Sample records for dip cracks opened

  1. Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions

    NASA Astrophysics Data System (ADS)

    Vilotte, J. P.; Scala, A.; Festa, G.

    2017-12-01

    We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.

  2. Urban cool

    NASA Astrophysics Data System (ADS)

    Ennos, Roland

    2010-08-01

    The picture-perfect summer for many involves dipping toes into the water's edge on a sandy beach, strolling through a park licking an ice cream or cracking open a bottle of cold beer as gorgeous smells waft from a barbecue nearby.

  3. Source Mechanism of Vulcanian Degassing at Popocatépetl Volcano, Mexico, Determined From Moment-Tensor Inversion of Very-long-period Seismic Waveforms

    NASA Astrophysics Data System (ADS)

    Chouet, B.; Dawson, P.; Arciniega, A.

    2004-12-01

    The source mechanism of very-long-period (VLP) signals accompanying degassing exhalations at Popocatépetl is analyzed in the 15-70~s band by minimizing the residual error between data and synthetics calculated for a point source embedded in a homogeneous medium. The waveforms of two events (04/23/00, 05/23/00) representative of mild Vulcanian eruptions are well reproduced by our inversion, which takes into account volcano topography. The source centroid is positioned 1500~m below the western perimeter of the summit crater, and the modeled source is composed of a shallow-dipping crack (sill with easterly dip of 10° ) intersecting a steeply-dipping crack (northeast striking dike with northwest dip of 83° ), whose surface trace bisects the vent. Both cracks undergo a similar sequence of inflation, deflation, and reinflation --- reflecting a cycle of pressurization, depressurization, and repressurization within a time interval of 3-5~min. The largest moment release occurs in the sill, showing a maximum volume change of 500-1000\\:m3, pressure drop of 3-5~MPa, and amplitude of recovered pressure equal to 1.2 times the amplitude of the pressure drop. In contrast, the maximum volume change in the dike is 200-300\\:m3, with a corresponding pressure drop of 1-2~MPa and pressure recovery equal to the pressure drop. Accompanying these volumetric sources is a single force with magnitude of 5 × 108~N, consistent with melt advection in response to the pressure transients. The source-time history of the three components of this force confirms that significant mass movement starts in the sill and triggers a mass movement response in the dike within ˜ 5~s. Such source behavior is consistent with the opening of an escape pathway for accumulated gases from slow pressurization of the sill driven by magma crystallization. The opening of a pathway for pent-up gases in the sill and rapid evacuation of this separated gas phase induces the pressure drop. Pressure recovery in the magma filling the sill is driven by diffusion of gases from the resulting supersaturated melt into bubbles. Assuming a penny-shaped crack at ambient pressure of 40~MPa, the observed pressure and volume variations can be modeled with the following attributes: crack radius, (100~m), crack aperture, (5~m), bubble number density, (1010 - 1012\\:m-3), initial bubble radius, (10-6\\:m), final bubble radius, ( ˜ 10-5\\:m), and net decrease of gas concentration in the melt, (0.01~wt%).

  4. Source mechanism of Vulcanian degassing at Popocatépetl Volcano, Mexico, determined from waveform inversions of very long period signals

    NASA Astrophysics Data System (ADS)

    Chouet, Bernard; Dawson, Phillip; Arciniega-Ceballos, Alejandra

    2005-07-01

    The source mechanism of very long period (VLP) signals accompanying volcanic degassing bursts at Popocatépetl is analyzed in the 15-70 s band by minimizing the residual error between data and synthetics calculated for a point source embedded in a homogeneous medium. The waveforms of two eruptions (23 April and 23 May 2000) representative of mild Vulcanian activity are well reproduced by our inversion, which takes into account volcano topography. The source centroid is positioned 1500 m below the western perimeter of the summit crater, and the modeled source is composed of a shallow dipping crack (sill with easterly dip of 10°) intersecting a steeply dipping crack (northeast striking dike dipping 83° northwest), whose surface extension bisects the vent. Both cracks undergo a similar sequence of inflation, deflation, and reinflation, reflecting a cycle of pressurization, depressurization, and repressurization within a time interval of 3-5 min. The largest moment release occurs in the sill, showing a maximum volume change of 500-1000 m3, pressure drop of 3-5 MPa, and amplitude of recovered pressure equal to 1.2 times the amplitude of the pressure drop. In contrast, the maximum volume change in the dike is less (200-300 m3), with a corresponding pressure drop of 1-2 MPa and pressure recovery equal to the pressure drop. Accompanying these volumetric sources are single-force components with magnitudes of 108 N, consistent with melt advection in response to pressure transients. The source time histories of the volumetric components of the source indicate that significant mass movement starts within the sill and triggers a mass movement response in the dike within a few seconds. Such source behavior is consistent with the opening of a pathway for escape of pent-up gases from slow pressurization of the sill driven by magma crystallization. The opening of this pathway and associated rapid evacuation of volcanic gases induces the pressure drop. Pressure recovery in the magma filling the sill is driven by diffusion of gases from the resulting supersaturated melt into bubbles. Assuming a penny-shaped crack at ambient pressure of 40 MPa, the observed pressure and volume variations can be modeled with the following attributes: crack radius (100 m), crack aperture (5 m), bubble number density (1010-1012 m-3), initial bubble radius (10-6 m), final bubble radius (˜10-5 m), and net decrease of gas concentration in the melt (0.01 wt %).

  5. Source mechanism of Vulcanian degassing at Popocatépetl Volcano, Mexico, determined from waveform inversions of very long period signals

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.; Arciniega-Ceballos, Alejandra

    2005-01-01

    The source mechanism of very long period (VLP) signals accompanying volcanic degassing bursts at Popocatépetl is analyzed in the 15–70 s band by minimizing the residual error between data and synthetics calculated for a point source embedded in a homogeneous medium. The waveforms of two eruptions (23 April and 23 May 2000) representative of mild Vulcanian activity are well reproduced by our inversion, which takes into account volcano topography. The source centroid is positioned 1500 m below the western perimeter of the summit crater, and the modeled source is composed of a shallow dipping crack (sill with easterly dip of 10°) intersecting a steeply dipping crack (northeast striking dike dipping 83° northwest), whose surface extension bisects the vent. Both cracks undergo a similar sequence of inflation, deflation, and reinflation, reflecting a cycle of pressurization, depressurization, and repressurization within a time interval of 3–5 min. The largest moment release occurs in the sill, showing a maximum volume change of 500–1000 m3, pressure drop of 3–5 MPa, and amplitude of recovered pressure equal to 1.2 times the amplitude of the pressure drop. In contrast, the maximum volume change in the dike is less (200–300 m3), with a corresponding pressure drop of 1–2 MPa and pressure recovery equal to the pressure drop. Accompanying these volumetric sources are single-force components with magnitudes of 108 N, consistent with melt advection in response to pressure transients. The source time histories of the volumetric components of the source indicate that significant mass movement starts within the sill and triggers a mass movement response in the dike within a few seconds. Such source behavior is consistent with the opening of a pathway for escape of pent-up gases from slow pressurization of the sill driven by magma crystallization. The opening of this pathway and associated rapid evacuation of volcanic gases induces the pressure drop. Pressure recovery in the magma filling the sill is driven by diffusion of gases from the resulting supersaturated melt into bubbles. Assuming a penny-shaped crack at ambient pressure of 40 MPa, the observed pressure and volume variations can be modeled with the following attributes: crack radius (100 m), crack aperture (5 m), bubble number density (1010–1012 m−3), initial bubble radius (10−6 m), final bubble radius (∼10−5 m), and net decrease of gas concentration in the melt (0.01 wt %).

  6. Characterization and Prediction of Cracks in Coated Materials: Direction and Length of Crack Propagation in Bimaterials

    PubMed Central

    Azari, Z.; Pappalettere, C.

    2015-01-01

    The behaviour of materials is governed by the surrounding environment. The contact area between the material and the surrounding environment is the likely spot where different forms of degradation, particularly rust, may be generated. A rust prevention treatment, like bluing, inhibitors, humidity control, coatings, and galvanization, will be necessary. The galvanization process aims to protect the surface of the material by depositing a layer of metallic zinc by either hot-dip galvanizing or electroplating. In the hot-dip galvanizing process, a metallic bond between steel and metallic zinc is obtained by immersing the steel in a zinc bath at a temperature of around 460°C. Although the hot-dip galvanizing procedure is recognized to be one of the most effective techniques to combat corrosion, cracks can arise in the intermetallic δ layer. These cracks can affect the life of the coated material and decrease the lifetime service of the entire structure. In the present paper the mechanical response of hot-dip galvanized steel submitted to mechanical loading condition is investigated. Experimental tests were performed and corroborative numerical and analytical methods were then applied in order to describe both the mechanical behaviour and the processes of crack/cracks propagation in a bimaterial as zinc-coated material. PMID:27347531

  7. Characterization and Prediction of Cracks in Coated Materials: Direction and Length of Crack Propagation in Bimaterials.

    PubMed

    Pruncu, C I; Azari, Z; Casavola, C; Pappalettere, C

    2015-01-01

    The behaviour of materials is governed by the surrounding environment. The contact area between the material and the surrounding environment is the likely spot where different forms of degradation, particularly rust, may be generated. A rust prevention treatment, like bluing, inhibitors, humidity control, coatings, and galvanization, will be necessary. The galvanization process aims to protect the surface of the material by depositing a layer of metallic zinc by either hot-dip galvanizing or electroplating. In the hot-dip galvanizing process, a metallic bond between steel and metallic zinc is obtained by immersing the steel in a zinc bath at a temperature of around 460°C. Although the hot-dip galvanizing procedure is recognized to be one of the most effective techniques to combat corrosion, cracks can arise in the intermetallic δ layer. These cracks can affect the life of the coated material and decrease the lifetime service of the entire structure. In the present paper the mechanical response of hot-dip galvanized steel submitted to mechanical loading condition is investigated. Experimental tests were performed and corroborative numerical and analytical methods were then applied in order to describe both the mechanical behaviour and the processes of crack/cracks propagation in a bimaterial as zinc-coated material.

  8. Influences of Cr/Ni equivalent ratios of filler wires on pitting corrosion and ductility-dip cracking of AISI 316L weld metals

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Kim, D. G.; Sung, J. H.; Kim, I. S.; Ko, D. E.; Kang, N. H.; Hong, H. U.; Park, J. H.; Lee, H. W.

    2011-02-01

    To study the pitting corrosion of AISI 316L weld metals according to the chromium/nickel equivalent ratio (Creq/Nieq ratio), three filler wires were newly designed for the flux-cored arc welding process. The weld metal with delta-ferrite at less than 3 vol.%, was observed for ductility-dip cracking (DDC) in the reheated region after multi-pass welding. The tensile strength and yield strength increased with increasing Creq/Nieq ratio. The result of anodic polarization tests in a 0.1 M NaCl solution at the room temperature (25) for 45 min, revealed that the base metal and weld metals have a similar corrosion potential of -0.34 VSCE. The weld metal with the highest content of Cr had the highest pitting potential (0.39 VSCE) and the passivation range (0.64 VSCE) was higher than the base metal (0.21 VSCE and 0.46 VSCE, respectively). Adding 0.001 M Na2S to the 0.1M NaCl solution, the corrosion occurred more severely by H2S. The corrosion potentials of the base metal and three weld metals decreased to -1.0 VSCE. DDC caused the decrease of the pitting potential by inducing a locally intense corrosion attack around the crack openings.

  9. Investigation on the Cracking Character of Jointed Rock Mass Beneath TBM Disc Cutter

    NASA Astrophysics Data System (ADS)

    Yang, Haiqing; Liu, Junfeng; Liu, Bolong

    2018-04-01

    With the purpose to investigate the influence of joint dip angle and spacing on the TBM rock-breaking efficacy and cracking behaviour, experiments that include miniature cutter head tests are carried out on sandstone rock material. In the experiment, prefabricated joints of different forms are made in rock samples. Then theoretical analysis is conducted to improve the calculating models of the fractured work and crack length of rock in the TBM process. The experimental results indicate that lower rupture angles appear for specimens with joint dip angles between 45° and 60°. Meanwhile, rock-breaking efficacy for rock mass with joint dip angles in this interval is also higher. Besides, the fracture patterns are transformed from compressive shear mode to tensile shear mode as the joint spacing decreases. As a result, failure in a greater extent is resulted for specimens with smaller joint spacings. The results above suggest that joint dip angle between 45° and 60° and joint spacing of 1 cm are the optimal rock-breaking conditions for the tested specimens. Combining the present experimental data and taking the joint dip angle and spacing into consideration, the calculating model for rock fractured work that proposed by previous scholars is improved. Finally, theoretical solution of rock median and side crack length is also derived based on the analytical method of elastoplastic invasion fracture for indenter. The result of the analytical solution is also in good agreement with the actual measured experimental result. The present study may provide some primary knowledge about the rock cracking character and breaking efficacy under different engineering conditions.

  10. Contribution of precipitate on migrated grain boundaries to ductility-dip cracking in Alloy 625 weld joints

    NASA Astrophysics Data System (ADS)

    Lee, Dong Jin; Kim, Youn Soo; Shin, Yong Taek; Jeon, Eon Chan; Lee, Sang Hwa; Lee, Hyo-Jong; Lee, Sung Keun; Lee, Jun Hee; Lee, Hae Woo

    2010-10-01

    We investigated the crack properties in Alloy 625 weld metals and their characteristics using experimentally designed filler wires fabricated by varying the niobium and manganese contents in the flux with the shield metal arc welding (SMAW) process. The fast diffusivity of niobium on the migrated grain boundary (MGB) under strong restraint tensile stress, which was induced by the hardened matrix in weld metal containing high niobium and manganese, accelerated the growth of niobium carbide (NbC) in multipass deposits. Coalescence of microvoids along with incoherent NbC and further propagation induced ductility-dip cracking (DDC) on MGB.

  11. Metallurgical investigation into ductility dip cracking in nickel based alloys

    NASA Astrophysics Data System (ADS)

    Noecker, Fredrick F., II

    A690 is a Ni-Cr-Fe alloy with excellent resistance to general corrosion, localized corrosion and stress corrosion cracking. However, the companion filler metal for A690, EN52, has been shown by several researchers to be susceptible to ductility dip cracking (DDC), which limits its widespread use in joining applications. The Gleeble hot ductility test was used to evaluate the DDC susceptibility of A600 and A690, along with their filler metals, EN82H and EN52, throughout the heating and cooling portions of a simulated weld reheat thermal cycle. Both macroscopic mechanical measures and microscopic measures of DDC were quantified and compared. Water quenching was conducted at select temperatures for subsequent microstructural characterization. Microstructural and microchemical characterization was carried out using scanning electron microscopy, transmission electron microscopy and analytical electron microscopy (AEM) techniques. The greatest resistance to DDC was observed in A600 and A690 during heating, where no DDC cracks formed even when the samples were fractured. Both A690 and EN52 were found to form an intermediate on-cooling dip in ductility and UTS, which corresponded to an increase in ductility dip crack length. The hot ductility and cracking resistance of EN82H remained high throughout the entire thermal cycle. DDC susceptibility in both EN52 and EN82H decreased when the thermal cycle was modified to promote coarsening/precipitation of intergranular carbides prior to straining. AEM analysis did not reveal any sulfur or phosphorous intergranular segregation in EN52 at 1600°F on-heating, on-cooling or after a 60 second hold. The ductility dip cracks were preferentially oriented at a 45° to the tensile axis and were of a wedge type appearance, both of which are characteristic of grain boundary sliding (GBS). Samples with microstructures that consisted of coarsened carbides and/or serrated grain boundaries, which are expected to decrease GBS, were found to be resistant to DDC. Based on the results of this work grain boundary sliding contributes to DDC, while sulfur and phosphorous embrittlement do not play a role in DDC of EN52 at the concentrations investigated. The dynamic precipitation of partially coherent intergranular M23C6 carbides at intermediate temperatures may exacerbate DDC in A690 and EN52, but requires further investigation.

  12. Crevasse detection with GPR across the Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Delaney, A.; Arcone, S.

    2005-12-01

    We have used 400-MHz ground penetrating radar (GPR) to detect crevasses within a shear zone on the Ross Ice Shelf, Antarctica, to support traverse operations. The transducer was attached to a 6.5-m boom and pushed ahead of an enclosed tracked vehicle. Profile speeds of 4.8-11.3 km / hr allowed real-time crevasse image display and a quick, safe stop when required. Thirty-two crevasses were located with radar along the 4.8 km crossing. Generally, crevasse radar images were characterized by dipping reflections above the voids, high-amplitude reflections originating from ice layers at the base of the snow-bridges, and slanting, diffracting reflections from near-vertical crevasse walls. New cracks and narrow crevasses (<50 cm width) show no distinct snow bridge structure, few diffractions, and a distinct band where pulse reflections are absent. Wide (0.5-5.0 m), vertical wall crevasses show distinct dipping snow bridge layering and intense diffractions from ice layers near the base of the snow bridge. Pulse reflections are absent from voids beneath the snow bridges. Old, wide (3.0-8.0 m) and complexly shaped crevasses show well-developed, broad, dipping snow-bridge layers and a high-amplitude, complex, diffraction pattern. The crevasse mitigation process, which included hot-water drilling, destroying the bridges with dynamite, and back-filling with bulldozed snow, afforded an opportunity to ground-truth GPR interpretations by comparing void size and snow-bridge geometry with the radar images. While second and third season radar profiles collected along the identical flagged route confirmed stability of the filled crevasses, those profiles also identified several new cracks opened by ice extension. Our experiments demonstrate capability of high-frequency GPR in a cold-snow environment for both defining snow layers and locating voids.

  13. Experimental Investigation of the Influence of Joint Geometric Configurations on the Mechanical Properties of Intermittent Jointed Rock Models Under Cyclic Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu

    2017-06-01

    Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.

  14. Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Dan; Xue, Jiawei; Zhang, Anfeng

    Ductility-dip cracking in Ni-based superalloy, resulting from heat treatment, is known to cause disastrous failure, but its mechanism is still not completely clear. A statistical study of the cracking behavior as a function of crystal orientation in a laser 3D-printed DL125L Ni-based superalloy polycrystal is investigated here using the synchrotron X-ray microdiffraction. The dislocation slip system in each of the forty crystal grains adjacent to the 300 μm long crack has been analyzed through Laue diffraction peak shapes. In all these grains, edge-type geometrically necessary dislocations (GNDs) dominate, and their dislocation line directions are almost parallel to the crack plane.more » Based on Schmid's law, the equivalent uniaxial tensile force direction is revealed normal to the trace of the crack. A qualitative mechanism is thus proposed. Thermal tensile stress perpendicular to the laser scanning direction is elevated due to a significant temperature gradient, and thus locations in the materials where the thermal stress exceeds the yield stress undergo plastic deformation mediated by GND activations. As the dislocations slip inside the crystal grains and pile up at the grain boundaries, local strain/stress keeps increasing, until the materials in these regions fail to sustain further deformation, leading to voids formation and cracks propagation.« less

  15. Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy

    DOE PAGES

    Qian, Dan; Xue, Jiawei; Zhang, Anfeng; ...

    2017-06-06

    Ductility-dip cracking in Ni-based superalloy, resulting from heat treatment, is known to cause disastrous failure, but its mechanism is still not completely clear. A statistical study of the cracking behavior as a function of crystal orientation in a laser 3D-printed DL125L Ni-based superalloy polycrystal is investigated here using the synchrotron X-ray microdiffraction. The dislocation slip system in each of the forty crystal grains adjacent to the 300 μm long crack has been analyzed through Laue diffraction peak shapes. In all these grains, edge-type geometrically necessary dislocations (GNDs) dominate, and their dislocation line directions are almost parallel to the crack plane.more » Based on Schmid's law, the equivalent uniaxial tensile force direction is revealed normal to the trace of the crack. A qualitative mechanism is thus proposed. Thermal tensile stress perpendicular to the laser scanning direction is elevated due to a significant temperature gradient, and thus locations in the materials where the thermal stress exceeds the yield stress undergo plastic deformation mediated by GND activations. As the dislocations slip inside the crystal grains and pile up at the grain boundaries, local strain/stress keeps increasing, until the materials in these regions fail to sustain further deformation, leading to voids formation and cracks propagation.« less

  16. An investigation of the elevated temperature cracking susceptibility of alloy C-22 weld-metal

    NASA Astrophysics Data System (ADS)

    Gallagher, Morgan Leo

    Alloy C-22 is one of the most corrosion resistant Ni-Cr-Mo alloys available today, and is particularly versatile. As a result, Alloy C-22 is being considered for use in the construction of storage canisters for permanent disposal of radioactive waste in the Yucca Mountain Project. However, in such a critical application, weld related defects (such as these two forms of cracking) are simply unacceptable. Solidification cracking occurs when weld shrinkage strains are applied to liquid films that result from microsegregation during solidification. Many nickel-base alloys are susceptible to solidification cracking since they solidify as austenite and many of their alloying additions partition during solidification and form low melting eutectic constituents. The transvarestraint test was used to quantify the susceptibility of Alloy C-22 to solidification cracking. The solidification cracking temperature range (SCTR) was found to be approximately 50°C (90°F); this SCTR predicts that Alloy-C-22 will have only slightly higher susceptibility than known crack-resistant alloys, such as duplex stainless-steel 2205 and austenitic stainless-steel Type 304 (FN6). Ductility-dip cracking (DDC) is a solid-state cracking phenomenon that occurs below the effective solidus temperature in highly restrained austenitic alloys. Although this type of cracking is relatively uncommon, it can be costly in critical applications where there is a low tolerance for defects. This investigation used two separate tests to quantify the susceptibility of the alloy to DDC: the hot-ductility test and the strain-to-fracture (STF) test. The hot-ductility test revealed that Alloy C-22 weld-metal exhibits an intermediate temperature ductility-dip, with ductility recovery at the upper end of the testing temperature range. The ductility minimum in the hot-ductility tests occurred around 950°C (1742°F) in both the on-heating and on-cooling tests. The strain-to-fracture test also revealed Alloy C-22 to be susceptible to ductility-dip cracking. Alloy C-22 displayed a low threshold strain necessary to initiate cracking, a wide temperature range over which cracking occurred, and no recovery of ductility at the upper end of the testing temperature range. The recovery of ductility at the upper end of the testing temperature range in the hotductility test, and the absence of this recovery in the STF test, is explained by the recrystallization behavior of the metal. Alloy C-22 has a low stacking-fault-energy, as compared to other DDC susceptible nickel-base alloys, and accordingly requires higher levels of deformation before recrystallization begins. With the relatively low strains experienced by the samples in the STF test (less than ten-percent), cracking will occur before enough strain is accumulated to cause recrystallization. In the hot-ductility test, where the sample is pulled to failure, sufficient strain (forty-percent or greater) is applied such that recrystallization occurs. This recrystallization is responsible for the recovery of ductility at the high end of the testing temperature range in the hot-ductility test. The low threshold strain that is observed in the STF test is in part explained by the behavior of the metal during the thermal cycle of the test. Experimental observations indicate that tortuous (wavy) solidification grain boundaries (SGB) migrate, or straighten, during the temperature upslope and hold period of the STF test. This migration of the grain boundaries reduces the mechanical locking effect that tortuous grain boundaries provide, allowing cracking to occur at lower applied strains. Button-melting experiments were conducted to examine the effect of compositional variation on both solidification cracking and ductility-dip cracking susceptibility of the alloy. Molybdenum, tungsten, and iron were selected for variation, as previous research has shown these three elements to be significantly enriched or depleted in the terminal solidification products of Alloy C-22 weld-metal. The solidification temperature range and volume fraction of secondary phases were used as indicators of the susceptibility of the experimental alloys to solidification cracking and ductility-dip cracking, respectively. Previous research on nickel-base alloys has demonstrated that the solidification temperature range of an alloy is directly proportional to the susceptibility of the alloy to solidification cracking. Experiments conducted within this investigation indicate that increasing the volume fraction of secondary phases in Alloy C-22 acts to increase the elevated temperature cracking-resistance and ductility of the alloy. The solidification temperature ranges of the Alloy C-22 variants examined within the button-melting experiments did not significantly widen or narrow with increases in composition. These same compositional variations demonstrated that increasing amounts of molybdenum, tungsten, and iron increased the volume fraction of secondary phases, with each element having relatively the same potency. Based on the button melting experiments and thermodynamic simulations, it is expected that Alloy C-22 will have good resistance to weld solidification cracking over its entire composition range. (Abstract shortened by UMI.)

  17. Dip-Coating Fabrication of Solar Cells

    NASA Technical Reports Server (NTRS)

    Koepke, B.; Suave, D.

    1982-01-01

    Inexpensive silicon solar cells made by simple dip technique. Cooling shoes direct flow of helium on graphite-coated ceramic substrate to solidify film of liquid silicon on graphite surface as substrate is withdrawn from molten silicon. After heaters control cooling of film and substrate to prevent cracking. Gas jets exit at points about 10 mm from substrate surfaces and 6 to 10 mm above melt surface.

  18. Damage and Shaking Intensity in the M5.7 Canyondam Earthquake

    NASA Astrophysics Data System (ADS)

    Boatwright, J.; Chapman, K.; Gold, M. B.; Hardebeck, J. L.

    2013-12-01

    An M5.7 earthquake occurred southeast of Lake Almanor, CA, at 8:47 PM on May 23, 2013. Double-difference relocations of the main shock and aftershocks indicate that the earthquake nucleated at 11 km depth and ruptured up dip on a fault striking 292° and dipping 70° to the northeast. The earthquake cracked foundations, broke chimneys, and ruptured plumbing around Lake Almanor. We canvassed communities around the lake and to the south and east for earthquake damage, adding reports from our interviews to the geocoded 'Did You Feel It?' reports and to a set of damage reports collected by the Plumas County Office of Emergency Services. Three communities suffered significant damage. In Lake Almanor West, 14 km and 290° from the hypocenter, one wood-frame house was shifted on its foundation, the cripple wall of another house was racked, and water and gas pipes in five houses were ruptured. This damage indicates the shaking approached MMI 8. In Lake Almanor Country Club, 10 km and 310° from the hypocenter, more than 40 chimneys were cracked, broken, or collapsed, a coupling for the municipal water tank was ruptured, and a 200-foot long fissure opened on a slope facing the lake. This damage indicates shaking between MMI 7 and MMI 8, consistent with the accelerograph recording of PGA = 38% g and PGV = 30 cm/s at the Fire Station in Lake Almanor Country Club. This CSMIP station and a PG&E station on the crest of the Butt Valley Dam obtained the only recordings within 50 km of the epicenter. In Hamilton Branch, 10 km and 345° from the hypocenter, a foundation of a wood-frame house was damaged, and 14 chimneys and a water pipe were broken, indicative of MMI 7 shaking. All three communities are underlain by Tertiary and Quaternary basalts. The communities of Chester, Westwood, and Greenville were less damaged, suffering cracked drywall, broken windows, and objects thrown from shelves. The intensities in the three most strongly damaged communities increase as the azimuth from the source approaches the fault strike. This damage pattern could be caused by rupture directivity if the earthquake or the strongest sub-event of the earthquake ruptured up dip and to the west.

  19. Analysis of the ductility dip cracking in the nickel-base alloy 617mod

    NASA Astrophysics Data System (ADS)

    Eilers, A.; Nellesen, J.; Zielke, R.; Tillmann, W.

    2017-03-01

    While testing steam leading power plant components made of the nickel-base alloy A617mod at elevated temperatures (700 °C), ductility dip cracking (DDC) was observed in welding seams and their surroundings. In order to clarify the mechanism of crack formation, investigations were carried out on welded specimens made of A617mod. Interrupted tensile tests were performed on tensile specimens taken from the area of the welding seam. To simulate the conditions, the tensile tests were conducted at a temperature of 700 °C and with a low strain rate. Local strain fields at grain boundaries and inside single grains were determined at different deformation states by means of two-dimensional digital image correlation (DIC). Besides the strain fields, local hardnesses (nanoindentation), energy dispersive X-Ray spectroscopy (EDX), and electron backscatter diffraction (EBSD) measurements were performed. Besides information concerning the grain orientation, the EBSD measurement provides information on the coincidence site lattice (CSL) at grain boundaries as well as the Schmid factor of single grains. All results of the analysis methods mentioned above were correlated and compared to each other and related to the crack formation. Among other things, correlations between strain fields and Schmid factors were determined. The investigations show that the following influences affect the crack formation: orientation of the grain boundaries to the direction of the loading, the orientation of the grains to each other (CSL), and grain boundary sliding.

  20. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, P.; Rahman, S.; Wilkowski, G.

    1997-04-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from amore » full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.« less

  1. On the finite element modeling of the asymmetric cracked rotor

    NASA Astrophysics Data System (ADS)

    AL-Shudeifat, Mohammad A.

    2013-05-01

    The advanced phase of the breathing crack in the heavy duty horizontal rotor system is expected to be dominated by the open crack state rather than the breathing state after a short period of operation. The reason for this scenario is the expected plastic deformation in crack location due to a large compression stress field appears during the continuous shaft rotation. Based on that, the finite element modeling of a cracked rotor system with a transverse open crack is addressed here. The cracked rotor with the open crack model behaves as an asymmetric shaft due to the presence of the transverse edge crack. Hence, the time-varying area moments of inertia of the cracked section are employed in formulating the periodic finite element stiffness matrix which yields a linear time-periodic system. The harmonic balance method (HB) is used for solving the finite element (FE) equations of motion for studying the dynamic behavior of the system. The behavior of the whirl orbits during the passage through the subcritical rotational speeds of the open crack model is compared to that for the breathing crack model. The presence of the open crack with the unbalance force was found only to excite the 1/2 and 1/3 of the backward critical whirling speed. The whirl orbits in the neighborhood of these subcritical speeds were found to have nearly similar behavior for both open and breathing crack models. While unlike the breathing crack model, the subcritical forward whirling speeds have not been observed for the open crack model in the response to the unbalance force. As a result, the behavior of the whirl orbits during the passage through the forward subcritical rotational speeds is found to be enough to distinguish the breathing crack from the open crack model. These whirl orbits with inner loops that appear in the neighborhood of the forward subcritical speeds are then a unique property for the breathing crack model.

  2. Morphology evaluation of ZrO2 dip coating on mild steel and its corrosion performance in NaOH solution

    NASA Astrophysics Data System (ADS)

    Anwar, M. A.; Kurniawan, T.; Asmara, Y. P.; Harun, W. S. W.; Oumar, A. N.; Nandyanto, A. B. D.

    2017-10-01

    In this work, the morphology of ZrO2 thin film from dip coating process on mild steel has been investigated. Mild steel was dip-coated on solution made of zirconium butoxide as a precursor, ethanol as solvent, acetylacetone as chelating agent and water for hydrolysis. Number of dipping was adjusted at 3, 5 and 7 times. The dipped sample then annealed at 350°C for two hours by adjusting the heating rate at 1°C/min respectively. The optical microscope showed that micro-cracks were observed on the surface of the coating with its concentration reduced as dipping sequence increased. The XRD result showed that annealing process can produce polycrystalline tetragonal-ZrO2. Meanwhile, SEM image showed that the thicknesses of the ZrO2 coatings were in between 400-600 nm. The corrosion resistance of uncoated and coated substrates was studied by polarization test through potentio-dynamic polarization curve at 1mV/s immersed in with 3.5% NaCl. The coating efficiency was improved as the number of layer dip coated increased, which showed improvement in corrosion protection.

  3. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikel, J.M.; Parker, D.M.

    1998-06-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility wasmore » compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC.« less

  4. Crack-closure and crack-growth measurements in surface-flawed titanium alloy Ti6Al-4V

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1975-01-01

    The crack-closure and crack-growth characteristics of the titanium alloy Ti-6Al-4V were determined experimentally on surface-flawed plate specimens. Under cyclic loading from zero to tension, cracks deeper than 1 mm opened at approximately 50 percent of the maximum load. Cracks shallower than 1 mm opened at higher loads. The correlation between crack-growth rate and the total stress-intensity range showed a lower threshold behavior. This behavior was attributed to the high crack-opening loads at short cracks because the lower threshold was much less evident in correlations between the crack-growth rates and the effective stress-intensity range.

  5. Comparing the floquet stability of open and breathing fatigue cracks in an overhung rotordynamic system

    NASA Astrophysics Data System (ADS)

    Varney, Philip; Green, Itzhak

    2017-11-01

    Rotor cracks represent an uncommon but serious threat to rotating machines and must be detected early to avoid catastrophic machine failure. An important aspect of analyzing rotor cracks is understanding their influence on the rotor stability. It is well-known that the extent of rotor instability versus shaft speed is exacerbated by deeper cracks. Consequently, crack propagation can eventually result in an unstable response even if the shaft speed remains constant. Most previous investigations of crack-induced rotor instability concern simple Jeffcott rotors. This work advances the state-of-the-art by (a) providing a novel inertial-frame model of an overhung rotor, and (b) assessing the stability of the cracked overhung rotor using Floquet stability analysis. The rotor Floquet stability analysis is performed for both an open crack and a breathing crack, and conclusions are drawn regarding the importance of appropriately selecting the crack model. The rotor stability is analyzed versus crack depth, external viscous damping ratio, and rotor inertia. In general, this work concludes that the onset of instability occurs at lower shaft speeds for thick rotors, lower viscous damping ratios, and deeper cracks. In addition, when comparing commensurate cracks, the breathing crack is shown to induce more regions of instability than the open crack, though the open crack generally predicts an unstable response for shallower cracks than the breathing crack. Keywords: rotordynamics, stability, rotor cracks.

  6. Modeling and characterization of as-welded microstructure of solid solution strengthened Ni-Cr-Fe alloys resistant to ductility-dip cracking Part II: Microstructure characterization

    NASA Astrophysics Data System (ADS)

    Unfried-Silgado, Jimy; Ramirez, Antonio J.

    2014-03-01

    In part II of this work is evaluated the as-welded microstructure of Ni-Cr-Fe alloys, which were selected and modeled in part I. Detailed characterization of primary and secondary precipitates, subgrain and grain structures, partitioning, and grain boundary morphology were developed. Microstructural characterization was carried out using optical microscopy, SEM, TEM, EBSD, and XEDS techniques. These results were analyzed and compared to modeling results displaying a good agreement. The Hf additions produced the highest waviness of grain boundaries, which were related to distribution of Hf-rich carbonitrides. Experimental evidences about Mo distribution into crystal lattice have provided information about its possible role in ductility-dip cracking (DDC). Characterization results of studied alloys were analyzed and linked to their DDC resistance data aiming to establish relationships between as-welded microstructure and hot deformation performance. Wavy grain boundaries, primary carbides distribution, and strengthened crystal lattice are metallurgical characteristics related to high DDC resistance.

  7. Surface deformation in volcanic rift zones

    USGS Publications Warehouse

    Pollard, D.D.; Delaney, P.T.; Duffield, W.A.; Endo, E.T.; Okamura, A.T.

    1983-01-01

    The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation. ?? 1983.

  8. Fretting Fatigue with Cylindrical-On-Flat Contact: Crack Nucleation, Crack Path and Fatigue Life

    PubMed Central

    Noraphaiphipaksa, Nitikorn; Manonukul, Anchalee; Kanchanomai, Chaosuan

    2017-01-01

    Fretting fatigue experiments and finite element analysis were carried out to investigate the influence of cylindrical-on-flat contact on crack nucleation, crack path and fatigue life of medium-carbon steel. The location of crack nucleation was predicted using the maximum shear stress range criterion and the maximum relative slip amplitude criterion. The prediction using the maximum relative slip amplitude criterion gave the better agreement with the experimental result, and should be used for the prediction of the location of crack nucleation. Crack openings under compressive bulk stresses were found in the fretting fatigues with flat-on-flat contact and cylindrical-on-flat contacts, i.e., fretting-contact-induced crack openings. The crack opening stress of specimen with flat-on-flat contact was lower than those of specimens with cylindrical-on-flat contacts, while that of specimen with 60-mm radius contact pad was lower than that of specimen with 15-mm radius contact pad. The fretting fatigue lives were estimated by integrating the fatigue crack growth curve from an initial propagating crack length to a critical crack length. The predictions of fretting fatigue life with consideration of crack opening were in good agreement with the experimental results. PMID:28772522

  9. Opening-mode cracking in asphalt pavements : crack initiation and saturation.

    DOT National Transportation Integrated Search

    2009-12-01

    This paper investigates the crack initiation and saturation for opening-mode cracking. Using elastic governing equations : and a weak form stress boundary condition, we derive an explicit solution of elastic fields in the surface course and : obtain ...

  10. Assessment of crack opening area for leak rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharples, J.K.; Bouchard, P.J.

    1997-04-01

    This paper outlines the background to recommended crack opening area solutions given in a proposed revision to leak before break guidance for the R6 procedure. Comparisons with experimental and analytical results are given for some selected cases of circumferential cracks in cylinders. It is shown that elastic models can provide satisfactory estimations of crack opening displacement (and area) but they become increasingly conservative for values of L{sub r} greater than approximately 0.4. The Dugdale small scale yielding model gives conservative estimates of crack opening displacement with increasing enhancement for L{sub r} values greater than 0.4. Further validation of the elastic-plasticmore » reference stress method for up to L{sub r} values of about 1.0 is presented by experimental and analytical comparisons. Although a more detailed method, its application gives a best estimate of crack opening displacement which may be substantially greater than small scale plasticity models. It is also shown that the local boundary conditions in pipework need to be carefully considered when evaluating crack opening area for through-wall bending stresses resulting from welding residual stresses or geometry discontinuities.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Choo, Hahn; Liaw, Peter K

    The combined effects of overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are suggested to be responsible for the observed changes in the crack opening load and resultant post-overload transient crack growth behavior [Lee SY, Liaw PK, Choo H, Rogge RB, Acta Mater 2010;59:485-94]. In this article, in situ neutron diffraction experiments were performed to quantify the influence of the combined effects by investigating the internal-stress evolution at various locations away from the crack tip. In the overload-retardation period, stress concentration occurs in the crack blunting region (an overload point) until a maximum crack arrest loadmore » is reached. The stress concentration is then transferred from the blunting region to the propagating crack tip (following the overload), requiring a higher applied load, as the closed crack is gradually opened. The transfer phenomena of the stress concentration associated with a crack opening process account for the nonlinearity of strain response in the vicinity of the crack tip. The delaying action of stress concentration at the crack tip is understood in conjunction with the concept of a critical stress (i.e. the stress required to open the closed crack behind the crack tip). A linear relationship between {Delta}{var_epsilon}{sub eff} and {Delta}K{sub eff} provides experimental support for the hypothesis that {Delta}K{sub eff} can be considered as the fatigue crack tip driving force.« less

  12. Structures associated with strike-slip faults that bound landslide elements

    USGS Publications Warehouse

    Fleming, R.W.; Johnson, A.M.

    1989-01-01

    Large landslides are bounded on their flanks and on elements within the landslides by structures analogous to strike-slip faults. We observed the formation of thwse strike-slip faults and associated structures at two large landslides in central Utah during 1983-1985. The strike-slip faults in landslides are nearly vertical but locally may dip a few degrees toward or away from the moving ground. Fault surfaces are slickensided, and striations are subparallel to the ground surface. Displacement along strike-slip faults commonly produces scarps; scarps occur where local relief of the failure surface or ground surface is displaced and becomes adjacent to higher or lower ground, or where the landslide is thickening or thinning as a result of internal deformation. Several types of structures are formed at the ground surface as a strike-slip fault, which is fully developed at some depth below the ground surface, propagates upward in response to displacement. The simplest structure is a tension crack oriented at 45?? clockwise or counterclockwise from the trend of an underlying right- or left-lateral strike-slip fault, respectively. The tension cracks are typically arranged en echelon with the row of cracks parallel to the trace of the underlying strike-slip fault. Another common structure that forms above a developing strike-slip fault is a fault segment. Fault segments are discontinuous strike-slip faults that contain the same sense of slip but are turned clockwise or counterclockwise from a few to perhaps 20?? from the underlying strike-slip fault. The fault segments are slickensided and striated a few centimeters below the ground surface; continued displacement of the landslide causes the fault segments to open and a short tension crack propagates out of one or both ends of the fault segments. These structures, open fault segments containing a short tension crack, are termed compound cracks; and the short tension crack that propagates from the tip of the fault segment is typically oriented 45?? to the trend of the underlying fault. Fault segments are also typically arranged en echelon above the upward-propagating strike-slip fault. Continued displacement of the landslide causes the ground to buckle between the tension crack portions of the compound cracks. Still more displacement produces a thrust fault on one or both limbs of the buckle fold. These compressional structures form at right angles to the short tension cracks at the tips of the fault segments. Thus, the compressional structures are bounded on their ends by one face of a tension crack and detached from underlying material by thrusting or buckling. The tension cracks, fault segments, compound cracks, folds, and thrusts are ephemeral; they are created and destroyed with continuing displacement of the landslide. Ultimately, the structures are replaced by a throughgoing strike-slip fault. At one landslide, we observed the creation and destruction of the ephemeral structures as the landslide enlarged. Displacement of a few centimeters to about a decimeter was sufficient to produce scattered tension cracks and fault segments. Sets of compound cracks with associated folds and thrusts were produced by displacements of up to 1 m, and 1 to 2 m of displacement was required to produce a throughgoing strike-slip fault. The type of first-formed structure above an upward-propagating strike-slip fault is apparently controlled by the rheology of the material. Brittle material such as dry topsoil or the compact surface of a gravel road produces echelon tension cracks and sets of tension cracks and compressional structures, wherein the cracks and compressional structures are normal to each other and 45?? to the strike-slip fault at depth. First-formed structures in more ductile material such as moist cohesive soil are fault segments. In very ductile material such as soft clay and very wet soil in swampy areas, the first-formed structure is a throughgoing strike-slip fault. There are othe

  13. Analyses of Fatigue Crack Growth and Closure Near Threshold Conditions for Large-Crack Behavior

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    A plasticity-induced crack-closure model was used to study fatigue crack growth and closure in thin 2024-T3 aluminum alloy under constant-R and constant-K(sub max) threshold testing procedures. Two methods of calculating crack-opening stresses were compared. One method was based on a contact-K analyses and the other on crack-opening-displacement (COD) analyses. These methods gave nearly identical results under constant-amplitude loading, but under threshold simulations the contact-K analyses gave lower opening stresses than the contact COD method. Crack-growth predictions tend to support the use of contact-K analyses. Crack-growth simulations showed that remote closure can cause a rapid rise in opening stresses in the near threshold regime for low-constraint and high applied stress levels. Under low applied stress levels and high constraint, a rise in opening stresses was not observed near threshold conditions. But crack-tip-opening displacement (CTOD) were of the order of measured oxide thicknesses in the 2024 alloy under constant-R simulations. In contrast, under constant-K(sub max) testing the CTOD near threshold conditions were an order-of-magnitude larger than measured oxide thicknesses. Residual-plastic deformations under both constant-R and constant-K(sub max) threshold simulations were several times larger than the expected oxide thicknesses. Thus, residual-plastic deformations, in addition to oxide and roughness, play an integral part in threshold development.

  14. A comparison of pure mode I and mixed mode I-III cracking of an adhesive containing an open knit cloth carrier

    NASA Technical Reports Server (NTRS)

    Ripling, E. J.; Crosley, P. B.; Johnson, W. S.

    1988-01-01

    Static and fatigue tests were carried out on two commercial modified epoxy film adhesives with a wide open knit polyester carrier in order to compare crack resistance in mode I and mixed mode I-III loading. The carrier cloth is found to have a significant influence on the cracking behavior of the adhesives. The open air net carrier used in this study separates from the adhesive in mode I cracking but shreds during mixed-mode crack extension. This decreases the opening mode toughness but increases the mixed-mode toughness as compared with results obtained earlier using a heavier knit carrier. The results suggest that the type of carrier may have a far larger influence on crack resistance than is generally recognized.

  15. Results of the second Round Robin on opening-load measurement conducted by ASTM Task Group E24.04.04 on crack closure measurement and analysis

    NASA Technical Reports Server (NTRS)

    Phillips, E. P.

    1993-01-01

    A second experimental Round Robin on the measurement of the crack opening load in fatigue crack growth tests has been completed by the ASTM Task Group E24.04.04 on Crack Closure Measurement and Analysis. Fourteen laboratories participated in the testing of aluminum alloy compact tension specimens. Opening-load measurements were made at three crack lengths during constant Delta K, constant stress ratio tests by most of the participants. Four participants made opening-load measurements during threshold tests. All opening-load measurements were based on the analysis of specimens compliance behavior, where the displacement/strain was measured either at the crack mouth or the mid-height back face location. The Round Robin data were analyzed for opening load using two non-subjective analysis methods: the compliance offset and the correlation coefficient methods. The scatter in the opening load results was significantly reduced when some of the results were excluded from the analysis population based on an accept/reject criterion for raw data quality. The compliance offset and correlation coefficient opening load analysis methods produced similar results for data populations that had been screened to eliminate poor quality data.

  16. Fatigue crack growth with single overload - Measurement and modeling

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J., Jr.; Dexter, R. J.

    1987-01-01

    This paper compares experiments with an analytical model of fatigue crack growth under variable amplitude. The stereoimaging technique was used to measure displacements near the tips of fatigue cracks undergoing simple variations in load amplitude-single overloads and overload/underload combinations. Measured displacements were used to compute strains, and stresses were determined from the strains. Local values of crack driving force (Delta-K effective) were determined using both locally measured opening loads and crack tip opening displacements. Experimental results were compared with simulations made for the same load variation conditions using Newman's FAST-2 model. Residual stresses caused by overloads, crack opening loads, and growth retardation periods were compared.

  17. Modeling of crack bridging in a unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1991-01-01

    The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches; the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(sup eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(sup eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.

  18. Modeling of crack bridging in a unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1992-01-01

    The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches: the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.

  19. Development of a High Chromium Ni-Base Filler Metal Resistant to Ductility Dip Cracking and Solidification Cracking

    NASA Astrophysics Data System (ADS)

    Hope, Adam T.

    Many nuclear reactor components previously constructed with Ni-based alloys containing 20 wt% Cr have been found to be susceptible to stress corrosion cracking. The nuclear power industry now uses high chromium (˜30wt%) Ni-based filler metals to mitigate stress corrosion cracking. Current alloys are plagued with weldability issues, either solidification cracking or ductility dip cracking (DDC). Solidification cracking is related to solidification temperature range and the DDC is related to the fraction eutectic present in the microstructure. It was determined that an optimal alloy should have a solidification temperature range less than 150°C and at least 2% volume fraction eutectic. Due to the nature of the Nb rich eutectic that forms, it is difficult to avoid both cracking types simultaneously. Through computational modeling, alternative eutectic forming elements, Hf and Ta, have been identified as replacements for Nb in such alloys. Compositions have been optimized through a combination of computational and experimental techniques combined with a design of experiment methodology. Small buttons were melted using commercially pure materials in a copper hearth to obtain the desired compositions. These buttons were then subjected to a gas tungsten arc spot weld. A type C thermocouple was used to acquire the cooling history during the solidification process. The cooling curves were processed using Single Sensor Differential Thermal Analysis to determine the solidification temperature range, and indicator of solidification cracking susceptibility. Metallography was performed to determine the fraction eutectic present, an indicator of DDC resistance. The optimal level of Hf to resist cracking was found to be 0.25 wt%. The optimal level of Ta was found to be 4 wt%. gamma/MC type eutectics were found to form first in all Nb, Ta, and Hf-bearing compositions. Depending on Fe and Cr content, gamma/Laves eutectic was sometimes found in Nb and Ta-bearing compositions, while Hf-bearing compositions had gamma/Ni7Hf2 as the final eutectic to solidify. This study found that the extra Cr in the current generation alloys promotes the gamma/Laves phase eutectic, which expands the solidification temperature range and promotes solidification cracking. Both Ta-bearing and Hf-bearing eutectics were found to solidify at higher temperatures than Nb-bearing eutectics, leading to narrower solidification temperature ranges. Weldability testing on the optimized Ta-bearing compositions revealed good resistance to both DDC and solidification cracking. Unexpectedly, the optimized Hf-bearing compositions were quite susceptible to solidification cracking. This led to an investigation on the possible wetting effect of eutectics on solidification cracking susceptibly, and a theory on how wetting affects the solidification crack susceptibility and the volume fraction of eutectic needed for crack healing has been proposed. Alloys with eutectics that easily wet the grain boundaries have increased solidification crack susceptibility at low volume fraction eutectics, but as the fraction eutectic is increased, experience crack healing at relatively lower fraction eutectics than alloys with eutectics that don't wet as easily. Hf rich eutectics were found to wet grain boundaries significantly more than Nb rich eutectics. Additions of Mo were also found to increase the wetting of eutectics in Nb-bearing alloys.

  20. On the variation in crack-opening stresses at different locations in a three-dimensional body

    NASA Technical Reports Server (NTRS)

    Chermahini, R. G.; Blom, Anders F.

    1990-01-01

    Crack propagation and closure behavior of thin, and thick middle crack tension specimens under constant amplitude loading were investigated using a three dimensional elastic plastic finite element analysis of fatigue crack propagation and closure. In the thin specimens the crack front closed first on the exterior (free) surface and closed last in the interior during the unloading portion of cyclic loading; a load reduced displacement technique was used to determine crack opening stresses at specified locations in the plate from the displacements calculated after the seven cycle. All the locations were on the plate external surface and were located near the crack tip, behind the crack tip, at the centerline of the crack. With this technique, the opening stresses at the specified points were found to be 0.52, 0.42, and 0.39 times the maximum applied stress.

  1. A nonlinear fracture mechanics approach to the growth of small cracks

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1983-01-01

    An analytical model of crack closure is used to study the crack growth and closure behavior of small cracks in plates and at notches. The calculated crack opening stresses for small and large cracks, together with elastic and elastic plastic fracture mechanics analyses, are used to correlate crack growth rate data. At equivalent elastic stress intensity factor levels, calculations predict that small cracks in plates and at notches should grow faster than large cracks because the applied stress needed to open a small crack is less than that needed to open a large crack. These predictions agree with observed trends in test data. The calculations from the model also imply that many of the stress intensity factor thresholds that are developed in tests with large cracks and with load reduction schemes do not apply to the growth of small cracks. The current calculations are based upon continuum mechanics principles and, thus, some crack size and grain structure exist where the underlying fracture mechanics assumptions become invalid because of material inhomogeneity (grains, inclusions, etc.). Admittedly, much more effort is needed to develop the mechanics of a noncontinuum. Nevertheless, these results indicate the importance of crack closure in predicting the growth of small cracks from large crack data.

  2. Modeling and characterization of as-welded microstructure of solid solution strengthened Ni-Cr-Fe alloys resistant to ductility-dip cracking part I: Numerical modeling

    NASA Astrophysics Data System (ADS)

    Unfried-Silgado, Jimy; Ramirez, Antonio J.

    2014-03-01

    This work aims the numerical modeling and characterization of as-welded microstructure of Ni-Cr-Fe alloys with additions of Nb, Mo and Hf as a key to understand their proven resistance to ductility-dip cracking. Part I deals with as-welded structure modeling, using experimental alloying ranges and Calphad methodology. Model calculates kinetic phase transformations and partitioning of elements during weld solidification using a cooling rate of 100 K.s-1, considering their consequences on solidification mode for each alloy. Calculated structures were compared with experimental observations on as-welded structures, exhibiting good agreement. Numerical calculations estimate an increase by three times of mass fraction of primary carbides precipitation, a substantial reduction of mass fraction of M23C6 precipitates and topologically closed packed phases (TCP), a homogeneously intradendritic distribution, and a slight increase of interdendritic Molybdenum distribution in these alloys. Incidences of metallurgical characteristics of modeled as-welded structures on desirable characteristics of Ni-based alloys resistant to DDC are discussed here.

  3. Study on ductility dip cracking susceptibility in Filler Metal 82 during welding

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Qing; Lu, Hao; Cui, Wei

    2011-06-01

    In this paper, Ductility Dip Cracking (DDC) susceptibility in Inconel600 companion Filler Metal 82 (FM82) under different stress states is investigated. Inconel600 is a Ni-Cr-Fe alloy with excellent resistance to general corrosion, localized corrosion, and stress corrosion, which has been widely used in nuclear power plants. However, the companion FM82 has been shown to be susceptible to DDC in welding process. To resolve the problem, this work is mainly focused on evaluating DDC susceptibility in FM82 in welding process. First of all, Strain to Fracture (STF) test is used to achieve the DDC criterion under simple stress state, and the formation mechanism of DDC was explained. Real welding is a process with complex stress state. Later, to get the DDC susceptibility under complex stress state, models about multi-pass welding were built up by means of finite element method. According to numerical simulation results, relationship of deformation and temperature history is achieved. Moreover, susceptible locations and moments could be determined associated with STF results. The simulation results fairly agree with welding experiment from another research.

  4. Investigation of Cracks Found in Helicopter Longerons

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  5. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  6. Slow Growth of a Crack with Contacting Faces in a Viscoelastic Body

    NASA Astrophysics Data System (ADS)

    Selivanov, M. F.

    2017-11-01

    An algorithm for solving the problem of slow growth of a mode I crack with a zone of partial contact of the faces is proposed. The algorithm is based on a crack model with a cohesive zone, an iterative method of finding a solution for the elastic opening displacement, and elasto-viscoelastic analogy, which makes it possible to describe the time-dependent opening displacement in Boltzmann-Volterra form. A deformation criterion with a constant critical opening displacement and cohesive strength during quasistatic crack growth is used. The algorithm was numerically illustrated for tensile loading at infinity and two concentrated forces symmetric about the crack line that cause the crack faces to contact. When the crack propagates, the contact zone disappears and its dynamic growth begins.

  7. Results of the Round Robin on opening-load measurement conducted by ASTM Task Group E24.04.04 on Crack Closure Measurement and Analysis

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.

    1989-01-01

    An experimental Round Robin on the measurement of the opening load in fatigue crack growth tests was conducted on Crack Closure Measurement and Analysis. The Round Robin evaluated the current level of consistency of opening load measurements among laboratories and to identify causes for observed inconsistency. Eleven laboratories participated in the testing of compact and middle-crack specimens. Opening-load measurements were made for crack growth at two stress-intensity factor levels, three crack lengths, and following an overload. All opening-load measurements were based on the analysis of specimen compliance data. When all of the results reported (from all participants, all measurement methods, and all data analysis methods) for a given test condition were pooled, the range of opening loads was very large--typically spanning the lower half of the fatigue loading cycle. Part of the large scatter in the reported opening-load results was ascribed to consistent differences in results produced by the various methods used to measure specimen compliance and to evaluate the opening load from the compliance data. Another significant portion of the scatter was ascribed to lab-to-lab differences in producing the compliance data when using nominally the same method of measurement.

  8. Extended analytical solutions for effective elastic moduli of cracked porous media

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy-Tuan; To, Quy Dong; Vu, Minh Ngoc

    2017-05-01

    Extended solutions are derived, on the basis of the micromechanical methods, for the effective elastic moduli of porous media containing stiff pores and both open and closed cracks. Analytical formulas of the overall bulk and shear moduli are obtained as functions of the elastic moduli of the solid skeleton, porosity and the densities of open and closed cracks families. We show that the obtained results are extensions of the classical widely used Walsh's (JGR, 1965) and Budiansky-O‧Connell's (JGR, 1974) solutions. Parametric sensitivity analysis clarifies the impact of the model parameters on the effective elastic properties. An inverse analysis, using sonic and density data, is considered to quantify the density of both open and closed cracks. It is observed that the density of closed cracks depends strongly on stress condition while the dependence of open cracks on the confining stress is negligible.

  9. Internal state variable approach for predicting stiffness reductions in fibrous laminated composites with matrix cracks

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, D. H.; Harris, C. E.

    1989-01-01

    A mathematical model utilizing the internal state variable concept is proposed for predicting the upper bound of the reduced axial stiffnesses in cross-ply laminates with matrix cracks. The axial crack opening displacement is explicitly expressed in terms of the observable axial strain and the undamaged material properties. A crack parameter representing the effect of matrix cracks on the observable axial Young's modulus is calculated for glass/epoxy and graphite/epoxy material systems. The results show that the matrix crack opening displacement and the effective Young's modulus depend not on the crack length, but on its ratio to the crack spacing.

  10. Three-dimensional effects in interfacial crack propagation

    NASA Astrophysics Data System (ADS)

    Liechti, K. M.; Chai, Y.-S.; Liang, Y.-M.

    1992-09-01

    The paper describes the use of crack-opening interferometry for examining the variation in normal crack-opening displacements (NCOD) along the front of an interfacial crack in an edge-cracked bimaterial strip under biaxial loading. For the glass/epoxy combination considered here, the crack front was concave in the direction of crack growth, in contrast to previous observations with a glass/polyurethane/glass sandwich specimen and cracks in homogeneous materials. The NCOD were greatest in the interior of the specimen for all mode-mixes considered and the exponents in a power-law fit of NCOD versus distance from the crack front decreased toward the free surface. The exponents varied with mode-mix, suggesting that interfacial crack-front geometries could be similarly affected.

  11. Hydraulic Properties of Closely Spaced Dipping Open Fractures Intersecting a Fluid-Filled Borehole Derived From Tube Wave Generation and Scattering

    NASA Astrophysics Data System (ADS)

    Minato, Shohei; Ghose, Ranajit; Tsuji, Takeshi; Ikeda, Michiharu; Onishi, Kozo

    2017-10-01

    Fluid-filled fractures and fissures often determine the pathways and volume of fluid movement. They are critically important in crustal seismology and in the exploration of geothermal and hydrocarbon reservoirs. We introduce a model for tube wave scattering and generation at dipping, parallel-wall fractures intersecting a fluid-filled borehole. A new equation reveals the interaction of tube wavefield with multiple, closely spaced fractures, showing that the fracture dip significantly affects the tube waves. Numerical modeling demonstrates the possibility of imaging these fractures using a focusing analysis. The focused traces correspond well with the known fracture density, aperture, and dip angles. Testing the method on a VSP data set obtained at a fault-damaged zone in the Median Tectonic Line, Japan, presents evidences of tube waves being generated and scattered at open fractures and thin cataclasite layers. This finding leads to a new possibility for imaging, characterizing, and monitoring in situ hydraulic properties of dipping fractures using the tube wavefield.

  12. Analytic crack solutions for tilt fields around hydraulic fractures

    NASA Astrophysics Data System (ADS)

    Warpinski, Norman R.

    2000-10-01

    The recent development of downhole tiltmeter arrays for monitoring hydraulic fractures has provided new information on fracture growth and geometry. These downhole arrays offer the significant advantages of being close to the fracture (large signal) and being unaffected by the free surface. As with surface tiltmeter data, analysis of these measurements requires the inversion of a crack or dislocation model. To supplement the dislocation models of Davis [1983], Okada [1992], and others, this work has extended several elastic crack solutions to provide tilt calculations. The solutions include constant-pressure two-dimensional (2-D), penny-shaped, and 3-D-elliptic cracks and a 2-D-variable-pressure crack. Equations are developed for an arbitrary inclined fracture in an infinite elastic space. Effects of fracture height, fracture length, fracture dip, fracture azimuth, fracture width, and monitoring distance on the tilt distribution are given, as well as comparisons with the dislocation model. The results show that the tilt measurements are very sensitive to the fracture dimensions but also that it is difficult to separate the competing effects of the various parameters.

  13. Analytic crack solutions for tilt fields around hydraulic fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    The recent development of downhole tiltmeter arrays for monitoring hydraulic fractures has provided new information on fracture growth and geometry. These downhole arrays offer the significant advantages of being close to the fracture (large signal) and being unaffected by the free surface. As with surface tiltmeter data, analysis of these measurements requires the inversion of a crack or dislocation model. To supplement the dislocation models of Davis [1983], Okada [1992] and others, this work has extended several elastic crack solutions to provide tilt calculations. The solutions include constant-pressure 2D, penny-shaped, and 3D-elliptic cracks and a 2D-variable-pressure crack. Equations are developedmore » for an arbitrary inclined fracture in an infinite elastic space. Effects of fracture height, fracture length, fracture dip, fracture azimuth, fracture width and monitoring distance on the tilt distribution are given, as well as comparisons with the dislocation model. The results show that the tilt measurements are very sensitive to the fracture dimensions, but also that it is difficult to separate the competing effects of the various parameters.« less

  14. Synthesis of galium nitride thin films using sol-gel dip coating method

    NASA Astrophysics Data System (ADS)

    Hamid, Maizatul Akmam Ab; Ng, Sha Shiong

    2017-12-01

    In this research, gallium nitride (GaN) thin film were grown on silicon (Si) substrate by a low-cost sol-gel dip coating deposition method. The GaN precursor solution was prepared using gallium (III) nitrate hydrate powder, ethanol and diethanolamine as a starting material, solvent and surfactant respectively. The structural, morphological and optical characteristics of the deposited GaN thin film were investigated. Field-emission scanning electron microscopy observations showed that crack free and dense grains GaN thin films were formed. Energy dispersive X-ray analysis confirmed that the oxygen content in the deposited films was low. X-ray diffraction results revealed that deposited GaN thin films have hexagonal wurtzite structure.

  15. Behavior of Fatigue Crack Tip Opening in Air and Corrosive Atmosphere

    NASA Astrophysics Data System (ADS)

    Hayashi, Morihito; Toeda, Kazunori

    In the study, a formula for predicting fatigue crack tip opening displacement is deduced firstly. And then, due to comparing actual crack growth rate with the deduced formula, the crack tip configuration factor is defined to figure out the crack tip opening configuration that is useful to clarify the behavior of fatigue crack tip formation apparently. Applying the concept, the crack growth of 7/3 brass and 6/4 brass is predicted from the formula, by replacing material properties such as plastic flow resistance, Young modulus, the Poisson ratio, and fatigue toughness, and fatigue test conditions such as the stress intensity factor range, the load ratio, and cycle frequency. Furthermore, the theoretically expected results are verified with the fatigue tests which were carried out on CT specimens under different load conditions of load ratio, cycle frequency, and cyclic peak load, in different environments of air or corrosive ammonia atmosphere, for various brasses. And by comparing and discussing the calculated crack growth rate with attained experimental results, the apparent configuration factor at the crack tip is determined. And through the attained factor which changes along with crack growth, the behaviors of fatigue crack tip formation under different test conditions have been found out.

  16. Eddy-current inversion in the thin-skin limit: Determination of depth and opening for a long crack

    NASA Astrophysics Data System (ADS)

    Burke, S. K.

    1994-09-01

    A method for crack size determination using eddy-current nondestructive evaluation is presented for the case of a plate containing an infinitely long crack of uniform depth and uniform crack opening. The approach is based on the approximate solution to Maxwell's equations for nonmagnetic conductors in the limit of small skin depth and relies on least-squares polynomial fits to a normalized coil impedance function as a function of skin depth. The method is straightforward to implement and is relatively insensitive to both systematic and random errors. The procedure requires the computation of two functions: a normalizing function, which depends both on the coil parameters and the skin depth, and a crack-depth function which depends only on the coil parameters in addition to the crack depth. The practical perfomance of the method was tested using a set of simulated cracks in the form of electro-discharge machined slots in aluminum alloy plates. The crack depths and crack opening deduced from the eddy-current measurements agree with the actual crack dimensions to within 10% or better. Recommendations concerning the optimum conditions for crack sizing are also made.

  17. Crack Opening Displacement Behavior in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sevener, Kathy; Tracy, Jared; Chen, Zhe; Daly, Sam; Kiser, Doug

    2017-01-01

    Ceramic Matrix Composites (CMC) modeling and life prediction strongly depend on oxidation, and therefore require a thorough understanding of when matrix cracks occur, the extent of cracking for given conditions (time-temperature-environment-stress), and the interactions of matrix cracks with fibers and interfaces. In this work, the evolution of matrix cracks in a melt-infiltrated Silicon Carbide/Silicon Carbide (SiC/SiC) CMC under uniaxial tension was examined using scanning electron microscopy (SEM) combined with digital image correlation (DIC) and manual crack opening displacement (COD) measurements. Strain relaxation due to matrix cracking, the relationship between COD's and applied stress, and damage evolution at stresses below the proportional limit were assessed. Direct experimental observation of strain relaxation adjacent to regions of matrix cracking is presented and discussed. Additionally, crack openings were found to increase linearly with increasing applied stress, and no crack was found to pass fully through the gage cross-section. This observation is discussed in the context of the assumption of through-cracks for all loading conditions and fiber architectures in oxidation modeling. Finally, the combination of SEM with DIC is demonstrated throughout to be a powerful means for damage identification and quantification in CMC's at stresses well below the proportional limit.

  18. Source mechanism of very-long-period signals accompanying dome growth activity at Merapi volcano, Indonesia

    USGS Publications Warehouse

    Hidayat, D.; Chouet, B.; Voight, B.; Dawson, P.; Ratdomopurbo, Antonius

    2002-01-01

    Very-long-period (VLP) pulses with period of 6-7s, displaying similar waveforms, were identified in 1998 from broadband seismographs around the summit crater. These pulses accompanied most of multiphase (MP) earthquakes, a type of long-period event locally defined at Merapi Volcano. Source mechanisms for several VLP pulses were examined by applying moment tensor inversion to the waveform data. Solutions were consistent with a crack striking ???70?? and dipping ???50?? SW, 100m under the active dome, suggest pressurized gas transport involving accumulation and sudden release of 10-60 m3 of gas in the crack over a 6s interval.

