Sample records for dipolar coupling restraints

  1. Backbone-only restraints for fast determination of the protein fold: The role of paramagnetism-based restraints. Cytochrome b562 as an example

    NASA Astrophysics Data System (ADS)

    Banci, Lucia; Bertini, Ivano; Felli, Isabella C.; Sarrou, Josephine

    2005-02-01

    CH α residual dipolar couplings (Δ rdc's) were measured for the oxidized cytochrome b562 from Escherichia coli as a result of its partial self-orientation in high magnetic fields due to the anisotropy of the overall magnetic susceptibility tensor. Both the low spin iron (III) heme and the four-helix bundle fold contribute to the magnetic anisotropy tensor. CH α Δ rdc's, which span a larger range than the analogous NH values (already available in the literature) sample large space variations at variance with NH Δ rdc's, which are largely isooriented within α helices. The whole structure is now significantly refined with the chemical shift index and CH α Δ rdc's. The latter are particularly useful also in defining the molecular magnetic anisotropy parameters. It is shown here that the backbone folding can be conveniently and accurately determined using backbone restraints only, which include NOEs, hydrogen bonds, residual dipolar couplings, pseudocontact shifts, and chemical shift index. All these restraints are easily and quickly determined from the backbone assignment. The calculated backbone structure is comparable to that obtained by using also side chain restraint. Furthermore, the structure obtained with backbone only restraints is, in its whole, very similar to that obtained with the complete set of restraints. The paramagnetism based restraints are shown to be absolutely relevant, especially for Δ rdc's.

  2. How to tackle protein structural data from solution and solid state: An integrated approach.

    PubMed

    Carlon, Azzurra; Ravera, Enrico; Andrałojć, Witold; Parigi, Giacomo; Murshudov, Garib N; Luchinat, Claudio

    2016-02-01

    Long-range NMR restraints, such as diamagnetic residual dipolar couplings and paramagnetic data, can be used to determine 3D structures of macromolecules. They are also used to monitor, and potentially to improve, the accuracy of a macromolecular structure in solution by validating or "correcting" a crystal model. Since crystal structures suffer from crystal packing forces they may not be accurate models for the macromolecular structures in solution. However, the presence of real differences should be tested for by simultaneous refinement of the structure using both crystal and solution NMR data. To achieve this, the program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic and paramagnetic NMR data and/or diamagnetic residual dipolar couplings. Inconsistencies between crystal structures and solution NMR data, if any, may be due either to structural rearrangements occurring on passing from the solution to solid state, or to a greater degree of conformational heterogeneity in solution with respect to the crystal. In the case of multidomain proteins, paramagnetic restraints can provide the correct mutual orientations and positions of domains in solution, as well as information on the conformational variability experienced by the macromolecule. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences.

    PubMed

    Rinaldelli, Mauro; Ravera, Enrico; Calderone, Vito; Parigi, Giacomo; Murshudov, Garib N; Luchinat, Claudio

    2014-04-01

    The program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic data and paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and/or diamagnetic residual dipolar couplings. Incorporation of these long-range NMR restraints in REFMAC5 can reveal differences between solid-state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. Since NMR and X-ray data are complementary, when a single structure is consistent with both sets of data and still maintains reasonably `ideal' geometries, the reliability of the derived atomic model is expected to increase. The program was tested on five different proteins: the catalytic domain of matrix metalloproteinase 1, GB3, ubiquitin, free calmodulin and calmodulin complexed with a peptide. In some cases the joint refinement produced a single model consistent with both sets of observations, while in other cases it indicated, outside the experimental uncertainty, the presence of different protein conformations in solution and in the solid state.

  4. AssignFit: a program for simultaneous assignment and structure refinement from solid-state NMR spectra

    PubMed Central

    Tian, Ye; Schwieters, Charles D.; Opella, Stanley J.; Marassi, Francesca M.

    2011-01-01

    AssignFit is a computer program developed within the XPLOR-NIH package for the assignment of dipolar coupling (DC) and chemical shift anisotropy (CSA) restraints derived from the solid-state NMR spectra of protein samples with uniaxial order. The method is based on minimizing the difference between experimentally observed solid-state NMR spectra and the frequencies back calculated from a structural model. Starting with a structural model and a set of DC and CSA restraints grouped only by amino acid type, as would be obtained by selective isotopic labeling, AssignFit generates all of the possible assignment permutations and calculates the corresponding atomic coordinates oriented in the alignment frame, together with the associated set of NMR frequencies, which are then compared with the experimental data for best fit. Incorporation of AssignFit in a simulated annealing refinement cycle provides an approach for simultaneous assignment and structure refinement (SASR) of proteins from solid-state NMR orientation restraints. The methods are demonstrated with data from two integral membrane proteins, one α-helical and one β-barrel, embedded in phospholipid bilayer membranes. PMID:22036904

  5. Progressive Stereo Locking (PSL): A Residual Dipolar Coupling Based Force Field Method for Determining the Relative Configuration of Natural Products and Other Small Molecules.

    PubMed

    Cornilescu, Gabriel; Ramos Alvarenga, René F; Wyche, Thomas P; Bugni, Tim S; Gil, Roberto R; Cornilescu, Claudia C; Westler, William M; Markley, John L; Schwieters, Charles D

    2017-08-18

    Establishing the relative configuration of a bioactive natural product represents the most challenging part in determining its structure. Residual dipolar couplings (RDCs) are sensitive probes of the relative spatial orientation of internuclear vectors. We adapted a force field structure calculation methodology to allow free sampling of both R and S configurations of the stereocenters of interest. The algorithm uses a floating alignment tensor in a simulated annealing protocol to identify the conformations and configurations that best fit experimental RDC and distance restraints (from NOE and J-coupling data). A unique configuration (for rigid molecules) or a very small number of configurations (for less rigid molecules) of the structural models having the lowest chiral angle energies and reasonable magnitudes of the alignment tensor are provided as the best predictions of the unknown configuration. For highly flexible molecules, the progressive locking of their stereocenters into their statistically dominant R or S state dramatically reduces the number of possible relative configurations. The result is verified by checking that the same configuration is obtained by initiating the locking from different regions of the molecule. For all molecules tested having known configurations (with conformations ranging from mostly rigid to highly flexible), the method accurately determined the correct configuration.

  6. Ensemble models of proteins and protein domains based on distance distribution restraints.

    PubMed

    Jeschke, Gunnar

    2016-04-01

    Conformational ensembles of intrinsically disordered peptide chains are not fully determined by experimental observations. Uncertainty due to lack of experimental restraints and due to intrinsic disorder can be distinguished if distance distributions restraints are available. Such restraints can be obtained from pulsed dipolar electron paramagnetic resonance (EPR) spectroscopy applied to pairs of spin labels. Here, we introduce a Monte Carlo approach for generating conformational ensembles that are consistent with a set of distance distribution restraints, backbone dihedral angle statistics in known protein structures, and optionally, secondary structure propensities or membrane immersion depths. The approach is tested with simulated restraints for a terminal and an internal loop and for a protein with 69 residues by using sets of sparse restraints for underlying well-defined conformations and for published ensembles of a premolten globule-like and a coil-like intrinsically disordered protein. © 2016 Wiley Periodicals, Inc.

  7. Probing the Dipolar Coupling in a Heterospin Endohedral Fullerene-Phthalocyanine Dyad.

    PubMed

    Zhou, Shen; Yamamoto, Masanori; Briggs, G Andrew D; Imahori, Hiroshi; Porfyrakis, Kyriakos

    2016-02-03

    Paramagnetic endohedral fullerenes and phthalocyanine (Pc) complexes are promising building blocks for molecular quantum information processing, for which tunable dipolar coupling is required. We have linked these two spin qubit candidates together and characterized the resulting electron paramagnetic resonance properties, including the spin dipolar coupling between the fullerene spin and the copper spin. Having interpreted the distance-dependent coupling strength quantitatively and further discussed the antiferromagnetic aggregation effect of the CuPc moieties, we demonstrate two ways of tuning the dipolar coupling in such dyad systems: changing the spacer group and adjusting the solution concentration.

  8. Some Surprising Implications of NMR-directed Simulations of Substrate Recognition and Binding by Cytochrome P450cam (CYP101A1).

    PubMed

    Asciutto, Eliana K; Pochapsky, Thomas C

    2018-04-27

    Cytochrome P450 cam (CYP101A1) catalyzes the stereospecific 5-exo hydroxylation of d-camphor by molecular oxygen. Previously, residual dipolar couplings measured for backbone amide 1 H- 15 N correlations in both substrate-free and bound forms of CYP101A1 were used as restraints in soft annealing molecular dynamic simulations in order to identify average conformations of the enzyme with and without substrate bound. Multiple substrate-dependent conformational changes remote from the enzyme active site were identified, and site-directed mutagenesis and activity assays confirmed the importance of these changes in substrate recognition. The current work makes use of perturbation response scanning (PRS) and umbrella sampling molecular dynamic of the residual dipolar coupling-derived CYP101A1 structures to probe the roles of remote structural features in enforcing the regio- and stereospecific nature of the hydroxylation reaction catalyzed by CYP101A1. An improper dihedral angle Ψ was defined and used to maintain substrate orientation in the CYP101A1 active site, and it was observed that different values of Ψ result in different PRS response maps. Umbrella sampling methods show that the free energy of the system is sensitive to Ψ, and bound substrate forms an important mechanical link in the transmission of mechanical coupling through the enzyme structure. Finally, a qualitative approach to interpreting PRS maps in terms of the roles of secondary structural features is proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. RDC-enhanced structure calculation of a β-heptapeptide in methanol.

    PubMed

    Rigling, Carla; Ebert, Marc-Olivier

    2017-07-01

    Residual dipolar couplings (RDCs) are a rich source of structural information that goes beyond the range covered by the nuclear Overhauser effect or scalar coupling constants. They can only be measured in partially oriented samples. RDC studies of peptides in organic solvents have so far been focused on samples in chloroform or DMSO. Here, we show that stretched poly(vinyl acetate) can be used for the partial alignment of a linear β-peptide with proteinogenic side chains in methanol. 1 D CH , 1 D NH , and 2 D HH RDCs were collected with this sample and included as restraints in a simulated annealing calculation. Incorporation of RDCs in the structure calculation process improves the long-range definition in the backbone of the resulting 3 14 -helix and uncovers side-chain mobility. Experimental side-chain RDCs of the central leucine and valine residues are in good agreement with predicted values from a local three-state model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Combined Use of Residual Dipolar Couplings and Solution X-ray Scattering To Rapidly Probe Rigid-Body Conformational Transitions in a Non-phosphorylatable Active-Site Mutant of the 128 kDa Enzyme I Dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takayama, Yuki; Schwieters, Charles D.; Grishaev, Alexander

    2012-10-23

    The first component of the bacterial phosphotransferase system, enzyme I (EI), is a multidomain 128 kDa dimer that undergoes large rigid-body conformational transitions during the course of its catalytic cycle. Here we investigate the solution structure of a non-phosphorylatable active-site mutant in which the active-site histidine is substituted by glutamine. We show that perturbations in the relative orientations and positions of the domains and subdomains can be rapidly and reliably determined by conjoined rigid-body/torsion angle/Cartesian simulated annealing calculations driven by orientational restraints from residual dipolar couplings and shape and translation information afforded by small- and wide-angle X-ray scattering. Although histidinemore » and glutamine are isosteric, the conformational space available to a Gln side chain is larger than that for the imidazole ring of His. An additional hydrogen bond between the side chain of Gln189 located on the EIN{sup {alpha}/{beta}} subdomain and an aspartate (Asp129) on the EIN{sup {alpha}} subdomain results in a small ({approx}9{sup o}) reorientation of the EIN{sup {alpha}} and EIN{sup {alpha}/{beta}} subdomains that is in turn propagated to a larger reorientation ({approx}26{sup o}) of the EIN domain relative to the EIC dimerization domain, illustrating the positional sensitivity of the EIN domain and its constituent subdomains to small structural perturbations.« less

  11. Analytical models for coupling reliability in identical two-magnet systems during slow reversals

    NASA Astrophysics Data System (ADS)

    Kani, Nickvash; Naeemi, Azad

    2017-12-01

    This paper follows previous works which investigated the strength of dipolar coupling in two-magnet systems. While those works focused on qualitative analyses, this manuscript elucidates reversal through dipolar coupling culminating in analytical expressions for reversal reliability in identical two-magnet systems. The dipolar field generated by a mono-domain magnetic body can be represented by a tensor containing both longitudinal and perpendicular field components; this field changes orientation and magnitude based on the magnetization of neighboring nanomagnets. While the dipolar field does reduce to its longitudinal component at short time-scales, for slow magnetization reversals, the simple longitudinal field representation greatly underestimates the scope of parameters that ensure reliable coupling. For the first time, analytical models that map the geometric and material parameters required for reliable coupling in two-magnet systems are developed. It is shown that in biaxial nanomagnets, the x ̂ and y ̂ components of the dipolar field contribute to the coupling, while all three dimensions contribute to the coupling between a pair of uniaxial magnets. Additionally, the ratio of the longitudinal and perpendicular components of the dipolar field is also very important. If the perpendicular components in the dipolar tensor are too large, the nanomagnet pair may come to rest in an undesirable meta-stable state away from the free axis. The analytical models formulated in this manuscript map the minimum and maximum parameters for reliable coupling. Using these models, it is shown that there is a very small range of material parameters which can facilitate reliable coupling between perpendicular-magnetic-anisotropy nanomagnets; hence, in-plane nanomagnets are more suitable for coupled systems.

  12. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Lu, Xingyu; Vega, Alexander J.; Polenova, Tatyana

    2014-09-01

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear 1H-X (X = 13C, 15N, 31P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the 1H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the 1H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from 1H chemical shift anisotropy, while keeping the 1H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [15N]-N-acetyl-valine and [U-13C,15N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate 1H-15N dipolar couplings in the context of 3D experiments is presented on U-13C,15N-enriched dynein light chain protein LC8.

  13. Heat Transfer Through Dipolar Coupling: Sympathetic cooling without contact

    NASA Astrophysics Data System (ADS)

    Oktel, Mehmet; Renklioglu, Basak; Tanatar, Bilal

    We consider two parallel layers of dipolar ultracold gases at different temperatures and calculate the heat transfer through dipolar coupling. As the simplest model we consider a system in which both of the layers contain two-dimensional spin-polarized Fermi gases. The effective interactions describing the correlation effects and screening between the dipoles are obtained by the Euler-Lagrange Fermi-hypernetted-chain approximation in a single layer. We use the random-phase approximation (RPA) for the interactions across the layers. We find that heat transfer through dipolar coupling becomes efficient when the layer separation is comparable to dipolar interaction length scale. We characterize the heat transfer by calculating the time constant for temperature equilibration between the layers and find that for the typical experimental parameter regime of dipolar molecules this is on the order of milliseconds. We generalize the initial model to Boson-Boson and Fermion-Boson layers and suggest that contactless sympathetic cooling may be used for ultracold dipolar molecules. Supported by TUBITAK 1002-116F030.

  14. Conformation of flexibly linked triterpene dimers by using RDC-enhanced NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lakshmi, Jerripothula K.; Pattnaik, Banita; Kavitha, Rachineni; Mallavadhani, Uppuluri V.; Jagadeesh, Bharatam

    2018-06-01

    Dimers of flexibly linked pentacyclic triterpene ursolic acid (UA) and its related frameworks such as asiatic acid (AA) and oleanolic acid (OA) have recently attracted significant attention due to their enhanced anti-cancer and anti-HCV activity compared to their respective monomers. Determination of conformation/inter-monomer orientation of these molecules is very important to understand their structure-activity relationship and to develop new scaffolds, which, however, is difficult through conventional NOE based solution-state NMR spectroscopy, due to lack of long-range NOEs. In the present work, we report a precise determination of conformation of two 1,2,3-triazole-linked triterpene dimer molecules, UA-AA and UA-OA, by employing one-bond Csbnd H residual dipolar couplings (RDCs) as additional long-range orientational restraints, measured in anisotropic PDMS/CDCl3 solvent medium.

  15. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Guangjin, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu; Lu, Xingyu, E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Vega, Alexander J., E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear {sup 1}H-X (X = {sup 13}C, {sup 15}N, {sup 31}P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the {sup 1}H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the {sup 1}H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from {supmore » 1}H chemical shift anisotropy, while keeping the {sup 1}H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [{sup 15}N]-N-acetyl-valine and [U-{sup 13}C,{sup 15}N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate {sup 1}H-{sup 15}N dipolar couplings in the context of 3D experiments is presented on U-{sup 13}C,{sup 15}N-enriched dynein light chain protein LC8.« less

  16. C-1311 (Symadex), a potential anti-cancer drug, intercalates into DNA between A and G moieties. NMR-derived and MD-refined stereostructure of the d(GAGGCCTC)2:C-1311 complex

    NASA Astrophysics Data System (ADS)

    Laskowski, Tomasz; Borzyszkowska, Julia; Grynda, Jakub; Mazerski, Jan

    2017-08-01

    Imidazoacridinone C-1311 (Symadex®) is an antitumor agent which has been recommended for Phase II clinical trials a few years ago. Previously, it was shown experimentally that during the initial stage of its action C-1311 forms stable intercalation complexes with DNA duplexes. Herein, a NMR-derived stereostructure of d(GAGGCCTC)2:C-1311 complex was reported. The ligand was found locating itself between A and G moieties, forming symmetrical DNA:drug 1:2 mol/mol complex. Intercalation site was located upon the DNA-ligand proton/proton dipolar couplings observed in the NOESY spectrum and the performed MD simulations. NMR-derived stereostructure was hence refined by restrained MD using distance restraints obtained from the NOESY data and the result was compared with MD-derived structure of the proposed complex, obtained from the calculations performed with distance restraints applied only for hydrogen bonds in the terminal GC base pairs. The results of both simulations were coherent. Basing on the observed C-1311's intercalation sites and on our previous results concerning the d(CGATCG)2:C-1311 complex, we stated that AG/GA sequences are the preferred binding sites of imidazoacridinone C-1311.

  17. Fast Approximations of the Rotational Diffusion Tensor and their Application to Structural Assembly of Molecular Complexes

    PubMed Central

    Berlin, Konstantin; O’Leary, Dianne P.; Fushman, David

    2011-01-01

    We present and evaluate a rigid-body, deterministic, molecular docking method, called ELMDOCK, that relies solely on the three-dimensional structure of the individual components and the overall rotational diffusion tensor of the complex, obtained from nuclear spin-relaxation measurements. We also introduce a docking method, called ELMPATIDOCK, derived from ELMDOCK and based on the new concept of combining the shape-related restraints from rotational diffusion with those from residual dipolar couplings, along with ambiguous contact/interface-related restraints obtained from chemical shift perturbations. ELMDOCK and ELMPATIDOCK use two novel approximations of the molecular rotational diffusion tensor that allow computationally efficient docking. We show that these approximations are accurate enough to properly dock the two components of a complex without the need to recompute the diffusion tensor at each iteration step. We analyze the accuracy, robustness, and efficiency of these methods using synthetic relaxation data for a large variety of protein-protein complexes. We also test our method on three protein systems for which the structure of the complex and experimental relaxation data are available, and analyze the effect of flexible unstructured tails on the outcome of docking. Additionally, we describe a method for integrating the new approximation methods into the existing docking approaches that use the rotational diffusion tensor as a restraint. The results show that the proposed docking method is robust against experimental errors in the relaxation data or structural rearrangements upon complex formation and is computationally more efficient than current methods. The developed approximations are accurate enough to be used in structure refinement protocols. PMID:21604302

  18. Fast approximations of the rotational diffusion tensor and their application to structural assembly of molecular complexes.

    PubMed

    Berlin, Konstantin; O'Leary, Dianne P; Fushman, David

    2011-07-01

    We present and evaluate a rigid-body, deterministic, molecular docking method, called ELMDOCK, that relies solely on the three-dimensional structure of the individual components and the overall rotational diffusion tensor of the complex, obtained from nuclear spin-relaxation measurements. We also introduce a docking method, called ELMPATIDOCK, derived from ELMDOCK and based on the new concept of combining the shape-related restraints from rotational diffusion with those from residual dipolar couplings, along with ambiguous contact/interface-related restraints obtained from chemical shift perturbations. ELMDOCK and ELMPATIDOCK use two novel approximations of the molecular rotational diffusion tensor that allow computationally efficient docking. We show that these approximations are accurate enough to properly dock the two components of a complex without the need to recompute the diffusion tensor at each iteration step. We analyze the accuracy, robustness, and efficiency of these methods using synthetic relaxation data for a large variety of protein-protein complexes. We also test our method on three protein systems for which the structure of the complex and experimental relaxation data are available, and analyze the effect of flexible unstructured tails on the outcome of docking. Additionally, we describe a method for integrating the new approximation methods into the existing docking approaches that use the rotational diffusion tensor as a restraint. The results show that the proposed docking method is robust against experimental errors in the relaxation data or structural rearrangements upon complex formation and is computationally more efficient than current methods. The developed approximations are accurate enough to be used in structure refinement protocols. Copyright © 2011 Wiley-Liss, Inc.

  19. Intermediate couplings: NMR at the solids-liquids interface

    NASA Astrophysics Data System (ADS)

    Spence, Megan

    2006-03-01

    Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.

  20. Tight coupling of metabolic oscillations and intracellular water dynamics in Saccharomyces cerevisiae.

    PubMed

    Thoke, Henrik Seir; Tobiesen, Asger; Brewer, Jonathan; Hansen, Per Lyngs; Stock, Roberto P; Olsen, Lars F; Bagatolli, Luis A

    2015-01-01

    We detected very strong coupling between the oscillating concentration of ATP and the dynamics of intracellular water during glycolysis in Saccharomyces cerevisiae. Our results indicate that: i) dipolar relaxation of intracellular water is heterogeneous within the cell and different from dilute conditions, ii) water dipolar relaxation oscillates with glycolysis and in phase with ATP concentration, iii) this phenomenon is scale-invariant from the subcellular to the ensemble of synchronized cells and, iv) the periodicity of both glycolytic oscillations and dipolar relaxation are equally affected by D2O in a dose-dependent manner. These results offer a new insight into the coupling of an emergent intensive physicochemical property of the cell, i.e. cell-wide water dipolar relaxation, and a central metabolite (ATP) produced by a robustly oscillating metabolic process.

  1. Tight Coupling of Metabolic Oscillations and Intracellular Water Dynamics in Saccharomyces cerevisiae

    PubMed Central

    Thoke, Henrik Seir; Tobiesen, Asger; Brewer, Jonathan; Hansen, Per Lyngs; Stock, Roberto P.; Olsen, Lars F.; Bagatolli, Luis A.

    2015-01-01

    We detected very strong coupling between the oscillating concentration of ATP and the dynamics of intracellular water during glycolysis in Saccharomyces cerevisiae. Our results indicate that: i) dipolar relaxation of intracellular water is heterogeneous within the cell and different from dilute conditions, ii) water dipolar relaxation oscillates with glycolysis and in phase with ATP concentration, iii) this phenomenon is scale-invariant from the subcellular to the ensemble of synchronized cells and, iv) the periodicity of both glycolytic oscillations and dipolar relaxation are equally affected by D2O in a dose-dependent manner. These results offer a new insight into the coupling of an emergent intensive physicochemical property of the cell, i.e. cell-wide water dipolar relaxation, and a central metabolite (ATP) produced by a robustly oscillating metabolic process. PMID:25705902

  2. 13C-13C rotational resonance in a transmembrane peptide: A comparison of the fluid and gel phases

    NASA Astrophysics Data System (ADS)

    Langlais, Denis B.; Hodges, Robert S.; Davis, James H.

    1999-05-01

    A comparative study of two doubly 13C labeled amphiphilic transmembrane peptides was undertaken to determine the potential of rotational resonance for measuring internuclear distances through the direct dipolar coupling in the presence of motion. The two peptides, having the sequence acetyl-K2-G-L16-K2-A-amide, differed only in the position of 13C labels. The first peptide, [1-13C]leu11:[α-13C]leu12, had labels on adjacent residues, at the carbonyl of leu11 and the α carbon of leu12. The second, [1-13C]leu8:[α-13\\|C]leu11, was labeled on consecutive turns of the α-helical peptide. The internuclear distance between labeled positions of the first peptide, which for an ideal α helix has a value of 2.48 Å, is relatively independent of internal flexibility or peptide conformational change. The dipolar coupling between these two nuclei is sensitive to motional averaging by molecular reorientation, however, making this peptide ideal for investigating these motions. The internuclear distance between labels on the second peptide has an expected static ideal α-helix value of 4.6 Å, but this is sensitive to internal flexibility. In addition, the dipolar coupling between these two nuclei is much weaker because of their larger separation, making this peptide a much more difficult test of the rotational resonance technique. The dipolar couplings between the labeled nuclei of these two peptides were measured by rotational resonance in the dry peptide powders and in multilamellar dispersions with dimyristoylphosphatidylcholine in the gel phase, at -10 °C, and in the fluid phase, at 40 °C. The results for the peptide having adjacent labels can be readily interpreted in terms of a simple model for the peptide motion. The results for the second peptide show that, in the fluid phase, the motionally averaged dipolar coupling is too small to be measured by rotational resonance. Rotational resonance, rotational echo double resonance, and related techniques can be used to obtain reliable and valuable dipolar couplings in static solid and membrane systems. The interpretation of these couplings in terms of internuclear distances is straightforward in the absence of molecular motion. These techniques hold considerable promise for membrane protein structural studies under conditions, such as at low temperatures, where molecular motion does not modulate the dipolar couplings. However, a typical membrane at physiological temperatures exhibits complex molecular motions. In the absence of an accurate and detailed description of both internal and whole body molecular motions, it is unlikely that techniques of this type, which are based on extracting distances from direct internuclear dipolar couplings, can be used to study molecular structure under these conditions. Furthermore, the reduction in the strengths of the dipolar couplings by these motions dramatically reduces the useful range of distances which can be measured.

  3. Communication: molecular dynamics and (1)H NMR of n-hexane in liquid crystals.

    PubMed

    Weber, Adrian C J; Burnell, E Elliott; Meerts, W Leo; de Lange, Cornelis A; Dong, Ronald Y; Muccioli, Luca; Pizzirusso, Antonio; Zannoni, Claudio

    2015-07-07

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.

  4. Communication: Molecular dynamics and {sup 1}H NMR of n-hexane in liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Adrian C. J., E-mail: WeberA@BrandonU.CA; Burnell, E. Elliott, E-mail: elliott.burnell@ubc.ca; Meerts, W. Leo, E-mail: leo.meerts@science.ru.nl

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings.more » In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.« less

  5. Unresolved Issues With Inner Magnetosphere-Ionosphere Coupling

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Khazanov, G.

    2004-01-01

    Dipolarization and the release of stored magnetic energy is strongly evident in the energized plasma sheet electrons and ions injected earthward from the magnetotail. While some of these plasma are presumed lost into the dayside magnetosheath, much of the energy is dissipated into the ionosphere through electric currents, through collisions into low energy plasma, and into plasma waves, which then go on to heat and energize plasma of the inner magnetosphere. Many mechanisms for the transfer of energy and the consequences to inner magnetospheric plasma populations have been proposed. The sophistication of theoretical models to represent the interdependencies between plasma populations is rapidly increasing. However without the restraint and reality imposed on theory by relevant measurements, the degree to which specific mechanisms participate in the exchange of energy as a function of location and time cannot be known. ORBITALS offers this capability. Some of the outstanding problems in inner magnetospheric physics and the opportunities presented by the ORBITAL concept to solve problems will be discussed.

  6. Simultaneous NMR characterisation of multiple minima in the free energy landscape of an RNA UUCG tetraloop.

    PubMed

    Borkar, Aditi N; Vallurupalli, Pramodh; Camilloni, Carlo; Kay, Lewis E; Vendruscolo, Michele

    2017-01-25

    RNA molecules in solution tend to undergo structural fluctuations of relatively large amplitude and to populate a range of different conformations some of which with low populations. It is still very challenging, however, to characterise the structures of these low populated states and to understand their functional roles. In the present study, we address this problem by using NMR residual dipolar couplings (RDCs) as structural restraints in replica-averaged metadynamics (RAM) simulations. By applying this approach to a 14-mer RNA hairpin containing the prototypical UUCG tetraloop motif, we show that it is possible to construct the free energy landscape of this RNA molecule. This free energy landscapes reveals the surprisingly rich dynamics of the UUCG tetraloop and identifies the multiple substates that exist in equilibrium owing to thermal fluctuations. The approach that we present is general and can be applied to the study of the free energy landscapes of other RNA or RNA-protein systems.

