differences in stand structure and environmental conditions contributed to the high variability observed within and between these studies. Similar factors may explain much of the variability in initial emissions in the literature. The ΔHCN/ΔCO emission ratio, however, was found to be fairly consistent with previous airborne fire measurements in other coniferous-dominated ecosystems, with the mean for these studies being 0.90 ± 0.06%, further confirming the value of HCN as a biomass burning tracer. The SC results also

  11. Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results

    NASA Astrophysics Data System (ADS)

    Wallraff, H. G.

    2013-11-01

    A model of avian goal-oriented navigation is described that is based on two empirical findings building a bridge from ornithology to atmospheric chemistry. (1) To orient their courses homeward from distant unfamiliar areas, homing pigeons require long-term exposure to undisturbed winds at the home site and olfactory access to the environmental air at home and abroad. (2) Above Germany, ratios among some atmospheric trace gases vary along differently oriented spatial gradients as well as depending on wind direction. The model emulates finding (1) by utilising the analysed air samples on which finding (2) is based. Starting with an available set of 46 omnipresent compounds, virtual pigeons determine the profile of relative weights among them at each of 96 sites regularly distributed around a central home site within a radius of 200 km and compare this profile with corresponding profiles determined at home under varying wind conditions. Referring to particular similarities and dissimilarities depending on home-wind direction, they try to estimate, at each site, the compass direction they should fly in order to approach home. To make the model work, an iterative algorithm imitates evolution by modifying sensitivity to the individual compounds stepwise at random. In the course of thousands of trial-and-error steps it gradually improves homeward orientation by selecting smaller sets of most useful and optimally weighted substances from whose proportional configurations at home and abroad it finally derives navigational performances similar to those accomplished by real pigeons. It is concluded that the dynamic chemical atmosphere most likely contains sufficient spatial information for home-finding over hundreds of kilometres of unfamiliar terrain. The underlying chemo-atmospheric processes remain to be clarified.

  12. OH Reactivity and Potential SOA Yields from Volatile Organic Compounds and Other Trace Gases Measured in Controlled Laboratory Biomass Burns

    NASA Astrophysics Data System (ADS)

    Gilman, J. B.; Warneke, C.; Kuster, W. C.; Goldan, P. D.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2010-12-01

    A comprehensive suite of instruments were used to characterize volatile organic compounds (VOCs) and other trace gases (e.g., CO, CH4, NO2, etc.) emitted from controlled burns of various fuel types common to the Southeastern and Southwestern United States. These laboratory-based measurements were conducted in February 2009 at the U.S. Department of Agriculture’s Fire Sciences Laboratory in Missoula, Montana. An on-line GC-MS provided highly speciated VOC measurements of alkenes, alkanes, oxygenates, aromatics, biogenics, and nitrogen-containing compounds during the flaming or smoldering phases of replicate burns. The speciated GC-MS “grab” samples were integrated with fast-response gas-phase measurements (e.g., PTR-MS, PTR-IT-MS, NI-PT-CIMS, and FTIR) in order to determine VOC emission ratios and the fraction of identified vs. unidentifiable mass detected by PTR-MS. Emission ratios were used to calculate OH reactivity, which is a measure of potential ozone formation, as well as potential secondary organic aerosol (SOA) yields from the various fuel types. Small oxygenated VOCs had the highest emission ratios of the compounds observed. Alkenes dominated the VOC OH reactivity, which occasionally exceeded 1000 s-1. Calculated SOA yields from known precursors were dominated by aromatic VOCs, such as toluene, naphthalene (C10H8), and 1,3-benzenediol (C6H6O2, resorcinol). The contribution of several compounds not typically reported in ambient air measurements, such as substituted furans (C4H4O), pyrroles (C4H5N), and unsaturated C9 aromatics (C9H10), on OH reactivity and SOA yields will be discussed.

  13. A versatile, refrigerant- and cryogen-free cryofocusing-thermodesorption unit for preconcentration of traces gases in air

    NASA Astrophysics Data System (ADS)

    Obersteiner, Florian; Bönisch, Harald; Keber, Timo; O'Doherty, Simon; Engel, Andreas

    2016-10-01

    We present a compact and versatile cryofocusing-thermodesorption unit, which we developed for quantitative analysis of halogenated trace gases in ambient air. Possible applications include aircraft-based in situ measurements, in situ monitoring and laboratory operation for the analysis of flask samples. Analytes are trapped on adsorptive material cooled by a Stirling cooler to low temperatures (e.g. -80 °C) and subsequently desorbed by rapid heating of the adsorptive material (e.g. +200 °C). The set-up involves neither the exchange of adsorption tubes nor any further condensation or refocusing steps. No moving parts are used that would require vacuum insulation. This allows for a simple and robust design. Reliable operation is ensured by the Stirling cooler, which neither contains a liquid refrigerant nor requires refilling a cryogen. At the same time, it allows for significantly lower adsorption temperatures compared to commonly used Peltier elements. We use gas chromatography - mass spectrometry (GC-MS) for separation and detection of the preconcentrated analytes after splitless injection. A substance boiling point range of approximately -80 to +150 °C and a substance mixing ratio range of less than 1 ppt (pmol mol-1) to more than 500 ppt in preconcentrated sample volumes of 0.1 to 10 L of ambient air is covered, depending on the application and its analytical demands. We present the instrumental design of the preconcentration unit and demonstrate capabilities and performance through the examination of analyte breakthrough during adsorption, repeatability of desorption and analyte residues in blank tests. Examples of application are taken from the analysis of flask samples collected at Mace Head Atmospheric Research Station in Ireland using our laboratory GC-MS instruments and by data obtained during a research flight with our in situ aircraft instrument GhOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer).

  14. Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results

    NASA Astrophysics Data System (ADS)

    Wallraff, H. G.

    2013-07-01

    A model of avian goal-oriented navigation is described that is based on two empirical findings: (1) To orient their courses homeward from distant unfamiliar areas, homing pigeons require long-term exposure to undisturbed winds at the home site and olfactory access to the environmental air at home and abroad. (2) Above Germany, ratios among some atmospheric trace gases vary along differently oriented spatial gradients and in dependence on wind direction. The model emulates finding (1) by utilising the analysed air samples on which finding (2) is based. Starting with an available set of 46 omnipresent compounds, virtual pigeons determine the profile of relative weights among them at each of 96 sites regularly distributed around a central home site within a radius of 200 km and compare this profile with corresponding profiles determined at home under varying wind conditions. Referring to particular similarities and dissimilarities depending on home-wind direction, they try to estimate, at each site, the compass direction they should fly in order to approach home. To make the model working, an iterative algorithm imitates evolution by modifying sensitivity to the individual compounds stepwise at random. In the course of thousands of trial-and-error steps it gradually improves homeward orientation by selecting smaller sets of most useful and optimally weighted substances from whose proportional configurations at home and abroad it finally derives navigational performances similar to those accomplished by real pigeons. It is concluded that the dynamic chemical atmosphere most likely contains sufficient spatial information for home-finding over hundreds of kilometres of unfamiliar terrain. The underlying chemo-atmospheric processes remain to be clarified.

  15. 3-DoF MAX-DOAS: A new method for deriving free tropospheric columns of marine trace gases from ground

    NASA Astrophysics Data System (ADS)

    Coburn, S.; Baidar, S.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2013-12-01

    Current retrievals of Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements from the surface focus on retrieving boundary layer vertical profiles and vertical column amounts of atmospheric trace gases in the lower atmosphere. We have expanded these retrievals, and combine a high signal-to-noise MAX-DOAS instrument with an in-depth treatment of radiative transfer modeling of the suns movement to show that we can decouple the partial vertical column of trace gases located in the free troposphere from that in the boundary layer. The approach is demonstrated using our long-term (9 months) of MAX-DOAS observations of iodine oxide (IO), bromine oxide (BrO), glyoxal (CHOCHO) and formaldehyde (HCHO) near Pensacola, FL. Boundary layer profiles are derived from measurements at shallow looking elevation angles. In a second inversion we utilize MAX-DOAS angles still containing information above the boundary layer in order to assess total tropospheric columns (up to ~13km). The free tropospheric column is then derived by difference of the total column minus the boundary layer partial column. We apply this technique to several trace gases measured in the coastal marine troposphere including IO, BrO, CHOCHO, and HCHO, and discuss implications of our findings in context with recent aircraft observations by the TORERO project.

  16. The natural flux of greenhouse gases in the case of monitoring the flux of juvenile carbon dioxide in the Hranice Karst

    NASA Astrophysics Data System (ADS)

    Geršl, Milan; Stepišnik, Uroš; Mareček, Jan; Geršlová, Eva; Hammerschmiedt, Michal

    2015-04-01

    Located in the Teplice nad Bečvou district 40 km SE of Olomouc (Czech Republic), the hydrothermal Hranice Karst with the Zbrašov Aragonite Caves has been developed in the sequence of Palaeozoic limestones as a result of deep influx of thermal water charged with subcrustal carbon dioxide (CO2). This area of discharge of juvenile carbon dioxide is a unique place where one can study the long-term natural production of a greenhouse gas and confront it with the anthropogenic production. As a result, the continuous measurements of the properties of the cave microclimate with additional seasonal measurements of flux of carbon dioxide give rise to a rare pool of data that cover natural routes of greenhouse gases. Repeated seasonal analysis of the ratio of stable carbon isotopes in carbon dioxide (d13C around -5 ) (Meyberg - Rinne, 1995)has suggested the juvenile (mantle) origin of this gas. Isotopic analyses in the mineral water of dissolved gases (He) show that some part of these gases come from the upper mantle of the Earth. The lower floors of the caves are filled with carbon dioxide producing so-called gas lakes in the area. Concentrations of the gas commonly reach 40 % by volume. In 1999, for example, the average concentration in the Gallas dome was 84.9 % by volume. Flux of CO2 (g.m-2.d-1) was measured on the surface and in the cave. The homogenisation chamber and the pumping test were applied to evaluate the CO2 flux. The average CO2 flux in the soil ranged from 74 to 125 g.m-2.d-1, reflecting the venting of subcrustal CO2 in the Hranice area (Geršl et al., 2012). In the Zbrašov Aragonite Caves the CO2 concentration in the atmosphere fluctuates from 0,X to 85 % with the measured constant flux being 32 894 g.m-2.d-1. Since 2005, the CO2 concentrations in the cave area have been reported by an automatic monitoring system at 10 cave sites. CO2 concentrations are recorded in 5-min intervals. Interpretation can be put into the context of measuring concentrations of

  17. Basin scale natural gas source, migration and trapping traced by noble gases and major elements: the Pakistan Indus basin

    NASA Astrophysics Data System (ADS)

    Battani, Anne; Sarda, Philippe; Prinzhofer, Alain

    2000-08-01

    He, Ne and Ar concentrations, He and Ar isotopic ratios, carbon isotopic ratios and chemical compositions of hydrocarbon gases were measured in natural gas samples from gas-producing wells in the Indus basin, Pakistan, where no oil has ever been found. 3He/ 4He ratios are in the range 0.01-0.06 Ra (Ra is the atmospheric value of 1.38×10 -6) indicating the absence of mantle-derived helium despite the Trias extension. 40Ar/ 36Ar ratios range from 296 to 800, consistent with variable additions of radiogenic argon to atmospheric, groundwater-derived argon. Rare gas concentrations show large variations, from 6×10 -5 to 1×10 -3 mol/mol for 4He and from 3×10 -7 to 3×10 -5 mol/mol for 36Ar. In general, 36Ar concentrations are high compared to literature data for natural gas. CO 2 and N 2 concentrations are variable, ranging up to 70 and 20%, respectively. Mantle-derived He is not observed, therefore CO 2 and N 2 are not mantle-derived either. Hydrocarbon gas maturity is high, but accumulation efficiency is small, suggesting that early-produced hydrocarbons, including oil, were lost as well as mantle helium. This is consistent with the generally late, Pliocene, trap formation, and explains the high N 2 concentrations, since N 2 is the final species generated at the end of organic matter maturation. Based on δ 13C data, CO 2 originates from carbonate decomposition. Very elevated 20Ne/ 36Ar ratios are found, reaching a maximum of 1.3 (compared to 0.1-0.2 for air-saturated water and 0.5 for air), and these high values are related to the lowest rare gas concentrations. We suggest that this highly fractionated signature is the trace of the past presence of oil in the basin and appeared in groundwater. We propose a model where oil-water contact is followed by gas-water contact, both with Rayleigh distillation for rare gas abundance ratios, thereby generating the fractionated 20Ne/ 36Ar signature in groundwater first and transferring it to gas later. Assuming the gas

  18. Laboratory shock emplacement of noble gases, nitrogen, and carbon dioxide into basalt, and implications for trapped gases in shergottite EETA 79001

    NASA Technical Reports Server (NTRS)

    Wiens, R. C.; Pepin, R. O.

    1988-01-01

    Basalts from the Servilleta flows, Taos, NM, described by Lofgren (1983) were analyzed by mass spectrometry for shock-implanted noble gases, N2, and CO2 (which were isotopically labeled) after an exposure to 20-60 GPa shock in the presence of 0.0045-3.0 atm of ambient gas. The results were compared with data available on the constituents of the EETA 79001 meteorite. As expected, the samples shocked in this study attained emplacement efficiencies significantly lower than those apparent for lithology C of EETA 79001. Possible explanations for this difference include atmospheric overpressure at the time of EETA 79001 exposure to shock, the trapping of gas already in vugs by the intruding melt material, or the collapse of gas-filled vugs to form gas-laden glass inclusions.

  19. Airborne Measurements and Emission Estimates of Greenhouse Gases and Other Trace Constituents From the 2013 California Yosemite Rim Wildfire

    NASA Technical Reports Server (NTRS)

    Yates, E. L.; Iraci, L. T.; Singh, H. B.; Tanaka, T.; Roby, M. C.; Hamill, P.; Clements, C. B.; Lareau, N.; Contezac, J.; Blake, D. R.; Simpson, I. J.; Wisthaler, A.; Mikoviny, T.; Diskin, G. S.; Beyersdorf, A. J.; Choi, Y.; Ryerson, T. B.; Jimenez, J. L.; Campuzano-Jost, P.; Loewenstein, M.; Gore, W.

    2015-01-01

    This paper presents airborne measurements of multiple atmospheric trace constituents including greenhouse gases (such as CO2, CH4, O3) and biomass burning tracers (such as CO, CH3CN) downwind of an exceptionally large wildfire. In summer 2013, the Rim wildfire, ignited just west of the Yosemite National Park, California, and burned over 250,000 acres of the forest during the 2-month period (17 August to 24 October) before it was extinguished. The Rim wildfire plume was intercepted by flights carried out by the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) on 29 August and the NASA DC-8, as part of SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys), on 26 and 27 August during its intense, primary burning period. AJAX revisited the wildfire on 10 September when the conditions were increasingly smoldering, with slower growth. The more extensive payload of the DC-8 helped to bridge key measurements that were not available as part of AJAX (e. g. CO). Data analyses are presented in terms of emission ratios (ER), emission factors (EF) and combustion efficiency and are compared with previous wildfire studies. ERs were 8.0 ppb CH4/(ppm CO2) on 26 August, 6.5 ppb CH4 (ppm CO2)1 on 29 August and 18.3 ppb CH4 (ppm CO2)1 on 10 September 2013. The increase in CH4 ER from 6.5 to 8.0 ppb CH4/(ppm CO2) during the primary burning period to 18.3 ppb CH4/(ppm CO2) during the fire's slower growth period likely indicates enhanced CH4 emissions from increased smoldering combustion relative to flaming combustion. Given the magnitude of the Rim wildfire, the impacts it had on regional air quality and the limited sampling of wildfire emissions in the western United States to date, this study provides a valuable dataset to support forestry and regional air quality management, including observations of ERs of a wide number of species from the Rim wildfire.

  20. Airborne Measurements and Emission Estimates of Greenhouse Gases and Other Trace Constituents From the 2013 California Yosemite Rim Wildfire

    NASA Technical Reports Server (NTRS)

    Yates, E. L.; Iraci, L. T.; Singh, H. B.; Tanaka, T.; Roby, M. C.; Hamill, P.; Clements, C. B.; Lareau, N.; Contezac, J.; Blake, D. R.; hide

    2015-01-01

    This paper presents airborne measurements of multiple atmospheric trace constituents including greenhouse gases (such as CO2, CH4, O3) and biomass burning tracers (such as CO, CH3CN) downwind of an exceptionally large wildfire. In summer 2013, the Rim wildfire, ignited just west of the Yosemite National Park, California, and burned over 250,000 acres of the forest during the 2-month period (17 August to 24 October) before it was extinguished. The Rim wildfire plume was intercepted by flights carried out by the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) on 29 August and the NASA DC-8, as part of SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys), on 26 and 27 August during its intense, primary burning period. AJAX revisited the wildfire on 10 September when the conditions were increasingly smoldering, with slower growth. The more extensive payload of the DC-8 helped to bridge key measurements that were not available as part of AJAX (e. g. CO). Data analyses are presented in terms of emission ratios (ER), emission factors (EF) and combustion efficiency and are compared with previous wildfire studies. ERs were 8.0 ppb CH4/(ppm CO2) on 26 August, 6.5 ppb CH4 (ppm CO2)1 on 29 August and 18.3 ppb CH4 (ppm CO2)1 on 10 September 2013. The increase in CH4 ER from 6.5 to 8.0 ppb CH4/(ppm CO2) during the primary burning period to 18.3 ppb CH4/(ppm CO2) during the fire's slower growth period likely indicates enhanced CH4 emissions from increased smoldering combustion relative to flaming combustion. Given the magnitude of the Rim wildfire, the impacts it had on regional air quality and the limited sampling of wildfire emissions in the western United States to date, this study provides a valuable dataset to support forestry and regional air quality management, including observations of ERs of a wide number of species from the Rim wildfire.