  19. Cycle oxidation behavior and anti-oxidation mechanism of hot-dipped aluminum coating on TiBw/Ti6Al4V composites with network microstructure.

    PubMed

    Li, X T; Huang, L J; Wei, S L; An, Q; Cui, X P; Geng, L

    2018-04-10

    Controlled and compacted TiAl 3 coating was successfully fabricated on the network structured TiBw/Ti6Al4V composites by hot-dipping aluminum and subsequent interdiffusion treatment. The network structure of the composites was inherited to the TiAl 3 coating, which effectively reduces the thermal stress and avoids the cracks appeared in the coating. Moreover, TiB reinforcements could pin the TiAl 3 coating which can effectively improve the bonding strength between the coating and composite substrate. The cycle oxidation behavior of the network structured coating on 873 K, 973 K and 1073 K for 100 h were investigated. The results showed the coating can remarkably improve the high temperature oxidation resistance of the TiBw/Ti6Al4V composites. The network structure was also inherited to the Al 2 O 3 oxide scale, which effectively decreases the tendency of cracking even spalling about the oxide scale. Certainly, no crack was observed in the coating after long-term oxidation due to the division effect of network structured coating and pinning effect of TiB reinforcements. Interfacial reaction between the coating and the composite substrate occurred and a bilayer structure of TiAl/TiAl 2 formed next to the substrate after oxidation at 973 K and 1073 K. The anti-oxidation mechanism of the network structured coating was also discussed.

  20. Fracture mechanics criteria for turbine engine hot section components

    NASA Technical Reports Server (NTRS)

    Meyers, G. J.

    1982-01-01

    The application of several fracture mechanics data correlation parameters to predicting the crack propagation life of turbine engine hot section components was evaluated. An engine survey was conducted to determine the locations where conventional fracture mechanics approaches may not be adequate to characterize cracking behavior. Both linear and nonlinear fracture mechanics analyses of a cracked annular combustor liner configuration were performed. Isothermal and variable temperature crack propagation tests were performed on Hastelloy X combustor liner material. The crack growth data was reduced using the stress intensity factor, the strain intensity factor, the J integral, crack opening displacement, and Tomkins' model. The parameter which showed the most effectiveness in correlation high temperature and variable temperature Hastelloy X crack growth data was crack opening displacement.

  1. Definition of Mutually Optimum NDI and Proof Test Criteria for 2219 Aluminum Pressure Vessels. Volume 2: Optimization and Fracture Studies

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; Toth, C., Jr.; King, R. G.; Todd, P. H., Jr.

    1979-01-01

    Certain behavioral aspects associated with fracture and crack extension that cannot be studied using other techniques were evaluated with the ultrasonic method. Characterization of collimated beam techniques showed that significant beam width reduction could be accomplished. Techniques for collimation are given. The crack-opening displacement-gage correction-factor study showed that displacement resulting from crack opening and that from plasticity could be readily differentiated. Crack closure studies using both ultrasonic and crack-opening displacement measurements showed an opening and closing behavior associated with load-unload curves. The results of this work were in general agreement with the closure concepts of Elber. Ultrasonic measurements used to study the nature of flaw extension characteristics associated with failure of the ligament between the flaw front and back surface showed that penetration could occur by an abrupt fracturing after subcritical growth or by continuous growth.

  2. Recent evaluations of crack-opening-area in circumferentially cracked pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, S.; Brust, F.; Ghadiali, N.

    1997-04-01

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessingmore » temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.« less

  3. Preparation of hydroxyapatite-titania hybrid coatings on titanium alloy.

    PubMed

    Un, Serhat; Durucan, Caner

    2009-08-01

    Hydroxypapatite-titania hybrid films on Ti6Al4V alloys were prepared by sol-gel technique by incorporating presynthesized hydroxypapatite (Ca(10)(PO(4))(6)(OH)(2) or HAp) powders into a titanium-alkoxide dip coating solution. Titania network was formed by the hydrolysis and condensation of Ti-isopropoxide Ti[OCH(CH(3))(2)](4)-based sols. The effect of titania sol formulation, specifically the effect of organic solvents on the microstructure of the dip coated films calcined at 500 degrees C has been investigated. The coatings exhibit higher tendency for cracking when a high vapor pressure solvent, such as ethanol (C(2)H(5)OH) is used causing development of higher macroscopic stresses during evaporation of the sol. Titania sol formulations replacing the solvent with n-proponal (CH(3)(CH(2))(2)OH) and acetly-acetone (C(5)H(8)O) combinations enhanced the microstructural integrity of the coating during evaporation and calcination treatments. Sol-gel processing parameters, such as multilayer coating application and withdrawal rate, can be employed to change the titania thickness in the range of 0.120-1.1 microm and to control the microstructure of HAp-titania hybrid coatings. A high-calcination temperature in the range of 400-600 degrees C does not cause a distinct change in crystals nature of the titania matrix or HAp, but results in more cracking due to the combined effect of densification originated stresses and thermal stresses upon cooling. Slower withdraw rates and multilayer dip coating lead to coatings more vulnerable to microcracking.

  4. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    NASA Astrophysics Data System (ADS)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  5. Effect of crack openings on carbonation-induced corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghantous, Rita Maria, E-mail: rita-maria.ghantous@yncrea.fr; LMDC, Université de Toulouse, INSA, UPS, Toulouse; Poyet, Stéphane

    Reinforced concrete is widely used in the construction of buildings, historical monuments, infrastructures and nuclear power plants. For a variety of reasons, many concrete structures are subject to unavoidable cracks that accelerate the diffusion of atmospheric carbon dioxide to the steel/concrete interface. Carbonation at the interface induces steel corrosion that could cause the development of new cracks in the structure, a determining factor for its durability. The aim of this article is to study the effect of existing cracks on the development of carbonation-induced corrosion. The results indicate that, after the initiation phase, the corrosion kinetics decreases with time andmore » the free corrosion potential increases independently of the crack opening. In addition, the corroded zone matches the carbonated one. The interpretation of these results allows the authors to conclude that, during the corrosion process, corrosion products seal the crack and act as a barrier to oxygen and water diffusion. Consequently, the influence of crack opening on corrosion development is masked and the corrosion development is limited.« less

  6. Fatigue crack growth in unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Telesman, Jack; Kantzos, Peter

    1990-01-01

    The weight function method was used to determine the effective stress intensity factor and the crack opening profile for a fatigue tested composite which exhibited fiber bridging. The bridging mechanism was modeled using two approaches; the crack closure approach and the shear lag approach. The numerically determined stress intensity factor values from both methods were compared and correlated with the experimentally obtained crack growth rates for SiC/Ti-15-3 (0)(sub 8) oriented composites. The near crack tip opening profile was also determined for both methods and compared with the experimentally obtained measurements.

  7. Determination of leakage areas in nuclear piping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keim, E.

    1997-04-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakagemore » areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.« less

  8. Source Models of the June 17th, 2007 Kilauea Intrusion: Monte Carlo Optimization

    NASA Astrophysics Data System (ADS)

    Sinnett, D. K.; Montgomery-Brown, E. D.; Segall, P.; Miklius, A.; Poland, M.; Yun, S.; Zebker, H.

    2007-12-01

    Father's Day, 17 June 2007, marked the beginning of the 56th episode of the ongoing eruption of Kilauea volcano, Hawaii. The episode culminated in a short-lived eruption approximately 6 km west of Pu\\`{}u \\`{}O\\`{}o and 13 km southeast of Kilauea summit. The interruption of magma supply to, and withdrawal from, the reservoir beneath Pu\\`{}u \\`{}O\\`{}o caused cessation of activity and ~100 m of crater floor subsidence there. The continuous and campaign GPS, electronic tiltmeter, and seismic networks, as well as InSAR captured the episode in fine detail. Visual inspection of the data show subsidence at Kilauea summit and Pu\\`{}u \\`{}O\\`{}o, which fed the inflating dike. We began by modeling the intrusion with a Mogi source beneath Kilauea summit and a dislocation with uniform opening beneath the east rift zone embedded in an isotropic, homogenous, elastic, half space. We invert for the 12 source parameters (length, width, depth, dip, strike, horizontal position, and opening of the dike, and position, depth, and volume change of the Mogi source) using Monte Carlo optimization. The inversion used three component displacement data from 23 continuous and campaign GPS stations, diurnally and tidally filtered tilt from 6 stations, and an ENVISAT InSAR interferogram spanning 04/12/07 to 06/21/07 decimated using a quadtree algorithm. The optimum model included ~-4.1 * 106 m3 of volume loss from a reservoir 3 km beneath the summit, and a total dike volume of ~19*106 m3 (~4.84 km length x 2.45 km width x 1.6 m opening at 2.4 km depth). The discrepancy between summit volume loss and total dike volume suggests that other sources must have fed the dike. A crude estimate of volume loss from Pu\\`{}u \\`{}O\\`{}o is 8.5*106 m3 accounting for ~ 66% of the volume of the dike. The eruption site lies inside the eastern edge of the model, and ~0.5 km to the south of the best fit dike top. The best fit dike top parallels the northern margin of an area of ground cracking near Makaopuhui and terminates at its western margin near Mauna Ulu. The western termination is ~2.5 km east of the westernmost observed ground cracks. Within 95% bounds the dike top may intersect the eruption area and extend to all regions of ground cracking. It is also interesting to note that this dike is located in an area between the 1997 and 1999 intrusions. The best fit single dislocation model explains only 35% of the variance in the data. This is in part due to the inadequacies of a single planar dike with uniform opening to explain surface deformation and perhaps to inelastic deformation associated with ground cracking near the western edge of the dike. Models with distributed opening, in which the dike plane honors the optimization results as well as the region of decorrelation in the ENVISAT interferogram, explain 69% of the data (Montgomery-Brown et al., this session).

  9. 3D model of fault and fissures structure of the Kovdor Baddeleyite-Apatite-Magnetite Deposit (NE of the Fennoscandian Shield)

    NASA Astrophysics Data System (ADS)

    Zhirov, Dmitry; Klimov, Sergey

    2015-04-01

    The Kovdor baddeleyite-apatite-magnetite deposit (KBAMD) is represented by a large vertical ore body and is located in the southwestern part of the Kovdor ultramafic-alkaline central-type intrusion. The intrusion represents a concentrically zoned complex of rocks with an oval shape in plan, and straight zoning, which complies with the injection and displacement of each of further magma phases from the center towards the periphery. The operation of the deposit in open pits started in 1962, and nowadays, it has produced over 500,000,000 tons of ore. This is one of the largest open pits in the Kola region, which is ca. 2 km long, 1.8 km wide, and over 400 m deep. Regular structural studies has been carried out since late 1970. A unique massif of spatial data has been accumulated so far to include over 25,000 measurements of fissures and faults from the surface, ca. 20,000 measurements of fissures in the oriented drill core (over 18 km) etc. Using this data base the 3D model of fault and fissures structure was designed. The analysis of one has resulted in the identification of a series of laws and features, which are necessary to be taken into account when designing a deep open pit and mining is carried out. These are mainly aspects concerning the origin, kinematics, mechanics and ratio of spatial extension of various fault systems, variation of their parameters at deep horizons, features of a modern stress field in the country rocks, etc. The 3D model has allowed to divide the whole fracture / fissure systems of the massif rocks into 2 large groups: prototectonic system of joints, including cracks of 'liquid magmatic (carbonatite stage) contraction genesis', and newly formed faults due to the superimposed tectonic stages. With regard to the deposit scale, these are characterized as intraformational and transformational, respectively. Each group shows a set (an assemblage) of fault systems with unique features and signs, as well as regular interconnections. The prototectonic assemblage of fissures includes the following main systems: 2-3 subsystems Rd of radial with angle of dip within 65-90° (median at 78°), two subsystems S of a circular subvertical (tangential, crossing Rd) with angle of dip within 60-90° (74°), and two diagonal-conic ones: a centriclinal C dipping towards the center of the intrusion at angles of 25-55° (43°), and a periclinal P dipping from the center of the intrusion at angles of 5-35° (18°). The system of subhorizontal joints L (angle of dip within 0-12°) at deep horizons is insignificantly manifested. All the prototectonic systems are regularly interrelated, and vary asymuthal features according to the law of axial symmetry (when moving around the vertical axis of symmetry passed through the geometric center of the carbonatite intrusion). The superimposed tectonics of post-ore stages forms a few large faults and systems of rupture discontinuities. A few (up to 3) variously oriented displacements are documented in the field on kinematic features (slide furrows, oriented cleavages). They were used for reconstruction of stresses and tectonic evolution. The superimposed tectonic faulting has heterogeneous (local) distribution in the rocks of the deposit, and slight predictability of main parameters. This study was supported by the Russian Scientific Fund (project nos. 14-17-00751).

  10. Stress Ratio Effects on Crack Opening Loads and Crack Growth Rates in Aluminum Alloy 2024

    NASA Technical Reports Server (NTRS)

    Riddell, William T.; Piascik, Robert S.

    1998-01-01

    The effects of stress ratio (R) and crack opening behavior on fatigue crack growth rates (da/dN) for aluminum alloy (AA) 2024-T3 were investigated using constant-delta K testing, closure measurements, and fractography. Fatigue crack growth rates were obtained for a range of delta K and stress ratios. Results show that constant delta K fatigue crack growth for R ranging from near 0 to 1 is divided into three regions. In Region 1, at low R, da/dN increases with increasing R. In Region 2, at intermediate R, fatigue crack growth rates are relatively independent of R. In Region 3, at high R, further increases in da/dN are observed with increasing R.

  11. The effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk

    NASA Astrophysics Data System (ADS)

    Han, Qinkai; Chu, Fulei

    2012-12-01

    It is well known that either the asymmetric disk or transverse crack brings parametric inertia (or stiffness) excitation to the rotor-bearing system. When both of them appear in a rotor system, the parametric instability behaviors have not gained sufficient attentions. Thus, the effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk is studied. First, the finite element equations of motion are established for the asymmetric rotor system. Both the open and breathing transverse cracks are taken into account in the model. Then, the discrete state transition matrix (DSTM) method is introduced for numerically acquiring the instability regions. Based upon these, some computations for a practical asymmetric rotor system with open or breathing transverse crack are conducted, respectively. Variations of the primary and combination instability regions induced by the asymmetric disk with the crack depth are observed, and the effect of the orientation angle between the crack and asymmetric disk on various instability regions are discussed in detail. It is shown that for the asymmetric angle around 0, the existence of transverse (either open or breathing) crack has attenuation effect upon the instability regions. Under certain crack depth, the instability regions could be vanished by the transverse crack. When the asymmetric angle is around π/2, increasing the crack depth would enhance the instability regions.

  12. Stability of Molasse: TLS for structural analysis in the valley of Gotteron-Fribourg, Switzerland

    NASA Astrophysics Data System (ADS)

    Ben Hammouda, Mariam; Jaboyedoff, Michel; Derron, Marc Henri; Bouaziz, Samir; Mazotti, Benoit

    2016-04-01

    The marine molasses of Fribourg (Switzerland) is an area where the cliff collapses and rockfalls are quite frequent and difficult to predict due to this particular lithology, a poorly consolidated greywacke. Because of some recent rockfall events, the situation became critical especially in the valley of Gotteron where a big block has slightly moved down and might destroy a house in case of rupture. The cliff made of jointed sandstone and thin layers of clay and siltstone presents many fractures, joints and massive cross bedding surfaces which increases the possibility of slab failure. This paper presents a detailed structural analysis of the cliff and the identification of the potential failure mechanisms. The methodology is about combining field observation and terrestrial LiDAR scanning point cloud in order to assess the stability of potential slope instabilities of molasses. Three LiDAR scans were done i) to extract discontinuity families depending to the dip and the dip direction of joints and ii) to run kinematic tests in order to identify responsible sets for each potential failure mechanisms. Raw point clouds were processed using IMAlign module of Polyworks and CloudCompare software. The structural analysis based on COLTOP 3D (Jaboyedoff et al. 2007) allowed the identification of four discontinuity sets that were not measured in the field. Two different failure mechanisms have been identified as critical: i) planar sliding which is the main responsible mechanism of the present fallen block and ii) wedge sliding. The planar sliding is defined by the discontinuity sets J1 and J5 with a direction parallel to the slope and with a steep dip angle. The wedges, defined by couples of discontinuity sets, contribute to increase cracks' opening and to the detachment of slabs. The use of TLS combined with field survey provides us a first interpretation of instabilities and a very promising structural analysis.

  13. Stress-intensity factors and crack-opening displacements for round compact specimens. [fracture toughness of metallic materials

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1979-01-01

    A two dimensional, boundary collocation stress analysis was used to analyze various round compact specimens. The influence of the round external boundary and of pin-loaded holes on stress intensity factors and crack opening displacements was determined as a function of crack-length-to-specimen-width ratios. A wide-range equation for the stress intensity factors was developed. Equations for crack-surface displacements and load-point displacements were also developed. In addition, stress intensity factors were calculated from compliance methods to demonstrate that load-displacement records must be made at the loading points and not along the crack line for crack-length-to-specimen-width ratios less than about 0.4.

  14. Microcracks, micropores, and their petrologic interpretation for 72415 and 15418

    NASA Technical Reports Server (NTRS)

    Richter, D.; Simmons, G.; Siegfried, R.

    1976-01-01

    Lunar samples 72415 and 15418 have complex microstructures that indicate a series of fracturing and healing events. Both samples contain relatively few open microcracks but many sealed and healed microcracks. Dunite 72415 contains abundant healed cracks that formed tectonically, symplectic intergrowths spatially and probably genetically related to microcracks, and a cataclastic matrix that has been extensively sintered. Metamorphosed breccia 15418 contains many post-metamorphic healed cracks, large shock induced cracks that have been sealed with glass, and a few younger, thin, open shock induced cracks.

  15. Advances in Fatigue and Fracture Mechanics Analyses for Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.

  16. Advances in Fatigue and Fracture Mechanics Analyses for Metallic Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    2000-01-01

    This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked metallic structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.

  17. Three-dimensional measurements of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Ray, S. K.; Grandt, A. F., Jr.

    1984-01-01

    Fatigue crack growth and retardation experiments conducted in polycarbonate test specimen are described. The transparent test material allows optical interferometry measurements of the fatigue crack opening (and closing) profiles. Crack surface displacements are obtained through the specimen thickness and three dimensional aspects of fatigue crack closure are discussed.

  18. Radiation from Directional Seismic Sources in Laterally Stratified Media with Application to Arctic Ice Cracking Noise

    DTIC Science & Technology

    1989-05-22

    Stress- Strain Relation . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3 Equivalent Transversely Isotropic Elastic Constants for Periodi- cally...a vertical wavenumber parameters for compressional waves. # : vertical wavenumber parameters for shear waves. 6 dip angle, refer to Fig 3.2. E strain ...been pursued along two different lines[1] : First, in terms of body forces ; second, in terms of disconti- nuities in displacement or strain across a

  19. InSAR analysis for detecting the route of hydrothermal fluid to the surface during the 2015 phreatic eruption of Hakone Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Doke, Ryosuke; Harada, Masatake; Mannen, Kazutaka; Itadera, Kazuhiro; Takenaka, Jun

    2018-04-01

    Although the 2015 Hakone Volcano eruption was a small-scale phreatic eruption with a discharged mass of only about 100 tons, interferometric synthetic aperture radar successfully detected surface deformations related to the eruption. Inversion model of the underground hydrothermal system based on measured ground displacements by ALOS-2/PALSAR-2 images showed that a crack opened at an elevation of about 530-830 m, probably at the time of the eruption. A geomorphological analysis detected several old NW-SE trending fissures, and the open crack was located just beneath one of the fissures. Thus, the crack that opened during the 2015 eruption could have been a preexisting crack that formed during a more voluminous hydrothermal eruption. In addition, the inversion model implies that a sill deflation occurred at an elevation of about 225 m, probably at the time of the eruption. The deflation of sill-like body represents a preexisting hydrothermal reservoir at an elevation of 100-400 m, which intruded fluid in the open crack prior to eruption. The volume changes of the open crack and the sill were calculated to be 1.14 × 105 m3 (inflation) and 0.49 × 105 m3 (deflation), respectively. A very local swelling (about 200 m in diameter) was also detected at the eruption center 2 months before the eruption. The local swelling, whose rate in satellite line-of-sight was 0.7-0.9 cm/day during May 2015 and declined in June, had been monitored until the time of the eruption, when its uplift halted. This was modeled as a point pressure source at an elevation of about 900 m (at a depth of about 80-90 m from the ground surface) and is considered to be a minor hydrothermal reservoir just beneath the fumarolic field. Our analysis shows that the northernmost tip of the open crack reached within 200 m of the surface. Thus, it is reasonable to assume that the hydrothermal fluid in the open crack found a way to the surface and formed the eruption.[Figure not available: see fulltext.

  20. Short fatigue crack behavior in notched 2024-T3 aluminum specimens

    NASA Technical Reports Server (NTRS)

    Lee, J. J.; Sharpe, W. N., Jr.

    1986-01-01

    Single-edge, semi-circular notched specimens of Al 2024-T3, 2.3 mm thick, were cyclicly loaded at R-ratios of 0.5, 0.0, -1.0, and -2.0. The notch roots were periodically inspected using a replica technique which duplicates the bore surface. The replicas were examined under an optical microscope to determine the initiation of very short cracks and to monitor the growth of short cracks ranging in length from a few tens of microns to the specimen thickness. In addition to short crack growth measurements, the crack opening displacement (COD) was measured for surface cracks as short as 0.035 mm and for through-thickness cracks using the Interferometric Strain/Displacement Gage (ISDG), a laser-based optical technique. The growth rates of short cracks were faster than the long crack growth rates for R-ratios of -1.0 and -2.0. No significant difference between short and long crack growth rates was observed for R = 0.0. Short cracks had slower growth rates than long cracks for R = 0.5. The crack opening stresses measured for short cracks were smaller than those predicted for large cracks, with little difference appearing for positive R-ratios and large differences noted for negative R-ratios.

  1. Strip Yield Model Numerical Application to Different Geometries and Loading Conditions

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Forman, Royce; Shivakumar, Venkataraman; Lyons, Jed

    2006-01-01

    A new numerical method based on the strip-yield analysis approach was developed for calculating the Crack Tip Opening Displacement (CTOD). This approach can be applied for different crack configurations having infinite and finite geometries, and arbitrary applied loading conditions. The new technique adapts the boundary element / dislocation density method to obtain crack-face opening displacements at any point on a crack, and succeeds by obtaining requisite values as a series of definite integrals, the functional parts of each being evaluated exactly in a closed form.

  2. Electrically reversible cracks in an intermetallic film controlled by an electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z. Q.; Liu, J. H.; Biegalski, M. D.

    Cracks in solid-state materials are typically irreversible. We report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field (~0.83 kV/cm). Accordingly, a nonvolatile colossal electroresistance on-off ratio of more than 10 8 is measured across the cracks in the intermetallic film at room temperature. Cracks are easily formed with low-frequency voltage cycling and remain stable when the device is operated at high frequency, which offers intriguing potential for next-generation high-frequency memory applications. Moreover, endurance testing demonstrates that the opening and closing of such cracks canmore » reach over 10 7 cycles under 10-μs pulses, without catastrophic failure of the film.« less

  3. Electrically reversible cracks in an intermetallic film controlled by an electric field

    DOE PAGES

    Liu, Z. Q.; Liu, J. H.; Biegalski, M. D.; ...

    2018-01-03

    Cracks in solid-state materials are typically irreversible. We report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field (~0.83 kV/cm). Accordingly, a nonvolatile colossal electroresistance on-off ratio of more than 10 8 is measured across the cracks in the intermetallic film at room temperature. Cracks are easily formed with low-frequency voltage cycling and remain stable when the device is operated at high frequency, which offers intriguing potential for next-generation high-frequency memory applications. Moreover, endurance testing demonstrates that the opening and closing of such cracks canmore » reach over 10 7 cycles under 10-μs pulses, without catastrophic failure of the film.« less

  4. Oscillation of a Shallow Hydrothermal Fissure Inferred from Long-Period Seismic Events at Taal Volcano, the Philippines

    NASA Astrophysics Data System (ADS)

    Maeda, Y.; Kumagai, H.; Lacson, R.; Figueroa, M. S.; Yamashina, T.

    2012-12-01

    We installed a multi-parameter monitoring network including five broadband seismometers at Taal volcano, the Philippines, where a high risk of near-future eruption is expected. The network detected more than 40,000 long-period (LP) seismic events which have a peak frequency of 0.8 Hz and a Q value of 6. Most of the events occurred in a 2-month-long swarm period of ~600 events/day. Our travel time analysis pointed to a shallow source (100-200 m) beneath the northeastern flank of the active volcanic island. To determine the source mechanism of the LP events, we performed waveform inversion. We first fixed the source location to that obtained by the travel time analysis, and performed inversion using waveforms with and without site amplification corrections and assuming four simple source geometries (a vertical crack, a horizontal crack, a vertical pipe, and a sphere). We obtained the minimum AIC value for the vertical crack source geometry using the corrected waveforms. We next performed a grid search for dip, azimuth, and the location of the tensile crack source using the corrected waveforms. We obtained small residuals for crack dips between 30 and 60 degrees at similar locations to that of the travel time analysis. We used the fluid-filled crack model to interpret the observed complex frequencies of the events. The observed waveforms of the events show a small Q value (= 6), which may be explained by bubbly basalt, bubbly water, or gas. However, since the source location is estimated to be shallow (100-200 m) and we have no evidence for an ascent of magma to such a shallow depth in the swarm period, bubbly basalt seems to be unrealistic. It seems difficult to maintain bubbly water in the inclined crack. For bubbly water, a peak frequency variation is expected to occur due to a variation of the bubble content, whereas the observed peak frequencies of the events are almost constant. The constant frequency is more easily realized by gas in a crack. We therefore examine H2O gas (vapor) for simplicity. We calculated far-field waveforms generated by an oscillation of a crack containing vapor, and applied the Sompi method to estimate Q and nondimensional frequency. The estimated Q of a fundamental longitudinal mode oscillation was similar to the observation. We obtained a reasonable crack size (188 m) from a comparison of the observed peak frequency (0.8 Hz) with the calculated nondimensional frequency of the mode. In the swarm period of the LP events, other anomalies such as large volcano deformation and significant increase of gas emission from the main crater were not observed. This feature and the crack model result above suggest an active and localized vapor supply from magma at depth to the LP source. Such a localized supply may be realized by a transportation of vapor through a fissure. If we assume that the estimated crack volume (10^2 m^3) corresponds to vapor supplied to the LP source for each event, the total vapor mass supplied throughout the swarm period is ~10^7 kg. If we assume that this amount of vapor was originated by degassing from the magma and transported to the LP source through the fissure, we can estimate a magma volume of ~10^6 m^3. We thus suggest that the LP events at Taal were triggered by degassing and transportation of vapor from a deep magma to a shallow depth through a fissure.

  5. Crack-tip-opening angle measurements and crack tunneling under stable tearing in thin sheet 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Sutton, M. A.

    1993-01-01

    The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.

  6. Stressed Oxidation Life Prediction for C/SiC Composites

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.

    2004-01-01

    The residual strength and life of C/SiC is dominated by carbon interface and fiber oxidation if seal coat and matrix cracks are open to allow oxygen ingress. Crack opening is determined by the combination of thermal, mechanical and thermal expansion mismatch induced stresses. When cracks are open, life can be predicted by simple oxidation based models with reaction controlled kinetics at low temperature, and by gas phase diffusion controlled kinetics at high temperatures. Key life governing variables in these models include temperature, stress, initial strength, oxygen partial pressure, and total pressure. These models are described in this paper.

  7. Susceptibility to Cracking of Different Lots of CDR35 Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2017-01-01

    On-orbit flight anomalies that occurred after several months of operation were attributed to excessive leakage currents in CDR35 style 0.47 microF 50 V capacitors operating at 10 V. In this work, a lot of capacitors similar to the lot that caused the anomaly have been evaluated in parallel with another lot of similar parts to assess their susceptibility to cracking under manual soldering conditions and get insight into a possible mechanism of failure. Leakage currents in capacitors were monitored at different voltages and environmental conditions before and after terminal solder dip testing that was used to simulate thermal shock during manual soldering. Results of cross-sectioning, acoustic microscopy, and measurements of electrical and mechanical characteristics of the parts have been analyzed, and possible mechanisms of failures considered. It is shown that the susceptibility to cracking and failures caused by manual soldering is lot-related. Recommendations for testing that would help to select lots that are more robust against manual soldering stresses and mitigate the risk of failures suggested.

  8. Plastic zone size and crack tip opening displacement of a Dugdale crack interacting with a coated circular inclusion

    NASA Astrophysics Data System (ADS)

    Hoh, H. J.; Xiao, Z. M.; Luo, J.

    2010-09-01

    An analytical investigation on the plastic zone size of a crack near a coated circular inclusion under three different loading conditions of uniaxial tension, uniform tension and pure shear was carried out. Both the crack and coated circular inclusion are embedded in an infinite matrix, with the crack oriented along the radial direction of the inclusion. In the solution procedure, the crack is simulated as a continuous distribution of edge dislocations. With the Dugdale model of small-scale yielding [J. Mech. Phys. Solids 8 (1960) p. 100], two thin strips of yielded plastic zones are introduced at both crack tips. Using the solution for a coated circular inclusion interacting with a single dislocation as the Green's function, the physical problem is formulated into a set of singular integral equations. Using the method of Erdogan and Gupta [Q. J. Appl. Math. 29 (1972) p. 525] and iterative numerical procedures, the singular integral equations are solved numerically for the plastic zone sizes and crack tip opening displacement.

  9. Closure of fatigue cracks at high strains

    NASA Technical Reports Server (NTRS)

    Iyyer, N. S.; Dowling, N. E.

    1985-01-01

    Experiments were conducted on smooth specimens to study the closure behavior of short cracks at high cyclic strains under completely reversed cycling. Testing procedures and methodology, and closure measurement techniques, are described in detail. The strain levels chosen for the study cover from predominantly elastic to grossly plastic strains. Crack closure measurements are made at different crack lengths. The study reveals that, at high strains, cracks close only as the lowest stress level in the cycle is approached. The crack opening is observed to occur in the compressive part of the loading cycle. The applied stress needed to open a short crack under high strain is found to be less than for cracks under small scale yielding. For increased plastic deformations, the value of sigma sub op/sigma sub max is observed to decrease and approaches the value of R. Comparison of the experimental results with existing analysis is made and indicates the limitations of the small scale yielding approach where gross plastic deformation behavior occurs.

  10. Fracture mechanics life analytical methods verification testing

    NASA Technical Reports Server (NTRS)

    Favenesi, J. A.; Clemons, T. G.; Riddell, W. T.; Ingraffea, A. R.; Wawrzynek, P. A.

    1994-01-01

    The objective was to evaluate NASCRAC (trademark) version 2.0, a second generation fracture analysis code, for verification and validity. NASCRAC was evaluated using a combination of comparisons to the literature, closed-form solutions, numerical analyses, and tests. Several limitations and minor errors were detected. Additionally, a number of major flaws were discovered. These major flaws were generally due to application of a specific method or theory, not due to programming logic. Results are presented for the following program capabilities: K versus a, J versus a, crack opening area, life calculation due to fatigue crack growth, tolerable crack size, proof test logic, tearing instability, creep crack growth, crack transitioning, crack retardation due to overloads, and elastic-plastic stress redistribution. It is concluded that the code is an acceptable fracture tool for K solutions of simplified geometries, for a limited number of J and crack opening area solutions, and for fatigue crack propagation with the Paris equation and constant amplitude loads when the Paris equation is applicable.

  11. Phase-field study of grain boundary tracking behavior in crack-seal microstructures

    NASA Astrophysics Data System (ADS)

    Ankit, Kumar; Nestler, Britta; Selzer, Michael; Reichardt, Mathias

    2013-12-01

    In order to address the growth of crystals in veins, a multiphase-field model is used to capture the dynamics of crystals precipitating from a super-saturated solution. To gain a detailed understanding of the polycrystal growth phenomena in veins, we investigate the influence of various boundary conditions on crystal growth. In particular, we analyze the formation of vein microstructures resulting from the free growth of crystals as well as crack-sealing processes. We define the crystal symmetry by considering the anisotropy in surface energy to simulate crystals with flat facets and sharp corners. The resulting growth competition of crystals with different orientations is studied to deduce a consistent orientation selection rule in the free-growth regime. Using crack-sealing simulations, we correlate the grain boundary tracking behavior depending on the relative rate of crack opening, opening trajectory, initial grain size, and wall roughness. Further, we illustrate how these parameters induce the microstructural transition between blocky (crystals growing anisotropically) to fibrous morphology (isotropic) and formation of grain boundaries. The phase-field simulations of crystals in the free-growth regime (in 2D and 3D) indicate that the growth or consumption of a crystal is dependent on the orientation difference with neighboring crystals. The crack-sealing simulation results (in 2D and 3D) reveal that crystals grow isotropically and grain boundaries track the opening trajectory if the wall roughness is high, opening increments are small, and crystals touch the wall before the next crack increment starts. Further, we find that within the complete crack-seal regime, anisotropy in surface energy results in the formation of curved/oscillating grain boundaries (instead of straight) when the crack-opening velocity is increased and wall roughness is not sufficiently high. Additionally, the overall capability of phase-field method to simulate large-scale polycrystal growth in veins (in 3D) is demonstrated enumerating the main advantages of adopting the novel approach.

  12. Infrasonic wave accompanying a crack opening during the 2015 Hakone eruption

    NASA Astrophysics Data System (ADS)

    Yukutake, Yohei; Ichihara, Mie; Honda, Ryou

    2018-03-01

    To understand the initial process of the phreatic eruption of the Hakone volcano from June 29 to July 01, 2015, we analyzed infrasound data using the cross-correlation between infrasound and vertical ground velocity and compared the results of our analysis to the crustal deformation detected by tiltmeters and broadband seismometers. An infrasound signal and vertical ground motion due to an infrasound wave coupled to the ground were detected simultaneously with the opening of a crack source beneath the Owakudani geothermal region during the 2-min time period after 07:32 JST on June 29, 2015 (JST = UTC + 8 h). Given that the upper end of the open crack was approximately 150 m beneath the surface, the time for the direct emission of highly pressurized fluid from the upper end of the open crack to the surface should have exceeded the duration of the inflation owing to the hydraulic diffusivity in the porous media. Therefore, the infrasound signal coincident with the opening of the crack may reflect a sudden emission of volcanic gas resulting from the rapid vaporization of pre-existing groundwater beneath Owakudani because of the transfer of the volumetric strain change from the deformation source. We also noticed a correlation pattern corresponding to discrete impulsive infrasound signals during vent formation, which occurred several hours to 2 days after the opening of the crack. In particular, we noted that the sudden emission of vapor coincided with the inflation of the shallow pressure source, whereas the eruptive burst events accompanied by the largest vent formation were delayed by approximately 2 days. Furthermore, we demonstrated that the correlation method is a useful tool in detecting small infrasound signals and provides important information regarding the initial processes of the eruption.[Figure not available: see fulltext.

  13. Effects of the 2016 Kumamoto earthquakes on the Aso volcanic edifice

    NASA Astrophysics Data System (ADS)

    Tajima, Yasuhisa; Hasenaka, Toshiaki; Torii, Masayuki

    2017-05-01

    Large earthquakes occurred in the central part of Kumamoto Prefecture on April 14-16, 2016, causing severe damage to the northern segment of the Hinagu faults and the eastern segment of the Futagawa faults. Earthquake surface ruptures appeared along these faults and on the Aso volcanic edifice, which in turn generated landslides. We conducted landform change analysis of the central cones of Aso volcano by using satellite and aerial photographs. First, we categorized the topographical changes as surface scarps, arc-shaped cracks, and linear cracks. Field survey indicated that landslides caused the scarps and arc-shaped cracks, whereas faulting caused the linear cracks. We discovered a surface rupture concentration zone (RCZ) formed three ruptures bands with many surface ruptures and landslides extending from the west foot to the center of the Aso volcanic edifice. The magmatic volcanic vents that formed during the past 10,000 years are located along the north margin of the RCZ. Moreover, the distribution and dip of the core of rupture concentration zone correspond with the Nakadake craters. We conclude that a strong relationship exists between the volcanic vents and fault structures in the central cones of Aso volcano.[Figure not available: see fulltext.

  14. 40 CFR 63.964 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Defects include, but are not limited to, visible cracks, holes, or gaps in the closure devices; broken..., visible cracks, holes, or gaps in the closure devices; broken, cracked, or otherwise damaged seals or..., visible cracks, holes, gaps, or other open spaces in the sewer line joints, seals, or other emission...

  15. 40 CFR 63.964 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Defects include, but are not limited to, visible cracks, holes, or gaps in the closure devices; broken..., visible cracks, holes, or gaps in the closure devices; broken, cracked, or otherwise damaged seals or..., visible cracks, holes, gaps, or other open spaces in the sewer line joints, seals, or other emission...

  16. Simulation of fatigue crack growth under large scale yielding conditions

    NASA Astrophysics Data System (ADS)

    Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann

    2010-07-01

    A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.

  17. Effects induced by an earthquake on its fault plane:a boundary element study

    NASA Astrophysics Data System (ADS)

    Bonafede, Maurizio; Neri, Andrea

    2000-04-01

    Mechanical effects left by a model earthquake on its fault plane, in the post-seismic phase, are investigated employing the `displacement discontinuity method'. Simple crack models, characterized by the release of a constant, unidirectional shear traction are investigated first. Both slip components-parallel and normal to the traction direction-are found to be non-vanishing and to depend on fault depth, dip, aspect ratio and fault plane geometry. The rake of the slip vector is similarly found to depend on depth and dip. The fault plane is found to suffer some small rotation and bending, which may be responsible for the indentation of a transform tectonic margin, particularly if cumulative effects are considered. Very significant normal stress components are left over the shallow portion of the fault surface after an earthquake: these are tensile for thrust faults, compressive for normal faults and are typically comparable in size to the stress drop. These normal stresses can easily be computed for more realistic seismic source models, in which a variable slip is assigned; normal stresses are induced in these cases too, and positive shear stresses may even be induced on the fault plane in regions of high slip gradient. Several observations can be explained from the present model: low-dip thrust faults and high-dip normal faults are found to be facilitated, according to the Coulomb failure criterion, in repetitive earthquake cycles; the shape of dip-slip faults near the surface is predicted to be upward-concave; and the shallower aftershock activity generally found in the hanging block of a thrust event can be explained by `unclamping' mechanisms.

  18. Comninou contact zones for a crack parallel to an interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, P.F.; Gadi, K.S.; Erdogen, F.

    One of the interesting features in studying the state of stress in elastic solids near singular points, is the so called complex singularity that gives rise to an apparent local oscillatory behavior in the stress and displacement fields. The region in which this occurs is very small, much smaller than any plastic zone would be, and therefore the oscillations can be ignored in practical applications. Nevertheless, it is a matter of interesting theoretical investigation. The Comninou model of a small contact zone near the crack tip appears to correct for this anomaly within the framework of the linear theory. Thismore » model seems to make sense out of a {open_quotes}solution{close_quotes} that violates the boundary conditions. Erdogan and Joseph, showed (to themselves anyway) that the Comninou model actually has a physical basis. They considered a crack parallel to an interface where the order of the singularity is always real. With great care in solving the singular integral equations, it was shown that as the crack approaches the interface, a pinching effect is observed at the crack tip. This pinching effect proves that in the limit as the crack approaches the interface, the correct way to handle the problem is to consider crack surface contact. In this way, the issue of {open_quotes}oscillations{close_quotes} is never encountered for the interface crack problem. In the present study, the value of h/a that corresponds to crack closure (zero value of the stress intensity factor) will be determined for a given material pair for tensile loading. An asymptotic numerical method for the solution of singular integral equations making use of is used to obtain this result. Results for the crack opening displacement near the tip of the crack and the behavior of the stress intensity factor for cracks very close to the interface are presented. Among other interesting issues to be discussed, this solution shows that the semi-infinite crack parallel to an interface is closed.« less

  19. Advanced Flaw Manufacturing and Crack Growth Control

    NASA Astrophysics Data System (ADS)

    Kemppainen, M.; Pitkänen, J.; Virkkunen, I.; Hänninen, H.

    2004-02-01

    Advanced artificial flaw manufacturing method has become available. The method produces true fatigue cracks, which are representative of most service-induced cracks. These cracks can be used to simulate behaviour of realistic cracks under service conditions. This paper introduces studies of the effects of different thermal loading cycles to crack opening and residual stress state as seen at the surface of the sample and in the ultrasonic signal. In-situ measurements were performed under dynamic thermal fatigue loading of a 20 mm long artificial crack.

  20. A crack opening stress equation for fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1984-01-01

    A general crack opening stress equation is presented which may be used to correlate crack growth rate data for various materials and thicknesses, under constant amplitude loading, once the proper constraint factor has been determined. The constraint factor, alpha, is a constraint on tensile yielding; the material yields when the stress is equal to the product of alpha and sigma. Delta-K (LEFM) is plotted against rate for 2024-T3 aluminum alloy specimens 2.3 mm thick at various stress ratios. Delta-K sub eff was plotted against rate for the same data with alpha = 1.8; the rates correlate well within a factor of two.

  1. Microstructure and Ductility-Dip Cracking Susceptibility of Circumferential Multipass Dissimilar Weld Between 20MND5 and Z2CND18-12NS with Ni-Base Filler Metal 52

    NASA Astrophysics Data System (ADS)

    Qin, Renyao; Duan, Zhaoling; He, Guo

    2013-10-01

    The large circumferential multipass dissimilar weld between 20MND5 steel and Z2CND18-12NS stainless steel welded with FM52 filler material was investigated in terms of the diluted composition, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility of the weld. The diluted composition of the weld is composed of 37 to 47 pct Ni, 21 to 24 pct Cr, and 28 to 40 pct Fe, which are inhomogeneous along the depth and over the width of the deep weld. The carbon content has a distribution in the region of the surface weld from a high level (~0.20 pct) in the zone near 20MND5 steel to a normal level (~0.03 pct) in the zone near Z2CND18-12NS stainless steel. The carbon distribution is corresponding to the grain boundary carbides. The minimum threshold strains for DDC occur in the temperature range of 1223 K to 1323 K (950 °C to 1050 °C), which are 0.5, 0.35, and 0.4 pct for the root weld, middle region, and the surface weld, respectively. The dissimilar weld has the largest susceptibility to the DDC compared to the filler metal 52 and the Inconel 690.

  2. Spiraling Cracks in Thin Sheets

    NASA Astrophysics Data System (ADS)

    Romero, Victor; Roman, Benoit; Cerda, Enrique

    2008-03-01

    A wide kind of everyday-life industrial products come in a thin package that needs to be torn open by the user, and the opening is not always easy. We built a simple setup to study crack propagation in thin sheets coupled with large out-of-plane displacement : A cylindrical tool is inserted in a straight incision in a thin sheet, and is pushed against the sheet perpendicularly to that incision, eventually propagating a crack. When the blunt tool is continually pushed against the lip, we found that the crack follows a very robust spiraling path. Experiments may be interpreted in terms of ``Spira Mirabilis'' (logarithmic spiral). Starting with crack theory argument, we will show that the early behavior of the cut path follows a portion of a logathmic spiral, and that the path tends to another spiral with a different pitch as the crack adds more turns. Our crack experiment illustrates the fact that thin sheets mechanics is deeply connected to geometry, and finally spirals characteristics allow us to measure material crack properties of the thin layer used.

  3. Elastic-plastic analysis of a propagating crack under cyclic loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Armen, H., Jr.

    1974-01-01

    Development and application of a two-dimensional finite-element analysis to predict crack-closure and crack-opening stresses during specified histories of cyclic loading. An existing finite-element computer program which accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing boundary conditions - crack growth and intermittent contact of crack surfaces. This program was subsequently used to study the crack-closure behavior under constant-amplitude and simple block-program loading.

  4. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.

    PubMed

    Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M

    2011-10-01

    The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Crack Monitoring of Operational Wind Turbine Foundations

    PubMed Central

    McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-01-01

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μm. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations. PMID:28825687

  6. Crack Monitoring of Operational Wind Turbine Foundations.

    PubMed

    Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-08-21

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.

  7. Mitigation of Crack Damage in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Newman, John A.; Smith, Stephen W.; Leser, William P.; Wincheski, Russell A.; Wallace, Terryl A.; Glaessgen, Edward H.; Piascik, Robert S.

    2014-01-01

    A system designed to mitigate or heal crack damage in metallic materials has been developed where the protected material or component is coated with a low-melting temperature film. After a crack is formed, the material is heated, melting the film which then infiltrates the crack opening through capillary action. Upon solidification, the healing material inhibits further crack damage in two ways. While the crack healing material is intact, it acts like an adhesive that bonds or bridges the crack faces together. After fatigue loading damages, the healing material in the crack mouth inhibits further crack growth by creating artificially-high crack closure levels. Mechanical test data show that this method sucessfully arrests or retards crack growth in laboratory specimens.

  8. The influence of normal fault geometry on porous sandstone deformation: Insights from mechanical models into conditions leading to Coulomb failure and shear-enhanced compaction

    NASA Astrophysics Data System (ADS)

    Allison, K.; Reinen, L. A.

    2011-12-01

    Slip on non-planar faults produces stress perturbations in the surrounding host rock that can yield secondary faults at a scale too small to be resolved on seismic surveys. Porosity changes during failure may affect the ability of the rock to transmit fluids through dilatant cracking or, in porous rocks, shear-enhanced compaction (i.e., cataclastic flow). Modeling the mechanical behavior of the host rock in response to slip on non-planar faults can yield insights into the role of fault geometry on regions of enhanced or inhibited fluid flow. To evaluate the effect of normal fault geometry on deformation in porous sandstones, we model the system as a linear elastic, homogeneous, whole or half space using the boundary-element modeling program Poly3D. We consider conditions leading to secondary deformation using the maximum Coulomb shear stress (MCSS) as an index of brittle deformation and proximity to an elliptical yield envelope (Y), determined experimentally for porous sandstone (Baud et al., JGR, 2006), for cataclastic flow. We model rectangular faults consisting of two segments: an upper leg with a constant dip of 60° and a lower leg with dips ranging 15-85°. We explore far-field stress models of constant and gradient uniaxial strain. We investigate the potential damage in the host rock in two ways: [1] the size of the damage zone, and [2] regions of enhanced deformation indicated by elevated MCSS or Y. Preliminary results indicate that, along a vertical transect passing through the fault kink, [1] the size of the damage zone increases in the footwall with increasing lower leg dip and remains constant in the hanging wall. [2] In the footwall, the amount of deformation does not change as a function of lower leg dip in constant stress models; in gradient stress models, both MCSS and Y increase with dip. In the hanging wall, Y decreases with increasing lower leg dip for both constant and gradient stress models. In contrast, MCSS increases: as lower leg dip increases for constant stress models, and as the difference between lower leg dip and 60° increases for gradient stress models. These preliminary results indicate that the dip of the lower fault segment significantly affects the amount and style of deformation in the host rock.

  9. Vanadium Microalloyed High Strength Martensitic Steel Sheet for Hot-Dip Coating

    NASA Astrophysics Data System (ADS)

    Hutchinson, Bevis; Komenda, Jacek; Martin, David

    Cold rolled steels with various vanadium and nitrogen levels have been treated to simulate the application of galvanizing and galvannealing to hardened martensitic microstructures. Strength levels were raised 100-150MPa by alloying with vanadium, which mitigates the effect of tempering. This opens the way for new ultra-high strength steels with corrosion resistant coatings produced by hot dip galvanising.

  10. Study of the Effects of Metallurgical Factors on the Growth of Fatigue Microcracks.

    DTIC Science & Technology

    1987-11-25

    polycrystalline) yield stress. 8. The resulting model, predicated on the notion of orientation-dependent microplastic grains, predicts quantitatively the entire...Figure 5. Predicted crack growth curves for small cracks propagating from a microplastic grain into elastic-plastic, contiguous grains; Ao is defined as...or the crack tip opening *displacement, 6. Figure 5. Predicted crack growth curves for small cracks propagating from a microplastic grain into

  11. Investigation of eddy current examination on OD fatigue crack for steam generator tubes

    NASA Astrophysics Data System (ADS)

    Kong, Yuying; Ding, Boyuan; Li, Ming; Liu, Jinhong; Chen, Huaidong; Meyendorf, Norbert G.

    2015-03-01

    The opening width of fatigue crack was very small, and conventional Bobbin probe was very difficult to detect it in steam generator tubes. Different sizes of 8 fatigue cracks were inspected using bobbin probe rotating probe. The analysis results showed that, bobbin probe was not sensitive for fatigue crack even for small through wall crack mixed with denting signal. On the other hand, the rotating probe was easily to detect all cracks. Finally, the OD phase to depth curve for fatigue crack using rotating probe was established and the results agreed very well with the true crack size.

  12. A Relationship Between Constraint and the Critical Crack Tip Opening Angle

    NASA Technical Reports Server (NTRS)

    Johnston, William M.; James, Mark A.

    2009-01-01

    Of the various approaches used to model and predict fracture, the Crack Tip Opening Angle (CTOA) fracture criterion has been successfully used for a wide range of two-dimensional thin-sheet and thin plate applications. As thicker structure is considered, modeling the full three-dimensional fracture process will become essential. This paper investigates relationships between the local CTOA evaluated along a three-dimensional crack front and the corresponding local constraint. Previously reported tunneling crack front shapes were measured during fracture by pausing each test and fatigue cycling the specimens to mark the crack surface. Finite element analyses were run to model the tunneling shape during fracture, with the analysis loading conditions duplicating those tests. The results show an inverse relationship between the critical fracture value and constraint which is valid both before maximum load and after maximum load.

  13. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling.

    PubMed

    Wang, Zhifan; Hu, Shu; Wang, Fan; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.

  14. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhifan; Hu, Shu; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis setmore » without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.« less

  15. Opening of an interface flaw in a layered elastic half-plane under compressive loading

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.; Fichter, W. B.; Goree, J. G.

    1984-01-01

    A static analysis is given of the problem of an elastic layer perfectly bonded, except for a frictionless interface crack, to a dissimilar elastic half-plane. The free surface of the layer is loaded by a finite pressure distribution directly over the crack. The problem is formulated using the two dimensional linear elasticity equations. Using Fourier transforms, the governing equations are converted to a pair of coupled singular integral equations. The integral equations are reduced to a set of simultaneous algebraic equations by expanding the unknown functions in a series of Jacobi polynomials and then evaluating the singular Cauchy-type integrals. The resulting equations are found to be ill-conditioned and, consequently, are solved in the least-squares sense. Results from the analysis show that, under a normal pressure distribution on the free surface of the layer and depending on the combination of geometric and material parameters, the ends of the crack can open. The resulting stresses at the crack-tips are singular, implying that crack growth is possible. The extent of the opening and the crack-top stress intensity factors depend on the width of the pressure distribution zone, the layer thickness, and the relative material properties of the layer and half-plane.

  16. Quark correlations in the color glass condensate: Pauli blocking and the ridge

    NASA Astrophysics Data System (ADS)

    Altinoluk, Tolga; Armesto, Néstor; Beuf, Guillaume; Kovner, Alex; Lublinsky, Michael

    2017-02-01

    We consider, for the first time, correlations between quarks produced in p-A collisions in the framework of the color glass condensate. We find a quark-quark ridge that shows a dip at Δ η ˜2 relative to the gluon-gluon ridge. The origin of this dip is the short-range (in rapidity) Pauli blocking experienced by quarks in the wave function of the incoming projectile. We observe that these correlations, present in the initial state, survive the scattering process. We suggest that this effect may be observable in open charm-open charm correlations at the Large Hadron Collider.

  17. A fracture criterion for widespread cracking in thin-sheet aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Dawicke, D. S.; Sutton, M. A.; Bigelow, C. A.

    1993-01-01

    An elastic-plastic finite-element analysis was used with a critical crack-tip-opening angle (CTOA) fracture criterion to model stable crack growth in thin-sheet 2024-T3 aluminum alloy panels with single and multiple-site damage (MSD) cracks. Comparisons were made between critical angles determined from the analyses and those measured with photographic methods. Calculated load against crack extension and load against crack-tip displacement on single crack specimens agreed well with test data even for large-scale plastic deformations. The analyses were also able to predict the stable tearing behavior of large lead cracks in the presence of stably tearing MSD cracks. Small MSD cracks significantly reduced the residual strength for large lead cracks.

  18. Determination of dynamic fracture toughness using a new experimental technique

    NASA Astrophysics Data System (ADS)

    Cady, Carl M.; Liu, Cheng; Lovato, Manuel L.

    2015-09-01

    In other studies dynamic fracture toughness has been measured using Charpy impact and modified Hopkinson Bar techniques. In this paper results will be shown for the measurement of fracture toughness using a new test geometry. The crack propagation velocities range from ˜0.15 mm/s to 2.5 m/s. Digital image correlation (DIC) will be the technique used to measure both the strain and the crack growth rates. The boundary of the crack is determined using the correlation coefficient generated during image analysis and with interframe timing the crack growth rate and crack opening can be determined. A comparison of static and dynamic loading experiments will be made for brittle polymeric materials. The analysis technique presented by Sammis et al. [1] is a semi-empirical solution, however, additional Linear Elastic Fracture Mechanics analysis of the strain fields generated as part of the DIC analysis allow for the more commonly used method resembling the crack tip opening displacement (CTOD) experiment. It should be noted that this technique was developed because limited amounts of material were available and crack growth rates were to fast for a standard CTOD method.

  19. Electromagnetic modulation of the ultrasonic signal for nondestructive detection of small defects and ferromagnetic inclusions in thin wall structures

    NASA Astrophysics Data System (ADS)

    Finkel, Peter

    2008-03-01

    We report on new nondestructive evaluation technique based on electromagnetic modulation of ultrasonic signal for detection of the small crack, flaws and inclusions in thin-walled parts. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small crack near holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.

  20. Investigating the Subduction History of the Southwest Pacific using Coupled Plate Tectonic-Mantle Convection Models

    NASA Astrophysics Data System (ADS)

    Matthews, K. J.; Flament, N. E.; Williams, S.; Müller, D.; Gurnis, M.

    2014-12-01

    The Late Cretaceous to mid Eocene (~85-45 Ma) evolution of the southwest Pacific has been the subject of starkly contrasting plate reconstruction models, reflecting sparse and ambiguous data. Disparate models of (1) west-dipping subduction and back-arc basin opening to the east of the Lord Howe Rise, (2) east-dipping subduction and back-arc basin closure to the east of the Lord Howe Rise, and (3) tectonic quiescence with no subduction have all been proposed for this time frame. To help resolve this long-standing problem we test a new southwest Pacific reconstruction using global mantle flow models with imposed plate motions. The kinematic model incorporates east to northeast directed rollback of a west-dipping subduction zone between 85 and 55 Ma, accommodating opening of the South Loyalty back-arc basin to the east of New Caledonia. At 55 Ma there is a plate boundary reorganization in the region. West-dipping subduction and back-arc basin spreading end, and there is initiation of northeast dipping subduction within the back-arc basin. Consumption of South Loyalty Basin seafloor continues until 45 Ma, when obduction onto New Caledonia begins. West-dipping Tonga-Kermadec subduction initiates at this time at the relict Late Cretaceous-earliest Eocene subduction boundary. We use the 3D spherical mantle convection code CitcomS coupled to the plate reconstruction software GPlates, with plate motions and evolving plate boundaries imposed since 230 Ma. The predicted present-day mantle structure is compared to S- and P-wave seismic tomography models, which can be used to infer the presence of slab material in the mantle at locations where fast velocity anomalies are imaged. This workflow enables us to assess the forward-modeled subduction history of the region.

  1. Corrosion of NiTi Wires with Cracked Oxide Layer

    NASA Astrophysics Data System (ADS)

    Racek, Jan; Šittner, Petr; Heller, Luděk; Pilch, Jan; Petrenec, Martin; Sedlák, Petr

    2014-07-01

    Corrosion behavior of superelastic NiTi shape memory alloy wires with cracked TiO2 surface oxide layers was investigated by electrochemical corrosion tests (Electrochemical Impedance Spectroscopy, Open Circuit Potential, and Potentiodynamic Polarization) on wires bent into U-shapes of various bending radii. Cracks within the oxide on the surface of the bent wires were observed by FIB-SEM and TEM methods. The density and width of the surface oxide cracks dramatically increase with decreasing bending radius. The results of electrochemical experiments consistently show that corrosion properties of NiTi wires with cracked oxide layers (static load keeps the cracks opened) are inferior compared to the corrosion properties of the straight NiTi wires covered by virgin uncracked oxides. Out of the three methods employed, the Electrochemical Impedance Spectroscopy seems to be the most appropriate test for the electrochemical characterization of the cracked oxide layers, since the impedance curves (Nyquist plot) of differently bent NiTi wires can be associated with increasing state of the surface cracking and since the NiTi wires are exposed to similar conditions as the surfaces of NiTi implants in human body. On the other hand, the potentiodynamic polarization test accelerates the corrosion processes and provides clear evidence that the corrosion resistance of bent superelastic NiTi wires degrades with oxide cracking.

  2. Axial crack propagation and arrest in pressurized fuselage

    NASA Technical Reports Server (NTRS)

    Kosai, M.; Shimamoto, A.; Yu, C.-T.; Walker, S. I.; Kobayashi, A. S.; Tan, P.

    1994-01-01

    The crack arrest capability of a tear strap in a pressurized precracked fuselage was studied through instrumented axial rupture tests of small scale models of an idealized fuselage. Upon pressurization, rapid crack propagation initiated at an axial through crack along the stringer and immediately kinked due to the mixed modes 1 and 2 state caused by the one-sided opening of the crack flap. The diagonally running crack further turned at the tear straps. Dynamic finite element analysis of the rupturing cylinder showed that the crack kinked and also ran straight in the presence of a mixed mode state according to a modified two-parameter crack kinking criterion.

  3. Fatigue crack tip deformation and fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Kang, T. S.; Liu, H. W.

    1972-01-01

    The effects of stress ratio, prestress cycling and plate thickness on the fatigue crack propagation rate are studied on 2024-T351 aluminum alloy. Fatigue crack propagation rate increases with the plate thickness and the stress ratio. Prestress cycling below the static yield strength has no noticeable effect on the fatigue crack propagation rate. However, prestress cycling above the static yield strength causes the material to strain harden and increases the fatigue crack propagation rate. Crack tip deformation is used to study the fatigue crack propagation. The crack tip strains and the crack opening displacements were measured from moire fringe patterns. The moire fringe patterns were obtained by a double exposure technique, using a very high density master grille (13,400 lines per inch).

  4. Alternating method applied to edge and surface crack problems

    NASA Technical Reports Server (NTRS)

    Hartranft, R. J.; Sih, G. C.

    1972-01-01

    The Schwarz-Neumann alternating method is employed to obtain stress intensity solutions to two crack problems of practical importance: a semi-infinite elastic plate containing an edge crack which is subjected to concentrated normal and tangential forces, and an elastic half space containing a semicircular surface crack which is subjected to uniform opening pressure. The solution to the semicircular surface crack is seen to be a significant improvement over existing approximate solutions. Application of the alternating method to other crack problems of current interest is briefly discussed.

  5. Characterizing open and non-uniform vertical heat sources: towards the identification of real vertical cracks in vibrothermography experiments

    NASA Astrophysics Data System (ADS)

    Castelo, A.; Mendioroz, A.; Celorrio, R.; Salazar, A.; López de Uralde, P.; Gorosmendi, I.; Gorostegui-Colinas, E.

    2017-05-01

    Lock-in vibrothermography is used to characterize vertical kissing and open cracks in metals. In this technique the crack heats up during ultrasound excitation due mainly to friction between the defect's faces. We have solved the inverse problem, consisting in determining the heat source distribution produced at cracks under amplitude modulated ultrasound excitation, which is an ill-posed inverse problem. As a consequence the minimization of the residual is unstable. We have stabilized the algorithm introducing a penalty term based on Total Variation functional. In the inversion, we combine amplitude and phase surface temperature data obtained at several modulation frequencies. Inversions of synthetic data with added noise indicate that compact heat sources are characterized accurately and that the particular upper contours can be retrieved for shallow heat sources. The overall shape of open and homogeneous semicircular strip-shaped heat sources representing open half-penny cracks can also be retrieved but the reconstruction of the deeper end of the heat source loses contrast. Angle-, radius- and depth-dependent inhomogeneous heat flux distributions within these semicircular strips can also be qualitatively characterized. Reconstructions of experimental data taken on samples containing calibrated heat sources confirm the predictions from reconstructions of synthetic data. We also present inversions of experimental data obtained from a real welded Inconel 718 specimen. The results are in good qualitative agreement with the results of liquids penetrants testing.

  6. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadfarnia, Mohsen; Nibur, Kevin A.; San Marchi, Christopher W.

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} ismore » the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.« less

  7. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nibur, Kevin A.

    2010-11-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} ismore » the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.« less

  8. Effectiveness of Dexamethasone Iontophoresis for Temporomandibular Joint Involvement in Juvenile Idiopathic Arthritis

    PubMed Central

    Mina, Rina; Melson, Paula; Powell, Stephanie; Rao, Marepalli; Hinze, Claas; Passo, Murray; Graham, T. Brent; Brunner, Hermine I.

    2011-01-01

    Objective Temporomandibular joint (TMJ) involvement is common in Juvenile Idiopathic Arthritis (JIA). Dexamethasone iontophoresis (DIP) uses low-grade electric currents for transdermal dexamethasone delivery into deeper anatomic structures. The purpose of this study was to assess the safety and effectiveness of DIP for the treatment of TMJ involvement in JIA, and to delineate variables that are associated with improvement after DIP. Methods Medical records of all JIA patients who underwent DIP for TMJ involvement at a larger tertiary pediatric rheumatology center from 1997 to 2011 were reviewed. DIP was performed using a standard protocol. The effectiveness of DIP was assessed by comparing the maximal inter-incisor opening (MIOTMJ) and the maximal lateral excursion (MLETMJ) before and after treatment. Results Twenty-eight patients (ages 2– 21 years) who received an average of eight DIP treatment sessions per involved TMJ were included in the analysis. Statistically significant improvement in the median MIOTMJ (p< 0.0001) was observed in 68%. The median MLETMJ (p= 0.03) improved in 69%, and resolution of TMJ pain occurred in 73% of the patients who had TMJ pain at baseline. Side effects of DIP were transient site erythema (86%), skin blister (4%), and metallic taste (4%). Improvement in TMJ range of motion from DIP is associated with lower MIOTMJ, lower MLETMJ, and absence of TMJ crepitus at baseline. Conclusion In this pilot study DIP appeared to be an effective and safe initial treatment of TMJ involvement in JIA, especially among patients with decreased TMJ measurements. Prospective controlled studies are needed. PMID:22034112

  9. Extrinsic and intrinsic index finger muscle attachments in an OpenSim upper-extremity model.

    PubMed

    Lee, Jong Hwa; Asakawa, Deanna S; Dennerlein, Jack T; Jindrich, Devin L

    2015-04-01

    Musculoskeletal models allow estimation of muscle function during complex tasks. We used objective methods to determine possible attachment locations for index finger muscles in an OpenSim upper-extremity model. Data-driven optimization algorithms, Simulated Annealing and Hook-Jeeves, estimated tendon locations crossing the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints by minimizing the difference between model-estimated and experimentally-measured moment arms. Sensitivity analysis revealed that multiple sets of muscle attachments with similar optimized moment arms are possible, requiring additional assumptions or data to select a single set of values. The most smooth muscle paths were assumed to be biologically reasonable. Estimated tendon attachments resulted in variance accounted for (VAF) between calculated moment arms and measured values of 78% for flex/extension and 81% for ab/adduction at the MCP joint. VAF averaged 67% at the PIP joint and 54% at the DIP joint. VAF values at PIP and DIP joints partially reflected the constant moment arms reported for muscles about these joints. However, all moment arm values found through optimization were non-linear and non-constant. Relationships between moment arms and joint angles were best described with quadratic equations for tendons at the PIP and DIP joints.

  10. Behavior of Ti-5Al-2.5Sn ELI titanium alloy sheet parent and weld metal in the presence of cracks at 20 K

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1971-01-01

    Through- and surface-cracked specimens of two thicknesses were tested in uniaxial tension. Surface-cracked specimens were generally found to be stronger than through-cracked specimens with the same crack length. Apparent surface-crack fracture toughness calculated using the Anderson modified Irwin equation remained relatively constant for cracks as deep as 90 percent of the sheet thickness. Subcritical growth of surface cracks was investigated. Comparison of chamber and open air welds showed chamber welds to be slightly tougher. Both methods produced welds with toughness that compared favorably with that of the parent metal. Weld efficiencies were above 94 percent.

  11. The noncontinuum crack tip deformation behavior of surface microcracks

    NASA Astrophysics Data System (ADS)

    Morris, W. L.

    1980-07-01

    The crack tip opening displacement (CTOD) of small surface fatigue cracks (lengths of the grain size) in Al 2219-T851 depends upon the location of a crack relative to the grain boundaries. Both CTOD and crack tip closure stress are greatest when the crack tip is a large distance from the next grain boundary in the direction of crack propagation. Contrary to behavioral trends predicted by continuum fracture mechanics, crack length has no detectable effect on the contribution of plastic deformation to CTOD. It is apparent from these observations that the region of significant plastic deformation is confined by the grain boundaries, resulting in a plastic zone size that is insensitive to crack length and to external load.