  7. HN(α/β-COCA-J) Experiment for Measurement of 1JC‧Cα Couplings from Two-Dimensional [15N, 1H] Correlation Spectrum

    NASA Astrophysics Data System (ADS)

    Permi, Perttu; Sorsa, Tia; Kilpeläinen, Ilkka; Annila, Arto

    1999-11-01

    Anew method for measurement of one-bond 13C‧-13Cα scalar and dipolar couplings from a two-dimensional [15N, 1H] correlation spectrum is presented. The experiment is based on multiple-quantum coherence, which is created between nitrogen and carbonyl carbon for simultaneous evolution of 15N chemical shift and coupling between 13C‧ and 13Cα. Optional subspectral editing is provided by the spin-state-selective filters. The residual dipolar dipolar contribution to the 13C‧-13Cα coupling can be measured from these simplified [15N, 1H]-HSQC-like spectra. In this way, without explicit knowledge of carbon assignments, conformational changes of proteins dissolved in dilute liquid crystals can be probed conveniently, e.g., in structure activity relationship by NMR studies. The method is demonstrated with human cardiac troponin C.

  8. Screening molecular associations with lipid membranes using natural abundance 13C cross-polarization magic-angle spinning NMR and principal component analysis.

    PubMed

    Middleton, David A; Hughes, Eleri; Madine, Jillian

    2004-08-11

    We describe an NMR approach for detecting the interactions between phospholipid membranes and proteins, peptides, or small molecules. First, 1H-13C dipolar coupling profiles are obtained from hydrated lipid samples at natural isotope abundance using cross-polarization magic-angle spinning NMR methods. Principal component analysis of dipolar coupling profiles for synthetic lipid membranes in the presence of a range of biologically active additives reveals clusters that relate to different modes of interaction of the additives with the lipid bilayer. Finally, by representing profiles from multiple samples in the form of contour plots, it is possible to reveal statistically significant changes in dipolar couplings, which reflect perturbations in the lipid molecules at the membrane surface or within the hydrophobic interior.

  9. Evidence for a dipolar-coupled AM system in carnosine in human calf muscle from in vivo 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Bachert, Peter

    2003-10-01

    Spin systems with residual dipolar couplings such as creatine, taurine, and lactate in skeletal muscle tissue exhibit first-order spectra in in vivo 1H NMR spectroscopy at 1.5 T because the coupled protons are represented by (nearly) symmetrized eigenfunctions. The imidazole ring protons (H2, H4) of carnosine are suspected to form also a coupled system. The ring's stiffness could enable a connectivity between these anisochronous protons with the consequence of second-order spectra at low field strength. Our purpose was to study whether this deviation from the Paschen-Back condition can be used to detect the H2-H4 coupling in localized 1D 1H NMR spectra obtained at 1.5 T (64 MHz) from the human calf in a conventional whole-body scanner. As for the hydrogen hyperfine interaction, a Breit-Rabi equation was derived to describe the transition from Zeeman to Paschen-Back regime for two dipolar-coupled protons. The ratio of the measurable coupling strength ( Sk) and the difference in resonance frequencies of the coupled spins (Δ ω) induces quantum-state mixing of various degree upon definition of an appropriate eigenbase of the coupled spin system. The corresponding Clebsch-Gordan coefficients manifest in characteristic energy corrections in the Breit-Rabi formula. These additional terms were used to define an asymmetry parameter of the line positions as a function of Sk and Δ ω. The observed frequency shifts of the resonances were found to be consistent with this parameter within the accuracy achievable in in vivo NMR spectroscopy. Thus it was possible to identify the origin of satellite peaks of H2, H4 and to describe this so far not investigated type of residual dipolar coupling in vivo.

  10. Relaxation dynamics of a driven two-level system coupled to a Bose-Einstein condensate: application to quantum dot-dipolar exciton gas hybrid systems.

    PubMed

    Kovalev, Vadim M; Tse, Wang-Kong

    2017-11-22

    We develop a microscopic theory for the relaxation dynamics of an optically pumped two-level system (TLS) coupled to a bath of weakly interacting Bose gas. Using Keldysh formalism and diagrammatic perturbation theory, expressions for the relaxation times of the TLS Rabi oscillations are derived when the boson bath is in the normal state and the Bose-Einstein condensate (BEC) state. We apply our general theory to consider an irradiated quantum dot coupled with a boson bath consisting of a two-dimensional dipolar exciton gas. When the bath is in the BEC regime, relaxation of the Rabi oscillations is due to both condensate and non-condensate fractions of the bath bosons for weak TLS-light coupling and pre dominantly due to the non-condensate fraction for strong TLS-light coupling. Our theory also shows that a phase transition of the bath from the normal to the BEC state strongly influences the relaxation rate of the TLS Rabi oscillations. The TLS relaxation rate is approximately independent of the pump field frequency and monotonically dependent on the field strength when the bath is in the low-temperature regime of the normal phase. Phase transition of the dipolar exciton gas leads to a non-monotonic dependence of the TLS relaxation rate on both the pump field frequency and field strength, providing a characteristic signature for the detection of BEC phase transition of the coupled dipolar exciton gas.

  11. Coherent manipulation of dipolar coupled spins in an anisotropic environment

    NASA Astrophysics Data System (ADS)

    Baibekov, E. I.; Gafurov, M. R.; Zverev, D. G.; Kurkin, I. N.; Malkin, B. Z.; Barbara, B.

    2014-11-01

    We study coherent dynamics in a system of dipolar coupled spin qubits diluted in a solid and subjected to a driving microwave field. In the case of rare earth ions, an anisotropic crystal background results in anisotropic g tensor and thus modifies the dipolar coupling. We develop a microscopic theory of spin relaxation in a transient regime for the frequently encountered case of axially symmetric crystal field. The calculated decoherence rate is nonlinear in the Rabi frequency. We show that the direction of a static magnetic field that corresponds to the highest spin g factor is preferable in order to obtain a higher number of coherent qubit operations. The results of calculations are in excellent agreement with our experimental data on Rabi oscillations recorded for a series of CaW O4 crystals with different concentrations of N d3 + ions.

  12. Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blanchard, J. W.; Sjolander, T. F.; King, J. P.; Ledbetter, M. P.; Levine, E. H.; Bajaj, V. S.; Budker, D.; Pines, A.

    2015-12-01

    Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from the effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultralow-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C aligned in stretched polyvinyl acetate gels. This permits the investigation of dipolar couplings as a perturbation on the indirect spin-spin J coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultralow-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.

  13. Windowed R-PDLF recoupling: a flexible and reliable tool to characterize molecular dynamics.

    PubMed

    Gansmüller, Axel; Simorre, Jean-Pierre; Hediger, Sabine

    2013-09-01

    This work focuses on the improvement of the R-PDLF heteronuclear recoupling scheme, a method that allows quantification of molecular dynamics up to the microsecond timescale in heterogeneous materials. We show how the stability of the sequence towards rf-imperfections, one of the main sources of error of this technique, can be improved by the insertion of windows without irradiation into the basic elements of the symmetry-based recoupling sequence. The impact of this modification on the overall performance of the sequence in terms of scaling factor and homonuclear decoupling efficiency is evaluated. This study indicates the experimental conditions for which precise and reliable measurement of dipolar couplings can be obtained using the popular R18(1)(7) recoupling sequence, as well as alternative symmetry-based R sequences suited for fast MAS conditions. An analytical expression for the recoupled dipolar modulation has been derived that applies to a whole class of sequences with similar recoupling properties as R18(1)(7). This analytical expression provides an efficient and precise way to extract dipolar couplings from the experimental dipolar modulation curves. We hereby provide helpful tools and information for tailoring R-PDLF recoupling schemes to specific sample properties and hardware capabilities. This approach is particularly well suited for the study of materials with strong and heterogeneous molecular dynamics where a precise measurement of dipolar couplings is crucial. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. NMR Detection Using Laser-Polarized Xenon as a DipolarSensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granwehr, Josef; Urban, Jeffry T.; Trabesinger, Andreas H.

    2005-02-28

    Hyperpolarized Xe-129 can be used as a sensor to indirectly detect NMR spectra of heteronuclei that are neither covalently bound nor necessarily in direct contact with the Xe atoms, but coupled through long-range intermolecular dipolar couplings. In order to reintroduce long-range dipolar couplings the sample symmetry has to be broken. This can be done either by an asymmetric sample arrangement, or by breaking the symmetry of the spin magnetization with field gradient pulses. Experiments are performed where only a small fraction of the available Xe-129 magnetization is used for each point, so that a single batch of xenon suffices formore » the point-by-point acquisition of a heteronuclear NMR spectrum. Examples with H-1 as analyte nucleus show that these methods have the potential to obtain spectra with a resolution that is high enough to determine homonuclear J couplings. The applicability of this technique with remote detection is discussed.« less

  15. Sensitivity-enhanced IPAP experiments for measuring one-bond 13C '- 13C α and 13C α- 1H α residual dipolar couplings in proteins

    NASA Astrophysics Data System (ADS)

    Ding, Keyang; Gronenborn, Angela M.

    2004-04-01

    Sensitivity-enhanced 2D IPAP experiments using the accordion principle for measuring one-bond 13C '- 13C α and 1H α- 13C α dipolar couplings in proteins are presented. The resolution of the resulting spectra is identical to that of the decoupled HSQC spectra and the sensitivity of the corresponding 1D acquisitions are only slightly lower than those obtained with 3D HNCO and 3D HN(COCA)HA pulse sequences due to an additional delay 2 Δ. For cases of limited resolution in the 2D 15N- 1H N HSQC spectrum the current pulse sequences can easily be modified into 3D versions by introducing a poorly digitized third dimension, if so desired. The experiments described here are a valuable addition to the suites available for determination of residual dipolar couplings in biological systems.

  16. Spin-orbit-coupled Bose-Einstein condensates of rotating polar molecules

    NASA Astrophysics Data System (ADS)

    Deng, Y.; You, L.; Yi, S.

    2018-05-01

    An experimental proposal for realizing spin-orbit (SO) coupling of pseudospin 1 in the ground manifold 1Σ (υ =0 ) of (bosonic) bialkali polar molecules is presented. The three spin components are composed of the ground rotational state and two substates from the first excited rotational level. Using hyperfine resolved Raman processes through two select excited states resonantly coupled by a microwave, an effective coupling between the spin tensor and linear momentum is realized. The properties of Bose-Einstein condensates for such SO-coupled molecules exhibiting dipolar interactions are further explored. In addition to the SO-coupling-induced stripe structures, the singly and doubly quantized vortex phases are found to appear, implicating exciting opportunities for exploring novel quantum physics using SO-coupled rotating polar molecules with dipolar interactions.

  17. Influence of anisotropic dipolar interaction on the spin dynamics of Ni80Fe20 nanodot arrays arranged in honeycomb and octagonal lattices

    NASA Astrophysics Data System (ADS)

    Mondal, Sucheta; Barman, Saswati; Choudhury, Samiran; Otani, Yoshichika; Barman, Anjan

    2018-07-01

    Ultrafast spin dynamics in ferromagnetic nanodot arrays with dot diameter 100 nm and thickness 20 nm arranged in honeycomb and octagonal lattice symmetries are studied to explore the tunability of the collective magnetization dynamics. By varying the inter-dot separation between 30 nm and 300 nm drastic variation in the precessional dynamics from strongly collective to completely isolated regime has been observed by using all-optical time-resolved magneto-optical Kerr microscope. Micromagnetic simulation is exploited to gain insights about the resonant mode profiles and magnetic coupling between the nanodots. A significant spectral and spatial variation in the resonant mode with increasing dipolar interaction is demonstrated with increasing inter-dot separation. The spins driven by effective field inside single nanodots are prone to precess independently, generating two self-standing centre and edge modes in the array that are influenced by the relative orientation between the inter-dot coupling direction and bias magnetic field. The anisotropic behavior of dipolar field is rigorously investigated here. Splitting of the centre mode in case of octagonal lattice is experimentally observed here as a consequence of the anisotropic dipolar field between the nanodot pairs coupled horizontally and vertically, which is not found in the honeycomb lattice. In addition, proper understanding of the modification of dynamic mode profile by neighboring dipolar interaction built up here, is imperative for further control of the dynamic dipolar interaction and the corresponding collective excitation in magnonic crystals. The usage of nanodot lattices with complex basis structures can be advantageous for the designing of high density magnetic recording media, spin-wave filter and logic devices.

  18. Detection of magnetic dipolar coupling of water molecules at the nanoscale using quantum magnetometry

    NASA Astrophysics Data System (ADS)

    Yang, Zhiping; Shi, Fazhan; Wang, Pengfei; Raatz, Nicole; Li, Rui; Qin, Xi; Meijer, Jan; Duan, Changkui; Ju, Chenyong; Kong, Xi; Du, Jiangfeng

    2018-05-01

    It is a crucial issue to study interactions among water molecules and hydrophobic interfacial water at the nanoscale. Here we succeed in measuring the nuclear magnetic resonance spectrum of a diamond-water interfacial ice with a detection volume of about 2.2 ×10-22 L. More importantly, the magnetic dipolar coupling between the two protons of a water molecule is resolved by measuring the signal contributed from about 7000 water molecules at the nanoscale. The resolved intramolecule magnetic dipolar interactions are about 15 and 33 kHz with spectral resolution of 5 kHz. This work provides a platform for hydrophobic interfacial water study under ambient conditions, with further applications in more general nanoscale structural analysis.

  19. NMR polarization echoes in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Levstein, Patricia R.; Chattah, Ana K.; Pastawski, Horacio M.; Raya, Jésus; Hirschinger, Jérôme

    2004-10-01

    We have modified the polarization echo (PE) sequence through the incorporation of Lee-Goldburg cross polarization steps to quench the 1H-1H dipolar dynamics. In this way, the 13C becomes an ideal local probe to inject and detect polarization in the proton system. This improvement made possible the observation of the local polarization P00(t) and polarization echoes in the interphenyl proton of the liquid crystal N-(4-methoxybenzylidene)-4-butylaniline. The decay of P00(t) was well fitted to an exponential law with a characteristic time τC≈310 μs. The hierarchy of the intramolecular dipolar couplings determines a dynamical bottleneck that justifies the use of the Fermi Golden Rule to obtain a spectral density consistent with the structural parameters. The time evolution of P00(t) was reversed by the PE sequence generating echoes at the time expected by the scaling of the dipolar Hamiltonian. This indicates that the reversible 1H-1H dipolar interaction is the main contribution to the local polarization decrease and that the exponential decay for P00(t) does not imply irreversibility. The attenuation of the echoes follows a Gaussian law with a characteristic time τφ≈527 μs. The shape and magnitude of the characteristic time of the PE decay suggest that it is dominated by the unperturbed homonuclear dipolar Hamiltonian. This means that τφ is an intrinsic property of the dipolar coupled network and not of other degrees of freedom. In this case, one cannot unambiguously identify the mechanism that produces the decoherence of the dipolar order. This is because even weak interactions are able to break the fragile multiple coherences originated on the dipolar evolution, hindering its reversal. Other schemes to investigate these underlying mechanisms are proposed.

  20. A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Damron, Joshua; Vosegaard, Thomas; Ramamoorthy, Ayyalusamy

    2015-01-01

    Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies of molecules in the solid-state. Though many different rotating-frame SLF sequences have been put forth, recent advances in ultrafast MAS technology have considerably simplified pulse sequence requirements due to the suppression of proton-proton dipolar interactions. In this study we revisit a simple two-dimensional 1H-13C dipolar coupling/chemical shift correlation experiment using 13C detected cross-polarization with a variable contact time (CPVC) and systematically study the conditions for its optimal performance at 60 kHz MAS. In addition, we demonstrate the feasibility of a proton-detected version of the CPVC experiment. The theoretical analysis of the CPVC pulse sequence under different Hartmann-Hahn matching conditions confirms that it performs optimally under the ZQ (w1H - w1C = ±wr) condition for polarization transfer. The limits of the cross polarization process are explored and precisely defined as a function of offset and Hartmann-Hahn mismatch via spin dynamics simulation and experiments on a powder sample of uniformly 13C-labeled L-isoleucine. Our results show that the performance of the CPVC sequence and subsequent determination of 1H-13C dipolar couplings are insensitive to 1H/13C frequency offset frequency when high RF fields are used on both RF channels. Conversely, the CPVC sequence is quite sensitive to the Hartmann-Hahn mismatch, particularly for systems with weak heteronuclear dipolar couplings. We demonstrate the use of the CPVC based SLF experiment as a tool to identify different carbon groups, and hope to motivate the exploration of more sophisticated 1H detected avenues for ultrafast MAS.

  1. Conformational analysis of the anti-obesity drug lorcaserin in water: how to take advantage of long-range residual dipolar couplings.

    PubMed

    Trigo-Mouriño, Pablo; de la Fuente, M Carmen; Gil, Roberto R; Sánchez-Pedregal, Víctor M; Navarro-Vázquez, Armando

    2013-10-25

    The conformational state of 8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (lorcaserin) in water has been determined on the basis of one-bond and long-range C-H residual dipolar coupling (RDC) data along with DFT computations and (3)J(HH) coupling-constant analysis. According to this analysis, lorcaserin exists as a conformational equilibrium of two crown-chair forms, of which the preferred conformation has the methyl group in an equatorial orientation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Heteronuclear proton assisted recoupling

    NASA Astrophysics Data System (ADS)

    De Paëpe, Gaël; Lewandowski, Józef R.; Loquet, Antoine; Eddy, Matt; Megy, Simon; Böckmann, Anja; Griffin, Robert G.

    2011-03-01

    We describe a theoretical framework for understanding the heteronuclear version of the third spin assisted recoupling polarization transfer mechanism and demonstrate its potential for detecting long-distance intramolecular and intermolecular 15N-13C contacts in biomolecular systems. The pulse sequence, proton assisted insensitive nuclei cross polarization (PAIN-CP) relies on a cross term between 1H-15N and 1H-13C dipolar couplings to mediate zero- and/or double-quantum 15N-13C recoupling. In particular, using average Hamiltonian theory we derive effective Hamiltonians for PAIN-CP and show that the transfer is mediated by trilinear terms of the form N±C∓Hz (ZQ) or N±C±Hz (DQ) depending on the rf field strengths employed. We use analytical and numerical simulations to explain the structure of the PAIN-CP optimization maps and to delineate the appropriate matching conditions. We also detail the dependence of the PAIN-CP polarization transfer with respect to local molecular geometry and explain the observed reduction in dipolar truncation. In addition, we demonstrate the utility of PAIN-CP in structural studies with 15N-13C spectra of two uniformly 13C,15N labeled model microcrystalline proteins—GB1, a 56 amino acid peptide, and Crh, a 85 amino acid domain swapped dimer (MW = 2 × 10.4 kDa). The spectra acquired at high magic angle spinning frequencies (ωr/2π > 20 kHz) and magnetic fields (ω0H/2π = 700-900 MHz) using moderate rf fields, yield multiple long-distance intramonomer and intermonomer 15N-13C contacts. We use these distance restraints, in combination with the available x-ray structure as a homology model, to perform a calculation of the monomer subunit of the Crh protein.

  3. Theoretical study of homonuclear J coupling between quadrupolar spins: single-crystal, DOR, and J-resolved NMR.

    PubMed

    Perras, Frédéric A; Bryce, David L

    2014-05-01

    The theory describing homonuclear indirect nuclear spin-spin coupling (J) interactions between pairs of quadrupolar nuclei is outlined and supported by numerical calculations. The expected first-order multiplets for pairs of magnetically equivalent (A2), chemically equivalent (AA'), and non-equivalent (AX) quadrupolar nuclei are given. The various spectral changeovers from one first-order multiplet to another are investigated with numerical simulations using the SIMPSON program and the various thresholds defining each situation are given. The effects of chemical equivalence, as well as quadrupolar coupling, chemical shift differences, and dipolar coupling on double-rotation (DOR) and J-resolved NMR experiments for measuring homonuclear J coupling constants are investigated. The simulated J coupling multiplets under DOR conditions largely resemble the ideal multiplets predicted for single crystals, and a characteristic multiplet is expected for each of the A2, AA', and AX cases. The simulations demonstrate that it should be straightforward to distinguish between magnetic inequivalence and equivalence using J-resolved NMR, as was speculated previously. Additionally, it is shown that the second-order quadrupolar-dipolar cross-term does not affect the splittings in J-resolved experiments. Overall, the homonuclear J-resolved experiment for half-integer quadrupolar nuclei is demonstrated to be robust with respect to the effects of first- and second-order quadrupolar coupling, dipolar coupling, and chemical shift differences. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Three-spin systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Zhiwei; Halle, Bertil, E-mail: bertil.halle@bpc.lu.se

    2016-07-21

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have developed a non-perturbative theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole couplings, and Larmor frequencies. Here, we implement the general dipolar EMOR theory for a macromolecule-bound three-spin system, where one, two, or all three spins exchange with the bulk solution phase. In contrast to the previously studied two-spin system with amore » single dipole coupling, there are now three dipole couplings, so relaxation is affected by distinct correlations as well as by self-correlations. Moreover, relaxation can now couple the magnetizations with three-spin modes and, in the presence of a static dipole coupling, with two-spin modes. As a result of this complexity, three secondary dispersion steps with different physical origins can appear in the longitudinal relaxation dispersion profile, in addition to the primary dispersion step at the Larmor frequency matching the exchange rate. Furthermore, and in contrast to the two-spin system, longitudinal relaxation can be significantly affected by chemical shifts and by the odd-valued (“imaginary”) part of the spectral density function. We anticipate that the detailed studies of two-spin and three-spin systems that have now been completed will provide the foundation for developing an approximate multi-spin dipolar EMOR theory sufficiently accurate and computationally efficient to allow quantitative molecular-level interpretation of frequency-dependent water-proton longitudinal relaxation data from biophysical model systems and soft biological tissue.« less

  5. Limits in Proton Nuclear Singlet-State Lifetimes Measured with para-Hydrogen-Induced Polarization.

    PubMed

    Zhang, Yuning; Duan, Xueyou; Soon, Pei Che; Sychrovský, Vladimír; Canary, James W; Jerschow, Alexej

    2016-10-05

    The synthesis of a hyperpolarized molecule was developed, where the polarization and the singlet state were preserved over two controlled chemical steps. Nuclear singlet-state lifetimes close to 6 min for protons are reported in dimethyl fumarate. Owing to the high symmetry (AA'X 3 X 3 ' and A 2 systems), the singlet-state readout requires either a chemical desymmetrization or a long and repeated spin lock. Using DFT calculations and relaxation models, we further determine nuclear spin singlet lifetime limiting factors, which include the intramolecular dipolar coupling mechanism (proton-proton and proton-deuterium), the chemical shift anisotropy mechanism (symmetric and antisymmetric), and the intermolecular dipolar coupling mechanism (to oxygen and deuterium). If the limit of paramagnetic relaxation caused by residual oxygen could be lifted, the intramolecular dipolar coupling to deuterium would become the limiting relaxation mechanism and proton lifetimes upwards of 26 min could become available in the molecules considered here (dimethyl maleate and dimethyl fumarate). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Vehicle interior interactions and kinematics of rear facing child restraints in frontal crashes.

    PubMed

    Sherwood, C P; Gopalan, S; Abdelilah, Y; Marshall, R J; Crandall, J R

    2005-01-01

    The performance of rear facing child restraints in frontal crashes can be determined by controlling a) the child's kinematics and b) interactions with vehicle structures. Twelve sled tests were performed to analyze the effect of the location and structural properties of vehicle interior components. The role of restraint kinematics was studied by developing computational models which underwent idealized motions. Stiff structures originally offset from the restraint, but which contact the restraint late in the test, cause increased injury values. Attachment methods which reduce child restraint rotation and more rigidly couple the restraint to the vehicle result in the best safety performance.

  7. Vehicle Interior Interactions and Kinematics of Rear Facing Child Restraints in Frontal Crashes

    PubMed Central

    Sherwood, C. P.; Gopalan, S.; Abdelilah, Y.; Marshall, R. J.; Crandall, J. R.

    2005-01-01

    The performance of rear facing child restraints in frontal crashes can be determined by controlling a) the child’s kinematics and b) interactions with vehicle structures. Twelve sled tests were performed to analyze the effect of the location and structural properties of vehicle interior components. The role of restraint kinematics was studied by developing computational models which underwent idealized motions. Stiff structures originally offset from the restraint, but which contact the restraint late in the test, cause increased injury values. Attachment methods which reduce child restraint rotation and more rigidly couple the restraint to the vehicle result in the best safety performance. PMID:16179150

  8. Pushing the limit of NMR-based distance measurements - retrieving dipolar couplings to spins with extensively large quadrupolar frequencies.

    PubMed

    Makrinich, M; Nimerovsky, E; Goldbourt, A

    2018-04-14

    Dipolar recoupling under magic-angle spinning allows to measure accurate inter-nuclear distances provided that the two interacting spins can be efficiently and uniformly excited. Alexander (Lex) Vega has shown that adiabatic transfers of populations in quadrupolar spins during the application of constant-wave (cw) radio-frequency pulses lead to efficient and quantifiable dipolar recoupling curves. Accurate distance determination within and beyond the adiabatic regime using cw pulses is limited by the size of the quadrupolar coupling constant. Here we show that using the approach of long-pulse phase modulation, dipolar recoupling and accurate distances can be obtained for nuclei having extensively large quadrupolar frequencies of 5-10 MHz. We demonstrate such results by obtaining a 31 P- 79/81 Br distance in a compound for which bromine-79 (spin-3/2) has a quadrupolar coupling constant of 11.3 MHz, and a 13 C- 209 Bi distance where the bismuth (spin-9/2) has a quadrupolar coupling constant of 256 MHz, equaling a quadrupolar frequency of 10.7 MHz. For Bromine, we demonstrate that an analytical curve based on the assumption of complete spin saturation fits the data. In the case of bismuth acetate, a C-Bi 3 spin system must be used in order to match the correct saturation recoupling curve, and results are in agreement with the crystallographic structure. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. DRAFT One Year Extension of the Short-Term National Product Waiver for Stainless Steel Nuts and Bolts used in Pipe Couplings, Restraints, Joints, Flanges and Saddles for State Revolving Fund Projects

    EPA Pesticide Factsheets

    DRAFT one year extension of the short-term national product waiver for stainless steel nuts and bolts used in pipe couplings, restraints, joints, flanges and saddles for State Revolving Fund projects.

  10. Pressure-induced structural transition of mature HIV-1 protease from a combined NMR/MD simulation approach.

    PubMed

    Roche, Julien; Louis, John M; Bax, Ad; Best, Robert B

    2015-12-01

    We investigate the pressure-induced structural changes in the mature human immunodeficiency virus type 1 protease dimer, using residual dipolar coupling (RDC) measurements in a weakly oriented solution. (1)DNH RDCs were measured under high-pressure conditions for an inhibitor-free PR and an inhibitor-bound complex, as well as for an inhibitor-free multidrug resistant protease bearing 20 mutations (PR20). While PR20 and the inhibitor-bound PR were little affected by pressure, inhibitor-free PR showed significant differences in the RDCs measured at 600 bar compared with 1 bar. The structural basis of such changes was investigated by MD simulations using the experimental RDC restraints, revealing substantial conformational perturbations, specifically a partial opening of the flaps and the penetration of water molecules into the hydrophobic core of the subunits at high pressure. This study highlights the exquisite sensitivity of RDCs to pressure-induced conformational changes and illustrates how RDCs combined with MD simulations can be used to determine the structural properties of metastable intermediate states on the folding energy landscape. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  11. Double quantum coherence ESR spectroscopy and quantum chemical calculations on a BDPA biradical.

    PubMed

    Haeri, Haleh Hashemi; Spindler, Philipp; Plackmeyer, Jörn; Prisner, Thomas

    2016-10-26

    Carbon-centered radicals are interesting alternatives to otherwise commonly used nitroxide spin labels for dipolar spectroscopy techniques because of their narrow ESR linewidth. Herein, we present a novel BDPA biradical, where two BDPA (α,α,γ,γ-bisdiphenylene-β-phenylallyl) radicals are covalently tethered by a saturated biphenyl acetylene linker. The inter-spin distance between the two spin carrier fragments was measured using double quantum coherence (DQC) ESR methodology. The DQC experiment revealed a mean distance of only 1.8 nm between the two unpaired electron spins. This distance is shorter than the predictions based on a simple modelling of the biradical geometry with the electron spins located at the central carbon atoms. Therefore, DFT (density functional theory) calculations were performed to obtain a picture of the spin delocalization, which may give rise to a modified dipolar interaction tensor, and to find those conformations that correspond best to the experimentally observed inter-spin distance. Quantum chemical calculations showed that the attachment of the biphenyl acetylene linker at the second position of the fluorenyl ring of BDPA did not affect the spin population or geometry of the BDPA radical. Therefore, spin delocalization and geometry optimization of each BDPA moiety could be performed on the monomeric unit alone. The allylic dihedral angle θ 1 between the fluorenyl rings in the monomer subunit was determined to be 30° or 150° using quantum chemical calculations. The proton hyperfine coupling constant calculated from both energy minima was in very good agreement with literature values. Based on the optimal monomer geometries and spin density distributions, the dipolar coupling interaction between both BDPA units could be calculated for several dimer geometries. It was shown that the rotation of the BDPA units around the linker axis (θ 2 ) does not significantly influence the dipolar coupling strength when compared to the allylic dihedral angle θ 1 . A good agreement between the experimental and calculated dipolar coupling was found for θ 1 = 30°.