  1. Decadal Regional Trends in Trace Gases and Reflectance As Measured with the Ozone Monitoring Instrument (OMI) on Eos Aura

    NASA Astrophysics Data System (ADS)

    Veefkind, J. P.; Boersma, F. F.; Kleipool, Q.; Desmedt, I.; Levelt, P.

    2014-12-01

    The Dutch-Finnish Ozone Monitoring Instrument (OMI) is a UV-visible spectrometer on board of the NASA EOS Aura mission. Due to its innovative design, OMI combines a high spatial resolution (13x24km2 at nadir) with a wide swath of 2600 km that enables daily global coverage. The OMI science data record started in October 2004 and already spans a decade. The instrument shows very low optical degradation: after 10 years in orbit the throughput at its shortest UV wavelengths has only been reduced by a few percent and at longer wavelengths this degradation is about 1%. This stability makes the instrument extremely valuable for trend analysis, although due to the so-called "row anomaly" part of the swath is no longer providing science-quality data since 2009. Both the optical degradation and the row anomaly are well characterized. The OMI data record shows that in the past decade the emissions of trace gases have changed considerably. Over most of the industrialized countries in Europe, North America and Asia emissions of NOx and SO2 have been reduced, whereas in the developing countries the emissions have generally increased. These changes in emissions directly affect the air quality, including the concentration of secondary aerosol particles. Due to the direct and indirect effect of aerosols, it is expected that the radiation balance is also affected, resulting in changes in shortwave radiance at the surface and at the top of the atmosphere. In this contribution we will present time series analysis of tropospheric NO2 and formaldehyde columns from OMI, in combination with aerosol optical depth time series from MODIS on EOS Aqua. We concentrate on mega-cities in India, China and the U.S.A., because in these densely populated regions the effects of air quality are the largest. To quantify the local effects of aerosols on the radiation balance, we combine the trends in the aerosol optical depth with trends of the reflectance at the top of the atmosphere, as measured by OMI.

  2. Autonomous Long-Path DOAS Measurements of Tropospheric Trace Gases at Neumayer Station III, Antarctica: First Results

    NASA Astrophysics Data System (ADS)

    Nasse, Jan-Marcus; Frieß, Udo; Pöhler, Denis; Weller, Rolf; Platt, Ulrich

    2016-04-01

    Reactive Halogen Species (RHS, like IO, BrO, ClO, etc.) have an important impact on atmospheric chemistry. In Polar Regions, the role of halogen radical chemistry has been subject of intensive research for more than two decades. Among the most prominent effects of RHS on the Polar atmosphere are the change of the oxidative capacity of the troposphere including wide-spread and frequently virtually complete destruction of tropospheric ozone, in particular during springtime, as well as the oxidation and subsequent deposition of gaseous elemental mercury. The number of field observations and the understanding of the underlying processes varies greatly between bromine, iodine and chlorine compounds. While elevated BrO concentrations resulting from autocatalytic processes (the so-called bromine explosion mechanism) are frequently observed, the abundance and influence of iodine is still subject to discussions and available observations give no consistent picture. With only a few direct observations of chlorine compounds, such as ClO and OClO, the role of tropospheric chlorine chemistry remains poorly understood to date, despite strong evidence for its relevance. The lack of observations of chlorine radicals is mainly due to the challenging detection, particularly in the case of ClO. Scattered sunlight DOAS measurements, which are available from a number of Polar locations, are not sensitive for ClO, due to insufficient radiation intensity in the UV spectral region (<308nm) where this molecule is absorbing. Here we present the overall design and first results of a novel Long Path DOAS (Differential Optical Absorption Spectroscopy) instrument with an active light source suitable for the detection of ClO. It has been set up at the German Research Station Neumayer III in coastal Antarctica during the summer season 2015/16 and is planned to operate autonomously for at least one year. The instrument is able to detect - in addition to ClO - many trace gases absorbing in the UV

  3. Fluxes of reactive trace gases from Tapajos forest: Upwind precursor emissions to complement the GoAmazon campaign.

    NASA Astrophysics Data System (ADS)

    Munger, J. W.; Alves, E. G.; Batalha, S. S. A.; Freitas, H.; Guenther, A. B.; Hayek, M.; Martin, S. T.; Park, J. H.; Rizzo, L. V.; Rocha, H.; Saleska, S. R.; Seco, R.; Smith, J. N.; Tota, J.; Wiedemann, K. T.; Wofsy, S. C.

    2014-12-01

    The Amazon Forest includes a diverse combination of vegetation characteristics, climate, and land usage that influence emission of the reactive trace-gases driving atmospheric chemistry and particle formation. A better understanding of atmospheric chemistry across this region requires consideration of variation in precursor emissions. To complement the intensive GoAmazon measurement campaigns that are focused on the interaction of Manaus urban plume with surrounding forest emissions we have established a suite of measurements at the km67 site in the Floresta Nacional do Tapajós, south of Santarem. The site is situated midway between the Tapajos River on the west and the BR 163 highway to the east (upwind). The nearby surroundings for up to 6 km on all sides is intact rain forest. A strip along the east side of the highway and adjacent roads has been cleared for agriculture, but the upwind area is otherwise sparsely populated. The km67 site was initially established in 2001 during the LBA campaign as carbon flux site and included CO measurements to identify influence from local and regional biomass burning. A 64 m tower extends above a 40-45 m closed canopy. In 2014 additional instrumentation including continuous NO/NO2, O3, SO2, and CH4 concentration profiles, NOy concentration and fluxes were added. Volatile organic compound (VOC) measurements using a PTR-HRTOF-MS (Proton Transfer Reaction-High Resolution-Time of Flight-Mass Spectrometer) and particle measurements using a nanoSMPS were added during a campaign in June-July 2014. This period was influenced by heavy precipitation; as a result O3 levels above the canopy were rather low, and declined further close to the ground. Even though there was no evidence of anthropogenic influence NO and NO2 concentrations were significant. Elevated concentrations beneath the canopy indicate soil NO emission is the dominant source. Eddy-covariance flux measurements of volatile organic compounds (VOC) above the Tapajós forest

  4. Airborne measurements and emission estimates of greenhouse gases and other trace constituents from the 2013 California Yosemite Rim wildfire

    NASA Astrophysics Data System (ADS)

    Yates, E. L.; Iraci, L. T.; Singh, H. B.; Tanaka, T.; Roby, M. C.; Hamill, P.; Clements, C. B.; Lareau, N.; Contezac, J.; Blake, D. R.; Simpson, I. J.; Wisthaler, A.; Mikoviny, T.; Diskin, G. S.; Beyersdorf, A. J.; Choi, Y.; Ryerson, T. B.; Jimenez, J. L.; Campuzano-Jost, P.; Loewenstein, M.; Gore, W.

    2016-02-01

    This paper presents airborne measurements of multiple atmospheric trace constituents including greenhouse gases (such as CO2, CH4, O3) and biomass burning tracers (such as CO, CH3CN) downwind of an exceptionally large wildfire. In summer 2013, the Rim wildfire, ignited just west of the Yosemite National Park, California, and burned over 250,000 acres of the forest during the 2-month period (17 August to 24 October) before it was extinguished. The Rim wildfire plume was intercepted by flights carried out by the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) on 29 August and the NASA DC-8, as part of SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys), on 26 and 27 August during its intense, primary burning period. AJAX revisited the wildfire on 10 September when the conditions were increasingly smoldering, with slower growth. The more extensive payload of the DC-8 helped to bridge key measurements that were not available as part of AJAX (e. g. CO). Data analyses are presented in terms of emission ratios (ER), emission factors (EF) and combustion efficiency and are compared with previous wildfire studies. ERs were 8.0 ppb CH4 (ppm CO2)-1 on 26 August, 6.5 ppb CH4 (ppm CO2)-1 on 29 August and 18.3 ppb CH4 (ppm CO2)-1 on 10 September 2013. The increase in CH4 ER from 6.5 to 8.0 ppb CH4 (ppm CO2)-1 during the primary burning period to 18.3 ppb CH4 (ppm CO2)-1 during the fire's slower growth period likely indicates enhanced CH4 emissions from increased smoldering combustion relative to flaming combustion. Given the magnitude of the Rim wildfire, the impacts it had on regional air quality and the limited sampling of wildfire emissions in the western United States to date, this study provides a valuable dataset to support forestry and regional air quality management, including observations of ERs of a wide number of species from the Rim wildfire.

  5. Incidence of chronic bronchitis in a cohort of pulp mill workers with repeated gassings to sulphur dioxide and other irritant gases

    PubMed Central

    2013-01-01

    Background Occupational exposure to irritants is associated with chronic bronchitis. The aim of this study was to elucidate whether repeated peak exposures with respiratory symptoms, gassings, to sulphur dioxide (SO2) and other irritant gases could increase the risk of chronic bronchitis. Methods The study population comprised 3,060 Swedish pulp mill workers (84% males) from a cohort study, who completed a comprehensive questionnaire with items on chronic bronchitis symptoms, smoking habit, occupational history, and specific exposures, including gassings. 2,037 have worked in sulphite mills. Incidence rates and hazard ratios (HRs) for the observation period, 1970–2000, in relation to exposure and the frequency of repeated gassings to SO2 and other irritant gases were calculated. Results The incidence rate for chronic bronchitis among workers with repeated gassings was 3.5/1,000 person-years compared with 1.5/1,000 person-years among unexposed workers (HR 2.1, 95% confidence interval (CI) 1.4-3.1). The risk was even higher in the subgroup with frequent gassings (HR 3.2, 95% CI 2.0-5.2), particularly among never-smokers (HR 8.7, 95% CI 3.5-22). Conclusions Repeated gassings to irritant gases increased the incidence of chronic bronchitis in our study population during and after work in pulp mills, supporting the hypothesis that occupational exposures to irritants negatively affect the airways. These results underscore the importance of preventive actions in this work environment. PMID:24354705

  6. Estimating Emissions Fluxes of Carbon Dioxide and Methane from Indianapolis Using an Aircraft Trace Gas and Wind Measurement Platform

    NASA Astrophysics Data System (ADS)

    Ross, K. L.; Shepson, P.; Stirm, B.; Sweeney, C.; Karion, A.; Gurney, K.

    2008-12-01

    The quantification of local to regional scale greenhouse gas emissions requires high resolution and high precision measurements. These measurements can then be examined to better describe the underlying societal drivers. In the early spring of 2008, carbon dioxide (CO2) and methane (CH4) measurements were conducted using Purdue University's Airborne Laboratory for Atmospheric Research (ALAR), a Beechcraft Duchess light aircraft, around the city of Indianapolis, Indiana. A Picarro ESP-1000 cavity ring-down CO2/CH4 spectrometer measured atmospheric trace gas concentrations with a frequency of .2 Hz. Flask samples were also obtained at various points during flight for comparison with measurements from the Picarro. Coupled with high resolution (50 Hz) turbulence and wind measurements, these trace gas measurements allow for flux estimates as well as boundary layer trace gas concentration variability estimates to be calculated for the city. By flying horizontal transects upwind and downwind of the city at several altitude levels both within and above the boundary layer, the emissions flux estimate can be calculated as the difference between the gas concentration flowing out of the city and the gas concentration flowing into the city, accounting for entrainment flux at the top of the boundary layer. Analysis involves a kriging method applied to interpolate the measured values to a two dimensional vertical plane traced out by the flight pattern. In addition, vertical profiles measured at various locations around the city allow for estimates of the variability of both CO2 and CH4 concentrations as well as the uncertainty of the mean concentrations in the mixed layer. Results show that the urban plume and associated point sources are clearly distinguishable in the downwind trace gas concentration data. We will discuss comparison of the calculated fluxes with those from available emissions inventories.

  7. The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Acevedo, O. C.; Araùjo, A.; Artaxo, P.; Barbosa, C. G. G.; Barbosa, H. M. J.; Brito, J.; Carbone, S.; Chi, X.; Cintra, B. B. L.; da Silva, N. F.; Dias, N. L.; Dias-Júnior, C. Q.; Ditas, F.; Ditz, R.; Godoi, A. F. L.; Godoi, R. H. M.; Heimann, M.; Hoffmann, T.; Kesselmeier, J.; Könemann, T.; Krüger, M. L.; Lavric, J. V.; Manzi, A. O.; Lopes, A. P.; Martins, D. L.; Mikhailov, E. F.; Moran-Zuloaga, D.; Nelson, B. W.; Nölscher, A. C.; Santos Nogueira, D.; Piedade, M. T. F.; Pöhlker, C.; Pöschl, U.; Quesada, C. A.; Rizzo, L. V.; Ro, C.-U.; Ruckteschler, N.; Sá, L. D. A.; de Oliveira Sá, M.; Sales, C. B.; dos Santos, R. M. N.; Saturno, J.; Schöngart, J.; Sörgel, M.; de Souza, C. M.; de Souza, R. A. F.; Su, H.; Targhetta, N.; Tóta, J.; Trebs, I.; Trumbore, S.; van Eijck, A.; Walter, D.; Wang, Z.; Weber, B.; Williams, J.; Winderlich, J.; Wittmann, F.; Wolff, S.; Yáñez-Serrano, A. M.

    2015-09-01

    The Amazon Basin plays key roles in the carbon and water cycles, climate change, atmospheric chemistry, and biodiversity. It has already been changed significantly by human activities, and more pervasive change is expected to occur in the coming decades. It is therefore essential to establish long-term measurement sites that provide a baseline record of present-day climatic, biogeochemical, and atmospheric conditions and that will be operated over coming decades to monitor change in the Amazon region, as human perturbations increase in the future. The Amazon Tall Tower Observatory (ATTO) has been set up in a pristine rain forest region in the central Amazon Basin, about 150 km northeast of the city of Manaus. Two 80 m towers have been operated at the site since 2012, and a 325 m tower is nearing completion in mid-2015. An ecological survey including a biodiversity assessment has been conducted in the forest region surrounding the site. Measurements of micrometeorological and atmospheric chemical variables were initiated in 2012, and their range has continued to broaden over the last few years. The meteorological and micrometeorological measurements include temperature and wind profiles, precipitation, water and energy fluxes, turbulence components, soil temperature profiles and soil heat fluxes, radiation fluxes, and visibility. A tree has been instrumented to measure stem profiles of temperature, light intensity, and water content in cryptogamic covers. The trace gas measurements comprise continuous monitoring of carbon dioxide, carbon monoxide, methane, and ozone at five to eight different heights, complemented by a variety of additional species measured during intensive campaigns (e.g., VOC, NO, NO2, and OH reactivity). Aerosol optical, microphysical, and chemical measurements are being made above the canopy as well as in the canopy space. They include aerosol light scattering and absorption, fluorescence, number and volume size distributions, chemical

  8. Marine cycling of the climate relevant trace gases carbonyl sulfide (OCS) and carbon disulfide (CS2) in the Peruvian upwelling regime

    NASA Astrophysics Data System (ADS)

    Lennartz, Sinikka; von Hobe, Marc; Booge, Dennis; Gonçalves-Araujo, Rafael; Bracher, Astrid; Röttgers, Rüdiger; Ksionzek, Kerstin B.; Koch, Boris P.; Fischer, Tim; Bittig, Henry; Quack, Birgit; Krüger, Kirstin; Marandino, Christa A.

    2017-04-01

    The ocean is a major source for the climate relevant trace gases carbonyl sulfide (OCS) and carbon disulfide (CS2). While the greenhouse gas CS2 quickly oxidizes to OCS in the atmosphere, the atmospheric lifetime of OCS of 2-7 years leads to an accumulation of this gas and makes it the most abundant reduced sulfur compound in the atmosphere. OCS has a counteracting effect on the climate: in the troposphere, it acts as a greenhouse gas causing warming, whereas it also sustains the stratospheric aerosol layer, and thus increases Earth's albedo causing cooling. To better constrain the important oceanic source of these trace gases, the marine cycling needs to be well understood and quantified. For OCS, the production and consumption processes are identified, but photoproduction and light-independent production rates remain to be quantified across different regions. In contrast, the processes that influence the oceanic cycling of CS2 are less well understood. Here we present new data from a cruise to the Peruvian upwelling regime and relate measurements of OCS and CS2 to key parameters, such as dissolved organic sulfur, chromophoric and fluorescent dissolved organic matter. We use a 1D water column model to further constrain their production and degradation rates. A focus is set on the influence of oxygen on the marine cycling of these two gases in oxygen depleted zones in the ocean, which are expected to expand in the future.

  9. Global Monitoring of Atmospheric Trace Gases, Clouds and Aerosols from UV/vis/NIR Satellite Instruments: Currents Status and Near Future Perspectives

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Deutschmann, T.; Frankenberg, C.; Grzegorski, M.; Khokhar, M. F.; Kühl, S.; Marbach, T.; Mies, K.; de Vries, M. Penning; Platt, U.; Pukite, J.; Sanghavi, S.

    2008-04-01

    A new generation of UV/vis/near-IR satellite instruments like GOME (since 1995), SCIAMACHY (since 2002), OMI (since 2004), and GOME-2 (since 2006) allows to measure several important stratospheric and tropospheric trace gases like O3, NO2, OClO, HCHO, SO2, BrO, and H2O as well as clouds and aerosols from space. Because of its extended spectral range, the SCIAMACHY instrument also allows the retrieval of Greenhouse gases (CO2, CH4) and CO in the near IR. Almost all of the tropospheric trace gases are observed by these instruments for the first time. From satellite data it is possible to investigate the temporal and spatial variation. Also different sources can be characterised and quantified. The derived global distributions can serve as input and for the validation of atmospheric models. Here we give an overview on the current status of these new instruments and data products and their recent applications to various atmospheric and oceanic phenomena.

  10. Dating of young groundwater using four anthropogenic trace gases (SF6, SF5CF3, CFC-12 and Halon-1301): methodology and first results.