  12. Landslide Caused Damages in a Gallery

    NASA Astrophysics Data System (ADS)

    Poisel, R.; Mair am Tinkhof, K.; Preh, A.

    2016-06-01

    On October 5th, 2010, cracks were found in a gallery 1.8 m high and 1.4 m wide. The gallery is 100 years old, runs parallel to a valley flank and was excavated in a tectonically strongly stressed, weathered and slightly dipping sandwich of clayey shales, sandstones and marls. The cracks in the roof as well as in the invert ran parallel to the axis of the gallery. Monitoring showed that crack widths were increasing 1.5 mm per year, sidewall distances were increasing 3.5 mm per year, whereas the height of the gallery was decreasing 2.5 mm per year. After eliminating several possible causes of cracking, a landslide producing the damages had to be taken into consideration. Monitoring of the valley flank surface as well as inclinometer readings revealed that a landslide was occurring, loading the gallery lining. Most probably the landslide had been reactivated by excessive rainfall in 2009 as well as by works for the renewal of a weir in the valley bottom. As stabilization of the slope was not an option for several reasons, it was decided to replace the gallery by a new one deeper inside the slope, which will be ready for operation in 2017. Thus the old gallery has to be kept in operation till then and it was decided to reinforce the old gallery by a heavily reinforced shotcrete lining 10 cm thick. As slope displacements went on, cracks in the shotcrete lining developed with a completely different pattern: in the section where the gallery lies completely in the landslide shear zone no cracks formed until now due to heavy reinforcement, whereas in the transition sections stable ground-landslide and landslide-stable ground diagonal tension cracks in the roof due to shear by the landslide developed. Numerical models showed that cracking and spalling of the shotcrete lining would occur only after some centimetres of additional displacements of the slope, which hopefully will not occur before 2017.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brickstad, B.; Bergman, M.

    A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presentedmore » for cracked pipes subjected to both stress corrosion and vibration fatigue.« less

  14. Dynamic ductile fracture of a central crack

    NASA Technical Reports Server (NTRS)

    Tsai, Y. M.

    1976-01-01

    A central crack, symmetrically growing at a constant speed in a two dimensional ductile material subject to uniform tension at infinity, is investigated using the integral transform methods. The crack is assumed to be the Dugdale crack, and the finite stress condition at the crack tip is satisfied during the propagation of the crack. Exact expressions of solution are obtained for the finite stress condition at the crack tip, the crack shape, the crack opening displacement, and the energy release rate. All those expressions are written as the product of explicit dimensional quantities and a nondimensional dynamic correction function. The expressions reduce to the associated static results when the crack speed tends to zero, and the nondimensional dynamic correction functions were calculated for various values of the parameter involved.

  15. Analysis of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.; Srawley, J. E.

    1977-01-01

    Results of planar boundary collocation analysis are given for ring segment (C-shaped) specimens with radial cracks, subjected to combined forces and couples. Mode I stress intensity factors and crack mouth opening displacements were determined for ratios of outer to inner radius in the range 1.1 to 2.5 and ratios of crack length to segment width in the range 0.1 to 0.8.

  16. Analysis of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.; Strawley, J. E.

    1975-01-01

    Results of planar boundary collocation analysis are given for ring segment (C shaped) specimens with radial cracks, subjected to combined forces and couples. Mode I stress intensity factors and crack mouth opening displacements were determined for ratios of outer to inner radius in the range 1.1 to 2.5, and ratios of crack length to segment width in the range 0.1 to 0.8.

  17. Interaction of Lamb Waves with Fatigue Cracks in Aluminum

    DTIC Science & Technology

    2011-09-01

    Interaction of Lamb Waves with Fatigue Cracks in Aluminum E. D. SWENSON, C. T. OWENS and C. ALLEN ABSTRACT Elastic waves can travel across...the interaction of Lamb waves with both open and closed low-cycle fatigue cracks in aluminum plates using a three-dimensional laser Doppler vibrometer...and antisymmetric Lamb wave modes differ upon encountering fatigue cracks. INTRODUCTION The use of guided elastic waves (Lamb waves) has shown

  18. Sequence stratigraphic re-interpretation of [open quotes]stray[close quotes] sandstones in the Cretaceous Mancos Shale, Book Cliffs, Utah: Implications for exploration models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampson, G.J.; Howell, J.A.; Flint, S.S.

    1996-01-01

    The Mancos Shale, Book Cliffs, eastern Utah, represents the open marine mudstones of the Cretaceous Western Interior Seaway and contains a number of detached sandstone bodies ([open quotes]Mancos B[close quotes]) which are located 30-150 km down depositional dip from contemporaneous highstand shoreline deposits in the Blackhawk Formation. Examination of these [open quotes]stray[close quotes] sandstones reveals that they do not represent deep water deposition, as previously supposed, but instead comprise three shallow marine facies associations; (1) tidally-influenced fluvial channel fills, (2) fluvially-dominated delta front successions and (3) low-energy shorelines. Tidally-influenced fluvial channel fills are commonly stacked into multistorey bodies at discretemore » stratigraphic levels, thereby defining incised valley fill (IVF) networks. Fluvially-dominated deltas are eroded into by, and lie at the down-dip terminations of, IVFs and are therefore interpreted as falling stage and lowstand shorelines. Low-energy shorelines are inferred to lie along strike from these deltas. The above shallow marine deposits have been mapped at five discrete stratigraphic horizons, which can be either traced or projected up-dip to previously-documented IVFs in the Blackhawk Formation. Their paleocurrents imply that falling stage and lowstand shoreline trends were sub-parallel to mapped highstand shorelines, although there is evidence for a perpendicular lowstand shoreline trend in the east of the study area. This facies and sequence stratigraphic re-interpretation enables predictive exploration modelling of subsurface [open quotes]Mancos B[close quotes] gas reservoir sandstones.« less

  19. Sequence stratigraphic re-interpretation of {open_quotes}stray{close_quotes} sandstones in the Cretaceous Mancos Shale, Book Cliffs, Utah: Implications for exploration models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampson, G.J.; Howell, J.A.; Flint, S.S.

    1996-12-31

    The Mancos Shale, Book Cliffs, eastern Utah, represents the open marine mudstones of the Cretaceous Western Interior Seaway and contains a number of detached sandstone bodies ({open_quotes}Mancos B{close_quotes}) which are located 30-150 km down depositional dip from contemporaneous highstand shoreline deposits in the Blackhawk Formation. Examination of these {open_quotes}stray{close_quotes} sandstones reveals that they do not represent deep water deposition, as previously supposed, but instead comprise three shallow marine facies associations; (1) tidally-influenced fluvial channel fills, (2) fluvially-dominated delta front successions and (3) low-energy shorelines. Tidally-influenced fluvial channel fills are commonly stacked into multistorey bodies at discrete stratigraphic levels, thereby definingmore » incised valley fill (IVF) networks. Fluvially-dominated deltas are eroded into by, and lie at the down-dip terminations of, IVFs and are therefore interpreted as falling stage and lowstand shorelines. Low-energy shorelines are inferred to lie along strike from these deltas. The above shallow marine deposits have been mapped at five discrete stratigraphic horizons, which can be either traced or projected up-dip to previously-documented IVFs in the Blackhawk Formation. Their paleocurrents imply that falling stage and lowstand shoreline trends were sub-parallel to mapped highstand shorelines, although there is evidence for a perpendicular lowstand shoreline trend in the east of the study area. This facies and sequence stratigraphic re-interpretation enables predictive exploration modelling of subsurface {open_quotes}Mancos B{close_quotes} gas reservoir sandstones.« less

  20. Effect of Immersion Time and Cooling Mode on the Electrochemical Behavior of Hot-Dip Galvanized Steel in Sulfuric Acid Medium

    NASA Astrophysics Data System (ADS)

    Lekbir, Choukri; Dahoun, Nessrine; Guetitech, Asma; Hacid, Abdenour; Ziouche, Aicha; Ouaad, Kamel; Djadoun, Amar

    2017-04-01

    In this work, we investigated the influence of galvanizing immersion time and cooling modes environments on the electrochemical corrosion behavior of hot-dip galvanized steel, in 1 M sulfuric acid electrolyte at room temperature using potentiodynamic polarization technique. In addition, the evolution of thickness, structure and microstructure of zinc coatings for different immersion times and two cooling modes (air and water) is characterized, respectively, by using of Elcometer scan probe, x-ray diffraction and metallography analysis. The analysis of the behavior of steel and galvanized steel, vis-a-vis corrosion, by means of corrosion characteristic parameters as anodic (β a) and cathodic (β c) Tafel slopes, corrosion potential (E corr), corrosion current density (i corr), corrosion rate (CR) and polarization resistance (R p), reveals that the galvanized steel has anticorrosion properties much better than that of steel. More the immersion time increases, more the zinc coatings thickness increases, and more these properties become better. The comparison between the two cooling modes shows that the coatings of zinc produced by hot-dip galvanization and air-cooled provides a much better protection to steel against corrosion than those cooled by quenching in water which exhibit a brittle corrosive behavior due to the presence of cracks.

  1. Structural and morphological characterization of anatase TiO 2 coating on χ-Alumina scale fiber fabricated by sol-gel dip-coating method

    NASA Astrophysics Data System (ADS)

    Nguyen, Hue Thi; Miao, Lei; Tanemura, Sakae; Tanemura, Masaki; Toh, Shoichi; Kaneko, Kenji; Kawasaki, Masahiro

    2004-10-01

    Anatase TiO 2 coatings 0.4 μm thick have been successfully fabricated by sol-gel dip-coating process on χ-Al 2O 3 fibers 100 μm by 10 cm long with a surface fish-scale. This was achieved by adjustment of the sol-gel parameters such as molar ratio of the precursors in TiO 2-sols, dip-coating time, drying duration in air, heating processes and number of cyclical repetitions of the process. Two samples were prepared using two sols containing different molar ratios of precursors. XRD, TEM, EDS and SEM characterization confirmed: (1) the similarity of the growth of anatase-TiO 2 from two sols under the optimal sol-gel parameters, (2) that the coatings are composed of aggregated crystallites of 10-25 nm in diameter, (3) the good compositional uniformity of Ti in the fabricated anatase-TiO 2 crystallites, (4) a surface covering ratio of anatase-TiO 2 around the fiber of at least 90%, and (5) that there is a good adherence of the fabricated anatase-TiO 2 layer on alumina fiber as evidenced by the lack of cracking and peeling off traces around the boundary between the coating and the fiber.

  2. Nondestructive estimation of depth of surface opening cracks in concrete beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arne, Kevin; In, Chiwon; Kurtis, Kimberly

    Concrete is one of the most widely used construction materials and thus assessment of damage in concrete structures is of the utmost importance from both a safety point of view and a financial point of view. Of particular interest are surface opening cracks that extend through the concrete cover, as this can expose the steel reinforcement bars underneath and induce corrosion in them. This corrosion can lead to significant subsequent damage in concrete such as cracking and delamination of the cover concrete as well as rust staining on the surface of concrete. Concrete beams are designed and constructed in suchmore » a way to provide crack depths up to around 13 cm. Two different types of measurements are made in-situ to estimate depths of real surface cracks (as opposed to saw-cut notches) after unloading: one based on the impact-echo method and the other one based on the diffuse ultrasonic method. These measurements are compared to the crack depth visually observed on the sides of the beams. Discussions are given as to the advantages and disadvantages of each method.« less

  3. Faulting apparently related to the 1994 Northridge, California, earthquake and possible co-seismic origin of surface cracks in Potrero Canyon, Los Angeles County, California

    USGS Publications Warehouse

    Catchings, R.D.; Goldman, M.R.; Lee, W.H.K.; Rymer, M.J.; Ponti, D.J.

    1998-01-01

    Apparent southward-dipping, reverse-fault zones are imaged to depths of about 1.5 km beneath Potrero Canyon, Los Angeles County, California. Based on their orientation and projection to the surface, we suggest that the imaged fault zones are extensions of the Oak Ridge fault. Geologic mapping by others and correlations with seismicity studies suggest that the Oak Ridge fault is the causative fault of the 17 January 1994 Northridge earthquake (Northridge fault). Our seismically imaged faults may be among several faults that collectively comprise the Northridge thrust fault system. Unusually strong shaking in Potrero Canyon during the Northridge earthquake may have resulted from focusing of seismic energy or co-seismic movement along existing, related shallow-depth faults. The strong shaking produced ground-surface cracks and sand blows distributed along the length of the canyon. Seismic reflection and refraction images show that shallow-depth faults may underlie some of the observed surface cracks. The relationship between observed surface cracks and imaged faults indicates that some of the surface cracks may have developed from nontectonic alluvial movement, but others may be fault related. Immediately beneath the surface cracks, P-wave velocities are unusually low (<400 m/sec), and there are velocity anomalies consistent with a seismic reflection image of shallow faulting to depths of at least 100 m. On the basis of velocity data, we suggest that unconsolidated soils (<800 m/sec) extend to depths of about 15 to 20 m beneath our datum (<25 m below ground surface). The underlying rocks range in velocity from about 1000 to 5000 m/sec in the upper 100 m. This study illustrates the utility of high-resolution seismic imaging in assessing local and regional seismic hazards.

  4. Characterization of the deformation and thermal behavior of granitic exfoliation sheets with LiDAR and infrared thermography (Yosemite Valley, USA)

    NASA Astrophysics Data System (ADS)

    Guerin, Antoine; Derron, Marc-Henri; Jaboyedoff, Michel; Collins, Brian D.; Stock, Greg M.

    2017-04-01

    Yosemite Valley is a long (11 km) and deep ( 1 km) glacier-carved valley, bounded by steep granitic cliffs cutting the western slope of the central Sierra Nevada mountain range (California, USA). These cliffs produce numerous rockfalls every year (925 events reported between 1857 and 2011) and this rockfall activity is often linked to the presence of sheeting joints (Stock et al., 2013), also called exfoliation joints, formed in response to stress changes associated with changes in the topography (Martel, 2011). Furthermore, the historical rockfall inventory indicates that many events occurred without recognized triggers (Austin et al., 2014), in summer time, and on sunny days in particular. This suggests that thermal stress changes are involved in triggering of rockfalls (Collins and Stock, 2016). To further characterize the relationship between thermal stresses and rock face deformation, we carried out three experiments in Yosemite Valley during October 2015: (i) monitoring of a sub-vertical granodiorite exfoliation sheet on the Rhombus Wall for 24 consecutive hours (from 8:00 p.m. to 8:00 p.m.) using terrestrial LiDAR, crackmeters and infrared thermal sensors; (ii) monitoring the El Capitan rockwall composed of tens of exfoliation sheets for 8 consecutive hours (from 5:30 p.m. to 1:30 a.m.) with terrestrial LiDAR and thermal imaging; (iii) collecting several sequences of thermal GigaPan panoramas during periods of rock cooling on both cliffs (Rhombus Wall and El Capitan). In parallel to these experiments, we also developed a method for calibrating and correcting the raw apparent temperature measured by our thermal imager (a FLIR T660 infrared camera) from thermoresistances, reflective and black papers and by using some information given by the LiDAR point clouds (range, dip and dip direction). LiDAR monitoring of experiments (i) and (ii) allowed us to detect millimetric deformations for the exfoliations sheets whose crack aperture is persistent, deep and greater than 9 cm, confirming the results of Collins and Stock (2016). Then, the LiDAR - infrared thermography coupling allowed us to establish a link between the contraction - expansion cycles observed and daily thermal variations: the cycles of contraction (crack closure) occur between 3:00 p.m. and 8:00 a.m. and are associated with cooling, whereas the opposite is true for the expansion cycles (crack opening). In addition, in the case of experiment (i), we observe a delay of about 40 minutes between the time when surface temperatures are minimum and the maximum closure of the crack (-5.33 +/- 0.01 mm), which occurs a little before 8:00 a.m. Concerning the thermal behavior of the exfoliation sheets, the experiments (i) and (ii) show that the exfoliation sheets are almost always colder than surrounding stable areas, except during the hottest hours of the day when the temperatures are similar. At the end of the night, the temperature deviation between an exfoliation sheet and a stable part can reach 5 to 6 Celsius degrees (values valid for October) and this thermal contrast makes it possible to remotely detect the presence of exfoliation sheets in a rockwall. This result was then confirmed by the experiment (iii) which shows that a whole series of exfoliation sheets could be detected at a distance of 1 km, by means of thermal comparisons. Coupled to the LiDAR, infrared thermography can thus be useful for drawing a 3D map of exfoliation sheets in a cliff of several hundred meters high.

  5. Load-Differential Features for Automated Detection of Fatigue Cracks Using Guided Waves (Preprint)

    DTIC Science & Technology

    2011-11-01

    AFRL-RX-WP-TP-2011-4363 LOAD-DIFFERENTIAL FEATURES FOR AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) Jennifer E...AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) 5a. CONTRACT NUMBER FA8650-09-C-5206 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...tensile loads open fatigue cracks and thus enhance their detectability using ultrasonic methods. Here we introduce a class of load-differential methods

  6. Improved method for determining the stress relaxation at the crack tip

    NASA Astrophysics Data System (ADS)

    Grinevich, A. V.; Erasov, V. S.; Avtaev, V. V.

    2017-10-01

    A technique is suggested to determine the stress relaxation at the crack tip during tests of a specimen of a new type at a constant crack opening fixed by a stay bolt. The shape and geometry of the specimen make it possible to set the load and to determine the crack closure force after long-term exposure using the force transducer of a tensile-testing machine. The stress relaxation at the crack tip is determined in a V95pchT2 alloy specimen at elevated temperatures.

  7. Fracture under combined modes in 4340 steel

    NASA Technical Reports Server (NTRS)

    Shah, R. C.

    1974-01-01

    An experimental investigation was conducted to study the interaction of combined modes of loading on crack instability in the presence of the opening and sliding modes of stress intensity factors, the opening and tearing modes of stress intensity factors, and all three modes of stress intensity factors. Through-cracked and surface-cracked flat and round specimens, and round notched bar specimens fabricated from high strength 4340 steel were used for the investigation. The results are evaluated to determine fracture criteria under the combined modes of stress intensity factors for the 4340 steel. These results are compared with the results of other investigators obtained for different materials.

  8. Buckling and postbuckling of size-dependent cracked microbeams based on a modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Akbarzadeh Khorshidi, M.; Shariati, M.

    2017-07-01

    The elastic buckling analysis and the static postbuckling response of the Euler-Bernoulli microbeams containing an open edge crack are studied based on a modified couple stress theory. The cracked section is modeled by a massless elastic rotational spring. This model contains a material length scale parameter and can capture the size effect. The von Kármán nonlinearity is applied to display the postbuckling behavior. Analytical solutions of a critical buckling load and the postbuckling response are presented for simply supported cracked microbeams. This parametric study indicates the effects of the crack location, crack severity, and length scale parameter on the buckling and postbuckling behaviors of cracked microbeams.

  9. Optical enhancement of Au doped ZrO2 thin films by sol-gel dip coating method

    NASA Astrophysics Data System (ADS)

    John Berlin, I.; Joy, K.

    2015-01-01

    Homogeneous and transparent Au doped ZrO2 thin films were prepared by sol-gel dip coating method. The films have mixed phase of tetragonal, monoclinic and face centered cubic with crack free surface. Due to the increase in Au doping concentration many-body interaction occurs between free carriers and ionized impurities causing decrease in optical band gap from 5.72 to 5.40 eV. Localized surface plasmon resonance peak of the Au doped films appeared at 610 nm. Conversion of photons to surface plasmons allows the sub-wavelength manipulation of electromagnetic radiation. Hence the prepared Au doped ZrO2 thin films can be applied in nanoscale photonic devices such as lenses, switches, waveguides etc. Moreover the photoluminescence (PL) intensity of Au doped ZrO2 thin films decrease due to decrease in the radiative recombination, life time of the excitons and suppression of grain growth of ZrO2 with increasing Au dopant.

  10. Calculation for tensile strength and fracture toughness of granite with three kinds of grain sizes using three-point-bending test

    PubMed Central

    Yu, Miao; Wei, Chenhui; Niu, Leilei; Li, Shaohua; Yu, Yongjun

    2018-01-01

    Tensile strength and fracture toughness, important parameters of the rock for engineering applications are difficult to measure. Thus this paper selected three kinds of granite samples (grain sizes = 1.01mm, 2.12mm and 3mm), used the combined experiments of physical and numerical simulation (RFPA-DIP version) to conduct three-point-bending (3-p-b) tests with different notches and introduced the acoustic emission monitor system to analyze the fracture mechanism around the notch tips. To study the effects of grain size on the tensile strength and toughness of rock samples, a modified fracture model was established linking fictitious crack to the grain size so that the microstructure of the specimens and fictitious crack growth can be considered together. The fractal method was introduced to represent microstructure of three kinds of granites and used to determine the length of fictitious crack. It is a simple and novel method to calculate the tensile strength and fracture toughness directly. Finally, the theoretical model was verified by the comparison to the numerical experiments by calculating the nominal strength σn and maximum loads Pmax. PMID:29596422

  11. Calculation for tensile strength and fracture toughness of granite with three kinds of grain sizes using three-point-bending test.

    PubMed

    Yu, Miao; Wei, Chenhui; Niu, Leilei; Li, Shaohua; Yu, Yongjun

    2018-01-01

    Tensile strength and fracture toughness, important parameters of the rock for engineering applications are difficult to measure. Thus this paper selected three kinds of granite samples (grain sizes = 1.01mm, 2.12mm and 3mm), used the combined experiments of physical and numerical simulation (RFPA-DIP version) to conduct three-point-bending (3-p-b) tests with different notches and introduced the acoustic emission monitor system to analyze the fracture mechanism around the notch tips. To study the effects of grain size on the tensile strength and toughness of rock samples, a modified fracture model was established linking fictitious crack to the grain size so that the microstructure of the specimens and fictitious crack growth can be considered together. The fractal method was introduced to represent microstructure of three kinds of granites and used to determine the length of fictitious crack. It is a simple and novel method to calculate the tensile strength and fracture toughness directly. Finally, the theoretical model was verified by the comparison to the numerical experiments by calculating the nominal strength σn and maximum loads Pmax.

  12. On Generating Fatigue Crack Growth Thresholds

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James, Jr.; Forman, Royce G.

    2003-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. These experimental procedures can induce load history effects that result in crack closure. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake or blunt at the crack tip, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor range, Delta K, will increase, as will the crack growth rate. da/dN. A fatigue crack growth threshold test procedure is experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R. The authors have chosen to study a ductile aluminum alloy where the plastic deformations generated during testing may be of the magnitude to impact the crack opening.

  13. Damage Tolerant Repair Techniques for Pressurized Aircraft Fuselages

    DTIC Science & Technology

    1994-01-01

    2 if20 20 offset 50, fatigue GST, GLARE 2 if20 20 static, no fatigue *Unidirectional SP500 carbon/epoxy tape . "* Fatigue load did not initiate a crack...Et value, so this is a reasonable assumption. It further implies zero crack opening under the patch. The Erdogan solution [51 for two collinear...Cr Figure 6. 11. Idealization of patched crack as unfailed ligament between two collinear cracks (after [5, 6)). The Erdogan solution leads to the AK

  14. Damage Tolerant Repair Techniques for Pressurized Aircraft Fuselages

    DTIC Science & Technology

    1994-06-06

    crack patching effectiveness, long cracks ( Erdogan ) 186 Vii Acknowledgments My three years of Ph.D. work would have been impossible without the...fatigue GST, GLARE 2 " " 20 20 static, no fatigue *Unidirectional SP500 carbon/epoxy tape . *Fatigue load did not initiate a crack. The saw cut was...assurnption It further implies zero crack opening under the pat(:r The Erdogan solutior (51 for two Coiinear Ctacks can be expressed as: %A F -. " (621 F

  15. Simplified moment tensor analysis and unified decomposition of acoustic emission source: Application to in situ hydrofracturing test

    NASA Astrophysics Data System (ADS)

    Ohtsu, Masayasu

    1991-04-01

    An application of a moment tensor analysis to acoustic emission (AE) is studied to elucidate crack types and orientations of AE sources. In the analysis, simplified treatment is desirable, because hundreds of AE records are obtained from just one experiment and thus sophisticated treatment is realistically cumbersome. Consequently, a moment tensor inversion based on P wave amplitude is employed to determine six independent tensor components. Selecting only P wave portion from the full-space Green's function of homogeneous and isotropic material, a computer code named SiGMA (simplified Green's functions for the moment tensor analysis) is developed for the AE inversion analysis. To classify crack type and to determine crack orientation from moment tensor components, a unified decomposition of eigenvalues into a double-couple (DC) part, a compensated linear vector dipole (CLVD) part, and an isotropic part is proposed. The aim of the decomposition is to determine the proportion of shear contribution (DC) and tensile contribution (CLVD + isotropic) on AE sources and to classify cracks into a crack type of the dominant motion. Crack orientations determined from eigenvectors are presented as crack-opening vectors for tensile cracks and fault motion vectors for shear cracks, instead of stereonets. The SiGMA inversion and the unified decomposition are applied to synthetic data and AE waveforms detected during an in situ hydrofracturing test. To check the accuracy of the procedure, numerical experiments are performed on the synthetic waveforms, including cases with 10% random noise added. Results show reasonable agreement with assumed crack configurations. Although the maximum error is approximately 10% with respect to the ratios, the differences on crack orientations are less than 7°. AE waveforms detected by eight accelerometers deployed during the hydrofracturing test are analyzed. Crack types and orientations determined are in reasonable agreement with a predicted failure plane from borehole TV observation. The results suggest that tensile cracks are generated first at weak seams and then shear cracks follow on the opened joints.

  16. An autonomous surface discontinuity detection and quantification method by digital image correlation and phase congruency

    NASA Astrophysics Data System (ADS)

    Cinar, A. F.; Barhli, S. M.; Hollis, D.; Flansbjer, M.; Tomlinson, R. A.; Marrow, T. J.; Mostafavi, M.

    2017-09-01

    Digital image correlation has been routinely used to measure full-field displacements in many areas of solid mechanics, including fracture mechanics. Accurate segmentation of the crack path is needed to study its interaction with the microstructure and stress fields, and studies of crack behaviour, such as the effect of closure or residual stress in fatigue, require data on its opening displacement. Such information can be obtained from any digital image correlation analysis of cracked components, but it collection by manual methods is quite onerous, particularly for massive amounts of data. We introduce the novel application of Phase Congruency to detect and quantify cracks and their opening. Unlike other crack detection techniques, Phase Congruency does not rely on adjustable threshold values that require user interaction, and so allows large datasets to be treated autonomously. The accuracy of the Phase Congruency based algorithm in detecting cracks is evaluated and compared with conventional methods such as Heaviside function fitting. As Phase Congruency is a displacement-based method, it does not suffer from the noise intensification to which gradient-based methods (e.g. strain thresholding) are susceptible. Its application is demonstrated to experimental data for cracks in quasi-brittle (Granitic rock) and ductile (Aluminium alloy) materials.

  17. Growth Kinematics of Opening-Mode Fractures

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.; Alzayer, Y.; Laubach, S.; Fall, A.

    2014-12-01

    Fracture aperture is a primary control on flow in fractured reservoirs of low matrix permeability including unconventional oil and gas reservoirs and most geothermal systems. Guided by principles of linear elastic fracture mechanics, fracture aperture is generally assumed to be a linear function of fracture length and elastic material properties. Natural opening-mode fractures with significant preserved aperture are observed in core and outcrop indicative of fracture opening strain accommodated by permanent solution-precipitation creep. Fracture opening may thus be decoupled from length growth if the material effectively weakens after initial elastic fracture growth by either non-elastic deformation processes or changes in elastic properties. To investigate the kinematics of fracture length and aperture growth, we reconstructed the opening history of three opening-mode fractures that are bridged by crack-seal quartz cement in Travis Peak Sandstone of the SFOT-1 well, East Texas. Similar crack-seal cement bridges had been interpreted to form by repeated incremental fracture opening and subsequent precipitation of quartz cement. We imaged crack-seal cement textures for bridges sampled at varying distance from the tips using scanning electron microscope cathodoluminescence, and determined the number and thickness of crack-seal cement increments as a function of position along the fracture length and height. Observed trends in increment number and thickness are consistent with an initial stage of fast fracture propagation relative to aperture growth, followed by a stage of slow propagation and pronounced aperture growth. Consistent with fluid inclusion observations indicative of fracture opening and propagation occurring over 30-40 m.y., we interpret the second phase of pronounced aperture growth to result from fracture opening strain accommodated by solution-precipitation creep and concurrent slow, possibly subcritical, fracture propagation. Similar deformation mechanisms are envisioned to govern fracture growth over shorter timescales in reactive chemical subsurface environments including CO2 reservoirs, organic-rich shales, and geothermal systems.

  18. Crack opening area estimates in pressurized through-wall cracked elbows under bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, C.; Gilles, P.; Pignol, M.

    1997-04-01

    One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area ismore » described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment.« less

  19. Electromagnetic stimulation of the ultrasonic signal for nondestructive detection of the ferromagnetic inclusions and flaws

    NASA Astrophysics Data System (ADS)

    Finkel, Peter

    2007-03-01

    It was recently shown that thermal or optical stimulation can be used to increase sensitivity of the conventional nondestructive ultrasonic detection of the small crack, flaws and inclusions in a ferromagnetic thin-walled parts. We proposed another method based on electromagnetic modulation of the ultrasonic scattered signal from the inclusions or defects. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small cracks near small holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.

  20. Experimental study on the influence of the opening in brick-masonry wall to seismic performance of reinforced concrete frame structures

    NASA Astrophysics Data System (ADS)

    Maidiawati, Tanjung, Jafril; Medriosa, Hamdeni

    2017-10-01

    Reinforced concrete (RC) frame structures with brick-masonry infills are commonly used in developing countries and high-risk seismic area, such as Indonesia. Significant researches have been carried out for studying the seismic performance of RC frame structures with brick-masonry infills. Only few of them focused on effects of the opening in the brick-masonry infill to the seismic performance of the RC frame structures. The presence of opening in brick-masonry infill is often used for placing doors and windows as well, however, it may reduce the seismic performance of the RC frame structure. In the current study, they influence of the opening in brick-masonry infills to the seismic performance RC frame structure will experimentally evaluated. Five of 1/4-scaled single story and single bay RC frame specimens were prepared, i.e. an RC bare frame, a clay brick-masonry infilled RC frame and three of clay brick-masonry infilled RC frame with openings in the brick-masonry infills. The last three specimens were clay brick infilled RC frame with a center opening, clay brick infilled RC frame with two openings used for placing the windows and clay brick infilled RC frame with opening for placing the door. The specimens pushed over by applying the static monotonic lateral load to the upper beam of the RC frame structures. The incremental of the lateral load and the lateral displacement of RC frame's column was recorded during test. The crack propagation and the major cracks were also observed to identify the mechanism failure of specimens. As the results, the opening in the brick-masonry wall controls the failure mechanism, the lateral strength and the stiffness of the overall of infilled RC frame structure. The diagonal shear crack pattern was found on brick-masonry wall without opening, on other hand the different crack patterns were observed on brick-masonry wall with openings. Although the opening in the brick masonry infill reduced the lateral strength and stiffness of the infilled RC frame, it was still stronger and stiffer than the bare frame.

  1. Analysis and Test of Deep Flaws in Thin Sheets of Aluminum and Titanium. Volume 2: Crack Opening Displacement and Stress-Strain Data

    NASA Technical Reports Server (NTRS)

    Finger, R. W.

    1978-01-01

    Static fracture tests were performed on surface flawed specimens of aluminum and titanium alloys. A simulated proof overload cycle was applied prior to all of the cyclic tests. Variables included in each test series were flaw shapes and thickness. Additionally, test temperature was a variable for the aluminum test series. The crack opening displacement and stress-strain data obtained are presented.

  2. The elasticity problem for a thick-walled cylinder containing a circumferential crack

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1983-01-01

    The elasticity problem for a long hollow circular cylinder containing an axisymmetric circumferential crack subjected to general nonaxisymmetric external loads is considered. The problem is formulated in terms of a system of singular integral equations with the Fourier coefficients of the derivative of the crack surface displacement as density functions. The stress intensity factors and the crack opening displacement are calculated for a cylinder under uniform tension, bending by end couples, and self-equilibrating residual stresses.

  3. Crack Resistance of Welded Joints of Pipe Steels of Strength Class K60 of Different Alloying Systems

    NASA Astrophysics Data System (ADS)

    Tabatchikova, T. I.; Tereshchenko, N. A.; Yakovleva, I. L.; Makovetskii, A. N.; Shander, S. V.

    2018-03-01

    The crack resistance of welded joints of pipe steels of strength class K60 and different alloying systems is studied. The parameter of the crack tip opening displacement (CTOD) is shown to be dependent on the size of the austenite grains and on the morphology of bainite in the superheated region of the heat-affected zone of the weld. The crack resistance is shown to be controllable due to optimization of the alloying system.

  4. The elasticity problem for a thick-walled cylinder containing a circumferential crack

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1982-01-01

    The elasticity problem for a long hollow circular cylinder containing an axisymmetric circumferential crack subjected to general nonaxisymmetric external loads is considered. The problem is formulated in terms of a system of singular integral equations with the Fourier coefficients of the derivative of the crack surface displacement as density functions. The stress intensity factors and the crack opening displacement are calculated for a cylinder under uniform tension, bending by end couples, and self-equilibrating residual stresses.

  5. Growth of Small Cracks in Aeroengine Disc Materials.

    DTIC Science & Technology

    1988-06-01

    parameters is given in Figure 4-12. Al though the load required to open the crack (Pop) is the basic measurement in any crack closure study, this measurement...See Section 6.3). The latter observation supports the previous hypothesis of Hicks et al [4.11] that crack closure in these alloys is controlled by...cyclic stress relaxation on the local mean stress can be estimated from the measurements of Lindholm et al [5.21, obtained on the superalloy B1900+Hf

  6. The exploratory behaviour of rats in the hole-board apparatus: Is head-dipping a valid measure of neophilia?

    PubMed Central

    Brown, Gillian R.; Nemes, Christopher

    2008-01-01

    The exploratory behaviour of laboratory rodents is of interest within a number of areas of behavioural pharmacology. However, how best to measure exploratory behaviour in rodents remains a contentious issue. Many unconditioned tests, such as the open field, potentially confound general locomotor activity with exploration. The hole-board apparatus appears to avoid this confound, as head-dipping into holes in the floor is assumed to be a valid measure of the subject's attraction towards novelty (neophilia). This study aimed to investigate whether head-dipping should be considered a valid measure of neophilia by comparing performance of adult male and female Lister hooded rats on the hole-board task (a) over repeated sessions and (b) when novel objects were absent or present underneath the holes. The results show that head-dipping initially decreased across repeated exposures, while time spent in the aversive central area increased. No change in head-dipping was seen in response to objects being placed underneath the holes. Rather than being a measure of neophilia, these results support the hypothesis that head-dipping represents an escape response, which declines as the subject becomes less fearful. These results are compared with previous studies of repeated exposure to other novel environments. PMID:18406075

  7. Locating and characterizing a crack in concrete with diffuse ultrasound: A four-point bending test.

    PubMed

    Larose, Eric; Obermann, Anne; Digulescu, Angela; Planès, Thomas; Chaix, Jean-Francois; Mazerolle, Frédéric; Moreau, Gautier

    2015-07-01

    This paper describes an original imaging technique, named Locadiff, that benefits from the diffuse effect of ultrasound waves in concrete to detect and locate mechanical changes associated with the opening of pre-existing cracks, and/or to the development of diffuse damage at the tip of the crack. After giving a brief overview of the theoretical model to describe the decorrelation of diffuse waveforms induced by a local change, the article introduces the inversion procedure that produces the three dimensional maps of density of changes. These maps are interpreted in terms of mechanical changes, fracture opening, and damage development. In addition, each fracture is characterized by its effective scattering cross section.

  8. Mode I Cohesive Law Characterization of Through-Crack Propagation in a Multidirectional Laminate

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew C.; Davila, Carlos G.; Leone, Frank A.; Awerbuch, Jonathan; Tan, Tein-Min

    2014-01-01

    A method is proposed and assessed for the experimental characterization of through-the-thickness crack propagation in multidirectional composite laminates with a cohesive law. The fracture toughness and crack opening displacement are measured and used to determine a cohesive law. Two methods of computing fracture toughness are assessed and compared. While previously proposed cohesive characterizations based on the R-curve exhibit size effects, the proposed approach results in a cohesive law that is a material property. The compact tension specimen configuration is used to propagate damage while load and full-field displacements are recorded. These measurements are used to compute the fracture toughness and crack opening displacement from which the cohesive law is characterized. The experimental results show that a steady-state fracture toughness is not reached. However, the proposed method extrapolates to steady-state and is demonstrated capable of predicting the structural behavior of geometrically-scaled specimens.

  9. Eddy current probe response to open and closed surface flaws

    NASA Technical Reports Server (NTRS)

    Auld, B. A.; Muennemann, F.; Winslow, D. K.

    1981-01-01

    A general analysis of eddy current response to certain types of open and closed surface flaws is presented for both standard low-frequency and ferromagnetic-resonance (FMR) probes. It is shown analytically that for two-dimensional and three-dimensional surface flaws interrogated by a uniform probe field, the crack opening sensitivity increases with the operating frequency of the probe, this behavior being due to the Faraday induction effect. Experiments with low-frequency probes operating at or below 1 MHz and with the FMR probe operating at approximately 1000 MHz confirm this increase of the crack mouth opening displacement for practical situations where the probe field is not uniform in the vicinity of the flaw.

  10. Modeling Transverse Cracking in Laminates With a Single Layer of Elements Per Ply

    NASA Technical Reports Server (NTRS)

    Van Der Meer, Frans P.; Davila, Carlos G.

    2012-01-01

    The objective of the present paper is to investigate the ability of mesolevel X-FEM models with a single layer of elements per ply to capture accurately all aspects of matrix cracking. In particular, we examine whether the model can predict the insitu ply thickness effect on crack initiation and propagation, the crack density as a function of strain, the strain for crack saturation, and the interaction between delamination and transverse cracks. Results reveal that the simplified model does not capture correctly the shear-lag relaxation of the stress field on either side of a crack, which leads to an overprediction of the crack density. It is also shown, however, that after onset of delamination many of the inserted matrix cracks close again, and that the density of open cracks becomes similar to the density predicted by the detailed model. The degree to which the spurious cracks affect the global response is quantified and the reliability of the mesolevel approach with a single layer of elements per ply is discussed.

  11. Measurement and analysis of critical crack tip processes during fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J.; Dexter, R. J.

    1985-01-01

    The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied.

  12. Recent advances in the modelling of crack growth under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Dekoning, A. U.; Tenhoeve, H. J.; Henriksen, T. K.

    1994-01-01

    Fatigue crack growth associated with cyclic (secondary) plastic flow near a crack front is modelled using an incremental formulation. A new description of threshold behaviour under small load cycles is included. Quasi-static crack extension under high load excursions is described using an incremental formulation of the R-(crack growth resistance)- curve concept. The integration of the equations is discussed. For constant amplitude load cycles the results will be compared with existing crack growth laws. It will be shown that the model also properly describes interaction effects of fatigue crack growth and quasi-static crack extension. To evaluate the more general applicability the model is included in the NASGRO computer code for damage tolerance analysis. For this purpose the NASGRO program was provided with the CORPUS and the STRIP-YIELD models for computation of the crack opening load levels. The implementation is discussed and recent results of the verification are presented.

  13. Representing Matrix Cracks Through Decomposition of the Deformation Gradient Tensor in Continuum Damage Mechanics Methods

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.

    2015-01-01

    A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.

  14. Mars Odyssey All Stars: Cerberus Crack

    NASA Image and Video Library

    2010-12-09

    Geological faulting has opened cracks in the Cerberus region that slice through flat plains and mesas alike. This image is part of an All Star set marking the occasion of NASA Mars Odyssey as the longest-working Mars spacecraft in history.

  15. Cracking and debonding of a thin fiber reinforced concrete overlay.

    DOT National Transportation Integrated Search

    2017-04-01

    Previous field studies suggested that macro-fibers incorporated in thin overlay pavements will result in reduced crack opening widths, vertical deflections, and debonding rates compared to that of unreinforced overlays. A simple finite element (FE) m...

  16. Detection and monitoring of surface micro-cracks by PPP-BOTDA.

    PubMed

    Meng, Dewei; Ansari, Farhad; Feng, Xin

    2015-06-01

    Appearance of micrometer size surface cracks is common in structural elements such as welded connections, beams, and gusset plates in bridges. Brillouin scattering-based sensors are capable of making distributed strain measurements. Pre-pump-pulse Brillouin optical time domain analysis (PPP-BOTDA) provides a centimeter-level spatial resolution, which facilitates detection and monitoring of the cracks. In the work described here, in addition to the shift in Brillouin frequency (distributed strains), change in the Brillouin gain spectrum (BGS) width is investigated for the detection and monitoring of surface micro-cracks. A theoretical analysis was undertaken in order to verify the rationality of the proposed method. The theoretical approach involved simulation of strain within a segment of the optical fiber traversing a crack and use of the simulated strain distribution in the opto-mechanical relations in order to numerically obtain the change in the BGS. Simulations revealed that the increase in crack opening displacements is associated with increase in BGS width and decrease in its peak power. Experimental results also indicated that the increases in crack opening displacements are accompanied with increases in BGS widths. However, it will be difficult to use the decrease in BGS power peak as another indicator due to practical difficulties in establishing generalized power amplitude in all the experiments. The study indicated that, in combination with the shift in Brillouin frequency, the increase in BGS width will provide a strong tool for detection and monitoring of surface micro-crack growths.

  17. Redistribution of Welding Residual Stresses of Crack Tip Opening Displacement Specimen by Local Compression.

    PubMed

    Kim, Young-Gon; Song, Kuk-Hyun; Lee, Dong-Hoon; Joo, Sung-Min

    2018-03-01

    The demand of crack tip opening displacement (CTOD) test which evaluates fracture toughness of a cracked material is very important to ensure the stability of structure under severe service environment. The validity of the CTOD test result is judged using several criterions of the specification standards. One of them is the artificially generated fatigue pre-crack length inside the specimen. For acceptable CTOD test results, fatigue pre-crack must have a reasonable sharp crack front. The propagation of fatigue crack started from the tip of the machined notch, which might have propagated irregularly due to residual stress field. To overcome this problem, test codes suggest local compression method, reversed bending method and stepwise high-R ratio method to reduce the disparity of residual stress distribution inside the specimen. In this paper, the relation between the degree of local compression and distribution of welding residual stress has been analyzed by finite element analyses in order to determine the amount of effective local compression of the test piece. Analysis results show that initial welding residual stress is dramatically varied three-dimensionally while cutting, notch machining and local compressing due to the change of internal restraint force. From the simulation result, the authors find that there is an optimum amount of local compression to modify regularly for generating fatigue pre-crack propagation. In the case of 0.5% compressions of the model width is the most effective for uniforming residual stress distribution.

  18. Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei

    2018-05-01

    Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.

  19. Ballistic Impact of Braided Composites with a Soft Projectile

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw K.; Xie, Ming; Braley, Mike

    2002-01-01

    Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Failure modes were identified for aluminum plates and for composites plates and half-rings made from triaxial carbon fiber braid having a 0/+/- 60deg architecture. For aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate. For composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/-60deg fiber directions until triangular flaps opened to form a hole. For composite half-rings fabricated with 0deg fibers aligned circumferentially, fiber tensile failure also occurred in the back ply. Cracks first propagated from this site perpendicular the 0deg fibers. The cracks then turned to follow the +/-60deg fibers and 0deg fibers until rectangular flaps opened to form a hole. Damage in the composites was localized near the impact site, while cracks in the aluminum extended to the boundaries.

  20. Do chimpanzees use weight to select hammer tools?

    PubMed

    Schrauf, Cornelia; Call, Josep; Fuwa, Koki; Hirata, Satoshi

    2012-01-01

    The extent to which tool-using animals take into account relevant task parameters is poorly understood. Nut cracking is one of the most complex forms of tool use, the choice of an adequate hammer being a critical aspect in success. Several properties make a hammer suitable for nut cracking, with weight being a key factor in determining the impact of a strike; in general, the greater the weight the fewer strikes required. This study experimentally investigated whether chimpanzees are able to encode the relevance of weight as a property of hammers to crack open nuts. By presenting chimpanzees with three hammers that differed solely in weight, we assessed their ability to relate the weight of the different tools with their effectiveness and thus select the most effective one(s). Our results show that chimpanzees use weight alone in selecting tools to crack open nuts and that experience clearly affects the subjects' attentiveness to the tool properties that are relevant for the task at hand. Chimpanzees can encode the requirements that a nut-cracking tool should meet (in terms of weight) to be effective.

  1. The effect of an overload on the rate of fatigue crack propagation under plane stress conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, H.; McEvily, A.J.

    1995-07-01

    It has been shown that the retardation in the rate of fatigue crack growth following an overload is largely the result of surface-related, plane-stress deformation. In the present article, in order to isolate the plane-stress behavior, the effect of an overload on the subsequent rate of fatigue crack growth of 0.3-mm-thick specimens of 9Cr-1Mo steel has been investigated and compared to results obtained using 6.35-mm-thick specimens. It was found that for the 0.3-mm thickness, as with thicker specimens, two opening load levels were associated with the overload process. The upper opening load is associated with plane-stress deformation in the overloadmore » plastic zone, and this opening process is more clearly observed with thin as compared to thicker specimens. Based upon the determined level of the upper opening load, a semiempirical analysis is developed for calculating the number of delay cycles due to an overload as a function of thickness.« less

  2. Surface faulting along the inland Itozawa normal fault (eastern Japan) and relation to the 2011 Tohoku-oki megathrust earthquake

    NASA Astrophysics Data System (ADS)

    Ferry, Matthieu; Tsutsumi, Hiroyuki; Meghraoui, Mustapha; Toda, Shinji

    2013-04-01

    The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping dominates as well but with some strain localization along two major splays that exhibit 15-20 cm of vertical offset. On both walls, the basal silt unit is vertically deformed by ~0.6 m, similarly to what is observed for the 2011 rupture. Furthermore, the base of said silt unit exhibits indication for secondary faulting prior to the 2011 event and that resemble cracks observed at the present-day surface. This suggests that the Itozawa fault has already ruptured in a similar fashion in the late Pleistocene). Hence, recent activity of the Itozawa fault may be controlled entirely by large to giant earthquakes along the Japan Trench.

  3. Fracture toughness of the nickel-alumina laminates by digital image-correlation technique

    NASA Astrophysics Data System (ADS)

    Mekky, Waleed

    The purpose of this work is to implement the digital image correlation technique (DIC) in composite laminate fracture testing. The latter involves measuring the crack opening displacement (COD) during stable crack propagation and characterizing the strain development in a constrained nickel layer under applied loading. The major challenge to measure the COD of alternated metal/ceramic layers is the elastic-mismatch effect. This leads to oscillating COD measurement. Smoothing the result with built-in modules of commercial software leads to a loss of data accuracy. A least-squares fitting routine for the data output gave acceptable COD profiles. The behavior of a single Ni ligament sandwiched between two Al2O3 layers was determined for two Ni thicknesses (0.125 and 0.25mm). Modeling of the behavior via a modified Bridgman approach for rectangular cross section samples, proved limited as different mechanisms are operating. Nevertheless, the behavior is however captured to a point, but the model underestimates the results vis a vis experimental ones. The fracture-resistance curves for Nickel/Alumina laminates were developed experimentally and modeled via LEFM using the weight function approach and utilizing single-ligament-, and COD-, data. The crack-tip toughness was found to increase with Ni layer thickness due to crack-tip-shielding. The crack-initiation-toughness was estimated from the stress field and the crack-opening-displacement of the main crack.

  4. Thermal regimes in bedrock and open fractures in the Nordnes rockslide, Norway

    NASA Astrophysics Data System (ADS)

    Hvidtfeldt Christiansen, Hanne; Harald Blikra, Lars

    2010-05-01

    The Nordnes rockslide site is located in the arctic part of the periglacial mountain landscape of Northern Norway at 69°30'N. It consists in the upper part of 1-10 m wide and 1-10 m deep open fractures. Extensive displacements measurements using GPS surveys, crackmeters, tiltmeter and lasers establish the intermunicipality monitoring programme, which shows ongoing deformation of the rockslide. In the rather special topographical setting of the open fractures we have during the International Polar Year 2007 to 2009 recorded the thermal regime of the upper part of the bedrock and of the air in the cracks for attempting to determine whether the recorded deformation can be geomorphologically controlled by bedrock surface expansion and contraction and/or by seasonal freezing or even by permafrost, or if only normal gravitational processes control the observed displacements. The upper 40 cm bedrock thermal conditions have been investigated in different exposures to identify the seasonal freezing depth and length, for determination of the influence of potential ice segregation processes causing weathering of the bedrock surfaces. The data show generally that that the bedrock surface is in the -3 to -8C freezing window for 3 to 6 months. Likewise 250 cm deep bedrock thermal monitoring have been carried out in three boreholes during one year at 900 m, 800 m and 625 m asl. extending over the area from the upper part of the unstable area and into the stable area above, for determination of the regional permafrost zone. These results in combination with thermal evidence from other deeper boreholes from the same setting in the same region show that seasonal freezing extends 5-10 m down, and that a potential active layer also is in the order of 5-10 m deep. The air temperatures in the cracks show significant cooling during winter, when the cracks have a thick snow cover, thus demonstrating the potential existence of permafrost in deeper part of the cracks and in the ground just around these. Automatic photography has been used for the last 4 years to study the seasonal snow cover duration and thickness in the open cracks. This shows that a thicker snow cover only develops in mid winter, with maximum amounts of snow in March and April, but also that not all snow melts during summer in the deeper parts of the open cracks. In addition we have found small pockets of ice in closed spaces of the bottom parts of the open crack, indicating the presence of permafrost. The combination of thermal data and the special seasonal variation in the rockslide deformations indicate that most likely refreezing of snow meltwater goes on in the open cracks for a considerable period from late summer, autumn and into the early winter, when the recorded rockslide deformation is largest. In late winter no significant deformation is recorded when the ground is constantly frozen, but there is a significant potential for ice segregation to occur where moisture is present in the rock.

  5. Stable tearing behavior of a thin-sheet material with multiple cracks

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Newman, J. C., Jr.; Sutton, M. A.; Amstutz, B. E.

    1994-01-01

    Fracture tests were conducted on 2.3mm thick, 305mm wide sheets of 2024-T3 aluminum alloy with 1-5 collinear cracks. The cracks were introduced (crack history) into the specimens by three methods: (1) saw cutting; (2) fatigue precracking at a low stress range; and (3) fatigue precracking at a high stress range. For the single crack tests, the initial crack history influenced the stress required for the onset of stable crack growth and the first 10mm of crack growth. The effect on failure stress was about 4 percent or less. For the multiple crack tests, the initial crack history was shown to cause differences of more than 20 percent in the link-up stress and 13 percent in failure stress. An elastic-plastic finite element analysis employing the Crack Tip Opening Angle (CTOA) fracture criterion was used to predict the fracture behavior of the single and multiple crack tests. The numerical predictions were within 7 percent of the observed link-up and failure stress in all the tests.

  6. Deformation mechanics of deep surface flaw cracks

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Nagy, A.; Beissner, R. E.

    1972-01-01

    A combined analytical and experimental program was conducted to determine the deformation characteristics of deep surface cracks in Mode I loading. An approximate plane finite element analysis was performed to make a parameter study on the influence of crack depth, crack geometry, and stress level on plastic zones, crack opening displacement, and back surface dimpling in Fe-3Si steel and 2219-T87 aluminum. Surface replication and profiling techniques were used to examine back surface dimple configurations in 2219-T87 aluminum. Interferometry and holography were used to evaluate the potential of various optical techniques to detect small surface dimples on large surface areas.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nour, Ali, E-mail: ali.nour@polymtl.ca; Hydro Quebec, Montreal, Quebec, H2L 4P5; Massicotte, Bruno

    This study is aimed at proposing a simple analytical model to investigate the post-cracking behaviour of FRC panels, using an arbitrary tension softening, stress crack opening diagram, as the input. A new relationship that links the crack opening to the panel deflection is proposed. Due to the stochastic nature of material properties, the random fibre distribution, and other uncertainties that are involved in concrete mix, this relationship is developed from the analysis of beams having the same thickness using the Monte Carlo simulation (MCS) technique. The softening diagrams obtained from direct tensile tests are used as the input for themore » calculation, in a deterministic way, of the mean load displacement response of round panels. A good agreement is found between the model predictions and the experimental results.« less

  8. The Dugdale model for the compact specimen

    NASA Technical Reports Server (NTRS)

    Mall, S.; Newman, J. C., Jr.

    1983-01-01

    Plastic zone size and crack tip opening displacement (CTOD) equations were developed. Boundary collocation analyses were used to analyze the compact specimen subjected to various loading conditions (pin loads, concentrated forces, and uniform pressure acting on the crack surface). Stress intensity factor and crack surface displacement equations for some of these loadings were developed and used to obtain the Dugdale model. The results from the equations for plastic zone size and CTOD agreed well with numerical values calculated by Terada for crack length to width ratios greater than 0.4.

  9. High-Temperature Intergranular Crack Growth in Martensitic 2-1/4 Cr1Mo Steel,

    DTIC Science & Technology

    1987-01-01

    segregation of sulphur to crack-tip regions. Crack advance appears to occur by discrete jumps when a critical concentration of sulphur is achieved over the...jump-distance. At high stress intensities, reater than 48-55 HPam ,-the mo.e of fracture changes to interranular microvoid coalescence (IGMVC), and is...stze of crack opening displacement (5) at 500C. using 6 K(! - v2 )/20 E, where v - 0.3, 0 - 840 MPs and E = 160 GPa --6) ’ 27 7 Equilibriua concentration

  10. Fractographic Observations on the Mechanism of Fatigue Crack Growth in Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Alderliesten, R. C.; Schijve, J.; Krkoska, M.

    Special load histories are adopted to obtain information about the behavior of the moving crack tip during the increasing and decreasing part of a load cycle. It is associated with the crack opening and closure of the crack tip. Secondly, modern SEM techniques are applied for observations on the morphology of the fractures surfaces of a fatigue crack. Information about the cross section profiles of striations are obtained. Corresponding locations of the upper and the lower fracture surface are also explored in view of the crack extension mechanism. Most experiments are carried out on sheet specimens of aluminum alloys 2024-T3, but 7050-T7451 specimens are also tested in view of a different ductility of the two alloys.

  11. On the lithium dip in the metal poor open cluster NGC 2243

    NASA Astrophysics Data System (ADS)

    François, P.; Pasquini, L.; Biazzo, K.; Bonifacio, P.; Palsa, R.

    2014-05-01

    Lithium is a key element for studying the mixing mechanisms operating in stellar interiors. It can also be used to probe the chemical evolution of the Galaxy and the Big Bang nucleosynthesis. Measuring the abundance of Lithium in stars belonging to Open Clusters (hereafter OC) allows a detailed comparison with stellar evolutionary models. NGC 2243 is particularly interesting thanks to its relative low metallicity ([Fe/H]=-0.54 ± 0.10 dex). We performed a detailed analysis of high-resolution spectra obtained with the multi-object facility FLAMES at the VLT 8.2m telescope. Lithium abundance has been measured in 27 stars. We found a Li dip center of 1.06 M⊙, which is significantly smaller than that observed in solar metallicity and metal-rich clusters. This finding confirms and strengthens the conclusion that the mass of the stars in the Li dip strongly depends on stellar metallicity. The mean Li abundance of the cluster is log n(Li) = 2.70 dex, which is substantially higher than that observed in 47 Tue. We derived an iron abundance of [Fe/H]=-0.54±0.10 dex for NGC 2243, in agreement (within the errors) with previous findings.

  12. Behavioral effects of diazepam in the murine plus-maze: flumazenil antagonism of enhanced head dipping but not the disinhibition of open-arm avoidance.

    PubMed

    Dalvi, A; Rodgers, R J

    1999-04-01

    Although it is widely believed that benzodiazepines reduce anxiety through positive allosteric modulation of the GABA(A)-chloride channel complex, this is not the only mechanism through which agents of this class can modify CNS function. Furthermore, a significant number of reports of apparent flumazenil blockade of diazepam anxiolysis in animal models have paid limited attention to possible intrinsic behavioral actions of the antagonist per se. In the present study, ethological methods were employed to assess in detail the effects of diazepam, flumazenil, and their combination on the behavior of male DBA/2 mice in the elevated plus-maze paradigm. In two experiments, diazepam (1.5 mg/kg) alone reduced open-arm avoidance and increased head dipping, whereas flumazenil (10-40 mg/kg) alone was without significant behavioral effect. However, with the sole exception of head dipping, prior administration of flumazenil (10 and 40 mg/kg) failed to block the behavioral effects of diazepam under present test conditions. These findings imply that the anxiolytic effects of diazepam in the mouse plus-maze are not mediated through flumazenil-sensitive benzodiazepine receptors and that alternate mechanisms must be considered.

  13. ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.

  14. Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part II. Damage modes

    NASA Astrophysics Data System (ADS)

    Parisot, Rodolphe; Forest, Samuel; Pineau, André; Grillon, François; Demonet, Xavier; Mataigne, Jean-Michel

    2004-03-01

    Zinc-based coatings are widely used for protection against corrosion of steel-sheet products in the automotive industry. The objective of the present article is to investigate the damage modes at work in three different microstructures of a zinc coating on an interstitial-free steel substrate under tension, planestrain tension, and expansion loading. Plastic-deformation mechanisms are addressed in the companion article. Two main fracture mechanisms, namely, intergranular cracking and transgranular cleavage fracture, were identified in an untempered cold-rolled coating, a tempered cold-rolled coating, and a recrystallized coating. No fracture at the interface between the steel and zinc coating was observed that could lead to spalling, in the studied zinc alloy. A complex network of cleavage cracks and their interaction with deformation twinning is shown to develop in the material. An extensive quantitative analysis based on systematic image analysis provides the number and cumulative length of cleavage cracks at different strain levels for the three investigated microstructures and three loading conditions. Grain refinement by recrystallization is shown to lead to an improved cracking resistance of the coating. A model for crystallographic cleavage combining the stress component normal to the basal plane and the amount of plastic slip on the basal slip systems is proposed and identified from equibiaxial tension tests and electron backscattered diffraction (EBSD) analysis of the cracked grains. This analysis requires the computation of the nonlinear stress-strain response of each grain using a crystal-plasticity constitutive model. The model is then applied successfully to other loading conditions and is shown to account for the preferred orientations of damaged grains observed in the case of plane-strain tension.

  15. Optical fiber tip interferometer gas pressure sensor based on anti-resonant reflecting guidance mechanism

    NASA Astrophysics Data System (ADS)

    Yang, Y. B.; Wang, D. N.; Xu, Ben; Wang, Z. K.

    2018-05-01

    We propose and demonstrate a gas pressure sensor based on an anti-resonant reflecting guidance (ARRG) mechanism in quartz capillary tube with an open cavity. The device is simple in fabrication by only fusion splicing a segment of capillary tube with single mode fiber. It has compact size, robust structure, convenient mode of operation, and high sensitivity of 4.278 nm/MPa. Moreover, as two Faby-Perot cavities exist in the device, which create the interference spectrum with several distinct resonance dips, a simultaneous gas pressure and temperature detection can be readily achieved by tracing two dip wavelengths. The error in the measurement due to the choice of different resonant dips can be effectively reduced by using the Fourier band pass filtering method.

  16. Matrix crack extension at a frictionally constrained fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvadurai, A.P.S.

    1994-07-01

    The paper presents the application of a boundary element scheme to the study of the behavior of a penny-shaped matrix crack which occurs at an isolated fiber which is frictionally constrained. An incremental technique is used to examine the progression of self similar extension of the matrix crack due to the axial straining of the composite region. The extension of the crack occurs at the attainment of the critical stress intensity factor in the crack opening mode. Iterative techniques are used to determine the extent to crack enlargement and the occurrence of slip and locked regions in the frictional fiber-matrixmore » interface. The studies illustrate the role of fiber-matrix interface friction on the development of stable cracks in such frictionally constrained zones. The methodologies are applied to typical isolated fiber configurations of interest to fragmentation tests.« less

  17. Impact initiation of explosives and propellants via statistical crack mechanics

    NASA Astrophysics Data System (ADS)

    Dienes, J. K.; Zuo, Q. H.; Kershner, J. D.

    2006-06-01

    A statistical approach has been developed for modeling the dynamic response of brittle materials by superimposing the effects of a myriad of microcracks, including opening, shear, growth and coalescence, taking as a starting point the well-established theory of penny-shaped cracks. This paper discusses the general approach, but in particular an application to the sensitivity of explosives and propellants, which often contain brittle constituents. We examine the hypothesis that the intense heating by frictional sliding between the faces of a closed crack during unstable growth can form a hot spot, causing localized melting, ignition, and fast burn of the reactive material adjacent to the crack. Opening and growth of a closed crack due to the pressure of burned gases inside the crack and interactions of adjacent cracks can lead to violent reaction, with detonation as a possible consequence. This approach was used to model a multiple-shock experiment by Mulford et al. [1993. Initiation of preshocked high explosives PBX-9404, PBX-9502, PBX-9501, monitored with in-material magnetic gauging. In: Proceedings of the 10th International Detonation Symposium, pp. 459-467] involving initiation and subsequent quenching of chemical reactions in a slab of PBX 9501 impacted by a two-material flyer plate. We examine the effects of crack orientation and temperature dependence of viscosity of the melt on the response. Numerical results confirm our theoretical finding [Zuo, Q.H., Dienes, J.K., 2005. On the stability of penny-shaped cracks with friction: the five types of brittle behavior. Int. J. Solids Struct. 42, 1309-1326] that crack orientation has a significant effect on brittle behavior, especially under compressive loading where interfacial friction plays an important role. With a reasonable choice of crack orientation and a temperature-dependent viscosity obtained from molecular dynamics calculations, the calculated particle velocities compare well with those measured using embedded velocity gauges.

  18. Stability analysis and backward whirl investigation of cracked rotors with time-varying stiffness

    NASA Astrophysics Data System (ADS)

    AL-Shudeifat, Mohammad A.

    2015-07-01

    The dynamic stability of dynamical systems with time-periodic stiffness is addressed here. Cracked rotor systems with time-periodic stiffness are well-known examples of such systems. Time-varying area moments of inertia at the cracked element cross-section of a cracked rotor have been used to formulate the time-periodic finite element stiffness matrix. The semi-infinite coefficient matrix obtained by applying the harmonic balance (HB) solution to the finite element (FE) equations of motion is employed here to study the dynamic stability of the system. Consequently, the sign of the determinant of a scaled version of a sub-matrix of this semi-infinite coefficient matrix at a finite number of harmonics in the HB solution is found to be sufficient for identifying the major unstable zones of the system in the parameter plane. Specifically, it is found that the negative determinant always corresponds to unstable zones in all of the systems considered. This approach is applied to a parametrically excited Mathieu's equation, a two degree-of-freedom linear time-periodic dynamical system, a cracked Jeffcott rotor and a finite element model of the cracked rotor system. Compared to the corresponding results obtained by Floquet's theory, the sign of the determinant of the scaled sub-matrix is found to be an efficient tool for identifying the major unstable zones of the linear time-periodic parametrically excited systems, especially large-scale FE systems. Moreover, it is found that the unstable zones for a FE cracked rotor with an open transverse crack model only appear at the backward whirl. The theoretical and experimental results have been found to agree well for verifying that the open crack model excites the backward whirl amplitudes at the critical backward whirling rotational speeds.

  19. Characterization of crack growth under combined loading

    NASA Technical Reports Server (NTRS)

    Feldman, A.; Smith, F. W.; Holston, A., Jr.

    1977-01-01

    Room-temperature static and cyclic tests were made on 21 aluminum plates in the shape of a 91.4x91.4-cm Maltese cross with 45 deg flaws to develop crack growth and fracture toughness data under mixed-mode conditions. During cyclic testing, it was impossible to maintain a high proportion of shear-mode deformation on the crack tips. Cracks either branched or turned. Under static loading, cracks remained straight if shear stress intensity exceeded normal stress intensity. Mixed-mode crack growth rate data compared reasonably well with published single-mode data, and measured crack displacements agreed with the straight and branched crack analyses. Values of critical strain energy release rate at fracture for pure shear were approximately 50% higher than for pure normal opening, and there was a large reduction in normal stress intensity at fracture in the presence of high shear stress intensity. Net section stresses were well into the inelastic range when fracture occurred under high shear on the cracks.