  12. Phase modulation in dipolar-coupled A 2 spin systems: effect of maximum state mixing in 1H NMR in vivo

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2004-12-01

    Coupling constants of nuclear spin systems can be determined from phase modulation of multiplet resonances. Strongly coupled systems such as citrate in prostatic tissue exhibit a more complex modulation than AX connectivities, because of substantial mixing of quantum states. An extreme limit is the coupling of n isochronous spins (A n system). It is observable only for directly connected spins like the methylene protons of creatine and phosphocreatine which experience residual dipolar coupling in intact muscle tissue in vivo. We will demonstrate that phase modulation of this "pseudo-strong" system is quite simple compared to those of AB systems. Theory predicts that the spin-echo experiment yields conditions as in the case of weak interactions, in particular, the phase modulation depends linearly on the line splitting and the echo time.

  13. Integrating NOE and RDC using sum-of-squares relaxation for protein structure determination.

    PubMed

    Khoo, Y; Singer, A; Cowburn, D

    2017-07-01

    We revisit the problem of protein structure determination from geometrical restraints from NMR, using convex optimization. It is well-known that the NP-hard distance geometry problem of determining atomic positions from pairwise distance restraints can be relaxed into a convex semidefinite program (SDP). However, often the NOE distance restraints are too imprecise and sparse for accurate structure determination. Residual dipolar coupling (RDC) measurements provide additional geometric information on the angles between atom-pair directions and axes of the principal-axis-frame. The optimization problem involving RDC is highly non-convex and requires a good initialization even within the simulated annealing framework. In this paper, we model the protein backbone as an articulated structure composed of rigid units. Determining the rotation of each rigid unit gives the full protein structure. We propose solving the non-convex optimization problems using the sum-of-squares (SOS) hierarchy, a hierarchy of convex relaxations with increasing complexity and approximation power. Unlike classical global optimization approaches, SOS optimization returns a certificate of optimality if the global optimum is found. Based on the SOS method, we proposed two algorithms-RDC-SOS and RDC-NOE-SOS, that have polynomial time complexity in the number of amino-acid residues and run efficiently on a standard desktop. In many instances, the proposed methods exactly recover the solution to the original non-convex optimization problem. To the best of our knowledge this is the first time SOS relaxation is introduced to solve non-convex optimization problems in structural biology. We further introduce a statistical tool, the Cramér-Rao bound (CRB), to provide an information theoretic bound on the highest resolution one can hope to achieve when determining protein structure from noisy measurements using any unbiased estimator. Our simulation results show that when the RDC measurements are corrupted by Gaussian noise of realistic variance, both SOS based algorithms attain the CRB. We successfully apply our method in a divide-and-conquer fashion to determine the structure of ubiquitin from experimental NOE and RDC measurements obtained in two alignment media, achieving more accurate and faster reconstructions compared to the current state of the art.

  14. Excitonic energy transfer in light-harvesting complexes in purple bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye Jun; Sun Kewei; Zhao Yang

    Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has beenmore » largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.« less

  15. Refocused continuous-wave decoupling: a new approach to heteronuclear dipolar decoupling in solid-state NMR spectroscopy.

    PubMed

    Vinther, Joachim M; Nielsen, Anders B; Bjerring, Morten; van Eck, Ernst R H; Kentgens, Arno P M; Khaneja, Navin; Nielsen, Niels Chr

    2012-12-07

    A novel strategy for heteronuclear dipolar decoupling in magic-angle spinning solid-state nuclear magnetic resonance (NMR) spectroscopy is presented, which eliminates residual static high-order terms in the effective Hamiltonian originating from interactions between oscillating dipolar and anisotropic shielding tensors. The method, called refocused continuous-wave (rCW) decoupling, is systematically established by interleaving continuous wave decoupling with appropriately inserted rotor-synchronized high-power π refocusing pulses of alternating phases. The effect of the refocusing pulses in eliminating residual effects from dipolar coupling in heteronuclear spin systems is rationalized by effective Hamiltonian calculations to third order. In some variants the π pulse refocusing is supplemented by insertion of rotor-synchronized π/2 purging pulses to further reduce the residual dipolar coupling effects. Five different rCW decoupling sequences are presented and their performance is compared to state-of-the-art decoupling methods. The rCW decoupling sequences benefit from extreme broadbandedness, tolerance towards rf inhomogeneity, and improved potential for decoupling at relatively low average rf field strengths. In numerical simulations, the rCW schemes clearly reveal superior characteristics relative to the best decoupling schemes presented so far, which we to some extent also are capable of demonstrating experimentally. A major advantage of the rCW decoupling methods is that they are easy to set up and optimize experimentally.

  16. One-Shot Determination of Residual Dipolar Couplings: Application to the Structural Discrimination of Small Molecules Containing Multiple Stereocenters.

    PubMed

    Castañar, Laura; Garcia, Manuela; Hellemann, Erich; Nolis, Pau; Gil, Roberto R; Parella, Teodor

    2016-11-18

    A novel approach for the fast and efficient structural discrimination of molecules containing multiple stereochemical centers is described. A robust J-resolved HSQC experiment affording highly resolved 1 J CH / 1 T CH splittings along the indirect dimension and homodecoupled 1 H signals in the detected dimension is proposed. The experiment enables in situ distinction of both isotropic and anisotropic components of molecules dissolved in compressed PMMA gels, allowing a rapid and direct one-shot determination of accurate residual dipolar coupling constants from a single NMR spectrum.

  17. Conformational distribution of n-hexane in a nematic liquid crystal obtained from nuclear spin dipolar couplings by Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luzar, M.; Rosen, M.E.; Caldarelli, S.

    Motionally averaged proton-proton dipolar couplings measured by nuclear magnetic resonance (NMR) spectroscopy can provide information about the conformations and orientations sampled by partially oriented molecules. In this study, the measured dipolar couplings between pairs of protons on n-hexane dissolved in a nematic liquid crystal solvent are used as constraints in a Monte Carlo sampling of the conformations and orientations of n-hexane. Rotation about each carbon-carbon bond in the molecule is modeled by the complete sinusoidal torsional potential of Ryckaert and Bellemans rather than by the three-state rotational isomeric states (RIS) model that has been used in previous studies. Comparison ofmore » the results of the simulations using the Ryckaert-Bellemans potential and the RIS model indicates little difference in the values of the adjustable parameters and the quality of the fits to the experimental data. The primary difference between the models appears in the calculated conformer probability distributions for n-hexane, highlighting the importance of the exact shape of the torsional potential used to model carbon-carbon bond rotation in organic molecules. 23 refs., 3 figs., 4 tabs.« less

  18. Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.

    PubMed

    Grefe, Sarah E; Leiva, Daan; Mastel, Stefan; Dhuey, Scott D; Cabrini, Stefano; Schuck, P James; Abate, Yohannes

    2013-11-21

    Near-field dipolar plasmon interactions of multiple infrared antenna structures in the strong coupling limit are studied using scattering-type scanning near-field optical microscope (s-SNOM) and theoretical finite-difference time-domain (FDTD) calculations. We monitor in real-space the evolution of plasmon dipolar mode of a stationary antenna structure as multiple resonantly matched dipolar plasmon particles are closely approaching it. Interparticle separation, length and polarization dependent studies show that the cross geometry structure favors strong interparticle charge-charge, dipole-dipole and charge-dipole Coulomb interactions in the nanometer scale gap region, which results in strong field enhancement in cross-bowties and further allows these structures to be used as polarization filters. The nanoscale local field amplitude and phase maps show that due to strong interparticle Coulomb coupling, cross-bowtie structures redistribute and highly enhance the out-of-plane (perpendicular to the plane of the sample) plasmon near-field component at the gap region relative to ordinary bowties.

  19. Molecular dynamics and information on possible sites of interaction of intramyocellular metabolites in vivo from resolved dipolar couplings in localized 1H NMR spectra

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2004-12-01

    Proton NMR resonances of the endogenous metabolites creatine and phosphocreatine ((P)Cr), taurine (Tau), and carnosine (Cs, β-alanyl- L-histidine) were studied with regard to residual dipolar couplings and molecular mobility. We present an analysis of the direct 1H- 1H interaction that provides information on motional reorientation of subgroups in these molecules in vivo. For this purpose, localized 1H NMR experiments were performed on m. gastrocnemius of healthy volunteers using a 1.5-T clinical whole-body MR scanner. We evaluated the observable dipolar coupling strength SD0 ( S = order parameter) of the (P)Cr-methyl triplet and the Tau-methylene doublet by means of the apparent line splitting. These were compared to the dipolar coupling strength of the (P)Cr-methylene doublet. In contrast to the aliphatic protons of (P)Cr and Tau, the aromatic H2 ( δ = 8 ppm) and H4 ( δ = 7 ppm) protons of the imidazole ring of Cs exhibit second-order spectra at 1.5 T. This effect is the consequence of incomplete transition from Zeeman to Paschen-Back regime and allows a determination of SD0 from H2 and H4 of Cs as an alternative to evaluating the multiplet splitting which can be measured directly in high-resolution 1H NMR spectra. Experimental data showed striking differences in the mobility of the metabolites when the dipolar coupling constant D0 (calculated with the internuclear distance known from molecular geometry in the case of complete absence of molecular dynamics and motion) is used for comparison. The aliphatic signals involve very small order parameters S ≈ (1.4 - 3) × 10 -4 indicating rapid reorientation of the corresponding subgroups in these metabolites. In contrast, analysis of the Cs resonances yielded S ≈ (113 - 137) × 10 -4. Thus, the immobilization of the Cs imidazole ring owing to an anisotropic cellular substructure in human m. gastrocnemius is much more effective than for (P)Cr and Tau subgroups. Furthermore, 1H NMR experiments on aqueous model solutions of histidine and N-acetyl- L-aspartate (NAA) enabled the assignment of an additional signal component at δ = 8 ppm of Cs in vivo to the amide group at the peptide bond. The visibility of this proton could result from hydrogen bonding which would agree with the anticipated stronger motional restriction of Cs. Referring to the observation that all dipolar-coupled multiplets resolved in localized in vivo 1H NMR spectra of human m. gastrocnemius collapse simultaneously when the fibre structure is tilted towards the magic angle ( θ ≈ 55°), a common model for molecular confinement in muscle tissue is proposed on the basis of an interaction of the studied metabolites with myocellular membrane phospholipids.

  20. Quantitative Characterization of Configurational Space Sampled by HIV-1 Nucleocapsid Using Solution NMR, X-ray Scattering and Protein Engineering.

    PubMed

    Deshmukh, Lalit; Schwieters, Charles D; Grishaev, Alexander; Clore, G Marius

    2016-06-03

    Nucleic-acid-related events in the HIV-1 replication cycle are mediated by nucleocapsid, a small protein comprising two zinc knuckles connected by a short flexible linker and flanked by disordered termini. Combining experimental NMR residual dipolar couplings, solution X-ray scattering and protein engineering with ensemble simulated annealing, we obtain a quantitative description of the configurational space sampled by the two zinc knuckles, the linker and disordered termini in the absence of nucleic acids. We first compute the conformational ensemble (with an optimal size of three members) of an engineered nucleocapsid construct lacking the N- and C-termini that satisfies the experimental restraints, and then validate this ensemble, as well as characterize the disordered termini, using the experimental data from the full-length nucleocapsid construct. The experimental and computational strategy is generally applicable to multidomain proteins. Differential flexibility within the linker results in asymmetric motion of the zinc knuckles which may explain their functionally distinct roles despite high sequence identity. One of the configurations (populated at a level of ≈40 %) closely resembles that observed in various ligand-bound forms, providing evidence for conformational selection and a mechanistic link between protein dynamics and function. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Atom-Pair Kinetics with Strong Electric-Dipole Interactions.

    PubMed

    Thaicharoen, N; Gonçalves, L F; Raithel, G

    2016-05-27

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.

  2. 15N CSA tensors and 15N-1H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR

    NASA Astrophysics Data System (ADS)

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Fu, Riqiang

    2015-10-01

    In this work, we assess the usefulness of static 15N NMR techniques for the determination of the 15N chemical shift anisotropy (CSA) tensor parameters and 15N-1H dipolar splittings in powder protein samples. By using five single labeled samples of the villin headpiece subdomain protein in a hydrated lyophilized powder state, we determine the backbone 15N CSA tensors at two temperatures, 22 and -35 °C, in order to get a snapshot of the variability across the residues and as a function of temperature. All sites probed belonged to the hydrophobic core and most of them were part of α-helical regions. The values of the anisotropy (which include the effect of the dynamics) varied between 130 and 156 ppm at 22 °C, while the values of the asymmetry were in the 0.32-0.082 range. The Leu-75 and Leu-61 backbone sites exhibited high mobility based on the values of their temperature-dependent anisotropy parameters. Under the assumption that most differences stem from dynamics, we obtained the values of the motional order parameters for the 15N backbone sites. While a simple one-dimensional line shape experiment was used for the determination of the 15N CSA parameters, a more advanced approach based on the ;magic sandwich; SAMMY pulse sequence (Nevzorov and Opella, 2003) was employed for the determination of the 15N-1H dipolar patterns, which yielded estimates of the dipolar couplings. Accordingly, the motional order parameters for the dipolar interaction were obtained. It was found that the order parameters from the CSA and dipolar measurements are highly correlated, validating that the variability between the residues is governed by the differences in dynamics. The values of the parameters obtained in this work can serve as reference values for developing more advanced magic-angle spinning recoupling techniques for multiple labeled samples.

  3. (1)H-(13)C Hetero-nuclear dipole-dipole couplings of methyl groups in stationary and magic angle spinning solid-state NMR experiments of peptides and proteins.

    PubMed

    Wu, Chin H; Das, Bibhuti B; Opella, Stanley J

    2010-02-01

    (13)C NMR of isotopically labeled methyl groups has the potential to combine spectroscopic simplicity with ease of labeling for protein NMR studies. However, in most high resolution separated local field experiments, such as polarization inversion spin exchange at the magic angle (PISEMA), that are used to measure (1)H-(13)C hetero-nuclear dipolar couplings, the four-spin system of the methyl group presents complications. In this study, the properties of the (1)H-(13)C hetero-nuclear dipolar interactions of (13)C-labeled methyl groups are revealed through solid-state NMR experiments on a range of samples, including single crystals, stationary powders, and magic angle spinning of powders, of (13)C(3) labeled alanine alone and incorporated into a protein. The spectral simplifications resulting from proton detected local field (PDLF) experiments are shown to enhance resolution and simplify the interpretation of results on single crystals, magnetically aligned samples, and powders. The complementarity of stationary sample and magic angle spinning (MAS) measurements of dipolar couplings is demonstrated by applying polarization inversion spin exchange at the magic angle and magic angle spinning (PISEMAMAS) to unoriented samples. Copyright 2009 Elsevier Inc. All rights reserved.

  4. Solid-state NMR detection of 14N-13C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.

    PubMed

    Middleton, David A

    2011-02-01

    Solid-state nuclear magnetic resonance (SSNMR) is a powerful technique for the structural analysis of amyloid fibrils. With suitable isotope labelling patterns, SSNMR can provide constraints on the secondary structure, alignment and registration of β-strands within amyloid fibrils and identify the tertiary and quaternary contacts defining the packing of the β-sheet layers. Detection of (14)N-(13)C dipolar couplings may provide potentially useful additional structural constraints on β-sheet packing within amyloid fibrils but has not until now been exploited for this purpose. Here a frequency-selective, transfer of population in double resonance SSNMR experiment is used to detect a weak (14)N-(13)C dipolar coupling in amyloid-like fibrils of the peptide H(2)N-SNNFGAILSS-COOH, which was uniformly (13)C and (15)N labelled across the four C-terminal amino acids. The (14)N-(13)C interatomic distance between leucine and asparagine side groups is constrained between 2.4 and 3.8 Å, which allows current structural models of the β-spine arrangement within the fibrils to be refined. This procedure could be useful for the general structural analysis of other proteins in condensed phases and environments, such as biological membranes. Copyright © 2011 John Wiley & Sons, Ltd.

  5. An analysis of nurses' post-incident manual restraint reports.

    PubMed

    Ryan, C J; Bowers, L

    2006-10-01

    Manual restraint techniques are associated with the management of violence in psychiatric settings. Restraint effectiveness and acceptability are under scrutiny, yet the nature and frequency of who or what were involved in restraint episodes have not previously been fully described or understood. The aim of this study was to describe the nature and frequency of manual restraint-related events and their components. This study was carried out using content analyses of nurses' post-incident reports from a psychiatric unit situated within a general hospital, and from its associated medium-secure unit. Requests for restraint occurred at the rate of about once per day, and the majority related to patients' ill-directed frustration, resistance to containment and their desire to leave the ward. Only half of responses to conflicts resulted in restraint implementation. The majority of restraint activities occurred during the afternoon and night. Male patients and detained patients were more frequent participants in restraint interventions. To a lesser extent, police, ambulance, fire services, hospital security, visitors and ex-patients were also involved in restraint episodes. Injuries were rare. In conclusion, training in restraint skills, clinical audit of adverse incidents, and research into psychiatric aggression all need to take into account the association of restraint with the enforcement of detention and treatment of acutely ill patients. The coupling of restraint with medication requires examination of its safety and efficacy. Interagency training may enable the essential services involved to coordinate restraint activities more effectively.

  6. The physical mechanism of "inhomogeneous" magnetization transfer MRI

    NASA Astrophysics Data System (ADS)

    Manning, Alan P.; Chang, Kimberley L.; MacKay, Alex L.; Michal, Carl A.

    2017-01-01

    Inhomogeneous MT (ihMT) is a new magnetic resonance imaging technique that shows promise for myelin selectivity. Materials with a high proportion of lipids, such as white matter tissue, show a reduced intensity in magnetic resonance images acquired with selective prepulses at positive and negative offsets simultaneously compared to images with a single positive or negative offset prepulse of the same power. This effect was initially explained on the basis of hole-burning in inhomogeneously broadened lines of the lipid proton spin system. Our results contradict this explanation. ihMT in lipids can be understood with a simple spin-1 model of a coupled methylene proton pair. More generally, Provotorov theory can be used to consider the evolution of dipolar order in the non-aqueous spins during the prepulses. We show that the flip-angle dependence of the proton spectrum of a model lipid system (Prolipid-161) following dipolar order generation is in quantitative agreement with the model. In addition, we directly observe dipolar order and ihMT signals in the non-aqueous components of Prolipid-161 and homogeneously-broadened systems (hair, wood, and tendon) following ihMT prepulses. The observation of ihMT signals in tendon suggests that the technique may not be as specific to myelin as previously thought. Our work shows that ihMT occurs because of dipolar couplings alone, not from a specific type of spectral line broadening as its name suggests.

  7. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems.

    PubMed

    Chang, Zhiwei; Halle, Bertil

    2016-02-28

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  8. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2016-02-01

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  9. Broadband cross-polarization-based heteronuclear dipolar recoupling for structural and dynamic NMR studies of rigid and soft solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharkov, B. B.; Chizhik, V. I.; Dvinskikh, S. V., E-mail: sergeid@kth.se

    2016-01-21

    Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental datamore » obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees.« less

  10. A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Equbal, Asif; Bjerring, Morten; Nielsen, Niels Chr., E-mail: madhu@tifr.res.in, E-mail: ncn@inano.au.dk

    2015-05-14

    A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like two-pulse phase-modulation (TPPM), X-inverse-X (XiX), and finite pulse refocused continuous wave (rCW{sup A}) are basically specific solutions of a more generalized decoupling scheme which incorporates the concept of time-modulation along with phase-modulation. A plethora of other good decoupling conditions apart from the standard, TPPM, XiX, and rCW{sup A} decoupling conditions are available from the unified decoupling approach. The importance of combined time- and phase-modulation in order to achieve the best decoupling conditions ismore » delineated. The consequences of different indirect dipolar interactions arising from cross terms comprising of heteronuclear and homonuclear dipolar coupling terms and also those between heteronuclear dipolar coupling and chemical-shift anisotropy terms are presented in order to unfold the effects of anisotropic interactions under different decoupling conditions. Extensive numerical simulation results are corroborated with experiments on standard amino acids.« less

  11. Overflow of a dipolar exciton trap at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Dietl, Sebastian; Kowalik-Seidl, Katarzyna; Hammer, Lukas; Schuh, Dieter; Wegscheider, Werner; Holleitner, Alexander; Wurstbauer, Ursula

    We study the photoluminescence of trapped dipolar excitons (IX) in coupled double GaAs quantum wells at low temperatures and high magnetic fields. A voltage-tunable electrode geometry controls the strength of the quantum confined Stark effect and defines the lateral trapping potential. Furthermore, it enhances the IX lifetime, enabling them to cool down to lattice temperature. We show that a magnetic field in Faraday configuration effectively prevents the escape of unbound photogenerated charge carriers from the trap area, thus increasing the density of dipolar excitons. For large magnetic fields, we observe an overflow of the IX trap and an effectively suppressed quantum confined Stark effect. We acknowledge financial support by the German Excellence Initiative via the Nanosystems Initiative Munich (NIM).

  12. Efficient creation of dipolar coupled nitrogen-vacancy spin qubits in diamond

    NASA Astrophysics Data System (ADS)

    Jakobi, I.; Momenzadeh, S. A.; Fávaro de Oliveira, F.; Michl, J.; Ziem, F.; Schreck, M.; Neumann, P.; Denisenko, A.; Wrachtrup, J.

    2016-09-01

    Coherently coupled pairs or multimers of nitrogen-vacancy defect electron spins in diamond have many promising applications especially in quantum information processing (QIP) but also in nanoscale sensing applications. Scalable registers of spin qubits are essential to the progress of QIP. Ion implantation is the only known technique able to produce defect pairs close enough to allow spin coupling via dipolar interaction. Although several competing methods have been proposed to increase the resulting resolution of ion implantation, the reliable creation of working registers is still to be demonstrated. The current limitation are residual radiation-induced defects, resulting in degraded qubit performance as trade-off for positioning accuracy. Here we present an optimized estimation of nanomask implantation parameters that are most likely to produce interacting qubits under standard conditions. We apply our findings to a well-established technique, namely masks written in electron-beam lithography, to create coupled defect pairs with a reasonable probability. Furthermore, we investigate the scaling behavior and necessary improvements to efficiently engineer interacting spin architectures.

  13. Quasi-one-dimensional spin-orbit- and Rabi-coupled bright dipolar Bose-Einstein-condensate solitons

    NASA Astrophysics Data System (ADS)

    Chiquillo, Emerson

    2018-01-01

    We study the formation of stable bright solitons in quasi-one-dimensional (quasi-1D) spin-orbit- (SO-) and Rabi-coupled two pseudospinor dipolar Bose-Einstein condensates (BECs) of 164Dy atoms in the presence of repulsive contact interactions. As a result of the combined attraction-repulsion effect of both interactions and the addition of SO and Rabi couplings, two kinds of ground states in the form of self-trapped bright solitons can be formed, a plane-wave soliton (PWS) and a stripe soliton (SS). These quasi-1D solitons cannot exist in a condensate with purely repulsive contact interactions and SO and Rabi couplings (no dipole). Neglecting the repulsive contact interactions, our findings also show the possibility of creating PWSs and SSs. When the strengths of the two interactions are close to each other, the SS develops an oscillatory instability indicating a possibility of a breather solution, eventually leading to its destruction. We also obtain a phase diagram showing regions where the solution is a PWS or SS.

  14. Polaron spin echo envelope modulations in an organic semiconducting polymer

    DOE PAGES

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    Here, we present a theoretical analysis of the electron spin echo envelope modulation (ESEEM) spectra of polarons in semiconducting π -conjugated polymers. We show that the contact hyperfine coupling and the dipolar interaction between the polaron and the proton spins give rise to different features in the ESEEM spectra. Our theory enables direct selective probe of different groups of nuclear spins, which affect the polaron spin dynamics. Namely, we demonstrate how the signal from the distant protons (coupled to the polaron spin via dipolar interactions) can be distinguished from the signal coming from the protons residing on the polaron sitemore » (coupled to the polaron spin via contact hyperfine interaction). We propose a method for directly probing the contact hyperfine interaction, that would enable detailed study of the polaron orbital state and its immediate environment. Lastly, we also analyze the decay of the spin echo modulation, and its connection to the polaron transport.« less

  15. Dipolar collisions of ultracold 23Na87Rb molecules.

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Ye, Xin; He, Junyu; Quéméner, Goulven; González-Martínez, Maykel; Dulieu, Olivier; Wang, Dajun

    2017-04-01

    Although ultracold polar molecules have long been proposed as a primary candidate for investigating dipolar many body physics, many of their basic properties, like their collisions in external electric fields, are still largely unknown. In fact, despite the successful production of several new ultracold molecular species in the last two years, so far the only available dipolar collision data is still from JILA's fermionic 40K87Rb experiment in 2010. In this talk, we will describe our investigation on dipolar collisions of ultracold bosonic and chemically stable 23Na87Rb molecules which possess a large permanent electric dipole moment. With a moderate electric field, an effective dipole moment large enough to strongly couple higher partial waves into the collisions can be achieved. We will report the influence of this effect on the molecular collisions observed in our experiment. Our theoretical model for understanding these observations will also be presented. This work is supported by the Hong Kong RGC CUHK404712 and the ANR/RGC Joint Research Scheme ACUHK403/13.

  16. Dynamics of column stability with partial end restraints

    NASA Technical Reports Server (NTRS)

    Gregory, Peyton B.

    1990-01-01

    The dynamic behavior of columns with partial end restraints and loads consisting of a dead load and a pulsating load are investigated. The differential equation is solved using a lumped impulse recurrence formula relative to time coupled with a finite difference discretization along the member length. A computer program is written from which the first critical frequencies are found as a function of end stiffness. The case of a pinned ended column compares very well with the exact solution. Also, the natural frequency and buckling load formulas are derived for equal and unequal end restraints.

  17. Effect of phase symmetry on the NMR spectrum of acetonitrile oriented in a uniaxial-biaxial-uniaxial phase

    NASA Astrophysics Data System (ADS)

    Deepak, H. S. Vinay; Yelamaggad, C. V.; Khetrapal, C. L.; Ramanathan, K. V.

    2016-09-01

    We report here the measurement of the Csbnd H and the Hsbnd H dipolar couplings of the methyl group of acetonitrile oriented in the biaxial liquid crystal potassium laurate/1-decanol/water system. These parameters show large variations when measured as a function of temperature. The variations follow the symmetry of the phase as the liquid crystal goes through the sequence of uniaxial - biaxial - uniaxial phases and show a close correspondence to the phase changes that occur in the liquid crystalline solvent coinciding with the onset of biaxiality. The Hsbnd Csbnd H bond angle calculated after incorporating vibrational corrections to the dipolar couplings is discussed in terms of contributions in the case of the biaxial liquid crystal arising from vibration-rotation interaction effects.

  18. Induced dyadic stress and food intake: Examination of the moderating roles of body mass index and restraint.

    PubMed

    Côté, Marilou; Gagnon-Girouard, Marie-Pierre; Provencher, Véronique; Bégin, Catherine

    2016-12-01

    Restrained eaters and overweight and obese people are prone to increase their food intake during stressful situations. This study examines the impact of a stressful couple discussion on food intake in both spouses, while simultaneously taking into account the effect of BMI and restraint on this association. For 15min, 80 heterosexual couples discussed an aspect that they wanted their partner to change followed by an individual bogus taste test for the purpose of measuring his or her stress-induced food intake. Prior to and after the discussion, subjective mood state was assessed, as well as appetite perceptions, and the mood change before and after the discussion was calculated. Multiple regression analyses with a three-way interaction between mood change, BMI, and restraint were used to predict food intake for both men and women, while controlling for appetite perceptions. Only restrained women with a high BMI ate more when their mood worsened. For men, only appetite perceptions significantly predicted food intake. These results suggest that an induced negative mood in the form of a stressful couple discussion impacts food intake differently for men and women, and that particular attention should be given to the concomitant effect of both restraint and BMI when studying stress-induced eating among women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. DNA Nanotubes for NMR Structure Determination of Membrane Proteins

    PubMed Central

    Bellot, Gaëtan; McClintock, Mark A.; Chou, James J; Shih, William M.