    PubMed

    Bartyzel, Jakub; Rozanski, Kazimierz

    2016-01-01

    A dedicated, GC-based analytical system is presented which allows detection of four anthropogenic trace gases (SF6, SF5CF3, CFC-12 and Halon-1301) in a single water sample, with detection limits and measurement uncertainties sufficiently low to employ them as quantitative indicators of groundwater age. The gases dissolved in water are extracted in the field using the method based on a dynamic head-space concept. In the laboratory, the investigated gases are cryogenically enriched, separated and measured using an electron capture detector. Reproducibility of the analyses is in the order of 2-5 %. The investigated tracers were measured in several production wells located in the recharge area of an intensively exploited aquifer in southern Poland. While the piston-flow ages of groundwater in the investigated wells revealed internal consistency, they appeared to be generally smaller than the ages derived from time series of tritium content in those wells, interpreted by lumped-parameter models. This difference stems mainly from significantly longer travel times of tritium through the unsaturated zone, when compared to the gaseous tracers being used. The results of this study highlight the benefits of using multiple tracing in quantifying timescales of groundwater flow in shallow aquifer systems.

  11. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - the state and future of the eddy covariance method.

    PubMed

    Baldocchi, Dennis

    2014-12-01

    The application of the eddy covariance flux method to measure fluxes of trace gas and energy between ecosystems and the atmosphere has exploded over the past 25 years. This opinion paper provides a perspective on the contributions and future opportunities of the eddy covariance method. First, the paper discusses the pros and cons of this method relative to other methods used to measure the exchange of trace gases between ecosystems and the atmosphere. Second, it discusses how the use of eddy covariance method has grown and evolved. Today, more than 400 flux measurement sites are operating world-wide and the duration of the time series exceed a decade at dozens of sites. Networks of tower sites now enable scientists to ask scientific questions related to climatic and ecological gradients, disturbance, changes in land use, and management. The paper ends with discussions on where the field of flux measurement is heading. Topics discussed include role of open access data sharing and data mining, in this new era of big data, and opportunities new sensors that measure a variety of trace gases, like volatile organic carbon compounds, methane and nitrous oxide, and aerosols, may yield. © 2014 John Wiley & Sons Ltd.

  12. Biological effects of short, high-level exposure to gases: sulfur dioxide. Phase report, May 1979-May 1980

    SciTech Connect

    Normandy, M.J.; Szlyk, P.; Brienza, B.

    1980-05-01

    This report presents an analysis and synthesis of the available literature concerned with possible health effects of exposures to sulfur dioxide. The U.S. Army is concerned with short, high-level exposures to sulfur dioxide that may exceed present threshold limit values of the American Conference of Governmental Industrial Hygienists (5 ppm, 13 mg/cu m as a time-weighted average. The organ systems primarily affected by exposure to sulfur dioxide are the respiratory tract and the eyes. Certain neurologic effects (including suppression of dark adaptation and decreased light sensitivity) are of unknown significance and warrant further study. Below about 5 ppm, there are no significant irritant or pulmonary effects. Between 5 and 8 ppm (13 and 20.8 mg/cu m), most people will experience coughing, moderate irritation of the eyes, nose, and throat, and bronchoconstriction. At about 10 ppm (26 mg/cu m), moderate to severe eye irritation.

  13. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  14. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  15. Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

    NASA Technical Reports Server (NTRS)

    Wormhoudt, Joda; Shorter, Joanne H.; McManus, J. Barry; Nelson, David D.; Zahniser, Mark S.; Freedman, Andrew; Campbell, Melissa; Chang, Clarence T.; Smith, Frederick D.

    2004-01-01

    The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (COP) from cabin air. Product water vapor measurements from a CDRA test bed at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the COP desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of approx. 40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact. Measured values of total water vapor evolved during a single desorption cycle were as low as 1 mg.

  16. Spatial and Temporal Patterns of Aerosols and Trace Gases over the Chesapeake Bay estuary during the Summer 2011 CBODAQ and DISCOVER-AQ campaigns

    NASA Astrophysics Data System (ADS)

    Tzortziou, M.; Loughner, C. P.; Cede, A.; Abuhassan, N.; Retscher, C.; Herman, J. R.; Holben, B.; Smirnov, A.; Pickering, K. E.; Dickerson, R. R.; Goldberg, D.; Crawford, J. H.; Mannino, A.

    2011-12-01

    Determining the sources, transport and spatio-temporal variability of aerosols, NO2 and other trace gases over coastal regions and the adjacent ocean is critical for improving modeling and prediction of coastal tropospheric air quality. It is also essential for accurate atmospheric correction of satellite coastal ocean-color observations, and for better understanding and modeling atmospheric deposition in coastal ecosystems. Space-based remote sensing provides a powerful tool for monitoring changes in atmospheric composition and transport of pollution over land and the ocean. To enhance the scientific return of satellite remote sensing, obtain a more complete picture of the atmosphere and make measurements relevant to our understanding of coastal ecosystem dynamics, satellite observations must be used in combination with model simulations and detailed ground-based observations. This becomes extremely challenging over coastal waters and the ocean, since ground-based stations that monitor tropospheric air quality come to an abrupt end at the coastlines. Here we present new measurements of aerosols and trace gases (O3 and NO2) over the Chesapeake Bay estuarine waters using ground-based and ship-based instruments. Measurements were obtained as part of the GeoCAPE CBODAQ/DISCOVER-AQ oceanographic and air quality campaigns during July 2011. High resolution model runs were performed using the CMAQ (Community Multi-scale Air Quality) and WRF (Weather Research and Forecasting) models, to examine spatial gradients and temporal variability in aerosols and trace gases over this estuarine environment where land-sea processes such as bay breezes influence the dispersion of pollutants and ozone formation.

  17. Chemical Gradient and Inter-hemispheric Distribution of Selected Organic Trace Gases in the Tropical Tropopause Layer Over the Western Pacific

    NASA Astrophysics Data System (ADS)

    Navarro, M. A.; Atlas, E. L.; Schauffler, S.; Donets, V.; Lueb, R.; Hendershot, R.; Gabbard, S.; Saiz-Lopez, A.; Rodriguez, X.; Kinnison, D. E.; Lamarque, J. F.; Zhu, X.; Pope, L.

    2014-12-01

    Hydrocarbons and short-lived species play an important role in the chemistry of the upper troposphere/lower stratosphere (UT/LS) region. Their distribution, vertical structure and variability provide information about emission sources and transport. Furthermore, the characterization of short-lived organic halogens defines the reactive halogen budget and the conditions for the stratospheric chemistry that affects ozone depletion rates. The chemical composition of the air masses entering the stratosphere depends on the chemical and physical processes that occur during their transitions through the Tropical Tropopause Layer (TTL). It is well known that convective systems effectively transport short-lived trace gases to the UT. However, the overall impact of these processes on the distribution and budget of trace gases is not well known since only high altitude aircraft can reach this region of the atmosphere (>13-14 Km) During the recent field campaign of the Airborne Tropical Tropopause Experiment (ATTREX) and the Convective Transport of Active Species in the Tropics (CONTRAST), carried out in Guam during January-March 2014, the Whole Air Samplers (GWAS and AWAS) collected approximately 1200 samples to examine the tropical convection of the west pacific and its influence on the distribution of the short-lived species from the bottom of the TTL to the lower stratosphere. Measurement of a wide range of hydrocarbons, halocarbons, organic nitrates and solvents were carried out in the field using a combination of gas chromatography with mass selective, flame ionization, and electron capture detectors. In addition, model simulations of selected hydrocarbon and organic trace gases were performed with the chemistry climate model CAM-Chem to evaluate the chemical gradients and inter-hemispheric distributions. In this presentation we will show the gradients and inter-hemispheric distributions from the measurements and compare them with the model results.

  18. Carbon Dioxide Emissions from the Littoral Zone of a Chinese Reservoir, and a Comparison with Other Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Yang, Meng

    2017-04-01

    The continuous increase in the number of reservoirs in countries like China, India and Brazil has raised important questions about the environmental impact of their greenhouse gases emissions. In particular, the littoral zone may be a hotspot for production of greenhouse gases. We investigated the spatiotemporal variation of CO2 flux at the littoral zone of a Chinese reservoir along a wet-to-dry transect from permanent flooded land, seasonal flooded land to non-flooded dry land, using the static dark chamber technique. The mean total respiration was 346 mg m-2 h-1 (52% of which was contributed by shoots) and the rate varied significantly among water levels, months and time of day. We developed a statistical model which shows that temperature and biomass explain 76% of the variation. Flooding could play a positive role in carbon balance if water recession occurs at the time when carbon gains associated with plant growth overcomes the carbon loss of ecosystem. The overall carbon balance was analysed using cumulative greenhouse gases fluxes and biomass, bringing the data of the present study alongside our published data of CH4 and N2O flux which had been investigated simultaneously. CO2 and CH4 emissions correlated significantly under flooding, while N2O did not show significant correlations with CO2 or CH4 irrespective of whether the land was flooded or not. For the growing season, 11.6 g C m-2 was absorbed by the littoral zone. Taking CH4 and N2O into the calculation showed that permanently flooded sites were a source of greenhouse gases, rather than a sink. We emphasise the importance of taking into account all three gases when evaluating the greenhouse gas budgets of wetland ecosystems.

  19. [Determination of trace impurities in high purity titanium dioxide by high resolution inductively coupled plasma mass spectrometry].

    PubMed

    He, Xiao-Mei; Xie, Hua-Lin; Nie, Xi-Du; Tang, You-Gen

    2007-06-01

    An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for the rapid simultaneous determination of twenty six elements (Be, Na, Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Mo, Cd, Sn, Sb, Ba, Ce, Nd, Sm, Pt, Pb and Bi) in high purity titanium dioxide was described. Samples were decomposed by (NH4)2SO4 and H2SO4. Most of the spectral interferences could be avoided by measuring in the high-resolution mode. The matrix effects due to the presence of excess sulfuric acid and Ti were evaluated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits are 0.004-0.63 microg x g(-1), the recovery ratio is 87.6%-106.4%, and the RSD is less than 3.5%. The method is accurate, quick and convenient. It has been applied to the determination of trace impurities in high purity titanium dioxide with satisfactory results.

  20. Preconcentration of trace arsenite and arsenate with titanium dioxide nanoparticles and subsequent determination by silver diethyldithiocarbamate spectrophotometric method.

    PubMed

    Xiao, Yabing; Ling, Jie; Qian, Shahua; Lin, Anqing; Zheng, Wenjie; Xu, Weiya; Luo, Yuxuan; Zhang, Man

    2007-09-01

    A novel method of preconcentration of trace arsenite and arsenate by using titanium dioxide nanoparticles as adsorbent was described. The concentrations of preconcentrated arsenite and arsenate were determined by a silver diethyldithiocarbamate spectrophotometric method without desorption. Batch adsorption experiments were carried out as a function of the pH, contact time, amount of titanium dioxide nanoparticles, and solution volume. In the pH range 5 to 6, adsorption rates of arsenite and arsenate were higher than 98%. The calibration coefficient was 0.9991, and the linear range was 0 to 100 microg/L. The developed method was precise, with the relative standard deviation <5% at concentration level of 10 microg/L, with a detection limit (3sigma, n=6) of 0.44 microg/L. The accuracy of the method for total arsenic was validated by standard reference materials (SRM 3103a) (National Institute of Standards and Technology, Gaithersburg, Maryland). The method was also applied to the analysis of arsenite and arsenate in natural water samples to verify the accuracy. The recovery values remained in a narrow range, from 95 to 103%.

  1. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Treesearch

    S. K. Akagi; R. J. Yokelson; I. R. Burling; S. Meinardi; I. Simpson; D. R. Blake; G. R. McMeeking; A. Sullivan; T. Lee; S. Kreidenweis; S. Urbanski; J. Reardon; D. W. T. Griffith; T. J. Johnson; D. R. Weise

    2013-01-01

    In October-November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas- 5 chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling...

  2. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes [Discussions

    Treesearch

    S. K. Akagi; R. J. Yokelson; I. R. Burling; S. Meinardi; I. Simpson; D. R. Blake; G. R. McMeeking; A. Sullivan; T. Lee; S. Kreidenweis; S. Urbanski; J. Reardon; D. W. T. Griffith; T. J. Johnson; D. R. Weise

    2012-01-01

    In October–November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling...

  3. Application of ion-induced nucleation mass spectrometry in the analysis of trace gases evolved from a polyimide film during the thermal curing stages

    NASA Technical Reports Server (NTRS)

    Smith, A. C.

    1982-01-01

    Trace gases evolved from a polyimide film during its thermal curing stages have been studied using ion-induced nucleation mass spectrometry. The technique involved exposing the test gas sample to a low energy beta source and recording the masses of the ion-induced molecular clusters formed in the reaction chamber. On the basis of the experimentally observed molecular cluster spectra, it has been concluded that the dominant trace component had a molecular weight of 87 atomic mass units. This component has been identified as a molecule of dimethylacetamide (DMAC) which had been used as a solvent in the preparation of the test polyimide specimen. This identification has been further confirmed by comparing the spectra of the test gas sample and the DMAC calibration sample obtained with a conventional mass spectrometer. The advantages of the ion-induced nucleation mass spectrometer versus the conventional mass spectrometer are discussed.

  4. Rain scavenging of soluble gases by non-evaporating and evaporating droplets from inhomogeneous atmosphere

    NASA Astrophysics Data System (ADS)

    Elperin, Tov; Fominykh, Andrew; Krasovitov, Boris

    2013-11-01

    We suggest a one-dimensional model of precipitation scavenging of soluble gaseous pollutants by non-evaporating and evaporating droplets that is valid for arbitrary initial vertical distribution of soluble trace gases in the atmosphere. It is shown that for low gradients of soluble trace gases in the atmosphere, scavenging of gaseous pollutants is governed by a linear wave equation that describes propagation of a wave in one direction. The derived equation is solved by the method of characteristics. Scavenging coefficient and the rates of precipitation scavenging are calculated for wet removal of sulfur dioxide (SO2) and ammonia (NH3) using measured initial distributions of trace gases. It is shown that scavenging coefficient for arbitrary initial vertical distribution of soluble trace gases in the atmosphere is non-stationary and height-dependent. In case of exponential initial distribution of soluble trace gases in the atmosphere, scavenging coefficient for non-evaporating droplets in the region between the ground and the position of a scavenging front is a product of rainfall rate, solubility parameter, and the growth constant in the formula for the initial profile of a soluble trace gas in the atmosphere. This expression yields the same estimate of scavenging coefficient for sulfur dioxide scavenging by rain as field estimates presented in McMahon and Denison (1979). It is demonstrated that the smaller the slope of the concentration profile the higher the value of a scavenging coefficient.

  5. The tropical forest and fire emissions experiment: Trace gases emitted by smoldering logs and dung from deforestation and pasture fires in Brazil

    NASA Astrophysics Data System (ADS)

    Christian, Ted J.; Yokelson, Robert J.; Carvalho, JoãO. A.; Griffith, David W. T.; Alvarado, Ernesto C.; Santos, José C.; Neto, Turibio Gomes Soares; Veras, Carlos A. Gurgel; Hao, Wei Min

    2007-09-01

    Earlier work showed that Amazonian biomass burning produces both lofted and initially unlofted emissions in large amounts. A mobile, Fourier transform infrared spectrometer (FTIR) measured the unlofted emissions of 17 trace gases from residual smoldering combustion (RSC) of logs as part of the Tropical Forest and Fire Emissions Experiment (TROFFEE) during the 2004 Amazonian dry season. The RSC emissions were highly variable and the few earlier RSC measurements lay near the high end of combustion efficiency observed in this study. Fuel consumption by RSC was ˜5% of total for a planned deforestation fire. Much regional RSC probably occurs in the residual woody debris burned during pasture maintenance fires. RSC could increase estimated total fire emissions for the Amazon region by 20-50% for several important VOC. FTIR emissions measurements of burning dung (in a pasture) showed high emission ratios for acetic acid and ammonia to CO (6.6 ± 3.4% and 8.9 ± 2.1%). Large emissions of nitrogen containing trace gases from burning dung and crop waste could mean that biomass burning in India produces more particle mass than previously assumed. Measurements of late-stage kiln emissions suggested that VOC/CO may increase as carbonization is extended. A cook stove emitted many VOC and NH3 far outside the range observed for open wood cooking fires. Enclosed/vented cooking stoves may change the chemistry of the smoke that is emitted.

  6. Detection of Matrix Elements and Trace Impurities in Cu(In, Ga)Se2 Photovoltaic Absorbers Using Surface Analytical Techniques.

    PubMed

    Kim, Min Jung; Lee, Jihye; Kim, Seon Hee; Kim, Haidong; Lee, Kang-Bong; Lee, Yeonhee

    2015-10-01

    Chalcopyrite Cu(In, Ga)Se2 (CIGS) thin films are well known as the next-generation solar cell materials notable for their high absorption coefficient for solar radiation, suitable band gap, and ability for deposition on flexible substrate materials, allowing the production of highly flexible and lightweight solar panels. To improve solar cell performances, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is much needed. In this study, Cu(In, Ga)Se2 thin films were prepared on molybdenum back contacts deposited on soda-lime glass substrates via three-stage evaporation. Surface analyses via AES and SIMS were used to characterize the CIGS thin films and compare their depth profiles. We determined the average concentration of the matrix elements, Cu, In, Ga, and Se, using ICP-AES, XRF, and EPMA. We also obtained depth profiling results using TOF-SIMS, magnetic sector SIMS and AES, and APT, a sub-nanometer resolution characterization technique that enables three-dimensional elemental mapping. The SIMS technique, with its high detection limit and ability to obtain the profiles of elements in parallel, is a powerful tool for monitoring trace elements in CIGS thin films. To identify impurities in a CIGS layer, the distribution of trace elements was also observed according to depth by SIMS and APT.

  7. TRACE GAS CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    EPA Science Inventory

    Seventeen headwater watersheds within the SFBR watershed ranging from 0.5 to 3.4 km2 were selected. We have been monitoring concentrations of the trace gases nitrous oxide, methane, and carbon dioxide, and other parameters (T, conductivity, dissolved oxygen, pH, nutrients, flow r...