  20. Investigation on the Microstructure and Ductility-Dip Cracking Susceptibility of the Butt Weld Welded with ENiCrFe-7 Nickel-Base Alloy-Covered Electrodes

    NASA Astrophysics Data System (ADS)

    Qin, Renyao; Wang, Huang; He, Guo

    2015-03-01

    The weld metal of the ENiCrFe-7 nickel-based alloy-covered electrodes was investigated in terms of the microstructure, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility. Besides the dendritic gamma-Ni(Cr,Fe) phase, several types of precipitates dispersed on the austenitic matrix were observed, which were determined to be the Nb-rich MC-type carbides with "Chinese script" morphology and size of approximately 3 to 10 µm, the Mn-rich MO-type oxides with size of approximately 1 to 2 µm, and the spherical Al/Ti-rich oxides with size of less than 1 µm. The discontinuous Cr-rich M23C6-type carbides predominantly precipitate on the grain boundaries, which tend to coarsen during reheating but begin to dissolve above approximately 1273 K (1000 °C). The threshold strain for DDC at each temperature tested shows a certain degree of correlation with the grain boundary carbides. The DDC susceptibility increases sharply as the carbides coarsen in the temperature range of 973 K to 1223 K (700 °C to 950 °C). The growth and dissolution of the carbides during the welding heat cycles deteriorate the grain boundaries and increase the DDC susceptibility. The weld metal exhibits the minimum threshold strain of approximately 2.0 pct at 1323 K (1050 °C) and the DTR less than 873 K (600 °C), suggesting that the ENiCrFe-7—covered electrode has less DDC susceptibility than the ERNiCrFe-7 bare electrode but is comparable with the ERNiCrFe-7A.

  1. Synthesis and characterization of thick PZT films via sol-gel dip coating method

    NASA Astrophysics Data System (ADS)

    Shakeri, Amid; Abdizadeh, Hossein; Golobostanfard, Mohammad Reza

    2014-09-01

    Thick films of lead zirconate titanate (PZT) offer possibilities for micro-electro-mechanical systems such as high frequency ultrasonic transducers. In this paper, crack-free thick films of PZT have been prepared up to 45 μm thickness via modified sol-gel dip coating method. In this procedure, acetic acid-alcoholic based sol is used by applying diethanolamine (DEA) and deionized water as additives. The effects of DEA and water on the crystal structure and surface morphology of the films are investigated. The mechanisms of acetic acid and DEA complexations are introduced by using FTIR spectrometer which illustrates suitable substitution of complexing agents with alkoxide groups. DEA/(Ti + Zr) = 0.5 or water/(Ti + Zr) = 0.5 are determined as the optimum molar ratio of additives, which lead to the formation of almost pure perovskite phase with the tetragonal lattice parameters of ct = 4.16 Ǻ and at = 4.02 Ǻ and a distortion of 2%. Values of remanent polarization and dielectric constant of 7.8 μC cm-2 and 1630 were obtained for 45 μm thick films, respectively.

  2. Experimental and Numerical Analysis of Fracture in 41Cr4 Steel - Issues of the Stationary Cracks

    NASA Astrophysics Data System (ADS)

    Graba, M.

    2018-02-01

    This paper analyzes the process of fracture in 41Cr4 steel on the basis of experimental and numerical data obtained for non-propagating cracks. The author's previous and latest experimental results were used to determine the apparent crack initiation moment and fracture toughness for the material under plane strain conditions. Numerical simulations were carried out to assess changes in the J-integral, the crack tip opening displacement, the size of the plastic region and the distribution of stresses around the crack tip. A complex numerical analysis based on the true stress-strain curve was performed to determine the behavior of 41Cr4 steel under increasing external loads.

  3. Elevated Temperature Crack Propagation

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1994-01-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  4. Three Dimensional Constraint Effects on the Estimated (Delta)CTOD during the Numerical Simulation of Different Fatigue Threshold Testing Techniques

    NASA Technical Reports Server (NTRS)

    Seshadri, Banavara R.; Smith, Stephen W.

    2007-01-01

    Variation in constraint through the thickness of a specimen effects the cyclic crack-tip-opening displacement (DELTA CTOD). DELTA CTOD is a valuable measure of crack growth behavior, indicating closure development, constraint variations and load history effects. Fatigue loading with a continual load reduction was used to simulate the load history associated with fatigue crack growth threshold measurements. The constraint effect on the estimated DELTA CTOD is studied by carrying out three-dimensional elastic-plastic finite element simulations. The analysis involves numerical simulation of different standard fatigue threshold test schemes to determine how each test scheme affects DELTA CTOD. The American Society for Testing and Materials (ASTM) prescribes standard load reduction procedures for threshold testing using either the constant stress ratio (R) or constant maximum stress intensity (K(sub max)) methods. Different specimen types defined in the standard, namely the compact tension, C(T), and middle cracked tension, M(T), specimens were used in this simulation. The threshold simulations were conducted with different initial K(sub max) values to study its effect on estimated DELTA CTOD. During each simulation, the DELTA CTOD was estimated at every load increment during the load reduction procedure. Previous numerical simulation results indicate that the constant R load reduction method generates a plastic wake resulting in remote crack closure during unloading. Upon reloading, this remote contact location was observed to remain in contact well after the crack tip was fully open. The final region to open is located at the point at which the load reduction was initiated and at the free surface of the specimen. However, simulations carried out using the constant Kmax load reduction procedure did not indicate remote crack closure. Previous analysis results using various starting K(sub max) values and different load reduction rates have indicated DELTA CTOD is independent of specimen size. A study of the effect of specimen thickness and geometry on the measured DELTA CTOD for various load reduction procedures and its implication in the estimation of fatigue crack growth threshold values is discussed.

  5. Fracture of ECAP-deformed iron and the role of extrinsic toughening mechanisms

    PubMed Central

    Hohenwarter, A.; Pippan, R.

    2013-01-01

    The fracture behaviour of pure iron deformed by equal-channel angular pressing via route A was examined. The fracture toughness was determined for different specimen orientations and measured in terms of the critical plane strain fracture toughness, KIC, the critical J integral, JIC, and the crack opening displacement for crack initiation, CODi. The results demonstrate that the crack plane orientation has a pronounced effect on the fracture toughness. Different crack plane orientations lead to either crack deflection or delamination, resulting in increased fracture resistance in comparison to one remarkably weak specimen orientation. The relation between the microstructure typical for the applied deformation route and the enormous differences in the fracture toughness depending on the crack plane orientation will be analyzed in this paper. PMID:23645995

  6. Evaluation of high-performance fiber-reinforced concrete for bridge deck connections, closure pours, and joints : final report.

    DOT National Transportation Integrated Search

    2017-01-01

    Connections, closure pours, and joints in bridges are often sources of distress because of cracks and openings. Wide separation facilitates the penetration of harmful solutions that can lead to costly repairs. Cracks are caused by volumetric changes ...

  7. Study of Solidification Cracking in a Transformation-Induced Plasticity-Aided Steel

    NASA Astrophysics Data System (ADS)

    Agarwal, G.; Kumar, A.; Gao, H.; Amirthalingam, M.; Moon, S. C.; Dippenaar, R. J.; Richardson, I. M.; Hermans, M. J. M.

    2018-04-01

    In situ high-temperature laser scanning confocal microscopy is applied to study solidification cracking in a TRIP steel. Solidification cracking was observed in the interdendritic region during the last stage of solidification. Atom probe tomography revealed notable enrichment of phosphorus in the last remaining liquid. Phase field simulations also confirm phosphorus enrichment leading to severe undercooling of more than 160 K in the interdendritic region. In the presence of tensile stress, an opening at the interdendritic region is difficult to fill with the remaining liquid due to low permeability and high viscosity, resulting in solidification cracking.

  8. Fracture analysis of stiffened panels under biaxial loading with widespread cracking

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Dawicke, D. S.

    1995-01-01

    An elastic-plastic finite-element analysis with a critical crack-tip-opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various number of stiffeners were compared with test data, whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.

  9. Fracture analysis of stiffened panels under biaxial loading with widespread cracking

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1995-01-01

    An elastic-plastic finite-element analysis with a critical crack-tip opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various numbers of stiffeners were compared with test data whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.

  10. Continuum Damage Mechanics Models for the Analysis of Progressive Failure in Open-Hole Tension Laminates

    NASA Technical Reports Server (NTRS)

    Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.

    2011-01-01

    The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.

  11. Two distinct superconducting phases in LiFeAs

    PubMed Central

    Nag, P. K.; Schlegel, R.; Baumann, D.; Grafe, H.-J.; Beck, R.; Wurmehl, S.; Büchner, B.; Hess, C.

    2016-01-01

    A non-trivial temperature evolution of superconductivity including a temperature-induced phase transition between two superconducting phases or even a time-reversal symmetry breaking order parameter is in principle expected in multiband superconductors such as iron-pnictides. Here we present scanning tunnelling spectroscopy data of LiFeAs which reveal two distinct superconducting phases: at = 18 K a partial superconducting gap opens, evidenced by subtle, yet clear features in the tunnelling spectra, i.e. particle-hole symmetric coherence peak and dip-hump structures. At Tc = 16 K, these features substantiate dramatically and become characteristic of full superconductivity. Remarkably, the distance between the dip-hump structures and the coherence peaks remains practically constant in the whole temperature regimeT ≤ . This rules out the connection of the dip-hump structures to an antiferromagnetic spin resonance. PMID:27297474

  12. Experimental simulation of frost wedging-induced crack propagation in alpine rockwall

    NASA Astrophysics Data System (ADS)

    Jia, Hailiang; Leith, Kerry; Krautblatter, Michael

    2016-04-01

    Frost wedging is widely presumed to be the principal mechanism responsible for shattering jointed low-porosity rocks in high alpine rockwalls. The interaction of ice and rock physics regulates the efficacy of frost wedging. In order to better understand temporal aspects of this interaction, we present results of a series of laboratory experiments monitoring crack widening as a result of ice formation in an artificial crack (4mm wide, 80mm deep) cut 20 mm from the end of a rectangular granite block. Our results indicate that i) freezing direction plays a key role in determining the magnitude of crack widening; in short-term (1 day) experiments, maximum crack widening during top-down freezing (associated with 'autumn' conditions) was around 0.11mm, while inside-out freezing (resulting from 'spring' conditions) produced only 0.02 mm of deformation; ii) neither ice, nor water pressure (direct tension and hydraulic fracturing respectively) caused measurable irreversible crack widening during short-term tests, as the calculated maximum stress intensity at the crack tip was less than the fracture toughness of our granite sample; iii) development of ice pressure is closely related to the mechanical properties of the fracture in which it forms, and as such, the interaction of ice and rock is intrinsically dynamic; iv) irreversible crack widening (about 0.03mm) was only observed following a long-term (53 day) experiment representing a simplified transition from autumn to winter conditions. We suggest this is the result of stress corrosion aided by strong opening during freezing, and to a lesser degree by ice segregation up to one week after the initial freezing period, and downward migration of liquid water during the remainder of the test. Our results suggest the fundamental assumption of frost wedging, that rapid freezing from open ends of cracks can seal water inside the crack and thus cause damage through excessive stresses induced by volumetric expansion seems questionable.

  13. Post-cracking characteristics of high performance fiber reinforced cementitious composites

    NASA Astrophysics Data System (ADS)

    Suwannakarn, Supat W.

    The application of high performance fiber reinforced cement composites (HPFRCC) in structural systems depends primarily on the material's tensile response, which is a direct function of fiber and matrix characteristics, the bond between them, and the fiber content or volume fraction. The objective of this dissertation is to evaluate and model the post-cracking behavior of HPFRCC. In particular, it focused on the influential parameters controlling tensile behavior and the variability associated with them. The key parameters considered include: the stress and strain at first cracking, the stress and strain at maximum post-cracking, the shape of the stress-strain or stress-elongation response, the multiple cracking process, the shape of the resistance curve after crack localization, the energy associated with the multiple cracking process, and the stress versus crack opening response of a single crack. Both steel fibers and polymeric fibers, perceived to have the greatest potential for current commercial applications, are considered. The main variables covered include fiber type (Torex, Hooked, PVA, and Spectra) and fiber volume fraction (ranging from 0.75% to 2.0%). An extensive experimental program is carried out using direct tensile tests and stress-versus crack opening displacement tests on notched tensile prisms. The key experimental results were analysed and modeled using simple prediction equations which, combined with a composite mechanics approach, allowed for predicting schematic simplified stress-strain and stress-displacement response curves for use in structural modeling. The experimental data show that specimens reinforced with Torex fibers performs best, follows by Hooked and Spectra fibers, then PVA fibers. Significant variability in key parameters was observed througout suggesting that variability must be studied further. The new information obtained can be used as input for material models for finite element analysis and can provide greater confidence in using the HPFRC composites in structural applications. It also provides a good foundation to integrate these composites in conventional structural analysis and design.

  14. Corrosion-Fatigue Cracking in HY-80 and HY-130 Steels

    DTIC Science & Technology

    2015-01-22

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6355--15-9584 Corrosion- Fatigue Cracking in HY-80 and HY-130 Steels January 22, 2015 P.S...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Corrosion- Fatigue ...including [NaCl] concentration) and load ratio on fatigue crack growth kinetics of HY-80 and HY-130 steels. Fracture mechanics wedge-opening-load

  15. Information technology: opening the box.

    PubMed

    Nussbaum, G M

    1998-09-01

    If you thought managed care was a tough nut to crack, wait until you have to start making decisions about your organization's information technology (IT). Information systems are complex and expensive, they can take years to implement, and, once installed, they need costly and regular upgrades. But for a contemporary clinical organization to function, this technology is as essential as power and water. For many years, information technology was seen as a black box, impenetrable and beyond real understanding. If done with knowledge and care, however, cracking the box opens up possibilities, not ruin.

  16. Desiccation of a Sessile Drop of Blood: Cracks Formation and Delamination

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Brutin, David

    2011-11-01

    The evaporation of drops of biological fluids has been studied since few years du to several applications in medical fields such as medical tests, drug screening, biostabilization... The evaporation of a drop of whole blood leads to the formation of final typical pattern of cracks. Flow motion, adhesion, gelation and fracturation all occur during the evaporation of this complex matter. During the drying, a sol-gel transition develops. The drying kinetics is explained by a simple model of evaporation taking account of the evolution of the gelation front. The system solidifies and when stresses are too important, cracks nucleate. The cracks formation and the structure of the crack pattern are investigated. The initial crack spacing is found in good agreement with the implementation in open geometry of the model of cracks formation induced by evaporation proposed by Allain and Limat. Finally, the drop is still drying after the end of the formation of cracks which leads, like in the situation of colloid suspensions, to the observation of a delamination phenomenon.

  17. Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron X-ray tomographic microscopy.

    PubMed

    Sloof, Willem G; Pei, Ruizhi; McDonald, Samuel A; Fife, Julie L; Shen, Lu; Boatemaa, Linda; Farle, Ann-Sophie; Yan, Kun; Zhang, Xun; van der Zwaag, Sybrand; Lee, Peter D; Withers, Philip J

    2016-03-14

    MAX phase materials are emerging as attractive engineering materials in applications where the material is exposed to severe thermal and mechanical conditions in an oxidative environment. The Ti2AlC MAX phase possesses attractive thermomechanical properties even beyond a temperature of 1000 K. An attractive feature of this material is its capacity for the autonomous healing of cracks when operating at high temperatures. Coupling a specialized thermomechanical setup to a synchrotron X-ray tomographic microscopy endstation at the TOMCAT beamline, we captured the temporal evolution of local crack opening and healing during multiple cracking and autonomous repair cycles at a temperature of 1500 K. For the first time, the rate and position dependence of crack repair in pristine Ti2AlC material and in previously healed cracks has been quantified. Our results demonstrate that healed cracks can have sufficient mechanical integrity to make subsequent cracks form elsewhere upon reloading after healing.

  18. Simultaneous Measurements of Harmonic Waves at Fatigue-Cracked Interfaces

    NASA Astrophysics Data System (ADS)

    Hyunjo, Jeong; Dan, Barnard

    2011-08-01

    Nonlinear harmonic waves generated at cracked interfaces are investigated theoretically and experimentally. A compact tension specimen is fabricated and the amplitude of the transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible, broadband lithium niobate (LiNbO3) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities, which are manifested as harmonics in the power spectrum of the received signal. The first subharmonic f/2 and the second harmonic 2f waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior, a partially closed crack is modeled by planar half interfaces that can account for crack parameters, such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreement with the experimental results.

  19. Intrinsic fatigue crack propagation in aluminum-lithium alloys - The effect of gaseous environments

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1989-01-01

    Gaseous environmental effects on intrinsic fatigue crack growth are significant for the Al-Li-Cu alloy 2090, peak aged. For both moderate Delta K-low R and low Delta K-high R regimes, crack growth rates decrease according to the environment order: purified water vapor, moist air, helium and oxygen. Gaseous environmental effects are pronounced near threshold and are not closure dominated. Here, embrittlement by low levels of H2O (ppm) supports hydrogen embrittlement and suggests that molecular transport controlled cracking, established for high Delta K-low R, is modified near threshold. Localized crack tip reaction sites or high R crack opening shape may enable the strong, environmental effect at low levels of Delta K. Similar crack growth in He and O2 eliminates the contribution of surface films to fatigue damage in alloy 2090. While 2090 and 7075 exhibit similar environmental trends, the Al-Li-Cu alloy is more resistant to intrinsic corrosion fatigue crack growth.

  20. Effect of a Material Contrast on a Dynamic Rupture: 3-D

    NASA Astrophysics Data System (ADS)

    Harris, R. A.; Day, S. M.

    2003-12-01

    We use numerical simulations of spontaneously propagating ruptures to examine the effect of a material contrast on earthquake dynamics. We specifically study the case of a lateral contrast whereby the fault is the boundary between two different rock-types. This scenario was previously studied in two-dimensions by Harris and Day [BSSA, 1997], and Andrews and Ben-Zion [JGR, 1997], in addition to subsequent 2-D studies, but it has not been known if the two-dimensional results are applicable to the real three-dimensional world. The addition of the third dimension implies a transition from pure mode II (i.e., plane-strain) to mixed-mode crack dynamics, which is more complicated since in mode II the shear and normal stresses are coupled whereas in mode III (i.e., anti-plane strain) they are not coupled. We use a slip-weakening fracture criterion and examine the effect on an earthquake rupture of material contrasts of up to 50 percent across the fault zone. We find a surprisingly good agreement between our earlier 2-D results, and our 3-D results for along-strike propagation. We find that the analytical solution presented in Harris and Day [BSSA, 1997] does an excellent job at predicting the bilateral, along-strike rupture velocities for the three-dimensional situation. In contrast, the along-dip propagation behaves much as expected for a purely mode-III rupture, with the rupture velocities up-dip and down-dip showing the expected symmetries.

  1. Oxidation resistant coatings for ceramic matrix composite components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaubert, V.M.; Stinton, D.P.; Hirschfeld, D.A.

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  2. Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins

    NASA Astrophysics Data System (ADS)

    Al-Sabawi, Mustafa N.

    The limited availability of high value light hydrocarbon feedstocks along with the rise in crude prices has resulted in the international recognition of the vast potential of Canada's oil sands. With the recent expansion of Canadian bitumen production come, however, many technical challenges, one of which is the significant presence of aromatics and cycloparaffins in bitumen-derived feedstocks. In addition to their negative environmental impact, aromatics limit fluid catalytic cracking (FCC) feedstock conversion, decrease the yield and quality of valuable products such as gasoline and middle distillates, increase levels of polyaromatic hydrocarbons prone to form coke on the catalyst, and ultimately compromise the FCC unit performance. Although cycloparaffins do not have such negative impacts, they are precursors of aromatics as they frequently undergo hydrogen transfer reactions. However, cycloparaffin cracking chemistry involves other competing reactions that are complex and need much investigation. This dissertation provides insights and understanding of the fundamentals of the catalytic cracking of cycloparaffins using carefully selected model compounds such as methylcyclohexane (MCH) and decalin. Thermal and catalytic cracking of these cycloparaffins on FCC-type catalysts are carried out using the CREC Riser Simulator under operating conditions similar to those of the industrial FCC units in terms of temperature, reaction time, reactant partial pressure and catalyst-to-hydrocarbon ratio. The crystallite size of the supported zeolites is varied between 0.4 and 0.9 microns, with both activity and selectivity being monitored. Catalytic conversions ranged between 4 to 16 wt% for MCH and between 8 to 27 wt% for decalin. Reaction pathways of cycloparaffins are determined, and these include ring-opening, protolytic cracking, isomerization, hydrogen transfer and transalkylation. The yields and selectivities of over 60 and 140 products, formed during MCH and decalin catalytic conversions respectively, are reported. Using these data, heterogeneous kinetic models accounting for intracrystallite molecular transport, adsorption and thermal and catalytic cracking of both cycloparaffin reactants are established. Results show that undesirable hydrogen transfer reactions are more pronounced and selectively favoured against other reactions at lower reaction temperatures, while the desirable ring-opening and cracking reactions predominate at the higher reaction temperatures. Moreover, results of the present work show that while crystallite size may have an effect on the overall conversion in some situations, there is a definite effect on the selectivity of products obtained during the cracking of MCH and decalin and the cracking of MCH in a mixture with co-reactants such as 1,3,5-triisopropylbenzene. Keywords. cycloparaffins, naphthenes, fluid catalytic cracking, kinetic modeling, Y-zeolites, diffusion, adsorption, ring-opening, hydrogen transfer, catalyst selectivity.

  3. An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Sung; You, Won-Hyo; Yoo, Chang-Hyuk; Kim, Kyung-Su; Kim, Yooil

    2013-12-01

    Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low (-100 °C) and cryogenic (-163 °C) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083- O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

  4. Experimental Study on the Growth, Coalescence and Wrapping Behaviors of 3D Cross-Embedded Flaws Under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao-Ping; Zhang, Jian-Zhi; Wong, Louis Ngai Yuen

    2018-05-01

    The crack initiation, growth, wrapping and coalescence of two 3D pre-existing cross-embedded flaws in PMMA specimens under uniaxial compression are investigated. The stress-strain curves of PMMA specimens with 3D cross-embedded flaws are obtained. The tested PMMA specimens exhibit dominant elastic deformation and eventual brittle failure. The experimental results show that four modes of crack initiation and five modes of crack coalescence are observed. The initiations of oblique secondary crack and anti-wing crack in 3D cracking behaviors are first reported as well as the coalescence of anti-wing cracks. Moreover, two types of crack wrapping are found. Substantial wrapping of petal cracks, which includes open and closed modes of wrapping, appears to be the major difference between 2D and 3D cracking behaviors of pre-existing flaws, which are also first reported. Petal crack wraps symmetrically from either the propagated wing cracks or the coalesced wing cracks. Besides, only limited growth of petal cracks is observed, and ultimate failure of specimens is induced by the further growth of the propagated wing crack. The fracture mechanism of the tested PMMA specimens is finally revealed. In addition, the initiation stress and the peak stress versus the geometry of two 3D pre-existing cross-embedded flaws are also investigated in detail.

  5. Fatigue crack closure behavior at high stress ratios

    NASA Technical Reports Server (NTRS)

    Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.

    1988-01-01

    Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.

  6. Microcrack closure in rocks under stress - Direct observation

    NASA Technical Reports Server (NTRS)

    Batzle, M. L.; Simmons, G.; Siegfried, R. W.

    1980-01-01

    Direct observations of the closure of microcracks in rocks under increasing stress are reported. Uniaxial stresses up to 300 bars were applied to untreated and previously heated samples of Westerly granite and Frederick diabase by a small hydraulic press which fit entirely within a scanning electron microscope. Crack closure characteristics are found to depend on crack orientation, with cracks perpendicular to the applied stress closing and those parallel tending to open, as well as crack aspect ratio, crack intersection properties, stress concentrations and surface roughness. Uniaxial and hydrostatic stress measurements are found to be strongly dependent on fracture content as observed by SEM, and the observed hysteresis in strain measurements in the first stress cycles is also related to microscopic processes

  7. Residual Strength Pressure Tests and Nonlinear Analyses of Stringer- and Frame-Stiffened Aluminum Fuselage Panels with Longitudinal Cracks

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.

    1999-01-01

    The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.

  8. Residual Strength Pressure Tests and Nonlinear Analyses of Stringer-and Frame-Stiffened Aluminum Fuselage Panels with Longitudinal Cracks

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.

    1998-01-01

    The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.

  9. Geometrically nonlinear analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Dattaguru, B.; Everett, R. A., Jr.; Whitcomb, J. D.; Johnson, W. S.

    1982-01-01

    A geometrically nonlinear finite element analysis of cohesive failure in typical joints is presented. Cracked-lap-shear joints were chosen for analysis. Results obtained from linear and nonlinear analysis show that nonlinear effects, due to large rotations, significantly affect the calculated mode 1, crack opening, and mode 2, inplane shear, strain-energy-release rates. The ratio of the mode 1 to mode 2 strain-energy-relase rates (G1/G2) was found to be strongly affected by he adhesive modulus and the adherend thickness. The ratios between 0.2 and 0.8 can be obtained by varying adherend thickness and using either a single or double cracked-lap-shear specimen configuration. Debond growth rate data, together with the analysis, indicate that mode 1 strain-energy-release rate governs debond growth. Results from the present analysis agree well with experimentally measured joint opening displacements.

  10. A continuous vibration theory for rotors with an open edge crack

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Alireza; Heydari, Mahdi; Behzad, Mehdi

    2014-07-01

    In this paper a new continuous model for flexural vibration of rotors with an open edge crack has been developed. The cracked rotor is considered in the rotating coordinate system attached to it. Therefore, the rotor bending can be decomposed in two perpendicular directions. Two quasi-linear displacement fields are assumed for these two directions and the strain and stress fields are calculated in each direction. Then the final displacement and stress fields are obtained by composing the displacement and stress fields in the two directions. The governing equation of motion for the rotor has been obtained using the Hamilton principle and solved using a modified Galerkin method. The free vibration has been analyzed and the critical speeds have been calculated. Results are compared with the finite element results and an excellent agreement is observed.

  11. Redox non-innocent bis(2,6-diimine-pyridine) ligand-iron complexes as anolytes for flow battery applications.

    PubMed

    Duarte, Gabriel M; Braun, Jason D; Giesbrecht, Patrick K; Herbert, David E

    2017-12-21

    Diiminepyridines are a well-known class of "non-innocent" ligands that confer additional redox activity to coordination complexes beyond metal-centred oxidation/reduction. Here, we demonstrate that metal coordination complexes (MCCs) of diiminepyridine (DIP) ligands with iron are suitable anolytes for redox-flow battery applications, with enhanced capacitance and stability compared with bipyridine analogs, and access to storage of up to 1.6 electron equivalents. Substitution of the ligand is shown to be a key factor in the cycling stability and performance of MCCs based on DIP ligands, opening the door to further optimization.

  12. Tectonic Processes on Europa: Tidal Stresses, Mechanical Response, and Visible Features

    USGS Publications Warehouse

    Greenberg, R.; Geissler, P.; Hoppa, G.; Tufts, B.R.; Durda, D.D.; Pappalardo, R.; Head, J.W.; Greeley, R.; Sullivan, R.; Carr, M.H.

    1998-01-01

    Europa's orbital eccentricity, driven by the resonance with Io and Ganymede, results in "diurnal" tides (3.5-day period) and possibly in nonsynchronous rotation. Both diurnal variation and nonsynchronous rotation can create significant stress fields on Europa's surface, and both effects may produce cracking. Patterns and time sequences of apparent tectonic features on Europa include lineaments that correlate with both sources of stress, if we take into account nonsynchronous rotation, after initial crack formation, by amounts ranging up to several tens of degrees. For example, the crosscutting time sequence of features in the Cadmus and Minos Linea region is consistent with a combined diurnal and nonsynchronous tensile-stress field, as it evolves during tens of degrees of nonsynchronous rotation. Constraints on the rotation rate from comparing Voyager and Galileo images show that significant rotation requires 104yr, but could be fast enough to have allowed significant rotation since the last global resurfacing, even if such resurfacing was as recent as a few million years ago. Once cracking is initiated, diurnal tides work cracks so that they open and close daily. Although the daily effect is small, over 105yr double ridges could plausibly be built along the cracks with sizes and morphologies consistent with observed structures, according to a model in which underlying liquid water fills the open cracks, partially freezes, and is extruded during the daily closing of the cracks. Thus, several lines of observational and theoretical evidence can be integrated if we assume nonsynchronous rotation and the existence of a liquid water layer. ?? 1998 Academic Press.

  13. Compliance measurements of chevron notched four point bend specimen

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony; Bubsey, Raymond; Ghosn, Louis J.

    1994-01-01

    The experimental stress intensity factors for various chevron notched four point bend specimens are presented. The experimental compliance is verified using the analytical solution for a straight through crack four point bend specimen and the boundary integral equation method for one chevron geometry. Excellent agreement is obtained between the experimental and analytical results. In this report, stress intensity factors, loading displacements and crack mouth opening displacements are reported for different crack lengths and different chevron geometries, under four point bend loading condition.

  14. a 2d Model of Ultrasonic Testing for Cracks Near a Nonplanar Surface

    NASA Astrophysics Data System (ADS)

    Westlund, Jonathan; Boström, Anders

    2010-02-01

    2D P-SV elastic wave scattering by a crack near a non-planar surface is investigated. The wave scattering problem is solved in the frequency domain using a combination of the boundary element method (BEM) for the back surface displacement and a Fourier series expansion of the crack opening displacement (COD). The model accounts for the action of the transmitting and receiving ultrasonic contact probes, and the time traces are obtained by applying an inverse temporal Fourier transform.

  15. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  16. Analysis of surface cracks at hole by a 3-D weight function method with stresses from finite element method

    NASA Technical Reports Server (NTRS)

    Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Shivakumar, K. N.; Wu, X. R.

    1995-01-01

    Parallel with the work in Part-1, stress intensity factors for semi-elliptical surface cracks emanating from a circular hole are determined. The 3-D weight function method with the 3D finite element solutions for the uncracked stress distribution as in Part-1 is used for the analysis. Two different loading conditions, i.e. remote tension and wedge loading, are considered for a wide range in geometrical parameters. Both single and double surface cracks are studied and compared with other solutions available in the literature. Typical crack opening displacements are also provided.

  17. Surface faulting along the inland Itozawa normal fault (eastern Japan) and relation to the 2011 Tohoku-oki megathrust earthquake

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Tsutsumi, H.; Meghraoui, M.; Toda, S.

    2012-12-01

    The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping dominates as well but with some strain localization along two major splays that exhibit 15-20 cm of vertical offset. On both walls, the basal silt unit is vertically deformed by ~0.6 m, similarly to what is observed for the 2011 rupture. Furthermore, the base of said silt unit exhibits indication for secondary faulting prior to the 2011 event and that resemble cracks observed at the present-day surface. This suggests that the Itozawa fault has already ruptured in a similar fashion; probably in the late Pleistocene-early Holocene (radiocarbon samples are being processed). Hence, recent activity of the Itozawa fault may be controlled entirely by large to giant earthquakes along the Japan Trench.

  18. Field Investigation of Surface Deformation Induced by the 2016 Meinong Earthquake and its Implications to Regional Geological Structures

    NASA Astrophysics Data System (ADS)

    Yi, De-Cheng; Chuang, Ray Y.; Lin, Ching-Weei

    2017-04-01

    We demonstrate mapping results of a newly-identified active folding-associated fault in southwestern Taiwan, which was triggered by the distant ML 6.6 Meinong earthquake in 2016. The 14.6-km-deep main shock occurred in Meinong at 3:57 (GMT +08) on February 6th while a series of 21-27 km deep aftershocks were induced after 160 seconds in Guanmiao, where is 25km NW away from the epicenter of the main shock. The focal mechanism of the Meinong main shock shows a westward oblique thrust with the fault plane of 275°/42°/17° (strike/dip/rake) but Guanmiao aftershocks show the N-S striking eastward normal movement. The study area locates at an on-going fold-and-thrust belt close to the deformation front of Taiwan orogeny with high rates of convergence, uplift and erosion. The geology of SW Taiwan is characterized by the 3-km-thick mudstones with high fluid pressure underlying the loose sedimentary rocks forming mud diapirs or mud-core anticlines. The significance of the Meinong earthquake is (1) aftershocks are far away from the main shock, and (2) the surface cracks partially distributed systematically along lineaments observed from InSAR, which has never been recognized as geological structures before. This study aims to establish possible kinematic processes of shallow deformation induced by the Meinong earthquake. We mapped surface cracks around the lineaments by using hand-held GPS and measured surface cracks by the compass and vernier. Among 249 kinematic data measured from 244 observed surface cracks and ruptures, the type of deformation was mostly identified as dilation or lateral translation and only 4 data were compressional deformation. The overall surface displacement moved to the northwest and west, consistent with the regional coseismic movement. The opening of the surface cracks range from 0.5 to 105 mm and 85% of them are less than 10 mm. Preseismic deformed features such as failure of the retaining wall were also observed along the western and eastern boundary of the coseismic deformation area, indicating accumulated deformation and repeated structural activity in this area. In addition, we found a series of centimeters to meters long, N-S to N-W striking and eastern-side-down surface ruptures with the 4-19 cm heave distributed along the 4-km-long, nearly N-S striking and range-facing scarp with the 4-12 m height at the west of Guanmiao, where locate between the Chungchou anticline and Guanmiao syncline. We interpret these surface ruptures as a sign of the bending-moment fault associated with folding amplified by seismic energy through fluid-rich mud diapirs. Thus, seismic potential in this region needs to be re-evaluated, and the mechanism of seismic-induced amplification through high fluid pressure medium may play a critical role in assessing earthquake hazards in regions with similar geology to SW Taiwan.

  19. Cracking the Code: Synchronizing Policy and Practice for Performance-Based Learning

    ERIC Educational Resources Information Center

    Patrick, Susan; Sturgis, Chris

    2011-01-01

    Performance-based learning is one of the keys to cracking open the assumptions that undergird the current educational codes, structures, and practices. By finally moving beyond the traditions of a time-based system, greater customized educational services can flourish, preparing more and more students for college and careers. This proposed policy…

  20. 78 FR 73457 - Airworthiness Directives; the Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... frequency eddy current inspections for cracking of the tension tie at BS 760 or 780, as applicable, and do... ties, including doing an open-hole high frequency eddy current inspection for cracks, as applicable...) and paragraph (i) of this AD, but not as AMOCs for the high frequency eddy current inspections...

  1. Analysis of mixed-mode crack propagation using the boundary integral method

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Ghosn, L. J.

    1986-01-01

    Crack propagation in a rotating inner raceway of a high speed roller bearing is analyzed using the boundary integral equation method. The method consists of an edge crack in a plate under tension, upon which varying Hertzian stress fields are superimposed. A computer program for the boundary integral equation method was written using quadratic elements to determine the stress and displacement fields for discrete roller positions. Mode I and Mode II stress intensity factors and crack extension forces G sub 00 (energy release rate due to tensile opening mode) and G sub r0 (energy release rate due to shear displacement mode) were computed. These calculations permit determination of that crack growth angle for which the change in the crack extension forces is maximum. The crack driving force was found to be the alternating mixed-mode loading that occurs with each passage of the most heavily loaded roller. The crack is predicted to propagate in a step-like fashion alternating between radial and inclined segments, and this pattern was observed experimentally. The maximum changes DeltaG sub 00 and DeltaG sub r0 of the crack extension forces are found to be good measures of the crack propagation rate and direction.

  2. 29 CFR 1910.124 - General requirements for dipping and coating operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Chemical reaction. (c) What requirements must I follow to recirculate exhaust air into the workplace? (1... inch (18 mm) thick with a quick-opening valve and carrying a pressure of 25 pounds per square inch (1...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, E.; Maier, V.; Nagel, G.

    The break preclusion concept is based on {open_quotes}KTA rules{close_quotes}, {open_quotes}RSK guidelines{close_quotes} and {open_quotes}Rahmenspeziflkation Basissicherheit{close_quotes}. These fundamental rules containing for example requirements on material, design, calculation, manufacturing and testing procedures are explained and the technical realisation is shown by means of examples. The proof of the quality of these piping systems can be executed by means of fracture mechanics calculations by showing that in every case the leakage monitoring system already detect cracks which are clearly smaller than the critical crack. Thus the leak before break behavior and the break preclusion concept is implicitly affirmed. In order to further diminish conservativitiesmore » in the fracture mechanics procedures, specific research projects are executed which are explained in this contribution.« less

  4. A Crack Closure Model and Its Application to Vibrothermography Nondestructive Evaluation

    NASA Astrophysics Data System (ADS)

    Schiefelbein, Bryan Edward

    Vibrothermography nondestructive evaluation (NDE) is in the early stages of research and development, and there exists uncertainty in the fundamental mechanisms and processes by which heat generation occurs. Holland et al. have developed a set of tools which simulate and predict the outcome of a vibrothermography inspection by breaking the inspection into three distinct processes: vibrational excitation, heat generation, and thermal imaging. The stage of vibrothermography which is not well understood is the process by which vibrations are converted to heat at the crack surface. It has been shown that crack closure and closure state impact the resulting heat generation. Despite this, research into the link between partial crack closure and vibrothermography is limited. This work seeks to rectify this gap in knowledge by modeling the behavior of a partially closed crack in response to static external loading and a dynamic vibration. The residual strains left by the plastic wake during fatigue crack growth manifest themselves as contact stresses acting at the crack surface interface. In response to an applied load below the crack opening stress, the crack closure state will evolve, but the crack will remain partially closed. The crack closure model developed in this work is based in linear elastic fracture mechanics (LEFM) and describes the behavior of a partially closed crack in response to a tensile external load and non-uniform closure stress distribution. The model builds on work by Fleck to describe the effective length, crack opening displacement, and crack tip stress field for a partially closed crack. These quantities are solved for by first establishing an equilibrium condition which governs the effective or apparent length of the partially closed crack. The equilibrium condition states that, under any external or crack surface loading, the effective crack tip will be located where the effective stress intensity factor is zero. In LEFM, this is equivalent to saying that the effective crack tip is located where the stress singularity vanishes. If the closure stresses are unknown, the model provides an algorithm with which to solve for the distribution, given measurements of the effective crack length as a function of external load. Within literature, a number of heating mechanisms have been proposed as being dominant in vibrothermography. These include strain hysteresis, adhesion hysteresis, plastic flow, thermoelasticity, and sliding friction. Based on experimental observation and theory, this work eliminates strain hysteresis, thermoelasticity, and plastic flow as plausible heating mechanisms. This leaves friction and adhesion hysteresis as the only plausible mechanisms. Frictional heating is based on the classical Coulomb friction model, while adhesion hysteresis heating comes from irreversibility in surface adhesion. Adhesion hysteresis only satisfies the experimental observation that heating vanishes for high compressive loading if surface roughness and the instability of surface adhesion is considered. By understanding the fundamental behavior of a partially closed crack in response to non-uniform loading, and the link between crack surface motion and heat generation, we are one step closer to a fully predictive vibrothermography heat generation model. Future work is needed to extend the crack closure model to a two-dimensional semi-elliptical surface crack and better understand the distinction between frictional and adhesion heating.

  5. Time lapse photography as an approach to understanding glide avalanche activity

    USGS Publications Warehouse

    Hendrikx, Jordy; Peitzsch, Erich H.; Fagre, Daniel B.

    2012-01-01

    Avalanches resulting from glide cracks are notoriously difficult to forecast, but are a recurring problem for numerous avalanche forecasting programs. In some cases glide cracks are observed to open and then melt away in situ. In other cases, they open and then fail catastrophically as large, full-depth avalanches. Our understanding and management of these phenomena are currently limited. It is thought that an increase in the rate of snow gliding occurs prior to full-depth avalanche activity so frequent observation of glide crack movement can provide an index of instability. During spring 2011 in Glacier National Park, Montana, USA, we began an approach to track glide crack avalanche activity using a time-lapse camera focused on a southwest facing glide crack. This crack melted in-situ without failing as a glide avalanche, while other nearby glide cracks on north through southeast aspects failed. In spring 2012, a camera was aimed at a large and productive glide crack adjacent to the Going to the Sun Road. We captured three unique glide events in the field of view. Unfortunately, all of them either failed very quickly, or during periods of obscured view, so measurements of glide rate could not be obtained. However, we compared the hourly meteorological variables during the period of glide activity to the same variables prior to glide activity. The variables air temperature, relative humidity, air pressure, incoming and reflected long wave radiation, SWE, total precipitation, and snow depth were found to be statistically different for our cases examined. We propose that these are some of the potential precursors for glide avalanche activity, but do urge caution in their use, due to the simple approach and small data set size. It is hoped that by introducing a workable method to easily record glide crack movement, combined with ongoing analysis of the associated meteorological data, we will improve our understanding of when, or if, glide avalanche activity will ensue.

  6. Sol-gel derived ceramic electrolyte films on porous substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kueper, T.W.

    1992-05-01

    A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied tomore » porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.« less

  7. Experimental and numerical study of the failure process and energy mechanisms of rock-like materials containing cross un-persistent joints under uniaxial compression.

    PubMed

    Cao, Rihong; Cao, Ping; Lin, Hang; Fan, Xiang

    2017-01-01

    Joints and fissures in natural rocks have a significant influence on the stability of the rock mass, and it is often necessary to evaluate strength failure and crack evolution behavior. In this paper, based on experimental tests and numerical simulation (PFC2D), the macro-mechanical behavior and energy mechanism of jointed rock-like specimens with cross non-persistent joints under uniaxial loading were investigated. The focus was to study the effect of joint dip angle α and intersection angle γ on the characteristic stress, the coalescence modes and the energy release of jointed rock-like specimens. For specimens with γ = 30° and 45°, the UCS (uniaxial compression strength), CIS (crack initiation stress) and CDiS (critical dilatancy stress) increase as α increases from 0° to 75°. When γ = 60° and 75°, the UCS, CIS and CDiS increase as α increases from 0° to 60° and decrease when α is over 60°. Both the inclination angle α and intersection angle γ have great influence on the failure pattern of pre-cracked specimens. With different α and γ, specimens exhibit 4 kinds of failure patterns. Both the experimental and numerical results show that the energy of a specimen has similar trends with characteristic stress as α increases.

  8. Stress intensity factors for part-elliptical cracks emanating from dimpled rivet holes

    NASA Astrophysics Data System (ADS)

    Wang, Ailun; She, Chongmin; Lin, Gang; Zhou, You; Guo, Wanlin

    2014-11-01

    Detailed investigations on the stress intensity factors (SIFs) for corner cracks emanated from interference fitted dimpled rivet holes are conducted using three-dimensional finite element method. The influences of the crack length a, elliptical shape factor t, far-end stress S and interference magnitude δ on the stress intensity factors are systematically studied. The SIFs for corner cracks emanated from open holes are also investigated for comparisons. An empirical formula of the normalized SIF is proposed by use of the least square method for convenience of the engineering application, which is a function of the crack length a, elliptical shape factor t, far-end stress S, interference magnitude δ and the normalized elliptical centrifugal angle φn. Based on the empirical formula, a crack growth simulation for a rivet filled hole is conducted, which shows a good agreement with the test data.

  9. Stress analysis for structures with surface cracks

    NASA Technical Reports Server (NTRS)

    Bell, J. C.

    1978-01-01

    Two basic forms of analysis, one treating stresses around arbitrarily loaded circular cracks, the other treating stresses due to loads arbitrarily distributed on the surface of a half space, are united by a boundary-point least squares method to obtain analyses for stresses from surface cracks in places or bars. Calculations were for enough cases to show how effects from the crack vary with the depth-to-length ratio, the fractional penetration ratio, the obliquity of the load, and to some extent the fractional span ratio. The results include plots showing stress intensity factors, stress component distributions near the crack, and crack opening displacement patterns. Favorable comparisons are shown with two kinds of independent experiments, but the main method for confirming the results is by wide checking of overall satisfaction of boundary conditions, so that external confirmation is not essential. Principles involved in designing analyses which promote dependability of the results are proposed and illustrated.

  10. Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel

    PubMed Central

    Toribio, Jesús; González, Beatriz; Matos, Juan-Carlos

    2015-01-01

    In this paper, a fracto-metallographic analysis was performed on the cracked specimens of cold drawn pearlitic steel subjected to fatigue tests. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. At the micro-level, the cold drawn pearlitic steel exhibits higher micro-roughness than the hot rolled bar (this is a consequence of the manufacturing process by cold drawing), so that the actual fractured surface in the cold drawn wire is greater than that in the hot rolled bar, due to the fact that the crack deflection events are more frequent and with higher angle in the former (the heavily drawn prestressing steel wire). These findings show the relevant role on the manufacturing process by cold drawing in the fatigue crack propagation in pearlitic steel. PMID:28793647

  11. Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel.

    PubMed

    Toribio, Jesús; González, Beatriz; Matos, Juan-Carlos

    2015-11-04

    In this paper, a fracto-metallographic analysis was performed on the cracked specimens of cold drawn pearlitic steel subjected to fatigue tests. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. At the micro-level, the cold drawn pearlitic steel exhibits higher micro-roughness than the hot rolled bar (this is a consequence of the manufacturing process by cold drawing), so that the actual fractured surface in the cold drawn wire is greater than that in the hot rolled bar, due to the fact that the crack deflection events are more frequent and with higher angle in the former (the heavily drawn prestressing steel wire). These findings show the relevant role on the manufacturing process by cold drawing in the fatigue crack propagation in pearlitic steel.

  12. A shape memory polymer concrete crack closure system activated by electrical current

    NASA Astrophysics Data System (ADS)

    Teall, Oliver; Pilegis, Martins; Davies, Robert; Sweeney, John; Jefferson, Tony; Lark, Robert; Gardner, Diane

    2018-07-01

    The presence of cracks has a negative impact on the durability of concrete by providing paths for corrosive materials to the embedded steel reinforcement. Cracks in concrete can be closed using shape memory polymers (SMP) which produce a compressive stress across the crack faces. This stress has been previously found to enhance the load recovery associated with autogenous self-healing. This paper details the experiments undertaken to incorporate SMP tendons containing polyethylene terephthalate (PET) filaments into reinforced and unreinforced 500 × 100 × 100 mm structural concrete beam samples. These tendons are activated via an electrical supply using a nickel-chrome resistance wire heating system. The set-up, methodology and results of restrained shrinkage stress and crack closure experiments are explained. Crack closure of up to 85% in unreinforced beams and 26%–39% in reinforced beams is measured using crack-mouth opening displacement, microscope and digital image correlation equipment. Conclusions are made as to the effectiveness of the system and its potential for application within industry.

  13. Investigation of wing crack formation with a combined phase-field and experimental approach

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyun; Reber, Jacqueline E.; Hayman, Nicholas W.; Wheeler, Mary F.

    2016-08-01

    Fractures that propagate off of weak slip planes are known as wing cracks and often play important roles in both tectonic deformation and fluid flow across reservoir seals. Previous numerical models have produced the basic kinematics of wing crack openings but generally have not been able to capture fracture geometries seen in nature. Here we present both a phase-field modeling approach and a physical experiment using gelatin for a wing crack formation. By treating the fracture surfaces as diffusive zones instead of as discontinuities, the phase-field model does not require consideration of unpredictable rock properties or stress inhomogeneities around crack tips. It is shown by benchmarking the models with physical experiments that the numerical assumptions in the phase-field approach do not affect the final model predictions of wing crack nucleation and growth. With this study, we demonstrate that it is feasible to implement the formation of wing cracks in large scale phase-field reservoir models.

  14. Electromagnetic pulsed thermography for natural cracks inspection

    NASA Astrophysics Data System (ADS)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-02-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).

  15. 77 FR 3187 - Airworthiness Directives; the Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... of the hatch opening of the overwing emergency exit. This proposed AD would require repetitive... cracking on the lower main sill inner chord of the hatch opening of the overwing emergency exit, which could result in reduced structural integrity of the hatch opening of the overwing emergency exit and...

  16. 49 CFR 178.44 - Specification 3HT seamless steel cylinders for aircraft use.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cylinder. (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate to ensure.... (h) Openings in cylinders and connections (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1) Threads must be clean cut, even, without cracks...

  17. 49 CFR 178.44 - Specification 3HT seamless steel cylinders for aircraft use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cylinder. (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate to ensure.... (h) Openings in cylinders and connections (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1) Threads must be clean cut, even, without cracks...

  18. 49 CFR 178.44 - Specification 3HT seamless steel cylinders for aircraft use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cylinder. (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate to ensure.... (h) Openings in cylinders and connections (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1) Threads must be clean cut, even, without cracks...

  19. Microscopic observations of self-healing products in calcareous fly ash mortars.

    PubMed

    Jóźwiak-Niedźwiedzka, Daria

    2015-01-01

    The results of microstructural characterization of mortars containing fly ash class C (High Calcium Fly Ash) from combustion of lignite are presented. The evaluation of the microstructure was performed using scanning electron microscope, optical, and confocal microscope. The tested beams were bent till the crack and microcracks opening, which were healed during the different curing time. The results showed that the replacement of cement with fly ash class C influenced the process of crack healing. The addition of HCFA, at both 30% and 60%, speeds up the self-healing process in cracks and particularly in micro-cracks. In the research, the completely filling up of the cracks by new phases has not been observed, only the beginning of such process has been noticed. © 2014 Wiley Periodicals, Inc.

  20. Probabilistic Mesomechanical Fatigue Model

    NASA Technical Reports Server (NTRS)

    Tryon, Robert G.

    1997-01-01

    A probabilistic mesomechanical fatigue life model is proposed to link the microstructural material heterogeneities to the statistical scatter in the macrostructural response. The macrostructure is modeled as an ensemble of microelements. Cracks nucleation within the microelements and grow from the microelements to final fracture. Variations of the microelement properties are defined using statistical parameters. A micromechanical slip band decohesion model is used to determine the crack nucleation life and size. A crack tip opening displacement model is used to determine the small crack growth life and size. Paris law is used to determine the long crack growth life. The models are combined in a Monte Carlo simulation to determine the statistical distribution of total fatigue life for the macrostructure. The modeled response is compared to trends in experimental observations from the literature.

  1. Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Khatir, Samir; Dekemele, Kevin; Loccufier, Mia; Khatir, Tawfiq; Abdel Wahab, Magd

    2018-02-01

    In this paper, a technique is presented for the detection and localization of an open crack in beam-like structures using experimentally measured natural frequencies and the Particle Swarm Optimization (PSO) method. The technique considers the variation in local flexibility near the crack. The natural frequencies of a cracked beam are determined experimentally and numerically using the Finite Element Method (FEM). The optimization algorithm is programmed in MATLAB. The algorithm is used to estimate the location and severity of a crack by minimizing the differences between measured and calculated frequencies. The method is verified using experimentally measured data on a cantilever steel beam. The Fourier transform is adopted to improve the frequency resolution. The results demonstrate the good accuracy of the proposed technique.

  2. Openness to Using Non-cigarette Tobacco Products Among U.S. Young Adults

    PubMed Central

    Mays, Darren; Arrazola, René A.; Tworek, Cindy; Rolle, Italia V.; Neff, Linda J.; Portnoy, David B.

    2017-01-01

    Introduction National data indicate that the prevalence of non-cigarette tobacco product use is highest among young adults; however, little is known about their openness to use these products in the future and associated risk factors. This study sought to characterize openness to using non-cigarette tobacco products and associated factors among U.S. young adults. Methods In 2014, National Adult Tobacco Survey data (2012–2013) were analyzed to characterize openness to using the following tobacco products among all young adults aged 18–29 years (N=5,985): cigars; electronic cigarettes (“e-cigarettes”); hookah; pipe tobacco; chew, snuff, or dip; snus; and dissolvables. Among those who were not current users of each product, multivariable logistic regression was used to examine associations between demographics, cigarette smoking status, lifetime use of other non-cigarette products, perceived harm and addictiveness of smoking, and receipt of tobacco industry promotions and openness to using each product. Results Among all young adults, openness to using non-cigarette tobacco products was greatest for hookah (28.2%); e-cigarettes (25.5%); and cigars (19.1%). In multivariable analyses, which included non-current users of each product, non-current ever, current, and former smokers were more likely than never smokers to be open to using most examined products, as were men and adults aged 18–24 years. Receipt of tobacco industry promotions was associated with openness to using e-cigarettes; chew, snuff, or dip; and snus. Conclusions There is substantial openness to trying non-cigarette tobacco products among U.S. young adults. Young adults are an important population to consider for interventions targeting non-cigarette tobacco product use. PMID:26549502

  3. Openness to Using Non-cigarette Tobacco Products Among U.S. Young Adults.

    PubMed

    Mays, Darren; Arrazola, René A; Tworek, Cindy; Rolle, Italia V; Neff, Linda J; Portnoy, David B

    2016-04-01

    National data indicate that the prevalence of non-cigarette tobacco product use is highest among young adults; however, little is known about their openness to use these products in the future and associated risk factors. This study sought to characterize openness to using non-cigarette tobacco products and associated factors among U.S. young adults. In 2014, National Adult Tobacco Survey data (2012-2013) were analyzed to characterize openness to using the following tobacco products among all young adults aged 18-29 years (N=5,985): cigars; electronic cigarettes ("e-cigarettes"); hookah; pipe tobacco; chew, snuff, or dip; snus; and dissolvables. Among those who were not current users of each product, multivariable logistic regression was used to examine associations between demographics, cigarette smoking status, lifetime use of other non-cigarette products, perceived harm and addictiveness of smoking, and receipt of tobacco industry promotions and openness to using each product. Among all young adults, openness to using non-cigarette tobacco products was greatest for hookah (28.2%); e-cigarettes (25.5%); and cigars (19.1%). In multivariable analyses, which included non-current users of each product, non-current ever, current, and former smokers were more likely than never smokers to be open to using most examined products, as were men and adults aged 18-24 years. Receipt of tobacco industry promotions was associated with openness to using e-cigarettes; chew, snuff, or dip; and snus. There is substantial openness to trying non-cigarette tobacco products among U.S. young adults. Young adults are an important population to consider for interventions targeting non-cigarette tobacco product use. Published by Elsevier Inc.

  4. Research on anti crack mechanism of bionic coupling brake disc

    NASA Astrophysics Data System (ADS)

    Shi, Lifeng; Yang, Xiao; Zheng, Lingnan; Wu, Can; Ni, Jing

    2017-09-01

    According to the biological function of fatigue resistance possessed by biology, this study designed a Bionic Coupling Brake Disc (BCBD) which can inhibit crack propagation as the result of improving fatigue property. Thermal stress field of brake disc was calculated under emergency working condition, and circumferential and radial stress field which lead to fatigue failure of brake disc were investigated simultaneously. Results showed that the maximum temperature of surface reached 890°C and the maximum residual tensile stress was 207 Mpa when the initial velocity of vehicle was 200 km/h. Based on the theory of elastic plastic fracture mechanics, the crack opening displacement and the crack front J integrals of the BCBD and traditional brake disc (TBD) with pre-cracking were calculated, and the strength of crack front was compared. Results revealed the growth behavior of fatigue crack located on surface of brake disc, and proved the anti fatigue resistance of BCBD was better, and the strength of crack resistance of BCBD was much stronger than that of TBD. This simulation research provided significant references for optimization and manufacturing of BCBD.

  5. The San Francisco cow; did she or didn’t she?

    USGS Publications Warehouse

    Hill, M.

    1976-01-01

    No one has suggested that Mr. Shafter's nameless cow was the cause of the 1906 earthquake, but she has been the source of as persistent a rumor as Mrs. Murphy's Chicago cow. Since 1906, "the cow that fell in the crack" has been a favorite subject of humorous speculation. large earthquakes have always produced large exaggerations, and, although it is difficult to exaggerate the terror humans feel in an earthquake, many scientists have said that much of what witnesses said they witnessed they did not witness at all. Huge, gaping cracks that legend says open and close in the earth, swallowing whole cities, are among those earthquake features that just aren't featured in earthquakes. True, soil may "snap open and shut," but most earth scientists do not think that the cracks are wide enough or deep enough to accommodate houses. 

  6. Phase-contrast x-ray imaging of microstructure and fatigue-crack propagation in single-crystal nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Husseini, Naji Sami

    Single-crystal nickel-base superalloys are ubiquitous in demanding turbine-blade applications, and they owe their remarkable resilience to their dendritic, hierarchical microstructure and complex composition. During normal operations, they endure rapid low-stress vibrations that may initiate fatigue cracks. This failure mode in the very high-cycle regime is poorly understood, in part due to inadequate testing and diagnostic equipment. Phase-contrast imaging with coherent synchrotron x rays, however, is an emergent technique ideally suited for dynamic processes such as crack initiation and propagation. A specially designed portable ultrasonic-fatigue apparatus, coupled with x-ray radiography, allows real-time, in situ imaging while simulating service conditions. Three contrast mechanisms - absorption, diffraction, and phase contrast - span the immense breadth of microstructural features in superalloys. Absorption contrast is sensitive to composition and crack displacements, and diffraction contrast illuminates dislocation aggregates and crystallographic misorientations. Phase contrast enhances electron-density gradients and is particularly useful for fatigue-crack studies, sensitive to internal crack tips and openings less than one micrometer. Superalloy samples were imaged without external stresses to study microstructure and mosaicity. Maps of rhenium and tungsten concentrations revealed strong segregation to the center of dendrites, as manifested by absorption contrast. Though nominally single crystals, dendrites were misoriented from the bulk by a few degrees, as revealed by diffraction contrast. For dynamic studies of cyclic fatigue, superalloys were mounted in the portable ultrasonic-fatigue apparatus, subjected to a mean tensile stress of ˜50-150 MPa, and cycled in tension to initiate and propagate fatigue cracks. Radiographs were recorded every thousand cycles over the multimillion-cycle lifetime to measure micron-scale crack growth. Crack openings were very small, as determined by absorption and phase contrast, and suggested multiple fracture modes for propagation along {111} planes at room temperature, which was verified by finite element analysis. With increasing temperature, cracks became Mode I (perpendicular to the loading axis) in character and more sensitive to the microstructure. Advancing plastic zones ahead of crack tips altered the crystallographic quality, from which diffraction contrast anticipated initiation and propagation. These studies demonstrate the extreme sensitivity of x-ray radiography for detailed studies of superalloys and crack growth processes.

  7. The Influence of Upward Groundwater between Joints on the Stability and the Behavior of Dip Slope Failures

    NASA Astrophysics Data System (ADS)

    Weng, C. H.; Lin, M. L.; Hsieh, P. C.

    2016-12-01

    In recent years, landslides have attracted much attention in the engineering field in Taiwan. As previous studies, landslides are induced by earthquakes, rainfall, and groundwater. That groundwater flows into upper layer through vertical joints, upward groundwater, erodes the slope and reduces its stability. Nevertheless, in the literature, the impact of upward groundwater to the location of sliding surface and the behaviors of dip slope failure has not be investigated. In this study, physical model tests with water flow inclinometers are used to investigate the kinematics of dip slope failures under various conditions and to identify the failure modes of specimens (Fig. 1). Besides, the mechanics of one landslide case owing to upward groundwater is studied by numerical simulation. In the physical tests, the effects of upward groundwater on slope stability are investigated with different angles of inclinometers, different position of joints on specimens and different locations of upward seepage. The test results suggest that the upward water pressure becomes lower when the number of joints increases. As the water pressure increases to 3.8 times the weight of one block of the specimen, the block will slide. Another, when the specimen is covered by one granular content layer (see Fig. 2), the failure surface tends to develop at the granular content layer, and its kinematics is similar to debris slide; when the clay seam is below of the specimen, the translational slide occurs along the bottom of the blocks. Moreover, one dip slope case, Taiwan's National Highway No. 3 landslide event, are studied by numerical simulation. According to the results, some points are concluded: water pressure makes tension cracks on the top of the vertical joints on weathered sandstones; with anchor attenuation, the sandstone moves downslope, which makes the shear strain of the slope toe region increases (see Fig. 3). If friction angle of the slope decreases, the slide surface occurs along the weak surface, and it develops to the toe of the slope.

  8. Experimental Modeling of Dynamic Shallow Dip-Slip Faulting

    NASA Astrophysics Data System (ADS)

    Uenishi, K.

    2010-12-01

    In our earlier study (AGU 2005, SSJ 2005, JPGU 2006), using a finite difference technique, we have conducted some numerical simulations related to the source dynamics of shallow dip-slip earthquakes, and suggested the possibility of the existence of corner waves, i.e., shear waves that carry concentrated kinematic energy and generate extremely strong particle motions on the hanging wall of a nonvertical fault. In the numerical models, a dip-slip fault is located in a two-dimensional, monolithic linear elastic half space, and the fault plane dips either vertically or 45 degrees. We have investigated the seismic wave field radiated by crack-like rupture of this straight fault. If the fault rupture, initiated at depth, arrests just below or reaches the free surface, four Rayleigh-type pulses are generated: two propagating along the free surface into the opposite directions to the far field, the other two moving back along the ruptured fault surface (interface) downwards into depth. These downward interface pulses may largely control the stopping phase of the dynamic rupture, and in the case the fault plane is inclined, on the hanging wall the interface pulse and the outward-moving Rayleigh surface pulse interact with each other and the corner wave is induced. On the footwall, the ground motion is dominated simply by the weaker Rayleigh pulse propagating along the free surface because of much smaller interaction between this Rayleigh and the interface pulse. The generation of the downward interface pulses and corner wave may play a crucial role in understanding the effects of the geometrical asymmetry on the strong motion induced by shallow dip-slip faulting, but it has not been well recognized so far, partly because those waves are not expected for a fault that is located and ruptures only at depth. However, the seismological recordings of the 1999 Chi-Chi, Taiwan, the 2004 Niigata-ken Chuetsu, Japan, earthquakes as well as a more recent one in Iwate-Miyagi Inland, Japan in 2008, for example, seem to support the need for careful mechanical consideration. In this contribution, utilizing two-dimensional dynamic photoelasticity in conjunction with high speed digital cinematography, we try to perform "fully controlled" laboratory experiments of dip-slip faulting and observe the propagation of interface pulses and corner waves mentioned above. A birefringent material containing a (model) dip-slip fault plane is prepared, and rupture is initiated in that material using an Nd:YAG laser system, and the evolution of time-dependent isochromatic fringe patterns (contours of maximum in-plane shear stress) associated with the dynamic process of shallow dip-slip faulting is recorded. Use of Nd:YAG laser pulses, instead of ignition of explosives, for rupture initiation may enhance the safety of laboratory fracture experiments and enable us to evaluate the energy entering the material (and hence the energy balance in the system) more precisely, possibly in a more controlled way.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ch.; Gao, X. W.; Sladek, J.

    This paper reports our recent research works on crack analysis in continuously non-homogeneous and linear elastic functionally graded materials. A meshless boundary element method is developed for this purpose. Numerical examples are presented and discussed to demonstrate the efficiency and the accuracy of the present numerical method, and to show the effects of the material gradation on the crack-opening-displacements and the stress intensity factors.

  10. Sub-10-micrometer toughening and crack tip toughness of dental enamel.

    PubMed

    Ang, Siang Fung; Schulz, Anja; Pacher Fernandes, Rodrigo; Schneider, Gerold A

    2011-04-01

    In previous studies, enamel showed indications to occlude small cracks in-vivo and exhibited R-curve behaviors for bigger cracks ex-vivo. This study quantifies the crack tip's toughness (K(I0),K(III0)), the crack's closure stress and the cohesive zone size at the crack tip of enamel and investigates the toughening mechanisms near the crack tip down to the length scale of a single enamel crystallite. The crack-opening-displacement (COD) profile of cracks induced by Vickers indents on mature bovine enamel was studied using atomic force microscopy (AFM). The mode I crack tip toughness K(I0) of cracks along enamel rod boundaries and across enamel rods exhibit a similar range of values: K(I0,Ir)=0.5-1.6MPa m(0.5) (based on Irwin's 'near-field' solution) and K(I0,cz)=0.8-1.5MPa m(0.5) (based on the cohesive zone solution of the Dugdale-Muskhelishvili (DM) crack model). The mode III crack tip toughness K(III0,Ir) was computed as 0.02-0.15MPa m(0.5). The crack-closure stress at the crack tip was computed as 163-770 MPa with a cohesive zone length and width 1.6-10.1μm and 24-44 nm utilizing the cohesive zone solution. Toughening elements were observed under AFM and SEM: crack bridging due to protein ligament and hydroxyapatite fibres (micro- and nanometer scale) as well as microcracks were identified. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  11. Geodetic evidence for en echelon dike emplacement and concurrent slow slip during the June 2007 intrusion and eruption at Kīlauea volcano, Hawaii

    USGS Publications Warehouse

    Montgomery-Brown, E. K.; Sinnett, D.K.; Poland, M.; Segall, P.; Orr, T.; Zebker, H.; Miklius, Asta

    2010-01-01

    A series of complex events at Kīlauea Volcano, Hawaii, 17 June to 19 June 2007, began with an intrusion in the upper east rift zone (ERZ) and culminated with a small eruption (1500 m3). Surface deformation due to the intrusion was recorded in unprecedented detail by Global Positioning System (GPS) and tilt networks as well as interferometric synthetic aperture radar (InSAR) data acquired by the ENVISAT and ALOS satellites. A joint nonlinear inversion of GPS, tilt, and InSAR data yields a deflationary source beneath the summit caldera and an ENE-striking uniform-opening dislocation with ~2 m opening, a dip of ∼80° to the south, and extending from the surface to ~2 km depth. This simple model reasonably fits the overall pattern of deformation but significantly misfits data near the western end of an inferred dike-like source. Three more complex dike models are tested that allow for distributed opening including (1) a dike that follows the surface trace of the active rift zone, (2) a dike that follows the symmetry axis of InSAR deformation, and (3) two en echelon dike segments beneath mapped surface cracks and newly formed steaming areas. The en echelon dike model best fits near-field GPS and tilt data. Maximum opening of 2.4 m occurred on the eastern segment beneath the eruptive vent. Although this model represents the best fit to the ERZ data, it still fails to explain data from a coastal tiltmeter and GPS sites on Kīlauea's southwestern flank. The southwest flank GPS sites and the coastal tiltmeter exhibit deformation consistent with observations of previous slow slip events beneath Kīlauea's south flank, but inconsistent with observations of previous intrusions. Slow slip events at Kīlauea and elsewhere are thought to occur in a transition zone between locked and stably sliding zones of a fault. An inversion including slip on a basal decollement improves fit to these data and suggests a maximum of ~15 cm of seaward fault motion, comparable to previous slow-slip events.