    2013-01-01

    Structure determination of integral membrane proteins by solution NMR represents one of the most important challenges of structural biology. A Residual-Dipolar-Coupling-based refinement approach can be used to solve the structure of membrane proteins up to 40 kDa in size, however, a weak-alignment medium that is detergent-resistant is required. Previously, availability of media suitable for weak alignment of membrane proteins was severely limited. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400nm-long six-helix bundles each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, towards collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes via counter ions and small DNA binding molecules. This detergent-resistant liquid-crystal media offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility, and structural programmability. Production of sufficient nanotubes for 4–5 NMR experiments can be completed in one week by a single individual. PMID:23518667

  20. DNA nanotubes for NMR structure determination of membrane proteins.

    PubMed

    Bellot, Gaëtan; McClintock, Mark A; Chou, James J; Shih, William M

    2013-04-01

    Finding a way to determine the structures of integral membrane proteins using solution nuclear magnetic resonance (NMR) spectroscopy has proved to be challenging. A residual-dipolar-coupling-based refinement approach can be used to resolve the structure of membrane proteins up to 40 kDa in size, but to do this you need a weak-alignment medium that is detergent-resistant and it has thus far been difficult to obtain such a medium suitable for weak alignment of membrane proteins. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400-nm-long six-helix bundles, each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, toward collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes using counter ions and small DNA-binding molecules. This detergent-resistant liquid-crystal medium offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility and structural programmability. Production of sufficient nanotubes for four or five NMR experiments can be completed in 1 week by a single individual.

  1. Effective Mass Calculations for Two-dimensional Gas of Dipolar Fermions

    NASA Astrophysics Data System (ADS)

    Seydi, I.; Abedinpour, S. H.; Tanatar, B.

    2017-06-01

    We consider a two-dimensional system of ultracold dipolar fermions with dipole moments aligned in the perpendicular direction. We use the static structure factor information from Fermi-Hypernetted-Chain calculations to obtain the effective many-body dipole-dipole interaction and calculate the many-body effective mass of the system within the G0W approximation to the self-energy. A large cancellation between different contributions to the self-energy results in a weak dependence of the effective mass on the interaction strength over a large range of coupling constants.

  2. Dipolar response of hydrated proteins

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.

    2012-02-01

    The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins in solution. We calculate the effective dielectric constant representing the average dipole moment induced at the protein by a uniform external field. The dielectric constant shows a remarkable variation among the proteins, changing from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility, that is a dia-electric dipolar response and negative dielectrophoresis. It means that ubiquitin, carrying an average dipole of ≃240 D, is expected to repel from the region of a stronger electric field. This outcome is the result of a negative cross-correlation between the protein and water dipoles, compensating for the positive variance of the intrinsic protein dipole in the overall dipolar susceptibility. In contrast to the neutral ubiquitin, charged proteins studied here show para-electric dipolar response and positive dielectrophoresis. The study suggests that the dipolar response of proteins in solution is strongly affected by the coupling of the protein surface charge to the hydration water. The protein-water dipolar cross-correlations are long-ranged, extending ˜2 nm from the protein surface into the bulk. A similar correlation length of about 1 nm is seen for the electrostatic potential produced by the hydration water inside the protein. The analysis of numerical simulations suggests that the polarization of the protein-water interface is highly heterogeneous and does not follow the standard dielectric results for cavities carved in dielectrics. The polarization of the water shell gains in importance, relative to the intrinsic protein dipole, at high frequencies, above the protein Debye peak. The induced interfacial dipole can be either parallel or antiparallel to the protein dipole, depending on the distribution of the protein surface charge. As a result, the high-frequency absorption of the protein solution can be either higher or lower than the absorption of water. Both scenarios have been experimentally observed in the THz window of radiation.

  3. Dipolar response of hydrated proteins.

    PubMed

    Matyushov, Dmitry V

    2012-02-28

    The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins in solution. We calculate the effective dielectric constant representing the average dipole moment induced at the protein by a uniform external field. The dielectric constant shows a remarkable variation among the proteins, changing from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility, that is a dia-electric dipolar response and negative dielectrophoresis. It means that ubiquitin, carrying an average dipole of ≃240 D, is expected to repel from the region of a stronger electric field. This outcome is the result of a negative cross-correlation between the protein and water dipoles, compensating for the positive variance of the intrinsic protein dipole in the overall dipolar susceptibility. In contrast to the neutral ubiquitin, charged proteins studied here show para-electric dipolar response and positive dielectrophoresis. The study suggests that the dipolar response of proteins in solution is strongly affected by the coupling of the protein surface charge to the hydration water. The protein-water dipolar cross-correlations are long-ranged, extending ~2 nm from the protein surface into the bulk. A similar correlation length of about 1 nm is seen for the electrostatic potential produced by the hydration water inside the protein. The analysis of numerical simulations suggests that the polarization of the protein-water interface is highly heterogeneous and does not follow the standard dielectric results for cavities carved in dielectrics. The polarization of the water shell gains in importance, relative to the intrinsic protein dipole, at high frequencies, above the protein Debye peak. The induced interfacial dipole can be either parallel or antiparallel to the protein dipole, depending on the distribution of the protein surface charge. As a result, the high-frequency absorption of the protein solution can be either higher or lower than the absorption of water. Both scenarios have been experimentally observed in the THz window of radiation.

  4. Proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu; Nishiyama, Yusuke

    2015-10-28

    A proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of {sup 13}C-{sup 1}H connectivities, and proximities of {sup 13}C-{sup 1}H and {sup 1}H-{sup 1}H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including {sup 1}H-{sup 1}H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protonsmore » and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) {sup 1}H/{sup 1}H and 2D {sup 13}C/{sup 1}H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of {sup 1}H-{sup 1}H proximity and {sup 13}C-{sup 1}H connectivity. In addition, the 2D (F1/F2) {sup 1}H/{sup 13}C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of {sup 1}H-{sup 1}H dipolar couplings, enables the measurement of proximities between {sup 13}C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of {sup 1}H-{sup 1}H-{sup 13}C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H{sub 2}O ⋅ HCl demonstrate the efficiency of the 3D experiment.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roldan, Omar; Quartin, Miguel; Notari, Alessio, E-mail: oaroldan@if.ufrj.br, E-mail: notari@ffn.ub.es, E-mail: mquartin@if.ufrj.br

    The aberration and Doppler coupling effects of the Cosmic Microwave Background (CMB) were recently measured by the Planck satellite. The most straightforward interpretation leads to a direct detection of our peculiar velocity β, consistent with the measurement of the well-known dipole. In this paper we discuss the assumptions behind such interpretation. We show that Doppler-like couplings appear from two effects: our peculiar velocity and a second order large-scale effect due to the dipolar part of the gravitational potential. We find that the two effects are exactly degenerate but only if we assume second-order initial conditions from single-field Inflation. Thus, detectingmore » a discrepancy in the value of β from the dipole and the Doppler couplings implies the presence of a primordial non-Gaussianity. We also show that aberration-like signals likewise arise from two independent effects: our peculiar velocity and lensing due to a first order large-scale dipolar gravitational potential, independently on Gaussianity of the initial conditions. In general such effects are not degenerate and so a discrepancy between the measured β from the dipole and aberration could be accounted for by a dipolar gravitational potential. Only through a fine-tuning of the radial profile of the potential it is possible to have a complete degeneracy with a boost effect. Finally we discuss that we also expect other signatures due to integrated second order terms, which may be further used to disentangle this scenario from a simple boost.« less

  6. Temperature- and pressure-dependent infrared spectroscopy of 1-butyl-3-methylimidazolium trifluoromethanesulfonate: A dipolar coupling theory analysis

    NASA Astrophysics Data System (ADS)

    Burba, Christopher M.; Chang, Hai-Chou

    2018-03-01

    Continued growth and development of ionic liquids requires a thorough understanding of how cation and anion molecular structure defines the liquid structure of the materials as well as the various properties that make them technologically useful. Infrared spectroscopy is frequently used to assess molecular-level interactions among the cations and anions of ionic liquids because the intramolecular vibrational modes of the ions are sensitive to the local potential energy environments in which they reside. Thus, different interaction modes among the ions may lead to different spectroscopic signatures in the vibrational spectra. Charge organization present in ionic liquids, such as 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4mim]CF3SO3), is frequently modeled in terms of a quasicrystalline structure. Highly structured quasilattices enable the dynamic coupling of vibrationally-induced dipole moments to produce optical dispersion and transverse optical-longitudinal optical (TO-LO) splitting of vibrational modes of the ionic liquid. According to dipolar coupling theory, the degree of TO-LO splitting is predicted to have a linear dependence on the number density of the ionic liquid. Both temperature and pressure will affect the number density of the ionic liquid and, therefore, the amount of TO-LO splitting for this mode. Therefore, we test these relationships through temperature- and pressure-dependent FT-IR spectroscopic studies of [C4mim]CF3SO3, focusing on the totally symmetric Ssbnd O stretching mode for the anion, νs(SO3). Increased temperature decreases the amount of TO-LO splitting for νs(SO3), whereas elevated pressure is found to increase the amount of band splitting. In both cases, the experimental observations follow the general predictions of dipolar coupling theory, thereby supporting the quasilattice model for this ionic liquid.

  7. HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.

    PubMed

    Cornilescu, Gabriel; Bahrami, Arash; Tonelli, Marco; Markley, John L; Eghbalnia, Hamid R

    2007-08-01

    We describe a novel method for the robust, rapid, and reliable determination of J couplings in multi-dimensional NMR coupling data, including small couplings from larger proteins. The method, "High-resolution Iterative Frequency Identification of Couplings" (HIFI-C) is an extension of the adaptive and intelligent data collection approach introduced earlier in HIFI-NMR. HIFI-C collects one or more optimally tilted two-dimensional (2D) planes of a 3D experiment, identifies peaks, and determines couplings with high resolution and precision. The HIFI-C approach, demonstrated here for the 3D quantitative J method, offers vital features that advance the goal of rapid and robust collection of NMR coupling data. (1) Tilted plane residual dipolar couplings (RDC) data are collected adaptively in order to offer an intelligent trade off between data collection time and accuracy. (2) Data from independent planes can provide a statistical measure of reliability for each measured coupling. (3) Fast data collection enables measurements in cases where sample stability is a limiting factor (for example in the presence of an orienting medium required for residual dipolar coupling measurements). (4) For samples that are stable, or in experiments involving relatively stronger couplings, robust data collection enables more reliable determinations of couplings in shorter time, particularly for larger biomolecules. As a proof of principle, we have applied the HIFI-C approach to the 3D quantitative J experiment to determine N-C' RDC values for three proteins ranging from 56 to 159 residues (including a homodimer with 111 residues in each subunit). A number of factors influence the robustness and speed of data collection. These factors include the size of the protein, the experimental set up, and the coupling being measured, among others. To exhibit a lower bound on robustness and the potential for time saving, the measurement of dipolar couplings for the N-C' vector represents a realistic "worst case analysis". These couplings are among the smallest currently measured, and their determination in both isotropic and anisotropic media demands the highest measurement precision. The new approach yielded excellent quantitative agreement with values determined independently by the conventional 3D quantitative J NMR method (in cases where sample stability in oriented media permitted these measurements) but with a factor of 2-5 in time savings. The statistical measure of reliability, measuring the quality of each RDC value, offers valuable adjunct information even in cases where modest time savings may be realized.

  8. Monte Carlo simulations of kagome lattices with magnetic dipolar interactions

    NASA Astrophysics Data System (ADS)

    Plumer, Martin; Holden, Mark; Way, Andrew; Saika-Voivod, Ivan; Southern, Byron

    Monte Carlo simulations of classical spins on the two-dimensional kagome lattice with only dipolar interactions are presented. In addition to revealing the sixfold-degenerate ground state, the nature of the finite-temperature phase transition to long-range magnetic order is discussed. Low-temperature states consisting of mixtures of degenerate ground-state configurations separated by domain walls can be explained as a result of competing exchange-like and shape-anisotropy-like terms in the dipolar coupling. Fluctuations between pairs of degenerate spin configurations are found to persist well into the ordered state as the temperature is lowered until locking in to a low-energy state. Results suggest that the system undergoes a continuous phase transition at T ~ 0 . 43 in agreement with previous MC simulations but the nature of the ordering process differs. Preliminary results which extend this analysis to the 3D fcc ABC-stacked kagome systems will be presented.

  9. Relaxation spectra and dipolar correlations for flexible polymers with bulky side groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz-Calleja, R.; Riande, E.; Roman, J.S.

    1992-08-06

    This paper discusses how relaxation spectra and dipolar correlations for flexible polymers with bulky side groups (PBPA chains) suggest that intermolecular correlations are not very important in this polymer and that {alpha}, {beta}, and {gamma} absorptions exist. TSDC techniques reveal that the {gamma} peak has a smaller activation energy than the {beta}, and the coupling scheme is used to interpret the complex dielectric and mechanical {alpha} relaxations. The anomalous temperature dependence of the glass-rubber relaxation is discussed in terms of the bulkiness of the side group. 23 refs., 8 figs., 3 tabs.

  10. Application of the maximum entropy principle to determine ensembles of intrinsically disordered proteins from residual dipolar couplings.

    PubMed

    Sanchez-Martinez, M; Crehuet, R

    2014-12-21

    We present a method based on the maximum entropy principle that can re-weight an ensemble of protein structures based on data from residual dipolar couplings (RDCs). The RDCs of intrinsically disordered proteins (IDPs) provide information on the secondary structure elements present in an ensemble; however even two sets of RDCs are not enough to fully determine the distribution of conformations, and the force field used to generate the structures has a pervasive influence on the refined ensemble. Two physics-based coarse-grained force fields, Profasi and Campari, are able to predict the secondary structure elements present in an IDP, but even after including the RDC data, the re-weighted ensembles differ between both force fields. Thus the spread of IDP ensembles highlights the need for better force fields. We distribute our algorithm in an open-source Python code.

  11. Modeling helical proteins using residual dipolar couplings, sparse long-range distance constraints and a simple residue-based force field

    PubMed Central

    Eggimann, Becky L.; Vostrikov, Vitaly V.; Veglia, Gianluigi; Siepmann, J. Ilja

    2013-01-01

    We present a fast and simple protocol to obtain moderate-resolution backbone structures of helical proteins. This approach utilizes a combination of sparse backbone NMR data (residual dipolar couplings and paramagnetic relaxation enhancements) or EPR data with a residue-based force field and Monte Carlo/simulated annealing protocol to explore the folding energy landscape of helical proteins. By using only backbone NMR data, which are relatively easy to collect and analyze, and strategically placed spin relaxation probes, we show that it is possible to obtain protein structures with correct helical topology and backbone RMS deviations well below 4 Å. This approach offers promising alternatives for the structural determination of proteins in which nuclear Overha-user effect data are difficult or impossible to assign and produces initial models that will speed up the high-resolution structure determination by NMR spectroscopy. PMID:24639619

  12. Sine-squared shifted pulses for recoupling interactions in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Jain, Mukul G.; Rajalakshmi, G.; Equbal, Asif; Mote, Kaustubh R.; Agarwal, Vipin; Madhu, P. K.

    2017-06-01

    Rotational-Echo DOuble-Resonance (REDOR) is a versatile experiment for measuring internuclear distance between two heteronuclear spins in solid-state NMR. At slow to intermediate magic-angle spinning (MAS) frequencies, the measurement of distances between strongly coupled spins is challenging due to rapid dephasing of magnetisation. This problem can be remedied by employing the pulse-shifted version of REDOR known as Shifted-REDOR (S-REDOR) that scales down the recoupled dipolar coupling. In this study, we propose a new variant of the REDOR sequence where the positions of the π pulses are determined by a sine-squared function. This new variant has scaling properties similar to S-REDOR. We use theory, numerical simulations, and experiments to compare the dipolar recoupling efficiencies and the experimental robustness of the three REDOR schemes. The proposed variant has advantages in terms of radiofrequency field requirements at fast MAS frequencies.

  13. Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings.

    PubMed

    Jensen, Malene Ringkjøbing; Markwick, Phineus R L; Meier, Sebastian; Griesinger, Christian; Zweckstetter, Markus; Grzesiek, Stephan; Bernadó, Pau; Blackledge, Martin

    2009-09-09

    Intrinsically disordered proteins (IDPs) inhabit a conformational landscape that is too complex to be described by classical structural biology, posing an entirely new set of questions concerning the molecular understanding of functional biology. The characterization of the conformational properties of IDPs, and the elucidation of the role they play in molecular function, is therefore one of the major challenges remaining for modern structural biology. NMR is the technique of choice for studying this class of proteins, providing information about structure, flexibility, and interactions at atomic resolution even in completely disordered states. In particular, residual dipolar couplings (RDCs) have been shown to be uniquely sensitive and powerful tools for characterizing local and long-range structural behavior in disordered proteins. In this review we describe recent applications of RDCs to quantitatively describe the level of local structure and transient long-range order in IDPs involved in viral replication, neurodegenerative disease, and cancer.

  14. Using the phase shift to asymptotically characterize the dipolar mixed modes in post-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Christensen-Dalsgaard, J.; Cunha, M.

    2018-03-01

    Mixed modes have been extensively observed in post-main-sequence stars by the Kepler and CoRoT space missions. The mixture of the p and g modes can be measured by the dimensionless coefficient q, the so-called coupling strength factor. In this paper, we discuss the utility of the phase shifts θ from the eigenvalue condition for mixed modes as a tool to characterize dipolar mixed modes from the theoretical as well as the practical point of view. Unlike the coupling strength, whose variation in a given star is very small over the relevant frequency range, the phase shifts vary significantly for different modes. The analysis in terms of θ can also provide a better understanding of the pressure and gravity radial order for a given mixed mode. Observed frequencies of the Kepler red-giant star KIC 3744043 are used to test the method. The results are very promising.

  15. Studies of an Isolated 15N- 15N Spin Pair. Off-Angle Fast-Sample-Spinning NMR and Self-Consistent-Field Calculations for Diazo Systems

    NASA Astrophysics Data System (ADS)

    Challoner, Robin; Harris, Robin K.; Tossell, John A.

    1997-05-01

    An off-magic-angle spinning study of the nonassociated molecular solid, doubly15N-labeled 5-methyl-2-diazobenzenesulphonic acid hydrochloride (I) is reported. The validity of the off-magic-angle spinning approach under fast-spinning conditions is verified by average Hamiltonian theory. Ab initio SCF calculations were performed on the simpler molecule, C6H5N2+, to provide the shielding parameters, the dipolar coupling between the two nitrogen nuclei, and the electric field gradient existing at both the α-nitrogen and β-nitrogen sites. The calculated values are in good agreement with the shielding and effective dipolar coupling data elucidated in the present investigation, and with a previous study of the two singly15N-labeled isotopomers in which information concerning the electric field gradient at the α and β sites was deduced.

  16. Obtaining molecular and structural information from 13C-14N systems with 13C FIREMAT experiments.

    PubMed

    Strohmeier, Mark; Alderman, D W; Grant, David M

    2002-04-01

    The effect of dipolar coupling to 14N on 13C FIREMAT (five pi replicated magic angle turning) experiments is investigated. A method is developed for fitting the 13C FIREMAT FID employing the full theory to extract the 13C-14N dipolar and 13C chemical shift tensor information. The analysis requires prior knowledge of the electric field gradient (EFG) tensor at the 14N nucleus. In order to validate the method the analysis is done for the amino acids alpha-glycine, gamma-glycine, l-alanine, l-asparagine, and l-histidine on FIREMAT FIDs recorded at 13C frequencies of 50 and 100 MHz. The dipolar and chemical shift data obtained with this analysis are in very good agreement with the previous single-crystal 13C NMR results and neutron diffraction data on alpha-glycine, l-alanine, and l-asparagine. The values for gamma-glycine and l-histidine obtained with this new method are reported for the first time. The uncertainties in the EFG tensor on the resultant 13C chemical shift and dipolar tensor values are assessed. (c) 2002 Elsevier Science (USA).

  17. A practical strategy for the accurate measurement of residual dipolar couplings in strongly aligned small molecules

    NASA Astrophysics Data System (ADS)

    Liu, Yizhou; Cohen, Ryan D.; Martin, Gary E.; Williamson, R. Thomas

    2018-06-01

    Accurate measurement of residual dipolar couplings (RDCs) requires an appropriate degree of alignment in order to optimize data quality. An overly weak alignment yields very small anisotropic data that are susceptible to measurement errors, whereas an overly strong alignment introduces extensive anisotropic effects that severely degrade spectral quality. The ideal alignment amplitude also depends on the specific pulse sequence used for the coupling measurement. In this work, we introduce a practical strategy for the accurate measurement of one-bond 13C-1H RDCs up to a range of ca. -300 to +300 Hz, corresponding to an alignment that is an order of magnitude stronger than typically employed for small molecule structural elucidation. This strong alignment was generated in the mesophase of the commercially available poly-γ-(benzyl-L-glutamate) polymer. The total coupling was measured by the simple and well-studied heteronuclear two-dimensional J-resolved experiment, which performs well in the presence of strong anisotropic effects. In order to unequivocally determine the sign of the total coupling and resolve ambiguities in assigning total couplings in the CH2 group, coupling measurements were conducted at an isotropic condition plus two anisotropic conditions of different alignment amplitudes. Most RDCs could be readily extracted from these measurements whereas more complicated spectral effects resulting from strong homonuclear coupling could be interpreted either theoretically or by simulation. Importantly, measurement of these very large RDCs actually offers significantly improved data quality and utility for the structure determination of small organic molecules.

  18. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1H/1H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  19. Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies.

    PubMed

    Ahmadivand, Arash; Sinha, Raju; Gerislioglu, Burak; Karabiyik, Mustafa; Pala, Nezih; Shur, Michael

    2016-11-15

    We experimentally and numerically analyze the charge transfer THz plasmons using an asymmetric plasmonic assembly of metallic V-shaped blocks. The asymmetric design of the blocks allows for the excitation of classical dipolar and multipolar modes due to the capacitive coupling. Introducing a conductive microdisk between the blocks, we facilitated the excitation of the charge transfer plasmons and studied their characteristics along with the capacitive coupling by varying the size of the disk.

  20. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers.

    PubMed

    Mote, Kaustubh R; Gopinath, T; Traaseth, Nathaniel J; Kitchen, Jason; Gor'kov, Peter L; Brey, William W; Veglia, Gianluigi

    2011-11-01

    Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring (1)H-(15)N dipolar couplings (DC) and (15)N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles' heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([(1)H,(15)N]-SE-PISEMA-PDSD). The incorporation of 2D (15)N/(15)N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the (15)N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers. © Springer Science+Business Media B.V. 2011

  1. Dissociation of the trimeric gp41 ectodomain at the lipid-water interface suggests an active role in HIV-1 Env-mediated membrane fusion.

    PubMed

    Roche, Julien; Louis, John M; Grishaev, Alexander; Ying, Jinfa; Bax, Adriaan

    2014-03-04

    The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. The actual fusion process involves a switch from a homotrimeric prehairpin intermediate conformation, consisting of parallel coiled-coil helices, to a postfusion state where the ectodomains are arranged as a trimer of helical hairpins, adopting a six-helix bundle (6HB) state. Here, we show by solution NMR spectroscopy that a water-soluble 6HB gp41 ectodomain binds to zwitterionic detergents that contain phosphocholine or phosphatidylcholine head groups and phospholipid vesicles that mimic T-cell membrane composition. Binding results in the dissociation of the 6HB and the formation of a monomeric state, where its two α-helices, N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR), become embedded in the lipid-water interface of the virus and host cell. The atomic structure of the gp41 ectodomain monomer, based on NOE distance restraints and residual dipolar couplings, shows that the NHR and CHR helices remain mostly intact, but they completely lose interhelical contacts. The high affinity of the ectodomain helices for phospholipid surfaces suggests that unzippering of the prehairpin intermediate leads to a state where the NHR and CHR helices become embedded in the host cell and viral membranes, respectively, thereby providing a physical force for bringing these membranes into close juxtaposition before actual fusion.

  2. Explosive electromagnetic radiation by the relaxation of a multimode magnon system.

    PubMed

    Vasyuchka, V I; Serga, A A; Sandweg, C W; Slobodianiuk, D V; Melkov, G A; Hillebrands, B

    2013-11-01

    Microwave emission from a parametrically pumped ferrimagnetic film of yttrium iron garnet was studied versus the magnon density evolution, which was detected by Brillouin light scattering spectroscopy. It has been found that the shutdown of external microwave pumping leads to an unexpected effect: The conventional monotonic decrease of the population of parametrically injected magnons is accompanied by an explosive behavior of electromagnetic radiation at the magnon frequency. The developed theory shows that this explosion is caused by a nonlinear energy transfer from parametrically driven short-wavelength dipolar-exchange magnons to a long-wavelength dipolar magnon mode effectively coupled to an electromagnetic wave.

  3. Strong Interlayer Magnon-Magnon Coupling in Magnetic Metal-Insulator Hybrid Nanostructures.

    PubMed

    Chen, Jilei; Liu, Chuanpu; Liu, Tao; Xiao, Yang; Xia, Ke; Bauer, Gerrit E W; Wu, Mingzhong; Yu, Haiming

    2018-05-25

    We observe strong interlayer magnon-magnon coupling in an on-chip nanomagnonic device at room temperature. Ferromagnetic nanowire arrays are integrated on a 20-nm-thick yttrium iron garnet (YIG) thin film strip. Large anticrossing gaps up to 1.58 GHz are observed between the ferromagnetic resonance of the nanowires and the in-plane standing spin waves of the YIG film. Control experiments and simulations reveal that both the interlayer exchange coupling and the dynamical dipolar coupling contribute to the observed anticrossings. The coupling strength is tunable by the magnetic configuration, allowing the coherent control of magnonic devices.

  4. Strong Interlayer Magnon-Magnon Coupling in Magnetic Metal-Insulator Hybrid Nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Jilei; Liu, Chuanpu; Liu, Tao; Xiao, Yang; Xia, Ke; Bauer, Gerrit E. W.; Wu, Mingzhong; Yu, Haiming

    2018-05-01

    We observe strong interlayer magnon-magnon coupling in an on-chip nanomagnonic device at room temperature. Ferromagnetic nanowire arrays are integrated on a 20-nm-thick yttrium iron garnet (YIG) thin film strip. Large anticrossing gaps up to 1.58 GHz are observed between the ferromagnetic resonance of the nanowires and the in-plane standing spin waves of the YIG film. Control experiments and simulations reveal that both the interlayer exchange coupling and the dynamical dipolar coupling contribute to the observed anticrossings. The coupling strength is tunable by the magnetic configuration, allowing the coherent control of magnonic devices.

  5. Finite-size corrections in simulation of dipolar fluids

    NASA Astrophysics Data System (ADS)

    Belloni, Luc; Puibasset, Joël

    2017-12-01

    Monte Carlo simulations of dipolar fluids are performed at different numbers of particles N = 100-4000. For each size of the cubic cell, the non-spherically symmetric pair distribution function g(r,Ω) is accumulated in terms of projections gmnl(r) onto rotational invariants. The observed N dependence is in very good agreement with the theoretical predictions for the finite-size corrections of different origins: the explicit corrections due to the absence of fluctuations in the number of particles within the canonical simulation and the implicit corrections due to the coupling between the environment around a given particle and that around its images in the neighboring cells. The latter dominates in fluids of strong dipolar coupling characterized by low compressibility and high dielectric constant. The ability to clean with great precision the simulation data from these corrections combined with the use of very powerful anisotropic integral equation techniques means that exact correlation functions both in real and Fourier spaces, Kirkwood-Buff integrals, and bridge functions can be derived from box sizes as small as N ≈ 100, even with existing long-range tails. In the presence of dielectric discontinuity with the external medium surrounding the central box and its replica within the Ewald treatment of the Coulombic interactions, the 1/N dependence of the gmnl(r) is shown to disagree with the, yet well-accepted, prediction of the literature.