  8. TRACE GAS CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    EPA Science Inventory

    Seventeen headwater watersheds within the SFBR watershed ranging from 0.5 to 3.4 km2 were selected. We have been monitoring concentrations of the trace gases nitrous oxide, methane, and carbon dioxide, and other parameters (T, conductivity, dissolved oxygen, pH, nutrients, flow r...

  9. Where do California's greenhouse gases come from?

    ScienceCinema

    Fischer, Marc

    2016-07-12

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  10. Using the full IASI spectrum for the physical retrieval of temperature, H2O, HDO, O3, minor and trace gases

    NASA Astrophysics Data System (ADS)

    Serio, C.; Blasi, M. G.; Liuzzi, G.; Masiello, G.; Venafra, S.

    2017-02-01

    IASI (Infrared Atmospheric Sounder Interferometer) is flying on the European MetOp series of weather satellites. Besides acquiring temperature and humidity data, IASI also observes the infrared emission of the main minor and trace atmospheric components with high precision. The retrieval of these gases would be highly beneficial to the efforts of scientists monitoring Earths climate. IASI retrieval capability and algorithms have been mostly driven by Numerical Weather Prediction centers, whose limited resources for data transmission and computing is hampering the full exploitation of IASI information content. The quest for real or nearly real time processing has affected the precision of the estimation of minor and trace gases, which are normally retrieved on a very coarse spatial grid. The paper presents the very first retrieval of the complete suite of IASI target parameters by exploiting all its 8461 channels. The analysis has been exemplified for sea surface and the target parameters will include sea surface temperature, temperature profile, water vapour and HDO profiles, ozone profile, total column amount of CO, CO2, CH4, N2O, SO2, HNO3, NH3, OCS and CF4. Concerning CO2, CH4 and N2O, it will be shown that their colum amount can be obtained for each single IASI IFOV (Instantaneous Field of View) with a precision better than 1-2%, which opens the possibility to analyze, e.g., the formation of regional patterns of greenhouse gases. To assess the quality of the retrieval, a case study has been set up which considers two years of IASI soundings over the Hawaii, Manua Loa validation station.

  11. How do improved injection heights and trace gas emission factors from biomass burning affect the performance of a global model against satellite and ground-based observations of trace gases?

    NASA Astrophysics Data System (ADS)

    Stavrakou, Trissevgeni; Müller, Jean-Francois; Bauwens, Maite; Sofiev, Mikhail; van Leeuwen, Thijs; van der Werf, Guido; De Smedt, Isabelle; Van Roozendael, Michel; George, Maya; Clerbaux, Cathy

    2014-05-01

    Vegetation fires are major contributors of trace gases and aerosols in the atmosphere affecting its composition and chemistry at different scales. The accurate quantification of fire emissions and their potential atmospheric impact is hampered by the strong spatiotemporal variability of this source, despite significant progress achieved over the last years in the development of fire emission inventories using fire detection and burned area mapping from satellite, as well as new constraints from inverse modelling studies of atmospheric trace gases. This study is motivated by recent developments regarding (i) the derivation of vertical profile of smoke released by wildland fires, and (ii) the spatiotemporal variability in biomass burning emission factors, both representing important sources of uncertainty in biomass burning emissions. More specifically, monthly 3D global maps of the injected smoke fraction in the atmosphere, deduced from records of active fires from the MODIS instrument combined with a plume-top height parameterization (Sofiev et al. 2013), exhibit strong seasonal variations which are expected to be more representative of real atmospheric conditions than a unique injection profile as currently used in global models. Furthermore, accounting for the variability in space and time of trace gas emission factors from biomass burning (van Leeuwen et al. 2011, 2013), rather than static emission factors as in most studies, is a more physically plausible hypothesis owing to the strong spatiotemporal variability in different environmental parameters influencing the emission factors. Here, we use the IMAGES global atmospheric model to evaluate the impact of improved injection heights and trace gas emission factors from biomass burning. To this purpose, different scenarios are designed with pyrogenic emissions emitted either at the surface, or according to the static latitude-dependent AEROCOM profile (Dentener et al. 2006), or using the injection heights of

  12. Trace Gas Emissions Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Trace Gas Emissions are organized as Fossil-Fuel CO2 Emissions, Land-Use CO2 Emissions, Soil CO2 Emissions, and Methane.

  13. Relative and absolute emissions of anthropogenic trace gases around the US based on paired atmospheric observations of fossil fuel CO2 from 14C

    NASA Astrophysics Data System (ADS)

    Miller, J. B.; Lehman, S.; Montzka, S. A.; Andrews, A. E.; Sweeney, C.; Miller, B. R.; Wolak, C.; Dlugokencky, E. J.; Southon, J. R.; Turnbull, J. C.; LaFranchi, B. W.; Guilderson, T. P.; Fischer, M. L.; Tans, P. P.

    2012-12-01

    The small radiocarbon fraction of atmospheric CO2 (~1:10^12 14C:C) has proven to be an ideal tracer for the fossil fuel derived component of observed CO2 (Cff) over large industrialized land areas. A growing number of 14CO2 measurements are now being made in air sampled from a network of tall towers and airborne profiling sites around the US alongside measurements of CO2, CO, CH4, N2O, SF6, and a large suite of halo- and hydro-carbons. Cff paired with boundary-layer enhancements of more than 20 other anthropogenic gases measured in the same samples allow us to determine apparent emissions ratios for each gas with respect to Cff (where apparent ratios refer to those at the time of observation rather than at the time of emission). Here we compare seasonal and spatial variability of apparent emissions ratios for regions of significant urban and industrial emissions around the US, including sites in California, Texas, the mid-west, south-east and north-east . Statistically significant and coherent spatial and seasonal patterns in apparent emissions ratios are determined for many gases over multiple years. These can in turn be combined with appropriate spatial footprints over which the emissions of fossil fuel derived CO2 has been independently determined based on inventories and process models in order to estimate absolute emissions of the correlate gases in different regions, following simple scaling methods we have outlined previously [Miller et al. 2012, J. Geophys. Res., doi:10.1029/2011JD017048]. This approach provides some of the first reliable "top down", observationally-based emissions estimates for these gases, many of which influence climate, air quality and stratospheric ozone. Unlike most "bottom up" inventories, our estimates of absolute trace gas emissions are accompanied by quantifiable estimates of uncertainty.

  14. Trace element geochemistry of volcanic gases and particles from 1983--1984 eruptive episodes of Kilauea volcano

    SciTech Connect

    Crowe, B.M.; Finnegan, D.L.; Zoller, W.H.; Boynton, W.V.

    1987-12-10

    Compositional data have been obtained for volcanic gases and particles collected from fume emitted at the Pu'u O'o vent on the east rift zone of Kilauea volcano. The samples were collected by pumping fume through a filter pack system consisting of a front stage particulate filter followed by four base-treated filters (/sup 7/LiOH). Particles and condensed phases are trapped on the particulate filter, and acidic gases are collected on the treated filters. The filters are analyzed for 30 elements by instrumental neutron activation analysis. Fume samples were collected from the Pu'u O'o vent for two eruptive episodes: (1) 7 days after episode 11 (cooling vent samples) and (2) the stage of episode 13 (active vent samples).

  15. Analysis of minerals containing dissolved traces of the fluid phase components water and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann

    1991-01-01

    Substantial progress has been made towards a better understanding of the dissolution of common gas/fluid phase components, notably H2O and CO2, in minerals. It has been shown that the dissolution mechanisms are significantly more complex than currently believed. By judiciously combining various solid state analytical techniques, convincing evidence was obtained that traces of dissolved gas/fluid phase components undergo, at least in part, a redox conversion by which they split into reduced H2 and and reduced C on one hand and oxidized oxygen, O(-), on the other. Analysis for 2 and C as well as for any organic molecules which may form during the process of co-segregation are still impeded by the omnipresent danger of extraneous contamination. However, the presence of O(-), an unusual oxidized form of oxygen, has been proven beyond a reasonable doubt. The presence of O(-) testifies to the fact that a redox reaction must have taken place in the solid state involving the dissolved traces of gas/fluid phase components. Detailed information on the techniques used and the results obtained are given.

  16. Trace elemental analysis of titanium dioxide pigments and automotive white paint fragments for forensic examination using high-energy synchrotron radiation x-ray fluorescence spectrometry.

    PubMed

    Nishiwaki, Yoshinori; Watanabe, Seiya; Shimoda, Osamu; Saito, Yasuhiro; Nakanishi, Toshio; Terada, Yasuko; Ninomiya, Toshio; Nakai, Izumi

    2009-05-01

    High-energy synchrotron radiation x-ray fluorescence spectrometry (SR-XRF) utilizing 116 keV x-rays was used to characterize titanium dioxide pigments (rutile) and automotive white paint fragments for forensic examination. The technique allowed analysis of K lines of 9 trace elements in 18 titanium dioxide pigments (rutile), and 10 trace elements in finish coat layers of seven automotive white paint fragments. High-field strength elements (HFSE) were found to strongly reflect the origin of the titanium dioxide (TiO(2)) pigments, and could be used as effective parameters for discrimination and classification of the pigments and paint fragments. A pairwise comparison of the finish coat layers of seven automotive white paint fragments was performed. The trace elements in the finish coat layers detected by the high-energy SR-XRF were especially effective for identification. By introducing the trace element information of primer and electrocoat layers, all the automotive white paint fragments could be discriminated by this technique.

  17. Determination of trace impurities in titanium dioxide by slurry sampling electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dong, Huang Mao; Krivan, Viliam; Welz, Bernhard; Schlemmer, Gerhard

    1997-10-01

    A slurry sampling electrothermal atomic absorption spectrometry method for the determination of Al, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Tl and Zn in powdered titanium dioxide is described. The behaviour of the titanium matrix in the atomizer and its interferences with the determination of Al, Fe, Co, Ni and Mn were studied. A tungsten carbide modified graphite tube was used to improve the signal shape and the repeatability for the determination of Fe. For all elements, except for Cd and Pb, quantification by a calibration curve established with aqueous standards was possible. No chemical modifier was used throughout in order to minimize contamination. For the contamination risk elements such as Ca, Fe, K, Mg, Na and Zn, the slurry sampling technique allows to achieve limits of detection (3 σ of the blank) 5-20 times lower than the solution technique, resulting for these elements in values of 1, 3, 0.5, 0.5, 0.9 and 2 ng g -1, respectively, and, generally being in the range of 0.2 ng g -1 (Cd) to 10 ng g -1 (Al and Tl). The results obtained by the slurry sampling technique are compared with those of other independent methods including four solution methods and neutron activation analysis.

  18. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    USGS Publications Warehouse

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side

  19. Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States

    Treesearch

    I. R. Burling; R. J. Yokelson; S. K. Akagi; Shawn Urbanski; Cyle Wold; D. W. T. Griffith; T. J. Johnson; J. Reardon; D. R. Weise

    2011-01-01

    We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada 5 mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass...

  20. Organic Halogen and Related Trace Gases in the Tropical Atmosphere: Results from Recent Airborne Campaigns Over the Pacific

    NASA Astrophysics Data System (ADS)

    Atlas, E. L.; Navarro, M. A.; Donets, V.; Schauffler, S.; Lueb, R.; Hendershot, R.; Gabbard, S.; Hornbrook, R. S.; Apel, E. C.; Riemer, D. D.; Pan, L.; Salawitch, R. J.; Nicely, J. M.; Montzka, S. A.; Miller, B.; Moore, F. L.; Elkins, J. W.; Hintsa, E. J.; Campos, T. L.; Quack, B.; Zhu, X.; Pope, L.

    2014-12-01

    Organic halogen gases, especially containing bromine and iodine, play a significant role as precursors to active halogen chemistry and ozone catalytic loss. Much of the reactive organic halogen originates from biological processes in the surface ocean, which can be quite variable by season and location. The tropics and coastal margins are potentially important sources that are being examined. The recent coordinated CONTRAST/ATTREX/CAST missions were conducted in the Western Tropical Pacific, a region that is a major transport pathway for tropospheric air entering the stratosphere. One of the goals of the missions was to identify sources, distributions, and transport of organic halogens from the ocean surface into the tropical lower stratosphere. The missions were conducted during the NH winter season, Jan-Feb, 2014. In this presentation, we will discuss the distributions and variability of organic halogen gases in the study region and will examine the input of organic halogen species into the Tropical Tropopause Layer (TTL). Comparison with other tracers, such as methyl nitrate and NMHC, will help identify source regions for these gases. We will focus on the measurements obtained in the CONTRAST and ATTREX missions with data from in-situ GC/MS measurements and whole air samples collected on the NSF GV and NASA Global Hawk aircraft. Comparisons with other recent airborne campaigns, such as HIPPO and TC4, and with several ship-based studies will provide an additional context for evaluating the variability of organic halogen species in the tropical atmosphere and their role in transporting reactive halogen compounds into the UT/LS.

  1. Linking emissions of fossil fuel CO2 and other anthropogenic trace gases using atmospheric 14CO2

    NASA Astrophysics Data System (ADS)

    Miller, John B.; Lehman, Scott J.; Montzka, Stephen A.; Sweeney, Colm; Miller, Benjamin R.; Karion, Anna; Wolak, Chad; Dlugokencky, Ed J.; Southon, John; Turnbull, Jocelyn C.; Tans, Pieter P.

    2012-04-01

    Atmospheric CO2 gradients are usually dominated by the signal from net terrestrial biological fluxes, despite the fact that fossil fuel combustion fluxes are larger in the annual mean. Here, we use a six year long series of 14CO2 and CO2 measurements obtained from vertical profiles at two northeast U.S. aircraft sampling sites to partition lower troposphere CO2 enhancements (and depletions) into terrestrial biological and fossil fuel components (Cbio and Cff). Mean Cff is 1.5 ppm, and 2.4 ppm when we consider only planetary boundary layer samples. However, we find that the contribution of Cbio to CO2 enhancements is large throughout the year, and averages 60% in winter. Paired observations of Cff and the lower troposphere enhancements (Δgas) of 22 other anthropogenic gases (CH4, CO, halo- and hydrocarbons and others) measured in the same samples are used to determine apparent emission ratios for each gas. We then scale these ratios by the well known U.S. fossil fuel CO2 emissions to provide observationally based estimates of national emissions for each gas and compare these to "bottom up" estimates from inventories. Correlations of Δgas with Cff for almost all gases are statistically significant with median r2for winter, summer and the entire year of 0.59, 0.45, and 0.42, respectively. Many gases exhibit statistically significant winter:summer differences in ratios that indicate seasonality of emissions or chemical destruction. The variability of ratios in a given season is not readily attributable to meteorological or geographic variables and instead most likely reflects real, short-term spatiotemporal variability of emissions.

  2. Spatial Variation of Methane and Other Trace Gases Detected on Mars: Interpretation with a General Circulation Model

    NASA Technical Reports Server (NTRS)

    Forget, F.; Haberle, B.; Montmessin, F.

    2005-01-01

    Several teams have recently reported the detection of methane in the Martian atmosphere [1-3]. Although the detection is at the limit of the instrument capacities, one of the most surprising findings by some of these teams is the apparent strong spatial variations observed in spite of the fact that a gas like methane was expected to have a relatively long lifetime in the Martian atmosphere and thus be well mixed. To better quantitatively understand how such spatial variations can form on Mars, we have performed multiple realistic 3D general circulation model simulations in which gases with different sources, lifetime or sinks are released and transported in the Martian atmosphere.

  3. High resolution imaging Fourier transform spectrometer with no moving components for the measurement of atmospheric trace gases

    NASA Astrophysics Data System (ADS)

    Mortimer, H.

    2014-12-01

    A high resolution Static Imaging Fourier Transform Spectrometer, SIFTS, with no moving parts has been developed for the detection of atmospheric gases. The instrument has been shown to have high spectral resolution (4 cm-1) and temporal resolution (10kHz) resolution in both the mid and near infrared and moderate spectral resolution (14cm-1) in the visible. This instrument has been developed for the remote sensing and in-situ measurements of atmospheric gases. It has been identified that due to the low mass and compact size of the instrument system, that the SIFTS could be deployed as a remote sensing instrument onboard a Earth Observation satellite or Unmanned Aerial Vehicle (UAV), or conversely as a radiosonde instrument for in-situ measurements of atmospheric gases. The technique is based on a static optical configuration whereby light is split into two paths and made to recombine along a focal plane producing an interference pattern. The spectral information is returned using a detector array to digitally capture the interferogram which can then be processed into a spectrum by applying a Fourier transform. As there are no moving components, the speed of measurement is determined by the frame rate of the detector array. Thus, this instrument has a temporal advantage over common Michelson FTIR instruments. Using a high speed Toshiba CCD line array, sensitive over the spectral region of 400 - 1100nm, spectra have been recorded at a rate of one every 100 microseconds. Using an uncooled microbolometer infrared detector array, sensitive over the spectral region of 2 to 15μm, the gases NH3, O3 and CH4 have been used to demonstrate the sensitivity of the SIFTS instrument. It has been shown that the Signal to Noise of the SIFTSMIR is >1200 using an integration time of 77msec. The novel optical design has reduced the optics to only 3 optical components, and the detector array, to generate and measure the interferogram. The experimental performance of the SIFTS instrument

  4. Turbulent fluxes and transfer of trace gases from ship-based measurements during TexAQS 2006

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey A.; Bariteau, Ludovic; Fairall, Christopher W.; Hare, Jeffrey E.; Helmig, Detlev; Hueber, Jacques; Lang, E. Kathrin

    2011-07-01

    Air-sea/land turbulent fluxes of momentum, sensible heat, water vapor, carbon dioxide, and ozone are discussed on the basis of eddy covariance measurements made aboard the NOAA R/V Ronald H. Brown during the Texas Air Quality Study (TexAQS) in August-September 2006. The TexAQS 2006 field campaign focused on air pollution meteorology associated primarily with ozone and aerosol transport in the Houston/Galveston region and the nearby coastal zone. The ship-based complement of instrumentation was used for the boundary layer measurements over water (the Gulf of Mexico and various harbors/bay areas) and "over land" (specifically, 80 km inside the Houston Ship Channel). In this study we focus on direct comparisons of TexAQS 2006 flux observations with the Coupled Ocean-Atmosphere Response Experiment (COARE) bulk flux algorithm to investigate possible coastal and urban area influences. It is found that the average neutral drag coefficient can be about an order of magnitude larger over very rough urban areas than over the sea surface. However, a similar effect was not observed for the scalar transfer; that is, the neutral Stanton and Dalton numbers do not change significantly over different footprint surfaces. Our data suggest that the TexAQS 2006 region was generally a sink for surface ozone whether over water or over land. The turbulent flux of carbon dioxide was mostly negative (uptake by the surface) for measurements over waters of the Gulf of Mexico and some bays, but the flux becomes positive (release to the air) for inland regions. Both ozone and carbon dioxide turbulent fluxes above land were larger in magnitude compared to the over water measurements.