  12. A robust signal processing method for quantitative high-cycle fatigue crack monitoring using soft elastomeric capacitor sensors

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki

    2017-04-01

    A large-area electronics (LAE) strain sensor, termed soft elastomeric capacitor (SEC), has shown great promise in fatigue crack monitoring. The SEC is able to monitor strain changes over a mesoscale structural surface and endure large deformations without being damaged under cracking. Previous tests verified that the SEC is able to detect, localize, and monitor fatigue crack activities under low-cycle fatigue loading. In this paper, to examine the SEC's capability of monitoring high-cycle fatigue cracks, a compact specimen is tested under cyclic tension, designed to ensure realistic crack opening sizes representative of those in real steel bridges. To overcome the difficulty of low signal amplitude and relatively high noise level under high-cycle fatigue loading, a robust signal processing method is proposed to convert the measured capacitance time history from the SEC sensor to power spectral densities (PSD) in the frequency domain, such that signal's peak-to-peak amplitude can be extracted at the dominant loading frequency. A crack damage indicator is proposed as the ratio between the square root of the amplitude of PSD and load range. Results show that the crack damage indicator offers consistent indication of crack growth.

  13. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Inamullah; François, Raoul; Castel, Arnaud

    2014-02-15

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a givenmore » opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.« less

  14. Influence of anodizing conditions on generation of internal cracks in anodic porous tin oxide films grown in NaOH electrolyte

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Gawlak, Karolina; Gurgul, Magdalena; Dziurka, Magdalena; Nowak, Marlena; Gilek, Dominika; Sulka, Grzegorz D.

    2018-05-01

    Nanoporous tin oxide layers were synthesized via simple one-step anodic oxidation of a low-purity Sn foil (98.8%) in sodium hydroxide electrolyte. The process of pore formation at the early stage of anodization was discussed on the basis of concepts of oxygen bubble mould effect and viscous flow of oxide. The effect of anodizing conditions on the generation of internal cracks and fractures within the anodic film was investigated in detail. It was confirmed that crack-free tin oxide films can be obtained if the anodization is carried out at the potential of 4 V independently of the electrolyte concentration. On the other hand, the porous anodic film with a totally stacked internal morphology is obtained at the potential of 5 V in 0.1 M NaOH electrolyte. The generation of internal cracks and voids can be attributed to a much lower surface porosity and local trapping of O2 inside the pores of the oxide layer. However, increasing electrolyte concentration allows for obtaining less cracked porous films due to effective and uniform liberation of oxygen bubbles from the channels through completely open pore mouths. Furthermore, it was confirmed that uniformity of the anodic tin oxide layers can be significantly improved by vigorous electrolyte stirring. Finally, we observed that the addition of ethanol to the electrolyte can reduce anodic current density and the oxide growth rate. In consequence, less cracked anodic film can be formed even at the potential of 6 V. The generation of oxygen at the pore bottoms, together with the open pore mouths were found to be critical factors responsible for the anodic formation of crack-free porous tin oxide films.

  15. Effects of Microstructure on Tensile, Charpy Impact, and Crack Tip Opening Displacement Properties of Two API X80 Pipeline Steels

    NASA Astrophysics Data System (ADS)

    Shin, Sang Yong

    2013-06-01

    The effects of microstructure on tensile, Charpy impact, and crack tip opening displacement (CTOD) properties of two API X80 pipeline steels were investigated in this study. Two API X80 pipeline steels consisting of acicular ferrite and granular bainite, and a small amount of hard phases such as martensite and secondary phases have elongated grains along the rolling direction, so that they show different mechanical properties as the specimens' directions change. The 90 deg specimens have high tensile strength due to the low stress concentration on the fine hard phases and the high loads for the deformation of the elongated grains. In contrast, the 30 deg specimens have less elongated grains and larger hard phases such as martensite, with the size of about 3 μm, than the 90 deg specimens. Hence, the 30 deg specimens have low tensile strength because of the high stress concentration on the large hard phases and the low loads to deform grains. In the 90 deg specimen, brittle crack propagation surfaces are even since cracks propagate in a straight line along the elongated grain structure. In the 30 deg specimen, however, brittle crack propagation surfaces are uneven, and secondary cracks are observed, because of the zigzag brittle crack propagation path. In the CTOD properties, the 90 deg specimens have maximum forces of higher magnitude than the 30 deg specimens, because of the elongated grain structure. However, CTODs of the 90 deg specimens are lower than those of the 30 deg specimens because of the low plastic deformation areas by the elongated grains in the 90 deg specimens.

  16. Stress intensity factors and COD in an orthotropic strip

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1980-01-01

    The elasticity problem for an orthotropic strip or a beam with an internal or an edge crack under general loading conditions is considered. The numerical results are given for four basic loading conditions, namely, uniform tension, pure bending, three point bending, and concentrated surface shear loading. For the strip with an edge crack additional results regarding the crack opening displacements are obtained by using the plastic strip model. A critical quantity which is tabulated is the maximum compressive stress in the plane of the crack. It is shown that this stress may easily exceed the yield limit in compression and hence may severely limit the range of application of the plasticity results.

  17. Finite element solutions for crack-tip behavior in small-scale yielding

    NASA Technical Reports Server (NTRS)

    Tracey, D. M.

    1976-01-01

    The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.

  18. Initial Reactivity of Linkages and Monomer Rings in Lignin Pyrolysis Revealed by ReaxFF Molecular Dynamics.

    PubMed

    Zhang, Tingting; Li, Xiaoxia; Guo, Li

    2017-10-24

    The initial conversion pathways of linkages and their linked monomer units in lignin pyrolysis were investigated comprehensively by ReaxFF MD simulations facilitated by the unique VARxMD for reaction analysis. The simulated molecular model contains 15 920 atoms and was constructed on the basis of Adler's softwood lignin model. The simulations uncover the initial conversion ratio of various linkages and their linked aryl monomers. For linkages and their linked monomer aryl rings of α-O-4, β-O-4 and α-O-4 & β-5, the C α /C β ether bond cracking dominates the initial pathway accounting for at least up to 80% of their consumption. For the linkage of β-β & γ-O-α, both the C α -O ether bond cracking and its linked monomer aryl ring opening are equally important. Ring-opening reactions dominate the initial consumption of other 4-O-5, 5-5, β-1, β-2, and β-5 linkages and their linked monomers. The ether bond cracking of C α -O and C β -O occurs at low temperature, and the aryl ring-opening reactions take place at relatively high temperature. The important intermediates leading to the stable aryl ring opening are the phenoxy radicals, the bridged five-membered and three-membered rings and the bridged six-membered and three-membered rings. In addition, the reactivity of a linkage and its monomer aryl ring may be affected by other linkages. The ether bond cracking of α-O-4 and β-O-4 linkages can activate its neighboring linkage or monomer ring through the formed phenoxy radicals as intermediates. The important intermediates revealed in this article should be of help in deepening the understanding of the controlling mechanism for producing aromatic chemicals from lignin pyrolysis.

  19. An Oscillation of the Crack-like Conduit at Nevado del Ruiz Volcano, Colombia, Inferred from Multi-band Analyses of Very Long Period Seismic Events

    NASA Astrophysics Data System (ADS)

    Maeda, Y.; Kumagai, H.; Londono, J. M.; Lopez, C. M.; Castaño, L. M.; Beatriz, B.; García, L.

    2017-12-01

    Nevado del Ruiz is an active volcano in Colombia, which continues eruption activity and has been monitored by 13 broadband and 3 short-period seismic stations. In 2015-2016, a joint Japan-Colombia team installed an automatic event detection and location system based on the amplitude source location (ASL) method. Kumagai et al. (IAVCEI, 2017) indicated the existence of a magma conduit extending from the NW flank to the summit based on ASL analyses of various seismic signals including long-period (LP) and very long period (VLP) events and tremors in a 5-10 Hz frequency band. In this study, we analyzed the VLP events by waveform inversion using eight summit stations in a frequency band of 0.3-0.7 Hz. We selected 14 VLP events from May to December 2016 based on signal-to-noise ratios and simplicity of the waveforms. We assumed a homogeneous P-wave velocity of 3.5 km/s with topography in the calculation of the Green functions. We conducted frequency-domain waveform inversion assuming a tensile crack source and investigated the best location and orientation of the crack by a grid search. The inversion results pointed to a low-angle ( 30°) NW-dipping crack near the top of the conduit (approximately 1 km below the summit). The estimated source time functions displayed two or three cycles of oscillations with the seismic moment of order of 1010-1011 N m. For these 14 events, the ASLs from the 5-10 Hz frequency band were also near the top of the conduit. These results suggest the VLP and high-frequency signals are generated by an oscillation of the crack-like conduit near the summit, which may be triggered by a volume change of magma ascending in the conduit.

  20. Counter-intuitive quasi-periodic motion in the autonomous vibration of cracked Timoshenko beams

    NASA Astrophysics Data System (ADS)

    Brandon, J. A.; Abraham, O. N. L.

    1995-08-01

    The time domain behaviour of a cracked Timoshenko beam is constructed by alternation of two linear models corresponding to the open and closed condition of the crack. It might be expected that a response which is composed of the alternation of two systems with different properties would extinguish the periodicities of the constituent sub-models. The numerical studies presented illustrate the perpetuation of these features without showing any evidence for the creation of periodicities based on a common assumption of the mean period of a bilinear model.

  1. Application of Borehole Geophysical Methods for Assessing Agro-Chemical Flow Paths in Fractured Bedrock Underlying the Black Brook Watershed, Northwestern New Brunswick

    NASA Astrophysics Data System (ADS)

    Desroches, A.; Butler, K.

    2009-05-01

    The upper Saint John River valley represents an economically important agricultural region that suffers from high nitrate levels in the groundwater as a result of fertilizer use. This study focuses on the fractured bedrock aquifer beneath the Black Brook Watershed, near Saint-Andre (Grand Falls), New Brunswick, where prediction of nitrate migration is limited by a lack of knowledge of the bedrock fracture characteristics. Bedrock consists of a fine-grained, siliciclastic unit of the Grog Brook Group gradationally overlain by a carbonate unit assigned to the Matapédia Group. Groundwater flow through the fractured bedrock is expected to be primarily influenced by the distribution and orientation of fractures in these rock units. This study demonstrates the effectiveness of the select suite of borehole-geophysical tools used to identify and describe the fractured bedrock characteristics, and assists in understanding the migration pathways of agrochemical leachate from farm fields. Fracture datasets were acquired from five new vertical boreholes that ranged from 50 to 140 metres in depth, and from three outcrop locations along the new Trans-Canada Highway, approximately two kilometres away. The borehole-geophysical methods used included natural gamma ray (GR), single point resistance (SPR), spontaneous potential (SP), slim-hole optical borehole televiewer (OBI) and acoustic borehole televiewer (ABI). The ABI and OBI tools delivered high-resolution oriented images of the borehole walls, and enabled visualization of fractures in situ, and provided accurate information on the location, orientation, and aperture. The GR, SPR and SP logs identified changes in lithology, bed thickness and conductive fracture zones. Detailed inspection of the borehole televiewer images identified 390 fractures. Equal-area stereographic and rose diagrams of fracture planes have been used to identify three discrete fracture sets: 1) steeply dipping fractures that strike 068o/248o, with fracture subsets dipping roughly 70o to 80o towards the N-NW and S-SE; 2) steeply dipping fractures that strike towards 156o/336o, with fracture subsets dipping roughly 70o to 80o towards the NE and SW; and 3) primary set of moderately dipping fractures that strike 074o/254o and dip roughly 30o to 40o towards the SE. The strike of the steeply dipping fracture sets are oriented roughly perpendicular to each other, reflecting two distinct fracture generation events. The low-angle fractures are most common and correspond to openings along bedding planes that dip roughly 38o towards 164o. This is a result of penetrating only one limb of a fold; presumably a similar set of bedding-plane openings occur along the adjacent limb of the fold, with resultant fracture dips towards the northwest. Fractures exposed in outcrops along the Trans-Canada Highway exhibit a similar orientation distribution to that observed in the boreholes. However, as expected, these exposures show a greater proportion of fractures with dips between 80o and 90o, compared to the vertical boreholes. A Terzaghi fracture probability correction was applied to the boreholes in order to account for this bias. The combined fracture datasets provide valuable information towards understanding groundwater flow and migration pathways of fertilizer leachate into the bedrock aquifer, and will lead to the development of more complex hydrogeological models.

  2. 12. Detail, typical window with fireproof shutters open, northeast rear, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail, typical window with fireproof shutters open, northeast rear, view to southwest, 135mm lens. Note cracks evidencing structural failure. - Benicia Arsenal, Powder Magazine No. 5, Junction of Interstate Highways 680 & 780, Benicia, Solano County, CA

  3. On the measurement of the crack tip stress field as a means of determining Delta K(sub eff) under conditions of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Wallhead, Ian R.; Edwards, Lyndon; Poole, Peter

    1994-01-01

    The optical method of caustics has been successfully extended to enable stress intensity factors as low as 1MPa square root of m to be determined accurately for central fatigue cracks in 2024-T3 aluminium alloy test panels. The feasibility of using this technique to study crack closure, and to determine the effective stress intensity factor range, Delta K(sub eff), has been investigated. Comparisons have been made between the measured values of stress intensity factor, K(sub caus), and corresponding theoretical values, K(sub theo), for a range of fatigue cracks grown under different loading conditions. The values of K(sub caus) and K(sub theo) were in good agreement at maximum stress, where the cracks are fully open, while K(sub caus) exceeded K(sub theo) at minimum stress, due to crack closure. However, the levels of crack closure and values of Delta K(sub eff) obtained could not account for the variations of crack growth rate with loading conditions. It is concluded that the values of Delta K(sub eff), based on caustic measurements in a 1/square root of r stress field well outside the plastic zone, do not fully reflect local conditions which control crack tip behavior.

  4. Automatic quantification framework to detect cracks in teeth

    PubMed Central

    Shah, Hina; Hernandez, Pablo; Budin, Francois; Chittajallu, Deepak; Vimort, Jean-Baptiste; Walters, Rick; Mol, André; Khan, Asma; Paniagua, Beatriz

    2018-01-01

    Studies show that cracked teeth are the third most common cause for tooth loss in industrialized countries. If detected early and accurately, patients can retain their teeth for a longer time. Most cracks are not detected early because of the discontinuous symptoms and lack of good diagnostic tools. Currently used imaging modalities like Cone Beam Computed Tomography (CBCT) and intraoral radiography often have low sensitivity and do not show cracks clearly. This paper introduces a novel method that can detect, quantify, and localize cracks automatically in high resolution CBCT (hr-CBCT) scans of teeth using steerable wavelets and learning methods. These initial results were created using hr-CBCT scans of a set of healthy teeth and of teeth with simulated longitudinal cracks. The cracks were simulated using multiple orientations. The crack detection was trained on the most significant wavelet coefficients at each scale using a bagged classifier of Support Vector Machines. Our results show high discriminative specificity and sensitivity of this method. The framework aims to be automatic, reproducible, and open-source. Future work will focus on the clinical validation of the proposed techniques on different types of cracks ex-vivo. We believe that this work will ultimately lead to improved tracking and detection of cracks allowing for longer lasting healthy teeth. PMID:29769755

  5. Analysis of corner cracks at hole by a 3-D weight function method with stresses from finite element method

    NASA Technical Reports Server (NTRS)

    Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Wu, X. R.; Shivakumar, K. N.

    1995-01-01

    Stress intensity factors for quarter-elliptical corner cracks emanating from a circular hole are determined using a 3-D weight function method combined with a 3-D finite element method. The 3-D finite element method is used to analyze uncracked configuration and provide stress distribution in the region where crack is to occur. Using this stress distribution as input, the 3-D weight function method is used to determine stress intensity factors. Three different loading conditions, i.e. remote tension, remote bending and wedge loading, are considered for a wide range in geometrical parameters. The significance in using 3-D uncracked stress distribution and the difference between single and double corner cracks are studied. Typical crack opening displacements are also provided. Comparisons are made with solutions available in the literature.

  6. Characteristics of laminates with delamination control strips

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Goering, J. C.; Alper, J. M.; Gause, L. W.

    1992-01-01

    Tough resin is needed to resist delamination crack propagation. However, modulus often has to be compromised because it is difficult to retain both high modulus and toughness in a matrix material. A potential solution is to use a hybrid system in which tough resin strips are included within a conventional matrix composite. By adjusting the spacing of the tough resin strips, maximum delamination size can be controlled. Experimental results for impact damage and subsequent damage propagation in laminates containing tough resin strips are reported. Plain adhesive strips and fiber-reinforced tough resin composite strips were used in constructing the hybrid laminates. Test results indicated that size of delamination inflicted by impact was confined between the tough resin strips. As a result, significantly increased residual compressive strength was obtained. Impacted laminates containing tough resin strips were also fatigue tested. It was found that these strips reduced the growth of the impact damage area relative to the growth seen in coupons with no tough resin strips. Damage growth from an open hole under tension fatigue was evaluated using both tough resin strips and glass fiber reinforced tough resin strips. Unreinforced tough resin strips retarded delamination growth from the open hole, but did not stop matrix cracks growing in the fiber direction. Fiber reinforced tough resin strips did not contain axial delamination growth from the open hole. However, they did act as crack arresters, stopping the through-the-thickness tension crack originating from the hole.

  7. Crack - seal veins - what we learnt since the seminal work of John Ramsay

    NASA Astrophysics Data System (ADS)

    Urai, Janos L.; Bons, Paul D.

    2017-04-01

    In the nineteen-eighties, John Ramsay and co-workers have laid the basis for much of our current understanding of tectonic veins, by proposing that tectonic veins accrete in many small increments of cracking and sealing, making the link to cyclic stress and fluid pressure cycles and the earthquake cycle, and by proposing that fibrous veins track the opening trajectory, which has created a toolbox to analyse progressive deformation in rocks. They recognised syntaxial and antitaxial veins, which grow depending on the composition of the wall rock and the vein. Following on these seminal contributions, advances in analysing the microstructure and chemical signature in crack-seal veins made a lot of progress, facilitated by the rapid increase in micro analytical tools like cathodeluminescence and EBSD. Initial modelling of crystal growth in crack- seal veins provided an explanation of how crystals become fibrous without being deformed and explained how fibres sometimes do and sometimes don't follow the opening trajectory. This was followed by numerical models of crystal growth to study the development of crystal facets after larger crack increments, and experimental study of the sealing dynamics of syntaxial veins. These models were initially kinematic, using the ELLE microdynamic simulation package, and more recently incorporating the physics of the growing interface using the Phase Field method, which now allows 3D simulation of both syntaxial and antitaxial veins and can simultaneously compute the evolving permeability of the crack using Lattice Boltzmann techniques. Parallel to these developments we developed an understanding of the strength of the vein cement, and, using Discrete Element Techniques, explored the effects of differences of the strength of the vein and its adhesion to the wall rock on fracture patterns in crack-seal systems in changing stress fields. This presentation will review these developments, showing how the ideas of John Ramsay inspired follow up work leading to a much better understanding of the complex feedback systems between fracture growth, crystal growth and fluid flow in crack-seal systems.

  8. Interference and differentiation of the neighboring surface microcracks in distributed sensing with PPP-BOTDA.

    PubMed

    Meng, Dewei; Ansari, Farhad

    2016-12-01

    Detection of cracks while at their early stages of evolution is important in health monitoring of civil structures. Review of technical literature reveals that single or sparsely distributed multiple cracks can be detected by Brillouin-scattering-based optical fiber sensor systems. In a recent study, a pre-pump-pulse Brillouin optical time-domain analysis (PPP-BOTDA) system was employed for detection of a single microcrack. Specific characteristics of the Brillouin gain spectrum, such as Brillouin frequency shift, and Brillouin gain spectrum width, were utilized in order to detect the formation and growth of microcracks with crack opening displacements as small as 25 μm. In most situations, formations of neighboring microcracks are not detected due to inherent limitations of Brillouin-based systems. In the study reported here, the capability of PPP-BOTDA for detection of two neighboring microcracks was investigated in terms of the proximity of the microcracks with respect to each other, i.e., crack spacing distance, crack opening displacement, and the spatial resolution of the PPP-BOTDA. The extent of the study pertained both to theoretical as well as experimental investigations. The concept of shape index is introduced in order to establish an analytical method for gauging the influence of the neighboring microcracks in detection and microcrack differentiation capabilities of Brillouin-based optical fiber sensor systems.

  9. Variations of a global constraint factor in cracked bodies under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Crews, J. H., Jr.; Bigelow, C. A.; Dawicke, D. S.

    1994-01-01

    Elastic-plastic finite-element analyses were used to calculate stresses and displacements around a crack in finite-thickness plates for an elastic-perfectly plastic material. Middle- and edge-crack specimens were analyzed under tension and bending loads. Specimens were 1.25 to 20 mm thick with various widths and crack lengths. A global constraint factor alpha(sub g), an averaged normal-stress to flow-stress ratio over the plastic region, was defined to simulate three-dimensional (3D) effects in two-dimensional (2D) models. For crack lengths and uncracked ligament lengths greater than four times the thickness, the global constraint factor was found to be nearly a unique function of a normalized stress-intensity factor (related to plastic-zone size to thickness ratio) from small- to large-scale yielding conditions for various specimen types and thickness. For crack length-to-thickness ratios less than four, the global constraint factor was specimen type, crack length and thickness dependent. Using a 2D strip-yield model and the global constraint factors, plastic-zone sizes and crack-tip displacements agreed reasonably well with the 3D analyses. For a thin sheet aluminum alloy, the critical crack-tip-opening angle during stable tearing was found to be independent of specimen type and crack length for crack length-to-thickness ratios greater than 4.

  10. Ontogeny of Manipulative Behavior and Nut-Cracking in Young Tufted Capuchin Monkeys ("Cebus Apella"): A Perception-Action Perspective

    ERIC Educational Resources Information Center

    de Resende, Briseida Dogo; Ottoni, Eduardo B.; Fragaszy, Dorothy M.

    2008-01-01

    How do capuchin monkeys learn to use stones to crack open nuts? Perception-action theory posits that individuals explore producing varying spatial and force relations among objects and surfaces, thereby learning about affordances of such relations and how to produce them. Such learning supports the discovery of tool use. We present longitudinal…

  11. A new exposure model to evaluate smoked illicit drugs in rodents: A study of crack cocaine.

    PubMed

    Hueza, Isis M; Ponce, Fernando; Garcia, Raphael C T; Marcourakis, Tânia; Yonamine, Maurício; Mantovani, Cínthia de C; Kirsten, Thiago B

    2016-01-01

    The use of smoked illicit drugs has spread dramatically, but few studies use proper devices to expose animals to inhalational abused drugs despite the availability of numerous smoking devices that mimic tobacco exposure in rodents. Therefore, the present study developed an inexpensive device to easily expose laboratory animals to smoked drugs. We used crack cocaine as the drug of abuse, and the cocaine plasma levels and the behaviors of animals intoxicated with the crack cocaine were evaluated to prove inhaled drug absorption and systemic activity. We developed an acrylic device with two chambers that were interconnected and separated by a hatch. Three doses of crack (100, 250, or 500 mg), which contained 63.7% cocaine, were burned in a pipe, and the rats were exposed to the smoke for 5 or 10 min (n=5/amount/period). Exposure to the 250-mg dose for 10 min achieved cocaine plasma levels that were similar to those of users (170 ng/mL). Behavioral evaluations were also performed to validate the methodology. Rats (n=10/group) for these evaluations were exposed to 250 mg of crack cocaine or air for 10 min, twice daily, for 28 consecutive days. Open-field evaluations were performed at three different periods throughout the experimental design. Exposed animals exhibited transient anorexia, increased motor activity, and shorter stays in central areas of the open field, which suggests reduced anxiety. Therefore, the developed model effectively exposed animals to crack cocaine, and this model may be useful for the investigation of other inhalational abused drugs. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Natural glide slab avalanches, Glacier National Park, USA: A unique hazard and forecasting challenge

    USGS Publications Warehouse

    Reardon, Blase; Fagre, Daniel B.; Dundas, Mark; Lundy, Chris

    2006-01-01

    In a museum of avalanche phenomena, glide cracks and glide avalanches might be housed in the “strange but true” section. These oddities are uncommon in most snow climates and tend to be isolated to specific terrain features such as bedrock slabs. Many glide cracks never result in avalanches, and when they do, the wide range of time between crack formation and slab failure makes them highly unpredictable. Despite their relative rarity, glide cracks and glide avalanches pose a regular threat and complex forecasting challenge during the annual spring opening of the Going-to-the-Sun Road in Glacier National Park, U.S.A. During the 2006 season, a series of unusual glide cracks delayed snow removal operations by over a week and provided a unique opportunity to record detailed observations of glide avalanches and characterize their occurrence and associated weather conditions. Field observations were from snowpits, crown profiles and where possible, measurements of slab thickness, bed surface slope angle, substrate and other physical characteristics. Weather data were recorded at one SNOTEL site and two automated stations located from 0.6-10 km of observed glide slab avalanches. Nearly half (43%) of the 35 glide slab avalanches recorded were Class D2-2.5, with 15% Class D3-D3.5. The time between glide crack opening and failure ranged from 2 days to over six weeks, and the avalanches occurred in cycles associated with loss of snow water equivalent and spikes in temperature and radiation. We conclude with suggest ions for further study.

  13. Ply cracking in composite laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Youngmyong.

    1989-01-01

    Ply cracking behavior and accompanying stiffness changes in thermoset as well as thermoplastic matrix composites under various loading conditions are investigated. Specific topics addressed are: analytical model development for property degradations due to ply cracking under general in-plane loading; crack initiation and multiplication under static loading; and crack multiplication under cyclic loading. A model was developed to calculate the energy released due to ply cracking in a composite laminate subjected to general in-plane loading. The method is based on the use of a second order polynomial to represent the crack opening displacement and the concept of a through-the-thickness inherent flaw.more » The model is then used in conjunction with linear elastic fracture mechanics to predict the progressive ply cracking as well as first ply cracking. A resistance curve for crack multiplication is proposed as a means of characterizing the resistance to ply cracking in composite laminates. A methodology of utilizing the resistance curve to assess the crack density or overloading is also discussed. The method was applied to the graphite/thermoplastic polyimide composite to predict progressive ply cracking. However, unlike the thermoset matrix composites, a strength model is found to fit the experimental results better than the fracture mechanics based model. A set of closed form equations is also developed to calculate the accompanying stiffness changes due to the ply cracking. The effect of thermal residual stress is included in the analysis. A new method is proposed to characterize transverse ply cracking of symmetric balanced laminates under cyclic loading. The method is based on the concept of a through-the-thickness inherent flaw, the Paris law, and the resistance curve. Only two constants are needed to predict the crack density as a function of fatigue cycles.« less

  14. Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.

    1999-01-01

    The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.

  15. Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.

    1998-01-01

    The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.

  16. A comparison of stress in cracked fibrous tissue specimens with varied crack location, loading, and orientation using finite element analysis.

    PubMed

    Peloquin, John M; Elliott, Dawn M

    2016-04-01

    Cracks in fibrous soft tissue, such as intervertebral disc annulus fibrosus and knee meniscus, cause pain and compromise joint mechanics. A crack concentrates stress at its tip, making further failure and crack extension (fracture) more likely. Ex vivo mechanical testing is an important tool for studying the loading conditions required for crack extension, but prior work has shown that it is difficult to reproduce crack extension. Most prior work used edge crack specimens in uniaxial tension, with the crack 90° to the edge of the specimen. This configuration does not necessarily represent the loading conditions that cause in vivo crack extension. To find a potentially better choice for experiments aiming to reproduce crack extension, we used finite element analysis to compare, in factorial combination, (1) center crack vs. edge crack location, (2) biaxial vs. uniaxial loading, and (3) crack-fiber angles ranging from 0° to 90°. The simulated material was annulus fibrosus fibrocartilage with a single fiber family. We hypothesized that one of the simulated test cases would produce a stronger stress concentration than the commonly used uniaxially loaded 90° crack-fiber angle edge crack case. Stress concentrations were compared between cases in terms of fiber-parallel stress (representing risk of fiber rupture), fiber-perpendicular stress (representing risk of matrix rupture), and fiber shear stress (representing risk of fiber sliding). Fiber-perpendicular stress and fiber shear stress concentrations were greatest in edge crack specimens (of any crack-fiber angle) and center crack specimens with a 90° crack-fiber angle. However, unless the crack is parallel to the fiber direction, these stress components alone are insufficient to cause crack opening and extension. Fiber-parallel stress concentrations were greatest in center crack specimens with a 45° crack-fiber angle, either biaxially or uniaxially loaded. We therefore recommend that the 45° center crack case be tried in future experiments intended to study crack extension by fiber rupture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Kinetic studies of the stress corrosion cracking of D6AC steel

    NASA Technical Reports Server (NTRS)

    Noronha, P. J.

    1975-01-01

    The effect of load interactions on the crack growth velocity of D6AC steel under stress corrosion cracking conditions was determined. The environment was a 3.5 percent salt solution. The modified-wedge opening load specimens were fatigue precracked and subjected to a deadweight loading in creep machines. The effects of load shedding on incubation times and crack growth rates were measured using high-sensitivity compliance measurement techniques. Load shedding results in an incubation time, the length of which depends on the amount of load shed and the baseline stress intensity. The sequence of unloading the specimen also controls the subsequent incubation period. The incubation period is shorter when load shedding passes through zero load than when it does not if the specimen initially had the same baseline stress intensity. The crack growth rates following the incubation period are also different from the steady-state crack growth rate at the operating stress intensity. These data show that the susceptibility of this alloy system to stress corrosion cracking depends on the plane-strain fracture toughness and on the yield strength of the material.

  18. Advances in Structural Integrity Analysis Methods for Aging Metallic Airframe Structures with Local Damage

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Newman, James C., Jr.; Harris, Charles E.; Piascik, Robert S.; Young, Richard D.; Rose, Cheryl A.

    2003-01-01

    Analysis methodologies for predicting fatigue-crack growth from rivet holes in panels subjected to cyclic loads and for predicting the residual strength of aluminum fuselage structures with cracks and subjected to combined internal pressure and mechanical loads are described. The fatigue-crack growth analysis methodology is based on small-crack theory and a plasticity induced crack-closure model, and the effect of a corrosive environment on crack-growth rate is included. The residual strength analysis methodology is based on the critical crack-tip-opening-angle fracture criterion that characterizes the fracture behavior of a material of interest, and a geometric and material nonlinear finite element shell analysis code that performs the structural analysis of the fuselage structure of interest. The methodologies have been verified experimentally for structures ranging from laboratory coupons to full-scale structural components. Analytical and experimental results based on these methodologies are described and compared for laboratory coupons and flat panels, small-scale pressurized shells, and full-scale curved stiffened panels. The residual strength analysis methodology is sufficiently general to include the effects of multiple-site damage on structural behavior.

  19. Electromagnetic pulsed thermography for natural cracks inspection

    PubMed Central

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-01-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF). PMID:28169361

  20. Passive detection and localization of fatigue cracking in aluminum plates using Green's function reconstruction from ambient noise.

    PubMed

    Yang, Yang; Xiao, Li; Qu, Wenzhong; Lu, Ye

    2017-11-01

    Recent theoretical and experimental studies have demonstrated that a local Green's function can be retrieved from the cross-correlation of ambient noise field. This technique can be used to detect fatigue cracking in metallic structures, owing to the fact that the presence of crack can lead to a change in Green's function. This paper presents a method of structural fatigue cracking characterization method by measuring Green's function reconstruction from noise excitation and verifies the feasibility of crack detection in poor noise source distribution. Fatigue cracks usually generate nonlinear effects, in which different wave amplitudes and frequency compositions can cause different nonlinear responses. This study also undertakes analysis of the capacity of the proposed approach to identify fatigue cracking under different noise amplitudes and frequency ranges. Experimental investigations of an aluminum plate are conducted to assess the cross-correlations of received noise between sensor pairs and finally to detect the introduced fatigue crack. A damage index is proposed according to the variation between cross-correlations obtained from the pristine crack closed state and the crack opening-closure state when sufficient noise amplitude is used to generate nonlinearity. A probability distribution map of damage is calculated based on damage indices. The fatigue crack introduced in the aluminum plate is successfully identified and oriented, verifying that a fatigue crack can be detected by reconstructing Green's functions from an imperfect diffuse field in which ambient noise sources exist locally. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Analyses of Buckling and Stable Tearing in Thin-Sheet Materials

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Newman, J. C., Jr.

    1998-01-01

    This paper was to verify the STAGS (general shell, geometric and material nonlinear) code and the critical crack tip opening angle (CTOA) fracture criterion for predicting stable tearing in cracked panels that fail with severe out of plane buckling. Materials considered ranged from brittle to ductile behavior. Test data used in this study are reported elsewhere. The STAGS code was used to model stable tearing using a critical CTOA value that was determined from a cracked panel that was 'restrained' from buckling. ne analysis methodology was then used to predict the influence of buckling on stable tearing and failure loads. Parameters like crack length to specimen width ratio, crack configuration, thickness, and material tensile properties had a significant influence on the buckling behavior of cracked thin sheet materials. Experimental and predicted results showed a varied buckling response for different crack length to sheet thickness ratios because different buckling modes were activated. Effects of material tensile properties and fracture toughness on buckling response were presented. The STAGS code and the CTOA fracture criterion were able to predict the influence of buckling on stable tearing behavior and failure loads on a variety of materials and crack configurations.

  2. Residual Strength Analyses of Riveted Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Newman, J. C., Jr.

    2000-01-01

    The objective of this paper was to analyze the crack-linkup behavior in riveted-stiffened lap-splice joint panels with small multiple-site damage (MSD) cracks at several adjacent rivet holes. Analyses are based on the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. To account for high constraint around a crack front, the "plane strain core" option in STAGS was used. The importance of modeling rivet flexibility with fastener elements that accurately model load transfer across the joint is discussed. Fastener holes are not modeled but rivet connectivity is accounted for by attaching rivets to the sheet on one side of the cracks that simulated both the rivet diameter and MSD cracks. Residual strength analyses made on 2024-T3 alloy (1.6-mm thick) riveted-lap-splice joints with a lead crack and various size MSD cracks were compared with test data from Boeing Airplane Company. Analyses were conducted for both restrained and unrestrained buckling conditions. Comparison of results from these analyses and results from lap-splice-joint test panels, which were partially restrained against buckling indicate that the test results were bounded by the failure loads predicted by the analyses with restrained and unrestrained conditions.

  3. Heat Extraction from a Hydraulically Fractured Penny-Shaped Crack in Hot Dry Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, H.; Mura, T.; Keer, L.M.

    1976-12-01

    Heat extraction from a penny-shaped crack having both inlet and outlet holes is investigated analytically by considering the hydraulic and thermal growth of the crack when fluid is injected at a constant flow rate. The rock mass is assumed to be infinitely extended, homogeneous, and isotropic. The equations for fluid flow are derived and solved to determine the flow pattern in the crack. Temperature distributions in both rock and fluid are also determined. The crack width change due to thermal contraction and the corresponding flow rate increase are discussed. Some numerical calculations of outlet temperature, thermal power extraction, and crackmore » opening displacement due to thermal contraction of rocks are presented for cracks after they attain stationary states for given inlet flow rate and outlet suction pressure. The present paper is a further development of the previous works of Bodvarsson (1969), Gringarten et al. (1975), Lowell (1976), Harlow and Pracht (1972), McFarland (1975), among others, and considers the two-dimensional rather than the one-dimensional crack. Furthermore, the crack radius and width are quantities to be determined rather than given a priori. 11 refs., 1 tab., 5 figs.« less

  4. A novel crack healing in steels by gas nitrocarburizing

    NASA Astrophysics Data System (ADS)

    Li, Ai; Chen, Xing; Zhang, Chengsong; Cui, Guodong; Zhao, Hui; Yang, Chuan

    2018-06-01

    In this paper, the gas nitrocarburizing technique was applied for the first time to solve the challenge in crack healing of metallic materials. The crack-healing behavior of 42CrMo steel was investigated. The gas nitrocarburizing was carried out in two steps with the decrease of the healing temperature. The mechanical properties after healing were measured using the three-point blending test. X-ray diffraction, optical microscope and scanning electron microscopy were applied to characterize the phase composition and microstructure of crack healing area and analyze healing mechanisms involved. The results show that the optimal healing effect could be obtained when it is healed at 760 °C for 2 h and then at 550 °C for 4 h. The maximum healing degree reached to 63.68%. The crack healing process could be divided into two stages, i.e. healing in crack tips at high temperatures and then in crack openings at low temperatures. The volumetric expansion and filling of formed nitrides contributed to the rapid healing of the large-sized cracks. The healing efficiency could be improved by decreasing the healing temperature. Moreover, high pressure gas nitrocarburizing was considered as another potential way to improve the healing efficiency and healing degree.

  5. A two scale analysis of tight sandstones

    NASA Astrophysics Data System (ADS)

    Adler, P. M.; Davy, C. A.; Song, Y.; Troadec, D.; Hauss, G.; Skoczylas, F.

    2015-12-01

    Tight sandstones have a low porosity and a very small permeability K. Available models for K do not compare well with measurements. These sandstones are made of SiO_2 grains, with a typical size of several hundreds of micron. These grains are separated by a network of micro-cracks, with sizes ranging between microns down to tens of nm. Therefore, the structure can be schematized by Voronoi polyhedra separated by plane and permeable polygonal micro-cracks. Our goal is to estimate K based on a two scale analysis and to compare the results to measurements. For a particular sample [2], local measurements on several scales include FIB/SEM [3], CMT and 2D SEM. FIB/SEM is selected because the peak pore size given by Mercury Intrusion Porosimetry is of 350nm. FIB/SEM imaging (with 50 nm voxel size) identifies an individual crack of 180nm average opening, whereas CMT provides a connected porosity (individual crack) for 60 nm voxel size, of 4 micron average opening. Numerical modelling is performed by combining the micro-crack network scale (given by 2D SEM) and the 3D micro-crack scale (given by either FIB/SEM or CMT). Estimates of the micro-crack density are derived from 2D SEM trace maps by counting the intersections with scanlines, the surface density of traces, and the number of fracture intersections. K is deduced by using a semi empirical formula valid for identical, isotropic and uniformly distributed fractures [1]. This value is proportional to the micro-crack transmissivity sigma. Sigma is determined by solving the Stokes equation in the micro-cracks measured by FIB/SEM or CMT. K is obtained by combining the two previous results. Good correlation with measured values on centimetric plugs is found when using sigma from CMT data. The results are discussed and further research is proposed. [1] Adler et al, Fractured porous media, Oxford Univ. Press, 2012. [2] Duan et al, Int. J. Rock Mech. Mining Sci., 65, p75, 2014. [3] Song et al, Marine and Petroleum Eng., 65, p63, 2015.

  6. Laterality in hand use across four tool-use behaviors among the wild chimpanzees of Bossou, Guinea, West Africa.

    PubMed

    Humle, Tatyana; Matsuzawa, Tetsuro

    2009-01-01

    Population-level right handedness is a human universal, whose evolutionary origins are the source of considerable empirical and theoretical debate. Although our closest neighbor, the chimpanzee, shows some evidence for population-level handedness in captivity, there is little evidence from the wild. Tool-use measures of hand use in chimpanzees have yielded a great deal of variation in directionality and strength in hand preference, which still remains largely unexplored and unexplained. Data on five measures of hand use across four tool-use skills--ant-dipping, algae-scooping, pestle-pounding and nut-cracking--among the wild chimpanzees of Bossou, Guinea, West Africa, are presented here. This study aims to explore age- and sex-class effects, as well as the influence of task motor, cognitive and haptic demands, on the strength and directionality of hand preference within and across all five measures of hand use. Although there was no age- or sex-class effect on the directionality of hand preference, immature

  7. Neoproterozoic sand wedges: crack formation in frozen soils under diurnal forcing during a snowball Earth

    NASA Astrophysics Data System (ADS)

    Maloof, Adam C.; Kellogg, James B.; Anders, Alison M.

    2002-11-01

    Thermal contraction cracking of permafrost produced sand-wedge polygons at sea level on the paleo-equator during late Neoproterozoic glacial episodes. These sand wedges have been used as evidence for high (≥54°) paleo-obliquity of the Earth's ecliptic, because cracks that form wedges are hypothesized to require deep seasonal cooling so the depth of the stressed layer in the ground reaches ≥1 m, similar to the measured depths of cracks that form wedges. To test the counter hypothesis that equatorial cracks opened under a climate characterized by a strong diurnal cycle and low mean annual temperature (snowball Earth conditions), we examine crack formation in frozen ground subject to periodic temperature variations. We derive analytical expressions relating the Newtonian viscosity to the potential crack depth, concluding that cracks will form only in frozen soils with viscosities greater than ˜10 14 Pa s. We also show numerical calculations of crack growth in frozen soils with stress- and temperature-dependent rheologies and find that fractures may propagate to depths 3-25 times the depth of the thermally stressed layer in equatorial permafrost during a snowball Earth because the mean annual temperature is low enough to keep the ground cold and brittle to relatively great depths.

  8. Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages

    NASA Technical Reports Server (NTRS)

    Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1999-01-01

    The objectives were to create a capability to simulate curvilinear crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage and to validate with tests. Analysis methodology and software program (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically, while insuring continuous airworthiness, and to design more damage-tolerant aircraft for the next generation. Simulations of crack growth in fuselages were described. The crack tip opening angle (CTOA) fracture criterion, obtained from laboratory tests, was used to predict fracture behavior of fuselage panel tests. Geometrically nonlinear, elastic-plastic, thin shell finite element crack growth analyses were conducted. Comparisons of stress distributions, multiple stable crack growth history, and residual strength between measured and predicted results were made to assess the validity of the methodology. Incorporation of residual plastic deformations and tear strap failure was essential for accurate residual strength predictions. Issue related to predicting crack trajectory in fuselages were also discussed. A directional criterion, including T-stress and fracture toughness orthotropy, was developed. Curvilinear crack growth was simulated in coupon and fuselage panel tests. Both T-stress and fracture toughness orthotropy were essential to predict the observed crack paths. Flapping of fuselages were predicted. Measured and predicted results agreed reasonable well.

  9. Numerical simulations of microcrack-related damage and ignition behavior of mild-impacted polymer bonded explosives.

    PubMed

    Yang, Kun; Wu, Yanqing; Huang, Fenglei

    2018-08-15

    A physical model is developed to describe the viscoelastic-plastic deformation, cracking damage, and ignition behavior of polymer-bonded explosives (PBXs) under mild impact. This model improves on the viscoelastic-statistical crack mechanical model (Visco-SCRAM) in several respects. (i) The proposed model introduces rate-dependent plasticity into the framework which is more suitable for explosives with relatively high binder content. (ii) Damage evolution is calculated by the generalized Griffith instability criterion with the dominant (most unstable) crack size rather than the averaged crack size over all crack orientations. (iii) The fast burning of cracks following ignition and the effects of gaseous products on crack opening are considered. The predicted uniaxial and triaxial stress-strain responses of PBX9501 sample under dynamic compression loading are presented to illustrate the main features of the materials. For an uncovered cylindrical PBX charge impacted by a flat-nosed rod, the simulated results show that a triangular-shaped dead zone is formed beneath the front of the rod. The cracks in the dead zone are stable due to friction-locked stress state, whereas the cracks near the front edges of dead zone become unstable and turn into hotspots due to high-shear effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Three-dimensional CTOA and constraint effects during stable tearing in a thin-sheet material

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Newman, J. C., Jr.; Bigelow, C. A.

    1995-01-01

    A small strain theory, three-dimensional elastic-plastic finite element analysis was used to simulate fracture in thin sheet 2024-T3 aluminum alloy in the T-L orientation. Both straight and tunneled cracks were modeled. The tunneled crack front shapes as a function of applied stress were obtained from the fracture surface of tested specimens. The stable crack growth behavior was measured at the specimen surface as a function of applied stress. The fracture simulation modeled the crack tunneling and extension as a function of applied stress. The results indicated that the global constraint factor, alpha(sub g), initially dropped during stable crack growth. After peak applied stress was achieved, alpha(sub g) began to increase slightly. The effect of crack front shape on alpha(sub g) was small, but the crack front shape did greatly influence the local constraint and through-thickness crack-tip opening angle (CTOA) behavior. The surface values of CTOA for the tunneled crack front model agreed well with experimental measurements, showing the same initial decrease from high values during the initial 3mm of crack growth at the specimen's surface. At the same time, the interior CTOA values increased from low angles. After the initial stable tearing region, the CTOA was constant through the thickness. The three-dimensional analysis appears to confirm the potential of CTOA as a two-dimensional fracture criterion.

  11. Micromechanisms of fatigue crack growth in polycarbonate polyurethane: Time dependent and hydration effects.

    PubMed

    Ford, Audrey C; Gramling, Hannah; Li, Samuel C; Sov, Jessica V; Srinivasan, Amrita; Pruitt, Lisa A

    2018-03-01

    Polycarbonate polyurethane has cartilage-like, hygroscopic, and elastomeric properties that make it an attractive material for orthopedic joint replacement application. However, little data exists on the cyclic loading and fracture behavior of polycarbonate polyurethane. This study investigates the mechanisms of fatigue crack growth in polycarbonate polyurethane with respect to time dependent effects and conditioning. We studied two commercially available polycarbonate polyurethanes, Bionate® 75D and 80A. Tension testing was performed on specimens at variable time points after being removed from hydration and variable strain rates. Fatigue crack propagation characterized three aspects of loading. Study 1 investigated the impact of continuous loading (24h/day) versus intermittent loading (8-10h/day) allowing for relaxation overnight. Study 2 evaluated the effect of frequency and study 3 examined the impact of hydration on the fatigue crack propagation in polycarbonate polyurethane. Samples loaded intermittently failed instantaneously and prematurely upon reloading while samples loaded continuously sustained longer stable cracks. Crack growth for samples tested at 2 and 5Hz was largely planar with little crack deflection. However, samples tested at 10Hz showed high degrees of crack tip deflection and multiple crack fronts. Crack growth in hydrated samples proceeded with much greater ductile crack mouth opening displacement than dry samples. An understanding of the failure mechanisms of this polymer is important to assess the long-term structural integrity of this material for use in load-bearing orthopedic implant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Crack Growth Prediction Methodology for Multi-Site Damage: Layered Analysis and Growth During Plasticity

    NASA Technical Reports Server (NTRS)

    James, Mark Anthony

    1999-01-01

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  13. On crack initiation in notched, cross-plied polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Yang, Q. D.; Schesser, D.; Niess, M.; Wright, P.; Mavrogordato, M. N.; Sinclair, I.; Spearing, S. M.; Cox, B. N.

    2015-05-01

    The physics of crack initiation in a polymer matrix composite are investigated by varying the modeling choices made in simulations and comparing the resulting predictions with high-resolution in situ images of cracks. Experimental data were acquired using synchrotron-radiation computed tomography (SRCT) at a resolution on the order of 1 μm, which provides detailed measurement of the location, shape, and size of small cracks, as well as the crack opening and shear displacements. These data prove sufficient to discriminate among competing physical descriptions of crack initiation. Simulations are executed with a high-fidelity formulation, the augmented finite element method (A-FEM), which permits consideration of coupled damage mechanisms, including both discrete cracks and fine-scale continuum damage. The discrete cracks are assumed to be nonlinear fracture events, governed by reasonably general mixed-mode cohesive laws. Crack initiation is described in terms of strength parameters within the cohesive laws, so that the cohesive law provides a unified model for crack initiation and growth. Whereas the cracks investigated are typically 1 mm or less in length, the fine-scale continuum damage refers to irreversible matrix deformation occurring over gauge lengths extending down to the fiber diameter (0.007 mm). We find that the location and far-field stress for crack initiation are predicted accurately only if the variations of local stress within plies and in the presence of stress concentrators (notches, etc.) are explicitly computed and used in initiation criteria; stress redistribution due to matrix nonlinearity that occurs prior to crack initiation is accounted for; and a mixed-mode criterion is used for crack initiation. If these factors are not all considered, which is the case for commonly used failure criteria, predictions of the location and far-field stress for initiation are not accurate.

  14. Application of advanced geophysical logging methods in the characterization of a fractured-sedimentary bedrock aquifer, Ventura County, California

    USGS Publications Warehouse

    Williams, John H.; Lane, John W.; Singha, Kamini; Haeni, F. Peter

    2002-01-01

    An integrated suite of advanced geophysical logging methods was used to characterize the geology and hydrology of three boreholes completed in fractured-sedimentary bedrock in Ventura County, California. The geophysical methods included caliper, gamma, electromagnetic induction, borehole deviation, optical and acoustic televiewer, borehole radar, fluid resistivity, temperature, and electromagnetic flowmeter. The geophysical logging 1) provided insights useful for the overall geohydrologic characterization of the bedrock and 2) enhanced the value of information collected by other methods from the boreholes including core-sample analysis, multiple-level monitoring, and packer testing.The logged boreholes, which have open intervals of 100 to 200 feet, penetrate a sequence of interbedded sandstone and mudstone with bedding striking 220 to 250 degrees and dipping 15 to 40 degrees to the northwest. Fractures intersected by the boreholes include fractures parallel to bedding and fractures with variable strike that dip moderately to steeply. Two to three flow zones were detected in each borehole. The flow zones consist of bedding-parallel or steeply dipping fractures or a combination of bedding-parallel fractures and moderately to steeply dipping fractures. About 75 to more than 90 percent of the measured flow under pumped conditions was produced by only one of the flow zones in each borehole.

  15. Honors Composition: Humanity beyond the Humanities

    ERIC Educational Resources Information Center

    Guzy, Annmarie

    2015-01-01

    Annmarie Guzy opens this article by saying that, as a professor of composition and technical communication, she has found "dipping into other fields" an integral part of her job. In a traditional English department, what she does is considered service teaching, providing a service to other departments and colleges rather than teaching…

  16. 40 CFR 60.391 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... truck including hoods, fenders, cargo boxes, doors, and grill opening panels. Bake oven means a device...-duty truck assembly lines between the coating application system (dip tank or spray booth) and the bake oven. Guide coat operation means the guide coat spray booth, flash-off area and bake oven(s) which are...

  17. 40 CFR 60.391 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... truck including hoods, fenders, cargo boxes, doors, and grill opening panels. Bake oven means a device...-duty truck assembly lines between the coating application system (dip tank or spray booth) and the bake oven. Guide coat operation means the guide coat spray booth, flash-off area and bake oven(s) which are...

  18. 40 CFR 60.391 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... truck including hoods, fenders, cargo boxes, doors, and grill opening panels. Bake oven means a device...-duty truck assembly lines between the coating application system (dip tank or spray booth) and the bake oven. Guide coat operation means the guide coat spray booth, flash-off area and bake oven(s) which are...

  19. 40 CFR 60.391 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... truck including hoods, fenders, cargo boxes, doors, and grill opening panels. Bake oven means a device...-duty truck assembly lines between the coating application system (dip tank or spray booth) and the bake oven. Guide coat operation means the guide coat spray booth, flash-off area and bake oven(s) which are...

  20. 40 CFR 60.391 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... truck including hoods, fenders, cargo boxes, doors, and grill opening panels. Bake oven means a device...-duty truck assembly lines between the coating application system (dip tank or spray booth) and the bake oven. Guide coat operation means the guide coat spray booth, flash-off area and bake oven(s) which are...

  1. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., a fixed trycock line, or a differential pressure liquid level gauge must be used as the primary... control for filling. (2) The design pressure of each liquid level gauging device must be at least that of... openings for dip tube gauging devices and pressure gauges in flammable cryogenic liquid service must be...

  2. A Study of Failure in Small Pressurized Cylindrical Shells Containing a Crack

    NASA Technical Reports Server (NTRS)

    Barwell, Craig A.; Eber, Lorenz; Fyfe, Ian M.

    1998-01-01

    The deformation in the vicinity of axial cracks in thin pressurized cylinders is examined using small experimental The deformation in the vicinity of axial cracks in thin pressurized cylinders is examined using small experimental models. The loading applied was either symmetric or unsymmetric about the crack plane, the latter being caused by structural constraints such as stringers. The objective was two fold - one, to provide the experimental results which will allow computer modeling techniques to be evaluated for deformations that are significantly different from that experienced by flat plates, and the other to examine the deformations and conditions associated with the onset of crack kinking which often precedes crack curving. The stresses which control crack growth in a cylindrical geometry depend on conditions introduced by the axial bulging, which is an integral part of this type of failure. For the symmetric geometry, both the hoop and radial strain just ahead off the crack, r = a, were measured and these results compared with those obtained from a variety of structural analysis codes, in particular STAGS [1], ABAQUS and ANSYS. In addition to these measurements, the pressures at the onset of stable and unstable crack growth were obtained and the corresponding crack deformations measured as the pressures were increased to failure. For the unsymmetric cases, measurements were taken of the crack kinking angle, and the displacements in the vicinity of the crack. In general, the strains ahead of the crack showed good agreement between the three computer codes and between the codes and the experiments. In the case of crack behavior, it was determined that modeling stable tearing with a crack-tip opening displacement fracture criterion could be successfully combined with the finite-element analysis techniques as used in structural analysis codes. The analytic results obtained in this study were very compatible with the experimental observations of crack growth. Measured crack kinking angles also showed good agreement with theories based on the maximum principle stress criterion.

  3. Simulation model of fatigue crack opening/closing phenomena for predicting RPG load under arbitrary stress distribution field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyosada, M.; Niwa, T.

    1995-12-31

    In this paper, Newman`s calculation model is modified to solve his neglected effect of the change of stress distribution ahead of a crack, and to leave elastic plastic materials along the crack surface because of the compatibility of Dugdale model. In addition to above treatment, the authors introduce plastic shrinkage at an immediate generation of new crack surfaces due to emancipation of internal force with the magnitude of yield stress level during unloading process in the model. Moreover, the model is expanded to arbitrary stress distribution field. By using the model, RPG load is simulated for a center notched specimenmore » under constant amplitude loading with various stress ratios and decreased maximum load while keeping minimum load.« less

  4. Array automated assembly task, phase 2. Low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. T.

    1978-01-01

    Several modifications instituted in the wafer surface preparation process served to significantly reduce the process cost to 1.55 cents per peak watt in 1975 cents. Performance verification tests of a laser scanning system showed a limited capability to detect hidden cracks or defects, but with potential equipment modifications this cost effective system could be rendered suitable for applications. Installation of electroless nickel plating system was completed along with an optimization of the wafer plating process. The solder coating and flux removal process verification test was completed. An optimum temperature range of 500-550 C was found to produce uniform solder coating with the restriction that a modified dipping procedure is utilized. Finally, the construction of the spray-on dopant equipment was completed.

  5. On the formation of glide-snow avalanches

    NASA Astrophysics Data System (ADS)

    Mitterer, C.; Schweizer, J.

    2012-12-01

    On steep slopes the full snowpack can glide on the ground; tension cracks may open and eventually the slope may fail as a glide-snow avalanche. Due to their large mass they have considerable destructive potential. Glide-snow avalanches typically occur when the snow-soil interface is moist or wet so that basal friction is reduced. The occurrence, however, of glide cracks and their evolution to glide avalanches are still poorly understood. Consequently, glides are difficult to predict as (i) not all cracks develop into an avalanche, and (ii) for those that do, the time between crack opening and avalanche event might vary from hours to weeks - or on the other hand be so short that there is no warning at all by crack opening. To improve our understanding we monitored several slopes and related glide snow activity to meteorological data. In addition, we explored conditions that favor the formation of a thin wet basal snowpack layer with a physical-based model representing water and heat flux at the snow-soil interface. The statistical analyses revealed that glide-snow avalanche activity might be associated to an early season and a spring condition. While early season conditions tend to have warm and dry autumns followed by heavy snowfalls, spring conditions showed good agreement with increasing air temperature. The model indicates that energy (summer heat) stored in the ground might be sufficient to melt snow at the bottom of the snowpack. Due to capillary forces, water will rise for a few centimeters into the snowpack and thereby reduce friction at the interface. Alternatively, we demonstrate that also in the absence of melt water production at the bottom of the snowpack water may accumulate in the bottom layer due to an upward flux into the snowpack if a dry snowpack overlies a wet soil. The particular conditions that are obviously required at the snow-soil interface explain the strong winter-to-winter variations in snow gliding.

  6. Kinematic Rupture Process of the 2015 Gorkha (Nepal) Earthquake Sequence from Joint Inversion of Teleseismic, hr-GPS, Strong-Ground Motion, InSAR interferograms and pixel offsets

    NASA Astrophysics Data System (ADS)

    Yue, H.; Simons, M.; Jiang, J.; Fielding, E. J.; Owen, S. E.; Moore, A. W.; Riel, B. V.; Polet, J.; Duputel, Z.; Samsonov, S. V.; Avouac, J. P.

    2015-12-01

    The April 2015 Gorkha, Nepal (Mw 7.8) earthquake ruptured the front of Himalaya thrust belt, causing more than 9,000 fatalities. 17 days after the main event, a large aftershock (Mw 7.2) ruptured to down-dip and east of the main rupture area. To investigate the kinematic rupture process of this earthquake sequence, we explored linear and non-linear inversion techniques using a variety of datasets including teleseismic, high rate and conventional GPS, InSAR interferograms and pixel-offsets. InSAR interferograms from ALOS-2, RADARSAT-2 and Sentinel-1a satellites are used in the joint inversion. The main event is characterized by unilateral rupture extending along strike approximately 70 km to the southeast and 40 km along dip direction. The rupture velocity is well resolved to be lie between 2.8 and 3.0 km/s, which is consistent with back-projection results. An emergent initial phase is observed in teleseismic body wave records, which is consistent with a narrow area of rupture initiation near the hypocenter. The rupture mode of the main event is pulse like. The aftershock ruptured down-dip to the northeast of the main event rupture area. The aftershock rupture area is compact and contained within 40 km of its hypocenter. In contrast to the main event, teleseismic body wave records of the aftershock suggest an abrupt initial phase, which is consistent with a crack like rupture mode. The locations of most of the aftershocks (small and large) surround the rupture area of the main shock with little, if any, spatial overlap.

  7. Influence of annealing temperature on structural and optical properties of Lu{sub 2}O{sub 3}:Eu{sup 3+}, Tb{sup 3+} transparent films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales-Ramírez, Ángel de Jesús; García-Murillo, Antonieta, E-mail: angarciam@ipn.mx; Carrillo-Romo, Felipe de Jesús

    2015-10-15

    Highlights: • Lu{sub 2}O{sub 3}:Eu{sup 3+}, Tb{sup 3+} films were synthesized by sol–gel and by dip-coating technique. • Effects of annealing treatment on structural and optical properties were studied. • Optogeometrical characteristics of synthesized films were analyzed. • X-ray diffraction results showed that Lu{sub 2}O{sub 3}:Eu{sup 3+}, Tb{sup 3+} crystallizes at 700 °C. • High reddish emission on transparent films with at least 1 μm thick was observed. - Abstract: High-optical quality Lu{sub 2}O{sub 3}:Eu{sup 3+} 5 mol%, X Tb{sup 3+} (X = 0–0.04 mol%) thin films were prepared by the sol–gel process and dip-coating technique. The procedure was asmore » follows: lutetium, europium and terbium nitrates were used as precursors, and ethanol as a solvent. Etylenglycol (EG) was added as a sol stabilizer, and the pH was adjusted by acetic acid. After 10 dipping-cycles, followed by an annealing process (600–900 °C) for 1 h, transparent, smooth and crack-free films (ra = 8–9 nm) were formed. The X-ray diffraction (XRD) results showed crystallized films into the cubic structure at 800 °C. The ellipsometry results showed that the thickness of the films varied from 1 to 1.4 μm at 1000 and 600 °C, respectively. Finally, the films presented a typical Eu{sup 3+} red emission at 611 nm ({sup 5}D{sub 0} → {sup 7}F{sub 2}); furthermore, the effect of the Tb{sup 3+} content showed that the highest emission intensity corresponded to the lower Tb{sup 3+} content.« less

  8. Inversion of azimuthally dependent NMO velocity in transversely isotropic media with a tilted axis of symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grechka, V.; Tsvankin, I.

    2000-02-01

    Just as the transversely isotropic model with a vertical symmetry axis (VTI media) is typical for describing horizontally layered sediments, transverse isotropy with a tilted symmetry axis (TTI) describes dipping TI layers (such as tilted shale beds near salt domes) or crack systems. P-wave kinematic signatures in TTI media are controlled by the velocity V{sub PO} in the symmetry direction, Thomsen's anisotropic coefficients {xi} and {delta}, and the orientation (tilt {nu} and azimuth {beta}) of the symmetry axis. Here, the authors show that all five parameters can be obtained from azimuthally varying P-wave NMO velocities measured for two reflectors withmore » different dips and/or azimuths (one of the reflectors can be horizontal). The shear-wave velocity V{sub SO} in the symmetry direction, which has negligible influence on P-wave kinematic signatures, can be found only from the moveout of shear waves. Using the exact NMO equation, the authors examine the propagation of errors in observed moveout velocities into estimated values of the anisotropic parameters and establish the necessary conditions for a stable inversion procedure. Since the azimuthal variation of the NMO velocity is elliptical, each reflection event provides them with up to three constraints on the model parameters. Generally, the five parameters responsible for P-wave velocity can be obtained from two P-wave ellipses, but the feasibility of the moveout inversion strongly depends on the tilt {nu}. While most of the analysis is carried out for a single layer, the authors also extend the inversion algorithm to vertically heterogeneous TTI media above a dipping reflector using the generalized Dix equation. A synthetic example for a strongly anisotropic, stratified TTI medium demonstrates a high accuracy of the inversion.« less

  9. Gas hydrate saturation and distribution in the Kumano Forearc Basin of the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-02-01

    The Kumano Forearc Basin is located to the south-east of the Kii Peninsula, Japan, overlying the accretionary prism in the Nankai Trough. The presence of gas hydrate in submarine sediments of the forearc basin has resulted in the widespread occurrence of bottom simulating reflectors (BSRs) on seismic profiles, and has caused distinct anomalies in logging data in the region. We estimated the in situ gas hydrate saturation from logging data by using three methods: effective rock physics models, Archie's equation, and empirical relationships between acoustic impedance (AI) and water-filled porosity. The results derived from rock physics models demonstrate that gas hydrates are attached to the grain surfaces of the rock matrix and are not floating in pore space. By applying the empirical relationships to the AI distribution derived from model-based AI inversion of the three-dimensional (3D) seismic data, we mapped the spatial distribution of hydrate saturation within the Kumano Basin and characterised locally concentrated gas hydrates. Based on the results, we propose two different mechanisms of free gas supply to explain the process of gas hydrate formation in the basin: (1) migration along inclined strata that dip landwards, and (2) migration through the faults or cracks generated by intensive tectonic movements of the accretionary prism. The dipping strata with relatively low AI in the forearc basin could indicate the presence of hydrate formation due to gas migration along the dipping strata. However, high hydrate concentration is observed at fault zones with high pore pressures, thus the second mechanism likely plays an important role in the genesis of gas hydrates in the Kumano Basin. Therefore, the tectonic activities in the accretionary wedge significantly influence the hydrate saturation and distribution in the Kumano Forearc Basin.

  10. Surface morphology of active normal faults in hard rock: Implications for the mechanics of the Asal Rift, Djibouti

    NASA Astrophysics Data System (ADS)

    Pinzuti, Paul; Mignan, Arnaud; King, Geoffrey C. P.

    2010-10-01

    Tectonic-stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localised magma intrusion, with normal faults accommodating extension and subsidence only above the maximum reach of the magma column. In these magmatic rifting models, or so-called magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Vertical profiles of normal fault scarps from levelling campaign in the Asal Rift, where normal faults seem sub-vertical at surface level, have been analysed to discuss the creation and evolution of normal faults in massive fractured rocks (basalt lava flows), using mechanical and kinematics concepts. We show that the studied normal fault planes actually have an average dip ranging between 45° and 65° and are characterised by an irregular stepped form. We suggest that these normal fault scarps correspond to sub-vertical en echelon structures, and that, at greater depth, these scarps combine and give birth to dipping normal faults. The results of our analysis are compatible with the magmatic intrusion models instead of tectonic-stretching models. The geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.

  11. Survival of salmonella transformed to express green fluorescent protein on Italian parsley as affected by processing and storage.