  6. Attraction between Opposing Planar Dipolar Polymer Brushes

    DOE PAGES

    Mahalik, J. P.; Sumpter, Bobby G.; Kumar, Rajeev

    2017-08-01

    In this paper, we use a field theory approach to study the effects of permanent dipoles on interpenetration and free energy changes as a function of distance between two identical planar polymer brushes. Melts (i.e., solvent-free) and solvated brushes made up of polymers grafted on nonadsorbing substrates are studied. In particular, the weak coupling limit of the dipolar interactions is considered, which leads to concentration-dependent pairwise interactions, and the effects of orientational order are neglected. It is predicted that a gradual increase in the dipole moment of the polymer segments can lead to attractive interactions between the brushes at intermediatemore » separation distances. Finally, because classical theory of polymer brushes based on the strong stretching limit (SSL) and the standard self-consistent field theory (SCFT) simulations using the Flory’s χ parameter always predicts repulsive interactions at all separations, our work highlights the importance of dipolar interactions in tailoring and accurately predicting forces between polar polymeric interfaces in contact with each other.« less

  7. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles

    DOE PAGES

    Bakhti, Saïd; Tishchenko, Alexandre V.; Zambrana-Puyalto, Xavier; ...

    2016-09-01

    In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and tomore » interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations.« less

  8. Optical Switching Using Transition from Dipolar to Charge Transfer Plasmon Modes in Ge2Sb2Te5 Bridged Metallodielectric Dimers

    PubMed Central

    Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Karabiyik, Mustafa; Pala, Nezih

    2017-01-01

    Capacitive coupling and direct shuttling of charges in nanoscale plasmonic components across a dielectric spacer and through a conductive junction lead to excitation of significantly different dipolar and charge transfer plasmon (CTP) resonances, respectively. Here, we demonstrate the excitation of dipolar and CTP resonant modes in metallic nanodimers bridged by phase-change material (PCM) sections, material and electrical characteristics of which can be controlled by external stimuli. Ultrafast switching (in the range of a few nanoseconds) between amorphous and crystalline phases of the PCM section (here Ge2Sb2Te5 (GST)) allows for designing a tunable plasmonic switch for optical communication applications with significant modulation depth (up to 88%). Judiciously selecting the geometrical parameters and taking advantage of the electrical properties of the amorphous phase of the GST section we adjusted the extinction peak of the dipolar mode at the telecommunication band (λ~1.55 μm), which is considered as the OFF state. Changing the GST phase to crystalline via optical heating allows for direct transfer of charges through the junction between nanodisks and formation of a distinct CTP peak at longer wavelengths (λ~1.85 μm) far from the telecommunication wavelength, which constitutes the ON state. PMID:28205643

  9. Optical Switching Using Transition from Dipolar to Charge Transfer Plasmon Modes in Ge2Sb2Te5 Bridged Metallodielectric Dimers.

    PubMed

    Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Karabiyik, Mustafa; Pala, Nezih

    2017-02-16

    Capacitive coupling and direct shuttling of charges in nanoscale plasmonic components across a dielectric spacer and through a conductive junction lead to excitation of significantly different dipolar and charge transfer plasmon (CTP) resonances, respectively. Here, we demonstrate the excitation of dipolar and CTP resonant modes in metallic nanodimers bridged by phase-change material (PCM) sections, material and electrical characteristics of which can be controlled by external stimuli. Ultrafast switching (in the range of a few nanoseconds) between amorphous and crystalline phases of the PCM section (here Ge 2 Sb 2 Te 5 (GST)) allows for designing a tunable plasmonic switch for optical communication applications with significant modulation depth (up to 88%). Judiciously selecting the geometrical parameters and taking advantage of the electrical properties of the amorphous phase of the GST section we adjusted the extinction peak of the dipolar mode at the telecommunication band (λ~1.55 μm), which is considered as the OFF state. Changing the GST phase to crystalline via optical heating allows for direct transfer of charges through the junction between nanodisks and formation of a distinct CTP peak at longer wavelengths (λ~1.85 μm) far from the telecommunication wavelength, which constitutes the ON state.

  10. Optical Switching Using Transition from Dipolar to Charge Transfer Plasmon Modes in Ge2Sb2Te5 Bridged Metallodielectric Dimers

    NASA Astrophysics Data System (ADS)

    Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Karabiyik, Mustafa; Pala, Nezih

    2017-02-01

    Capacitive coupling and direct shuttling of charges in nanoscale plasmonic components across a dielectric spacer and through a conductive junction lead to excitation of significantly different dipolar and charge transfer plasmon (CTP) resonances, respectively. Here, we demonstrate the excitation of dipolar and CTP resonant modes in metallic nanodimers bridged by phase-change material (PCM) sections, material and electrical characteristics of which can be controlled by external stimuli. Ultrafast switching (in the range of a few nanoseconds) between amorphous and crystalline phases of the PCM section (here Ge2Sb2Te5 (GST)) allows for designing a tunable plasmonic switch for optical communication applications with significant modulation depth (up to 88%). Judiciously selecting the geometrical parameters and taking advantage of the electrical properties of the amorphous phase of the GST section we adjusted the extinction peak of the dipolar mode at the telecommunication band (λ~1.55 μm), which is considered as the OFF state. Changing the GST phase to crystalline via optical heating allows for direct transfer of charges through the junction between nanodisks and formation of a distinct CTP peak at longer wavelengths (λ~1.85 μm) far from the telecommunication wavelength, which constitutes the ON state.

  11. Towards homonuclear J solid-state NMR correlation experiments for half-integer quadrupolar nuclei: experimental and simulated 11B MAS spin-echo dephasing and calculated 2J(BB) coupling constants for lithium diborate.

    PubMed

    Barrow, Nathan S; Yates, Jonathan R; Feller, Steven A; Holland, Diane; Ashbrook, Sharon E; Hodgkinson, Paul; Brown, Steven P

    2011-04-07

    Magic-angle spinning (MAS) NMR spin-echo dephasing is systematically investigated for the spin I = 3/2 (11)B nucleus in lithium diborate, Li(2)O·2B(2)O(3). A clear dependence on the quadrupolar frequency (ω(Q)(PAS)/2π = 3C(Q)/[4I(2I- 1)]) is observed: the B3 (larger C(Q)) site dephases more slowly than the B4 site at all investigated MAS frequencies (5 to 20 kHz) at 14.1 T. Increasing the MAS frequency leads to markedly slower dephasing for the B3 site, while there is a much less evident effect for the B4 site. Considering samples at 5, 25, 80 (natural abundance) and 100% (11)B isotopic abundance, dephasing becomes faster for both sites as the (11)B isotopic abundance increases. The experimental behaviour is rationalised using density matrix simulations for two and three dipolar-coupled (11)B nuclei. The experimentally observed slower dephasing for the larger C(Q) (B3) site is reproduced in all simulations and is explained by the reintroduction of the dipolar coupling by the so-called "spontaneous quadrupolar-driven recoupling mechanism" having a different dependence on the MAS frequency for different quadrupolar frequencies. Specifically, isolated spin-pair simulations show that the spontaneous quadrupolar-driven recoupling mechanism is most efficient when the quadrupolar frequency is equal to twice the MAS frequency. While for isolated spin-pair simulations, increasing the MAS frequency leads to faster dephasing, agreement with experiment is observed for three-spin simulations which additionally include the homogeneous nature of the homonuclear dipolar coupling network. First-principles calculations, using the GIPAW approach, of the (2)J(11B-11B) couplings in lithium diborate, metaborate and triborate are presented: a clear trend is revealed whereby the (2)J(11B-11B) couplings increase with increasing B-O-B bond angle and B-B distance. However, the calculated (2)J(11B-11B) couplings are small (0.95, 1.20 and 2.65 Hz in lithium diborate), thus explaining why no zero crossing due to J modulation is observed experimentally, even for the sample at 25% (11)B where significant spin-echo intensity remains out to durations of ∼200 ms.

  12. Restraint training for awake functional brain scanning of rodents can cause long-lasting changes in pain and stress responses

    PubMed Central

    Low, Lucie A.; Bauer, Lucy C.; Pitcher, Mark H.; Bushnell, M. Catherine

    2016-01-01

    Abstract With the increased interest in longitudinal brain imaging of awake rodents, it is important to understand both the short-term and long-term effects of restraint on sensory and emotional processing in the brain. To understand the effects of repeated restraint on pain behaviors and stress responses, we modeled a restraint protocol similar to those used to habituate rodents for magnetic resonance imaging scanning, and studied sensory sensitivity and stress hormone responses over 5 days. To uncover lasting effects of training, we also looked at responses to the formalin pain test 2 weeks later. We found that while restraint causes acute increases in the stress hormone corticosterone, it can also cause lasting reductions in nociceptive behavior in the formalin test, coupled with heightened corticosterone levels and increased activation of the “nociceptive” central nucleus of the amygdala, as seen by Fos protein expression. These results suggest that short-term repeated restraint, similar to that used to habituate rats for awake functional brain scanning, could potentially cause long-lasting changes in physiological and brain responses to pain stimuli that are stress-related, and therefore could potentially confound the functional activation patterns seen in awake rodents in response to pain stimuli. PMID:27058679

  13. Restraint training for awake functional brain scanning of rodents can cause long-lasting changes in pain and stress responses.

    PubMed

    Low, Lucie A; Bauer, Lucy C; Pitcher, Mark H; Bushnell, M Catherine

    2016-08-01

    With the increased interest in longitudinal brain imaging of awake rodents, it is important to understand both the short-term and long-term effects of restraint on sensory and emotional processing in the brain. To understand the effects of repeated restraint on pain behaviors and stress responses, we modeled a restraint protocol similar to those used to habituate rodents for magnetic resonance imaging scanning, and studied sensory sensitivity and stress hormone responses over 5 days. To uncover lasting effects of training, we also looked at responses to the formalin pain test 2 weeks later. We found that while restraint causes acute increases in the stress hormone corticosterone, it can also cause lasting reductions in nociceptive behavior in the formalin test, coupled with heightened corticosterone levels and increased activation of the "nociceptive" central nucleus of the amygdala, as seen by Fos protein expression. These results suggest that short-term repeated restraint, similar to that used to habituate rats for awake functional brain scanning, could potentially cause long-lasting changes in physiological and brain responses to pain stimuli that are stress-related, and therefore could potentially confound the functional activation patterns seen in awake rodents in response to pain stimuli.

  14. Continuous wave protocol for simultaneous polarization and optical detection of P1-center electron spin resonance

    NASA Astrophysics Data System (ADS)

    Kamp, E. J.; Carvajal, B.; Samarth, N.

    2018-01-01

    The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.

  15. Simultaneous gauche and anomeric effects in α-substituted sulfoxides.

    PubMed

    Freitas, Matheus P

    2012-09-07

    α-Substituted sulfoxides can experience both gauche and anomeric effects, since these compounds have the geometric requirements and strong electron donor and acceptor orbitals which are essential to make operative the hyperconjugative nature of these effects. Indeed, the title effects were calculated to take place for 1,3-oxathiane 3-oxide in polar solution, where dipolar effects are absent or at least minimized, while only the gauche effect is present in 2-fluorothiane 1-oxide. Since the fluorine atom is a suitable probe for structural analysis using NMR, the (1)J(CF) dependence on the rotation around the F-C-S═O dihedral angle of (fluoromethyl)methyl sulfoxide was evaluated; differently from 1,2-difluoroethane and fluoro(methoxy)methane, this coupling constant is at least not exclusively dependent on dipolar interactions (or on hyperconjugation). Because of the nonmonotonic behavior of the (1)J(CF) rotational profile, this coupling constant does not appear to be of significant diagnostic value for probing the conformations of α-fluoro sulfoxides.

  16. Moderate MAS enhances local (1)H spin exchange and spin diffusion.

    PubMed

    Roos, Matthias; Micke, Peter; Saalwächter, Kay; Hempel, Günter

    2015-11-01

    Proton NMR spin-diffusion experiments are often combined with magic-angle spinning (MAS) to achieve higher spectral resolution of solid samples. Here we show that local proton spin diffusion can indeed become faster at low (<10 kHz) spinning rates as compared to static conditions. Spin diffusion under static conditions can thus be slower than the often referred value of 0.8 nm(2)/ms, which was determined using slow MAS (Clauss et al., 1993). The enhancement of spin diffusion by slow MAS relies on the modulation of the orientation-dependent dipolar couplings during sample rotation and goes along with transient level crossings in combination with dipolar truncation. The experimental finding and its explanation is supported by density matrix simulations, and also emphasizes the sensitivity of spin diffusion to the local coupling topology. The amplification of spin diffusion by slow MAS cannot be explained by any model based on independent spin pairs; at least three spins have to be considered. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles

    PubMed Central

    Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena; Schiøtz, Jakob; Kasama, Takeshi; Puntes, Victor F.; Frandsen, Cathrine

    2015-01-01

    Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100–400 nm and lengths of up to some hundred microns. Lorenz microscopy and electron holography reveal collective magnetic ordering in these structures. However, in contrast to continuous ferromagnetic thin films of comparable dimensions, domain walls appear preferentially as longitudinal, i.e., oriented parallel to the long axis of the nanoparticle assemblies. We explain this unusual domain structure as the result of dipolar interactions and shape anisotropy, in the absence of inter-particle exchange coupling. PMID:26416297

  18. Dielectric metamaterials with toroidal dipolar response

    DOE PAGES

    Basharin, Alexey A.; Kafesaki, Maria; Economou, Eleftherios N.; ...

    2015-03-27

    Toroidal multipoles are the terms missing in the standard multipole expansion; they are usually overlooked due to their relatively weak coupling to the electromagnetic fields. Here, we propose and theoretically study all-dielectric metamaterials of a special class that represent a simple electromagnetic system supporting toroidal dipolar excitations in the THz part of the spectrum. In addition, we show that resonant transmission and reflection of such metamaterials is dominated by toroidal dipole scattering, the neglect of which would result in a misunderstanding interpretation of the metamaterials’ macroscopic response. Due to the unique field configuration of the toroidal mode, the proposed metamaterialsmore » could serve as a platform for sensing or enhancement of light absorption and optical nonlinearities.« less

  19. Quantum logic between remote quantum registers

    NASA Astrophysics Data System (ADS)

    Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.; Duan, L.-M.; Lukin, M. D.; Jiang, L.; Gorshkov, A. V.

    2013-02-01

    We consider two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we review the notion of eigenmode-mediated unpolarized spin-chain state transfer and extend the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further briefly consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing that exploits all of the dark spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate dark-spin qubits significantly raise the error threshold for robust operation. Finally, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated nitrogen-vacancy registers in diamond; disorder-averaged numerics confirm that high-fidelity gates are achievable even in the presence of moderate disorder.

  20. J-GFT NMR for precise measurement of mutually correlated nuclear spin-spin couplings.

    PubMed

    Atreya, Hanudatta S; Garcia, Erwin; Shen, Yang; Szyperski, Thomas

    2007-01-24

    G-matrix Fourier transform (GFT) NMR spectroscopy is presented for accurate and precise measurement of chemical shifts and nuclear spin-spin couplings correlated according to spin system. The new approach, named "J-GFT NMR", is based on a largely extended GFT NMR formalism and promises to have a broad impact on projection NMR spectroscopy. Specifically, constant-time J-GFT (6,2)D (HA-CA-CO)-N-HN was implemented for simultaneous measurement of five mutually correlated NMR parameters, that is, 15N backbone chemical shifts and the four one-bond spin-spin couplings 13Calpha-1Halpha, 13Calpha-13C', 15N-13C', and 15N-1HNu. The experiment was applied for measuring residual dipolar couplings (RDCs) in an 8 kDa protein Z-domain aligned with Pf1 phages. Comparison with RDC values extracted from conventional NMR experiments reveals that RDCs are measured with high precision and accuracy, which is attributable to the facts that (i) the use of constant time evolution ensures that signals do not broaden whenever multiple RDCs are jointly measured in a single dimension and (ii) RDCs are multiply encoded in the multiplets arising from the joint sampling. This corresponds to measuring the couplings multiple times in a statistically independent manner. A key feature of J-GFT NMR, i.e., the correlation of couplings according to spin systems without reference to sequential resonance assignments, promises to be particularly valuable for rapid identification of backbone conformation and classification of protein fold families on the basis of statistical analysis of dipolar couplings.

  1. Phase-angle controller for Stirling engines

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R. (Inventor)

    1980-01-01

    An actuator includes a restraint link adapted to be connected with a pivotal carrier arm for a force transfer gear interposed between the crankshaft for an expander portion of a Stirling engine and a crankshaft for the displacer portion of the engine. The restraint link is releasably trapped hydraulic fluid for selectively establishing a phase angle relationship between the crankshaft. A second embodiment incorporates a hydraulic coupler for use in varying the phase angle of gear-coupled crank fpr a Stirling engine whereby phase angle changes are obtainable.

  2. Polarized and asymmetric emission of single colloidal nanoplatelets (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Feng, Fu; N'Guyen, Thu Loan; Nasilowski, Michel; Lethiec, Clotilde M.; Dubertret, Benoit; Coolen, Laurent; Maître, Agnès.

    2017-02-01

    Efficient coupling of nanoemitters to photonic or plasmonic structures requires the control of the orientation of the emitting dipoles. Nevertheless controlling the dipole orientation remains an experimental challenge. Many experiments rely on the realization of numerous samples, in order to be able to statistically get a well aligned dipole to realize an efficient coupling to a nanostructure. In order to avoid these statistical trials, the knowledge of the nature of the emitter and its orientation is crucial for a deterministical approach. We developed a method [1],[2] relying on the combination of polarimetric measurement and emission diagram which gives fine information both on the emitting dipolar transition involved and on the dipolar orientation We analyse by this method square and rectangle single colloidal CdSe/CdS nanoplatetelets. We demonstrate that their emission can be described by just by two orthogonal dipoles lying in the plane of the platelets. More surprisingly the emission of the square nanoplatelets is not polarised whereas the rectangle one is. We demonstrate that this polarized emission is due to the rectangular shape anisotropy by a dielectric effect. [1] C. Lethiec, et al, Three-dimensional orientation measurement of a single fluorescent nanoemitter by polarization analysis, Phys. Rev. X 4, 021037 (2014), [2] C. Lethiec et al, Polarimetry-based analysis of dipolar transitions of single colloidal CdSe/CdS dot-inrods, New Journal of Physics 16, 093014 (2014) [3] S. Ithurria et al, colloidal nanoplatelets with 2 dimensional electronic structure, Nature Materials 10, 936 (2011)

  3. Solution structural ensembles of substrate-free cytochrome P450(cam).

    PubMed

    Asciutto, Eliana K; Young, Matthew J; Madura, Jeffry; Pochapsky, Susan Sondej; Pochapsky, Thomas C

    2012-04-24

    Removal of substrate (+)-camphor from the active site of cytochrome P450(cam) (CYP101A1) results in nuclear magnetic resonance-detected perturbations in multiple regions of the enzyme. The (1)H-(15)N correlation map of substrate-free diamagnetic Fe(II) CO-bound CYP101A permits these perturbations to be mapped onto the solution structure of the enzyme. Residual dipolar couplings (RDCs) were measured for (15)N-(1)H amide pairs in two independent alignment media for the substrate-free enzyme and used as restraints in solvated molecular dynamics (MD) simulations to generate an ensemble of best-fit structures of the substrate-free enzyme in solution. Nuclear magnetic resonance-detected chemical shift perturbations reflect changes in the electronic environment of the NH pairs, such as hydrogen bonding and ring current shifts, and are observed for residues in the active site as well as in hinge regions between secondary structural features. RDCs provide information about relative orientations of secondary structures, and RDC-restrained MD simulations indicate that portions of a β-rich region adjacent to the active site shift so as to partially occupy the vacancy left by removal of the substrate. The accessible volume of the active site is reduced in the substrate-free enzyme relative to the substrate-bound structure calculated using the same methods. Both symmetric and asymmetric broadening of multiple resonances observed upon substrate removal as well as localized increased errors in RDC fits suggest that an ensemble of enzyme conformations are present in the substrate-free form.

  4. Metastability in the Spin-1 Blume-Emery-Griffiths Model within Constant Coupling Approximation

    NASA Astrophysics Data System (ADS)

    Ekiz, C.

    2017-02-01

    In this paper, the equilibrium properties of spin-1 Blume-Emery-Griffiths model are studied by using constant-coupling approximation. The dipolar and quadrupolar order parameters, the stable, metastable and unstable states and free energy of the model are investigated. The states are defined in terms of local minima of the free energy of system. The numerical calculations are presented for several values of exchange interactions on the simple cubic lattice with q = 6.

  5. Improving homology modeling of G-protein coupled receptors through multiple-template derived conserved inter-residue interactions

    NASA Astrophysics Data System (ADS)

    Chaudhari, Rajan; Heim, Andrew J.; Li, Zhijun

    2015-05-01

    Evidenced by the three-rounds of G-protein coupled receptors (GPCR) Dock competitions, improving homology modeling methods of helical transmembrane proteins including the GPCRs, based on templates of low sequence identity, remains an eminent challenge. Current approaches addressing this challenge adopt the philosophy of "modeling first, refinement next". In the present work, we developed an alternative modeling approach through the novel application of available multiple templates. First, conserved inter-residue interactions are derived from each additional template through conservation analysis of each template-target pairwise alignment. Then, these interactions are converted into distance restraints and incorporated in the homology modeling process. This approach was applied to modeling of the human β2 adrenergic receptor using the bovin rhodopsin and the human protease-activated receptor 1 as templates and improved model quality was demonstrated compared to the homology model generated by standard single-template and multiple-template methods. This method of "refined restraints first, modeling next", provides a fast and complementary way to the current modeling approaches. It allows rational identification and implementation of additional conserved distance restraints extracted from multiple templates and/or experimental data, and has the potential to be applicable to modeling of all helical transmembrane proteins.

  6. Spin-correlated doublet pairs as intermediate states in charge separation processes

    NASA Astrophysics Data System (ADS)

    Kraffert, Felix; Behrends, Jan

    2017-10-01

    Spin-correlated charge-carrier pairs play a crucial role as intermediate states in charge separation both in natural photosynthesis as well as in solar cells. Using transient electron paramagnetic resonance (trEPR) spectroscopy in combination with spectral simulations, we study spin-correlated polaron pairs in polymer:fullerene blends as organic solar cells materials. The semi-analytical simulations presented here are based on the well-established theoretical description of spin-correlated radical pairs in biological systems, however, explicitly considering the disordered nature of polymer:fullerene blends. The large degree of disorder leads to the fact that many different relative orientations between both polarons forming the spin-correlated pairs have to be taken into account. This has important implications for the spectra, which differ significantly from those of spin-correlated radical pairs with a fixed relative orientation. We systematically study the influence of exchange and dipolar couplings on the trEPR spectra and compare the simulation results to measured X- and Q-band trEPR spectra. Our results demonstrate that assuming dipolar couplings alone does not allow us to reproduce the experimental spectra. Due to the rather delocalised nature of polarons in conjugated organic semiconductors, a significant isotropic exchange coupling needs to be included to achieve good agreement between experiments and simulations.

  7. Multiscale simulations of defect dipole-enhanced electromechanical coupling at dilute defect concentrations

    NASA Astrophysics Data System (ADS)

    Liu, Shi; Cohen, R. E.

    2017-08-01

    The role of defects in solids of mixed ionic-covalent bonds such as ferroelectric oxides is complex. Current understanding of defects on ferroelectric properties at the single-defect level remains mostly at the empirical level, and the detailed atomistic mechanisms for many defect-mediated polarization-switching processes have not been convincingly revealed quantum mechanically. We simulate the polarization-electric field (P-E) and strain-electric field (ɛ-E) hysteresis loops for BaTiO3 in the presence of generic defect dipoles with large-scale molecular dynamics and provide a detailed atomistic picture of the defect dipole-enhanced electromechanical coupling. We develop a general first-principles-based atomistic model, enabling a quantitative understanding of the relationship between macroscopic ferroelectric properties and dipolar impurities of different orientations, concentrations, and dipole moments. We find that the collective orientation of dipolar defects relative to the external field is the key microscopic structure feature that strongly affects materials hardening/softening and electromechanical coupling. We show that a small concentration (≈0.1 at. %) of defect dipoles dramatically improves electromechanical responses. This offers the opportunity to improve the performance of inexpensive polycrystalline ferroelectric ceramics through defect dipole engineering for a range of applications including piezoelectric sensors, actuators, and transducers.

  8. Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system.

    PubMed

    Xu, Nanyang; Zhu, Jing; Lu, Dawei; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng

    2012-03-30

    Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid-crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the largest number factored in quantum-computation realizations, which shows the practical importance of adiabatic quantum algorithms.

  9. Particle tracing modeling of ion fluxes at geosynchronous orbit

    DOE PAGES

    Brito, Thiago V.; Woodroffe, Jesse; Jordanova, Vania K.; ...

    2017-10-31

    The initial results of a coupled MHD/particle tracing method to evaluate particle fluxes in the inner magnetosphere are presented. This setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere. On the period of study, the MHD code was able to capture a dipolarization event and the particle tracing algorithm was able to capture our results of these disturbances and calculate proton fluxes in the night side geosynchronous orbit region. The simulation captured dispersionless injections as well as the energy dispersion signatures that are frequently observed by satellites atmore » geosynchronous orbit. Currently, ring current models rely on Maxwellian-type distributions based on either empirical flux values or sparse satellite data for their boundary conditions close to geosynchronous orbit. In spite of some differences in intensity and timing, the setup presented here is able to capture substorm injections, which represents an improvement regarding a reverse way of coupling these ring current models with MHD codes through the use of boundary conditions.« less

  10. Particle tracing modeling of ion fluxes at geosynchronous orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brito, Thiago V.; Woodroffe, Jesse; Jordanova, Vania K.

    The initial results of a coupled MHD/particle tracing method to evaluate particle fluxes in the inner magnetosphere are presented. This setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere. On the period of study, the MHD code was able to capture a dipolarization event and the particle tracing algorithm was able to capture our results of these disturbances and calculate proton fluxes in the night side geosynchronous orbit region. The simulation captured dispersionless injections as well as the energy dispersion signatures that are frequently observed by satellites atmore » geosynchronous orbit. Currently, ring current models rely on Maxwellian-type distributions based on either empirical flux values or sparse satellite data for their boundary conditions close to geosynchronous orbit. In spite of some differences in intensity and timing, the setup presented here is able to capture substorm injections, which represents an improvement regarding a reverse way of coupling these ring current models with MHD codes through the use of boundary conditions.« less

  11. Understanding the Origins of Dipolar Couplings and Correlated Motion in the Vibrational Spectrum of Water.

    PubMed

    Heyden, Matthias; Sun, Jian; Forbert, Harald; Mathias, Gerald; Havenith, Martina; Marx, Dominik

    2012-08-16

    The combination of vibrational spectroscopy and molecular dynamics simulations provides a powerful tool to obtain insights into the molecular details of water structure and dynamics in the bulk and in aqueous solutions. Applying newly developed approaches to analyze correlations of charge currents, molecular dipole fluctuations, and vibrational motion in real and k-space, we compare results from nonpolarizable water models, widely used in biomolecular modeling, to ab initio molecular dynamics. For the first time, we unfold the infrared response of bulk water into contributions from correlated fluctuations in the three-dimensional, anisotropic environment of an average water molecule, from the OH-stretching region down to the THz regime. Our findings show that the absence of electronic polarizability in the force field model not only results in differences in dipolar couplings and infrared absorption but also induces artifacts into the correlated vibrational motion between hydrogen-bonded water molecules, specifically at the intramolecular bending frequency. Consequently, vibrational motion is partially ill-described with implications for the accuracy of non-self-consistent, a posteriori methods to add polarizability.

  12. Predicting protein contact map using evolutionary and physical constraints by integer programming.

    PubMed

    Wang, Zhiyong; Xu, Jinbo

    2013-07-01

    Protein contact map describes the pairwise spatial and functional relationship of residues in a protein and contains key information for protein 3D structure prediction. Although studied extensively, it remains challenging to predict contact map using only sequence information. Most existing methods predict the contact map matrix element-by-element, ignoring correlation among contacts and physical feasibility of the whole-contact map. A couple of recent methods predict contact map by using mutual information, taking into consideration contact correlation and enforcing a sparsity restraint, but these methods demand for a very large number of sequence homologs for the protein under consideration and the resultant contact map may be still physically infeasible. This article presents a novel method PhyCMAP for contact map prediction, integrating both evolutionary and physical restraints by machine learning and integer linear programming. The evolutionary restraints are much more informative than mutual information, and the physical restraints specify more concrete relationship among contacts than the sparsity restraint. As such, our method greatly reduces the solution space of the contact map matrix and, thus, significantly improves prediction accuracy. Experimental results confirm that PhyCMAP outperforms currently popular methods no matter how many sequence homologs are available for the protein under consideration. http://raptorx.uchicago.edu.