  5. Source gases: Concentrations, emissions, and trends

    NASA Technical Reports Server (NTRS)

    Fraser, Paul J.; Harriss, Robert; Penkett, Stuart A.; Makide, Yoshihiro; Sanhueza, Eugenio; Alyea, Fred N.; Rowland, F. Sherwood; Blake, Don; Sasaki, Toru; Cunnold, Derek M.

    1991-01-01

    Source gases are defined as those gases that influence levels of stratospheric ozone (O3) by transporting species containing halogen, hydrogen, and nitrogen to the stratosphere. Examples are the CFC's, methane (CH4), and nitrous oxide (N2O). Other source gases that also come under consideration in an atmospheric O3 context are those that are involved in the O3 or hydroxyl (OH) radical chemistry of the troposphere. Examples are CH4, carbon monoxide (CO), and nonmethane hydrocarbons (NMHC's). Most of the source gases, along with carbon dioxide (CO2) and water vapor (H2O), are climatically significant and thus affect stratospheric O3 levels by their influence on stratospheric temperatures. Carbonyl sulphide (COS) could affect stratospheric O3 through maintenance of the stratospheric sulphate aerosol layer, which may be involved in heterogeneous chlorine-catalyzed O3 destruction. The previous reviews of trends and emissions of source gases, either from the context of their influence on atmospheric O3 or global climate change, are updated. The current global abundances and concentration trends of the trace gases are given in tabular format.

  6. Note: A dual temperature closed loop batch reactor for determining the partitioning of trace gases within CO{sub 2}-water systems

    SciTech Connect

    Warr, Oliver Ballentine, Christopher J.; Rochelle, Christopher A.; Masters, Andrew J.

    2016-01-15

    An experimental approach is presented which can be used to determine partitioning of trace gases within CO{sub 2}-water systems. The key advantages of this system are (1) The system can be isolated with no external exchange, making it ideal for experiments with conservative tracers. (2) Both phases can be sampled concurrently to give an accurate composition at each phase at any given time. (3) Use of a lower temperature flow loop outside of the reactor removes contamination and facilitates sampling. (4) Rapid equilibration at given pressure/temperature conditions is significantly aided by stirring and circulating the water phase using a magnetic stirrer and high-pressure liquid chromatography pump, respectively.

  7. Remote open-path cavity-ringdown spectroscopic sensing of trace gases in air, based on distributed passive sensors linked by km-long optical fibers.

    PubMed

    He, Yabai; Jin, Chunjiang; Kan, Ruifeng; Liu, Jianguo; Liu, Wenqing; Hill, Julian; Jamie, Ian M; Orr, Brian J

    2014-06-02

    A continuous-wave, rapidly swept cavity-ringdown spectroscopic technique has been developed for localized atmospheric sensing of trace gases at remote sites. It uses one or more passive open-path optical sensor units, coupled by optical fiber over distances of >1 km to a single transmitter/receiver console incorporating a photodetector and a swept-frequency diode laser tuned to molecule-specific near-infrared wavelengths. Ways to avoid interference from stimulated Brillouin scattering in long optical fibers have been devised. This rugged open-path system, deployable in agricultural, industrial, and natural atmospheric environments, is used to monitor ammonia in air. A noise-limited minimum detectable mixing ratio of ~11 ppbv is attained for ammonia in nitrogen at atmospheric pressure.

  8. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-01

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud-aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is anticipated

  9. Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K{sub 2}CO{sub 3}-on-carbon

    SciTech Connect

    Hayashi, Hiromu; Taniuchi, Jun; Furuyashiki, Nobuyoshi; Sugiyama, Shigeru; Hirano, Shinichi; Shigemoto, Naoya; Nonaka, Takazumi

    1998-01-01

    An efficient chemical absorption method capable of cyclic fixed-bed operations under moist conditions for the recovery of carbon dioxide from flue gases has been proposed employing K{sub 2}CO{sub 3}-on-carbon. Carbon dioxide was chemically absorbed by the reaction K{sub 2}CO{sub 3} + CO{sub 2} + H{sub 2}O {r_equilibrium} 2KHCO{sub 3} to form potassium hydrogen carbonate. Moisture, usually contained as high as 8--17% in flue gases, badly affects the capacity of conventional adsorbents such as zeolites, but the present technology has no concern with moisture; water is rather necessary in principle as shown in the equation above. Deliquescent potassium carbonate should be supported on an appropriate porous material to adapt for fixed-bed operations. After breakthrough of carbon dioxide, the entrapped carbon dioxide was released by the decomposition of hydrogen carbonate to shift the reaction in reverse on flushing with steam, which could be condensed by cooling to afford carbon dioxide in high purity. Among various preparations of alkaline-earth carbonates (X{sub 2}CO{sub 3}, X = Li, Na, K) on porous materials, K{sub 2}CO{sub 3}-on-activated carbon revealed excellent properties for the present purpose. Preparation and characterization of K{sub 2}CO{sub 3}-on-carbon and illustrative fixed-bed operations under flue gas conditions in laboratory columns and a bench-scale plant are described.

  10. Trace analysis of impurities in bulk gases by gas chromatography-pulsed discharge helium ionization detection with "heart-cutting" technique.

    PubMed

    Weijun, Yao

    2007-10-12

    A method has been developed for the detection of low-nL/L-level impurities in bulk gases such as H(2), O(2), Ar, N(2), He, methane, ethylene and propylene, respectively. The solution presented here is based upon gas chromatography-pulsed discharge helium ionization detection (GC-PDHID) coupled with three two-position valves, one two-way solenoid valve and four packed columns. During the operation, the moisture and heavy compounds are first back-flushed via a pre-column. Then the trace impurities (except CO(2) which is diverted to a separate analytical column for separation and detection) together with the matrix enter onto a main column, followed by the heart-cut of the impurities onto a longer analytical column for complete separation. Finally the detection is performed by PDHID. This method has been applied to different bulk gases and the applicability of detecting impurities in H(2), Ar, and N(2) are herewith demonstrated. As an example, the resulting detection limit of 100 nL/L and a dynamic range of 100-1000 nL/L have been obtained using an Ar sample containing methane.

  11. Use of molecular modeling to determine the interaction and competition of gases within coal for carbon dioxide sequestration

    SciTech Connect

    Jeffrey D. Evanseck; Jeffry D. Madura; Jonathan P. Mathews

    2006-04-21

    Molecular modeling was employed to both visualize and probe our understanding of carbon dioxide sequestration within a bituminous coal. A large-scale (>20,000 atoms) 3D molecular representation of Pocahontas No. 3 coal was generated. This model was constructed based on a the review data of Stock and Muntean, oxidation and decarboxylation data for aromatic clustersize frequency of Stock and Obeng, and the combination of Laser Desorption Mass Spectrometry data with HRTEM, enabled the inclusion of a molecular weight distribution. The model contains 21,931 atoms, with a molecular mass of 174,873 amu, and an average molecular weight of 714 amu, with 201 structural components. The structure was evaluated based on several characteristics to ensure a reasonable constitution (chemical and physical representation). The helium density of Pocahontas No. 3 coal is 1.34 g/cm{sup 3} (dmmf) and the model was 1.27 g/cm{sup 3}. The structure is microporous, with a pore volume comprising 34% of the volume as expected for a coal of this rank. The representation was used to visualize CO{sub 2}, and CH{sub 4} capacity, and the role of moisture in swelling and CO{sub 2}, and CH{sub 4} capacity reduction. Inclusion of 0.68% moisture by mass (ash-free) enabled the model to swell by 1.2% (volume). Inclusion of CO{sub 2} enabled volumetric swelling of 4%.

  12. A mobile CO{sub 2}-lidar system for the monitoring of hazardous trace gases in industrial areas

    SciTech Connect

    Stuffler, T.; Klein, V.; Resch, M.

    1995-12-31

    A compact CO{sub 2}-lidar system for the detection of atmospheric pollutants is operating in the mid infrared fingerprint region of organic molecules. The detection limits are set by the system stability and the influence of the atmosphere on the return signal of the lidar. Absorption coefficients of specific gases were measured and compared to the literature. In a first step a comparison of the measurement results in the laboratory with those of a FTIR spectrometer was carried out. The FTIR spectrometer, compared to the lidar system, offers the advantage of the wide coverage of the spectrum (2--15 {micro}m), but the usable range is restricted to a maximum distance of about 500m. The lidar-system can be used for distances of up to 5 km, but is limited on a number of discrete wavelengths.

  13. Microphysical and Chemical Processes Affecting Wet Removal of Soluble Trace Gases in Deep Convection Observed over the Central U.S.

    NASA Astrophysics Data System (ADS)

    Bela, M.; Barth, M. C.; Toon, O. B.; Fried, A.; Homeyer, C. R.; Morrison, H.; Cummings, K.; Li, Y.; Pickering, K. E.; Allen, D. J.; Yang, Q.; Wennberg, P. O.; Crounse, J.; St Clair, J. M.; Teng, A.; O'Sullivan, D. W.; Huey, L. G.; Chen, D.; Liu, X.; Blake, D. R.; Blake, N. J.; Apel, E. C.; Hornbrook, R. S.; Flocke, F. M.; Campos, T. L.; Diskin, G. S.; Mecikalski, R.; Carey, L. D.; Biggerstaff, M. I.; Betten, D.; Alford, A. A.; Ziegler, C.

    2016-12-01

    Improved understanding of processes affecting net deep convective transport of CH2O, peroxides, and other soluble trace gases is important to predicting the production of ozone (O3) in the upper troposphere, where ozone affects radiative flux and downwind air quality. We examine wet scavenging and ice retention of soluble trace gases in storms observed during the Deep Convective Clouds and Chemistry (DC3) field campaign. We perform high-resolution simulations (dx = 600m-3km) with the Weather Research and Forecasting model with Chemistry (WRF-Chem) of a severe storm in Oklahoma, an airmass storm in Alabama, and a mesoscale convective system (MCS) over Arkansas/Missouri/Illinois/Mississippi. Sensitivity simulations are conducted varying the fractions of soluble gases retained in ice (rf) when liquid water is transformed into frozen precipitation. Scavenging efficiencies (SEs) are calculated from the model and aircraft observations. Observed scavenging efficiencies for CH3OOH, SO2, CH2O, H2O2, and HNO3 do not differ much among the storms, despite observed liquid water contact times spanning 5-30 minutes. In the severe and MCS storms, more CH3OOH than CH2O is removed, despite the lower Henry's Law solubility of CH3OOH. WRF-Chem trajectories are utilized to examine the relative impacts of aqueous and gas phase chemistry and microphysical scavenging on soluble species removal. HNO3 removal was more sensitive to the rf value in the airmass than severe and MCS storm simulations. Similar rf values were required in all three storm simulations for CH3OOH (rf = 0.5-1) and CH2O and H2O2 (rf = 0-0.25) to produce SEs consistent with observations. However, twice as much surface precipitation was produced in the severe and MCS storm simulations than observed, and graupel volume was overestimated in the airmass and MCS storm simulations. Thus, the rf values may be higher for the airmass and MCS storms if the simulations produced the correct amount of mixed-phase precipitation. The

  14. Model studies of short-term variations induced in trace gases by particle precipitation in the mesosphere and lower thermosphere

    NASA Astrophysics Data System (ADS)

    Fytterer, T.; Bender, S.; Berger, U.; Nieder, H.; Sinnhuber, M.; Wissing, J. M.

    2016-10-01

    The 3-D global chemistry and transport model (3dCTM) was used to investigate NO, OH, and O3 from January 2002 to May 2010 between 60 km and 133 km. Their daytime and nighttime mean zonal means (55°-75° geomagnetic latitude) were analyzed with respect to short-term variations associated with particle precipitation. The corresponding ionization rates were derived from the 3-D atmospheric ionization module Osnabrück (AIMOS), which is based on particle flux measurements. The trace gas variations with respect to their background were investigated by using a superposed epoch analysis. The 27 day signature associated with particle precipitation is found in NO, while it is only indicated in OH and O3 during winter. A varying solar spectrum associated with the 11 year solar cycle causes modifications of this signal up to 10%, while the main patterns are conserved. Published observations show a clear 27 day signal, qualitatively agreeing with the model results at altitudes >70 km except for O3 in Northern Hemisphere winter. Further differences occur with respect to the magnitude of the trace gas variations, primarily attributed to the different trace gas background and dynamical variations of the background atmosphere. Absolute OH variations are overestimated by the 3dCTM during winter, while the opposite is true for O3. These differences might originate from an unknown offset in AIMOS, incorrect chemical reaction rates, a different background of H2O and O3, and the model dynamics. However, their nonlinear relationship and their altitude of largest response are qualitatively captured in Southern Hemisphere winter.

  15. Advances in the Hyperspectral Thermal Emission Spectrometer (HyTES) and Application to the Remote Sensing of Fires and Trace Gases

    NASA Astrophysics Data System (ADS)

    Mihaly, J. M.; Johnson, W. R.; Hulley, G. C.; Hook, S. J.; Eng, B. T.

    2014-12-01

    The Hyperspectral Thermal Emission Spectrometer (HyTES) is an airborne imaging spectrometer developed by JPL and currently configured on the Twin Otter aircraft. The instrument utilizes 256 spectral channels between 7.5 and 12 micrometers in the Earth observing thermal infrared range of the electromagnetic spectrum and 512 spatial pixels cross-track. Given a 50 degree full angle field of view and the relatively low flight altitude of the Twin Otter aircraft, the instrument provides a wide swath with high spatial resolution (approximately 1.5 m at 1 km AGL). The available spatial and spectral resolution of HyTES represents a significant advance in airborne TIR remote sensing capability and considerable improvements to instrument performance have been made between the 2013 and 2014 science flights. The TIR wavelength range enables a wide range of remote sensing applications, including the detection of atmospheric trace gases (such as SO2, NH3, H2S, and N2O). The current performance, overall science objectives, and recent trace gas observations of the HyTES instrument will be presented. Results from a 2014 flight over a southern Utah wildfire will be discussed. Current work involving the miniaturization of the HyTES instrument for future deployment in the ER-2 high-altitude aircraft will also be presented.

  16. Observations of organic trace gases during ITCT: Characterization of sources, background, and long-range transport to the US West coast and eastern Pacific atmosphere

    NASA Astrophysics Data System (ADS)

    Atlas, E.; Donnelly, S.; Stroud, V.; Schauffler, S.; Johnson, K.; Schwaller, N.; Hubler, G.; Parrish, D.; Holloway, J.; Trainer, M.

    2002-12-01

    The NOAA ITCT (Intercontinental Transport and Chemical Transformation) mission examined the processes that impact the chemical composition of the atmosphere in the eastern North Pacific Ocean and along the West Coast of the United States. The mission took place during April - May, 2002, when long-range transport to the US West Coast from downwind sources in Asia and beyond is most favorable. As part of the atmospheric chemistry payload on the NOAA P3 aircraft, whole air samples were collected for analysis of a variety of organic trace gases, including methane, NMHC, halocarbons, organic nitrates, and selected sulfur species. Mission flight tracks were designed to examine regions characteristic of the background atmosphere, and regions impacted by specific point sources, larger urban sources, and long-range transport. In this presentation we summarize the organic trace gas measurements and relationships from the whole air samples, characterize signatures of emissions from the west coast urban areas, and identify signatures of long-range trans-Pacific transport.

  17. EDDY RESOLVING NUTRIENT ECODYNAMICS IN THE GLOBAL PARALLEL OCEAN PROGRAM AND CONNECTIONS WITH TRACE GASES IN THE SULFUR, HALOGEN AND NMHC CYCLES

    SciTech Connect

    S. CHU; S. ELLIOTT

    2000-08-01

    Ecodynamics and the sea-air transfer of climate relevant trace gases are intimately coupled in the oceanic mixed layer. Ventilation of species such as dimethyl sulfide and methyl bromide constitutes a key linkage within the earth system. We are creating a research tool for the study of marine trace gas distributions by implementing coupled ecology-gas chemistry in the high resolution Parallel Ocean Program (POP). The fundamental circulation model is eddy resolving, with cell sizes averaging 0.15 degree (lat/long). Here we describe ecochemistry integration. Density dependent mortality and iron geochemistry have enhanced agreement with chlorophyll measurements. Indications are that dimethyl sulfide production rates must be adjusted for latitude dependence to match recent compilations. This may reflect the need for phytoplankton to conserve nitrogen by favoring sulfurous osmolytes. Global simulations are also available for carbonyl sulfide, the methyl halides and for nonmethane hydrocarbons. We discuss future applications including interaction with atmospheric chemistry models, high resolution biogeochemical snapshots and the study of open ocean fertilization.

  18. Trace gas emissions from chaparral and boreal forest fires

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggan, Philip J.; Stocks, Brian J.; Brass, James A.; Ambrosia, Vincent G.

    1989-01-01

    Using smoke samples collected during low-level helicopter flights, the mixing ratios of CO2, CO, CH4, total nonmethane hydrocarbons, H2, and N2O over burning chaparral in southern California and over a burning boreal forest site in northern Ontario, Canada, were determined. Carbon dioxide-normalized emission ratios were determined for each trace gas for conditions of flaming, mixed, and smoldering combustion. The emission ratios for these trace gases were found to be highest for the smoldering combustion, generally thought to be the least efficient combustion stage. However, high emission ratios for these gases could be also produced during very vigorous flaming combustion.