    PubMed

    Duffy, E A; Cisneros-Zevallos, L; Castillo, A; Pillai, S D; Ricke, S C; Acuff, G R

    2005-04-01

    To study the effect of processing and storage parameters on the survival of Salmonella on fresh Italian parsley, parsley bunches were dipped for 3 or 15 min in suspensions that were preequilibrated to 5, 25, or 35 degrees C and inoculated with Salmonella transformed to express enhanced green fluorescent protein. Loosely attached and/or associated, strongly attached and/or associated, and internalized and/or entrapped Salmonella cells were enumerated over 0, 1, and 7 days of storage at 25 degrees C and over 0, 1, 7, 14, and 30 days of storage at 4 degrees C using surface-plating procedures. Leaf sections obtained from samples after 0, 1, and 7 days of storage were examined using confocal scanning laser microscopy. Temperature of the dip suspension had little effect on the attachment and survival of Salmonella cells on parsley. Regardless of the temperature or duration of dip, Salmonella was internalized. Immersion for longer times resulted in higher numbers of attached and internalized cells. Microscopic observations supported these results and revealed Salmonella cells near the stomata and within cracks in the cuticle. Storage temperature had the greatest impact on the survival of Salmonella cells on parsley. When stored at 25 degrees C, parsley had a shelf life of 7 days, and Salmonella populations significantly increased over the 7 days of storage. For parsley stored at 4 degrees C, numbers of Salmonella cells decreased over days 0, 1, and 7. After 7 days of storage, there were no viable internalized Salmonella cells detected. Storage temperature represents an important control point for the safety of fresh parsley.

  12. VLP seismicity from resonant modes of acoustic-gravity waves in a conduit-crack system filled with multiphase magma

    NASA Astrophysics Data System (ADS)

    Liang, C.; Prochnow, B. N.; OReilly, O. J.; Dunham, E. M.; Karlstrom, L.

    2016-12-01

    Oscillation of magma in volcanic conduits connected to cracks (dikes and sills) has been suggested as an explanation for very long period (VLP) seismic signals recorded at active basaltic volcanoes such as. Kilauea, Hawaii, and Erebus, Antarctica. We investigate the VLP seismicity using a linearized model for waves in and associated eigenmodes of a coupled conduit-crack system filled with multiphase magma, an extension of the Karlstrom and Dunham (2016) model for acoustic-gravity waves in volcanic conduits. We find that the long period surface displacement (as recorded on broadband seismometers) is dominated by opening/closing of the crack rather than the deformation of the conduit conduit walls. While the fundamental eigenmode is sensitive to the fluid properties and the geometry of the magma plumbing system, a closer scrutiny of various resonant modes reveals that the surface displacement is often more sensitive to higher modes. Here we present a systematic analysis of various long period acoustic-gravity wave resonant modes of a coupled conduit-crack system that the surface displacement is most sensitive to. We extend our previous work on a quasi-one-dimensional conduit model with inviscid magma to a more general axisymmetric conduit model that properly accounts for viscous boundary layers near the conduit walls, based on the numerical method developed by Prochnow et al. (submitted to Computers and Fluids, 2016). The surface displacement is dominated by either the fundamental or higher eigenmodes, depending on magma properties and the geometry of conduit and crack. An examination of the energetics of these modes reveals the complex interplay of different restoring forces (magma compressibility in the conduit, gravity, and elasticity of the crack) driving the VLP oscillations. Both nonequilibrium bubble growth and resorption and viscosity contribute to the damping of VLP signals. Our models thus provide a means to infer properties of open-vent basaltic volcanoes from seismic observations of VLP events.

  13. Guide to the Salvage of Temperature-Abused Food Products in Military Commissaries

    DTIC Science & Technology

    1988-04-01

    hard types 4. Lard s. Margarine 6. Buttermilk SAFE-3 7. Cream cheese 8. Dips, sour cream base 9. Eggs in shell " 10. Sour cream " 11. Yogurt ...2, 3). 4. Meat Food Type 4.1 Frozen 1. Pot pies MEL’r 2. Meat, cured/salted RISK-2 3. Poultry, cured/salted 4. Sausages, not fermented .. 5...34refrigerate after opening’’) .. 4. Ham, country cured, unsliced 5. Luncheon meats, sliced ("refrigerate after opening") .. 6. Pepperoni, fermented

  14. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    DTIC Science & Technology

    2017-12-31

    random radial displacement a fiber is given in simulation of the manufacturing process. As seen in the figure, the crack driving force increases...will incorporate voids along with irregular fiber distributions as consequences of composite manufacturing. The crack opening displacement in the as...subjected to IMPa pressure (ANSYS does not allow the, mathematically equivalent, tensile stresses applied at both ends without any displacement constraints

  15. Effect of Measured Welding Residual Stresses on Crack Growth

    NASA Technical Reports Server (NTRS)

    Hampton, Roy W.; Nelson, Drew; Doty, Laura W. (Technical Monitor)

    1998-01-01

    Welding residual stresses in thin plate A516-70 steel and 2219-T87 aluminum butt weldments were measured by the strain-gage hole drilling and X-ray diffraction methods. The residual stress data were used to construct 3D strain fields which were modeled as thermally induced strains. These 3D strain fields were then analyzed with the WARP31) FEM fracture analysis code in order to predict their effect on fatigue and on fracture. For analyses of fatigue crack advance and subsequent verification testing, fatigue crack growth increments were simulated by successive saw-cuts and incremental loading to generate, as a function of crack length, effects on crack growth of the interaction between residual stresses and load induced stresses. The specimen experimental response was characterized and compared to the WARM linear elastic and elastic-plastic fracture mechanics analysis predictions. To perform the fracture analysis, the plate material's crack tearing resistance was determined by tests of thin plate M(T) specimens. Fracture analyses of these specimen were performed using WARP31D to determine the critical Crack Tip Opening Angle [CTOA] of each material. These critical CTOA values were used to predict crack tearing and fracture in the weldments. To verify the fracture predictions, weldment M(T) specimen were tested in monotonic loading to fracture while characterizing the fracture process.

  16. Combined mode I stress intensity factors of slanted cracks

    NASA Astrophysics Data System (ADS)

    Ismail, A. E.; Rahman, M. Q. Abdul; Ghazali, M. Z. Mohd; Zulafif Rahim, M.; Rasidi Ibrahim, M.; Fahrul Hassan, Mohd; Nor, Nik Hisyamudin Muhd; Ariffin, A. M. T.; Zaini Yunos, Muhamad

    2017-08-01

    The solutions of stress intensity factors (SIFs) for slanted cracks in plain strain plate are hard to find in open literature. There are some previous solutions of SIFs available, however the studies are not completed except for the case of plain stress. The slanted cracks are modelled numerically using ANSYS finite element program. There are ten slanted angles and seven relative crack depths are used and the plate contains cracks which is assumed to fulfil the plain strain condition. The plate is then stressed under tension and bending loading and the SIFs are determined according to the displacement extrapolation method. Based on the numerical analysis, both slanted angles and relative crack length, a/L played an important role in determining the modes I and II SIFs. As expected the SIFs increased when a/L is increased. Under tension force, the introduction of slanted angles increased the SIFs. Further increment of angles reduced the SIFs however they are still higher than the SIFs obtained using normal cracks. Under bending moment, the present of slanted angles are significantly reduced the SIFs compared with the normal cracks. Under similar loading, mode II SIFs increased as function of a/L and slanted angles where increasing such parameters increasing the mode II SIFs.

  17. High-Resolution Millimeter Wave Detection of Vertical Cracks in the Space Shuttle External Tank (ET) Spray-on-Foam Insulation (SOFI)

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Zoughi, R.; Hepburn, Frank L.

    2006-01-01

    Space Shuttle Columbia's catastrophic failure has been attributed to a piece of spray-on-foam insulation (SOFI) that was dislodged from the external tank (ET) and struck the leading edge of the left wing. A piece of SOFI was also dislodged in the Space Shuttle Discovery's flight in 2005 and recently a crack was detected in its ET foam prior to its successful launch. Millimeter wave nondestructive testing methods have been considered as potential effective inspection tools for evaluating the integrity of the SOFI. Recently, in a specific investigation into the potential of these methods for detecting vertical cracks in SOFI was explored using a focused millimeter wave reflectometer at 150 GHz. The results showed the capability of these methods for detecting tight vertical cracks (also as a function of crack opening dimension) in exposed SOFI panels and while covered by a piece of SOFI ramp simulating a more realistic and challenging situation. Some crack-like anomalies were also detected in a blind SOFI panel. This paper presents the background for these techniques as well as representative images of the vertical crack in the SOFI panel, crack-like anomalies in the blind panel and a discussion of the practical attributes of these inspection methods.

  18. Detecting the activation of a self-healing mechanism in concrete by acoustic emission and digital image correlation.

    PubMed

    Tsangouri, E; Aggelis, D G; Van Tittelboom, K; De Belie, N; Van Hemelrijck, D

    2013-01-01

    Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process.

  19. A theoretical approach to quantify the effect of random cracks on rock deformation in uniaxial compression

    NASA Astrophysics Data System (ADS)

    Zhou, Shuwei; Xia, Caichu; Zhou, Yu

    2018-06-01

    Cracks have a significant effect on the uniaxial compression of rocks. Thus, a theoretically analytical approach was proposed to assess the effects of randomly distributed cracks on the effective Young’s modulus during the uniaxial compression of rocks. Each stage of the rock failure during uniaxial compression was analyzed and classified. The analytical approach for the effective Young’s modulus of a rock with only a single crack was derived while considering the three crack states under stress, namely, opening, closure-sliding, and closure-nonsliding. The rock was then assumed to have many cracks with randomly distributed direction, and the effect of crack shape and number during each stage of the uniaxial compression on the effective Young’s modulus was considered. Thus, the approach for the effective Young’s modulus was used to obtain the whole stress-strain process of uniaxial compression. Afterward, the proposed approach was employed to analyze the effects of related parameters on the whole stress-stain curve. The proposed approach was eventually compared with some existing rock tests to validate its applicability and feasibility. The proposed approach has clear physical meaning and shows favorable agreement with the rock test results.

  20. Dynamic behaviour of a rotating cracked beam

    NASA Astrophysics Data System (ADS)

    Yashar, Ahmed; Ghandchi-Tehrani, Maryam; Ferguson, Neil

    2016-09-01

    This paper presents a new approach to investigate and analyse the vibrational behaviour of cracked rotating cantilever beams, which can for example represent helicopter or wind turbine blades. The analytical Hamiltonian method is used in modelling the rotating beam and two numerical methods, the Rayleigh-Ritz and FEM, are used to study the natural frequencies and the mode shapes of the intact rotating beams. Subsequently, a crack is introduced into the FE model and simulations are performed to identify the modal characteristics for an open cracked rotating beam. The effect of various parameters such as non-dimensional rotating speed, hub ratio and slenderness ratio are investigated for both the intact and the cracked rotating beam, and in both directions of chordwise and flapwise motion. The veering phenomena in the natural frequencies as a function of the rotational speed and the buckling speed are considered with respect to the slenderness ratio. In addition, the mode shapes obtained for the flapwise vibration are compared using the modal assurance criterion (MAC). Finally, a new three dimensional design chart is produced, showing the effect of crack location and depth on the natural frequencies of the rotating beam. This chart will be subsequently important in identifying crack defects in rotating blades.

  1. Detecting the Activation of a Self-Healing Mechanism in Concrete by Acoustic Emission and Digital Image Correlation

    PubMed Central

    Tsangouri, E.; Aggelis, D. G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D.

    2013-01-01

    Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process. PMID:24381518

  2. The effect of crack blunting on the competition between dislocation nucleation and cleavage

    NASA Astrophysics Data System (ADS)

    Fischer, Lisa L.; Beltz, Glenn E.

    2001-03-01

    To better understand the ductile versus brittle fracture behavior of crystalline materials, attention should be directed towards physically realistic crack geometries. Currently, continuum models of ductile versus brittle behavior are typically based on the analysis of a pre-existing sharp crack in order to use analytical solutions for the stress fields around the crack tip. This paper examines the effects of crack blunting on the competition between dislocation nucleation and atomic decohesion using continuum methods. We accomplish this by assuming that the crack geometry is elliptical, which has the primary advantage that the stress fields are available in closed form. These stress field solutions are then used to calculate the thresholds for dislocation nucleation and atomic decohesion. A Peierls-type framework is used to obtain the thresholds for dislocation nucleation, in which the region of the slip plane ahead of the crack develops a distribution of slip discontinuity prior to nucleation. This slip distribution increases as the applied load is increased until an instability is reached and the governing integral equation can no longer be solved. These calculations are carried out for various crack tip geometries to ascertain the effects of crack tip blunting. The thresholds for atomic decohesion are calculated using a cohesive zone model, in which the region of the crack front develops a distribution of opening displacement prior to atomic decohesion. Again, loading of the elliptical crack tip eventually results in an instability, which marks the onset of crack advance. These calculations are carried out for various crack tip geometries. The results of these separate calculations are presented as the critical energy release rates versus the crack tip radius of curvature for a given crack length. The two threshold curves are compared simultaneously to determine which failure mode is energetically more likely at various crack tip curvatures. From these comparisons, four possible types of material fracture behavior are identified: intrinsically brittle, quasi-brittle, intrinsically ductile, and quasi-ductile. Finally, real material examples are discussed.

  3. Microcracking and Healing in Semibrittle Salt-Rock: Elastic and Plastic Behavior

    NASA Astrophysics Data System (ADS)

    Ding, J.; Chester, F. M.; Chester, J. S.; Shen, X.; Arson, C. F.

    2017-12-01

    Microcracking and healing during semibrittle deformation are important processes that affect physical properties such as elastic moduli and permeability. We study these processes through triaxial compression tests involving cyclic differential loading and isostatic-holds on synthetic salt-rock at room temperature and low confining pressure (Pc, 1 to 4 MPa). The salt samples are produced by uniaxial pressing of granular (300 µm dia.) halite to 75 MPa at 150˚C for 10^3 s, to create low-porosity ( 5%) aggregates of nearly equant, work-hardened grains. Alternating large- and small-load cycles are performed to track the evolution of plastic and elastic properties, respecitively, with progressive strain to 8% axial shortening. 24-hour holds are carried out at about 4% axial shortening followed by renewed cyclic loading to investigate healing. During large load cycles samples yield and exhibit distributed flow with dilatancy and small work hardening. Young's Modulus (YM) decreases and then tends to stabilize, while Poisson's Ratio (PR) increases at a reducing rate, with progressive strain. Microstructures at sequential stages show that opening-mode grain-boundary cracking, grain-boundary sliding, and some intracrystalline plasticity are the dominant deformation processes. Opening and shear occur preferentially on boundaries that are parallel and inclined to the shortening axis, respectively, leading to progressive redistribution of porosity. Opening-mode grain-boundary cracks increase in number and aperature with strain, and are linked by sliding grain-boundaries to form en echelon arrays. After a 24-hour hold, samples show yielding and flow behavior consistent with that prior to the hold, whereas YM and PR are reset to the same values documented at zero strain and subsequently evolve with additional strain similar to that documented at smaller strains prior to the hold. Open grain-boundary cracks are not closed or healed during the hold. Observations suggest that changes in elastic properties in the semibrittle salt-rock reflect weakening and healing of grain-boundaries undergoing sliding rather than progressive dilatancy or healing of opening-mode cracks. Findings are being used to inform and develop continuum damage mechanics models of semibrittle deformation in polycrystalline aggregates

  4. Long-period tilt-induced accelerations associated with hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Milkereit, Claus; Dahm, Torsten; Cesca, Simone; Lopez, Jose; Nooshiri, Nima; Zang, Arno

    2017-04-01

    In 2015, several small scale hydrofracture experiments have been performed in situ from a horizontal borehole in a mine gallery in granitic rock. The hydrofracture experiments were monitored by a bundle of different near field sensors covering a broad range of frequencies (see Zang et al., Geophys. J. Int. (2017) 208, 790-813, doi: 10.1093/gji/ggw430). We installed broad band sensors in the gallery close to the fracture experiments, and observed clear long period transients on the horizontal components, with timing and polarity correlated with the opening and closing of the fractures. We interpret the broadband signals as tilt-induced excursions. The broadband signals have been measured independent whether high frequency acoustic emission have been observed or not during the individual fracture experiments. They are thus an independent measure of the success of a hydrofracture experiment and the parameter of the newly formed cracks. In this study we show that most tilt-induced long-period signals can be modeled by a rectangular crack with constant opening in an elastic full space, as first order approximation. From theoretical forward modeling, we proof that the tilt has a higher sensitivity to resolve the strike of the fracture than the displacement field. With this model, we retrieve the strike of the fractures from the tilt observed at a single sensor. The results indicate that the strike angles of the hydrofractures change systematically with the distance to the gallery wall, indicating a rotation of the principal stresses close to the free surface of the gallery. The rotation trend is similar to the one observed in previous hydrofracture experiments in mines. We compare the strength of the modeled tensile cracks, i.e. opening times crack area, with the volume of the injected fluid, and discuss the general resolving power of tilt signals for source parameter fractures. The temporal evolution of the opening and closure of the fractures is discussed.

  5. Energetic payoff of tool use for capuchin monkeys in the caatinga: variation by season and habitat type.

    PubMed

    Emidio, Ricardo Almeida; Ferreira, Renata Gonçalves

    2012-04-01

    In this paper, we analyze predictions from the energetic bottleneck and opportunity models to explain the use of stones to crack open encased fruit by capuchins in dry environments. The energetic bottleneck model argues that tool use derives from the need to crack open hard-encased fruits which are key resources during periods of food scarcity. The opportunity model argues that tool use by capuchins derives from simultaneous access to stones and encased fruits. The study was conducted in the Caatinga biome, northeastern Brazil, at two areas where capuchin monkeys (Sapajus libidinosus and Sapajus spp.) regularly use stones to crack open encased fruit of Syagrus cearensis and Manihot dichotoma. Energetic gains were inferred based on the number of tool-use sites used and the mass of encased fruit consumed per month, and compared across seasons and areas occupied by the two groups. For the drier habitat, a significant increase in frequency of tool use (N(dry) = 329 vs. N(wet) = 59) and in the mean monthly mass of fruits consumed in the dry season (mean(dry) = 193g vs. mean(wet) = 13.5 g) offered support for the energetic bottleneck model. However, our inference of low energetic payoffs for tool using individuals (in the drier caatinga habitat from 13 to 193 cal·ind(-1) ·month(-1) and in the wetter caatinga habitat from 805 to 1150 cal·ind(-1) ·month(-1) ) offer support for the opportunity model. Finally, our analyses indicate that consumption of six S. cearensis fruits would equal the daily requirements of capuchins for β-carotene, and the consumption of 1.22 g·day(-1) of M. dichotoma encased fruit or 1.0 g·day(-1) of S. cearensis can supply capuchin's daily requirement of vitamin C. So, specific nutritional requirements may play a role in explaining the continuous consumption of encased fruit and customary use of stones to crack open encased fruit. © 2011 Wiley Periodicals, Inc.

  6. Masking release by combined spatial and masker-fluctuation effects in the open sound field.

    PubMed

    Middlebrooks, John C

    2017-12-01

    In a complex auditory scene, signals of interest can be distinguished from masking sounds by differences in source location [spatial release from masking (SRM)] and by differences between masker-alone and masker-plus-signal envelopes. This study investigated interactions between those factors in release of masking of 700-Hz tones in an open sound field. Signal and masker sources were colocated in front of the listener, or the signal source was shifted 90° to the side. In Experiment 1, the masker contained a 25-Hz-wide on-signal band plus flanking bands having envelopes that were either mutually uncorrelated or were comodulated. Comodulation masking release (CMR) was largely independent of signal location at a higher masker sound level, but at a lower level CMR was reduced for the lateral signal location. In Experiment 2, a brief signal was positioned at the envelope maximum (peak) or minimum (dip) of a 50-Hz-wide on-signal masker. Masking was released in dip more than in peak conditions only for the 90° signal. Overall, open-field SRM was greater in magnitude than binaural masking release reported in comparable closed-field studies, and envelope-related release was somewhat weaker. Mutual enhancement of masking release by spatial and envelope-related effects tended to increase with increasing masker level.

  7. Research on Crack Formation in Gypsum Partitions with Doorway by Means of FEM and Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Kania, Tomasz; Stawiski, Bohdan

    2017-10-01

    Cracking damage in non-loadbearing internal partition walls is a serious problem that frequently occurs in new buildings within the short term after putting them into service or even before completion of construction. Damage in partition walls is sometimes so great that they cannot be accepted by their occupiers. This problem was illustrated by the example of damage in a gypsum partition wall with doorway attributed to deflection of the slabs beneath and above it. In searching for the deflection which causes damage in masonry walls, fracture mechanics applied to the Finite Element Method (FEM) have been used. For a description of gypsum behaviour, the smeared cracking material model has been selected, where stresses are transferred across the narrowly opened crack until its width reaches the ultimate value. Cracks in the Finite Element models overlapped the real damage observed in the buildings. In order to avoid cracks under the deflection of large floor slabs, the model of a wall with reinforcement in the doorstep zone and a 40 mm thick elastic junction between the partition and ceiling has been analysed.

  8. Fracture mechanics life analytical methods verification testing

    NASA Technical Reports Server (NTRS)

    Favenesi, J. A.; Clemmons, T. G.; Lambert, T. J.

    1994-01-01

    Verification and validation of the basic information capabilities in NASCRAC has been completed. The basic information includes computation of K versus a, J versus a, and crack opening area versus a. These quantities represent building blocks which NASCRAC uses in its other computations such as fatigue crack life and tearing instability. Several methods were used to verify and validate the basic information capabilities. The simple configurations such as the compact tension specimen and a crack in a finite plate were verified and validated versus handbook solutions for simple loads. For general loads using weight functions, offline integration using standard FORTRAN routines was performed. For more complicated configurations such as corner cracks and semielliptical cracks, NASCRAC solutions were verified and validated versus published results and finite element analyses. A few minor problems were identified in the basic information capabilities of the simple configurations. In the more complicated configurations, significant differences between NASCRAC and reference solutions were observed because NASCRAC calculates its solutions as averaged values across the entire crack front whereas the reference solutions were computed for a single point.

  9. An electro-mechanical impedance model of a cracked composite beam with adhesively bonded piezoelectric patches

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Cai, J. B.; Chen, W. Q.

    2011-01-01

    A model of a laminated composite beam including multiple non-propagating part-through surface cracks as well as installed PZT transducers is presented based on the method of reverberation-ray matrix (MRRM) in this paper. Toward determining the local flexibility characteristics induced by the individual cracks, the concept of the massless rotational spring is applied. A Timoshenko beam theory is then used to simulate the behavior of the composite beam with open cracks. As a result, transverse shear and rotatory inertia effects are included in the model. Only one-dimensional axial vibration of the PZT wafer is considered and the imperfect interfacial bonding between PZT patches and the host beam is further investigated based on a Kelvin-type viscoelastic model. Then, an accurate electro-mechanical impedance (EMI) model can be established for crack detection in laminated beams. In this model, the effects of various parameters such as the ply-angle, fibre volume fraction, crack depth and position on the EMI signatures are highlighted. Furthermore, comparison with existent numerical results is presented to validate the present analysis.

  10. Isolated Mesoporous Microstructures Prepared by Stress Localization-Induced Crack Manipulation.

    PubMed

    Wooh, Sanghyuk; Lee, Soojin; Lee, Yunchan; Ryu, Ji Ho; Lee, Won Bo; Yoon, Hyunsik; Char, Kookheon

    2016-09-22

    Cracks observed in brittle materials are mostly regarded as defects or failures. However, they can be a valuable tool when implemented in a controlled way. Here, we introduce a strategy to control the crack propagation of mesoporous micropatterns (prisms and pyramids), which leads to the isolation of well-defined microstructures. Mesoporous micropatterns were fabricated by the soft imprinting technique with wet TiO 2 nanoparticle (NP) pastes, followed by sintering to remove organic components. Since the volume of the paste significantly shrinks during the sintering step, stress is localized at the edge of micropatterns, in good agreement with finite element method simulations, creating well-defined cracks and their propagation. It was demonstrated that the degree of stress localization is determined by the thickness of residual layers, NP size, and heating rate. After controlled crack propagation and delamination of microparticles from the substrates, mesoporous microwires and microparticles were successfully produced and functionalized from the isolated mesoporous prisms and pyramids. The method proposed in this study for controlled crack manipulation and delamination opens a door for straightforward and economical fabrication of well-defined mesoporous microparticles.

  11. Opening Up Without Cracking Up.

    ERIC Educational Resources Information Center

    Erickson, Maggie

    In recognition of the fact that there are individual differences and preferences among teachers, the teachers at the Las Posas School in Camarillo, California were given the opportunity to use the methods they found most comfortable. This resulted in a variety of open classroom situations, with alternatives for parents, students, and teachers.…

  12. Removing obstacles for pavement cost reduction by examining early age opening requirements : material properties.

    DOT National Transportation Integrated Search

    2015-08-01

    The risk of cracking in a concrete pavement that is opened to traffic at early ages is related to the maximum tensile stress, , that : develops in the pavement and its relationship to the measured, age dependent, flexural strength of a beam, fr . T...

  13. Three-dimensional analysis of chevron-notched specimens by boundary integral method

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Ghosn, L.

    1983-01-01

    The chevron-notched short bar and short rod specimens was analyzed by the boundary integral equations method. This method makes use of boundary surface elements in obtaining the solution. The boundary integral models were composed of linear triangular and rectangular surface segments. Results were obtained for two specimens with width to thickness ratios of 1.45 and 2.00 and for different crack length to width ratios ranging from 0.4 to 0.7. Crack opening displacement and stress intensity factors determined from displacement calculations along the crack front and compliance calculations were compared with experimental values and with finite element analysis.

  14. An analytical approach for the calculation of stress-intensity factors in transformation-toughened ceramics

    NASA Astrophysics Data System (ADS)

    Müller, W. H.

    1990-12-01

    Stress-induced transformation toughening in Zirconia-containing ceramics is described analytically by means of a quantitative model: A Griffith crack which interacts with a transformed, circular Zirconia inclusion. Due to its volume expansion, a ZrO2-particle compresses its flanks, whereas a particle in front of the crack opens the flanks such that the crack will be attracted and finally absorbed. Erdogan's integral equation technique is applied to calculate the dislocation functions and the stress-intensity-factors which correspond to these situations. In order to derive analytical expressions, the elastic constants of the inclusion and the matrix are assumed to be equal.

  15. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.

    1985-01-01

    The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.

  16. Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite

    USGS Publications Warehouse

    Behar, F.; Lorant, F.; Lewan, M.

    2008-01-01

    The aim of this work is to follow the generation of NSO compounds during the artificial maturation of an immature Type II kerogen and a Type III lignite in order to determine the different sources of the petroleum potential during primary cracking. Experiments were carried out in closed system pyrolysis in the temperature range from 225 to 350 ??C. Two types of NSOs were recovered: one is soluble in n-pentane and the second in dichloromethane. A kinetic scheme was optimised including both kerogen and NSO cracking. It was validated by complementary experiments carried out on isolated asphaltenes generated from the Type II kerogen and on the total n-pentane and DCM extracts generated from the Type III lignite. Results show that kerogen and lignite first decompose into DCM NSOs with minor generation of hydrocarbons. Then, the main source of petroleum potential originates from secondary cracking of both DCM and n-pentane NSOs through successive decomposition reactions. These results confirm the model proposed by Tissot [Tissot, B., 1969. Premie??res donne??es sur les me??canismes et la cine??tique de la formation du pe??trole dans les bassins se??dimentaires. Simulation d'un sche??ma re??actionnel sur ordinateur. Oil and Gas Science and Technology 24, 470-501] in which the main source of hydrocarbons is not the insoluble organic matter, but the NSO fraction. As secondary cracking of the NSOs largely overlaps that of the kerogen, it was demonstrated that bulk kinetics in open system is a result of both kerogen and NSO cracking. Thus, another kinetic scheme for primary cracking in open system was built as a combination of kerogen and NSO cracking. This new kinetic scheme accounts for both the rate and amounts of hydrocarbons generated in a closed pyrolysis system. Thus, the concept of successive steps for hydrocarbon generation is valid for the two types of pyrolysis system and, for the first time, a common kinetic scheme is available for extrapolating results to natural case studies. ?? 2007 Elsevier Ltd. All rights reserved.

  17. Rare normal faulting earthquake induced by subduction megaquake: example from 2011 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Sugito, N.; Echigo, T.; Sato, H.; Suzuki, T.

    2012-04-01

    A month after March 11 gigantic M9.0 Tohoku-oki earthquake, M7.0 intraplate earthquake occurred at a depth of 5 km on April 11 beneath coastal area of near Iwaki city, Fukushima prefecture. Focal mechanism of the mainshock indicates that this earthquake is a normal faulting event. Based on field reconnaissance and LIDAR mapping by Geospatial Information Authority of Japan, we recognized coseismic surface ruptures, presumably associated with the main shock. Coseismic surface ruptures extend NNW for about 11 km in a right-stepping en echelon manner. Geomorphic expressions of these ruptures commonly include WWS-facing normal fault scarps and/or drape fold scarp with open cracks on their crests, on the hanging wall sides of steeply west-dipping normal fault planes subparallel to Cretaceous metamorphic rocks. Highest topographic scarp height is about 2.3 m. In this study we introduce preliminary results of a trenching survey across the coseismic surface ruptures at Shionohira site, to resolve timing of paleoseismic events along the Shionohira fault. Trench excavations were carried out at two sites (Ichinokura and Shionohira sites) in Iwaki, Fukushima. At Shionohira site a 2-m-deep trench was excavated across the coseismic fault scarp emerged on the alluvial plain on the eastern flank of the Abukuma Mountains. On the trench walls we observed pairs of steeply dipping normal faults that deform Neogene to Paleogene conglomerates and unconformably overlying, late Quaternary to Holocene fluvial units. Sense of fault slip observed on the trench walls (large dip-slip with small sinistral component) is consistent with that estimated from coseismic surface ruptures. Fault throw estimated from separation of piercing points on lower Unit I and vertical structural relief on folded upper Unit I is consistent with topographic height of the coseismic fault scarp at the trench site. In contrast, vertical separation of Unit II, unconformably overlain by Unit I, is measured as about 1.5 m, twice as large as coseismic vertical component of slip, indicative of penultimate seismic event prior to the 2011 earthquake. Abrupt thickening of overlying Unit I may also suggest preexisting topographic relief prior to its deposition. Radiocarbon dating of charred materials included in event horizons and tephrostratigraphy at two sites indicate that penultimate event prior to the 2011 event might occurred at about 40 ka. This normal fault earthquake is in contrast to compressional or neutral stress regimes in Tohoku region before the 2011 megaquake and rarity of the normal faulting earthquake inferred from these paleoseismic studies may reflect its mechanical relation to the gigantic megathrust earthquakes, such as unusual, enhanced extensional stress on the hangingwall block induced by mainshock and/or postseismic creep after the M~9 earthquake.

  18. Manufacturing and characterization of a ceramic single-use microvalve

    NASA Astrophysics Data System (ADS)

    Khaji, Z.; Klintberg, L.; Thornell, G.

    2016-09-01

    We present the manufacturing and characterization of a ceramic single-use microvalve with the potential to be integrated in lab-on-a-chip devices, and forsee its utilization in space and other demanding applications. A 3 mm diameter membrane was used as the flow barrier, and the opening mechanism was based on cracking the membrane by inducing thermal stresses on it with fast and localized resistive heating. Four manufacturing schemes based on high-temperature co-fired ceramic technology were studied. Three designs for the integrated heaters and two thicknesses of 40 and 120 μm for the membranes were considered, and the heat distribution over their membranes, the required heating energies, their opening mode, and the flows admitted through were compared. Furthermore, the effect of applying  +1 and  -1 bar pressure difference on the membrane during cracking was investigated. Thick membranes demonstrated unpromising results for low-pressure applications since the heating either resulted in microcracks or cracking of the whole chip. Because of the higher pressure tolerance of the thick membranes, the design with microcracks can be considered for high-pressure applications where flow is facilitated anyway. Thin membranes, on the other hand, showed different opening sizes depending on heater design and, consequently, heat distribution over the membranes, from microcracks to holes with sizes of 3-100% of the membrane area. For all the designs, applying  +1 bar over pressure contributed to bigger openings, whereas  -1 bar pressure difference only did so for one of the designs, resulting in smaller openings for the other two. The energy required for breaking these membranes was a few hundred mJ with no significant dependence on design and applied pressure. The maximum sustainable pressure of the valve for the current design and thin membranes was 7 bar.

  19. Brittle Fracture Mechanics of Snow : In Situ Testing and Distinct Element Modeling

    NASA Astrophysics Data System (ADS)

    Faillettaz, J.; Daudon, D.; Louchet, F.

    A snow slab avalanche release usually results from the rupture of the snow cover at the interface between an upper layer (slab) and an underlying substrate. Amazingly, the models proposed so far to predict this kind of rupture were only based on continuum mechanics, as they did not take into account the existing cracks or cohesion defects at the interface between the two layers, and their possible unstable propagation that eventually triggers the avalanche. This is why the present work, essentially devoted to human triggered avalanches, is based instead on Griffith's fracture approach, widely used in modelling brittle fracture of materials. The possible rupture scenario involves a propagation in a shear mode of a "basal crack" nucleated and gradually grown at the interface by the skier's weight, followed by a mode I opening and propagation of a "crown crack" at the top of the sheared zone. Different avalanche sizes are predicted according whether the basal crack propagation reaches or not the Griffith's instabil- ity size before crown crack opening (Louchet 2000). Accurate predictions therefore require a precise knowledge of snow toughness values in both modes. A theoretical estimation of toughness considering snow as an ice foam was proposed by Kirchner and Michot (2000), but the question of whether these results may be extended to an assembly of sintered grains is still open. A mode I toughness measurement of snow was also published for the first time by Kirchner and Michot on samples gathered in the Vosges range. In the present work, we developed an experimental set similar to Michot's, in order to measure mode I toughness: a vertical crack of increasing size is gradually machined from the top surface in an horizontal snow beam until failure takes place under its own weight. The toughness value is computed from the snow weight and the crack length at the onset of rapid crack propagation. A similar device was designed for mode II testing, but is still under development. The experimental cam- paign carried out in the Alps during the 2000-2001 winter on homogeneous sintered snow with a density of 200 kg/m3 (typical of a snow slab) gave results of the same or- der of magnitude as Michot's. A numerical modeling of these toughness experiments was performed using a distinct element code, considering snow as a cohesive granu- lar material. Both crack propagation and rupture patterns are in close agreement with experiments. References: Kirchner, Michot, Suzuki 2000 Fracture thoughness of snow in tension 1 Philisophical Magazine A, vol 80,N5, p1265-1272. Louchet 2001,A transition in dry snow slab avalanche triggering modes, Annales de glaciologie, vol 32,Symphosium on Snow, Avalanches and Impact of the Frest Cover, Innsbruck,Austria,22-26 may 2000, p2285-289 2

  20. A linear least squares approach for evaluation of crack tip stress field parameters using DIC

    NASA Astrophysics Data System (ADS)

    Harilal, R.; Vyasarayani, C. P.; Ramji, M.

    2015-12-01

    In the present work, an experimental study is carried out to estimate the mixed-mode stress intensity factors (SIF) for different cracked specimen configurations using digital image correlation (DIC) technique. For the estimation of mixed-mode SIF's using DIC, a new algorithm is proposed for the extraction of crack tip location and coefficients in the multi-parameter displacement field equations. From those estimated coefficients, SIF could be extracted. The required displacement data surrounding the crack tip has been obtained using 2D-DIC technique. An open source 2D DIC software Ncorr is used for the displacement field extraction. The presented methodology has been used to extract mixed-mode SIF's for specimen configurations like single edge notch (SEN) specimen and centre slant crack (CSC) specimens made out of Al 2014-T6 alloy. The experimental results have been compared with the analytical values and they are found to be in good agreement, thereby confirming the accuracy of the algorithm being proposed.

  1. An Effective Modal Approach to the Dynamic Evaluation of Fracture Toughness of Quasi-Brittle Materials

    NASA Astrophysics Data System (ADS)

    Ferreira, L. E. T.; Vareda, L. V.; Hanai, J. B.; Sousa, J. L. A. O.; Silva, A. I.

    2017-05-01

    A modal dynamic analysis is used as the tool to evaluate the fracture toughness of concrete from the results of notched-through beam tests. The dimensionless functions describing the relation between the frequencies and specimen geometry used for identifying the variation in the natural frequency as a function of crack depth is first determined for a 150 × 150 × 500-mm notched-through specimen. The frequency decrease resulting from the propagating crack is modeled through a modal/fracture mechanics approach, leading to determination of an effective crack length. This length, obtained numerically, is used to evaluate the fracture toughness of concrete, the critical crack mouth opening displacements, and the brittleness index proposed. The methodology is applied to tests performed on high-strength concrete specimens. The frequency response for each specimen is evaluated before and after each crack propagation step. The methodology is then validated by comparison with results from the application of other methodologies described in the literature and suggested by RILEM.

  2. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y. -D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, delta J(sub eff) as the governing parameter. The methodology contains original and literature J and delta J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  3. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y.-D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, (Delta)J(sub eff), as the governing parameter. The methodology contains original and literature J and (Delta)J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  4. High Resolution Millimeter Wave Detection of Vertical Cracks in the Space Shuttle External Tank Spray-On-Foam Insulation (SOFI)

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Zoughi, R.; Hepburn, F.

    2006-01-01

    Space Shuttle Columbia s catastrophic failure, the separation of a piece of spray-on-foam insulation (SOFI) from the external tank (ET) in the Space Shuttle Discovery s flight in 2005 and crack detected in its ET foam prior to its successful launch in 2006 emphasize the need for effective nondestructive methods for inspecting the shuttle ET SOFI. Millimeter wave nondestructive testing methods have been considered as potential and effective inspection tools for evaluating the integrity of the SOFI. This paper presents recent results of an investigation for the purpose of detecting vertical cracks in SOFI panels using a focused millimeter wave (150 GHz) reflectometer. The presented images of the SOFI panels show the capability of this reflectometer for detecting tight vertical cracks (also as a function of crack opening dimension) in exposed SOFI panels and while covered by a piece of SOFI ramp simulating a more realistic and challenging situation.

  5. Advanced quantitative magnetic nondestructive evaluation methods - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Barton, J. R.; Kusenberger, F. N.; Beissner, R. E.; Matzkanin, G. A.

    1979-01-01

    The paper reviews the scale of fatigue crack phenomena in relation to the size detection capabilities of nondestructive evaluation methods. An assessment of several features of fatigue in relation to the inspection of ball and roller bearings suggested the use of magnetic methods; magnetic domain phenomena including the interaction of domains and inclusions, and the influence of stress and magnetic field on domains are discussed. Experimental results indicate that simplified calculations can be used to predict many features of these results; the data predicted by analytic models which use finite element computer analysis predictions do not agree with respect to certain features. Experimental analyses obtained on rod-type fatigue specimens which show experimental magnetic measurements in relation to the crack opening displacement and volume and crack depth should provide methods for improved crack characterization in relation to fracture mechanics and life prediction.

  6. Numerical calibration of the stable poisson loaded specimen

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Calomino, Anthony M.; Brewer, Dave N.

    1992-01-01

    An analytical calibration of the Stable Poisson Loaded (SPL) specimen is presented. The specimen configuration is similar to the ASTM E-561 compact-tension specimen with displacement controlled wedge loading used for R-Curve determination. The crack mouth opening displacements (CMOD's) are produced by the diametral expansion of an axially compressed cylindrical pin located in the wake of a machined notch. Due to the unusual loading configuration, a three-dimensional finite element analysis was performed with gap elements simulating the contact between the pin and specimen. In this report, stress intensity factors, CMOD's, and crack displacement profiles are reported for different crack lengths and different contacting conditions. It was concluded that the computed stress intensity factor decreases sharply with increasing crack length, thus making the SPL specimen configuration attractive for fracture testing of brittle, high modulus materials.

  7. Analytical stress intensity solution for the Stable Poisson Loaded specimen

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Calomino, Anthony M.; Brewer, David N.

    1993-01-01

    An analytical calibration of the Stable Poisson Loaded (SPL) specimen is presented. The specimen configuration is similar to the ASTM E-561 compact-tension specimen with displacement controlled wedge loading used for R-curve determination. The crack mouth opening displacements (CMODs) are produced by the diametral expansion of an axially compressed cylindrical pin located in the wake of a machined notch. Due to the unusual loading configuration, a three-dimensional finite element analysis was performed with gap elements simulating the contact between the pin and specimen. In this report, stress intensity factors, CMODs, and crack displacement profiles, are reported for different crack lengths and different contacting conditions. It was concluded that the computed stress intensity factor decreases sharply with increasing crack length thus making the SPL specimen configuration attractive for fracture testing of brittle, high modulus materials.

  8. Understanding and Exploiting the Effects of Loading on Ultrasonic Sensing Systems for Structural Health Monitoring

    DTIC Science & Technology

    2012-02-01

    method to image fatigue cracks without requiring damage-free baseline measurements. Load-differential imaging maps changes in ultrasonic signals...caused by a small increase in applied load to an image, which enables detecting and locating fatigue cracks that open under load and thus distinguishing...them from other load-dependent effects. This method was successfully demonstrated in the laboratory during fatigue tests on a variety of aluminum

  9. A Computational Efficient Physics Based Methodology for Modeling Ceramic Matrix Composites (Preprint)

    DTIC Science & Technology

    2011-11-01

    elastic range, and with some simple forms of progressing damage . However, a general physics-based methodology to assess the initial and lifetime... damage evolution in the RVE for all possible load histories. Microstructural data on initial configuration and damage progression in CMCs were...the damaged elements will have changed, hence, a progressive damage model. The crack opening for each crack type in each element is stored as a

  10. FUNDAMENTAL PROPERTIES OF ULTRA HIGH PERFORMANCE-STRAIN HARDENING CEMENTITIOUS COMPOSITES AND USAGE FOR REPAIR

    NASA Astrophysics Data System (ADS)

    Kunieda, Minoru; Shimizu, Kosuke; Eguchi, Teruyuki; Ueda, Naoshi; Nakamura, Hikaru

    This paper presents the fundamental properties of Ultra High Performance-Strain Hardening Cementitious Composites (UHP-SHCC), which were depeloped for repair applications. In particular, mechanical properties such as tensile response, shrinkage and bond strength were investigated experimentally. Protective performance of the material such as air permeability, water permeability and penetration of chloride ion was also confirmed comparing to that of ordinary concrete. This paper also introduces the usage of the material in repair of concrete st ructures. Laboratory tests concerining the deterioration induced by corrosion were conducted. The UHP-SHCC that coverd the RC beam resisted not only crack opening along the rebar due to corrosion but also crack opening due to loading tests.

  11. 40 CFR 63.1043 - Standards-Separator floating roof.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary seal shall be mounted above the primary seal and cover the annular space between the floating roof... visible cracks, holes, gaps, or other open spaces in the closure device or between the perimeter of the... membrane fabric cover that covers at least 90 percent of the area of the opening or a flexible fabric...

  12. 40 CFR 63.1043 - Standards-Separator floating roof.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... secondary seal shall be mounted above the primary seal and cover the annular space between the floating roof... visible cracks, holes, gaps, or other open spaces in the closure device or between the perimeter of the... membrane fabric cover that covers at least 90 percent of the area of the opening or a flexible fabric...

  13. 76 FR 58098 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    .... ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all The Boeing... inspections for cracks on the area around certain fasteners of the access opening doubler on the left and... area around certain fasteners of the access opening doubler on the left and right wing center spar...

  14. Kinematics and thermal conditions in the permafrost-affected rockwalls of the Aiguille du Midi (3842 m a.s.l., Mont Blanc massif, France)

    NASA Astrophysics Data System (ADS)

    Ravanel, Ludovic; Grangier, Germain; Weber, Samuel; Beutel, Jan; Magnin, Florence; Gruber, Stefan; Deline, Philip

    2016-04-01

    Processes that control climate-dependent rockfall from permafrost-affected rock slopes are still poorly understood. In this study, we present the results of a Wireless Sensor Network, integrated within the Swiss project PermaSense and developed in 2012, to measure rock temperature and geotechnical parameters in the steep rockwalls of the Aiguille du Midi (AdM, 3842 m a.s.l., Mont Blanc massif, France). Accessible year round by cable car, the AdM comprises two main peaks: (i) the Piton Nord with the cable car arrival station, where 4 crack-meters are placed on four major fractures, and (ii) the Piton Central with many touristic infrastructure, equipped with three 10-m-deep boreholes with 15 temperatures sensors since 2009, and where 2 crack-meters are installed along a major fracture. Three major kinematic regimes are observed: (i) opening of clefts when the rock temperature becomes positive, followed by closing during the cold period, (ii) summer opening continued by a winter opening, and (iii) closing during the warm period followed by opening in winter.

  15. Experimental and numerical study of hydraulic fracture geometry in shale formations with complex geologic conditions

    NASA Astrophysics Data System (ADS)

    Ma, Xinfang; Zhou, Tong; Zou, Yushi

    2017-05-01

    Strike-slip fault geostress and dipping laminated structures in Lujiaping shale formation typically result in difficultly predicting hydraulic fracture (HF) geometries. In this study, a novel 3D fracture propagation model based on discrete element method (DEM) is established. A series of simulations is performed to illustrate the influence of vertical stress difference (△σv = σv-σh), fluid viscosity, and injection rate, on HF growth geometry in the dipping layered formation. Results reveal that the fracturing fluid can easily infiltrate the dipping bedding plane (BP) interfaces with low net pressure for △σv = 1 MPa. HF height growth is also restricted. With increased △σv, fracture propagation in the vertical direction is enhanced, and a fracture network is formed by VF and partially opened dipping BPs. However, it is likely to create simple VF for △σv = 20 MPa. Appropriately increasing fracturing fluid viscosity and injection rate is conductive to weakening the containment effect of BPs on HF growth by increasing the fluid net pressure. However, no indication is found on whether a higher fracturing fluid viscosity is better. Higher viscosity can reduce the activation of BPs, so a stimulated reservoir volume is not necessarily increased. All these results can serve as theoretical guidance for the optimization of fracturing treatments in Lujiaping shale formation.

  16. Application of fiber bridging models to fatigue crack growth in unidirectional titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Johnson, W. S.

    1992-01-01

    Several fiber bridging models were reviewed and applied to study the matrix fatigue crack growth behavior in center notched (0)(sub 8) SCS-6/Ti-15-3 and (0)(sub 4) SCS-6/Ti-6Al-4V laminates. Observations revealed that fatigue damage consisted primarily of matrix cracks and fiber matrix interfacial failure in the (0)(sub 8) SCS-6/Ti-15-3 laminates. Fiber-matrix interface failure included fracture of the brittle reaction zone and cracking between the two carbon rich fiber coatings. Intact fibers in the wake of the matrix cracks reduce the stress intensity factor range. Thus, an applied stress intensity factor range is inappropriate to characterize matrix crack growth behavior. Fiber bridging models were used to determine the matrix stress intensity factor range in titanium metal matrix composites. In these models, the fibers in the wake of the crack are idealized as a closure pressure. An unknown constant frictional shear stress is assumed to act along the debond or slip length of the bridging fibers. The frictional shear stress was used as a curve fitting parameter to available data (crack growth data, crack opening displacement data, and debond length data). Large variations in the frictional shear stress required to fit the experimental data indicate that the fiber bridging models in their present form lack predictive capabilities. However, these models provide an efficient and relatively simple engineering method for conducting parametric studies of the matrix growth behavior based on constituent properties.

  17. Surface cracks as a long-term record of Andean plate boundary segmentation

    NASA Astrophysics Data System (ADS)

    Loveless, J. P.; Allmendinger, R. W.; Pritchard, M. E.

    2007-12-01

    Meter-scale surface cracks throughout the northern Chilean and southern Peruvian forearcs provide a long-term record of seismic segmentation along the Andean plate boundary. The cracks, mapped on high-resolution satellite imagery, show strong preferred orientations over large regions and the mean strikes of cracks vary systematically as a function of position along the margin. The spatial scale of this variation suggests that stress fields operating with similar dimensions, namely those produced by strong subduction zone earthquakes, are primarily responsible for crack evolution. The orientations of cracks are consistent with the static and dynamic coseismic stress fields calculated for several recent and historical earthquakes on distinct segments of the subduction interface. Field observations indicate that the cracks have experienced multiple episodes of opening and proximal age evidence suggests that they represent deformation as old as several hundred thousand years. We invert the crack orientation data to solve for plausible slip distributions on the Iquique, Chile segment of the margin (19°--23° S), which last ruptured in a M~8--9 event in 1877. We find that concentrations of coseismic slip resolved by the inversion coincide spatially with negative gravity anomalies, consistent with recent studies correlating subduction zone earthquake slip with forearc structure. These results suggest that distinct seismic segments or asperities on the subduction interface define characteristic earthquakes with rupture dimensions and magnitudes that are similar over many seismic cycles.

  18. Surface cracks as a long-term record of Andean plate boundary segmentation

    NASA Astrophysics Data System (ADS)

    Loveless, J. P.; Allmendinger, R. W.; Pritchard, M. E.

    2004-12-01

    Meter-scale surface cracks throughout the northern Chilean and southern Peruvian forearcs provide a long-term record of seismic segmentation along the Andean plate boundary. The cracks, mapped on high-resolution satellite imagery, show strong preferred orientations over large regions and the mean strikes of cracks vary systematically as a function of position along the margin. The spatial scale of this variation suggests that stress fields operating with similar dimensions, namely those produced by strong subduction zone earthquakes, are primarily responsible for crack evolution. The orientations of cracks are consistent with the static and dynamic coseismic stress fields calculated for several recent and historical earthquakes on distinct segments of the subduction interface. Field observations indicate that the cracks have experienced multiple episodes of opening and proximal age evidence suggests that they represent deformation as old as several hundred thousand years. We invert the crack orientation data to solve for plausible slip distributions on the Iquique, Chile segment of the margin (19°--23° S), which last ruptured in a M~8--9 event in 1877. We find that concentrations of coseismic slip resolved by the inversion coincide spatially with negative gravity anomalies, consistent with recent studies correlating subduction zone earthquake slip with forearc structure. These results suggest that distinct seismic segments or asperities on the subduction interface define characteristic earthquakes with rupture dimensions and magnitudes that are similar over many seismic cycles.

  19. Acrylate-endcapped polymer precursors: effect of chemical composition on the healing efficiency of active concrete cracks

    NASA Astrophysics Data System (ADS)

    Araújo, Maria; Van Tittelboom, Kim; Dubruel, Peter; Van Vlierberghe, Sandra; De Belie, Nele

    2017-05-01

    The repair of cracks in concrete is an unavoidable practice since these cracks endanger the durability of the structure. Inspired by nature, the self-healing concept has been widely investigated in concrete as a promising solution to solve the limitations of manual repair. This self-healing functionality may be realized by the incorporation of encapsulated healing agents in concrete. Depending on the nature of the cracks, different healing agents can be used. For structures subjected to repeated loads, elastic materials should be considered to cope with the crack opening and closing movement. In this study, various acrylate-endcapped polymer precursors were investigated for their suitability to heal active cracks. The strain capacity of the polymers was assessed by means of visual observation together with water flow tests after widening of the healed cracks in a stepwise manner. A strain of at least 50% could be sustained by epoxy- and siloxane-based healing agents. For polyester- and urethane/poly(propylene glycol)-based precursors, failure occurred at 50% elongation due to detachment of the polymer from the crack walls. However, for urethane/poly(propylene glycol)-based healing agent, debonding was limited to some local spots. The resistance of the polymerized healing agents against degradation in the strong alkaline environment characteristic for concrete has also been evaluated, with the urethane/poly(propylene glycol)-based precursor showing the best performance to withstand degradation.

  20. Effects of karst and geologic structure on the circulation of water and permeability in carbonate aquifers

    USGS Publications Warehouse

    Stringfield, V.T.; Rapp, J.R.; Anders, R.B.

    1979-01-01

    The results of the natural processes caused by solution and leaching of limestone, dolomite, gypsum, salt and other soluble rocks, is known as karst. Development of karst is commonly known as karstification, which may have a pronounced effect on the topography, hydrology and environment, especially where such karst features as sinkholes and vertical solution shafts extend below the land surface and intersect lateral solution passages, cavities, caverns and other karst features in carbonate rocks. Karst features may be divided into two groups: (1) surficial features that do not extend far below the surface; and (2) karst features such as sinkholes that extend below the surface and affect the circulation of water below. The permeability of the most productive carbonate aquifers is due chiefly to enlargement of fractures and other openings by circulation of water. Important controlling factors responsible for the development of karst and permeability in carbonate aquifers include: (1) climate, topography, and presence of soluble rocks; (2) geologic structure; (3) nature of underground circulation; and (4) base level. Another important factor is the condition of the surface of the carbonate rocks at the time they are exposed to meteoric water. A carbonate rock surface, with soil or relatively permeable, less soluble cover, is more favorable for initiation of karstification and solution than bare rocks. Water percolates downward through the cover to the underlying carbonate rocks instead of running off on the surface. Also, the water becomes more corrosive as it percolates through the permeable cover to the underlying carbonate rocks. Where there is no cover or the cover has been removed, the carbonate rocks become case hardened and resistant to erosion. However, in regions underlain not only by carbonate rocks but also by beds of anhydrite, gypsum and salt, such as the Hueco Plateau in southeastern New Mexico, subsurface solution may occur where water without natural acids moves down from bare rock surfaces through cracks to the beds that are more soluble than carbonate rocks. For example, in the area of Carlsbad Caverns in southeastern New Mexico, much of the water responsible for solution that formed the caverns apparently entered the groundwater system through large open fractures and did not form sinkhole topography. East of the Carlsbad Caverns, however, in the Pecos River Valley where the carbonate rocks are overlain by the less soluble Ogallala Formation of Late Tertiary age, solution began along escarpments as the Pecos River and its tributaries cut through the less soluble cover. As these escarpments retreated, sinkholes and other karst features developed. Joints or fractures are essential for initiation of downward percolation of water in compact carbonate rocks such as some Paleozoic limestone in which there is no intergranular permeability. Also joints or fractures and bedding planes may be essential in the initiation of lateral movement of water in the zone of saturation. Where conditions of recharge and discharge are favorable, groundwater may move parallel to the dip. However, the direction of movement of water in most carbonate rocks is not necessarily down dip or parallel to the dip. The general direction of movement of both surface and groundwater may be parallel to the strike in a breached anticline. Faults may restrict the lateral movement of water, especially if water-bearing beds are faulted against relatively impervious beds. Conversely, some fault may serve as avenues through which water may move as, for example, in the Cretaceous Edwards aquifer in the San Antonio area, Texas. Karst aquifers, chiefly carbonate rocks, may be placed in three groups according to water-bearing capacity. Water in aquifers of group 1 occurs chiefly in joints, fractures, and other openings that have not been enlarged by solution. The yield of wells is small. Aquifers in group 2, with low to intermediate yields, are those in which

  1. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.

    PubMed

    Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard

    2017-01-01

    Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.

  2. Comparison of Visual and Acoustic Emission Observations in a Four Point Bending Experiment on Barre Granite

    NASA Astrophysics Data System (ADS)

    Li, Bing Qiuyi; Einstein, Herbert H.

    2017-09-01

    We present an experimental study in which a pre-notched specimen of Barre Granite was subjected to four point bending under crack mouth opening displacement control. The experimental observations consisted of load-displacement measurements, acoustic emissions, and photography on a macroscopic ( cm) as well as microscopic ( μm) scale. These observations were compared and analysed to better understand process zone development and crack propagation. Load-displacement data showed that the load reaches its maximum at crack initiation, and the machine input work is constant while the crack propagates. AE moment magnitudes between Mw = -6 to -10 were observed, and focal mechanisms consisted of both shear and tensile components. During process zone development, AE formed a large cloud of events located near the notch tip and then tended to occur away from the notch tip as the crack propagated. Image analysis at the microscopic scale showed that microcracks formed and coalesced during process zone development; specifically, the microcracks initiated in tension and then propagated as a series of en-echelon cracks. In general, the synthesis of the three observations showed that a wider bulb of activity at lower energy tended to occur during process zone development, while crack propagation tended to be more spatially concentrated and contained higher energy.

  3. Fracture mechanics analysis for various fiber/matrix interface loadings

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Crews, J. H., Jr.

    1991-01-01

    Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, thereby avoiding frictional effects. A F/M interface toughness test based on this configuration would provide data for K(sub I)/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis.

  4. Fracture mechanics analysis for various fiber/matrix interface loadings

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Crews, John H., Jr.

    1992-01-01

    Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, theory avoiding fractional effects. A F/M interface toughness test based on this configuration would provide data for K(sub I/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis.

  5. Fracture mechanics analysis for various fiber/matrix interface loadings

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Crews, J. H., Jr.

    1991-01-01

    Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, thereby avoiding frictional effects. An F/M interface toughness test based on this configuration would provide data for K(sub I)/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis.

  6. An elastic failure model of indentation damage. [of brittle structural ceramics

    NASA Technical Reports Server (NTRS)

    Liaw, B. M.; Kobayashi, A. S.; Emery, A. F.

    1984-01-01

    A mechanistically consistent model for indentation damage based on elastic failure at tensile or shear overloads, is proposed. The model accommodates arbitrary crack orientation, stress relaxation, reduction and recovery of stiffness due to crack opening and closure, and interfacial friction due to backward sliding of closed cracks. This elastic failure model was implemented by an axisymmetric finite element program which was used to simulate progressive damage in a silicon nitride plate indented by a tungsten carbide sphere. The predicted damage patterns and the permanent impression matched those observed experimentally. The validation of this elastic failure model shows that the plastic deformation postulated by others is not necessary to replicate the indentation damage of brittle structural ceramics.

  7. Female Reproductive Tissues Are the Primary Target of Agrobacterium-Mediated Transformation by the Arabidopsis Floral-Dip Method1

    PubMed Central

    Desfeux, Christine; Clough, Steven J.; Bent, Andrew F.

    2000-01-01

    The floral-dip method for Agrobacterium-mediated transformation of Arabidopsis allows efficient plant transformation without need for tissue culture. To facilitate use with other plant species, we investigated the mechanisms that underlie this method. In manual outcrossing experiments, application of Agrobacterium tumefaciens to pollen donor plants did not produce any transformed progeny, whereas application of Agrobacterium to pollen recipient plants yielded transformants at a rate of 0.48%. Agrobacterium strains with T-DNA carrying gusA (encoding β-glucuronidase [GUS]) under the control of 35S, LAT52, or ACT11 promoters revealed delivery of GUS activity to developing ovules, whereas no GUS staining of pollen or pollen tubes was observed. Transformants derived from the same seed pod contained independent T-DNA integration events. In Arabidopsis flowers, the gynoecium develops as an open, vase-like structure that fuses to form closed locules roughly 3 d prior to anthesis. In correlation with this fact, we found that the timing of Agrobacterium infection was critical. Transformants were obtained and GUS staining of ovules and embryo sacs was observed only if the Agrobacterium were applied 5 d or more prior to anthesis. A 6-fold higher rate of transformation was obtained with a CRABS-CLAW mutant that maintains an open gynoecium. Our results suggest that ovules are the site of productive transformation in the floral-dip method, and further suggest that Agrobacterium must be delivered to the interior of the developing gynoecium prior to locule closure if efficient transformation is to be achieved. PMID:10889238

  8. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method.

    PubMed

    Desfeux, C; Clough, S J; Bent, A F

    2000-07-01

    The floral-dip method for Agrobacterium-mediated transformation of Arabidopsis allows efficient plant transformation without need for tissue culture. To facilitate use with other plant species, we investigated the mechanisms that underlie this method. In manual outcrossing experiments, application of Agrobacterium tumefaciens to pollen donor plants did not produce any transformed progeny, whereas application of Agrobacterium to pollen recipient plants yielded transformants at a rate of 0.48%. Agrobacterium strains with T-DNA carrying gusA (encoding beta-glucuronidase [GUS]) under the control of 35S, LAT52, or ACT11 promoters revealed delivery of GUS activity to developing ovules, whereas no GUS staining of pollen or pollen tubes was observed. Transformants derived from the same seed pod contained independent T-DNA integration events. In Arabidopsis flowers, the gynoecium develops as an open, vase-like structure that fuses to form closed locules roughly 3 d prior to anthesis. In correlation with this fact, we found that the timing of Agrobacterium infection was critical. Transformants were obtained and GUS staining of ovules and embryo sacs was observed only if the Agrobacterium were applied 5 d or more prior to anthesis. A 6-fold higher rate of transformation was obtained with a CRABS-CLAW mutant that maintains an open gynoecium. Our results suggest that ovules are the site of productive transformation in the floral-dip method, and further suggest that Agrobacterium must be delivered to the interior of the developing gynoecium prior to locule closure if efficient transformation is to be achieved.

  9. An integrated structural and geochemical study of fracture aperture growth in the Campito Formation of eastern California

    NASA Astrophysics Data System (ADS)

    Doungkaew, N.; Eichhubl, P.

    2015-12-01

    Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.

  10. Reinforced Concrete Modeling

    DTIC Science & Technology

    1982-07-01

    micro- cracks within the material . This microcracking causes permanent deformation and a loss in stiffness similar to the strain hardening seen in metals...approached. Dilatation is caused by the tendency of shear stresses to open cracks in a microcracked, brittle material . 10 1.2 I , e3 3 1.0 F i ,S22 e...situation would be for a user to compromise some accuracy based on what features of a material are of the most importance for the analysis involved

  11. Concurrent Structural Fatigue Damage Prognosis Under Uncertainty

    DTIC Science & Technology

    2014-04-30

    stage is manufactured by Ernest F. Fullam Inc., which is now merged to MTI Instruments Inc.. The maximum gage length between mechanical grips is...closure measurement techniques, Vol. 31, Issue 4, 1988, pp. 703–712 23. M.N. James, M.N. Pacey, L.W. Wei,E.A. Patterson , Characterisation of...34. International Journal of Fatigue, 1999, pp. S35–S46. 39. Newman JC., Jr ."A crack opening stress equation for fatigue crack growth" International

  12. Intermediate temperature grain boundary embrittlement in nickel-base weld metals

    NASA Astrophysics Data System (ADS)

    Nissley, Nathan Eugene

    The ductility-dip cracking (DDC) susceptibility of NiCrFe filler metals was evaluated using the strain-to-fracture (STF) GleebleRTM-based testing technique1. These high chromium Ni-base filler metals are frequently used in nuclear power plant applications for welding Ni-base Alloy 690 and included INCONELRTM Filler Metal 52 and 52M (FM-52 and FM-52M)2, and a number of FM-52M-type experimental alloys including two with additions of molybdenum and niobium. A wide range in DDC susceptibilities was observed in the tested alloys including significant variations in susceptibility with only small compositional changes. The interpretation of the STF results now includes both the threshold strain for cracking and the transition to "massive" cracking. While the threshold strain is still insightful and an indication of cracking susceptibility, materials which transition rapidly from the threshold strain to "massive" cracking are typically more susceptible to DDC. The spot pre-welds made on the STF samples, used to produce a repeatable microstructure were found to significantly affect the DDC resistance when the current downslope time was altered. Decreasing the downslope time resulted in a faster cooling rate, finer solidification substructure, fewer metastable intragranular precipitates, and a reduced DDC susceptibility. The downslope time has been found to be the most important STF testing variable evaluated to date. A significant decrease in DDC susceptibility was observed in the alloys with Mo and Nb additions. The threshold strain for cracking in the 2.5% Nb and 4% Mo NiCrFe alloy was approximately 10%, and demonstrated a DDC resistance of more than twice that observed in typical FM-82 alloys. This remarkable increase in DDC resistance was attributed to the skeletal precipitate morphology whose large surface area and dense distribution were highly effective at pinning grain boundaries and preventing crack initiation. The resulting wavy or tortuous grain boundaries act to mechanically lock the grains together and thereby reduce the cracking susceptibility. A general improvement in the DDC cracking resistance of FM-52M-type alloys was observed over FM-52, particularly at lower temperatures (750°C) in the DDC range. Compositional changes in the FM-52M experimental alloys resulted in a range of DDC susceptibilities, indicating the strong effect of minor changes in composition. Boron additions resulted in an increase in Cr-rich M23C6 intergranular carbides in the as-welded condition. Electron backscatter diffraction (EBSD) data showed increased intragranular deformation that was attributed to improved grain boundary strengthening as a result of the intergranular M23C6 formation prior to deformation. Elongated intergranular carbides were also found to be more effective in improving grain boundary strengthening when compared with more symmetrical carbides. (Abstract shortened by UMI.) 1GleebleRTM is a registered trademark of Dynamic Systems Inc. 2INCONELRTM is a registered trademark of Special Metals Company, a PCC company.

  13. Rupture process of the 2009 L'Aquila, central Italy, earthquake, from the separate and joint inversion of Strong Motion, GPS and DInSAR data.

    NASA Astrophysics Data System (ADS)

    Cirella, A.; Piatanesi, A.; Tinti, E.; Chini, M.; Cocco, M.