  13. Near-Earth plasma sheet boundary dynamics during substorm dipolarization

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi; Nagai, Tsugunobu; Birn, Joachim; Sergeev, Victor A.; Le Contel, Olivier; Varsani, Ali; Baumjohann, Wolfgang; Nakamura, Takuma; Apatenkov, Sergey; Artemyev, Anton; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Russell, Christopher T.; Singer, Howard J.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Bromund, Ken R.; Fischer, David; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Slavin, James A.; Cohen, Ian; Jaynes, Allison; Turner, Drew L.

    2017-09-01

    We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL -1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 R E were present in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) B z disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Multiscale were located in the southern hemisphere plasma sheet and observed fast flow disturbances associated with this dipolarization. The high-time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and flow disturbances separately. A distinct pattern of the flow and field disturbance near the plasma boundaries was found. We suggest that a vortex motion created around the localized flows resulted in another field-aligned current system at the off-equatorial side of the BBF-associated R1/R2 systems, as was predicted by the MHD simulation of a localized reconnection jet. The observations by GOES and Geotail, which were located in the opposite hemisphere and local time, support this view. We demonstrate that the processes of both Earthward flow braking and of accumulated magnetic flux evolving tailward also control the dynamics in the boundary region of the near-Earth plasma sheet.[Figure not available: see fulltext.

  14. Decoherence mechanisms in Mn3 single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Abeywardana, C.; Mowson, A. M.; Christou, G.; Takahashi, S.

    In spite of wide interest in the quantum nature of SMMs, decoherence effects that ultimately limit such behavior have yet to be fully understood. Recent investigations have shown that there are three main decoherence mechanisms present in SMMs: spins can couple locally (i) to phonons (phonon decoherence); (ii) to many nuclear spins (nuclear decoherence); and (iii) to each other via dipolar interactions (dipolar decoherence). We have recently uncovered quantum coherence in a Mn3 SMM by quenching decoherence due to dipole interaction between SMMs using a high frequency electron paramagnetic resonance and low temperature. In this presentation, we will discuss temperature dependence of spin relaxation times and the decoherence mechanisms in the Mn3 SMM. This work is supported by the National Science Foundation (DMR-1508661) and the Searle scholars program.

  15. Deuterium REDOR: Principles and Applications for Distance Measurements

    NASA Astrophysics Data System (ADS)

    Sack, I.; Goldbourt, A.; Vega, S.; Buntkowsky, G.

    1999-05-01

    The application of short composite pulse schemes ([figure] and [figure]) to the rotational echo double-resonance (REDOR) spectroscopy ofX-2H (X: spin{1}/{2}, observed) systems with large deuterium quadrupolar interactions has been studied experimentally and theoretically and compared with simple 180° pulse schemes. The basic properties of the composite pulses on the deuterium nuclei have been elucidated, using average Hamiltonian theory, and exact simulations of the experiments have been achieved by stepwise integration of the equation of motion of the density matrix. REDOR experiments were performed on15N-2H in doubly labeled acetanilide and on13C-2H in singly2H-labeled acetanilide. The most efficient REDOR dephasing was observed when [figure] composite pulses were used. It is found that the dephasing due to simple 180° deuterium pulses is about a factor of 2 less efficient than the dephasing due to the composite pulse sequences and thus the range of couplings observable byX-2H REDOR is enlarged toward weaker couplings, i.e., larger distances. From these experiments the2H-15N dipolar coupling between the amino deuteron and the amino nitrogen and the2H-13C dipolar couplings between the amino deuteron and the α and β carbons have been elucidated and the corresponding distances have been determined. The distance data from REDOR are in good agreement with data from X-ray and neutron diffraction, showing the power of the method.

  16. Transfer of dipolar gas through the discrete localized mode.

    PubMed

    Bai, Xiao-Dong; Zhang, Ai-Xia; Xue, Ju-Kui

    2013-12-01

    By considering the discrete nonlinear Schrödinger model with dipole-dipole interactions for dipolar condensate, the existence, the types, the stability, and the dynamics of the localized modes in a nonlinear lattice are discussed. It is found that the contact interaction and the dipole-dipole interactions play important roles in determining the existence, the type, and the stability of the localized modes. Because of the coupled effects of the contact interaction and the dipole-dipole interactions, rich localized modes and their stability nature can exist: when the contact interaction is larger and the dipole-dipole interactions is smaller, a discrete bright breather occurs. In this case, while the on-site interaction can stabilize the discrete breather, the dipole-dipole interactions will destabilize the discrete breather; when both the contact interaction and the dipole-dipole interactions are larger, a discrete kink appears. In this case, both the on-site interaction and the dipole-dipole interactions can stabilize the discrete kink, but the discrete kink is more unstable than the ordinary discrete breather. The predicted results provide a deep insight into the dynamics of blocking, filtering, and transfer of the norm in nonlinear lattices for dipolar condensates.

  17. Renormalization group analysis of dipolar Heisenberg model on square lattice

    NASA Astrophysics Data System (ADS)

    Keleş, Ahmet; Zhao, Erhai

    2018-06-01

    We present a detailed functional renormalization group analysis of spin-1/2 dipolar Heisenberg model on square lattice. This model is similar to the well-known J1-J2 model and describes the pseudospin degrees of freedom of polar molecules confined in deep optical lattice with long-range anisotropic dipole-dipole interactions. Previous study of this model based on tensor network ansatz indicates a paramagnetic ground state for certain dipole tilting angles which can be tuned in experiments to control the exchange couplings. The tensor ansatz formulated on a small cluster unit cell is inadequate to describe the spiral order, and therefore the phase diagram at high azimuthal tilting angles remains undetermined. Here, we obtain the full phase diagram of the model from numerical pseudofermion functional renormalization group calculations. We show that an extended quantum paramagnetic phase is realized between the Néel and stripe/spiral phases. In this region, the spin susceptibility flows smoothly down to the lowest numerical renormalization group scales with no sign of divergence or breakdown of the flow, in sharp contrast to the flow towards the long-range-ordered phases. Our results provide further evidence that the dipolar Heisenberg model is a fertile ground for quantum spin liquids.

  18. Structure determination of a key intermediate of the enantioselective Pd complex catalyzed allylic substitution reaction

    PubMed

    Junker; Reif; Steinhagen; Junker; Felli; Reggelin; Griesinger

    2000-09-01

    The structure of a catalytic intermediate with important implications for the interpretation of the stereochemical outcome of the palladium complex catalyzed allylic substitution with phosphino-oxazoline (PHOX) ligands is determined by liquid state NMR. The complex displays a novel structure that is highly distorted compared with other palladium eta2-olefin complexes known so far. The structure has been determined from nuclear overhauser data (NOE), scalar coupling constants, and long range projection angle restraints derived from dipole dipole cross-correlated relaxation of multiple quantum coherence. The latter restraints have been implemented into a distance geometry protocol. The projection angle restraints yield a higher precision in the determination of the relative orientation of the two molecular moieties and are essential to provide an exact structural definition of the olefinic part of the catalytic intermediate with respect to the ligand.

  19. Conformational analysis of a condensed macrocyclic β-lactam by NMR and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Keserű, György M.; Vásárhelyi, Helga; Makara, Gergely

    1994-09-01

    The conformation of the new macrocyclic β-lactam ( 1) was investigated by NMR and molecular dynamics (MD) calculations. Restraints obtained from NOESY and ROESY experiments were introduced into MD simulations which led to well-defined conformations. The preference for the calculated minimum energy conformation was confirmed by the analysis of vicinal coupling constants. Experimental coupling constants agreed with computed values.

  20. Engineering Encodable Lanthanide-Binding Tags (LBTs) into Loop Regions of Proteins

    PubMed Central

    Barthelmes, Katja; Reynolds, Anne M.; Peisach, Ezra; Jonker, Hendrik R. A.; DeNunzio, Nicholas J.; Allen, Karen N.; Imperiali, Barbara; Schwalbe, Harald

    2011-01-01

    Lanthanide-binding-tags (LBTs) are valuable tools for investigation of protein structure, function, and dynamics by NMR spectroscopy, X-ray crystallography and luminescence studies. We have inserted LBTs into three different loop positions (denoted L, R, and S) of the model protein interleukin-1β and varied the length of the spacer between the LBT and the protein (denoted 1-3). Luminescence studies demonstrate that all nine constructs bind Tb3+ tightly in the low nanomolar range. No significant change in the fusion protein occurs from insertion of the LBT, as shown by two X-ray crystallographic structures of the IL1β-S1 and IL1β-L3 constructs and for the remaining constructs by comparing 1H-15N-HSQC NMR spectra with wild-type IL1β. Additionally, binding of LBT-loop IL1β proteins to their native binding partner in vitro remains unaltered. X-ray crystallographic phasing was successful using only the signal from the bound lanthanide. Large residual dipolar couplings (RDCs) could be determined by NMR spectroscopy for all LBT-loop-constructs and revealed that the LBT-2 series were rigidly incorporated into the interleukin-1β structure. The paramagnetic NMR spectra of loop-LBT mutant IL1β-R2 were assigned and the Δχ tensor components were calculated based on RDCs and pseudocontact shifts (PCSs). A structural model of the IL1β-R2 construct was calculated using the paramagnetic restraints. The current data provide support that encodable LBTs serve as versatile biophysical tags when inserted into loop regions of proteins of known structure or predicted via homology modelling. PMID:21182275

  1. Hyperfine field and magnetic structure in the B phase of CeCoIn5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Matthias J; Curro, Nicholas J; Young, Ben - Li

    2009-01-01

    We re-analyze Nuclear Magnetic Resonance (NMR) spectra observed at low temperatures and high magnetic fields in the field-induced B-phase of CeCoIn{sub 5}. The NMR spectra are consistent with incommensurate antiferromagnetic order of the Ce magnetic moments. However, we find that the spectra of the In(2) sites depend critically on the direction of the ordered moments, the ordering wavevector and the symmetry of the hyperfine coupling to the Ce spins. Assuming isotropic hyperfine coupling, the NMR spectra observed for H {parallel} [100] are consistent with magnetic order with wavevector Q = {pi}(1+{delta}/a, 1/a, 1/c) and Ce moments ordered antiferromagnetically along themore » [100] direction in real space. If the hyperfine coupling has dipolar symmetry, then the NMR spectra require Ce moments along the [001] direction. The dipolar scenario is also consistent with recent neutron scattering measurements that find an ordered moment of 0.15{micro}{sub B} along [001] and Q{sub n} = {pi}(1+{delta}/a, 1+{delta}c, 1/c) with incommensuration {delta} = 0.12 for field H {parallel} [1{bar 1}0]. Using these parameters, we find that the hyperfine field is consistent with both experiments. We speculate that the B phase of CeCoIn{sub 5} represents an intrinsic phase of modulated superconductivity and antiferromagnetism that can only emerge in a highly clean system.« less

  2. Dipolar dark matter with massive bigravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchet, Luc; Heisenberg, Lavinia; Department of Physics & The Oskar Klein Centre, AlbaNova University Centre,Roslagstullsbacken 21, 10691 Stockholm

    2015-12-14

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the twomore » metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.« less

  3. Dipolar dark matter with massive bigravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchet, Luc; Heisenberg, Lavinia, E-mail: blanchet@iap.fr, E-mail: laviniah@kth.se

    2015-12-01

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the twomore » metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.« less

  4. Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlotti, G., E-mail: giovanni.carlotti@fisica.unipg.it; Madami, M.; Tacchi, S.

    2015-05-07

    We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements hasmore » been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.« less

  5. Magnetic Yoking and Tunable Interactions in FePt-Based Hard/Soft Bilayers

    PubMed Central

    Gilbert, Dustin A.; Liao, Jung-Wei; Kirby, Brian J.; Winklhofer, Michael; Lai, Chih-Huang; Liu, Kai

    2016-01-01

    Magnetic interactions in magnetic nanostructures are critical to nanomagnetic and spintronic explorations. Here we demonstrate an extremely sensitive magnetic yoking effect and tunable interactions in FePt based hard/soft bilayers mediated by the soft layer. Below the exchange length, a thin soft layer strongly exchange couples to the perpendicular moments of the hard layer; above the exchange length, just a few nanometers thicker, the soft layer moments turn in-plane and act to yoke the dipolar fields from the adjacent hard layer perpendicular domains. The evolution from exchange to dipolar-dominated interactions is experimentally captured by first-order reversal curves, the ΔM method, and polarized neutron reflectometry, and confirmed by micromagnetic simulations. These findings demonstrate an effective yoking approach to design and control magnetic interactions in wide varieties of magnetic nanostructures and devices. PMID:27604428

  6. Improving the resolution in proton-detected through-space heteronuclear multiple quantum correlation NMR spectroscopy.

    PubMed

    Shen, Ming; Trébosc, J; Lafon, O; Pourpoint, F; Hu, Bingwen; Chen, Qun; Amoureux, J-P

    2014-08-01

    Connectivities and proximities between protons and low-gamma nuclei can be probed in solid-state NMR spectroscopy using two-dimensional (2D) proton-detected heteronuclear correlation, through Heteronuclear Multiple Quantum Correlation (HMQC) pulse sequence. The indirect detection via protons dramatically enhances the sensitivity. However, the spectra are often broadened along the indirect F1 dimension by the decay of heteronuclear multiple-quantum coherences under the strong (1)H-(1)H dipolar couplings. This work presents a systematic comparison of the performances of various decoupling schemes during the indirect t1 evolution period of dipolar-mediated HMQC (D-HMQC) experiment. We demonstrate that (1)H-(1)H dipolar decoupling sequences during t1, such as symmetry-based schemes, phase-modulated Lee-Goldburg (PMLG) and Decoupling Using Mind-Boggling Optimization (DUMBO), provide better resolution than continuous wave (1)H irradiation. We also report that high resolution requires the preservation of (1)H isotropic chemical shifts during the decoupling sequences. When observing indirectly broad spectra presenting numerous spinning sidebands, the D-HMQC sequence must be fully rotor-synchronized owing to the rotor-synchronized indirect sampling and dipolar recoupling sequence employed. In this case, we propose a solution to reduce artefact sidebands caused by the modulation of window delays before and after the decoupling application during the t1 period. Moreover, we show that (1)H-(1)H dipolar decoupling sequence using Smooth Amplitude Modulation (SAM) minimizes the t1-noise. The performances of the various decoupling schemes are assessed via numerical simulations and compared to 2D (1)H-{(13)C} D-HMQC experiments on [U-(13)C]-L-histidine⋅HCl⋅H2O at various magnetic fields and Magic Angle spinning (MAS) frequencies. Great resolution and sensitivity enhancements resulting from decoupling during t1 period enable the detection of heteronuclear correlation between aliphatic protons and ammonium (14)N sites in L-histidine⋅HCl⋅H2O. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Retardation effects on the dispersion and propagation of plasmons in metallic nanoparticle chains

    NASA Astrophysics Data System (ADS)

    Downing, Charles A.; Mariani, Eros; Weick, Guillaume

    2018-01-01

    We consider a chain of regularly-spaced spherical metallic nanoparticles, where each particle supports three degenerate localized surface plasmons. Due to the dipolar interaction between the nanoparticles, the localized plasmons couple to form extended collective modes. Using an open quantum system approach in which the collective plasmons are interacting with vacuum electromagnetic modes and which, importantly, readily incorporates retardation via the light-matter coupling, we analytically evaluate the resulting radiative frequency shifts of the plasmonic bandstructure. For subwavelength-sized nanoparticles, our analytical treatment provides an excellent quantitative agreement with the results stemming from laborious numerical calculations based on fully-retarded solutions to Maxwell’s equations. Indeed, the explicit expressions for the plasmonic spectrum which we provide showcase how including retardation gives rise to a logarithmic singularity in the bandstructure of transverse-polarized plasmons. We further study the impact of retardation effects on the propagation of plasmonic excitations along the chain. While for the longitudinal modes, retardation has a negligible effect, we find that the retarded dipolar interaction can significantly modify the plasmon propagation in the case of transverse-polarized modes. Moreover, our results elucidate the analogy between radiative effects in nanoplasmonic systems and the cooperative Lamb shift in atomic physics.

  8. Structure of calmodulin complexed with an olfactory CNG channel fragment and role of the central linker: residual dipolar couplings to evaluate calmodulin binding modes outside the kinase family.

    PubMed

    Contessa, Gian Marco; Orsale, Maria; Melino, Sonia; Torre, Vincent; Paci, Maurizio; Desideri, Alessandro; Cicero, Daniel O

    2005-03-01

    The NMR high-resolution structure of calmodulin complexed with a fragment of the olfactory cyclic-nucleotide gated channel is described. This structure shows features that are unique for this complex, including an active role of the linker connecting the N- and C-lobes of calmodulin upon binding of the peptide. Such linker is not only involved in the formation of an hydrophobic pocket to accommodate a bulky peptide residue, but it also provides a positively charged region complementary to a negative charge of the target. This complex of calmodulin with a target not belonging to the kinase family was used to test the residual dipolar coupling (RDC) approach for the determination of calmodulin binding modes to peptides. Although the complex here characterized belongs to the (1--14) family, high Q values were obtained with all the 1:1 complexes for which crystalline structures are available. Reduction of the RDC data set used for the correlation analysis to structured regions of the complex allowed a clear identification of the binding mode. Excluded regions comprise calcium binding loops and loops connecting the EF-hand motifs.

  9. Threshold-Voltage Shifts in Organic Transistors Due to Self-Assembled Monolayers at the Dielectric: Evidence for Electronic Coupling and Dipolar Effects.

    PubMed

    Aghamohammadi, Mahdieh; Rödel, Reinhold; Zschieschang, Ute; Ocal, Carmen; Boschker, Hans; Weitz, R Thomas; Barrena, Esther; Klauk, Hagen

    2015-10-21

    The mechanisms behind the threshold-voltage shift in organic transistors due to functionalizing of the gate dielectric with self-assembled monolayers (SAMs) are still under debate. We address the mechanisms by which SAMs determine the threshold voltage, by analyzing whether the threshold voltage depends on the gate-dielectric capacitance. We have investigated transistors based on five oxide thicknesses and two SAMs with rather diverse chemical properties, using the benchmark organic semiconductor dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene. Unlike several previous studies, we have found that the dependence of the threshold voltage on the gate-dielectric capacitance is completely different for the two SAMs. In transistors with an alkyl SAM, the threshold voltage does not depend on the gate-dielectric capacitance and is determined mainly by the dipolar character of the SAM, whereas in transistors with a fluoroalkyl SAM the threshold voltages exhibit a linear dependence on the inverse of the gate-dielectric capacitance. Kelvin probe force microscopy measurements indicate this behavior is attributed to an electronic coupling between the fluoroalkyl SAM and the organic semiconductor.

  10. Resolution enhancement using a new multiple-pulse decoupling sequence for quadrupolar nuclei.

    PubMed

    Delevoye, L; Trébosc, J; Gan, Z; Montagne, L; Amoureux, J-P

    2007-05-01

    A new decoupling composite pulse sequence is proposed to remove the broadening on spin S=1/2 magic-angle spinning (MAS) spectra arising from the scalar coupling with a quadrupolar nucleus I. It is illustrated on the (31)P spectrum of an aluminophosphate, AlPO(4)-14, which is broadened by the presence of (27)Al/(31)P scalar couplings. The multiple-pulse (MP) sequence has the advantage over the continuous wave (CW) irradiation to efficiently annul the scalar dephasing without reintroducing the dipolar interaction. The MP decoupling sequence is first described in a rotor-synchronised version (RS-MP) where one parameter only needs to be adjusted. It clearly avoids the dipolar recoupling in order to achieve a better resolution than using the CW sequence. In a second improved version, the MP sequence is experimentally studied in the vicinity of the perfect rotor-synchronised conditions. The linewidth at half maximum (FWHM) of 65 Hz using (27)Al CW decoupling decreases to 48 Hz with RS-MP decoupling and to 30 Hz with rotor-asynchronised MP (RA-MP) decoupling. The main phenomena are explained using both experimental results and numerical simulations.

  11. Dielectric relaxation in ionic liquid/dipolar solvent binary mixtures: A semi-molecular theory.

    PubMed

    Daschakraborty, Snehasis; Biswas, Ranjit

    2016-03-14

    A semi-molecular theory is developed here for studying dielectric relaxation (DR) in binary mixtures of ionic liquids (ILs) with common dipolar solvents. Effects of ion translation on DR time scale, and those of ion rotation on conductivity relaxation time scale are explored. Two different models for the theoretical calculations have been considered: (i) separate medium approach, where molecularities of both the IL and dipolar solvent molecules are retained, and (ii) effective medium approach, where the added dipolar solvent molecules are assumed to combine with the dipolar ions of the IL, producing a fictitious effective medium characterized via effective dipole moment, density, and diameter. Semi-molecular expressions for the diffusive DR times have been derived which incorporates the effects of wavenumber dependent orientational static correlations, ion dynamic structure factors, and ion translation. Subsequently, the theory has been applied to the binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) with water (H2O), and acetonitrile (CH3CN) for which experimental DR data are available. On comparison, predicted DR time scales show close agreement with the measured DR times at low IL mole fractions (x(IL)). At higher IL concentrations (x(IL) > 0.05), the theory over-estimates the relaxation times and increasingly deviates from the measurements with x(IL), deviation being the maximum for the neat IL by almost two orders of magnitude. The theory predicts negligible contributions to this deviation from the x(IL) dependent collective orientational static correlations. The drastic difference between DR time scales for IL/solvent mixtures from theory and experiments arises primarily due to the use of the actual molecular volume (V(mol)(dip)) for the rotating dipolar moiety in the present theory and suggests that only a fraction of V(mol)(dip) is involved at high x(IL). Expectedly, nice agreement between theory and experiments appears when experimental estimates for the effective rotational volume (V(eff)(dip)) are used as inputs. The fraction, V(eff)(dip)/V(mol)(dip), sharply decreases from ∼1 at pure dipolar solvent to ∼0.01 at neat IL, reflecting a dramatic crossover from viscosity-coupled hydrodynamic angular diffusion at low IL mole fractions to orientational relaxation predominantly via large angle jumps at high x(IL). Similar results are obtained on applying the present theory to the aqueous solution of an electrolyte guanidinium chloride (GdmCl) having a permanent dipole moment associated with the cation, Gdm(+).

  12. Quantum Electric Dipole Lattice - Water Molecules Confined to Nanocavities in Beryl

    NASA Astrophysics Data System (ADS)

    Dressel, Martin; Zhukova, Elena S.; Thomas, Victor G.; Gorshunov, Boris P.

    2018-02-01

    Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by confining H2O molecules to nanosize cages. Our THz and infrared spectra of water in the gemstone beryl evidence quantum tunneling of H2O molecules in the crystal lattice. The water molecules are spread out when confined in a nanocage. In combination with low-frequency dielectric measurements, we were also able to show that dipolar coupling among the H2O molecules leads towards a ferroelectric state at low temperatures. Upon cooling, a ferroelectric soft mode shifts through the THz range. Only quantum fluctuations prevent perfect macroscopic order to be fully achieved. Beside the significance to life science and possible application, nanoconfined water may become the prime example of a quantum electric dipolar lattice.

  13. Anomalous complete opaqueness in a sparse array of gold nanoparticle chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai Benfeng; Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084; Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu

    2011-08-22

    We report on an anomalous polarization-switching extinction effect in a sparse array of gold nanoparticle chains: under normal incidence of light, the array is almost transparent for one polarization; whereas it is fully opaque (with nearly zero transmittance) for the orthogonal polarization within a narrow band, even though the nanoparticles cover only a tiny fraction (say, 3.5%) of the transparent substrate surface. We reveal that the strong polarization-dependent short-range dipolar coupling and long-range radiative coupling of gold nanoparticles in this highly asymmetric array is responsible for this extraordinary effect.

  14. Magnetosphere-Regolith/Exosphere Coupling: Differences and Similarities to the Earth Magnetosphere-Ionosphere Coupling

    NASA Technical Reports Server (NTRS)

    Gjerleov, J. W.; Slavin, J. A.

    2001-01-01

    Of the three Mercury passes made by Mariner 10, the first and third went through the Mercury magnetosphere. The third encounter which occurred during northward IMF (interplanetary magnetic field) showed quiet time magnetic fields. In contrast the third encounter observed clear substorm signatures including dipolarization, field-aligned currents (FACs) and injection of energetic electrons at geosynchronous orbit. However, the determined cross-tail potential drop and the assumed height integrated conductance indicate that the FAC should be 2-50 times weaker than observed. We address this inconsistency and the fundamental problem of FAC closure whether this takes place in the regolith or in the exosphere. The current state of knowledge of the magnetosphere-exosphere/regolith coupling is addressed and similarities and differences to the Earth magnetosphere-ionosphere coupling are discussed.

  15. Conformation analysis and molecular mobility of ethylene and tetrafluoroethylene copolymer using solid-state 19F MAS and 1H --> 19F CP/MAS NMR spectroscopy.

    PubMed

    Aimi, Keitaro; Ando, Shinji

    2004-07-01

    The changes in the conformation and molecular mobility accompanied by a phase transition in the crystalline domain were analyzed for ethylene (E) and tetrafluoroethylene (TFE) copolymer, ETFE, using variable-temperature (VT) solid-state 19F magic angle spinning (MAS) and 1H --> 19F cross-polarization (CP)/MAS NMR spectroscopy. The shifts of the signals for fluorines in TFE units to higher frequency and the continuing decrease and increase in the T1rho(F) values suggest that conformational exchange motions exist in the crystalline domain between 42 and 145 degrees C. Quantum chemical calculations of magnetic shielding constants showed that the high-frequency shift of TFE units should be induced by trans to gauche conformational changes at the CH2-CF2 linkage in the E-TFE unit. Although the 19F signals of the crystalline domain are substantially overlapped with those of the amorphous domain at ambient probe temperature (68 degrees C), they were successfully distinguished by using the dipolar filter and spin-lock pulse sequences at 145 degrees C. The dipolar coupling constants for the crystalline domain, which can be estimated by fitting the dipolar oscillation behaviors in the 1H --> 19F CP curve, showed a significant decrease with increasing temperature from 42 to 145 degrees C. This is due to the averaging of 1H-19F dipolar interactions originating from the molecular motion in the crystalline domain. The increase in molecular mobility in the crystalline domain was clearly shown by VT T1rho(F) and 1H --> 19F CP measurements in the phase transition temperature range. Copyright 2004 John Wiley & Sons, Ltd.

  16. The aluminum ordering in aluminosilicates: a dipolar 27Al NMR spectroscopy study.

    PubMed

    Gee, Becky A

    2004-01-01

    The spatial ordering of aluminum atoms in CsAl(SiO3)2 and 3Al2O3.2SiO2 was probed by 27Al dipolar solid-state NMR spectroscopy. The 27Al response to a Hahn spin-echo pulse sequence in a series of aluminum-containing model crystalline compounds demonstrates that quantitative 27Al homonuclear dipolar second moments can be obtained to within +/-20% of the theoretical values, if evaluation of the spin-echo response curve is limited to short evolution periods (2t1 < or = 0.10 ms). Additionally, selective excitation of the central transition m = 1/2 --> -1/2 is necessary in order to ensure quantitative results. Restriction of spin exchange affecting the dephasing of the magnetization may decelerate the spin-echo decay at longer evolution periods. Considering these restraints, the method was used to probe the spatial distribution of aluminum atoms among the tetrahedral sites in two aluminosilicate materials. Experimental 27Al spin-echo response data for the aluminosilicates CsAl(SiO3)2 (synthetic pollucite) and 3Al2O3.2SiO2 (mullite) are compared with theoretical data based on (I) various degrees of aluminum-oxygen-aluminum bond formation among tetrahedrally coordinated aluminum atoms (Al(T(d) )-O-Al(T(d) )) and (II) the maximum avoidance of Al(T(d) )-O-Al(T(d) ) bonding. Analysis of the second moment values and resulting echo decay responses suggests that partial suppression of spin exchange among aluminum atoms in crystallographically distinct sites may contribute to the 27Al spin echo decay in 3Al2O3.2SiO2, thus complicating quantitative analysis of the data. Silicon-29 and aluminum-27 magic angle spinning (MAS) NMR spectra of 3Al2O3.2SiO2 are consistent with those previously reported. The experimental 27Al spin-echo response behavior of CsAl(SiO3)2 differs from the theoretical response behavior based on the maximum avoidance of Al-O-Al bonding between tetrahedral aluminum sites in CsAl(SiO3)2. A single unresolved resonance is observed in both the silicon-29 and aluminum-27 MAS spectra of CsAl(SiO3)2. Copyright 2003 John Wiley & Sons, Ltd.