  19. Trace gas emissions from chaparral and boreal forest fires

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggan, Philip J.; Stocks, Brian J.; Brass, James A.; Ambrosia, Vincent G.

    1989-01-01

    Using smoke samples collected during low-level helicopter flights, the mixing ratios of CO2, CO, CH4, total nonmethane hydrocarbons, H2, and N2O over burning chaparral in southern California and over a burning boreal forest site in northern Ontario, Canada, were determined. Carbon dioxide-normalized emission ratios were determined for each trace gas for conditions of flaming, mixed, and smoldering combustion. The emission ratios for these trace gases were found to be highest for the smoldering combustion, generally thought to be the least efficient combustion stage. However, high emission ratios for these gases could be also produced during very vigorous flaming combustion.

  20. Measurement of gas/water uptake coefficients for trace gases active in the marine environment. [Annual report

    SciTech Connect

    Davidovits, P.; Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E.

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean`s surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry`s law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  1. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, A.; Xie, P. H.; Wagner, T.; Chen, H.; Liu, W. Q.; Liu, J. G.

    2014-06-01

    We apply a novel experimental procedure for the rapid measurement of the average volume mixing ratios (VMRs) and horizontal distributions of trace gases such as NO2, SO2, and HCHO in the boundary layer, which was recently suggested by Sinreich et al. (2013). The method is based on two-dimensional scanning multi-axis differential optical absorption spectroscopy (MAX-DOAS). It makes use of two facts (Sinreich et al., 2013): first, the light path for observations at 1° elevation angle traverses mainly air masses located close to the ground (typically < 200 m); second, the light path length can be calculated using the simultaneous measured absorption of the oxygen dimer O4. Thus, the average value of the trace gas VMR in the atmospheric layer between the surface and the particular altitude, for which this observation was sensitive, can be calculated. Compared to the originally proposed method, we introduce several important modifications and improvements: We apply the method only to measurements at 1° elevation angle (besides zenith view), for which the uncertainties of the retrieved values of the VMRs and surface extinctions are especially small. Using only 1° elevation angle for off-axis observation also allows an increased temporal resolution. We determine (and apply) correction factors (and their uncertainties) directly as function of the measured O4 absorption. Finally, the method is extended to trace gases analysed at other wavelengths and also to the retrieval of aerosol extinction. Depending on atmospheric visibility, the typical uncertainty of the results ranges from about 20% to 30%. We apply the rapid method to observations of a newly-developed ground-based multifunctional passive differential optical absorption spectroscopy (GM-DOAS) instrument in the north-west outskirts near Hefei in China. We report NO2, SO2, and HCHO VMRs and aerosol extinction for four azimuth angles and compare these results with those from simultaneous long-path DOAS observations

  2. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, A.; Xie, P. H.; Wagner, T.; Chen, H.; Liu, W. Q.; Liu, J. G.

    2013-09-01

    We apply a novel experimental procedure for the rapid measurement of the average volume mixing ratios (VMRs) and horizontal distributions of trace gases such as NO2, SO2, and HCHO in the boundary layer, which was recently suggested by Sinreich et al. (2013). The method is based on two-dimensional scanning multi-axis differential optical absorption spectroscopy (MAX-DOAS). It makes use of two facts (Sinreich et al. 2013): First, the light path for observations at 1° elevation angle traverses mainly air masses located close to the ground (typically < 200 m). Second, the light path length can be calculated using the simultaneous measured absorption of the oxygen dimer O4. Thus, the average value of the trace gas VMR in the atmospheric layer between the surface and the altitude, for which this observation was sensitive, can be calculated. Compared to the originally proposed method, we introduce several important modifications and improvements: We apply the method only to measurements at 1° elevation angles, for which the uncertainties are especially small. Using only 1 elevation angle also allows an increased temporal resolution. We apply correction factors (and their uncertainties) as function of the simultaneously modelled O4 absorption. In this way the correction factors can be directly determined according to the measured O4 dAMF. Finally, the method is extended to trace gases analysed at other wavelengths and also to the retrieval of the aerosol extinction. Depending on the atmospheric visibility, the typical uncertainty of the results ranges from about 15 to 30%. We apply the rapid method to observations of a newly developed ground-based multifunctional passive differential optical absorption spectroscopy (GM-DOAS) instrument in the north-west outskirt near Hefei City in China. We report NO2, SO2, and HCHO VMRs and aerosol extinction for four azimuth angles and compare these results with those from simultaneous long-path DOAS observations. Good agreement is

  3. Stratospheric evolution of temperature and different atmospheric trace gases during winters at the NDACC Alpine mid-latitude station at Bern

    NASA Astrophysics Data System (ADS)

    Navas-Guzmán, Francisco; Moreira, Lorena; Lainer, Martin; Schranz, Franziska; Hocke, Klemens; Kämpfer, Niklaus

    2017-04-01

    The Earth's climate is sensitive to changes in temperature and trace gas concentrations in the stratosphere region. There is a wealth of possible sources of natural variability of these atmospheric properties in the stratosphere. The concentration of species as ozone and water vapour can vary as a result of different factors, some interacting among themselves through their effects on chemistry and transport. For example, phenomena originally tropical such as the quasi-biennial oscillation (QBO) and El Niño-Southern Oscillation (ENSO) can lead to wave structures and wave propagation in mid-latitudes. This can affect the zonal mean meridional transport of trace gases from the tropics to mid-latitudes and polar latitudes in the stratosphere and also produce variations in the strength of the polar winter vortices and stratospheric warming events. Wintertime is specially an interesting period in which the variability in atmospheric parameters and composition is large. Strong changes in temperature and in the concentration of trace gases as ozone or water vapour can be observed in a very short time interval, and therefore measurements with a high temporal resolution are needed. The present study shows the capability of ground-based microwave technique to monitor with a relatively good spatial and temporal resolution the stratospheric composition and temperature during complex phenomena occurring in winter. In this way, the evolution of stratospheric temperature, ozone and water vapour profiles during the last winters over Bern (Switzerland) are analyzed. The measurements were performed by three microwave radiometers (TEMPERA for temperature, GROMOS for ozone and MIAWARA for water vapour) which have been designed and built at the University of Bern. The measurement at a fixed location allows to observe local atmospheric dynamics over a long-time period, which is crucial for climate research. The detection of some singular sudden stratospheric warming (SSW) during the

  4. Constraining Gas Diffusivity-Soil Water Content Relationships in Forest Soils Using Surface Chamber Fluxes and Depth Profiles of Multiple Trace Gases

    NASA Astrophysics Data System (ADS)

    Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.

    2012-12-01

    Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.

  5. Physical and chemical properties of the regional mixed layer of Mexico's Megapolis – Part II: Evaluation of measured and modeled trace gases and particle size distributions

    SciTech Connect

    Ochoa, Carlos; Baumgardner, Darrel; Grutter, M.; Allan, James D.; Fast, Jerome D.; Rappengluck, B.

    2012-10-31

    This study extends the work of Baumgardner et al. (2009) in which measurements of trace gases and particles at a remote, high-altitude mountain site 60 km from Mexico City were analyzed with respect to the origin of air masses. In the current evaluation, the temperature, water vapor, ozone (O3), carbon monoxide (CO), acyl peroxy nitrate (APN) and particle size distributions (PSDs) of the mass concentrations of sulfate, nitrate, ammonium and organic mass (OM) were simulated with the WRF-Chem chemical transport model and compared with the measurements at the mountain site. The model prediction of the diurnal trends of the gases were well correlated with the measurements before the regional boundary layer reached the measurement site but underestimated the concentrations after that time. The differences are caused by an overly rapid growth of the boundary layer by the model with too much dilution. There also appears to be more O3 produced by photochemical production, downwind of the emission sources, than predicted by the model. The measured and modeled PSDs compare very well with respect to their general shape and diameter of the peak concentrations. The spectra are log normally distributed with most of the mass in the accumulation mode and the geometric diameter centered at 200 ±20 nm, with little observed or predicted change with respect to the origin of the air mass or the time when the RBL is above the Altzomoni research. Only the total mass changed with time and air mass origin. The invariability of the average diameter of the accumulation mode suggests that there is very little growth of the particles by condensation or coagulation after six hours of aging downwind of the major sources of anthropogenic emissions in Mexico’s Megapolis.

  6. Investigation of reactions between trace gases and functional CuO nanospheres and octahedrons using NEXAFS-TXM imaging

    PubMed Central

    Henzler, Katja; Heilemann, Axel; Kneer, Janosch; Guttmann, Peter; Jia, He; Bartsch, Eckhard; Lu, Yan; Palzer, Stefan

    2015-01-01

    In order to take full advantage of novel functional materials in the next generation of sensorial devices scalable processes for their fabrication and utilization are of great importance. Also understanding the processes lending the properties to those materials is essential. Among the most sought-after sensor applications are low-cost, highly sensitive and selective metal oxide based gas sensors. Yet, the surface reactions responsible for provoking a change in the electrical behavior of gas sensitive layers are insufficiently comprehended. Here, we have used near-edge x-ray absorption fine structure spectroscopy in combination with x-ray microscopy (NEXAFS-TXM) for ex-situ measurements, in order to reveal the hydrogen sulfide induced processes at the surface of copper oxide nanoparticles, which are ultimately responsible for triggering a percolation phase transition. For the first time these measurements allow the imaging of trace gas induced reactions and the effect they have on the chemical composition of the metal oxide surface and bulk. This makes the new technique suitable for elucidating adsorption processes in-situ and under real operating conditions. PMID:26631608

  7. Investigation of reactions between trace gases and functional CuO nanospheres and octahedrons using NEXAFS-TXM imaging.

    PubMed

    Henzler, Katja; Heilemann, Axel; Kneer, Janosch; Guttmann, Peter; Jia, He; Bartsch, Eckhard; Lu, Yan; Palzer, Stefan

    2015-12-03

    In order to take full advantage of novel functional materials in the next generation of sensorial devices scalable processes for their fabrication and utilization are of great importance. Also understanding the processes lending the properties to those materials is essential. Among the most sought-after sensor applications are low-cost, highly sensitive and selective metal oxide based gas sensors. Yet, the surface reactions responsible for provoking a change in the electrical behavior of gas sensitive layers are insufficiently comprehended. Here, we have used near-edge x-ray absorption fine structure spectroscopy in combination with x-ray microscopy (NEXAFS-TXM) for ex-situ measurements, in order to reveal the hydrogen sulfide induced processes at the surface of copper oxide nanoparticles, which are ultimately responsible for triggering a percolation phase transition. For the first time these measurements allow the imaging of trace gas induced reactions and the effect they have on the chemical composition of the metal oxide surface and bulk. This makes the new technique suitable for elucidating adsorption processes in-situ and under real operating conditions.

  8. A study on the transport of trace gases in the tropopause region using CRISTA satellite data and models

    NASA Astrophysics Data System (ADS)

    Feldmann, H.; Schäler, B.; Ebel, A.; Offermann, D.; Jakobs, H. J.

    2003-04-01

    High resolution satellite data and (global and regional scale) modelling are combined within the AFO200 project TRACHT (Transport and Chemistry of the Tropopause Region) to study the dynamical and chemical processes in the upper troposphere/lower stratosphere. For the period of the 2nd flight of the CRISTA instrument in August 1997 the global scale model NCAR-ROSE has been applied to assimilate the CRISTA data. Afterwards the mesoscale model EURAD has been nested into NCAR-ROSE. This approach enables detailed studies of the tropopause region with high spatial resolution. Mixing of stratospheric and tropospheric air can be detected in many regions of the world during this one week period. A prominent feature of the episode was a persistent blocking situation over the Atlantic and Europe. Each part of this omega-like pattern had specific dynamical characteristics. In the western part a large cut-off low formed with horizontal and vertical mixing of stratospheric and tropospheric air. In the central part - over Western Europe - tropospheric air was lifted upward into the lowermost stratosphere. Low tropospheric air gets even entrained into the cut-off low region. Over Eastern Europe stratospheric Intrusion occurred. The consequences of these dynamical patterns for the chemical composition of the tropopause region and the stratospheric/tropospheric exchange of trace substances - like H_2 O, ozone and CFC11 - in the different parts of the blocking structure are discussed.

  9. An automated analyzer to measure surface-atmosphere exchange fluxes of water soluble inorganic aerosol compounds and reactive trace gases.

    PubMed

    Thomas, Rick M; Trebs, Ivonne; Otjes, René; Jongejan, Piet A C; Ten Brink, Harry; Phillips, Gavin; Kortner, Michael; Meixner, Franz X; Nemitz, Eiko

    2009-03-01

    Here, we present a new automated instrument for semicontinuous gradient measurements of water-soluble reactive trace gas species (NH3, HNO3, HONO, HCl, and SO2) and their related aerosol compounds (NH4+, NO3-, Cl-, SO4(2-)). Gas and aerosol samples are collected simultaneously at two heights using rotating wet-annular denuders and steam-jet aerosol collectors, respectively. Online (real-time) analysis using ion chromatography (IC) for anions and flow injection analysis (FIA) for NH4+ and NH3 provide a half-hourly averaged gas and aerosol gradients within each hour. Through the use of syringe pumps, IC preconcentration columns, and high-quality purified water, the system achieves detection limits (3sigma-definition) under field conditions of typically: 136/207,135/114, 29/ 22,119/92, and 189/159 ng m(-3) for NH3/NH4+, HNO3/NO3-, HONO/ NO2-, HCl/Cl- and SO2/SO4(2-), respectively. The instrument demonstrates very good linearity and accuracy for liquid and selected gas phase calibrations over typical ambient concentration ranges. As shown by examples from field experiments, the instrument provides sufficient precision (3-9%), even at low ambient concentrations, to resolve vertical gradients and calculate surface-atmosphere exchange fluxes undertypical meteorological conditions of the atmospheric surface layer using the aerodynamic gradient technique.

  10. Assessing the suitability of MOZAIC soundings of trace gases in the lower troposphere for chemical transport model evaluation

    NASA Astrophysics Data System (ADS)

    Silverman, M. L.; Szykman, J.; Crawford, J. H.; Volz-Thomas, A.; Cammas, J.; Nedelec, P.

    2012-12-01

    Since the mid-90's, vertical profiles of reactive gases into and out of major airports have been measured by the MOZAIC (Measurements of OZone and water vapor on Airbus In-service airCraft - currently part of the European program In-service Aircraft for a Global Observing System (IAGOS) http://www.iagos.fr/web/) program. Recent interest in using MOZAIC data to evaluate regional chemical transport models, such as CMAQ, raises questions regarding the suitability of the data for this purpose. Specifically, to what degree are aircraft data influenced by aviation emissions along flight paths and how well does the data represent the regional environment at lower altitudes? This analysis will characterize MOZAIC measurements of O3, CO, and NOy in the mid to lower troposphere (<6km). MOZAIC afternoon profiles that span 2002-2004, during June, July, August, and September at major U.S. airports are analyzed. In addition, appropriate data for comparison with the MOZAIC profiles has also become available under the NASA Earth Venture -1 (EV-1) DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) mission. As part of the first DISCOVER-AQ field mission conducted in July 2011, the NASA P-3B aircraft performed over 250 profiles in the Baltimore-DC region, including one landing at the Baltimore Washington International Airport. These profiles offer comparative observations of O3, CO, and reactive nitrogen in the vicinity of major air traffic patterns, local urban sources, and typical background environments. In general, MOZAIC profiles show a decrease in O3 within the last several hundred meters of the airport. Nearest the ground this is likely due to titration by NO, but further above decreases in O3 do not correlate with significant increases in NOy. A limiting factor in the MOZAIC data is that NOy is not measured below ~1km. Correlations of O3 to CO appear representative of the background environment

  11. Low Ozone and High Mixing Ratios of Long-Lived Trace Gases in the Tropical Tropopause Layer over the Western Pacific

    NASA Astrophysics Data System (ADS)

    Hintsa, E. J.; Moore, F. L.; Dutton, G. S.; Hall, B. D.; Haugstad, A.; McClure-Begley, A.; Nance, J. D.; Elkins, J. W.; Gao, R. S.; Rollins, A. W.; Thornberry, T. D.; Watts, L. A.; Daube, B. C.; Pittman, J. V.; Wofsy, S. C.; Campos, T. L.; Homeyer, C. R.; Honomichl, S.; Pan, L.; Weinheimer, A. J.

    2014-12-01

    The tropopause over the western tropical Pacific is thought to be one of the primary entry points of air from the troposphere into the stratosphere. In this region, temperatures are low enough in the tropical tropopause layer (TTL; ~14-18.5 km) to dehydrate air to the low values observed in the stratosphere. The NASA Airborne Tropical Tropopause Experiment (ATTREX) mission was designed to study the transport of water vapor and other trace gases in the TTL over the Pacific Ocean, in order to better understand how dehydration occurs and how ozone-depleting gases reach the lower stratosphere. The field campaign phase of the mission recently concluded with flights of the NASA Global Hawk unmanned aircraft over the western tropical Pacific from Guam in January-March 2014 (ATTREX-3). This followed two previous deployments with flights from California to the central and eastern tropical Pacific (ATTREX-1 and 2). Particularly in ATTREX-3, the long duration of the Global Hawk allowed observations over nearly a complete diurnal cycle in the TTL. Over 100 vertical profiles in the TTL were obtained over the western tropical Pacific, as well as long sections at constant altitude. As expected, very low values of water vapor (a few ppm) were observed, and ice saturation was frequently encountered. Ozone was consistently low in the TTL (averaging ~20 ppb), with low values extending up to the tropopause, particularly in March 2014. While ozone as low as 20 ppb was occasionally observed over the central and eastern Pacific in February-March 2013 during ATTREX-2, it more often averaged 40-50 ppb, and typically increased slowly with height from about 14 km to the tropopause. In ATTREX-3, long-lived tracers such as N2O were very close to their tropospheric values over the western tropical Pacific. Sulfur hexafluoride (SF6) data indicated that sampled air masses originated in the tropics, with little in-mixing of extratropical air. Methane and CO often peaked near the local tropopause

  12. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    SciTech Connect

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is

  13. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    DOE PAGES

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; ...