    2012-04-01

    In this study, we investigate the rupture history of the April 6th 2009 (Mw 6.1) L'Aquila normal faulting earthquake by using a nonlinear inversion of strong motion, GPS and DInSAR data. We use a two-stage non-linear inversion technique. During the first stage, an algorithm based on the heat-bath simulated annealing generates an ensemble of models that efficiently sample the good data-fitting regions of parameter space. In the second stage the algorithm performs a statistical analysis of the ensemble providing us the best-fitting model, the average model, the associated standard deviation and coefficient of variation. This technique, rather than simply looking at the best model, extracts the most stable features of the earthquake rupture that are consistent with the data and gives an estimate of the variability of each model parameter. The application to the 2009 L'Aquila main-shock shows that both the separate and joint inversion solutions reveal a complex rupture process and a heterogeneous slip distribution. Slip is concentrated in two main asperities: a smaller shallow patch of slip located up-dip from the hypocenter and a second deeper and larger asperity located southeastward along strike direction. The key feature of the source process emerging from our inverted models concerns the rupture history, which is characterized by two distinct stages. The first stage begins with rupture initiation and with a modest moment release lasting nearly 0.9 seconds, which is followed by a sharp increase in slip velocity and rupture speed located 2 km up-dip from the nucleation. During this first stage the rupture front propagated up-dip from the hypocenter at relatively high (˜ 4.0 km/s), but still sub-shear, rupture velocity. The second stage starts nearly 2 seconds after nucleation and it is characterized by the along strike rupture propagation. The largest and deeper asperity fails during this stage of the rupture process. The rupture velocity is larger in the up-dip than in the along-strike direction. The up-dip and along-strike rupture propagation are separated in time and associated with a Mode II and a Mode III crack, respectively. Our results show that the 2009 L'Aquila earthquake featured a very complex rupture, with strong spatial and temporal heterogeneities suggesting a strong frictional and/or structural control of the rupture process.

  14. Multiaxial and thermomechanical fatigue considerations in damage tolerant design

    NASA Technical Reports Server (NTRS)

    Leese, G. E.; Bill, R. C.

    1985-01-01

    In considering damage tolerant design concepts for gas turbine hot section components, several challenging concerns arise: Complex multiaxial loading situations are encountered; Thermomechanical fatigue loading involving very wide temperature ranges is imposed on components; Some hot section materials are extremely anisotropic; and coatings and environmental interactions play an important role in crack propagation. The effects of multiaxiality and thermomechanical fatigue are considered from the standpoint of their impact on damage tolerant design concepts. Recently obtained research results as well as results from the open literature are examined and their implications for damage tolerant design are discussed. Three important needs required to advance analytical capabilities in support of damage tolerant design become readily apparent: (1) a theoretical basis to account for the effect of nonproportional loading (mechanical and mechanical/thermal); (2) the development of practical crack growth parameters that are applicable to thermomechanical fatigue situations; and (3) the development of crack growth models that address multiple crack failures.

  15. Boundary element methods for the analysis of crack growth in the presence of residual stress fields

    NASA Astrophysics Data System (ADS)

    Leitao, V. M. A.; Aliabadi, M. H.; Rooke, D. P.; Cook, R.

    1998-06-01

    Two boundary element methods of simulating crack growth in the presence of residual stress fields are presented, and the results are compared to experimental measurements. The first method utilizes linear elastic fracture mechanics (LEFM) and superimposes the solutions due to the applied load and the residual stress field. In this method, the residual stress fields are obtained from an elastoplastic BEM analysis, and numerical weight functions are used to obtain the stress intensity factors due to the fatigue loading. The second method presented is an elastoplastic fracture mechanics (EPFM) approach for crack growth simulation. A nonlinear J-integral is used in the fatigue life calculations. The methods are shown to agree well with experimental measurements of crack growth in prestressed open hole specimens. Results are also presented for the case where the prestress is applied to specimens that have been precracked.

  16. Simulation of anisotropic fracture behaviour of polycrystalline round blank tungsten using cohesive zone model

    NASA Astrophysics Data System (ADS)

    Mahler, Michael; Gaganidze, Ermile; Aktaa, Jarir

    2018-04-01

    The experimental observation of anisotropic fracture behaviour of round blank polycrystalline tungsten was simulated using finite element (FE) method in combination with cohesive zone model. Experiments in the past had shown that due to the anisotropic microstructure the fracture toughness varies by factor of about two for different orientations. The reason is the crack propagation direction, which is - in some orientations - not the typical crack propagation direction for mode I fracture. In some directions the crack is not growing perpendicular to the crack opening tensile load. Nevertheless, in the present paper, the microstructure is modelled by FE mesh including cohesive zone elements which mimic grain boundaries (GB). This is based on the assumption that GB's are the weakest links in the structure. The use of the correct parameters to describe the fracture process allows the description of the observed experimental orientation dependent fracture toughness.

  17. Fracture properties of concrete specimens made from alkali activated binders

    NASA Astrophysics Data System (ADS)

    Šimonová, Hana; Kucharczyková, Barbara; Topolář, Libor; Bílek, Vlastimil, Jr.; Keršner, Zbyněk

    2017-09-01

    The aim of this paper is to quantify crack initiation and other fracture properties - effective fracture toughness and specific fracture energy - of two types of concrete with an alkali activated binder. The beam specimens with a stress concentrator were tested in a three-point bending test after 28, 90, and 365 days of maturing. Records of fracture tests in the form of load versus deflection (P-d) diagrams were evaluated using effective crack model and work-of-fracture method and load versus mouth crack opening displacement (P-CMOD) diagrams were evaluated using the Double-K fracture model. The initiation of cracks during the fracture tests for all ages was also monitored by the acoustic emission method. The higher value of monitored mechanical fracture parameters of concrete with alkali activated blast furnace slag were achieved with substitution blast furnace slag by low calcium fly ash in comparison with substitution by cement kiln dust.

  18. Analytical model for effects of capsule shape on the healing efficiency in self-healing materials

    PubMed Central

    Li, Songpeng; Chen, Huisu

    2017-01-01

    The fundamental requirement for the autonomous capsule-based self-healing process to work is that cracks need to reach the capsules and break them such that the healing agent can be released. Ignoring all other aspects, the amount of healing agents released into the crack is essential to obtain a good healing. Meanwhile, from the perspective of the capsule shapes, spherical or elongated capsules (hollow tubes/fibres) are the main morphologies used in capsule-based self-healing materials. The focus of this contribution is the description of the effects of capsule shape on the efficiency of healing agent released in capsule-based self-healing material within the framework of the theory of geometrical probability and integral geometry. Analytical models are developed to characterize the amount of healing agent released per crack area from capsules for an arbitrary crack intersecting with capsules of various shapes in a virtual capsule-based self-healing material. The average crack opening distance is chosen to be a key parameter in defining the healing potential of individual cracks in the models. Furthermore, the accuracy of the developed models was verified by comparison to the data from a published numerical simulation study. PMID:29095862

  19. Residual Strength Prediction of Fuselage Structures with Multiple Site Damage

    NASA Technical Reports Server (NTRS)

    Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1999-01-01

    This paper summarizes recent results on simulating full-scale pressure tests of wide body, lap-jointed fuselage panels with multiple site damage (MSD). The crack tip opening angle (CTOA) fracture criterion and the FRANC3D/STAGS software program were used to analyze stable crack growth under conditions of general yielding. The link-up of multiple cracks and residual strength of damaged structures were predicted. Elastic-plastic finite element analysis based on the von Mises yield criterion and incremental flow theory with small strain assumption was used. A global-local modeling procedure was employed in the numerical analyses. Stress distributions from the numerical simulations are compared with strain gage measurements. Analysis results show that accurate representation of the load transfer through the rivets is crucial for the model to predict the stress distribution accurately. Predicted crack growth and residual strength are compared with test data. Observed and predicted results both indicate that the occurrence of small MSD cracks substantially reduces the residual strength. Modeling fatigue closure is essential to capture the fracture behavior during the early stable crack growth. Breakage of a tear strap can have a major influence on residual strength prediction.

  20. MPI Enhancements in John the Ripper

    NASA Astrophysics Data System (ADS)

    Sykes, Edward R.; Lin, Michael; Skoczen, Wesley

    2010-11-01

    John the Ripper (JtR) is an open source software package commonly used by system administrators to enforce password policy. JtR is designed to attack (i.e., crack) passwords encrypted in a wide variety of commonly used formats. While parallel implementations of JtR exist, there are several limitations to them. This research reports on two distinct algorithms that enhance this password cracking tool using the Message Passing Interface. The first algorithm is a novel approach that uses numerous processors to crack one password by using an innovative approach to workload distribution. In this algorithm the candidate password is distributed to all participating processors and the word list is divided based on probability so that each processor has the same likelihood of cracking the password while eliminating overlapping operations. The second algorithm developed in this research involves dividing the passwords within a password file equally amongst available processors while ensuring load-balanced and fault-tolerant behavior. This paper describes John the Ripper, the design of these two algorithms and preliminary results. Given the same amount of time, the original JtR can crack 29 passwords, whereas our algorithms 1 and 2 can crack an additional 35 and 45 passwords respectively.

  1. Thermo-mechanical simulations of early-age concrete cracking with durability predictions

    NASA Astrophysics Data System (ADS)

    Havlásek, Petr; Šmilauer, Vít; Hájková, Karolina; Baquerizo, Luis

    2017-09-01

    Concrete performance is strongly affected by mix design, thermal boundary conditions, its evolving mechanical properties, and internal/external restraints with consequences to possible cracking with impaired durability. Thermo-mechanical simulations are able to capture those relevant phenomena and boundary conditions for predicting temperature, strains, stresses or cracking in reinforced concrete structures. In this paper, we propose a weakly coupled thermo-mechanical model for early age concrete with an affinity-based hydration model for thermal part, taking into account concrete mix design, cement type and thermal boundary conditions. The mechanical part uses B3/B4 model for concrete creep and shrinkage with isotropic damage model for cracking, able to predict a crack width. All models have been implemented in an open-source OOFEM software package. Validations of thermo-mechanical simulations will be presented on several massive concrete structures, showing excellent temperature predictions. Likewise, strain validation demonstrates good predictions on a restrained reinforced concrete wall and concrete beam. Durability predictions stem from induction time of reinforcement corrosion, caused by carbonation and/or chloride ingress influenced by crack width. Reinforcement corrosion in concrete struts of a bridge will serve for validation.

  2. Slow and fast motion of cracks in inelastic solids. Part 1: Slow growth of cracks in a rate sensitive tresca solid. Part 2: Dynamic crack represented by the Dugdale model

    NASA Technical Reports Server (NTRS)

    Wnuk, M. P.; Sih, G. C.

    1972-01-01

    An extension is proposed of the classical theory of fracture to viscoelastic and elastic-plastic materials in which the plasticity effects are confined to a narrow band encompassing the crack front. It is suggested that the Griffith-Irwin criterion of fracture, which requires that the energy release rate computed for a given boundary value problem equals the critical threshold, ought to be replaced by a differential equation governing the slow growth of a crack prior to the onset of rapid propagation. A new term which enters the equation of motion in the dissipative media is proportional to the energy lost within the end sections of the crack, and thus reflects the extent of inelastic behavior of a solid. A concept of apparent surface energy is introduced to account for the geometry dependent and the rate dependent phenomena which influence toughness of an inelastic solid. Three hypotheses regarding the condition for fracture in the subcritical range of load are compared. These are: (1) constant fracture energy (Cherepanov), (2) constant opening displacement at instability (Morozov) and (3) final stretch criterion (Wnuk).

  3. Multileaf collimator tongue-and-groove effect on depth and off-axis doses: A comparison of treatment planning data with measurements and Monte Carlo calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hee Jung; Department of Biomedical Engineering, Seoul National University, Seoul; Department of Radiation Oncology, Soonchunhyang University Hospital, Seoul

    2015-01-01

    To investigate how accurately treatment planning systems (TPSs) account for the tongue-and-groove (TG) effect, Monte Carlo (MC) simulations and radiochromic film (RCF) measurements were performed for comparison with TPS results. Two commercial TPSs computed the TG effect for Varian Millennium 120 multileaf collimator (MLC). The TG effect on off-axis dose profile at 3 depths of solid water was estimated as the maximum depth and the full width at half maximum (FWHM) of the dose dip at an interleaf position. When compared with the off-axis dose of open field, the maximum depth of the dose dip for MC and RCF rangedmore » from 10.1% to 20.6%; the maximum depth of the dose dip gradually decreased by up to 8.7% with increasing depths of 1.5 to 10 cm and also by up to 4.1% with increasing off-axis distances of 0 to 13 cm. However, TPS results showed at most a 2.7% decrease for the same depth range and a negligible variation for the same off-axis distances. The FWHM of the dose dip was approximately 0.19 cm for MC and 0.17 cm for RCF, but 0.30 cm for Eclipse TPS and 0.45 cm for Pinnacle TPS. Accordingly, the integrated value of TG dose dip for TPS was larger than that for MC and RCF and almost invariant along the depths and off-axis distances. We concluded that the TG dependence on depth and off-axis doses shown in the MC and RCF results could not be appropriately modeled by the TPS versions in this study.« less

  4. Detection of integrated papillomavirus sequences by ligation-mediated PCR (DIPS-PCR) and molecular characterization in cervical cancer cells.

    PubMed

    Luft, F; Klaes, R; Nees, M; Dürst, M; Heilmann, V; Melsheimer, P; von Knebel Doeberitz, M

    2001-04-01

    Human papillomavirus (HPV) genomes usually persist as episomal molecules in HPV associated preneoplastic lesions whereas they are frequently integrated into the host cell genome in HPV-related cancers cells. This suggests that malignant conversion of HPV-infected epithelia is linked to recombination of cellular and viral sequences. Due to technical limitations, precise sequence information on viral-cellular junctions were obtained only for few cell lines and primary lesions. In order to facilitate the molecular analysis of genomic HPV integration, we established a ligation-mediated PCR assay for the detection of integrated papillomavirus sequences (DIPS-PCR). DIPS-PCR was initially used to amplify genomic viral-cellular junctions from HPV-associated cervical cancer cell lines (C4-I, C4-II, SW756, and HeLa) and HPV-immortalized keratinocyte lines (HPKIA, HPKII). In addition to junctions already reported in public data bases, various new fusion fragments were identified. Subsequently, 22 different viral-cellular junctions were amplified from 17 cervical carcinomas and 1 vulval intraepithelial neoplasia (VIN III). Sequence analysis of each junction revealed that the viral E1 open reading frame (ORF) was fused to cellular sequences in 20 of 22 (91%) cases. Chromosomal integration loci mapped to chromosomes 1 (2n), 2 (3n), 7 (2n), 8 (3n), 10 (1n), 14 (5n), 16 (1n), 17 (2n), and mitochondrial DNA (1n), suggesting random distribution of chromosomal integration sites. Precise sequence information obtained by DIPS-PCR was further used to monitor the monoclonal origin of 4 cervical cancers, 1 case of recurrent premalignant lesions and 1 lymph node metastasis. Therefore, DIPS-PCR might allow efficient therapy control and prediction of relapse in patients with HPV-associated anogenital cancers. Copyright 2001 Wiley-Liss, Inc.

  5. Experimental and Finite Element Modeling of Near-Threshold Fatigue Crack Growth for the K-Decreasing Test Method

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W.; Seshadri, Banavara R.; Newman, John A.

    2015-01-01

    The experimental methods to determine near-threshold fatigue crack growth rate data are prescribed in ASTM standard E647. To produce near-threshold data at a constant stress ratio (R), the applied stress-intensity factor (K) is decreased as the crack grows based on a specified K-gradient. Consequently, as the fatigue crack growth rate threshold is approached and the crack tip opening displacement decreases, remote crack wake contact may occur due to the plastically deformed crack wake surfaces and shield the growing crack tip resulting in a reduced crack tip driving force and non-representative crack growth rate data. If such data are used to life a component, the evaluation could yield highly non-conservative predictions. Although this anomalous behavior has been shown to be affected by K-gradient, starting K level, residual stresses, environmental assisted cracking, specimen geometry, and material type, the specifications within the standard to avoid this effect are limited to a maximum fatigue crack growth rate and a suggestion for the K-gradient value. This paper provides parallel experimental and computational simulations for the K-decreasing method for two materials (an aluminum alloy, AA 2024-T3 and a titanium alloy, Ti 6-2-2-2-2) to aid in establishing clear understanding of appropriate testing requirements. These simulations investigate the effect of K-gradient, the maximum value of stress-intensity factor applied, and material type. A material independent term is developed to guide in the selection of appropriate test conditions for most engineering alloys. With the use of such a term, near-threshold fatigue crack growth rate tests can be performed at accelerated rates, near-threshold data can be acquired in days instead of weeks without having to establish testing criteria through trial and error, and these data can be acquired for most engineering materials, even those that are produced in relatively small product forms.

  6. Multiple detuned-resonator induced transparencies in MIM plasmonic waveguide

    NASA Astrophysics Data System (ADS)

    Liu, Li; Xia, Sheng-Xuan; Luo, Xin; Zhai, Xiang; Yu, Ya-Bin; Wang, Ling-Ling

    2018-07-01

    We propose a simple plasmonic waveguide system based on two-detuned resonators, which demonstrates multiple detuned-resonator induced transparencies at visible and near-infrared region. The performance of electromagnetic responses can be agile manipulated by tuning the asymmetry degree of the structure and the width of the split gap. Three transmission dips exist with the symmetrical design while three peaks emerge between the dip-position of the transmission spectra with two detuned resonators. The physical mechanism behind the plasmon-induced transparency (PIT) resonance is revealed as being attributed to the constructive interference between the confined modes in the detuned resonators. The former tend to the role of two coupled radiative oscillators. The work may open up avenues for the control of light in highly integrated optical circuits.

  7. Environmentally induced crack propagation in Inconel alloys 600 and 690 under hydrogen supersaturated steam

    NASA Astrophysics Data System (ADS)

    Ali, Mehboob Muzzammil

    Intergranular stress corrosion cracking (IGSCC) of Inconel alloys 600 and 690 was investigated by exposing them to 300--400°C in deaerated hydrogen supersaturated steam. Crack growth rates were measured in-situ for the above alloys using modified wedge-opening-loaded (M-WOL) linear elastic fracture specimens under constant displacement conditions. The applied stress intensity factors (K) used varied from 29--90 MPam1/2. An activation energy of 120 kJ/mol was found for crack growth rates as a function of temperature. This activation energy is close to the one corresponding to grain boundary self diffusion of nickel. In addition, it was found that the apparent crack growth rates (da/dt) exhibited a linear dependence with KI, given by (da/dt) = A.KIn, where n = 1 in our case. Microstructurally, crack propagation in both the alloys was predominantly along the grain boundaries. It is suggested that high fugacity hydrogen was generated at the tip of the crack, as a result of the reaction of H2O with Cr2O3 on the fracture surface leading to IGSCC. It was found that the rates of crack propagation in both alloys 600 and 690 are very similar. Moreover, under the applied KIs, both alloys 600 and 690 show a similar tendency to crack intergranularly in a direction perpendicular to the applied stress. Crack branching was also exhibited by both the alloys 600 as well as 690. The difference in the crack growth rates of alloys 600 and 690 was found to be only about 2%, which indicates that the crack growth rates in these alloys is independent of the alloy chromium content and that, possibly very similar crack growth mechanisms are active in both the alloys 600 and 690 under similar conditions of KI and temperature. HREM images at the crack tip of alloy 690 exhibit two distinct regions---a crystalline region, and an adjacent amorphous region, which is likely to be either a hydroxide or an amorphous oxide layer. This layer is expected to result from passivation reactions as the crack surface is exposed to the corrosive environment.

  8. Fatigue and Fracture Characterization of GlasGridRTM Reinforced Asphalt Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Safavizadeh, Seyed Amirshayan

    The purpose of this research is to develop an experimental and analytical framework for describing, modeling, and predicting the reflective cracking patterns and crack growth rates in GlasGridRTM-reinforced asphalt pavements. In order to fulfill this objective, the effects of different interfacial conditions (mixture and tack coat type, and grid opening size) on reflective cracking-related failure mechanisms and the fatigue and fracture characteristics of fiberglass grid-reinforced asphalt concrete beams were studied by means of four- and threepoint bending notched beam fatigue tests (NBFTs) and cyclic and monotonic interface shear tests. The digital image correlation (DIC) technique was utilized for obtaining the displacement and strain contours of specimen surfaces during each test. The DIC analysis results were used to develop crack tip detection methods that were in turn used to determine interfacial crack lengths in the shear tests, and vertical and horizontal (interfacial) crack lengths in the notched beam fatigue tests. Linear elastic fracture mechanics (LEFM) principles were applied to the crack length data to describe the crack growth. In the case of the NBFTs, a finite element (FE) code was developed and used for modeling each beam at different stages of testing and back-calculating the stress intensity factors (SIFs) for the vertical and horizontal cracks. The local effect of reinforcement on the stiffness of the system at a vertical crack-interface intersection or the resistance of the grid system to the deflection differential at the joint/crack (hereinafter called joint stiffness) for GlasGrid-reinforced asphalt concrete beams was determined by implementing a joint stiffness parameter into the finite element code. The strain level dependency of the fatigue and fracture characteristics of the GlasGrid-reinforced beams was studied by performing four-point bending notched beam fatigue tests at strain levels of 600, 750, and 900 microstrain. These beam tests were conducted at 15°C, 20°C, and 23°C, with the main focus being to find the characteristics at 20°C. The results obtained from the tests at the different temperatures were used to investigate the effects of temperature on the reflective cracking performance of the gridreinforced beam specimens. The temperature tests were also used to investigate the validity of the time-temperature superposition (t-TS) principle in shear and the beam fatigue performance of the grid-reinforced specimens. The NBFT results suggest that different interlayer conditions do not reflect a unique failure mechanism, and thus, in order to predict and model the performance of grid-reinforced pavement, all the mechanisms involved in weakening its structural integrity, including damage within the asphalt layers and along the interface, must be considered. The shear and beam fatigue test results suggest that the grid opening size, interfacial bond quality, and mixture type play important roles in the reflective cracking performance of GlasGrid-reinforced asphalt pavements. According to the NBTF results, GlasGrid reinforcement retards reflective crack growth by stiffening the composite system and introducing a joint stiffness parameter. The results also show that the higher the bond strength and interlayer stiffness values, the higher the joint stiffness and retardation effects. The t-TS studies proved the validity of this principle in terms of the reflective crack growth of the grid-reinforced beam specimens and the shear modulus and shear strength of the grid-reinforced interfaces.

  9. Dynamic Fracture Toughness Evaluation by Measurement of CTOD (Crack Tip Opening Displacement).

    DTIC Science & Technology

    1988-03-15

    fracture toughness of structural steels were reported by Shoemaker and Rolfe [1]; these and similar results are also presented in the text by Rolfe and...8217 MPaV/-m/s. Following the dynamic tests of Shoemaker and Rolfe , extensions of the familiar ASTM E-399 static fracture toughness tests were examined. This...s.V.: **.4* .4 5, -~ 5 5 - 𔃿 .4.4 References [1] Shoemaker, A.K. and Rolfe , S.T., "The Static and Dynamic Low-Temperature Crack-Toughness

  10. A Study of the Hot Workability of Al-8.5 Wt Pct Mg Alloys for Armor Plate Applications

    DTIC Science & Technology

    1989-01-01

    427°C (500, 600, 700, and 800’F) to determine a suitable deformation temperature for the homogenization study. Later it was learned that a lower...alloys, only occurred above 5200C (.7°). Rater, according to fractographie examinaton, the decrease in e, at higher temperatures and/or higher strain...edge cracks that were several centimeters deep opened up at the drilled thermocouple hole; the remainder of the slab was almost free of edge cracks

  11. Crack Growth of a Titanium-Aluminide Alloy under Thermal-Mechanical Fatigue

    DTIC Science & Technology

    1988-12-01

    the elastic-plastic fracture mechanics ( EPFM ) relations such as the J-integral or crack tip opening displacement (CTOD) must be used. Much more work...has been done in the area of LEFM, using stress intensity factor range AK as a correlating factor, than in EPFM . No matter which type of analysis is...thus obvious that a simple linear summation model such as Heil’s might not be applicable to this material. Other damage mechanisms were then investigated

  12. J-Resistance Curves of Aluminum Specimens Using Moire Interferometry

    DTIC Science & Technology

    1989-04-01

    elastic-plastic fracture mechanics ( EPFM ) methodologies are based on the J-integral or the crack opening displacement (COD) approach. The J-resistance curve...in the HRR field [13,141. In this paper, we present further application of the approximate J-evaluation procedure in large 2024-0 and 5052-H32 aluminum...Davis, J. A. Joyce, and R. A. Hays, " Application of the J-Integral and the Modified J-Integral to Cases of Large Crack Extension and High Toughness

  13. Dynamic J sub I-R Curve Testing of HY-130 Steel.

    DTIC Science & Technology

    1981-10-01

    Society for Testing and Materials 0C Degrees Celsius COD Crack-opening displacement CT Compact tension CVN Charpy V-notch dia Diameter in-lb/in 2 Inch...inches per second. A key curve for HY-130 plate was developed under dynamic loading conditions using subsized compact specimens and was applied to...face grooves were machined along the crack line to a total section reduction of 20% with a standard Charpy V-notch (CVN) cutter (450 included angle

  14. The Crack Cocaine Crisis. Joint Hearing before the Select Committee on Narcotics Abuse and Control, House of Representatives and the Select Committee on Children, Youth, and Families. House of Representatives, Ninety-Ninth Congress, Second Session (July 15, 1986).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Select Committee on Children, Youth, and Families.

    This document contains witness testimonies and prepared statements from the Congressional hearing called to examine what the federal government as well as local and state governments are doing and can do to respond to the growing problem of crack cocaine, and what prevention and treatment approaches are effective. Opening statements and/or…

  15. An Experimental Study of Penny-shaped Fluid-driven Cracks in an Elastic Matrix

    NASA Astrophysics Data System (ADS)

    Stone, Howard

    2015-11-01

    When a pressurized fluid is injected into an elastic matrix, the fluid generates a fracture that grows along a plane and forms a fluid-filled disc-like shape. For example, such problems occur in various natural and industrial applications involving the subsurface of Earth, such as hydraulic fracturing operations. We report a laboratory study of such a fluid-driven crack in a gelatin matrix, study the crack shape as a function of time, and investigate the influence of different experimental parameters such as the injection flow rate, Young's modulus of the matrix, and fluid viscosity. We find that the crack radius increases with time as a power law, which has been predicted both for the limit where viscous effects in the flow along the crack opening control the rate of crack propagation, as well as the limit where fracture toughness controls crack propagation. We vary experimental parameters to probe the physical limits and highlight that for our typical parameters both effects can be significant. Also, we measure the time evolution of crack shape, which has not been studied before. The rescaled crack shapes collapse at longer times, based on an appropriate scaling argument, and again we compare the scaling arguments in different physical limits. The gelatin system provides a useful laboratory model for further studies of fluid-driven cracks, some of which we will mention as they are inspired by the physics of hydraulic fracturing. This work is part of the PhD thesis of Ching-Yao Lai and is a collaboration with Drs. Zhong Zheng and Jason Wexler (Princeton University) and Professor Emilie Dressaire (NYU). Department of Mechanical and Aerospace Engineering.

  16. An elasto-plastic solution for channel cracking of brittle coating on polymer substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao; Chen, Fangliang; Gray, Matthew H.

    In this study, an elasto-plastic channel-cracking model is presented to study the open-mode fracture of a thin layer brittle coating grown on a polymer substrate. A linear elastic shear interlayer is introduced to describe the stress transfer from the elasto-plastic substrate to the brittle coating, on basis of the shear-lag principle. The channel cracking behavior involves three stages: elastic, elasto-plastic and plastic stages, which are solved in a continuous manner based on the deformation status of the substrate. Explicit solutions are derived for the mutli-stage cracking process. Corresponding experimental tests for a titanium oxide (TiO 2) coating on a polymore » (ethylene terephthalate) substrate are conducted. The fracture toughness of the coating layer is estimated based on the crack spacing versus layer thickness relationship at certain strain levels. This method is found to be more reliable than the traditional methods using crack onset strain. Parametric studies of the fracture energy release rate for the coating and interfacial compliance of the thin film system are conducted, through which the effect of plastic deformation on the channel cracking behavior is studied extensively. The results indicate that the tangent modulus of the substrate controls the evolution curvature of crack spacing where a smaller tangent modulus corresponds to a slower saturation of crack spacing. The energy release rate also varies significantly with the properties of the interlayer. The study highlights the necessity of an elasto-plastic model for the thin film systems of brittle coating on a plastic substrate.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, P.F.; Wang, J.S.; Chao, Y.J.

    The stereo vision is used to study the fracture behavior in the compact tension (CT) specimen made from 304L stainless steel. During crack tip blunting, initiation, and growth in the CT specimen, both in-plane and out-of-plane displacement fields near the crack tip are measured by the stereo vision. Based on the plane stress assumption and the deformation theory of plasticity, the J integral is evaluated along several rectangular paths surrounding the crack tip by using the measured in-plane displacement field. Prior to crack growth, the J integral is path independent. For crack extension up to {Delta}a {approx} 3 mm, themore » near field J integral values are 6% to 10% lower than far field J integral values. For the crack extension of {Delta}a {approx} 4 mm, the J integral lost path independence. The far field J integral values are in good agreement with results obtained from Merkle-Corten`s formula. Both J-{Delta}a and CTOA-{Delta}a are obtained by computing the J integral value and crack tip opening angle (CTOA) at each {Delta}a. Results indicate that CTOA reached a nearly constant value at a crack extension of {Delta}a = 3 mm with a leveled resistance curve thereafter. Also, the J integral value is determined by the maximum transverse diameter of the shadow spots, which are generated by using the out-of-plane displacement field. Results indicate that for crack extension up to 0.25 mm, the J integral values evaluated by using the out-of- plane displacement are close to those obtained by using in-plane displacements and Merkle-Corten`s formula.« less

  18. An elasto-plastic solution for channel cracking of brittle coating on polymer substrate

    DOE PAGES

    Zhang, Chao; Chen, Fangliang; Gray, Matthew H.; ...

    2017-04-25

    In this study, an elasto-plastic channel-cracking model is presented to study the open-mode fracture of a thin layer brittle coating grown on a polymer substrate. A linear elastic shear interlayer is introduced to describe the stress transfer from the elasto-plastic substrate to the brittle coating, on basis of the shear-lag principle. The channel cracking behavior involves three stages: elastic, elasto-plastic and plastic stages, which are solved in a continuous manner based on the deformation status of the substrate. Explicit solutions are derived for the mutli-stage cracking process. Corresponding experimental tests for a titanium oxide (TiO 2) coating on a polymore » (ethylene terephthalate) substrate are conducted. The fracture toughness of the coating layer is estimated based on the crack spacing versus layer thickness relationship at certain strain levels. This method is found to be more reliable than the traditional methods using crack onset strain. Parametric studies of the fracture energy release rate for the coating and interfacial compliance of the thin film system are conducted, through which the effect of plastic deformation on the channel cracking behavior is studied extensively. The results indicate that the tangent modulus of the substrate controls the evolution curvature of crack spacing where a smaller tangent modulus corresponds to a slower saturation of crack spacing. The energy release rate also varies significantly with the properties of the interlayer. The study highlights the necessity of an elasto-plastic model for the thin film systems of brittle coating on a plastic substrate.« less

  19. Bending fracture in carbon nanotubes.

    PubMed

    Kuo, Wen-Shyong; Lu, Hsin-Fang

    2008-12-10

    A novel approach was adopted to incur bending fracture in carbon nanotubes (CNTs). Expanded graphite (EG) was made by intercalating and exfoliating natural graphite flakes. The EG was deposited with nickel particles, from which CNTs were grown by chemical vapor deposition. The CNTs were tip-grown, and their roots were fixed on the EG flakes. The EG flakes were compressed, and many CNTs on the surface were fragmented due to the compression-induced bending. Two major modes of the bending fracture were observed: cone-shaped and shear-cut. High-resolution scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the crack growth within the graphene layers. The bending fracture is characterized by two-region crack growth. An opening crack first appears around the outer-tube due to the bending-induced tensile stress. The crack then branches to grow along an inclined direction toward the inner-tube due to the presence of the shear stress in between graphene layers. An inner-tube pullout with inclined side surface is formed. The onset and development of the crack in these two regions are discussed.

  20. The Molecular Volcano Revisited: Determination of Crack Propagation and Distribution During the Crystallization of Nanoscale Amorphous Solid Water Films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    2012-02-02

    Temperature programmed desorption (TPD) is utilized to determine the length distribution of cracks formed through amorphous solid water (ASW) during crystallization. This distribution is determined by monitoring how the thickness of an ASW overlayer alters desorption of an underlayer of O2. As deposited the ASW overlayer prevents desorption of O2. During crystallization, cracks form through the ASW overlayer and open a path to vacuum which allows O2 to escape in a rapid episodic release known as the 'molecular volcano'. Sufficiently thick ASW overlayers further trap O2 resulting in a second O2 desorption peak commensurate with desorption of the last ofmore » the ASW overlayer. The evolution of this trapping peak with overlayer thickness is the basis for determining the distribution of crystallization induced cracks through the ASW. Reflection adsorption infrared spectroscopy (RAIRS) and TPD of multicomponent parfait structures of ASW, O2 and Kr indicate that a preponderance of these cracks propagate down from the outer surface of the ASW.« less

  1. Direct observation of the residual plastic deformation caused by a single tensile overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bichler, C.; Pippan, R.

    1999-07-01

    The fatigue crack growth behavior following single tensile overloads at high stress intensity ranges in a cold-rolled austenitic steel has been studied experimentally. After tensile overloads, fatigue cracks initially accelerate, followed by significant retardation, before the growth rates return to their baseline level. The initial acceleration was attributed to an immediate reduction in near-tip closure. Scanning electron micrography and stereophotogrammetric reconstruction of the fracture surface were applied to study the residual plastic deformation caused by a single tensile overload in the mid-thickness of the specimen. The measured residual opening displacement of the crack as a function of the overload ismore » presented and compared with simple estimations. Also, free specimen surface observations of the residual plastic deformation and crack growth rate were performed. In the midsection of the specimens the striation spacing-length, i.e., the microscopic growth rates, were measured before and after the applied overload. It will be shown that the measured plasticity-induced wedges from the single overload and the observed propagation behavior support the significance of the concept of crack closure.« less

  2. Predicting overload-affected fatigue crack growth in steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorupa, M.; Skorupa, A.; Ladecki, B.

    1996-12-01

    The ability of semi-empirical crack closure models to predict the effect of overloads on fatigue crack growth in low-alloy steels has been investigated. With this purpose, the CORPUS model developed for aircraft metals and spectra has been checked first through comparisons between the simulated and observed results for a low-alloy steel. The CORPUS predictions of crack growth under several types of simple load histories containing overloads appeared generally unconservative which prompted the authors to formulate a new model, more suitable for steels. With the latter approach, the assumed evolution of the crack opening stress during the delayed retardation stage hasmore » been based on experimental results reported for various steels. For all the load sequences considered, the predictions from the proposed model appeared to be by far more accurate than those from CORPUS. Based on the analysis results, the capability of semi-empirical prediction concepts to cover experimentally observed trends that have been reported for sequences with overloads is discussed. Finally, possibilities of improving the model performance are considered.« less

  3. Subcritical crack growth of selected aerospace pressure vessel materials

    NASA Technical Reports Server (NTRS)

    Hall, L. R.; Bixler, W. D.

    1972-01-01

    This experimental program was undertaken to determine the effects of combined cyclic/sustained loads, stress level, and crack shape on the fatigue crack growth rate behavior of cracks subjected to plane strain conditions. Material/environment combinations tested included: 2219-T87 aluminum plate in gaseous helium, room air, and 3.5% NaCl solution at room temperature, liquid nitrogen, and liquid hydrogen; 5Al-2.5 Sn (ELI) titanium plate in liquid nitrogen and liquid hydrogen and 6AL-4V (ELI) STA titanium plate in gaseous helium and methanol at room temperature. Most testing was accomplished using surface flawed specimens instrumented with a clip gage to continuously monitor crack opening displacements at the specimen surface. Tapered double cantilever beam specimens were also tested. Static fracture and ten hour sustained load tests were conducted to determine fracture toughness and apparent threshold stress intensity values. Cyclic tests were performed using sinusoidal loading profiles at 333 MHz (20 cpm) and trapezoidal loading profiles at both 8.3 MHz (0.5 cpm) and 3.3 MHz (0.2 cpm). Data were evaluated using modified linear elastic fracture mechanics parameters.

  4. Degradation in the fatigue crack growth resistance of human dentin by lactic acid

    PubMed Central

    Orrego, Santiago; Xu, Huakun; Arola, Dwayne

    2017-01-01

    The oral cavity frequently undergoes localized changes in chemistry and level of acidity, which threatens the integrity of the restorative material and supporting hard tissue. The focus of this study was to evaluate the changes in fatigue crack growth resistance of dentin and toughening mechanisms caused by lactic acid exposure. Compact tension specimens of human dentin were prepared from unrestored molars and subjected to Mode I opening mode cyclic loads. Fatigue crack growth was achieved in samples from mid- and outer-coronal dentin immersed in either a lactic acid solution or neutral conditions. An additional evaluation of the influence of sealing the lumens by dental adhesive was also conducted. A hybrid analysis combining experimental results and finite element modeling quantified the contribution of the toughening mechanisms for both environments. The fatigue crack growth responses showed that exposure to lactic acid caused a significant reduction (p≤0.05) of the stress intensity threshold for cyclic crack extension, and a significant increase (p≤0.05) in the incremental fatigue crack growth rate for both regions of coronal dentin. Sealing the lumens had negligible influence on the fatigue resistance. The hybrid analysis showed that the acidic solution was most detrimental to the extrinsic toughening mechanisms, and the magnitude of crack closure stresses operating in the crack wake. Exposing dentin to acidic environments contributes to the development of caries, but it also increases the chance of tooth fractures via fatigue-related failure and at lower mastication forces. PMID:28183665

  5. Differential behavioral outcomes of 3,4-methylenedioxymethamphetamine (MDMA-ecstasy) in anxiety-like responses in mice.

    PubMed

    Ferraz-de-Paula, V; Stankevicius, D; Ribeiro, A; Pinheiro, M L; Rodrigues-Costa, E C; Florio, J C; Lapachinske, S F; Moreau, R L M; Palermo-Neto, J

    2011-05-01

    Anxiolytic and anxiogenic-like behavioral outcomes have been reported for methylenedioxymethamphetamine (MDMA or ecstasy) in rodents. In the present experiment, we attempted to identify behavioral, hormonal and neurochemical outcomes of MDMA treatment to clarify its effects on anxiety-related responses in 2-month-old Balb/c male mice (25-35 g; N = 7-10 mice/group). The behavioral tests used were open field, elevated plus maze, hole board, and defensive behavior against predator odor. Moreover, we also determined striatal dopamine and dopamine turnover, and serum corticosterone levels. MDMA was injected ip at 0.2, 1.0, 5.0, 8.0, 10, or 20 mg/kg. MDMA at 10 mg/kg induced the following significant (P < 0.05) effects: a) a dose-dependent increase in the distance traveled and in the time spent moving in the open field; b) decreased exploratory activity in the hole board as measured by number of head dips and time spent in head dipping; c) increased number of open arm entries and increased time spent in open arm exploration in the elevated plus maze; d) increased time spent away from an aversive stimulus and decreased number of risk assessments in an aversive odor chamber; e) increased serum corticosterone levels, and f) increased striatal dopamine level and turnover. Taken together, these data suggest an anxiogenic-like effect of acute MDMA treatment, despite the fact that behavioral anxiety expression was impaired in some of the behavioral tests used as a consequence of the motor stimulating effects of MDMA.

  6. Synthesis and Characterization of Chromate Conversion Coatings on GALVALUME and Galvanized Steel Substrates

    NASA Astrophysics Data System (ADS)

    Domínguez-Crespo, M. A.; Onofre-Bustamante, E.; Torres-Huerta, A. M.; Rodríguez-Gómez, F. J.; Rodil, S. E.; Flores-Vela, A.

    2009-07-01

    The morphology, composition, and corrosion performance of chromate conversion coatings (CCCs) formed on GALVALUME (Fe-Al-Zn) and galvanized steel (Fe-Zn) samples have been studied, and different immersion times (0, 10, 30, and 60 seconds) have been compared. The coated surfaces were analyzed using light microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements in a NaCl solution (3 wt pct). The electrochemical measurements were carried out using the polarization resistance, Tafel, and ac impedance methods. A nonuniform growth of the CCCs having a porous morphology and cracks that appear extended to the base metal was observed. The XRD patterns show that the coatings mainly consist of CrO3, Cr2O3, and traces of Cr2O{7/-2}. The electrochemical results show that GALVALUME presents a better behavior than that of the galvanized steel alloys at each dipping time. The SEM micrographs show that the galvanized steel treatments resulted in the formation of a more uniform film, but their protection barrier broke down faster than that of the GALVALUME samples in contact with the aggressive media. The samples that underwent the lowest degree of dissolution were those with a dipping time of 30 seconds. The difference in the corrosion protection given by the two substrate types could be attributed to the structural properties, grain size, composition, and roughness, which affect oxygen diffusion.

  7. Surface Morphology of Active Normal Faults in Hard Rock: Implications for the Mechanics of the Asal Rift, Djibouti

    NASA Astrophysics Data System (ADS)

    Pinzuti, P.; Mignan, A.; King, G. C.

    2009-12-01

    Mechanical stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localized magma injection, with normal faults accommodating extension and subsidence above the maximum reach of the magma column. In these magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Using mechanical and kinematics concepts and vertical profiles of normal fault scarps from an Asal Rift campaign, where normal faults are sub-vertical on surface level, we discuss the creation and evolution of normal faults in massive fractured rocks (basalt). We suggest that the observed fault scarps correspond to sub-vertical en echelon structures and that at greater depth, these scarps combine and give birth to dipping normal faults. Finally, the geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.

  8. Layer texture of hot-rolled BCC metals and its significance for stress-corrosion cracking of main gas pipelines

    NASA Astrophysics Data System (ADS)

    Perlovich, Yu. A.; Isaenkova, M. G.; Krymskaya, O. A.; Morozov, N. S.

    2016-10-01

    Based on data of X-ray texture analysis of hot-rolled BCC materials it was shown that the layerwise texture inhomogeneity of products is formed during their manufacturing. The effect can be explained by saturation with interstitial impurities of the surface layer, resulting in dynamical deformation aging (DDA). DDA prevents the dislocation slip under rolling and leads to an increase of lattice parameters in the external layer. The degree of arising inhomogeneity correlates with the tendency of hot-rolled sheets and obtained therefrom tubes to stress-corrosion cracking under exploitation, since internal layers have a compressive effect on external layers, and prevents opening of corrosion cracks at the tube surface.

  9. An Experimental Study of a Stitched Composite with a Notch Subjected to Combined Bending and Tension Loading

    NASA Technical Reports Server (NTRS)

    Palmer, Susan O.; Nettles, Alan T.; Poe, C. C., Jr.

    1999-01-01

    A series of tests was conducted to measure the strength of stitched carbon/epoxy composites containing through-thickness damage in the form of a crack-like notch. The specimens were subjected to three types of loading: pure bending, pure tension, and combined bending and tension loads. Measurements of applied loads, strains near crack tips, and crack opening displacements (COD) were monitored in all tests. The transverse displacement at the center of the specimen was measured using a Linear Variable Differential Transformer (LVDT). The experimental data showed that the outer surface of the pure tension specimen failed at approximately 6,000 microstrain, while in combined bending and tension loads the measured tensile strains reached 10,000 microstrain.

  10. Dynamics of a fluid-driven crack in three dimensions by the finite difference method

    NASA Astrophysics Data System (ADS)

    Chouet, Bernard

    1986-12-01

    The finite difference method is applied to the study of the dynamics of a three-dimensional fluid-filled crack excited into resonance by the sudden failure of a small barrier of area ΔS on the crack surface. The impulse response of the crack is examined for various ratios of crack width to crack length and for several values of the crack stiffness C = (b/μ)(L/d), where b is the bulk modulus of the fluid, μ is the rigidity of the solid, and L and d are the crack length and crack thickness, respectively. The motion of the crack is characterized by distinct time scales representing the duration of brittle failure and the periods of acoustic resonance in the lateral and longitudinal dimensions of the source. The rupture has a duration proportional to the area of crack expansion and is the trigger responsible for the excitation of the crack into resonance; the resonant periods are proportional to the crack stiffness and to the width and length of the crack. The crack wave sustaining the resonance is analogous to the tube wave propagating in a fluid-filled borehole. It is dispersive, showing a phase velocity that decreases with increasing wavelength. Its wave speed is always lower than the acoustic velocity of the fluid and shows a strong dependence on the crack stiffness, decreasing as the stiffness increases. The initial motion of the crack surface is an opening, and the radiated far-field compressional wave starts with a strong but brief compression which has a duration proportional to the crack stiffness and size of the rupture area; the amplitude of this pulse increases with the area of rupture but decreases with increasing stiffness. Flow into the newly created cavity triggers a pressure drop in the fluid, which produces a partial collapse of the wall propagated over the crack surface at the speed of the crack wave. The collapse of the crack surface generates a weak long-period component of dilatation following the compressional first motion in the far-field P wave train; the dilatational component is clearer in the signal from stiffer cracks when seen in the direction of the rupture. The energy loss by radiation is stronger for high frequencies, resulting in a progressive enrichment of the crack response in lower frequencies over the duration of resonance. These source characteristics translate into a far-field signature that is marked by a high-frequency content near its onset and dominated by a longer-period component in its coda. The source duration shows a strong dependence on the fluid viscosity and associated viscous damping at the crack wall.

  11. Fracture Mechanics Testing of Titanium 6AL-4V in AF-M315E

    NASA Technical Reports Server (NTRS)

    Sampson, J. W.; Martinez, J.; McLean, C.

    2016-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant on orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent processing flaws will not cause failure during the design life of the tank. Material property inputs for this analysis require testing to determine the stress intensity factor for environment-assisted cracking (KEAC) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched, or SE(B), specimens representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to AF-M315E at 50 C for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor for environment-assisted cracking of the Ti 6Al-4V forged tank material was found to be at least 22 ksivin and at least 31 ksivin for the weld material when exposed to AF-M315E monopropellant.

  12. An integrated geophysical and hydraulic investigation to characterize a fractured-rock aquifer, Norwalk, Connecticut

    USGS Publications Warehouse

    Lane, J.W.; Williams, J.H.; Johnson, C.D.; Savino, D.M.; Haeni, F.P.

    2002-01-01

    The U.S. Geological Survey conducted an integrated geophysical and hydraulic investigation at the Norden Systems, Inc. site in Norwalk, Connecticut, where chlorinated solvents have contaminated a fractured-rock aquifer. Borehole, borehole-to-borehole, surface-geophysical, and hydraulic methods were used to characterize the site bedrock lithology and structure, fractures, and transmissive zone hydraulic properties. The geophysical and hydraulic methods included conventional logs, borehole imagery, borehole radar, flowmeter under ambient and stressed hydraulic conditions, and azimuthal square-array direct-current resistivity soundings. Integrated interpretation of geophysical logs at borehole and borehole-to-borehole scales indicates that the bedrock foliation strikes northwest and dips northeast, and strikes north-northeast to northeast and dips both southeast and northwest. Although steeply dipping fractures that cross-cut foliation are observed, most fractures are parallel or sub-parallel to foliation. Steeply dipping reflectors observed in the radar reflection data from three boreholes near the main building delineate a north-northeast trending feature interpreted as a fracture zone. Results of radar tomography conducted close to a suspected contaminant source area indicate that a zone of low electromagnetic (EM) velocity and high EM attenuation is present above 50 ft in depth - the region containing the highest density of fractures. Flowmeter logging was used to estimate hydraulic properties in the boreholes. Thirty-three transmissive fracture zones were identified in 11 of the boreholes. The vertical separation between transmissive zones typically is 10 to 20 ft. Open-hole and discrete-zone transmissivity was estimated from heat-pulse flowmeter data acquired under ambient and stressed conditions. The open-hole transmissivity ranges from 2 to 86 ft2/d. The estimated transmissivity of individual transmissive zones ranges from 0.4 to 68 ft2/d. Drawdown monitoring in nearby boreholes under pumping conditions identified hydraulic connections along a northeast-southwest trend between boreholes as far as 560 ft apart. The vertical distribution of fractures can be described by power law functions, which suggest that the fracture network contains transmissive zones consisting of closely spaced fractures surrounded by a less fractured and much less permeable rock mass.

  13. Exploring How Weathering Related Stresses and Subcritical Crack Growth May Influence the Size of Sediment Produced From Different Rock Types.

    NASA Astrophysics Data System (ADS)

    Eppes, M. C.; Hallet, B.; Hancock, G. S.; Mackenzie-Helnwein, P.; Keanini, R.

    2016-12-01

    The formation and diminution of rock debris, sediment and soil at and near Earth's surface is driven in large part by in situ, non-transport related, rock cracking. Given the relatively low magnitude stresses that arise in surface and near-surface settings, this production and diminution of granular material is likely strongly influenced and/or driven by subcritical crack growth (Eppes et al., 2016), cracking that occurs under stress loading conditions much lower than a rock's strength as typically measured in the laboratory under rapid loading. Despite a relatively sound understanding of subcritical crack growth through engineering and geophysical studies, its geomorphic and sedimentologic implications have only been minimally explored. Here, based on existing studies, we formulate several hypotheses to predict how weathering-induced stresses combined with the subcritical crack growth properties of rock may influence sediment size distribution. For example, subcritical crack growth velocity (v) can be described by v = CKIn where KI is the mode I (simple opening mode) stress intensity factor, a function of tensile stress at the crack tip and crack length; C is a rock- and environment-dependent constant; and n is material constant, the subcritical crack growth index. Fracture length and spacing in rock is strongly dependent on n, where higher n values result in fewer, more distally spaced cracks (e.g. Olsen, 1993). Thus, coarser sediment might be expected from rocks with higher n values. Weathering-related stresses such as thermal stresses and mineral hydration, however, can disproportionally stress boundaries between minerals with contrasting thermal or chemical properties and orientation, resulting in granular disintegration. Thus, rocks with properties favorable to inducing these stresses might produce sediment whose size is reflective of its constituent grains. We begin to test these hypotheses through a detailed examination of crack and rock characteristics in outcrops of granite, sandstone, and quartzite found in Shenandoah National Park, Virginia. Preliminary results reveal that many observed cracking characteristics are consistent with our hypotheses linking subcritical crack growth, weathering stresses and the production of different sized sediment from different rock types.

  14. Algebra--I Just Don't Get It

    ERIC Educational Resources Information Center

    Graham, Alan; Honey, Suki

    2009-01-01

    Each year at Bath University the Open University's Centre for Mathematics Education runs a one-week summer school for Key Stage 3 teachers as well as those aspiring to become teachers. For many of the participants, the course is a case of dipping their toe in the water towards a longer-term goal of taking an Advanced Diploma (or perhaps a masters)…

  15. Rock fracture processes in chemically reactive environments

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the hostrock can independently affect fracture opening displacement and thus fracture aperture profiles and aperture distribution.

  16. InSitu SEM Investigation of Microstructural Damage Evolution and Strain Relaxation in a Melt Infiltrated SiC/SiC Composite

    NASA Technical Reports Server (NTRS)

    Sevener, Kathy; Chen, Zhe; Daly, Sam; Tracy, Jared; Kiser, Doug

    2016-01-01

    With CMC components poised to complete flight certification in turbine engines on commercial aircraft within the near future, there are many efforts within the aerospace community to model the mechanical and environmental degradation of CMCs. Direct observations of damage evolution are needed to support these modeling efforts and provide quantitative measures of damage parameters used in the various models. This study was performed to characterize the damage evolution during tensile loading of a melt infiltrated (MI) silicon carbide reinforced silicon carbide (SiC/SiC) composite. A SiC/SiC tensile coupon was loaded to a maximum global stress of 30 ksi in a tensile fixture within an SEM while observations were made at 5 ksi increments. Both traditional image analysis and DIC (digital image correlation) were used to quantify damage evolution. With the DIC analysis, microscale damage was observed at the fiber-matrix interfaces at stresses as low as 5 ksi. First matrix cracking took place between 20 and 25 ksi, accompanied by an observable relaxation in strain near matrix cracks. Matrix crack opening measurements at the maximum load ranged from 200 nm to 1.5 m. Crack opening along the fiber-matrix interface was also characterized as a function of load and angular position relative to the loading axis. This characterization was funded by NASA GRC and was performed to support NASA GRC modeling of SiC/SiC environmental degradation

  17. Eruption dynamics at Mount St. Helens imaged from broadband seismic waveforms: Interaction of the shallow magmatic and hydrothermal systems

    USGS Publications Warehouse

    Waite, G.P.; Chouet, B.A.; Dawson, P.B.

    2008-01-01

    The current eruption at Mount St. Helens is characterized by dome building and shallow, repetitive, long-period (LP) earthquakes. Waveform cross-correlation reveals remarkable similarity for a majority of the earthquakes over periods of several weeks. Stacked spectra of these events display multiple peaks between 0.5 and 2 Hz that are common to most stations. Lower-amplitude very-long-period (VLP) events commonly accompany the LP events. We model the source mechanisms of LP and VLP events in the 0.5-4 s and 8-40 s bands, respectively, using data recorded in July 2005 with a 19-station temporary broadband network. The source mechanism of the LP events includes: 1) a volumetric component modeled as resonance of a gently NNW-dipping, steam-filled crack located directly beneath the actively extruding part of the new dome and within 100 m of the crater floor and 2) a vertical single force attributed to movement of the overlying dome. The VLP source, which also includes volumetric and single-force components, is 250 m deeper and NNW of the LP source, at the SW edge of the 1980s lava dome. The volumetric component points to the compression and expansion of a shallow, magma-filled sill, which is subparallel to the hydrothermal crack imaged at the LP source, coupled with a smaller component of expansion and compression of a dike. The single-force components are due to mass advection in the magma conduit. The location, geometry and timing of the sources suggest the VLP and LP events are caused by perturbations of a common crack system.

  18. Surface faults on Montague Island associated with the 1964 Alaska earthquake: Chapter G in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Plafter, George

    1967-01-01

    Two reverse faults on southwestern Montague Island in Prince William Sound were reactivated during the earthquake of March 27, 1964. New fault scarps, fissures, cracks, and flexures appeared in bedrock and unconsolidated surficial deposits along or near the fault traces. Average strike of the faults is between N. 37° E. and N. 47° E.; they dip northwest at angles ranging from 50° to 85°. The dominant motion was dip slip; the blocks northwest of the reactivated faults were relatively upthrown, and both blocks were upthrown relative to sea level. No other earthquake faults have been found on land. The Patton Bay fault on land is a complex system of en echelon strands marked by a series of spectacular landslides along the scarp and (or) by a zone of fissures and flexures on the upthrown block that locally is as much as 3,000 feet wide. The fault can be traced on land for 22 miles, and it has been mapped on the sea floor to the southwest of Montague Island an additional 17 miles. The maximum measured vertical component of slip is 20 to 23 feet and the maximum indicated dip slip is about 26 feet. A left-lateral strike-slip component of less than 2 feet occurs near the southern end of the fault on land where its strike changes from northeast to north. Indirect evidence from the seismic sea waves and aftershocks associated with the earthquake, and from the distribution of submarine scarps, suggests that the faulting on and near Montague Island occurred at the northeastern end of a reactivated submarine fault system that may extend discontinuously for more than 300 miles from Montague Island to the area offshore of the southeast coast of Kodiak Island. The Hanning Bay fault is a minor rupture only 4 miles long that is marked by an exceptionally well defined almost continuous scarp. The maximum measured vertical component of slip is 16⅓ feet near the midpoint, and the indicated dip slip is about 20 feet. There is a maximum left-lateral strike-slip component of one-half foot near the southern end of the scarp. Warping and extension cracking occurred in bedrock near the midpoint on the upthrown block within about 1,000 feet of the fault scarp. The reverse faults on Montague Island and their postulated submarine extensions lie within a tectonically important narrow zone of crustal attenuation and maximum uplift associated with the earthquake. However, there are no significant lithologic differences in the rock sequences across these faults to suggest that they form major tectonic boundaries. Their spatial distribution relative to the regional uplift associated with the earthquake, the earthquake focal region, and the epicenter of the main shock suggest that they are probably subsidiary features rather than the causative faults along which the earthquake originated. Approximately 70 percent of the new breakage along the Patton Bay and the Hanning Bay faults on Montague Island was along obvious preexisting active fault traces. The estimated ages of undisturbed trees on and near the fault trace indicate that no major disc placement had occurred on these faults for at least 150 to 300 years before the 1964 earthquake.

  19. Geometrically Nonlinear Field Fracture Mechanics and Crack Nucleation, Application to Strain Localization Fields in Al-Cu-Li Aerospace Alloys.

    PubMed

    Gupta, Satyapriya; Taupin, Vincent; Fressengeas, Claude; Jrad, Mohamad

    2018-03-27

    The displacement discontinuity arising between crack surfaces is assigned to smooth densities of crystal defects referred to as disconnections, through the incompatibility of the distortion tensor. In a dual way, the disconnections are defined as line defects terminating surfaces where the displacement encounters a discontinuity. A conservation statement for the crack opening displacement provides a framework for disconnection dynamics in the form of transport laws. A similar methodology applied to the discontinuity of the plastic displacement due to dislocations results in the concurrent involvement of dislocation densities in the analysis. Non-linearity of the geometrical setting is assumed for defining the elastic distortion incompatibility in the presence of both dislocations and disconnections, as well as for their transport. Crack nucleation in the presence of thermally-activated fluctuations of the atomic order is shown to derive from this nonlinearity in elastic brittle materials, without any algorithmic rule or ad hoc material parameter. Digital image correlation techniques applied to the analysis of tensile tests on ductile Al-Cu-Li samples further demonstrate the ability of the disconnection density concept to capture crack nucleation and relate strain localization bands to consistent disconnection fields and to the eventual occurrence of complex and combined crack modes in these alloys.

  20. Laser-driven mechanical fracture in fused silica

    NASA Astrophysics Data System (ADS)

    Dahmani, Faiz

    1999-10-01

    Fused silica, widely used as optical-window material in high-fluence requirements on glass and KrF lasers, experiences optical damage. Under fatigue conditions, the damage is initiated by slow crack growth and culminates, if not arrested, with catastrophic crack growth and implosive failure when the stress intensity approaches the critical value. Since laser-induced cracks cannot be eliminated entirely, the behavior of cracked structures under service conditions must be quantified to be predicted. Systematic scientific rules must be devised to characterize laser-induced cracks and their effects, and to predict if and when it may become necessary to replace the damaged components. This thesis makes a contribution toward this end. Measurements of fatigue failure strength of laser-cracked fused silica in air at room temperature for different number of laser pulses and laser fluences are presented. The failure-strength variability is found to be due mainly to the spectrum of crack depths. Agreement with theory suggests the incorporation of a residual term into the failure-strength equation. Experiments on residual stresses induced in fused silica by the presence of a laser-induced crack are carried out using two different techniques. Theoretical modelings show that this residual stress field is of shear nature and mouth-opening. A correlation between the reduction in fracture strength of fused silica and the increase of the residual-stress field is established, providing laser systems designers and operators with guidance on the rate of crack growth as well as on the stress-related ramifications such as laser-driven cracks entail. Specifically, a hoop-stress in the immediate vicinity of a crack growing along the beam propagation direction is identified as strongly coupling to both the laser fluence and the crack growth. This coupling prompted the question of whether or not breaking the hoop stress symmetry by some external perturbation will accelerate or stymie crack growth. Experimental results on stress-inhibited laser-driven crack growth and stress-delayed-laser-damage initiation thresholds in fused silica and borosilicate glass (BK7) are presented. The results obtained show that, for very low compressive stresses (<10 psi), the damage initiation threshold is raised by as much as 78%, while the crack growth is arrested by 70%. Different loading- geometries are tested, giving different crack growth rates and raising the distinction between uniaxial and biaxial states of stresses.

  1. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K.H. Kim; C.T. Lee; C.B. Lee

    2013-10-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the mostmore » promising characteristics among HfN, TiC, ZrC, and Y2O3 coating.« less

  2. De Novo Assembly and Characterization of Pericarp Transcriptome and Identification of Candidate Genes Mediating Fruit Cracking in Litchi chinensis Sonn.

    PubMed Central

    Li, Wei-Cai; Wu, Jian-Yang; Zhang, Hong-Na; Shi, Sheng-You; Liu, Li-Qin; Shu, Bo; Liang, Qing-Zhi; Xie, Jiang-Hui; Wei, Yong-Zan

    2014-01-01

    Fruit cracking has long been a topic of great concern for growers and researchers of litchi (Litchi chinensis Sonn.). To understand the molecular mechanisms underlying fruit cracking, high-throughput RNA sequencing (RNA-Seq) was first used for de novo assembly and characterization of the transcriptome of cracking pericarp of litchi. Comparative transcriptomic analyses were performed on non-cracking and cracking fruits. A total of approximately 26 million and 29 million high quality reads were obtained from the two groups of samples, and were assembled into 46,641 unigenes with an average length of 993 bp. These unigenes can be useful resources for future molecular studies of the pericarp in litchi. Furthermore, four genes (LcAQP, 1; LcPIP, 1; LcNIP, 1; LcSIP, 1) involved in water transport, five genes (LcKS, 2; LcGA2ox, 2; LcGID1, 1) involved in GA metabolism, 21 genes (LcCYP707A, 2; LcGT, 9; Lcβ-Glu, 6; LcPP2C, 2; LcABI1, 1; LcABI5, 1) involved in ABA metabolism, 13 genes (LcTPC, 1; Ca2+/H+ exchanger, 3; Ca2+-ATPase, 4; LcCDPK, 2; LcCBL, 3) involved in Ca transport and 24 genes (LcPG, 5; LcEG, 1; LcPE, 3; LcEXP, 5; Lcβ-Gal, 9; LcXET, 1) involved in cell wall metabolism were identified as genes that are differentially expressed in cracked fruits compared to non-cracked fruits. Our results open new doors to further understand the molecular mechanisms behind fruit cracking in litchi and other fruits, especially Sapindaceae plants. PMID:25272225

  3. Analysis of Delamination Growth from Matrix Cracks in Laminates Subjected to Bending Loads

    NASA Technical Reports Server (NTRS)

    Murri, G. B.; Guynn, E. G.

    1986-01-01

    A major source of delamination damage in laminated composite materials is from low-velocity impact. In thin composite laminates under point loads, matrix cracks develop first in the plies, and delaminations then grow from these cracks at the ply interfaces. The purpose of this study was to quantify the combined effects of bending and transverse shear loads on delamination initiation from matrix cracks. Graphite-epoxy laminates with 90 deg. plies on the outside were used to provide a two-dimensional simulation of the damage due to low-velocity impact. Three plate bending problems were considered: a 4-point bending, 3-point bending, and an end-clamped center-loaded plate. Under bending, a matrix crack will form on the tension side of the laminate, through the outer 90 deg. plies and parallel to the fibers. Delaminations will then grow in the interface between the cracked 90 deg. ply and the next adjacent ply. Laminate plate theory was used to derive simple equations relating the total strain energy release rate, G, associated with the delamination growth from a 90 deg. ply crack to the applied bending load and laminate stiffness properties. Three different lay-ups were tested and results compared. Test results verified that the delamination always formed at the interface between the cracked 90 deg. ply and the next adjacent ply. Calculated values for total G sub c from the analysis showed good agreement for all configurations. The analysis was able to predict the delamination onset load for the cases considered. The result indicated that the opening mode component (Mode I) for delamination growth from a matrix crack may be much larger than the component due to interlaminar shear (Mode II).

  4. Very long period conduit oscillations induced by rockfalls at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.

    2013-01-01

    Eruptive activity at the summit of Kilauea Volcano, Hawaii, beginning in 2010 and continuing to the present time is characterized by transient outgassing bursts accompanied by very long period (VLP) seismic signals triggered by rockfalls from the vent walls impacting a lava lake in a pit within the Halemaumau pit crater. We use raw data recorded with an 11-station broadband network to model the source mechanism of signals accompanying two large rockfalls on 29 August 2012 and two smaller average rockfalls obtained by stacking over all events with similar waveforms to improve the signal-to-noise ratio. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. We apply a new waveform inversion method that accounts for the contributions from both translation and tilt in horizontal seismograms through the use of Green's functions representing the seismometer response to translation and tilt ground motions. This method enables a robust description of the source mechanism over the period range 1–1000 s. The VLP signals associated with the rockfalls originate in a source region ∼1 km below the eastern perimeter of the Halemaumau pit crater. The observed waveforms are well explained by a simple volumetric source with geometry composed of two intersecting cracks including an east striking crack (dike) dipping 80° to the north, intersecting a north striking crack (another dike) dipping 65° to the east. Each rockfall is marked by a similar step-like inflation trailed by decaying oscillations of the volumetric source, attributed to the efficient coupling at the source centroid location of the pressure and momentum changes induced by the rock mass impacting the top of the lava column. Assuming a simple lumped parameter representation of the shallow magmatic system, the observed pressure and volume variations can be modeled with the following attributes: rockfall volume (200–4500 m3), length of magma column (120–210 m), diameter of pipe connecting the Halemaumau pit crater to the subjacent dike system (6 m), average thickness of the two underlying dikes (3–6 m), and effective magma viscosity (30–210 Pa s). Most rockfalls occur during episodes of sustained deflation of the Kilauea summit. The mass loss rate in the shallow magmatic system is estimated to be 1400–15,000 kg s−1 based on measurements of the temporal variation of VLP period in the two large rockfalls that occurred on 29 August 2012.