  17. Back-clocking of Fe2+/Fe1+ spin states in a H2-producing catalyst by advanced EPR

    NASA Astrophysics Data System (ADS)

    Stathi, Panagiota; Mitrikas, George; Sanakis, Yiannis; Louloudi, Maria; Deligiannakis, Yiannis

    2013-10-01

    A mononuclear Fe-(P(PPh2)3) ((P(PPh2)3) = tris[2-diphenylphospino)ethyl]phosphine) catalyst was studied in situ under catalytic conditions using advanced electron paramagnetic resonance (EPR) techniques. Fe-(P(PPh2)3) efficiently catalyses H2 production using HCOOH as substrate. Dual-mode continuous-wave (CW) EPR, used to study the initial Fe2+(S = 2) state, shows that the complex is characterised by a - rather small - zero field splitting parameter Δ = 0.45 cm-1 and geff = 8.0. In the presence of HCOOH substrate the complex evolves and a unique Fe1+(S = 1/2) state is trapped. The Fe1+ atom is coordinated by four 31P nuclei in a pseudo-C3 symmetry. Only a small fraction of the Fe1+ spin density is delocalised onto the 31P atoms. Four-pulse electron spin echo envelope modulation (ESEEM) and two-dimensional hyperfine sublevel correlation spectroscopy (2D-HYSCORE) data reveal the existence of two types of 1H couplings. One corresponds to weak, purely dipolar coupling, tentatively assigned to phenyl protons. The most important is a - rather unusual - 1H coupling with negative Aiso (-2.75 MHz) and strong dipolar part (T = 5.5 MHz). This 1H is located on the pseudo-C3 symmetry axis of the Fe1+-(P(PPh2)3-HCOO- complex where one substrate molecule, formate anion, is coordinated on the Fe1+ atom.

  18. Two-dimensional solitons in dipolar Bose-Einstein condensates with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Jiang, Xunda; Fan, Zhiwei; Chen, Zhaopin; Pang, Wei; Li, Yongyao; Malomed, Boris A.

    2016-02-01

    We report families of two-dimensional (2D) composite solitons in spinor dipolar Bose-Einstein condensates, with two localized components linearly mixed by the spin-orbit coupling (SOC), and the intrinsic nonlinearity represented by the dipole-dipole interaction (DDI) between atomic magnetic moments polarized in plane by an external magnetic field. Recently, stable solitons were predicted in the form of semivortices (composites built of coupled fundamental and vortical components) in the 2D system combining the SOC and contact attractive interactions. Replacing the latter by the anisotropic long-range DDI, we demonstrate that, for a fixed norm of the soliton, the system supports a continuous family of stable spatially asymmetric vortex solitons (AVSs), parameterized by an offset of the pivot of the vortical component relative to its fundamental counterpart. The offset is limited by a certain maximum value, while the energy of the AVS practically does not depend on the offset. At small values of the norm, the vortex solitons are subject to a weak oscillatory instability. In the present system, with the Galilean invariance broken by the SOC, the composite solitons are set in motion by a kick the strength of which exceeds a certain depinning value. The kicked solitons feature a negative effective mass, drifting along a spiral trajectory opposite to the direction of the kick. A critical angular velocity, up to which the semivortices may follow rotation of the polarizing magnetic field, is found too.

  19. Impact of electronic coupling, symmetry, and planarization on one- and two-photon properties of triarylamines with one, two, or three diarylboryl acceptors.

    PubMed

    Makarov, Nikolay S; Mukhopadhyay, Sukrit; Yesudas, Kada; Brédas, Jean-Luc; Perry, Joseph W; Pron, Agnieszka; Kivala, Milan; Müllen, Klaus

    2012-04-19

    We have performed a study of the one- and two-photon absorption properties of a systematically varied series of triarylamino-compounds with one, two, or three attached diarylborane arms arranged in linear dipolar, bent dipolar, and octupolar geometries. Two-photon fluorescence excitation spectra were measured over a wide spectral range with femtosecond laser pulses. We found that on going from the single-arm to the two- and three-arm systems, the peak in two-photon absorption (2PA) cross-section is suppressed by factors of 3-11 for the lowest excitonic level associated with the electronic coupling of the arms, whereas it is enhanced by factors of 4-8 for the higher excitonic level. These results show that the coupling of arms redistributes the 2PA cross-section between the excitonic levels in a manner that strongly favors the higher-energy excitonic level. The experimental data on one- and two-photon cross-sections, ground- and excited-state transition dipole moments, and permanent dipole moment differences between the ground and the lowest excited states were compared to the results obtained from a simple Frenkel exciton model and from highly correlated quantum-chemical calculations. It has been found that planarization of the structure around the triarylamine moiety leads to a sizable increase in peak 2PA cross-section for the lowest excitonic level of the two-arm system, whereas for the three-arm system, the corresponding peak was weakened and shifted to lower energy. Our studies show the importance of the interarm coupling, number of arms, and structural planarity on both the enhancement and the suppression of two-photon cross-sections in multiarm molecules. © 2012 American Chemical Society

  20. 4'-alpha-C-Branched N,O-nucleosides: synthesis and biological properties.

    PubMed

    Chiacchio, Ugo; Genovese, Filippo; Iannazzo, Daniela; Piperno, Anna; Quadrelli, Paolo; Antonino, Corsaro; Romeo, Roberto; Valveri, Vincenza; Mastino, Antonio

    2004-07-15

    The synthesis of 4'-alpha-C-branched N,O-nucleosides has been described, based on the 1,3-dipolar cycloaddition of nitrones with vinyl acetate followed by coupling with silylated nucleobases, The obtained compounds have been evaluated for their activity against HSV-1, HSV-2, HTLV-1. Cytotoxicity and apoptotic activity have been also investigated: compound 10c shows moderate apoptotic activity in Molt-3 cells.

  1. A High-Resolution 3D Separated-Local-Field Experiment by Means of Magic-Angle Turning

    PubMed

    Hu; Alderman; Pugmire; Grant

    1997-05-01

    A 3D separated-local-field (SLF) experiment based on the 2D PHORMAT technique is described. In the 3D experiment, the conventional 2D SLF powder pattern for each chemically inequivalent carbon is separated according to their different isotropic chemical shifts. The dipolar coupling constant of a C-H pair, hence the bond distance, and the relative orientation of the chemical-shift tensor to the C-H vector can all be determined for the protonated carbons with a single measurement. As the sample turns at only about 30 Hz in a MAT experiment, the SLF patterns obtained approach those of a stationary sample, and an accuracy in the measurement similar to that obtained on a stationary sample is expected. The technique is demonstrated on 2,6-dimethoxynaphthalene, where the 13 C-1 H separated-local-field powder patterns for the six chemically inequivalent carbons are clearly identified and measured. The observed dipolar coupling for the methoxy carbon is effectively reduced by the fast rotation of the group about its C3 symmetry axis. The average angle between the C-H bond direction and the C3 rotation axis in the OCH3 group is found to be about 66°.

  2. Structure Calculation and Reconstruction of Discrete-State Dynamics from Residual Dipolar Couplings.

    PubMed

    Cole, Casey A; Mukhopadhyay, Rishi; Omar, Hanin; Hennig, Mirko; Valafar, Homayoun

    2016-04-12

    Residual dipolar couplings (RDCs) acquired by nuclear magnetic resonance (NMR) spectroscopy are an indispensable source of information in investigation of molecular structures and dynamics. Here, we present a comprehensive strategy for structure calculation and reconstruction of discrete-state dynamics from RDC data that is based on the singular value decomposition (SVD) method of order tensor estimation. In addition to structure determination, we provide a mechanism of producing an ensemble of conformations for the dynamical regions of a protein from RDC data. The developed methodology has been tested on simulated RDC data with ±1 Hz of error from an 83 residue α protein (PDB ID 1A1Z ) and a 213 residue α/β protein DGCR8 (PDB ID 2YT4 ). In nearly all instances, our method reproduced the structure of the protein including the conformational ensemble to within less than 2 Å. On the basis of our investigations, arc motions with more than 30° of rotation are identified as internal dynamics and are reconstructed with sufficient accuracy. Furthermore, states with relative occupancies above 20% are consistently recognized and reconstructed successfully. Arc motions with a magnitude of 15° or relative occupancy of less than 10% are consistently unrecognizable as dynamical regions within the context of ±1 Hz of error.

  3. Molecular self assembly and chiral recognition of copper octacyanophthalocyanine on Au(111): Interplay of intermolecular and molecule-substrate interactions.

    NASA Astrophysics Data System (ADS)

    Sk, Rejaul; Dhara, Barun; Miller, Joel; Deshpande, Aparna

    Submolecular resolution scanning tunneling microscopy (STM) of copper octacyanophthalocyanine, CuPc(CN)8, at 77 K demonstrates that these achiral molecules form a two dimensional (2D) tetramer-based self-assembly upon evaporation onto an atomically flat Au(111) substrate. They assemble in two different structurally chiral configurations upon adsorption on Au(111). Scanning tunneling spectroscopy (STS),acquired at 77 K, unveils the HOMO and LUMO energy levels of this self-assembly. Voltage dependent STM images show that each molecule in both the structurally chiral configurations individually becomes chiral by breaking the mirror symmetry due to the enhanced intermolecular dipolar coupling interaction at the LUMO energy while the individual molecules remain achiral at the HOMO energy and within the HOMO-LUMO gap. At the LUMO energy, the handedness of the each chiral molecule is decided by the direction of the dipolar coupling interaction in the tetramer unit cell. This preference for LUMO energy indicates that this chirality is purely electronic in nature and it manifests on top of the organizational chirality that is present in the self-assembly independent of the orbital energy. Supported by IISER Pune and DAE-BRNS, India (Project No. 2011/20/37C/17/BRNS).

  4. Silyl Glyoxylates. Conception and Realization of Flexible Conjunctive Reagents for Multicomponent Coupling

    PubMed Central

    Boyce, Gregory R.; Greszler, Stephen N.; Linghu, Xin; Malinowski, Justin T.; Nicewicz, David A.; Satterfield, Andrew D.; Schmitt, Daniel C.; Steward, Kimberly M.

    2012-01-01

    This Perspective describes the discovery and development of silyl glyoxylates, a new family of conjunctive reagents for use in multicomponent coupling reactions. The selection of the nucleophilic and electrophilic components determines whether the silyl glyoxylate reagent will function as a synthetic equivalent to the dipolar glycolic acid synthon, the glyoxylate anion synthon, or the α-keto ester homoenolate synthon. The ability to select for any of these reaction modes has translated to excellent structural diversity in the derived three- and four-component coupling adducts. Preliminary findings on the development of catalytic reactions using these reagents are detailed, as are the design and discovery of new reactions directed toward particular functional group arrays embedded within bioactive natural products. PMID:22414181

  5. Optically induced circular and axial birefringences in achiral fluids: an ab initio study of the optical Faraday effect

    NASA Astrophysics Data System (ADS)

    Baranowska, Angelika; Rizzo, Antonio; Coriani, Sonia

    2006-07-01

    A computational analysis of the effects (intensity-dependent change in the refractive index and the optical Faraday effect, OFE) induced in an achiral fluid by circularly polarized, linearly polarized or unpolarized light is presented. The connection between the molecular parameters appearing in the expression of the observable, as derived by Woźniak in the 1990s, and the appropriate linear and cubic frequency dependent response functions is made for the general case of both chiral and non-chiral fluid. The parameters which are non-vanishing in the case of achiral systems are then computed employing a coupled cluster singles and doubles wave function model and a wide choice of correlation consistent basis sets, for a set of reference systems, including a rare gas (neon), a non-dipolar (N2) and a dipolar (CO) molecule. Contributions due to magnetic and quadrupolar interactions between the fields and the gases are neglected, since they are in principle of much less importance than the purely electric dipolar interactions. Nevertheless a rough estimate of their size is given. The aim of the study is to assess the detectability of OFE. To this end, the ab initio results are compared with those obtained in this work for the closely related optical Kerr effect (OKE) and with those yielded by the classical Faraday effect.

  6. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2017-08-01

    In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft-tissue image contrast obtained by the emerging low-field magnetic resonance imaging techniques.

  7. Polarized neutron reflectivity from monolayers of self-assembled magnetic nanoparticles.

    PubMed

    Mishra, D; Petracic, O; Devishvili, A; Theis-Bröhl, K; Toperverg, B P; Zabel, H

    2015-04-10

    We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.

  8. Indirect measurement of N-14 quadrupolar coupling for NH3 intercalated in potassium graphite

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Fronko, R. M.; Resing, H. A.

    1987-01-01

    A method for indirect measurement of the nuclear quadrupolar coupling was developed and applied to NH3 molecules in the graphite intercalation compound K(NH3)4.3C24, which has a layered structure with alternating carbon and intercalant layers. Three triplets were observed in the H-1 NMR spectra of the compound. The value of the N-14 quadrupolar coupling constant of NH3 (3.7 MHz), determined indirectly from the H-1 NMR spectra, was intermediate between the gas value of 4.1 MHz and the solid-state value of 3.2 MHz. The method was also used to deduce the (H-1)-(H-1) and (N-14)-(H-1) dipolar interactions, the H-1 chemical shifts, and the molecular orientations and motions of NH3.

  9. Relative merits of rCW(A) and XiX heteronuclear spin decoupling in solid-state magic-angle-spinning NMR spectroscopy: A bimodal Floquet analysis.

    PubMed

    Equbal, Asif; Leskes, Michal; Nielsen, Niels Chr; Madhu, P K; Vega, Shimon

    2016-02-01

    We present a bimodal Floquet analysis of the recently introduced refocused continuous wave (rCW) solid-state NMR heteronuclear dipolar decoupling method and compare it with the similar looking X-inverse X (XiX) scheme. The description is formulated in the rf interaction frame and is valid for both finite and ideal π pulse rCW irradiation that forms the refocusing element in the rCW scheme. The effective heteronuclear dipolar coupling Hamiltonian up to first order is described. The analysis delineates the difference between the two sequences to different orders of their Hamiltonians for both diagonal and off-diagonal parts. All the resonance conditions observed in experiments and simulations have been characterised and their influence on residual line broadening is highlighted. The theoretical comparison substantiates the numerical simulations and experimental results to a large extent. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahalik, J. P.; Sumpter, Bobby G.; Kumar, Rajeev

    In this paper, we use a field theory approach to study the effects of permanent dipoles on interpenetration and free energy changes as a function of distance between two identical planar polymer brushes. Melts (i.e., solvent-free) and solvated brushes made up of polymers grafted on nonadsorbing substrates are studied. In particular, the weak coupling limit of the dipolar interactions is considered, which leads to concentration-dependent pairwise interactions, and the effects of orientational order are neglected. It is predicted that a gradual increase in the dipole moment of the polymer segments can lead to attractive interactions between the brushes at intermediatemore » separation distances. Finally, because classical theory of polymer brushes based on the strong stretching limit (SSL) and the standard self-consistent field theory (SCFT) simulations using the Flory’s χ parameter always predicts repulsive interactions at all separations, our work highlights the importance of dipolar interactions in tailoring and accurately predicting forces between polar polymeric interfaces in contact with each other.« less

  11. Single array of magnetic vortex disks uses in-plane anisotropy to create different logic gates

    NASA Astrophysics Data System (ADS)

    Vigo-Cotrina, H.; Guimarães, A. P.

    2017-11-01

    Using micromagnetic simulation, we show that in-plane uniaxial magnetic anisotropy (IPUA) can be used to obtain FAN-OUT, AND and OR gates in an array of coupled disks with magnetic vortex configuration. First, we studied the influence of the direction of application of the IPUA on the energy transfer time (τ) between two identical coupled nanodisks. We found that when the direction of the IPUA is along the x axis the magnetic interaction increases, allowing shorter values of τ , while the IPUA along the y direction has the opposite effect. The magnetic interactions between the nanodisks along x and y directions (the coupling integrals) as a function of the uniaxial anisotropy constant (Kσ) were obtained using a simple dipolar model. Next, we demonstrated that choosing a suitable direction of application of the IPUA, it is possible to create several different logic gates with a single array of coupled nanodisks.

  12. Propagation of Dipolarization Signatures Observed by the Van Allen Probes in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Motoba, T.; Gkioulidou, M.; Takahashi, K.; Kletzing, C.

    2017-12-01

    Dipolarization, the change of the local magnetic field from a stretched to a more dipolar configuration, is one of the most fundamental processes of magnetospheric physics. It is especially critical for the dynamics of the inner magnetosphere. The associated electric field accelerates ions and electrons and transports them closer to Earth. Such injected ions intensify the ring current, and electrons constitute the seed population of the radiation belt. Those ions and electrons may also excite various waves that play important roles in the enhancement and loss of the radiation belt electrons. Despite such critical consequences, the general characteristics of dipolarization in the inner magnetosphere still remain to be understood. The Van Allen Probes mission, which consists of two probes that orbit through the equatorial region of the inner magnetosphere, provides an ideal opportunity to examine dipolarization signatures in the core of the ring current. In the present study we investigate the spatial expansion of the dipolarization region by examining the correlation and time delay of dipolarization signatures observed by the two probes. Whereas in general it requires three-point measurements to deduce the propagation of a signal on a certain plane, we statically examined the observed time delays and found that dipolarization signatures tend to propagate radially inward as well as away from midnight. In this paper we address the propagation of dipolarization signatures quantitatively and compare with the propagation velocities reported previously based on observations made farther away from Earth. We also discuss how often and under what conditions the dipolarization region expands.

  13. Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail

    NASA Astrophysics Data System (ADS)

    Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.

    2017-12-01

    Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.

  14. Collective excitation frequencies and stationary states of trapped dipolar Bose-Einstein condensates in the Thomas-Fermi regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bijnen, R. M. W. van; Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1; Parker, N. G.

    We present a general method for obtaining the exact static solutions and collective excitation frequencies of a trapped Bose-Einstein condensate (BEC) with dipolar atomic interactions in the Thomas-Fermi regime. The method incorporates analytic expressions for the dipolar potential of an arbitrary polynomial density profile, thereby reducing the problem of handling nonlocal dipolar interactions to the solution of algebraic equations. We comprehensively map out the static solutions and excitation modes, including non-cylindrically-symmetric traps, and also the case of negative scattering length where dipolar interactions stabilize an otherwise unstable condensate. The dynamical stability of the excitation modes gives insight into the onsetmore » of collapse of a dipolar BEC. We find that global collapse is consistently mediated by an anisotropic quadrupolar collective mode, although there are two trapping regimes in which the BEC is stable against quadrupole fluctuations even as the ratio of the dipolar to s-wave interactions becomes infinite. Motivated by the possibility of a fragmented condensate in a dipolar Bose gas due to the partially attractive interactions, we pay special attention to the scissors modes, which can provide a signature of superfluidity, and identify a long-range restoring force which is peculiar to dipolar systems. As part of the supporting material for this paper we provide the computer program used to make the calculations, including a graphical user interface.« less

  15. Matter-Wave Optics of Diatomic Molecules

    DTIC Science & Technology

    2012-10-23

    81.013802 10/11/2012 32.00 Swati Singh , Pierre Meystre. Atomic probe Wigner tomography of a nanomechanical system, Physical Review A, (04 2010): 41804...PhysRevA.78.041801 10/11/2012 3.00 S. Singh , M. Bhattacharya, O. Dutta, P. Meystre. Coupling Nanomechanical Cantilevers to Dipolar Molecules...degenerate matter waves, Physical Review A, (02 2009): 0. doi: 10.1103/PhysRevA.79.023622 10/11/2012 10.00 M. Bhattacharya, S. Singh , P. -L. Giscard

  16. Chiral magnetism of magnetic adatoms generated by Rashba electrons

    NASA Astrophysics Data System (ADS)

    Bouaziz, Juba; dos Santos Dias, Manuel; Ziane, Abdelhamid; Benakki, Mouloud; Blügel, Stefan; Lounis, Samir

    2017-02-01

    We investigate long-range chiral magnetic interactions among adatoms mediated by surface states spin-splitted by spin-orbit coupling. Using the Rashba model, the tensor of exchange interactions is extracted wherein a thepseudo-dipolar interaction is found, in addition to the usual isotropic exchange interaction and the Dzyaloshinskii-Moriya interaction. We find that, despite the latter interaction, collinear magnetic states can still be stabilized by the pseudo-dipolar interaction. The interadatom distance controls the strength of these terms, which we exploit to design chiral magnetism in Fe nanostructures deposited on a Au(111) surface. We demonstrate that these magnetic interactions are related to superpositions of the out-of-plane and in-plane components of the skyrmionic magnetic waves induced by the adatoms in the surrounding electron gas. We show that, even if the interatomic distance is large, the size and shape of the nanostructures dramatically impacts on the strength of the magnetic interactions, thereby affecting the magnetic ground state. We also derive an appealing connection between the isotropic exchange interaction and the Dzyaloshinskii-Moriya interaction, which relates the latter to the first-order change of the former with respect to spin-orbit coupling. This implies that the chirality defined by the direction of the Dzyaloshinskii-Moriya vector is driven by the variation of the isotropic exchange interaction due to the spin-orbit interaction.

  17. Paramagnetic resonance studies of bistrispyrazolylborate cobalt(II) and related derivatives

    NASA Astrophysics Data System (ADS)

    Myers, William K.

    Herein, a systematic frozen solution electron-nuclear double resonance (ENDOR) study of high-spin Co(II) complexes is reported to demonstrate the efficacy of methyl substitutions as a means of separating dipolar and contact coupling, and further, to increase the utility of high-spin Co(II) as a spectroscopic probe for the ubiquitous, but spectroscopically-silent Zn(II) metalloenzymes. High-spin (hs) Co(II) has been subject of paramagnetic resonance studies for over 50 years and has been used as a spectroscopic probe for Zn metalloenzymes for over 35 years. However, as will be seen, the inherent complexity of the electronic properties of the cobaltous ion remains to be exploited to offer a wealth of information on Zn(II) enzymatic environments. Specifically, ENDOR measurements on bistrispyrazolylborate cobalt(II) confirm the utility of the novel method of methyl substitution to differentiate dipolar and Fermi contact couplings. An extensive set of electron paramagnetic resonance (EPR) simulations were performed. Software was developed to implement an ENDOR control interface. Finally, proton relaxation measurements were made in the range of 12-42 MHz, which were accounted for with the large g-value anisotropy of the Co(II) compounds. Taken as a whole, these studies point to the rich complexity of the electronic structure of high-spin cobalt(II) and, when sufficiently well-characterized, the great utility it has as a surrogate of biological Zn(II).

  18. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex.

    PubMed

    Ortega-Roldan, Jose Luis; Jensen, Malene Ringkjøbing; Brutscher, Bernhard; Azuaga, Ana I; Blackledge, Martin; van Nuland, Nico A J

    2009-05-01

    The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 muM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (K(d) = 132 +/- 13 muM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein-protein complexes.

  19. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex

    PubMed Central

    Ortega-Roldan, Jose Luis; Jensen, Malene Ringkjøbing; Brutscher, Bernhard; Azuaga, Ana I.; Blackledge, Martin; van Nuland, Nico A. J.

    2009-01-01

    The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 μM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (Kd = 132 ± 13 μM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein–protein complexes. PMID:19359362

  20. NMR dipolar constants of motion in liquid crystals: Jeener-Broekaert, double quantum coherence experiments and numerical calculation on a 10-spin cluster.

    PubMed

    Segnorile, H H; Bonin, C J; González, C E; Acosta, R H; Zamar, R C

    2009-10-01

    Two proton quasi-equilibrium states were previously observed in nematic liquid crystals, namely the S and W quasi-invariants. Even though the experimental evidence suggested that they originate in a partition of the spin dipolar energy into a strong and a weak part, respectively, from a theoretical viewpoint, the existence of an appropriate energy scale which allows such energy separation remains to be confirmed and a representation of the quasi-invariants is still to be given. We compare the dipolar NMR signals yielded both by the Jeener-Broekaert (JB) experiment as a function of the preparation time and the free evolution of the double quantum coherence (DQC) spectra excited from the S state, with numerical calculations carried out from first principles under different models for the dipolar quasi-invariants, in a 10-spin cluster which represents the 5CB (4(')-pentyl-4-biphenyl-carbonitrile) molecule. The calculated signals qualitatively agree with the experiments and the DQC spectra as a function of the single-quantum detection time are sensible enough to the different models to allow both to probe the physical nature of the initial dipolar-ordered state and to assign a subset of dipolar interactions to each constant of motion, which are compatible with the experiments. As a criterion for selecting a suitable quasi-equilibrium model of the 5CB molecule, we impose on the time evolution operator consistency with the occurrence of two dipolar quasi-invariants, that is, the calculated spectra must be unaffected by truncation of non-secular terms of the weaker dipolar energy. We find that defining the S quasi-invariant as the subset of the dipolar interactions of each proton with its two nearest neighbours yields a realistic characterization of the dipolar constants of motion in 5CB. We conclude that the proton-spin system of the 5CB molecule admits a partition of the dipolar energy into a bilinear strong and a multiple-spin weak contributions therefore providing two orthogonal constants of motion, which can be prepared and observed by means of the JB experiment. This feature, which implies the existence of two timescales of very different nature in the proton-spin dynamics, is ultimately dictated by the topology of the spin distribution in the dipole network and can be expected in other liquid crystals. Knowledge of the nature of the dipolar quasi-invariants will be useful in studies of dipolar-order relaxation, decoherence and multiple quantum NMR experiments where the initial state is a dipolar-ordered one.

  1. Toll-Like Receptor-9-Mediated Invasion in Breast Cancer

    DTIC Science & Technology

    2011-07-01

    Molecular Dynamics Simulations. Theoretical structural models were obtained from molecular dynamics simulations using explicit solvation by...with AMBER by MARDIGRAS. The solution structure was then derived by coupling the resulting NMR distance restraints with a molecular dynamic ...Overlay of NMR restrained structure (red) with theoretical molecular dynamic simulated annealing structure (blue). Energetic stability of the 9-mer

  2. Thermodynamics of ferrofluids in applied magnetic fields.

    PubMed

    Elfimova, Ekaterina A; Ivanov, Alexey O; Camp, Philip J

    2013-10-01

    The thermodynamic properties of ferrofluids in applied magnetic fields are examined using theory and computer simulation. The dipolar hard sphere model is used. The second and third virial coefficients (B(2) and B(3)) are evaluated as functions of the dipolar coupling constant λ, and the Langevin parameter α. The formula for B(3) for a system in an applied field is different from that in the zero-field case, and a derivation is presented. The formulas are compared to results from Mayer-sampling calculations, and the trends with increasing λ and α are examined. Very good agreement between theory and computation is demonstrated for the realistic values λ≤2. The analytical formulas for the virial coefficients are incorporated in to various forms of virial expansion, designed to minimize the effects of truncation. The theoretical results for the equation of state are compared against results from Monte Carlo simulations. In all cases, the so-called logarithmic free energy theory is seen to be superior. In this theory, the virial expansion of the Helmholtz free energy is re-summed in to a logarithmic function. Its success is due to the approximate representation of high-order terms in the virial expansion, while retaining the exact low-concentration behavior. The theory also yields the magnetization, and a comparison with simulation results and a competing modified mean-field theory shows excellent agreement. Finally, the putative field-dependent critical parameters for the condensation transition are obtained and compared against existing simulation results for the Stockmayer fluid. Dipolar hard spheres do not undergo the transition, but the presence of isotropic attractions, as in the Stockmayer fluid, gives rise to condensation even in zero field. A comparison of the relative changes in critical parameters with increasing field strength shows excellent agreement between theory and simulation, showing that the theoretical treatment of the dipolar interactions is robust.

  3. Novel phase transitions in coupled dipolar chains.

    NASA Astrophysics Data System (ADS)

    Mellado, Paula

    We study the properties of a classical magnetic system realized by two chains of U(1) rotors coupled via Coulomb interactions in the dumbbell approach. Magnets in chain I and chain II rotate in the x-z and y-z planes respectively. Ground state correlations and the system wave excitation spectrum are found using spin wave theory. The displacement ''d'' of chain II from chain I induces dynamics in the system and yields two first order magnetic phase transitions. The transitions happen at critical displacements, which notably, are independent of the magnetic charge at the tips of the magnets, suggesting a geometrical origin. This work was supported by Fondecyt under Grant No. 1160239.