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convectivemore » cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it

  14. Emission factors of fine particles, carbonaceous aerosols and traces gases from road vehicles: Recent tests in an urban tunnel in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yanli; Wang, Xinming; Li, Guanghui; Yang, Weiqiang; Huang, Zhonghui; Zhang, Zhou; Huang, Xinyu; Deng, Wei; Liu, Tengyu; Huang, Zuzhao; Zhang, Zhanyi

    2015-12-01

    Motor vehicles contribute primarily and secondarily to air quality problems due to fine particle (PM2.5) and ozone (O3) pollution in China's megacities. Characterizing vehicle emission with the rapid change of vehicle numbers and fleet compositions is vital for both bottom-up emission survey and top-down source apportioning. To obtain emission factors (EFs) of PM2.5, carbonaceous aerosols and trace gases for road vehicles, in urban Guangzhou we conducted a field campaign in 2014 in the Zhujiang Tunnel, a heavily burdened tunnel with about 40,000 motor vehicles passing through each of its two separated bores per day. PM2.5 and volatile organic compounds (VOCs) were sampled for offline analysis while trace gases including SO2, NOx and CO were measured online and in situ. An eddy covariance system with an integrated 3-D sonic anemometer was also adopted to measure CO2 and winds inside the tunnel. We recorded an average fleet composition of 61% light-duty gasoline vehicles (LDVs) + 12% heavy-duty diesel vehicles (HDVs) + 27% liquefied petroleum gas vehicles (LPGVs), and EFs of 82.7 ± 28.3, 19.3 ± 4.7 and 13.3 ± 3.3 mg veh-1 km-1, respectively, for PM2.5, organic carbon (OC) and elemental carbon (EC). These EFs were respectively 23.4%, 18.3% and 72.3% lower when compared to that measured in the same tunnel in 2004. EFs of PM2.5, OC and EC were higher at night time (148 ± 126, 29 ± 24 and 21 ± 18 mg veh-1 km-1, respectively) due to significantly elevated fractions of HDVs in the traffic fleets. An average ratio of OC to EC 1.45 from this tunnel study was much higher than that of ∼0.5 in previous tunnel studies. The EFs of SO2, NOx, CO, CO2 and NMHCs for road traffic were also obtained from our tunnel tests, and they were 20.7 ± 2.9, (1.29 ± 0.2)E+03, (3.10 ± 0.68)E+03, (3.90 ± 0.49)E+05, and 448 ± 39 mg veh-1 km-1, respectively.

  15. Spatial structures in UTLS trace gases imaged by the GLORIA instrument during the TACTS/ESMVal campaign in 2012

    NASA Astrophysics Data System (ADS)

    Guggenmoser, Tobias; Ungermann, Joern; Blank, Joerg; Kleinert, Anne; Grooss, Jens-Uwe; Vogel, Baerbel

    2013-04-01

    The combined TACTS/ESMVal measurement campaign was conducted during August and September 2012. Its objective was to improve our understanding of the UTLS region using a combination of airborne in situ and remote sensing devices. While the focus of TACTS was on exchange processes across the tropopause, ESMVal's objective was to obtain a wide latitude coverage from northern to southern polar regions. The campaign was based in Oberpfaffenhofen (D), with support bases in Sal (CV), Malé (MV), and Cape Town (ZA). A total of 13 scientific flights, ranging in latitude from 65°S to 80°N, were performed aboard the High Altitude and LOng Range (HALO) research aircraft, operated by the German Aerospace Agency (DLR). One of the core instruments was GLORIA, the Gimballed Limb Observer for Radiance Imaging of the Atmosphere. GLORIA is a joint development of Forschungszentrum Jülich and Karlsruher Institut für Technologie. It is an imaging Fourier transform spectrometer in the thermal infrared range, designed to optimize either spatial or spectral resolution, so as to yield data for dynamical as well as chemical analysis. In dynamics mode, the instrument also pans between measurements, making it possible to observe the same target volume from multiple directions. Combined with the right flight pattern, a 3D tomographic analysis becomes possible. In this presentation, we will show our first results for temperature and trace gas mixing ratios from a selection of the TACTS/ESMVal flights, concentrating on dynamics mode measurements in the polar regions. We will show the resolution of filaments in the UTLS region in two-dimensional cross-sections along the flight path, as well as preliminary results from true 3D retrievals.

  16. Airborne and ground-based measurements of the trace gases and particles emitted from prescribed fires in the United States

    SciTech Connect

    Burling, Ian; Yokelson, Robert J.; Akagi, Sheryl; Urbanski, Shawn; Wold, Cyle E.; Griffith, David WT; Johnson, Timothy J.; Reardon, James; Weise, David

    2011-12-07

    We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous suggestions that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured the emissions in the convective smoke plume from our airborne platform at the same time the unlofted residual smoldering combustion emissions were measured with our ground-based platform after the flame front passed through. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including significant 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts of smoke that disperses at ground level, and we show that the normally-ignored unlofted emissions can also significantly impact estimates of total emissions. Preliminary evidence of large emissions of monoterpenes was seen in the residual smoldering spectra, but we have not yet quantified these emissions. These data should lead to an improved capacity to model the impacts of biomass burning in similar

  17. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    SciTech Connect

    Yokelson, R. J.; Burling, I. R.; Gilman, J. B.; Warneke, C.; Stockwell, C. E.; de Gouw, J.; Akagi, S. K.; Urbanski, S. P.; Veres, P.; Roberts, J. M.; Kuster, W. C.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Hosseini, S.; Miller, J. W.; Cocker III, D. R.; Jung, H.; Weise, D. R.

    2013-01-01

    Vegetative fuels commonly consumed in prescribed fires were collected from five locations in the southeastern and southwestern U.S. and burned in a series of 77 fires at the U.S. Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds (NMOC)) were identified and quantified with the above instruments. An additional 152 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. As phase II of this study, we conducted airborne and ground-based sampling of the emissions from real prescribed fires mostly in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These extensive field measurements of emission factors (EF) for temperate biomass burning are useful both for modeling and to examine the representativeness of our lab fire EF. The lab/field EF ratio for the pine understory fuels was not statistically different from one, on average. However, our lab EF for “smoldering compounds” emitted by burning the semi

  18. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Burling, I. R.; Gilman, J. B.; Warneke, C.; Stockwell, C. E.; de Gouw, J.; Akagi, S. K.; Urbanski, S. P.; Veres, P.; Roberts, J. M.; Kuster, W. C.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Hosseini, S.; Miller, J. W.; Cocker, D. R., III; Jung, H.; Weise, D. R.

    2013-01-01

    An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured by an open-path Fourier transform infrared (OP-FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds (NMOC)) were identified and quantified with the above instruments. Many of the 182 species quantified by the GC-MS have rarely, if ever, been measured in smoke before. An additional 153 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. In a second, "field" phase of this program, airborne and ground-based measurements were made of the emissions from prescribed fires that were mostly located in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. The field measurements of emission factors (EF) are useful both for modeling and to examine the representativeness of our lab fire EF. The lab EF/field EF ratio for the pine understory fuels was not

  19. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Burling, I. R.; Gilman, J. B.; Warneke, C.; Stockwell, C. E.; de Gouw, J.; Akagi, S. K.; Urbanski, S. P.; Veres, P.; Roberts, J. M.; Kuster, W. C.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Hosseini, S.; Miller, J. W.; Cocker, D. R., III; Jung, H.; Weise, D. R.

    2012-08-01

    An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured by an open-path Fourier transform infrared (OP-FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds - NMOC) were identified and quantified with the above instruments. Many of the 182 species quantified by the GC-MS have rarely, if ever, been measured in smoke before. An additional 153 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. In a second, "field" phase of this program, airborne and ground-based measurements were made of the emissions from prescribed fires that were mostly located in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. The field measurements of emission factors (EF) are useful both for modeling and to examine the representativeness of our lab fire EF. The lab EF/field EF ratio for the pine understory fuels was not

  20. Observations of tropospheric trace gases and meteorology in rural Virginia using an unattended monitoring system: Hurricane Hugo (1989), A case study

    NASA Astrophysics Data System (ADS)

    Doddridge, Bruce G.; Dickerson, Russell R.; Holland, Joshua Z.; Cooper, James N.; Wardell, R. Glenn; Poulida, Olga; Watkins, James G.

    1991-05-01

    Tropospheric trace gases such as ozone and reactive nitrogen compounds exert a strong influence on global climate, but observations of these species are limited by the necessity of having a trained observer on site to monitor instruments. A technique using modern communications technology has been developed to transport and review data collected at a remote site. The site was equipped with a PAM II station and satellite data link so that raw, real-time data and equipment status were available for inspection readily on a workstation at the University of Maryland campus through a combination of wide and local area networks. CO, NO, NOy, O3, UV radiative flux, and meteorological parameters were measured in rural Virginia for a full year. The cleanest air observed over the year was associated with the passage of Hurricane Hugo over the mid-Atlantic region on September 22, 1989. Hourly average data for concentrations of CO, NOy, and O3 observed during this particular case study were as low as 90 ppbv, 570 pptv, and 11 ppbv, respectively. Within this period, daytime NO was highly variable, ranging between the detection limit of the instrument, ˜ 20 pptv, and 2.4 ppbv. These concentrations are well below the hourly concentration average at this site for these species during September 1989. Equivalent potential temperature, θe, in conjunction with the trace gas concentrations and geostrophic back-trajectories, illustrates how this hurricane influenced air parcel history; observed concentrations of CO and NOy increased with the time the air parcel spent over land. Observations at this site were consistent with current hurricane models based on mean soundings and aircraft flights. Hurricanes over land also appear to redistribute air vertically throughout the troposphere, creating the potential for substantial post-storm tropospheric column O3 increase.

  1. Effects of land use on surface–atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest

    PubMed Central

    Fowler, David; Nemitz, Eiko; Misztal, Pawel; Di Marco, Chiara; Skiba, Ute; Ryder, James; Helfter, Carole; Cape, J. Neil; Owen, Sue; Dorsey, James; Gallagher, Martin W.; Coyle, Mhairi; Phillips, Gavin; Davison, Brian; Langford, Ben; MacKenzie, Rob; Muller, Jennifer; Siong, Jambery; Dari-Salisburgo, Cesare; Di Carlo, Piero; Aruffo, Eleonora; Giammaria, Franco; Pyle, John A.; Hewitt, C. Nicholas

    2011-01-01

    This paper reports measurements of land–atmosphere fluxes of sensible and latent heat, momentum, CO2, volatile organic compounds (VOCs), NO, NO2, N2O and O3 over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO2 flux to the two canopies differs by approximately a factor of 2, 1200 mg C m−2 h−1 for the oil palm and 700 mg C m−2 h−1 for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O3 to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces. PMID:22006962

  2. Effects of land use on surface-atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest.

    PubMed

    Fowler, David; Nemitz, Eiko; Misztal, Pawel; Di Marco, Chiara; Skiba, Ute; Ryder, James; Helfter, Carole; Cape, J Neil; Owen, Sue; Dorsey, James; Gallagher, Martin W; Coyle, Mhairi; Phillips, Gavin; Davison, Brian; Langford, Ben; MacKenzie, Rob; Muller, Jennifer; Siong, Jambery; Dari-Salisburgo, Cesare; Di Carlo, Piero; Aruffo, Eleonora; Giammaria, Franco; Pyle, John A; Hewitt, C Nicholas

    2011-11-27

    This paper reports measurements of land-atmosphere fluxes of sensible and latent heat, momentum, CO(2), volatile organic compounds (VOCs), NO, NO(2), N(2)O and O(3) over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO(2) flux to the two canopies differs by approximately a factor of 2, 1200 mg C m(-2) h(-1) for the oil palm and 700 mg C m(-2) h(-1) for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O(3) to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces.

  3. Photochemistry of biogenic gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1989-01-01

    The relationship between the biosphere and the atmosphere is examined, emphasizing the composition and photochemistry and chemistry of the troposphere and stratosphere. The reactions of oxygen, ozone, and hydroxyl are reviewed and the fate of the biogenic gases ammonia, methane, reduced sulfur species, reduced halogen species, carbon monoxide, nitric oxide, nitrous oxide, nitrogen, and carbon dioxide are described. A list is given of the concentration and sources of the various gases.

  4. Carbon Dioxide Collection and Purification System for Mars

    NASA Technical Reports Server (NTRS)

    Clark, D. Larry; Trevathan, Joseph R.

    2001-01-01

    One of the most abundant resources available on Mars is the atmosphere. The primary constituent, carbon dioxide, can be used to produce a wide variety of consumables including propellants and breathing air. The residual gases can be used for additional pressurization tasks including supplementing the oxygen partial pressure in human habitats. A system is presented that supplies pure, high-pressure carbon dioxide and a separate stream of residual gases ready for further processing. This power-efficient method freezes the carbon dioxide directly from the atmosphere using a pulse-tube cryocooler. The resulting CO2 mass is later thawed in a closed pressure vessel, resulting in a compact source of liquefied gas at the vapor pressure of the bulk fluid. Results from a demonstration system are presented along with analysis and system scaling factors for implementation at larger scales. Trace gases in the Martian atmosphere challenge the system designer for all carbon dioxide acquisitions concepts. The approximately five percent of other gases build up as local concentrations of CO2 are removed, resulting in diminished performance of the collection process. The presented system takes advantage of this fact and draws the concentrated residual gases away as a useful byproduct. The presented system represents an excelient volume and mass solution for collecting and compressing this valuable Martian resource. Recent advances in pulse-tube cryocooler technology have enabled this concept to be realized in a reliable, low power implementation.

  5. Analysis of trace amounts of carbon dioxide, oxygen and carbon monoxide in nitrogen using dual capillary columns and a pulsed discharge helium ionisation detector.

    PubMed

    Janse van Rensburg, M; Botha, A; Rohwer, E

    2007-10-05

    Gas mixtures of trace amounts of carbon dioxide (CO(2)), dioxygen (O(2)), and carbon monoxide (CO) in dinitrogen (N(2)) were separated and quantified using parallel dual capillary columns and pulsed discharge helium ionisation detection (PDHID). The detection limits (9 x 10(-9) mol mol(-1) for CO(2), 7 x 10(-9) mol mol(-1) for O(2) and 37 x 10(-9) mol mol(-1) for CO) were lower than those reported previously for similar methods. Uncertainties were calculated and results were validated by comparison of the CO and CO(2) results with those obtained using conventional methods. The method was also used to analyse nitrogen, carbon dioxide and carbon monoxide in oxygen.

  6. Analysis of motor vehicle emissions over eastern Los Angeles, California from in-situ airborne measurements of trace gases and particulates during CalNex

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Frost, G. J.; Holloway, J. S.; McKeen, S. A.; Peischl, J.; Fahey, D. W.; Perring, A.; Schwarz, J. P.; Spackman, J. R.

    2010-12-01

    In-situ measurements of trace gases and particulates were acquired on the instrumented NOAA WP-3D aircraft during the CalNex (California Research at the Nexus of Air Quality and Climate Change) field study in May and June 2010. Multiple daytime research flights under similar meteorological conditions provide a sufficient data set for characterizing automobile emissions over the eastern Los Angeles (eLA) area of the South Coast air basin. Ratios of nitrogen oxides (NOx) and black carbon (BC) to carbon monoxide (CO) are used to isolate emissions of light duty vehicles from those of medium/heavy duty diesel trucks. Observations in the mixed boundary layer for the eLA area are separated according to latitude, longitude, and altitude. Industrial influences are eliminated by filtering the data according to SO2 mixing ratio and wind direction. The resulting correlations show weekday-to-weekend differences in enhancement ratios of NOx to CO and BC to CO, indicating a general tendency for higher emissions from heavy duty vehicles during the week. The CalNex data over eLA in 2010 will be compared to eLA data from a research flight in May 2002 by the WP-3D aircraft during the Intercontinental Transport and Chemical Transformation (ITCT) field study.

  7. Combining stable isotope (δ13C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves.

    PubMed

    Garcia-Anton, E; Cuezva, S; Jurado, V; Porca, E; Miller, A Z; Fernandez-Cortes, A; Saiz-Jimenez, C; Sanchez-Moral, S

    2014-01-01

    Altamira Cave (north of Spain) contains one of the world's most prominent Paleolithic rock art paintings, which are threatened by a massive microbial colonization of ceiling and walls. Previous studies revealed that exchange rates between the cave and the external atmosphere through the entrance door play a decisive role in the entry and transport of microorganisms (bacteria and fungi) and nutrients to the interior of the cave. A spatial-distributed sampling and measurement of carrier (CO2) and trace (CH4) gases and isotopic signal of CO2 (δ(13)C) inside the cave supports the existence of a second connection (active gas exchange processes) with the external atmosphere at or near the Well Hall, the innermost and deepest area of the cave. A parallel aerobiological study also showed that, in addition to the entrance door, there is another connection with the external atmosphere, which favors the transport and increases microorganism concentrations in the Well Hall. This double approach provides a more complete knowledge on cave ventilation and revealed the existence of unknown passageways in the cave, a fact that should be taken into account in future cave management.

  8. Study of trace gases in the Martian atmosphere: Groundbased observation using SUBARU/IRCS and development of radiative transfer model for MEX/PFS limb observation

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Nakagawa, H.; Kasaba, Y.; Giuranna, M.; Geminale, A.; Sindoni, G.; Sagawa, H.; Mendrok, J.; Kasai, Y.; Formisano, V.