  5. Factors affecting cashew processing by wild bearded capuchin monkeys (Sapajus libidinosus, Kerr 1792).

    PubMed

    Visalberghi, Elisabetta; Albani, Alessandro; Ventricelli, Marialba; Izar, Patricia; Schino, Gabriele; Fragazsy, Dorothy

    2016-08-01

    Cashew nuts are very nutritious but so well defended by caustic chemicals that very few species eat them. We investigated how wild bearded capuchin monkeys (Sapajus libidinosus) living at Fazenda Boa Vista (FBV; Piauí, Brazil) process cashew nuts (Anacardium spp.) to avoid the caustic chemicals contained in the seed mesocarp. We recorded the behavior of 23 individuals toward fresh (N = 1282) and dry (N = 477) cashew nuts. Adult capuchins used different sets of behaviors to process nuts: rubbing for fresh nuts and tool use for dry nuts. Moreover, adults succeed to open dry nuts both by using teeth and tools. Age and body mass significantly affected success. Signs of discomfort (e.g., chemical burns, drooling) were rare. Young capuchins do not frequently closely observe adults processing cashew nuts, nor eat bits of nut processed by others. Thus, observing the behavior of skillful group members does not seem important for learning how to process cashew nuts, although being together with group members eating cashews is likely to facilitate interest toward nuts and their inclusion into the diet. These findings differ from those obtained when capuchins crack palm nuts, where observations of others cracking nuts and encounters with the artifacts of cracking produced by others are common and support young individuals' persistent practice at cracking. Cashew nut processing by capuchins in FBV appears to differ from that observed in a conspecific population living 320 km apart, where capuchins use tools to open both fresh and dry nuts. Moreover, in the latter population, chemical burns due to cashew caustic compounds appear to be common. The sources of these differences across populations deserve investigation, especially given that social influences on young monkeys learning to open cashew nuts at FBV seem to be nonspecific. Am. J. Primatol. 78:799-815, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve.

    PubMed

    Mohammadi, H; Klassen, R J; Wan, W-K

    2008-10-01

    Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 microm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2 x 10(9) cycles) and, with an initial crack length of 170 microm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1 x 10(7) cycles). For an initial crack length greater than 170 microm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic loads.

  7. Crack turning in integrally stiffened aircraft structures

    NASA Astrophysics Data System (ADS)

    Pettit, Richard Glen

    Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener---a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation. Drawing upon these principles, two crack turning prediction approaches are extended to include fracture resistance orthotropy---a second-order linear elastic method with a characteristic length parameter to incorporate T-stress/process-zone effects, and an elastic-plastic method that uses the Crack Tip Opening Displacement (CTOD) to determine the failure response. Together with a novel method for obtaining enhanced accuracy T-stress calculations, these methods are incorporated into an adaptive-mesh, finite-element fracture simulation code. A total of 43 fracture tests using symmetrically and asymmetrically loaded double cantilever beam specimens were run to develop crack turning parameters and compare predicted and observed crack paths.

  8. The Development of Directional Decohesion Finite Elements for Multiscale Failure Analysis of Metallic Polycrystals

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Glaessgen, Edward H.

    2009-01-01

    Atomistic simulations of intergranular fracture have indicated that grain-scale crack growth in polycrystalline metals can be direction dependent. At these material length scales, the atomic environment greatly influences the nature of intergranular crack propagation, through either brittle or ductile mechanisms, that are a function of adjacent grain orientation and direction of crack propagation. Methods have been developed to obtain cohesive zone models (CZM) directly from molecular dynamics simulations. These CZMs may be incorporated into decohesion finite element formulations to simulate fracture at larger length scales. A new directional decohesion element is presented that calculates the direction of Mode I opening and incorporates a material criterion for dislocation emission based on the local crystallographic environment to automatically select the CZM that best represents crack growth. The simulation of fracture in 2-D and 3-D aluminum polycrystals is used to illustrate the effect of parameterized CZMs and the effectiveness of directional decohesion finite elements.

  9. A Comparison of Quasi-Static Indentation and Drop-Weight Impact Testing on Carbon-Epoxy Laminates

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.

    2001-01-01

    The project had two objectives: 1) The primary objective was to characterize damage tolerance of composite materials. To accomplish this, polymer matrix composites were to be subjected to static indentation as well as low-velocity impacts and the results analyzed. 2) A second objective was to investigate the effects of laser shock peening on the damage tolerance of aerospace materials, such as aluminum alloys, in terms of crack nucleation and crack propagation. The impact testing was proposed to be performed using a Dynatup drop tower. The specimens were to be placed over a square opening in a steel platen and impacted with a hemispherical tup. The damage was to be characterized in the laminate specimens. The damage tolerance of aerospace alloys was to be studied by conducting fatigue tests on aluminum alloy specimens with prior shock peening treatment. The crack length was to be monitored by a microscope and the crack propagation rate, da/dN, determined.

  10. An efficient numerical method for the solution of the problem of elasticity for 3D-homogeneous elastic medium with cracks and inclusions

    NASA Astrophysics Data System (ADS)

    Kanaun, S.; Markov, A.

    2017-06-01

    An efficient numerical method for solution of static problems of elasticity for an infinite homogeneous medium containing inhomogeneities (cracks and inclusions) is developed. Finite number of heterogeneous inclusions and planar parallel cracks of arbitrary shapes is considered. The problem is reduced to a system of surface integral equations for crack opening vectors and volume integral equations for stress tensors inside the inclusions. For the numerical solution of these equations, a class of Gaussian approximating functions is used. The method based on these functions is mesh free. For such functions, the elements of the matrix of the discretized system are combinations of explicit analytical functions and five standard 1D-integrals that can be tabulated. Thus, the numerical integration is excluded from the construction of the matrix of the discretized problem. For regular node grids, the matrix of the discretized system has Toeplitz's properties, and Fast Fourier Transform technique can be used for calculation matrix-vector products of such matrices.

  11. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions

    USGS Publications Warehouse

    Cohen, D.; Hooyer, T.S.; Iverson, N.R.; Thomason, J.F.; Jackson, M.

    2006-01-01

    Probably the most important mechanism of glacial erosion is quarrying: the growth and coalescence of cracks in subglacial bedrock and dislodgement of resultant rock fragments. Although evidence indicates that erosion rates depend on sliding speed, rates of crack growth in bedrock may be enhanced by changing stresses on the bed caused by fluctuating basal water pressure in zones of ice-bed separation. To study quarrying in real time, a granite step, 12 cm high with a crack in its stoss surface, was installed at the bed of Engabreen, Norway. Acoustic emission sensors monitored crack growth events in the step as ice slid over it. Vertical stresses, water pressure, and cavity height in the lee of the step were also measured. Water was pumped to the lee of the step several times over 8 days. Pumping initially caused opening of a leeward cavity, which then closed after pumping was stopped and water pressure decreased. During cavity closure, acoustic emissions emanating mostly from the vicinity of the base of the crack in the step increased dramatically. With repeated pump tests this crack grew with time until the step's lee surface was quarried. Our experiments indicate that fluctuating water pressure caused stress thresholds required for crack growth to be exceeded. Natural basal water pressure fluctuations should also concentrate stresses on rock steps, increasing rates of crack growth. Stress changes on the bed due to water pressure fluctuations will increase in magnitude and duration with cavity size, which may help explain the effect of sliding speed on erosion rates. Copyright 2006 by the American Geophysical Union.

  12. Orientation effects on the measurement and analysis of critical CTOA in an aluminum alloy sheet

    NASA Technical Reports Server (NTRS)

    Sutton, M. A.; Dawicke, D. S.; Newman, J. C., Jr.

    1994-01-01

    Fracture tests were conducted on 76.2mm wide, 2.3mm thick middle crack tension (M(T)) specimens machined from 2024-T3 aluminum sheet. The specimens were tested on the T-L orientation and comparisons were made to similar tests conducted in the L-T orientation. Measurement of critical crack tip opening angle (CTOA), applied stress, and crack front shape were made as a function of crack extension. A two-dimensional, elastic-plastic finite element analysis was used to simulate the fracture behavior for both orientations. The results indicate that the T-L orientation had a 10 percent lower stress at fracture than similar tests conducted in the L-T orientation. Correspondingly, the critical CTOA in the T-L tests reached a constant value of 4.7 degrees after 2-3mm of crack extension and the L-T tests reached a value of 6 degrees. The fracture surfaces of the T-L specimens were observed to remain flat, while those of the L-T specimens transitioned to a 45 degree slant fracture after about 2-3mm of crack extension. The tunneling behavior of the two orientations also differed; the T-L specimens reached a deeply tunneled stabilized crack front shape while, the L-T specimens were observed to have only a small amount of tunneling once the crack began to grow on the 45 degree slant. The two-dimensional, elastic-plastic finite element analysis was able to simulate the fracture behavior for both the T-L and L-T orientations.

  13. Analysis of local delaminations caused by angle ply matrix cracks

    NASA Technical Reports Server (NTRS)

    Salpekar, Satish A.; Obrien, T. Kevin; Shivakumar, K. N.

    1993-01-01

    Two different families of graphite/epoxy laminates with similar layups but different stacking sequences, (0,theta,-theta) sub s and (-theta/theta/0) sub s were analyzed using three-dimensional finite element analysis for theta = 15 and 30 degrees. Delaminations were modeled in the -theta/theta interface, bounded by a matrix crack and the stress free edge. The total strain energy release rate, G, along the delamination front was computed using three different techniques: the virtual crack closure technique (VCCT), the equivalent domain Integral (EDI) technique, and a global energy balance technique. The opening fracture mode component of the strain energy release rate, Gl, along the delamination front was also computed for various delamination lengths using VCCT. The effect of residual thermal and moisture stresses on G was evaluated.

  14. Utilization of fractography in the evaluations of high temperature dynamic fatigue experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breder, K.; Tennery, V.J.; Mroz, T.J.

    1996-12-31

    The slow crack growth properties of six structural ceramics were measured by dynamic fatigue in air and inert atmospheres over a range of elevated temperatures. The material response varied from no strength degradation as a function of stress and environment to significant strength degradation by slow crack growth (SCG) and by a combination of SCG and creep. The fractographic investigation showed that SCG was evidenced by growth of isolated cracks and often by an intergranular fracture mode, while creep was evidenced by accumulated damage such as void formation and opening of the microstructure at grain boundaries and triple junctions. Formore » the materials in which the strength was unaffected by the stress and environment, the fracture surfaces were essentially indistinguishable from the inert fracture surfaces.« less

  15. Utilization of fractography in the evaluation of high temperature dynamic fatigue experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breder, K.; Wereszczak, A.A.; Tennery, V.J.

    1995-12-31

    The slow crack growth properties of six structural ceramics were measured by dynamic fatigue in air and inert atmospheres over a range of elevated temperatures. The material response varied from no strength degradation as a function of stress and environment to significant strength degradation by slow crack growth (SCG) and by a combination of SCG and creep. The fractographic investigation showed that SCG was evidenced by growth of isolated cracks and often by an intergranular fracture mode, while creep was evidenced by accumulated damage such as void formation and opening of the microstructure at grain boundaries and triple junctions. Formore » the materials in which the strength was unaffected by the stress and environment, the fracture surfaces were essentially indistinguishable from the inert fracture surfaces.« less

  16. Stress state of rock mass under open pit mining in the influence zone of tectonic disturbances (in terms of the Oktorkoi Fault, North Tien Shan)

    NASA Astrophysics Data System (ADS)

    Kozhogulov, KCh; Nikolskaya, OV; Rybin, AK; Kuzikov, SI

    2018-03-01

    The qualitative connection between the crack growth direction and the orientation of the main axes of horizontal deformations in rocks mass in the area of the Boordin gold ore province is revealed. The effect of the rock mass quality (RQD) and contact conditions of crack surfaces on the stability index of pit wall rock mass is evaluated, and the influence of the rock mass quality index on the pit wall stability is determined.

  17. Asynchronous cracking with dissimilar paths in multilayer graphene.

    PubMed

    Jang, Bongkyun; Kim, Byungwoon; Kim, Jae-Hyun; Lee, Hak-Joo; Sumigawa, Takashi; Kitamura, Takayuki

    2017-11-16

    Multilayer graphene consists of a stack of single-atomic-thick monolayer graphene sheets bound with π-π interactions and is a fascinating model material opening up a new field of fracture mechanics. In this study, fracture behavior of single-crystalline multilayer graphene was investigated using an in situ mode I fracture test under a scanning electron microscope, and abnormal crack propagation in multilayer graphene was identified for the first time. The fracture toughness of graphene was determined from the measured load-displacement curves and the realistic finite element modelling of specimen geometries. Nonlinear fracture behavior of the multilayer graphene is discussed based on nonlinear elastic fracture mechanics. In situ scanning electron microscope images obtained during the fracture test showed asynchronous crack propagation along independent paths, causing interlayer shear stress and slippages. We also found that energy dissipation by interlayer slippages between the graphene layers is the reason for the enhanced fracture toughness of multilayer graphene. The asynchronous cracking with independent paths is a unique cracking and toughening mechanism for single-crystalline multilayer graphene, which is not observed for the monolayer graphene. This could provide a useful insight for the design and development of graphene-based composite materials for structural applications.

  18. Microscopic Observation of the Side Surface of Dynamically-Tensile-Fractured 6061-T6 and 2219-T87 Aluminum Alloys with Pre-Fatigue

    NASA Astrophysics Data System (ADS)

    Itabashi, Masaaki; Nakajima, Shigeru; Fukuda, Hiroshi

    After unexpected failure of metallic structure, microscopic investigation will be performed. Generally, such an investigation is limited to search striation pattern with a SEM (scanning electron microscope). But, when the cause of the failure was not severe repeated stress, this investigation is ineffective. In this paper, new microscopic observation technique is proposed to detect low cycle fatigue-impact tensile loading history. Al alloys, 6061-T6 and 2219-T87, were fractured in dynamic tension, after severe pre-fatigue. The side surface of the fractured specimens was observed with a SEM. Neighboring fractured surface, many opened cracks on the side surface have been generated. For each specimen, the number of the cracks was counted together with information of individual sizes and geometric features. For 6061-T6 alloy specimen with the pre-fatigue, the number of the cracks is greater than that for the specimen without the pre-fatigue. For 2219-T87 alloy, the same tendency can be found after a certain screening of the crack counting. Therefore, the crack counting technique may be useful to detect the existence of the pre-fatigue from the dynamically fractured specimen surface.

  19. The Effect of Interface Cracks on the Electrical Performance of Solar Cells

    NASA Astrophysics Data System (ADS)

    Kim, Hansung; Tofail, Md. Towfiq; John, Ciby

    2018-04-01

    Among a variety of solar cell types, thin-film solar cells have been rigorously investigated as cost-effective and efficient solar cells. In many cases, flexible solar cells are also fabricated as thin films and undergo frequent stress due to the rolling and bending modes of applications. These frequent motions result in crack initiation and propagation (including delamination) in the thin-film solar cells, which cause degradation in efficiency. Reliability evaluation of solar cells is essential for developing a new type of solar cell. In this paper, we investigated the effect of layer delamination and grain boundary crack on 3D thin-film solar cells. We used finite element method simulation for modeling of both electrical performance and cracked structure of 3D solar cells. Through simulations, we quantitatively calculated the effect of delamination length on 3D copper indium gallium diselenide (CIGS) solar cell performance. Moreover, it was confirmed that the grain boundary of CIGS could improve the solar cell performance and that grain boundary cracks could decrease cell performance by altering the open circuit voltage. In this paper, the investigated material is a CIGS solar cell, but our method can be applied to general polycrystalline solar cells.

  20. Non-double-couple mechanisms of microearthquakes induced by hydraulic fracturing

    USGS Publications Warehouse

    Sileny, J.; Hill, D.P.; Eisner, Leo; Cornet, F.H.

    2009-01-01

    We have inverted polarity and amplitude information of representative microearthquakes to investigate source mechanisms of seismicity induced by hydraulic fracturing in the Carthage Cotton Valley, east Texas, gas field. With vertical arrays of four and eight three-component geophones in two monitoring wells, respectively, we were able to reliably determine source mechanisms of the strongest events with the best signal-to-noise ratio. Our analysis indicates predominantly non-double-couple source mechanisms with positive volumetric component consistent with opening cracks oriented close to expected hydraulic fracture orientation. Our observations suggest the induced events are directly the result of opening cracks by fluid injection, in contrast to many previous studies where the seismicity is interpreted to be primarily shearing caused by pore pressure diffusion into the surrounding rock or associated with shear stresses created at the hydraulic fracture tip. Copyright 2009 by the American Geophysical Union.

  1. The effect of fatigue cracks on fastener flexibility, load distribution, and fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Whitman, Zachary Layne

    Fatigue cracks typically occur at stress risers such as geometry changes and holes. This type of failure has serious safety and economic repercussions affecting structures such as aircraft. The need to prevent catastrophic failure due to fatigue cracks and other discontinuities has led to durability and damage tolerant methodologies influencing the design of aircraft structures. Holes in a plate or sheet filled with a fastener are common fatigue critical locations in aircraft structure requiring damage tolerance analysis (DTA). Often, the fastener is transferring load which leads to a loading condition involving both far-field stresses such as tension and bending, and localized bearing at the hole. The difference between the bearing stress and the tensile field at the hole is known as load transfer. The ratio of load transfer as well as the magnitude of the stresses plays a significant part in how quickly a crack will progress to failure. Unfortunately, the determination of load transfer in a complex joint is far from trivial. Many methods exist in the open literature regarding the analysis of splices, doublers and attachment joints to determine individual fastener loads. These methods work well for static analyses but greater refinement is needed for crack growth analysis. The first fastener in a splice or joint is typically the most critical but different fastener flexibility equations will all give different results. The constraint of the fastener head and shop end, along with the type of fastener, affects the stiffness or flexibility of the fastener. This in turn will determine the load that the fastener will transfer within a given fastener pattern. However, current methods do not account for the change in flexibility at a fastener as the crack develops. It is put forth that a crack does indeed reduce the stiffness of a fastener by changing its constraint, thus lessening the load transfer. A crack growth analysis utilizing reduced load transfer will result in a slower growing crack versus an analysis that ignores the effect.

  2. Impact of the slab dip change onto the deformation partitioning in the northern Lesser Antilles oblique subduction zone (Antigua-Virgin Islands)

    NASA Astrophysics Data System (ADS)

    Laurencin, Muriel; Marcaillou, Boris; Klingelhoefer, Frauke; Graindorge, David; Lebrun, Jean-Frédéric; Laigle, Mireille; Lallemand, Serge

    2017-04-01

    Marine geophysical cruises Antithesis (2013-2016) investigate the impact of the variations in interplate geometry onto margin tectonic deformation along the strongly oblique Lesser Antilles subduction zone. A striking features of this margin is the drastic increase in earthquake number from the quiet Barbuda-St Martin segment to the Virgin Islands platform. Wide-angle seismic data highlight a northward shallowing of the downgoing plate: in a 150 km distance from the deformation front, the slab dipping angle in the convergence direction decreases from 12° offshore of Antigua Island to 7° offshore of Virgin Islands. North-South wide-angle seismic line substantiates a drastic slab-dip change that likely causes this northward shallowing. This dip change is located beneath the southern tip of the Virgin Islands platform where the Anegada Passage entails the upper plate. Based on deep seismic lines and bathymetric data, the Anegada Passage is a 450 km long W-E trending set of pull-apart basins and strike-slip faults that extends from the Lesser Antilles accretionary prism to Puerto Rico. The newly observed sedimentary architecture within pull-apart Sombrero and Malliwana basins indicates a polyphased tectonic history. A past prominent NW-SE extensive to transtensive phase, possibly related to the Bahamas Bank collision, opened the Anegada Passage as previously published. Transpressive tectonic evidences indicate that these structures have been recently reactivated in an en-echelon sinistral strike-slip system. The interpreted strain ellipsoid is consistent with deformation partitioning. We propose that the slab northward shallowing increases the interplate coupling and the seismic activity beneath the Virgin Islands platform comparatively to the quiet Barbuda-St Martin segment. It is noteworthy that the major tectonic partitioning structure in the Lesser Antilles forearc is located above the slab dip change where the interplate seismic coupling increases.

  3. surf3d: A 3-D finite-element program for the analysis of surface and corner cracks in solids subjected to mode-1 loadings

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1993-01-01

    A computer program, surf3d, that uses the 3D finite-element method to calculate the stress-intensity factors for surface, corner, and embedded cracks in finite-thickness plates with and without circular holes, was developed. The cracks are assumed to be either elliptic or part eliptic in shape. The computer program uses eight-noded hexahedral elements to model the solid. The program uses a skyline storage and solver. The stress-intensity factors are evaluated using the force method, the crack-opening displacement method, and the 3-D virtual crack closure methods. In the manual the input to and the output of the surf3d program are described. This manual also demonstrates the use of the program and describes the calculation of the stress-intensity factors. Several examples with sample data files are included with the manual. To facilitate modeling of the user's crack configuration and loading, a companion program (a preprocessor program) that generates the data for the surf3d called gensurf was also developed. The gensurf program is a three dimensional mesh generator program that requires minimal input and that builds a complete data file for surf3d. The program surf3d is operational on Unix machines such as CRAY Y-MP, CRAY-2, and Convex C-220.

  4. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology

    NASA Technical Reports Server (NTRS)

    Allen, P. A.; Wells, D. N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  5. Corrosion behavior and mechanical properties of bioactive sol-gel coatings on titanium implants.

    PubMed

    Catauro, M; Bollino, F; Papale, F; Giovanardi, R; Veronesi, P

    2014-10-01

    Organic-inorganic hybrid coatings based on zirconia and poly (ε-caprolactone) (PCL) were prepared by means of sol-gel dip-coating technique and used to coat titanium grade 4 implants (Ti-4) in order to improve their wear and corrosion resistance. The coating chemical composition has been analysed by ATR-FTIR. The influence of the PCL amount has been investigated on the microstructure, mechanical properties of the coatings and their ability to inhibit the corrosion of titanium. SEM analysis has shown that all coatings have a nanostructured nature and that the films with high PCL content are crack-free. Mechanical properties of the coatings have been studied using scratch and nano-indentation tests. The results have shown that the Young's modulus of the coatings decreases in presence of large amounts of the organic phase, and that PCL content affects also the adhesion of the coatings to the underlying Ti-4 substrate. However, the presence of cracks on the PCL-free coatings affects severely the mechanical response of the samples at high loads. The electrochemical behavior and corrosion resistance of the coated and uncoated substrate has been investigated by polarization tests. The results have shown that both the coatings with or without PCL don't affect significantly the already excellent passivation properties of titanium. Copyright © 2014. Published by Elsevier B.V.

  6. Delineation of areas having elevated electrical conductivity, orientation and characterization of bedrock fractures, and occurrence of groundwater discharge to surface water at the U.S. Environmental Protection Agency Barite Hill/Nevada Goldfields Superfund site near McCormick, South Carolina

    USGS Publications Warehouse

    Chapman, Melinda J.; Huffman, Brad A.; McSwain, Kristen Bukowski

    2015-07-16

    Bedrock properties were characterized from borehole geophysical logs collected from three open-borehole bedrock wells. The mean strike azimuth of the borehole foliation data measured in bedrock well IR-1 was 221° (N. 41° E.), and the mean dip angle was 78° to the northwest. Dominant strike azimuth orientations of primary fractures measured in three boreholes were from 210° to 250° (N. 30° E. to N. 70° E.) with a mean dip of 68° northwest. Transmissivity estimates interpreted from the heat-pulse flowmeter data from bedrock well IR-1 were about 69 feet squared per day, and the radius of influence was estimated at about 640 feet.

  7. Ceramic membranes: The effects of deposition and drying conditions on membrane morphology and performance

    NASA Astrophysics Data System (ADS)

    Webster, Elizabeth T.

    Sol-gel methods for fabricating ceramic membranes on porous supports include dip coating, evaporative drying, and sintering. The ceramic membranes of interest in the present research were prepared from aqueous sols of silica, titania, or iron oxide nano-particles which were deposited on porous alumina supports. Physisorption measurements indicate that the diameters of the pores in the resulting membranes are 20 A or smaller. Defect formation during fabrication is particularly problematic for ceramic membranes with pore diameters in the nanometer range. Solutions to these problems would greatly enhance the commercial potential of nano-filtration membranes for gas-phase separations. Cracks are debilitating defects which originate during the drying and firing phases of fabrication. As water evaporates during drying, the sol-gel film is subjected to large capillary forces. Unchecked, these tensile forces result in catastrophic cracking across the membrane. A novel technique called internal deposition can be employed to deposit the sol particles within the pores of the support rather than on its surface. Internal deposition obstructs the propagation of cracks, thereby reducing the impact of crack-type defects. A patent for demonstration of proof of concept of the internal deposition technique has been received. Experimental difficulties associated with the nonuniform morphology of the tubular alumina support hindered further development of the internal deposition protocol. The final phase of the research incorporated a support containing uniform capillaries (Anotec(TM) disks). Two-level factorial experiments were conducted to determine the effects of various deposition and drying conditions (viz., speed and method of deposition, surface charge, humidity, and drying rate) on membrane performance. Membrane performance was characterized in terms of the permeabilities of nitrogen and helium in the resulting membranes. The permeability and pressure data were incorporated in a transport model to characterize the mechanisms of fluid flow and the morphologies of the membranes. Electron microscopy was employed to evaluate membrane coverage and to identify defects in the membranes. The results of the factorial experiments indicate that membrane performance is strongly affected by humidity during deposition and drying. These results underscore the importance of controlling process humidity during fabrication of ceramic membranes.

  8. The threshold strength of laminar ceramics utilizing molar volume changes and porosity

    NASA Astrophysics Data System (ADS)

    Pontin, Michael Gene

    It has been shown that uniformly spaced thin compressive layers within a ceramic body can arrest the propagation of an otherwise catastrophic crack, producing a threshold strength: a strength below which the probability of failure is zero. Previous work has shown that the threshold strength increases with both the magnitude of the compressive stress and the fracture toughness of the thin layer material, and finite element analysis predicts that the threshold strength can be further increased when the elastic modulus of the compressive layer is much smaller than the thicker layer. The current work describes several new approaches to increase the threshold strength of a laminar ceramic system. The initial method utilized a molar volume expansion within the thin layers, produced by the tetragonal-to-monoclinic phase transformation of unstabilized zirconia during cooling, in order to produce large compressive stresses within the thin layers. High threshold strengths were measured for this system, but they remained relatively constant as the zirconia content was increased. It was determined that microcracking produced during the transformation reduced the magnitude of the compressive stresses, but may also have served to reduce the modulus of the thin compressive layer, providing an additional strengthening mechanism. The second approach studied the addition of porosity to reduce the elastic modulus of the thin compressive layers. A new processing method was created and analyzed, in which thick layers of the laminate were fabricated by tape-casting, and then dip-coated into a slurry, containing rice starch, to create thin porous compressive layers upon densification. The effects of porosity on the residual compressive stress, elastic modulus, and fracture toughness of the thin layers were measured and calculated, and it was found that the elastic modulus mismatch between the thin and thick layers produced a large strengthening effect for volume fractions of porosity below a critical level. Specimens with greater volume fractions of porosity exhibited complete crack arrest, typically followed by non-catastrophic failure, as cracks initiating in adjacent thick layers coalesced by cracking or delamination along the thin porous layers.

  9. Inherent flexibility determines the transition mechanisms of the EF-hands of calmodulin.

    PubMed

    Tripathi, Swarnendu; Portman, John J

    2009-02-17

    We explore how inherent flexibility of a protein molecule influences the mechanism controlling allosteric transitions by using a variational model inspired from work in protein folding. The striking differences in the predicted transition mechanism for the opening of the two domains of calmodulin (CaM) emphasize that inherent flexibility is key to understanding the complex conformational changes that occur in proteins. In particular, the C-terminal domain of CaM (cCaM), which is inherently less flexible than its N-terminal domain (nCaM), reveals "cracking" or local partial unfolding during the open/closed transition. This result is in harmony with the picture that cracking relieves local stresses caused by conformational deformations of a sufficiently rigid protein. We also compare the conformational transition in a recently studied even-odd paired fragment of CaM. Our results rationalize the different relative binding affinities of the EF-hands in the engineered fragment compared with the intact odd-even paired EF-hands (nCaM and cCaM) in terms of changes in flexibility along the transition route. Aside from elucidating general theoretical ideas about the cracking mechanism, these studies also emphasize how the remarkable intrinsic plasticity of CaM underlies conformational dynamics essential for its diverse functions.

  10. Environmental fatigue of an Al-Li-Cu alloy. Part 1: Intrinsic crack propagation kinetics in hydrogenous environments

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1991-01-01

    Deleterious environmental effects on steady-state, intrinsic fatigue crack propagation (FCP) rates (da/dN) in peak aged Al-Li-Cu alloy 2090 are established by electrical potential monitoring of short cracks with programmed constant delta K and K(sub max) loading. The da/dN are equally unaffected by vacuum, purified helium, and oxygen but are accelerated in order of decreasing effectiveness by aqueous 1 percent NaCl with anodic polarization, pure water vapor, moist air, and NaCl with cathodic polarization. While da/dN depends on delta K(sup 4.0) for the inert gases, water vapor and chloride induced multiple power-laws, and a transition growth rate 'plateau'. Environmental effects are strongest at low delta K. Crack tip damage is ascribed to hydrogen embrittlement because of the following: (1) accelerated da/dN due to part-per-million levels of H2O without condensation; (2) impeded molecular flow model predictions of the measured water vapor pressure dependence of da/dN as affected by mean crack opening; (3) the lack of an effect of film-forming O2; (4) the likelihood for crack tip hydrogen production in NaCl, and (5) the environmental and delta K-process zone volume dependencies of the microscopic cracking modes. For NaCl, growth rates decrease with decreasing loading frequency, with the addition of passivating Li2CO3, and upon cathodic polarization. These variables increase crack surface film stability to reduce hydrogen entry efficiency. The hydrogen environmental FCP resistance of 2090 is similar to other 2000 series alloys and is better than 7075.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruska, Karen; Zhai, Ziqing; Bruemmer, Stephen M.

    Due to its superior resistance to corrosion and stress corrosion cracking (SCC), high Cr, Ni-base Alloy 690 is now commonly used in pressurized water reactors (PWRs). Even though highly cold-worked (CW) Alloy 690 has been shown to be susceptible to SCC crack growth in PWR primary water environments, an open question remains whether SCC initiation was possible for these materials under constant load test conditions. Testing has been performed on a series of CW alloy 690 CRDM tubing specimens at constant load for up to 9,220 hours in 360°C simulated PWR primary water. A companion paper will discuss the overallmore » testing approach and describe results on different alloy 690 heats and cold work levels. The focus of the current paper is to illustrate the use of focused ion beam (FIB), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for the high-resolution investigation of precursor damage and intergranular (IG) crack nucleation in these specimens. Three-dimensional (3D) FIB/SEM imaging has been conducted on a series of grain boundary (GB) damage precursors, such as IG small cavities, local corrosion and even shallow cracks observed at the specimen surface. Contrast variations and EDS mapping were used to distinguish oxides, carbides and cavities from the matrix material. Nanometer-sized cavities were observed associated with GB carbides in the highly CW specimens. Shallow IG cracks were present in the 30%CW specimens and exhibited oxidized crack flanks and a higher density of cavities ahead of the oxide front in all cases. The shape and distribution of carbides and cavities in the plane of the cracked GBs was analyzed in 3D to gain a mechanistic understanding of the processes that may be leading to crack initiation in highly CW alloy 690.« less

  12. Investigating glide snow avalanche release using seismic monitoring in combination with time-lapse photography

    NASA Astrophysics Data System (ADS)

    van Herwijnen, Alec; Failletaz, Jerome; Berhod, Nicole; Mitterer, Christoph

    2013-04-01

    Glide avalanches occur when the entire snowpack glides over the ground until an avalanche releases. These avalanches are difficult to forecast since the gliding process can take place over a few hours up to several weeks or months. The presence of liquid water at the interface between the snow cover and the ground surface is of primary importance as it reduces frictional support. Glide avalanches are often preceded by the opening of a tensile crack in the snow cover, called a glide crack. Past research has shown that glide crack opening accelerates prior to avalanche release. During the winter of 2012-2013, we monitored glide crack expansion using time-lapse photography in combination with a seismic sensor and two heat flux sensors on a slope with well documented glide avalanche activity in the Eastern Swiss Alps above Davos, Switzerland. To track changes in glide rates, the number of dark pixels in an area around the glide crack is counted in each image. Using this technique, we observed an increase in glide rates prior to avalanche release. Since the field site is located very close to the town of Davos, the seismic data was very noisy. Nevertheless, the accelerated snow gliding observed in the time-lapse images coincided with increased seismic activity. Overall, these results show that a combination of time-lapse photography with seismic monitoring could provide valuable insight into glide avalanche release. Recordings of the heat flux plates show that the energy input from the soil is fairly small and constant throughout the observed period. The results suggest that ground heat flux is a minor contributor to the water production at the snow-soil interface. Instead, the presence of water at the base of the snowpack is probably due to a strong hydraulic pressure gradient at the snow-soil interface.

  13. Double Cantilever Beam and End Notched Flexure Fracture Toughness Testing of Two Composite Materials

    NASA Technical Reports Server (NTRS)

    Kessler, Jeff A.; Adams, Donald F.

    1993-01-01

    Two different unidirectional composite materials were provided by NASA Langley Research Center and tested by the Composite Materials Research Group within the Department of Mechanical Engineering at the University of Wyoming. Double cantilever beam and end notched flexure tests were performed to measure the mode I (crack opening) and mode II (sliding or shear) interlaminar fracture toughness of the two materials. The two composites consisted of IM7 carbon fiber combined with either RP46 resin toughened with special formulation of LaRC IA resin, known as JJS1356; or PES chain extended thermoplastic resin known as JJS1361. Double Cantilever Beam Specimen Configuration and Test Methods As received from NASA, the test specimens were nominally 0.5 inch wide, 6 inches long, and 0.2 inch thick. A 1 inch long Kapton insert at the midplane of one end of the specimen (placed during laminate fabrication) facilitated crack initiation and extension. It was noted that the specimens provided were smaller than the nominal 1.5 inch wide, 9.0 inch long configuration specified. Similarly, the Kapton inserts were of greater length than those in the present specimens. Hence, the data below should not be compared directly to those generated with the referenced methods. No preconditioning was performed on the specimens prior to testing. In general, the methodology was used for the present work. Crack opening loads were introduced to the specimens via piano hinges attached to the main specimen faces at a single end of each specimen. Hinges were bolted to the specimens using the technique presented. The cracks were extended a small distance from the end of the Kapton insert prior to testing. Just before precracking, the sides of the specimens were coated with water-soluble typewriter correction fluid to aid in crack visualization. Scribe marks were then made in the coating at half-inch intervals.

  14. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite

    PubMed Central

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments. PMID:25482413

  15. Characterization of SnO2 Film with Al-Zn Doping Using Sol-Gel Dip Coating Techniques

    NASA Astrophysics Data System (ADS)

    Doyan, A.; Susilawati; Ikraman, N.; Taufik, M.

    2018-04-01

    Sn1-2x AlxZnxO2 film has been developed using sol-gel dip coating technique. The materials SnCl2.2H2O, AlCl3 and ZnCl2 dissolved in water and ethanol with 5:95 volume ratio. Variations dopant concentration x = 0.000, 0.005, 0.0025, and 0.050. The film was grown with sol concentration 0.4 M, the withdrawal speed of 12 cm/min and sintering at 600 °C for 30 minutes. The characteristics Sn1-2x AlxZnxO2 films with various doping concentration phase were characterized by XRD. The morphological characteristics and the composition of the constituent elements of the film were characterized by SEM-EDX. The characteristics of the shape, structure, and size of the particles were characterized by TEM. The XRD results show that all films have a tetragonal SnO2 rutile phase without any secondary phase with an average particle size in the range 5.14 – 2.09 nm. The SEM results show that the film grown has a smooth morphology with a striped texture (x = 0.00), and there is a crack (x = 0.050). The EDX results show that the composition and distribution of the constituent elements of the film are uniformly distributed. TEM results show that the particle films has tetragonal rutile structure, orthorhombic and amorphous with a spherical shape.

  16. Photonic devices on planar and curved substrates and methods for fabrication thereof

    DOEpatents

    Bartl, Michael H.; Barhoum, Moussa; Riassetto, David

    2016-08-02

    A versatile and rapid sol-gel technique for the fabrication of high quality one-dimensional photonic bandgap materials. For example, silica/titania multi-layer materials may be fabricated by a sol-gel chemistry route combined with dip-coating onto planar or curved substrate. A shock-cooling step immediately following the thin film heat-treatment process is introduced. This step was found important in the prevention of film crack formation--especially in silica/titania alternating stack materials with a high number of layers. The versatility of this sol-gel method is demonstrated by the fabrication of various Bragg stack-type materials with fine-tuned optical properties by tailoring the number and sequence of alternating layers, the film thickness and the effective refractive index of the deposited thin films. Measured optical properties show good agreement with theoretical simulations confirming the high quality of these sol-gel fabricated optical materials.

  17. Single-walled carbon nanotube-facilitated dispersion of particulate TiO2 on ZrO2 ceramic membrane filters.

    PubMed

    Yao, Yuan; Li, Gonghu; Gray, Kimberly A; Lueptow, Richard M

    2008-07-15

    We report that SWCNTs substantially improve the uniformity and coverage of TiO2 coatings on porous ZrO2 ceramic membrane filters. The ZrO2 filters were dip coated with 100 nm anatase TiO2, TiO2/SWCNT composites, a TiO2+SWCNT mixture, and a TiO2/MWCNT composite at pH 3, 5, and 8. Whereas the TiO2+SWCNT mixture and the TiO2/MWCNT composite promote better coverage and less clumping than TiO2 alone, the TiO2/SWCNT composite forms a complete uniform coating without cracking at pH 5 ( approximately 100% coverage). A combination of chemical and electrostatic effects between TiO2 and SWCNTs forming the composite as well as between the composite and the ZrO2 surface explains these observations.

  18. Experimental Observations of a Stitched Composite with a Notch Subjected to Combined Bending and Tension Loading

    NASA Technical Reports Server (NTRS)

    Palmer, Susan O.; Nettles, Alan T.; Poe, C. C.

    1998-01-01

    A series of tests was conducted to support development of an analytical model for predicting the failure strains of stitched warp-knit carbon/epoxy composite materials with through-thicknesss damage in the form of a crack-like notch. Measurements of strain near notch tips, crack opening displacement (COD), and applied load were monitored in all tests. The out-of-plane displacement at the center of the notch was also measured when the specimen was subjected to bending. Three types of loading were applied: pure bending, pure tension, and combined bending and tension.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review andmore » assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.« less

  20. Seismic source dynamics of gas-piston activity at Kı¯lauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Chouet, Bernard; Dawson, Phillip

    2015-04-01

    Since 2008, eruptive activity at the summit of Kı¯lauea Volcano, Hawai`i has been confined to the new Overlook pit crater within the Halema`uma`u Crater. Among the broad range of magmatic processes observed in the new pit are recurring episodes of gas pistoning. The gas-piston activity is accompanied by seismic signals that are recorded by a broadband network deployed in the summit caldera. We use raw data recorded with this network to model the source mechanism of representative gas-piston events in a sequence that occurred on 20-25 August 2011 during a gentle inflation of the Kı¯lauea summit. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. We apply a new waveform inversion method that accounts for the contributions from both translation and tilt in horizontal seismograms through the use of Green's functions representing the seismometer response to translation and tilt ground motions. This method enables a robust description of the source mechanism over the period range 1-10,000 s. Most of the seismic wavefield produced by gas-pistoning originates in a source region ˜1 km below the eastern perimeter of the Halema`uma`u pit crater. The observed waveforms are well explained by a simple volumetric source with geometry composed of two intersecting cracks featuring an east striking crack (dike) dipping 80°to the north, intersecting a north striking crack (another dike) dipping 65° to the east. Each gas-piston event is marked by a similar rapid inflation lasting a few minutes, trailed by a slower deflation ramp extending up to 15 min, attributed to the efficient coupling at the source centroid location of the pressure and momentum changes accompanying the growth and collapse of a layer of foam at the top of the lava column. Assuming a simple lumped parameter representation of the shallow magmatic system, the observed pressure and volume variations can be modeled with the following attributes : foam thickness (10-50 m), foam cell diameter (0.04-0.10 m), and gas-injection velocity (0.01-0.06 m s-1). Gas-piston activity occurs in a narrow pipe with diameter of 6 m connecting the Halema`uma`u pit crater to the subjacent dike system. The height of the magma column is estimated at ˜104 m at the start of the sequence based on the period of very long period (VLP) oscillations accompanying the onset of the gas-piston signal. Based on the change in the period of VLP oscillations and tilt evidence, the height of the magma column is inferred to have risen by up to ˜23 m by the end of the 5 day long sequence. A penny-shaped crack model of the dike geometry yields effective diameters of ˜1.2-2.9 km for the east dike and 0.7 km for the north dike. The shallower north dike segment is embedded in a relatively weak medium, compatible with expected mechanical properties in the hydrothermal environment of this dike.

  1. Seismic source dynamics of gas-piston activity at Kı̄lauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.

    2015-01-01

    Since 2008, eruptive activity at the summit of Kı̄lauea Volcano, Hawai‘i has been confined to the new Overlook pit crater within the Halema‘uma‘u Crater. Among the broad range of magmatic processes observed in the new pit are recurring episodes of gas pistoning. The gas-piston activity is accompanied by seismic signals that are recorded by a broadband network deployed in the summit caldera. We use raw data recorded with this network to model the source mechanism of representative gas-piston events in a sequence that occurred on 20–25 August 2011 during a gentle inflation of the Kı̄lauea summit. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. We apply a new waveform inversion method that accounts for the contributions from both translation and tilt in horizontal seismograms through the use of Green's functions representing the seismometer response to translation and tilt ground motions. This method enables a robust description of the source mechanism over the period range 1–10,000 s. Most of the seismic wavefield produced by gas-pistoning originates in a source region ∼1 km below the eastern perimeter of the Halema‘uma‘u pit crater. The observed waveforms are well explained by a simple volumetric source with geometry composed of two intersecting cracks featuring an east striking crack (dike) dipping 80°to the north, intersecting a north striking crack (another dike) dipping 65° to the east. Each gas-piston event is marked by a similar rapid inflation lasting a few minutes, trailed by a slower deflation ramp extending up to 15 min, attributed to the efficient coupling at the source centroid location of the pressure and momentum changes accompanying the growth and collapse of a layer of foam at the top of the lava column. Assuming a simple lumped parameter representation of the shallow magmatic system, the observed pressure and volume variations can be modeled with the following attributes : foam thickness (10–50 m), foam cell diameter (0.04–0.10 m), and gas-injection velocity (0.01–0.06 m s−1). Gas-piston activity occurs in a narrow pipe with diameter of 6 m connecting the Halema‘uma‘u pit crater to the subjacent dike system. The height of the magma column is estimated at ∼104 m at the start of the sequence based on the period of very long period (VLP) oscillations accompanying the onset of the gas-piston signal. Based on the change in the period of VLP oscillations and tilt evidence, the height of the magma column is inferred to have risen by up to ∼23 m by the end of the 5 day long sequence. A penny-shaped crack model of the dike geometry yields effective diameters of ∼1.2–2.9 km for the east dike and 0.7 km for the north dike. The shallower north dike segment is embedded in a relatively weak medium, compatible with expected mechanical properties in the hydrothermal environment of this dike.

  2. Crack initiation and potential hot-spot formation around a cylindrical defect under dynamic compression

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Li, Xinguo; Zheng, Xianxu; Li, Kewu; Hu, Qiushi; Li, Jianling

    2017-11-01

    In recent decades, the hot-spot theory of condensed-phase explosives has been a compelling focus of scientific investigation attracting many researchers. The defect in the polymeric binder of the polymer-bonded explosive is called the intergranular defect. In this study, the real polymeric binder was substituted by poly(methyl methacrylate) (PMMA) as it is transparent and has similar thermodynamic properties to some binders. A set of modified split Hopkinson pressure bars equipped with a time-resolved shadowgraph was used to study the process of crack initiation and potential hot-spot formation around a cylindrical defect in PMMA. The new and significant phenomenon that the opening-mode crack emerged earlier than the shearing-mode crack from the cylindrical defect has been published for the first time in this paper. Furthermore, a two-dimensional numerical simulation was performed to show the evolution of both the stress field and the temperature field. The simulation results were in good agreement with the experiment. Finally, the law of potential hot-spot formation is discussed in detail.

  3. Damage tolerance of woven graphite-epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.

    1990-01-01

    Graphite-epoxy panels with S glass buffer strips were tested in tension and shear to measure their residual strengths with crack-like damage. The buffer strips were regularly spaced narrow strips of continuous S glass. Panels were made with a uniweave graphite cloth where the S glass buffer material was woven directly into the cloth. Panels were made with different width and thickness buffer strips. The panels were loaded to failure while remote strain, strain at the end of the slit, and crack opening displacement were monitoring. The notched region and nearby buffer strips were radiographed periodically to reveal crack growth and damage. Except for panels with short slits, the buffer strips arrested the propagating crack. The strength (or failing strain) of the panels was significantly higher than the strength of all-graphite panels with the same length slit. Panels with wide, thick buffer strips were stronger than panels with thin, narrow buffer strips. A shear-lag model predicted the failing strength of tension panels with wide buffer strips accurately, but over-estimated the strength of the shear panels and the tension panels with narrow buffer strips.

  4. Comparative Stress Corrosion Cracking and General Corrosion Resistance of Annealed and Hardened 440 C Stainless Steel - New Techniques in Stress Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Mendreck, M. J.; Hurless, B. E.; Torres, P. D.; Danford, M. D.

    1998-01-01

    The corrosion and stress corrosion cracking (SCC) characteristics of annealed and hardened 440C stainless steel were evaluated in high humidity and 3.5-percent NaCl solution. Corrosion testing consisted of an evaluation of flat plates, with and without grease, in high humidity, as well as electrochemical testing in 3.5-percent NaCl. Stress corrosion testing consisted of conventional, constant strain, smooth bar testing in high humidity in addition to two relatively new techniques under evaluation at MSFC. These techniques involve either incremental or constant rate increases in the load applied to a precracked SE(B) specimen, monitoring the crack-opening-displacement response for indications of crack growth. The electrochemical corrosion testing demonstrated an order of magnitude greater general corrosion rate in the annealed 440C. All techniques for stress corrosion testing showed substantially better SCC resistance in the annealed material. The efficacy of the new techniques for stress corrosion testing was demonstrated both by the savings in time and the ability to better quantify SCC data.

  5. Failure of disordered materials as a depinning transition

    NASA Astrophysics Data System (ADS)

    Ponson, Laurent

    2010-03-01

    Crack propagation is the fundamental process leading to material failure. However, its dynamics is far from being fully understood. In this work, we investigate both experimentally and theoretically the far-from-equilibrium propagation of a crack within a disordered brittle material. At first, we focus on the average dynamics of a crack, and study the variations of its growth velocity v with respect to the external driving force G [1]. Carefully measured on a brittle rock, these variations are shown to display two regimes: above a given threshold Gc, the velocity evolves as a power law v ˜(G- Gc)^0.8, while at low driving force, its variations are well described by a sub-critical creep law, characteristic of a thermally activated crack propagation. Extending the continuum theory of Fracture Mechanics to inhomogeneous media, we show that this behavior is reminiscent of a dynamical critical transition: critical failure occurs when the driving force is sufficiently large to depin the crack front from the material heterogeneities. Another way to reveal such a transition is to investigate the fluctuations of crack velocity [2]. Considering a crack at the heterogeneous interface between two elastic solids, we predict that its propagation occurs through sudden jumps, with power law distributed sizes and durations. These predictions compare quantitatively well with recent direct observations of interfacial crack propagation [3]. Such an interpretation of material failure opens new perspectives in the field of Engineering and Applied Science that will be finally discussed. [4pt] [1] L. Ponson, Depinning transition in failure of inhomogeneous brittle materials, Phys. Rev. Lett. 103, 055501 (2009). [0pt] [2] D. Bonamy, S. Santucci and L. Ponson, Crackling dynamics in material failure as a signature of a self-organized dynamic phase transition, Phys. Rev. Lett. 101, 045501 (2008). [0pt] [3] K.J. Måløy, S. Santucci, J. Schmittbuhl and R. Toussaint, Local waiting time fluctuations along a randomly pinned crack front, Phys. Rev. Lett. 96, 045501 (2006).

  6. Analysis of the progressive failure of brittle matrix composites

    NASA Technical Reports Server (NTRS)

    Thomas, David J.

    1995-01-01

    This report investigates two of the most common modes of localized failures, namely, periodic fiber-bridged matrix cracks and transverse matrix cracks. A modification of Daniels' bundle theory is combined with Weibull's weakest link theory to model the statistical distribution of the periodic matrix cracking strength for an individual layer. Results of the model predictions are compared with experimental data from the open literature. Extensions to the model are made to account for possible imperfections within the layer (i.e., nonuniform fiber lengths, irregular crack spacing, and degraded in-situ fiber properties), and the results of these studies are presented. A generalized shear-lag analysis is derived which is capable of modeling the development of transverse matrix cracks in material systems having a general multilayer configuration and under states of full in-plane load. A method for computing the effective elastic properties for the damaged layer at the global level is detailed based upon the solution for the effects of the damage at the local level. This methodology is general in nature and is therefore also applicable to (0(sub m)/90(sub n))(sub s) systems. The characteristic stress-strain response for more general cases is shown to be qualitatively correct (experimental data is not available for a quantitative evaluation), and the damage evolution is recorded in terms of the matrix crack density as a function of the applied strain. Probabilistic effects are introduced to account for the statistical nature of the material strengths, thus allowing cumulative distribution curves for the probability of failure to be generated for each of the example laminates. Additionally, Oh and Finney's classic work on fracture location in brittle materials is extended and combined with the shear-lag analysis. The result is an analytical form for predicting the probability density function for the location of the next transverse crack occurrence within a crack bounded region. The results of this study verified qualitatively the validity of assuming a uniform crack spacing (as was done in the shear-lag model).

  7. Seismic characteristics of tensile fracture growth induced by hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Eaton, D. W. S.; Van der Baan, M.; Boroumand, N.

    2014-12-01

    Hydraulic fracturing is a process of injecting high-pressure slurry into a rockmass to enhance its permeability. Variants of this process are used for unconventional oil and gas development, engineered geothermal systems and block-cave mining; similar processes occur within volcanic systems. Opening of hydraulic fractures is well documented by mineback trials and tiltmeter monitoring and is a physical requirement to accommodate the volume of injected fluid. Numerous microseismic monitoring investigations acquired in the audio-frequency band are interpreted to show a prevalence of shear-dominated failure mechanisms surrounding the tensile fracture. Moreover, the radiated seismic energy in the audio-frequency band appears to be a miniscule fraction (<< 1%) of the net injected energy, i.e., the integral of the product of fluid pressure and injection rate. We use a simple penny-shaped crack model as a predictive framework to describe seismic characteristics of tensile opening during hydraulic fracturing. This model provides a useful scaling relation that links seismic moment to effective fluid pressure within the crack. Based on downhole recordings corrected for attenuation, a significant fraction of observed microseismic events are characterized by S/P amplitude ratio < 5. Despite the relatively small aperture of the monitoring arrays, which precludes both full moment-tensor analysis and definitive identification of nodal planes or axes, this ratio provides a strong indication that observed microseismic source mechanisms have a component of tensile failure. In addition, we find some instances of periodic spectral notches that can be explained by an opening/closing failure mechanism, in which fracture propagation outpaces fluid velocity within the crack. Finally, aseismic growth of tensile fractures may be indicative of a scenario in which injected energy is consumed to create new fracture surfaces. Taken together, our observations and modeling provide evidence that failure mechanisms documented by passive monitoring of hydraulic fractures may contain a significant component of tensile failure, including fracture opening and closing, although creation of extensive new fracture surfaces may be a seismically inefficient process that radiates at sub-audio frequencies.

  8. Three-dimensional fracture instability of a displacement-weakening planar interface under locally peaked nonuniform loading

    NASA Astrophysics Data System (ADS)

    Uenishi, Koji

    2018-06-01

    We consider stability of fracture on a three-dimensional planar interface subjected to a loading stress that is locally peaked spatially, the level of which increases quasi-statically in time. Similar to the earlier study on the two-dimensional case (Uenishi and Rice, 2003; Rice and Uenishi, 2010), as the loading stress increases, a crack, or a region of displacement discontinuity (opening gap in tension or slip for shear fracture), develops on the interface where the stress is presumed to decrease according to a displacement-weakening constitutive relation. Upon reaching the instability point at which no further quasi-static solution for the extension of the crack on the interface exists, dynamic fracture follows. For the investigation of this instability point, we employ a dimensional analysis as well as an energy approach that gives a Rayleigh-Ritz approximation for the dependence of crack size and maximum displacement discontinuity on the level and quadratic shape of the loading stress distribution. We show that, if the linear displacement-weakening law is applied and the crack may be assumed of an elliptical form, the critical crack size at instability is independent of the curvature of the loading stress distribution and it is of the same order for all two- and three-dimensional cases.

  9. Creep Crack Initiation and Growth Behavior for Ni-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Nagumo, Yoshiko; Yokobori, A. Toshimitsu, Jr.; Sugiura, Ryuji; Ozeki, Go; Matsuzaki, Takashi

    The structural components which are used in high temperature gas turbines have various shapes which may cause the notch effect. Moreover, the site of stress concentration might have the heterogeneous microstructural distribution. Therefore, it is necessary to clarify the creep fracture mechanism for these materials in order to predict the life of creep fracture with high degree of accuracy. In this study, the creep crack growth tests were performed using in-situ observational testing machine with microscope to observe the creep damage formation and creep crack growth behavior. The materials used are polycrystalline Ni-base superalloy IN100 and directionally solidified Ni-base superalloy CM247LC which were developed for jet engine turbine blades and gas turbine blades in electric power plants, respectively. The microstructural observation of the test specimens was also conducted using FE-SEM/EBSD. Additionally, the analyses of two-dimensional elastic-plastic creep finite element using designed methods were conducted to understand the effect of microstructural distribution on creep damage formation. The experimental and analytical results showed that it is important to determine the creep crack initiation and early crack growth to predict the life of creep fracture and it is indicated that the highly accurate prediction of creep fracture life could be realized by measuring notch opening displacement proposed as the RNOD characteristic.

  10. Effect of initial contact surface condition on the friction and wear properties of bearing steel in cyclic reciprocating sliding contact

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Endo, M.; Moriyama, S.

    2017-05-01

    Delamination failure is one of the most important engineering problems. This failure can frequently be detrimental to rolling contact machine elements such as bearings, gear wheels, etc. This phenomenon, called rolling contact fatigue, has a close relationship not only with opening-mode but also with shear-mode fatigue crack growth. The crack face interference is known to significantly affect the shear-mode fatigue crack propagation and its threshold behavior. Quantitative investigation on friction and wear at fatigue crack faces in the material is essentially impossible. Previously, thus, a novel ring-on-ring test by making use of fatigue testing machine was proposed to simulate a cyclic reciprocating sliding contact of crack surfaces. However, this test procedure had some problems. For instance, in order to achieve the uniform contact at the start of test, the rubbing of specimens must be conducted in advance. By this treatment, the specimen surfaces were already damaged before the test. In this study, an improvement of experimental method was made to perform the test using the damage-free specimens. The friction and wear properties for heat-treated high carbon-chromium bearing steel were investigated with this new method and the results were compared to the results obtained by using the initially damaged specimens.

  11. Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates: Phase I Results

    NASA Technical Reports Server (NTRS)

    Wells, D. N.; Allen, P. A.

    2012-01-01

    An analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted with 15 participants. Experimental results from a surface crack tension test in 2219-T8 aluminum plate provided the basis for the inter-laboratory study (ILS). The study proceeded in a blind fashion given that the analysis methodology was not specified to the participants, and key experimental results were withheld. This approach allowed the ILS to serve as a current measure of the state of the art for elastic-plastic fracture mechanics analysis. The analytical results and the associated methodologies were collected for comparison, and sources of variability were studied and isolated. The results of the study revealed that the J-integral analysis methodology using the domain integral method is robust, providing reliable J-integral values without being overly sensitive to modeling details. General modeling choices such as analysis code, model size (mesh density), crack tip meshing, or boundary conditions, were not found to be sources of significant variability. For analyses controlled only by far-field boundary conditions, the greatest source of variability in the J-integral assessment is introduced through the constitutive model. This variability can be substantially reduced by using crack mouth opening displacements to anchor the assessment. Conclusions provide recommendations for analysis standardization.

  12. Environmental management through sluice gated bed-dam: a revived strategy for the control of Anopheles fluviatilis breeding in streams

    PubMed Central

    Sahu, S.S.; Gunasekaran, K.; Jambulingam, P.

    2014-01-01

    Background & objectives: Integrated vector management (IVM) emphasizes sustainable eco-friendly methods and minimal use of chemicals. In this context, the present study highlights the environmental control of breeding of Anopheles fluviatilis, the primary malaria vector, through water management in a natural stream in Koraput district, Odisha, India. Methods: The District Rural Development Agency (DRDA), Koraput, constructed two bed-dams across streams, one in Barigaon and the other in Pipalapodar village. The bed-dam in the former village was fitted with two sluice gates whereas the bed dam constructed in the latter village was without the sluice gate. The sluice gates were opened once in a week on a fixed day to flush out the water from the dam. Anopheles immatures were sampled systematically in the streams using a dipper for density measurement and species composition. Results: There was a reduction of 84.9 per cent in the proportion of positive dips for Anopheles larvae/pupae and a reduction of 98.4 per cent in immature density (number/dip) of An. fluviatilis in the experimental downstream compared to the control following opening of the sluice gates. Interpretation & conclusions: Our findins showed that opening of sluice gates of the bed-dam regularly once in a week resulted in the control of vector breeding in the downstream due to the flushing effect of the water released with a high flow from the bed-dam that stagnated water in the upstream. The outcome of the study encourages upscaling this measure to other areas, wherever feasible. PMID:25297364

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abd El-Lateef, Hany M., E-mail: Hany_shubra@yahoo.co.uk; Khalaf, Mai M., E-mail: Mai_kha1@yahoo.com

    This work reports the achievement of preparing of x% zirconia (ZrO{sub 2})–titania (TiO{sub 2}) composite coatings with different ZrO{sub 2} percent on the carbon steel by dipping substrates in sol–gel solutions. The prepared coated samples were investigated by various surface techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDAX). Open-circuit potential (OCP), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) methods were employed to investigate the corrosion resistance of the coated carbon steel substrates in 1.0 M HCl solution at 50 °C. The data showed that, the corrosion protection property ismore » not always proportional to the percent of ZrO{sub 2}. It can be inferred that there is an optimum percent (10%ZrO{sub 2}) for beneficial effects of loading ZrO{sub 2} on the protection efficiency (98.70%), while higher loading percent of ZrO{sub 2} in the sol–gel coating leads to the formation of a fragile film with poor barrier properties. EDAX/SEM suggests that the metal surface was protected through coating with ZrO{sub 2}–TiO{sub 2} composite films. - Highlights: • Sol–gel TiO{sub 2} doped with ZrO{sub 2} films deposited on carbon steel substrate • XRD measurements of x wt.% ZrO{sub 2}–TiO{sub 2} showed the (101) peaks broader than that of TiO{sub 2}. • SEM results proved that, the cracking decreases with the number of layers. • The prepared films can improve the corrosion resistance of the carbon steel substrate. • 10%ZrO{sub 2} loading is the optimal percent for useful effects on the corrosion resistance.« less

  14. Mineralogy of the epithermal precious and base metal deposit Banská Hodruša at the Rozália Mine (Slovakia)

    NASA Astrophysics Data System (ADS)

    Kubač, Alexander; Chovan, Martin; Koděra, Peter; Kyle, J. Richard; Žitňan, Peter; Lexa, Jaroslav; Vojtko, Rastislav

    2018-03-01

    The Au-Ag-Pb-Zn-Cu epithermal deposit Banská Hodruša of intermediate-sulphidation type is located in the Middle Miocene Štiavnica stratovolcano on the inner side of the Carpathian arc in Slovakia. This deposit represents an unusual subhorizontal multi-stage vein system, related to processes of underground cauldron subsidence and exhumation of a subvolcanic granodiorite pluton. Veins are developed on a low-angle normal shear zone, possibly representing a detachment zone in andesitic wall rocks that formed during emplacement and exhumation of the granodiorite pluton. The deposit consists of two parts, separated by a thick sill of quartz-diorite porphyry. The eastern part is currently mined, and the western part has already been depleted. The Banská Hodruša mineralization was formed during four stages: (1) low-grade silicified breccia at subhorizontal structures at the base of the deposit; (2) stockwork of steep veins with rhodonite-rhodochrosite, quartz-sulphide-carbonate and quartz-gold assemblages; (3) thin quartz-gold veins with medium dip in tension cracks inside the shear zone and complementary detachment hosted quartz-base metals-gold veins; (4) Post-ore veins. Gold and electrum (920-730) occur as intergrowths with base metal sulphides or hosted in quartz and carbonates, accompanied by Au-Ag tellurides (hessite, petzite). Rare Te-polybasite and Cu-cervelleite result from re-equilibration of early Te-bearing minerals during cooling. Sulphide minerals include low Fe sphalerite ( 1.25 wt%), galena, chalcopyrite, and pyrite. The wall rock alteration is represented mostly by adularia, illite, chlorite, quartz, calcite and pyrite. Precipitation of gold, Au-Ag tellurides, Mn-bearing minerals and adularia resulted from boiling of fluids due to hydraulic fracturing, as well as opening of dilatational structures within the shear zone.

  15. 75 FR 17162 - Dipping and Coating Operations (Dip Tanks) Standard; Extension of the Office of Management and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ...] Dipping and Coating Operations (Dip Tanks) Standard; Extension of the Office of Management and Budget's... Standard on Dipping and Coating Operations (Dip Tanks) (29 CFR 1910.126(g)(4)). DATES: Comments must be... of efforts in obtaining information (29 U.S.C. 657). The Standard on Dipping and Coating Operations...

  16. Use of fiber reinforced concrete for concrete pavement slab replacement.

    DOT National Transportation Integrated Search

    2014-03-01

    Unlike ordinary concrete pavement, replacement concrete slabs need to be open to traffic within 24 hours (sooner in : some cases). Thus, high early-strength concrete is used; however, it frequently cracks prematurely as a result of high : heat of hyd...

  17. Fracture Growth Testing of Titanium 6AL-4V in AF-M315E

    NASA Technical Reports Server (NTRS)

    Sampson, Jeffrey W.; Martinez, Jonathan; McLean, Christopher

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant in orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent flaws will not cause failure during the design life. Material property inputs for this analysis require testing to determine the stress intensity factor for environmentally-assisted cracking (K (sub EAC)) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched specimens SE(B) representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to the monopropellant at 50 degrees Centigrade for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor of the Ti 6Al-4V forged tank material when exposed to AF-M315E monopropellant was found to be at least 22.0 kilopounds per square inch. The stress intensity factor of the weld material was at least 31.3 kilopounds per square inch.

  18. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology. Appendix C -- Finite Element Models Solution Database File, Appendix D -- Benchmark Finite Element Models Solution Database File

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  19. A Newtonian interpretation of configurational forces on dislocations and cracks

    NASA Astrophysics Data System (ADS)

    Ballarini, Roberto; Royer-Carfagni, Gianni

    2016-10-01

    Configurational forces are fundamental concepts in the description of the motion of dislocations, cracks and other defects that introduce singularities within the solid state. They are defined by considering variations in energies associated with the movement of such defects, and are therefore different from the classical forces that enter the balance laws of classical Newtonian mechanics. Here, it is demonstrated how a configurational force can be viewed as the resultant of the (Newtonian) contact forces acting on the perturbed shape of an object of substance equivalent to the defect, and evaluated in the limit of the shape being restored to the primitive configuration. The expressions for the configurational forces on the paradigmatic examples of cracks and dislocations are in agreement with those determined using classical variational arguments. This finding opens a new prospective in the use of configurational forces by permitting their physical and intuitive visualization.

  20. A Hybrid Multi-Scale Model of Crystal Plasticity for Handling Stress Concentrations

    DOE PAGES

    Sun, Shang; Ramazani, Ali; Sundararaghavan, Veera

    2017-09-04

    Microstructural effects become important at regions of stress concentrators such as notches, cracks and contact surfaces. A multiscale model is presented that efficiently captures microstructural details at such critical regions. The approach is based on a multiresolution mesh that includes an explicit microstructure representation at critical regions where stresses are localized. At regions farther away from the stress concentration, a reduced order model that statistically captures the effect of the microstructure is employed. The statistical model is based on a finite element representation of the orientation distribution function (ODF). As an illustrative example, we have applied the multiscaling method tomore » compute the stress intensity factor K I around the crack tip in a wedge-opening load specimen. The approach is verified with an analytical solution within linear elasticity approximation and is then extended to allow modeling of microstructural effects on crack tip plasticity.« less

Top