    2012-09-01

    We observed Martian atmosphere to investigate CH4, H2O, and HDO on 30 November 2011, 4-5 January 2012, and 12 April 2012 using SUBARU/ IRCS. This observation aims to verify CH4 on Mars, constrain its source, and investigate the distribution of H2O/HDO ratio. Our observation covered possible source areas of CH4, i.e. the areas where the extend plumes of CH4 were detected by previous groundbased and MEX/PFS observations [1,2] and the potential mud volcanism areas [3,4]. This paper will show some preliminary results. Vertical profiles of these trace gases are crucial for understanding their chemistry and transportation. Limb observations by MEX/PFS are a powerful tool to retrieve vertical profiles of H2O, CO, and CH4. For this purpose, we adapted the SARTre model, a radiative transfer code which includes multiple scattering for limb geometry observations developed for the terrestrial atmosphere [5], to the Martian atmosphere. In order to validate our model, SARTre model for Martian limb, we first compared of our synthetic spectra in nadir geometry with the result from ARS [6] which has been widely used for previous studies of MEX/PFS nadir-observation. We concluded that the difference between them is small offset (below 3%) in the spectral range between 3000 and 3030 cm-1.

  9. Diagnosing the Transport of Pollution to the Upper Troposphere / Lower Stratosphere using Aura Microwave Limb Sounder Measurements of Methyl Chloride and Other Trace Gases

    NASA Astrophysics Data System (ADS)

    Neu, J. L.; Santee, M. L.; Kinnison, D. E.; Lamarque, J. F.

    2014-12-01

    Methyl chloride (CH3Cl) is the largest natural source of chlorine in the stratosphere, and its relative importance in stratospheric ozone chemistry is expected to increase in the coming years as anthropogenic sources of chlorine decline following strict emissions controls. Biomass burning is the second largest source of CH3Cl (the first being biogenic production by vegetation), and measurements from the Aura Microwave Limb Sounder (MLS) suggest that the seasonal and interannual variability of CH3Cl in the upper troposphere / lower stratosphere (UTLS) largely reflect variability in biomass burning and vertical transport from source regions by convective activity. We compare the spatial and temporal variability of UTLS CH3Cl in simulations from the Whole Atmosphere Chemistry Climate Model (WACCM) nudged to the Modern Era Retrospective Reanalysis (MERRA) wind fields to the MLS measurements for 2005-2012. Using sensitivity simulations in which we perturb emissions from various CH3Cl sources and source regions, we examine what the MLS measurements of CH3Cl and other trace gases such as CO can tell us about the sources and transport of pollution to the radiatively critical UTLS region.

  10. Online technique for isotope and mixing ratios of CH4, N2O, Xe and mixing ratios of organic trace gases on a single ice core sample

    NASA Astrophysics Data System (ADS)

    Schmitt, J.; Seth, B.; Bock, M.; Fischer, H.

    2014-08-01

    Firn and polar ice cores enclosing trace gas species offer a unique archive to study changes in the past atmosphere and in terrestrial/marine source regions. Here we present a new online technique for ice core and air samples to measure a suite of isotope ratios and mixing ratios of trace gas species on a single sample. Isotope ratios are determined on methane, nitrous oxide and xenon with reproducibilities for ice core samples of 0.15‰ for δ13C-CH4, 0.22‰ for δ15N-N2O, 0.34‰ for δ18O-N2O, and 0.05‰ per mass difference for δ136Xe for typical concentrations of glacial ice. Mixing ratios are determined on methane, nitrous oxide, xenon, ethane, propane, methyl chloride and dichlorodifluoromethane with reproducibilities of 7 ppb for CH4, 3 ppb for N2O, 70 ppt for C2H6, 70 ppt for C3H8, 20 ppt for CH3Cl, and 2 ppt for CCl2F2. However, the blank contribution for C2H6 and C3H8 is large in view of the measured values for Antarctic ice samples. The system consists of a vacuum extraction device, a preconcentration unit and a gas chromatograph coupled to an isotope ratio mass spectrometer. CH4 is combusted to CO2 prior to detection while we bypass the oven for all other species. The highly automated system uses only ~ 160 g of ice, equivalent to ~ 16 mL air, which is less than previous methods. The measurement of this large suite of parameters on a single ice sample is new and key to understanding phase relationships of parameters which are usually not measured together. A multi-parameter data set is also key to understand in situ production processes of organic species in the ice, a critical issue observed in many organic trace gases. Novel is the determination of xenon isotope ratios using doubly charged Xe ions. The attained precision for δ136Xe is suitable to correct the isotopic ratios and mixing ratios for gravitational firn diffusion effects, with the benefit that this information is derived from the same sample. Lastly, anomalies in the Xe mixing ratio,

  11. From the First Measurements of Atmospheric Carbon Dioxide During the IGY to the Global Annual Greenhouse Gas Index in 2006: The Evolution of the Global Observing Network for Greenhouse Gases.

    NASA Astrophysics Data System (ADS)

    Hofmann, D. J.; Butler, J. H.; Dlugokencky, E. J.; Elkins, J. W.; Masarie, K.; Montzka, S. A.; Tans, P. P.

    2006-05-01

    During the International Geophysical Year, Dr. Charles "Dave" Keeling instituted both air sample collections at the South Pole in Antarctica and continuous carbon dioxide measurements with an infrared analyzer at the Mauna Loa Observatory in Hawaii. Both of these locations were later to become Observatories of the U.S. National Oceanic and Atmospheric Administration (NOAA), following its formation in 1970, and the pioneering measurements of Dave Keeling continued to be supported by NOAA at these sites until this day. In addition to instituting Observatories at key background locations (Pt. Barrow, Alaska; American Samoa; and more recently Trinidad Head, California, in addition to the Hawaii and Antarctic sites) the forerunners of NOAA/ESRL also began a global cooperative air sampling network in the late 1960's. The air samples were analyzed for carbon dioxide and other gases in the Boulder, Colorado laboratories. With the help of many people in many nations, this network has grown to the largest such effort in the world, numbering about 90 sites, including three ship routes, at present. In 1996, data from this network and from other networks around the world formed the basis of GLOBALVIEW, a web-based collection of carbon dioxide and methane data used extensively with transport models to determine global carbon dioxide sources and sinks. This data set is available at http://www.cmdl.noaa.gov/ccgg/globalview/index.html . In 2004, the global measurements of all the long-lived greenhouse gases, including carbon dioxide, methane, nitrous oxide, the chlorofluorocarbons, and ten minor halogen gases were condensed into a simple index, the "Annual Greenhouse Gas Index" (AGGI) by summing their radiative climate forcing since the pre-industrial era (taken as 1750). The NOAA AGGI is designed to enhance the connection between scientists and society by providing a normalized standard that can be easily understood and followed. The contribution of long-lived greenhouse gases to

  12. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons,...

  13. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons,...

  14. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons,...

  15. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons,...

  16. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons,...

  17. Cycling of greenhouse gases as a function of groundwater level in a floodplain - carbon dioxide, nitrous oxide and methane: Implications for Biogeochemical Change in a Warming World

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.; Tokunaga, T. K.; Hobson, C.; Williams, K. H.

    2016-12-01

    Floodplain sediment-water systems play an important role in carbon dioxide, nitrous oxide and methane greenhouse gas cycling. Changes in temperature and precipitation can alter biogeochemical equilibrium as well as production and consumption of greenhouse gases. We monitored CO2, N2O, CH4 greenhouse gas concentrations and C, O, and N stable isotope variations over a period of 4 years in a cross section of five wells located with increasing distance from the Colorado River. Pore space of partially saturated sediments located above an alluvial aquifer was sampled in vertically resolved profiles from 0.5 m to 3 m depth at a periodicity of one month to 2 weeks. Gas concentrations and stable isotopic signatures show annual-scale fluctuations. From 2013 to 2016 during cold seasons, low δ13C of CO2 ( -24‰) and high δ15N of N2O ( -5‰) and minimum concentrations in CO2 (< 5%v), N2O (< 5ppmv) and CH4 (< 0.5ppmv) coincide with low water table elevation and low temperature. At the beginning of summer, which corresponds to maximum water table elevation, we observed the highest concentrations of N2O ( 50ppmv) and of CO2 ( 5.5%v). Low δ15N ( -16‰) and relatively high δ13C ( -21‰) values were also observed for the summer season. CH4 was observed only in the well closest to the river (7ppmv). The variation of CO2, N2O and CH4 concentrations and δ values suggest changes in reducing/oxidizing microbial activity. Strongest biologically mediated reduction is associated with the highest water table, which typically induces reducing conditions. The maximum water elevation coincides with the annual snowmelt in the Rocky Mountains. Climate change directly impacts on biogeochemical cycling in the floodplain by affecting stream and river water discharge. At local and global scales, a drier and warmer climate will decrease N2O and CH4 production. A wetter climate induces higher stream and river water discharge, which will increase the zone and magnitude of N2O and CH4 production.

  18. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400-1400 cm-1

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Jeys, T. H.

    2016-02-01

    Raman spectra of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint region 400-1400 cm-1. A relatively compact (<2'x2'x2'), sensitive, 532 nm 10 W CW Raman system with double-pass laser and double-sided collection was used for these measurements. Two Raman modes are observed at 934 and 967 cm-1 in NH3. Three Raman modes are observed in Cl2 at 554, 547, and 539 cm-1, which are due to the 35/35 35/37, and 37/37 Cl isotopes, respectively. Raman modes are observed at 870, 570, and 1151 cm-1 in H2S, COCl2, and SO2, respectively. Values of 3.68 ± 0.26x10-32 cm2/sr (3.68 ± 0.26x10-36 m2/sr), 1.37 ± 0.10x10-30 cm2/sr (1.37 ± 0.10x10-34 m2/sr), 3.25 ± 0.23x10-31 cm2/sr (3.25 ± 0.23x10-35 m2/sr), 1.63 ± 0.14x10-30 cm2/sr (1.63 ± 0.14x10-34 m2/sr), and 3.08 ± 0.22x10-30 cm2/sr (and 3.08 ± 0.22x10-34 m2/sr) were determined for the differential Raman cross section of the 967 cm-1 mode of NH3, sum of the 554, 547, and 539 cm-1 modes of Cl2, 870 cm-1 mode of H2S, 570 cm-1 mode of COCl2, and 1151 cm-1 mode of SO2, respectively, using the differential Raman cross section of 3.56 ± 0.14x10-31 cm2/sr (3.56 ± 0.14x10-35 m2/sr) for the 1285 cm-1 mode of CO2 as the reference.

  19. Do Chemistry-Climate Models Project the Same Greenhouse Gas Chemistry if Initialized with Observations of the Trace Gases: A Pre-ATom Test

    NASA Astrophysics Data System (ADS)

    Flynn, C. M.; Prather, M. J.; Zhu, X.; Strode, S. A.; Steenrod, S. D.; Strahan, S. E.; Lamarque, J. F.; Fiore, A. M.; Horowitz, L. W.; Mao, J.; Murray, L. T.; Shindell, D. T.

    2016-12-01

    Experience with climate and chemistry model intercomparison projects (MIPs) has demonstrated a diversity in model projections for the chemical greenhouse gases CH4 and O3, even when forced by the same emissions. In general, the MIPs show that models diverge in the distribution of the many key trace species that control the reactivity of the troposphere (defined here as the loss of CH4 and the production and loss of O3). Two possible sources of model differences are the chemistry-transport coupling that creates the pattern of the essential precursor species, and the calculation of reactivity. Suppose that observations, such as those planned by NASA's Atmospheric Tomography (ATom) mission, provide us with enough of a chemical climatology to constrain the modeled distribution of the essential chemical species for the current epoch. Would the models calculate the same reactivity? ATom uses the DC-8 to make in situ measurements slicing through the middle of the Pacific and Atlantic Ocean basins each season and measuring the essential trace species. Unfortunately, ATom measurements will not be available until mid-2017. Here we take the baseline chemistry from one model version (as pseudo-observations) and use it to initialize 6 other global chemistry models. In this pre-ATom MIP, we take the full chemical composition for meridional slices centered on the Dateline (UC Irvine Chemistry-Transport Model, 0.6 deg resolution, 30 layers in the troposphere). We use grid cells between 0.5 and 12 km from 60 S to 60 N to initialize grid cells in the other six models (GEOS-Chem, GFDL-AM3, GISS ModelE2, GSFC GMI, NCAR, UCI CTM). The models are then integrated for 1 day and the key chemical rates (CH4, O3) are saved. These simulations assume that the initialized parcels remain unmixed over the 24 hours, and, hence, model-to-model variations will be due to differences in photochemistry, including clouds. In addition, we assess the relative importance of the precursor species by running

  20. Phase Partitioning of Soluble Trace Gases with Size-Resolved Aerosols during the Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) Campaign

    NASA Astrophysics Data System (ADS)

    Young, A.; Keene, W. C.; Pszenny, A.; Sander, R.; Maben, J. R.; Warrick-Wriston, C.; Bearekman, R.

    2011-12-01

    During February and March 2011, size-resolved and bulk aerosol were sampled at 22 m above the surface over nominal 12-hour (daytime and nighttime) intervals from the Boulder Atmospheric Observatory tower (40.05 N, 105.01 W, 1584-m elevation). Samples were analyzed for major organic and inorganic ionic constituents by high performance ion chromatography (IC). Soluble trace gases (HCl, HNO3, NH3, HCOOH, and CH3COOH) were sampled in parallel over 2-hour intervals with tandem mist chambers and analyzed on site by IC. NH4+, NO3-, and SO42- were the major ionic components of aerosols (median values of 57.7, 34.5, and 7.3 nmol m-3 at STP, respectively, N = 45) with 86%, 82%, and 82%, respectively, associated with sub-μm size fractions. Cl- and Na+ were present at significant concentrations (median values of 6.8 and 6.6 nmol m-3, respectively) but were associated primarily with super-μm size fractions (75% and 78%, respectively). Median values (and ranges) for HCl, HNO3, and NH3 were 21 (<20-1257), 120 (<45-1638), and 5259 (<1432-48,583) pptv, respectively. Liquid water contents of size-resolved aerosols and activity coefficients for major ionic constituents were calculated with the Extended Aerosol Inorganic Model II and IV (E-AIM) based on the measured aerosol composition, RH, temperature, and pressure. Size-resolved aerosol pHs were inferred from the measured phase partitioning of HCl, HNO3, and NH3. Major controls of phase partitioning and associated chemical dynamics will be presented.

  1. Application of the LIRIC algorithm for the characterization of aerosols during the Airborne Romanian Measurements of Aerosols and Trace gases (AROMAT) campaign

    NASA Astrophysics Data System (ADS)

    Stefanie, Horatiu; Nicolae, Doina; Nemuc, Anca; Belegante, Livio; Toanca, Florica; Ajtai, Nicolae; Ozunu, Alexandru

    2015-04-01

    The ESA/ESTEC AROMAT campaign (Airborne Romanian Measurements of Aerosols and Trace gases) was held between 1st and 14th of September 2014 with the purpose to test and inter-compare newly developed airborne and ground-based instruments dedicated to air quality studies in the context of validation programs of the forthcoming European Space Agency satellites (Sentinel 5P, ADM-Aeolus and EarthCARE). Ground-based remote sensing and airborne in situ measurements were made in southern Romania in order to assess the level and the variability of NO2 and particulate matter, focusing on two areas of interest: SW (Turceni), where many coal based power plants are operating, and SE (Bucharest), affected by intense traffic and partially by industrial pollution. In this paper we present the results obtained after the application of the Lidar - Radiometer Inversion Code (LIRIC) algorithm on combined lidar and sunphotometer data collected at Magurele, 6 km South Bucharest. Full lidar data sets in terms of backscatter signals at 355, 532 and 1064 nm, as well as depolarization at 532 nm were used and combined with Aerosol Robotic Network (AERONET) data, in order to retrieve the profiles of aerosol volume concentrations, separated as fine, spherical and spheroidal coarse modes. Preliminary results showed that aerosols generated by traffic and industrial activities were present in the Planetary Boundary Layer, while biomass burning aerosols transported from the Balkan Peninsula were detected in the upper layers. Acknowledgements: ***This work has been supported by Programme for Research- Space Technology and Advanced Research - STAR, project number 55/2013 - CARESSE. ***The financial support by the European Community's FP7 - PEOPLE 2011 under ITaRS Grant Agreement n° 289923 is gratefully acknowledged.

  2. Agricultural Fires in the Southeastern U.S. During SEAC4RS: Emissions of Trace Gases and Particles and Evolution of Ozone, Reactive Nitrogen, and Organic Aerosol

    NASA Technical Reports Server (NTRS)

    Liu, X.; Zhang, Y.; Huey, L. G.; Yokelson, R. J.; Wang, Y.; Jimenez, J. L.; Campuzano-Jost, P.; Beyersdorf, A. J.; Blake, D. R.; Choi, Y.; hide

    2016-01-01

    Emissions from 15 agricultural fires in the southeastern U.S. were measured from the NASA DC-8 research aircraft during the summer 2013 Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. This study reports a detailed set of emission factors (EFs) for 25 trace gases and 6 fine particle species. The chemical evolution of the primary emissions in seven plumes was examined in detail for 1.2 h. A Lagrangian plume cross-section model was used to simulate the evolution of ozone (O3), reactive nitrogen species, and organic aerosol (OA). Observed EFs are generally consistent with previous measurements of crop residue burning, but the fires studied here emitted high amounts of SO2 and fine particles, especially primary OA and chloride. Filter-based measurements of aerosol light absorption implied that brown carbon (BrC) was ubiquitous in the plumes. In aged plumes, rapid production of O3, peroxyacetyl nitrate (PAN), and nitrate was observed with (Delta)O3/(Delta)CO, (Delta)PAN/(Delta)NOy, and (Delta)nitrate/(Delta)NOy reaching approx. 0.1, approx. 0.3, and approx.0.3. For five selected cases, the model reasonably simulated O3 formation but underestimated PAN formation. No significant evolution of OA mass or BrC absorption was observed. However, a consistent increase in oxygen-to-carbon (O/C) ratios of OA indicated that OA oxidation in the agricultural fire plumes was much faster than in urban and forest fire plumes. Finally, total annual SO2, NOx, and CO emissions from agricultural fires in Arkansas, Louisiana, Mississippi, and Missouri were estimated