  4. Phase behavior of a simple dipolar fluid under shear flow in an electric field.

    PubMed

    McWhirter, J Liam

    2008-01-21

    Nonequilibrium molecular dynamics simulations are performed on a dense simple dipolar fluid under a planar Couette shear flow. Shear generates heat, which is removed by thermostatting terms added to the equations of motion of the fluid particles. The spatial structure of simple fluids at high shear rates is known to depend strongly on the thermostatting mechanism chosen. Kinetic thermostats are either biased or unbiased: biased thermostats neglect the existence of secondary flows that appear at high shear rates superimposed upon the linear velocity profile of the fluid. Simulations that employ a biased thermostat produce a string phase where particles align in strings with hexagonal symmetry along the direction of the flow. This phase is known to be a simulation artifact of biased thermostatting, and has not been observed by experiments on colloidal suspensions under shear flow. In this paper, we investigate the possibility of using a suitably directed electric field, which is coupled to the dipole moments of the fluid particles, to stabilize the string phase. We explore several thermostatting mechanisms where either the kinetic or configurational fluid degrees of freedom are thermostated. Some of these mechanisms do not yield a string phase, but rather a shear-thickening phase; in this case, we find the influence of the dipolar interactions and external field on the packing structure, and in turn their influence on the shear viscosity at the onset of this shear-thickening regime.

  5. Effect of simple solutes on the long range dipolar correlations in liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Anishetty, Ramesh, E-mail: ramesha@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in

    2016-03-14

    Intermolecular correlations in liquid water at ambient conditions have generally been characterized through short range density fluctuations described through the atomic pair distribution functions. Recent numerical and experimental results have suggested that such a description of order or structure in liquid water is incomplete and there exist considerably longer ranged orientational correlations in water that can be studied through dipolar correlations. In this study, using large scale classical, atomistic molecular dynamics simulations using TIP4P-Ew and TIP3P models of water, we show that salts such as sodium chloride (NaCl), potassium chloride (KCl), caesium chloride (CsCl), and magnesium chloride (MgCl{sub 2}) havemore » a long range effect on the dipolar correlations, which cannot be explained by the notion of structure making and breaking by dissolved ions. Observed effects are explained through orientational stratification of water molecules around ions and their long range coupling to the global hydrogen bond network by virtue of the sum rule for water. The observations for single hydrophilic solutes are contrasted with the same for a single methane (CH{sub 4}) molecule. We observe that even a single small hydrophobe can result in enhancement of long range orientational correlations in liquid water, contrary to the case of dissolved ions, which have been observed to have a reducing effect. The observations from this study are discussed in the context of hydrophobic effect.« less

  6. Advances in the REDCAT software package

    PubMed Central

    2013-01-01

    Background Residual Dipolar Couplings (RDCs) have emerged in the past two decades as an informative source of experimental restraints for the study of structure and dynamics of biological macromolecules and complexes. The REDCAT software package was previously introduced for the analysis of molecular structures using RDC data. Here we report additional features that have been included in this software package in order to expand the scope of its analyses. We first discuss the features that enhance REDCATs user-friendly nature, such as the integration of a number of analyses into one single operation and enabling convenient examination of a structural ensemble in order to identify the most suitable structure. We then describe the new features which expand the scope of RDC analyses, performing exercises that utilize both synthetic and experimental data to illustrate and evaluate different features with regard to structure refinement and structure validation. Results We establish the seamless interaction that takes place between REDCAT, VMD, and Xplor-NIH in demonstrations that utilize our newly developed REDCAT-VMD and XplorGUI interfaces. These modules enable visualization of RDC analysis results on the molecular structure displayed in VMD and refinement of structures with Xplor-NIH, respectively. We also highlight REDCAT’s Error-Analysis feature in reporting the localized fitness of a structure to RDC data, which provides a more effective means of recognizing local structural anomalies. This allows for structurally sound regions of a molecule to be identified, and for any refinement efforts to be focused solely on locally distorted regions. Conclusions The newly engineered REDCAT software package, which is available for download via the WWW from http://ifestos.cse.sc.edu, has been developed in the Object Oriented C++ environment. Our most recent enhancements to REDCAT serve to provide a more complete RDC analysis suite, while also accommodating a more user-friendly experience, and will be of great interest to the community of researchers and developers since it hides the complications of software development. PMID:24098943

  7. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.

    PubMed

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2017-04-18

    Protons are vastly abundant in a wide range of exciting macromolecules and thus can be a powerful probe to investigate the structure and dynamics at atomic resolution using solid-state NMR (ssNMR) spectroscopy. Unfortunately, the high signal sensitivity, afforded by the high natural-abundance and high gyromagnetic ratio of protons, is greatly compromised by severe line broadening due to the very strong 1 H- 1 H dipolar couplings. As a result, protons are rarely used, in spite of the desperate need for enhancing the sensitivity of ssNMR to study a variety of systems that are not amenable for high resolution investigation using other techniques including X-ray crystallography, cryo-electron microscopy, and solution NMR spectroscopy. Thanks to the remarkable improvement in proton spectral resolution afforded by the significant advances in magic-angle-spinning (MAS) probe technology, 1 H ssNMR spectroscopy has recently attracted considerable attention in the structural and dynamics studies of various molecular systems. However, it still remains a challenge to obtain narrow 1 H spectral lines, especially from proteins, without resorting to deuteration. In this Account, we review recent proton-based ssNMR strategies that have been developed in our laboratory to further improve proton spectral resolution without resorting to chemical deuteration for the purposes of gaining atomistic-level insights into molecular structures of various crystalline solid systems, using small molecules and peptides as illustrative examples. The proton spectral resolution enhancement afforded by the ultrafast MAS frequencies up to 120 kHz is initially discussed, followed by a description of an ensemble of multidimensional NMR pulse sequences, all based on proton detection, that have been developed to obtain in-depth information from dipolar couplings and chemical shift anisotropy (CSA). Simple single channel multidimensional proton NMR experiments could be performed to probe the proximity of protons for structure determination using 1 H- 1 H dipolar couplings and to evaluate the changes in chemical environments as well as the relative orientation to the external magnetic field using proton CSA. Due to the boost in signal sensitivity enabled by proton detection under ultrafast MAS, by virtue of high proton natural abundance and gyromagnetic ratio, proton-detected multidimensional experiments involving low-γ nuclei can now be accomplished within a reasonable time, while the higher dimension also offers additional resolution enhancement. In addition, the application of proton-based ssNMR spectroscopy under ultrafast MAS in various challenging and crystalline systems is also presented. Finally, we briefly discuss the limitations and challenges pertaining to proton-based ssNMR spectroscopy under ultrafast MAS conditions, such as the presence of high-order dipolar couplings, friction-induced sample heating, and limited sample volume. Although there are still a number of challenges that must be circumvented by further developments in radio frequency pulse sequences, MAS probe technology and approaches to prepare NMR-friendly samples, proton-based ssNMR has already gained much popularity in various research domains, especially in proteins where uniform or site-selective deuteration can be relatively easily achieved. In addition, implementation of the recently developed fast data acquisition approaches would also enable further developments in the design and applications of proton-based ultrafast MAS multidimensional ssNMR techniques.

  8. Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Edler, D.; Mishra, C.; Wächtler, F.; Nath, R.; Sinha, S.; Santos, L.

    2017-08-01

    Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.

  9. Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates.

    PubMed

    Edler, D; Mishra, C; Wächtler, F; Nath, R; Sinha, S; Santos, L

    2017-08-04

    Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.

  10. Energetic electron injections and dipolarization events in Mercury's magnetotail: Substorm dynamics

    NASA Astrophysics Data System (ADS)

    Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Imber, S.; Baker, D. N.; Lawrence, D. J.

    2017-12-01

    Despite its small size, Mercury's terrestrial-like magnetosphere experiences brief, yet intense, substorm intervals characterized by features similar to at Earth: loading/unloading of the tail lobes with open magnetic flux, dipolarization of the magnetic field at the inner edge of the plasma sheet, and, the focus of this presentation, energetic electron injection. We use the Gamma-Ray Spectrometer's high-time resolution (10 ms) energetic electron measurements to determine the relationship between substorm activity and energetic electron injections coincident with dipolarization fronts in the magnetotail. These dipolarizations were detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. We estimate the typical flow channel to be 0.15 RM, planetary convection speed of 750 km/s, cross-tail potential drop of 7 kV, and flux transport of 0.08 MWb for each dipolarization event, suggesting multiple simultaneous and sequential dipolarizations are required to unload the >1 MWb of magnetic flux typically returned to the dayside magnetosphere during a substorm interval. Indeed, while we observe most dipolarization-injections to be isolated or in small chains of events (i.e., 1-3 events), intervals of sawtooth-like injections with >20 sequential events are also present. The typical separation between dipolarization-injection events is 10 s. Magnetotail dipolarization, in addition to being a powerful source of electron acceleration, also plays a significant role in the substorm process at Mercury.

  11. Correction of spin diffusion during iterative automated NOE assignment

    NASA Astrophysics Data System (ADS)

    Linge, Jens P.; Habeck, Michael; Rieping, Wolfgang; Nilges, Michael

    2004-04-01

    Indirect magnetization transfer increases the observed nuclear Overhauser enhancement (NOE) between two protons in many cases, leading to an underestimation of target distances. Wider distance bounds are necessary to account for this error. However, this leads to a loss of information and may reduce the quality of the structures generated from the inter-proton distances. Although several methods for spin diffusion correction have been published, they are often not employed to derive distance restraints. This prompted us to write a user-friendly and CPU-efficient method to correct for spin diffusion that is fully integrated in our program ambiguous restraints for iterative assignment (ARIA). ARIA thus allows automated iterative NOE assignment and structure calculation with spin diffusion corrected distances. The method relies on numerical integration of the coupled differential equations which govern relaxation by matrix squaring and sparse matrix techniques. We derive a correction factor for the distance restraints from calculated NOE volumes and inter-proton distances. To evaluate the impact of our spin diffusion correction, we tested the new calibration process extensively with data from the Pleckstrin homology (PH) domain of Mus musculus β-spectrin. By comparing structures refined with and without spin diffusion correction, we show that spin diffusion corrected distance restraints give rise to structures of higher quality (notably fewer NOE violations and a more regular Ramachandran map). Furthermore, spin diffusion correction permits the use of tighter error bounds which improves the distinction between signal and noise in an automated NOE assignment scheme.

  12. Precise single-qubit control of the reflection phase of a photon mediated by a strongly-coupled ancilla–cavity system

    NASA Astrophysics Data System (ADS)

    Motzoi, F.; Mølmer, K.

    2018-05-01

    We propose to use the interaction between a single qubit atom and a surrounding ensemble of three level atoms to control the phase of light reflected by an optical cavity. Our scheme employs an ensemble dark resonance that is perturbed by the qubit atom to yield a single-atom single photon gate. We show here that off-resonant excitation towards Rydberg states with strong dipolar interactions offers experimentally-viable regimes of operations with low errors (in the 10‑3 range) as required for fault-tolerant optical-photon, gate-based quantum computation. We also propose and analyze an implementation within microwave circuit-QED, where a strongly-coupled ancilla superconducting qubit can be used in the place of the atomic ensemble to provide high-fidelity coupling to microwave photons.

  13. Bose-Einstein condensation and superfluidity of dipolar excitons in a phosphorene double layer

    NASA Astrophysics Data System (ADS)

    Berman, Oleg L.; Gumbs, Godfrey; Kezerashvili, Roman Ya.

    2017-07-01

    We study the formation of dipolar excitons and their superfluidity in a phosphorene double layer. The analytical expressions for the single dipolar exciton energy spectrum and wave function are obtained. It is predicted that a weakly interacting gas of dipolar excitons in a double layer of black phosphorus exhibits superfluidity due to the dipole-dipole repulsion between the dipolar excitons. In calculations are employed the Keldysh and Coulomb potentials for the interaction between the charge carriers to analyze the influence of the screening effects on the studied phenomena. It is shown that the critical velocity of superfluidity, the spectrum of collective excitations, concentrations of the superfluid and normal component, and mean-field critical temperature for superfluidity are anisotropic and demonstrate the dependence on the direction of motion of dipolar excitons. The critical temperature for superfluidity increases if the exciton concentration and the interlayer separation increase. It is shown that the dipolar exciton binding energy and mean-field critical temperature for superfluidity are sensitive to the electron and hole effective masses. The proposed experiment to observe a directional superfluidity of excitons is addressed.

  14. Radiation Database for Earth and Mars Entry

    DTIC Science & Technology

    2008-11-17

    SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18 . NUMBER OF PAGES 40 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39- 18 wall, and zero otherwise. The radiative...coupling scheme, we have the additional selection rules for the electric dipolar transition ∆S = 0, (16) ∆L = 0,±1, (17) L = 0 6↔ L = 0 ( 18 ) where we have

  15. 13C-13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: Applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination

    NASA Astrophysics Data System (ADS)

    Ishii, Yoshitaka

    2001-05-01

    A technique is presented to recouple homonuclear dipolar couplings between dilute spin pairs such as 13C-13C systems under very fast magic angle spinning (MAS) in solid-state nuclear magnetic resonance (NMR) spectroscopy. The presented technique, finite pulse rf driven recoupling (fpRFDR), restores homonuclear dipolar interactions based on constructive usage of finite pulse-width effects in a phase- and symmetry-cycled π-pulse train in which a rotor-synchronous π pulse is applied every rotation period. The restored effective dipolar interaction has the form of a zero-quantum dipolar Hamiltonian for static solids, whose symmetry in spin space is different from that obtained by conventional rf driven recoupling (RFDR) techniques. It is demonstrated that the efficiency of recoupling by fpRFDR is not strongly dependent on chemical shift differences or resonance offsets in contrast to previous recoupling methods under very fast MAS. To realize distance measurements without effects of spin relaxation, a constant-time version of fpRFDR (CT-fpRFDR) is introduced, in which the effective evolution period is varied by refocusing dipolar evolution with a rotor-synchronized solid echo while the total recoupling period is kept constant. From CT-fpRFDR experiments at a spinning speed of 30.3 kHz in a field of 17.6 T, the 13C-13C distance of [1-13C]Ala-[1-13C]Gly-Gly was determined to be 3.27 Å, which agrees well with the value of 3.20 Å obtained by x-ray diffraction. Also, two-dimensional (2D) 13C/13C chemical-shift correlation NMR spectrum in a field of 9.4 T was obtained with fpRFDR for fibrils of the segmentally 13C- and 15N-labeled Alzheimer's β-Amyloid fragments, Aβ16-22 (residues 16-22 taken from the 40-residue Aβ peptide) in which Leu-17 through Ala-21 are uniformly 13C- and 15N-labeled. Most 13C resonances for the main chain as well as for the side chains are assigned based on 2D 13C/13C chemical-shift correlation patterns specific to amino-acid types. Examination of the obtained 13C chemical shifts revealed the formation of β-strand across the entire molecule of Aβ16-22. Possibility of high throughput determination of global main-chain structures based on 13C shifts obtained from 2D 13C/13C chemical-shift correlation under very fast MAS is also discussed for uniformly/segmentally 13C-labeled protein/peptide samples.

  16. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  17. Rotation Dynamics Do Not Determine the Unexpected Isotropy of Methyl Radical EPR Spectra.

    PubMed

    Benetis, Nikolas P; Dmitriev, Yurij; Mocci, Francesca; Laaksonen, Aatto

    2015-09-03

    A simple first-principles electronic structure computation, further qc (quantum chemistry) computation, of the methyl radical gives three equal hf (hyperfine) couplings for the three protons with the unpaired electron. The corresponding dipolar tensors were notably rhombic and had different orientations and regular magnitude components, as they should, but what the overall A-tensor was seen by the electron spin is a different story! The final g = (2.002993, 2.002993, 2.002231) tensor and the hf coupling results obtained in vacuum, at the B3LYP/EPRIII level of theory clearly indicate that in particular the above A = (-65.19, -65.19, 62.54) MHz tensor was axial to a first approximation without considering any rotational dynamics for the CH3. This approximation was not applicable, however, for the trifluoromethyl CF3 radical, a heavier and nonplanar rotor with very anisotropic hf coupling, used here for comparison. Finally, a derivation is presented explaining why there is actually no need for the CH3 radicals to consider additional rotational dynamics in order for the electron to obtain an axially symmetric hf (hyperfine) tensor by considering the simultaneous dipolar couplings of the three protons. An additional consequence is an almost isotropic A-tensor for the electron spin of the CH3 radical. To the best of our knowledge, this point has not been discussed in the literature before. The unexpected isotropy of the EPR parameters of CH3 was solely attributed to the rotational dynamics and was not clearly separated from the overall symmetry of the species. The present theoretical results allowed a first explanation of the "forbidden" satellite lines in the CH3 EPR spectrum. The satellites are a fingerprint of the radical rotation, helping thus in distinguishing the CH3 reorientation from quantum rotation at very low temperatures.

  18. A test of the significance of intermolecular vibrational coupling in isotopic fractionation

    DOE PAGES

    Herman, Michael F.; Currier, Robert P.; Peery, Travis B.; ...

    2017-07-15

    Intermolecular coupling of dipole moments is studied for a model system consisting of two diatomic molecules (AB monomers) arranged co-linearly and which can form non-covalently bound dimers. The dipolar coupling is a function of the bond length in each molecule as well as of the distance between the centers-of-mass of the two molecules. The calculations show that intermolecular coupling of the vibrations results in an isotope-dependent modification of the AB-AB intermolecular potential. This in turn alters the energies of the low-lying bound states of the dimers, producing isotope-dependent changes in the AB-AB dimer partition function. Explicit inclusion of intermolecular vibrationalmore » coupling then changes the predicted gas-dimer isotopic fractionation. In addition, a mass dependence in the intermolecular potential can also result in changes in the number of bound dimer states in an equilibrium mixture. This in turn leads to a significant dimer population shift in the model monomer-dimer equilibrium system considered here. Finally, the results suggest that intermolecular coupling terms should be considered when probing the origins of isotopic fractionation.« less

  19. When Ethyl Isocyanoacetate Meets Isatins: A 1,3-Dipolar/Inverse 1,3-Dipolar/Olefination Reaction for Access to 3-Ylideneoxindoles.

    PubMed

    Yuan, Wen-Kui; Cui, Tao; Liu, Wei; Wen, Li-Rong; Li, Ming

    2018-03-16

    A new CuI/1,10-phen-catalyzed reaction for the synthesis of 3-ylideneoxindoles from readily available isatins and ethyl isocyanoacetate, in which ethyl isocyanoacetate acts as a latent two-carbon donor like the Wittig reagent, is reported. A tandem procedure including 1,3-dipolar cycloaddition/inverse 1,3-dipolar ring opening/olefination allows the preparation of 3-ylideneoxindoles with broad functional group tolerance.

  20. Equilibrium phases of dipolar lattice bosons in the presence of random diagonal disorder

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Safavi-Naini, A.; Capogrosso-Sansone, B.

    2018-01-01

    Ultracold gases offer an unprecedented opportunity to engineer disorder and interactions in a controlled manner. In an effort to understand the interplay between disorder, dipolar interactions, and quantum degeneracy, we study two-dimensional hard-core dipolar lattice bosons in the presence of on-site bound disorder. Our results are based on large-scale path-integral quantum Monte Carlo simulations by the worm algorithm. We study the ground-state phase diagram at a fixed half-integer filling factor for which the clean system is either a superfluid at a lower dipolar interaction strength or a checkerboard solid at a larger dipolar interaction strength. We find that, even for weak dipolar interactions, superfluidity is destroyed in favor of a Bose glass at a relatively low disorder strength. Interestingly, in the presence of disorder, superfluidity persists for values of the dipolar interaction strength for which the clean system is a checkerboard solid. At a fixed disorder strength, as the dipolar interaction is increased, superfluidity is destroyed in favor of a Bose glass. As the interaction is further increased, the system eventually develops extended checkerboard patterns in the density distribution. Due to the presence of disorder, though, grain boundaries and defects, responsible for a finite residual compressibility, are present in the density distribution. Finally, we study the robustness of the superfluid phase against thermal fluctuations.

  1. Optimized ventricular restraint therapy: adjustable restraint is superior to standard restraint in an ovine model of ischemic cardiomyopathy.

    PubMed

    Lee, Lawrence S; Ghanta, Ravi K; Mokashi, Suyog A; Coelho-Filho, Otavio; Kwong, Raymond Y; Kwon, Michael; Guan, Jian; Liao, Ronglih; Chen, Frederick Y

    2013-03-01

    The effects of ventricular restraint level on left ventricular reverse remodeling are not known. We hypothesized that restraint level affects the degree of reverse remodeling and that restraint applied in an adjustable manner is superior to standard, nonadjustable restraint. This study was performed in 2 parts using a model of chronic heart failure in the sheep. In part I, restraint was applied at control (0 mm Hg, n = 3), low (1.5 mm Hg, n = 3), and high (3.0 mm Hg, n = 3) levels with an adjustable and measurable ventricular restraint (AMVR) device. Restraint level was not altered throughout the 2-month treatment period. Serial restraint level measurements and transthoracic echocardiography were performed. In part II, restraint was applied with the AMVR device set at 3.0 mm Hg (n = 6) and adjusted periodically to maintain that level. This was compared with restraint applied in a standard, nonadjustable manner using a mesh wrap (n = 6). All subjects were followed up for 2 months with serial magnetic resonance imaging. In part I, there was greater and earlier reverse remodeling in the high restraint group. In both groups, the rate of reverse remodeling peaked and then declined as the measured restraint level decreased with progression of reverse remodeling. In part II, adjustable restraint resulted in greater reverse remodeling than standard restraint. Left ventricular end diastolic volume decreased by 12.7% (P = .005) with adjustable restraint and by 5.7% (P = .032) with standard restraint. Left ventricular ejection fraction increased by 18.9% (P = .014) and 14.4% (P < .001) with adjustable and standard restraint, respectively. Restraint level affects the rate and degree of reverse remodeling and is an important determinant of therapy efficacy. Adjustable restraint is more effective than nonadjustable restraint in promoting reverse remodeling. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  2. Restraint practices in Australasian emergency departments.

    PubMed

    Cannon, M E; Sprivulis, P; McCarthy, J

    2001-08-01

    The objective of this study was to estimate the use of restraint techniques and evaluate restraint policies and training in Australasian emergency departments A survey of 116 Australasian emergency departments was conducted to determine the type, indications/contraindications, training, policies, documentation and audit requirements for restraint. The overall estimated rate of patient restraint is 3.3 episodes per 1000 presentations. The commonest indications for restraint are violence or threatened violence (52%), psychosis (32%) and acute brain syndrome (10%). Major contraindications are medical instability, risk of harm to staff in applying restraint and the availability of alternatives to restraint. Chemical restraint is used in all emergency departments surveyed. The commonest agents used are haloperidol (93%), midazolam (82%) and diazepam (59%). At least one benzodiazepine and one major tranquilliser are used in 97% of emergency departments. Manual restraint (87%) is frequently used as a prelude to chemical or, less frequently, mechanical restraint (69%). Seclusion restraint is used in 23% of Australasian emergency departments. Formal training is most commonly undertaken for chemical restraint, being used in 33% of departments surveyed. Less than half of the departments have written policies guiding the use of restraint, and only 11% audit their use of restraint. A specific form for restraint documentation is used in only one emergency department. Patient restraint is a common procedure in Australasian emergency departments. There is little formal training in, or documentation or audit of, restraint practices in Australasian emergency departments, despite the important clinical, occupational health and medical legal issues associated with the use of restraint.

  3. Site-resolved multiple-quantum filtered correlations and distance measurements by magic-angle spinning NMR: Theory and applications to spins with weak to vanishing quadrupolar couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliav, U., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il; Haimovich, A.; Goldbourt, A., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il

    2016-01-14

    We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling ofmore » the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental {sup 7}Li–{sup 13}C distances in a complex of lithium, glycine, and water. Discussion of the regime for which such an approach is valid is given.« less

  4. Molecular dynamic heterogeneity of confined lipid films by 1H magnetization-exchange nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Buda, A.; Demco, D. E.; Jagadeesh, B.; Blümich, B.

    2005-01-01

    The molecular dynamic heterogeneity of monolayer to submonolayer thin lecithin films confined to submicron cylindrical pores were investigated by 1H magnetization exchange nuclear magnetic resonance. In this experiment a z-magnetization gradient was generated by a double-quantum dipolar filter. The magnetization-exchange decay and buildup curves were interpreted with the help of a theoretical model based on the approximation of a one-dimensional spin-diffusion process in a three-domain morphology. The dynamic heterogeneity of the fatty acid chains and the effects of the surface area per molecule, the diameter of the pores, and the temperature were characterized with the help of local spin-diffusion coefficients. The effect of various parameters on the molecular dynamics of the mobile region of the fatty acid chains was quantified by introducing an ad hoc Gaussian distribution function of the 1H residual dipolar couplings. For the lipid films investigated in this study, the surface induced order and the geometrical confinement affect the chain dynamics of the entire molecule. Therefore, each part of the chain independently reflects the effect of surface coverage, pore size, and temperature.

  5. Direct Observation of Optical Field Phase Carving in the Vicinity of Plasmonic Metasurfaces.

    PubMed

    Dagens, B; Février, M; Gogol, P; Blaize, S; Apuzzo, A; Magno, G; Mégy, R; Lerondel, G

    2016-07-13

    Plasmonic surfaces are mainly used for their optical intensity concentration properties that allow for enhancement of physical interaction like in nonlinear optics, optical sensors, or tweezers. Phase response in plasmonic resonances can also play a major role, especially in a periodic assembly of plasmonic resonators like metasurfaces. Here we show that localized surface plasmons collectively excited by a guided mode in a metallic nanostructure periodic chain present nonmonotonous phase variation along the 1D metasurface, resulting from both selective Bloch mode coupling and dipolar coupling. As shown by near-field measurements, the phase profile of the highly concentrated optical field is carved out in the vicinity of the metallic metasurface, paving the way to unusual local optical functions.

  6. Floquet-Magnus expansion for general N-coupled spins systems in magic-angle spinning nuclear magnetic resonance spectra

    NASA Astrophysics Data System (ADS)

    Mananga, Eugene Stephane; Charpentier, Thibault

    2015-04-01

    In this paper we present a theoretical perturbative approach for describing the NMR spectrum of strongly dipolar-coupled spin systems under fast magic-angle spinning. Our treatment is based on two approaches: the Floquet approach and the Floquet-Magnus expansion. The Floquet approach is well known in the NMR community as a perturbative approach to get analytical approximations. Numerical procedures are based on step-by-step numerical integration of the corresponding differential equations. The Floquet-Magnus expansion is a perturbative approach of the Floquet theory. Furthermore, we address the " γ -encoding" effect using the Floquet-Magnus expansion approach. We show that the average over " γ " angle can be performed for any Hamiltonian with γ symmetry.

  7. Artificial Dipolar Molecular Rotors

    NASA Astrophysics Data System (ADS)

    Horansky, R. D.; Magnera, T. F.; Price, J. C.; Michl, J.

    Rotors are present in almost every macroscopic machine, converting rotational motion into energy of other forms, or converting other forms of energy into rotation. Rotation may be transmitted via belts or gears, converted into linear motion by various linkages, or used to drive propellers to produce fluid motion. Examples of macroscopic rotors include engines which couple to combustible energy sources, windmills which couple to air flows, and most generators of electricity. A key feature of these objects is the presence of a part with rotational freedom relative to a stationary frame. In this chapter we discuss the miniaturization of rotary machines all the way to the molecular scale, where chemical groups form the rotary and stationary parts. For a recent review of molecules with rotary and stationary parts see [1].

  8. Covalent Coupling of Nanoparticles with Low-Density Functional Ligands to Surfaces via Click Chemistry

    PubMed Central

    Rianasari, Ina; de Jong, Michel P.; Huskens, Jurriaan; van der Wiel, Wilfred G.

    2013-01-01

    We demonstrate the application of the 1,3-dipolar cycloaddition (“click” reaction) to couple gold nanoparticles (Au NPs) functionalized with low densities of functional ligands. The ligand coverage on the citrate-stabilized Au NPs was adjusted by the ligand:Au surface atom ratio, while maintaining the colloidal stability of the Au NPs in aqueous solution. A procedure was developed to determine the driving forces governing the selectivity and reactivity of citrate-stabilized and ligand-functionalized Au NPs on patterned self-assembled monolayers. We observed selective and remarkably stable chemical bonding of the Au NPs to the complimentarily functionalized substrate areas, even when estimating that only 1–2 chemical bonds are formed between the particles and the substrate. PMID:23434666

  9. Suppression of quantum phase interference in the molecular magnet Fe8 with dipolar-dipolar interaction

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-De; Liang, J.-Q.; Shen, Shun-Qing

    2002-09-01

    Renormalized tunnel splitting with a finite distribution in the biaxial spin model for molecular magnets is obtained by taking into account the dipolar interaction of enviromental spins. Oscillation of the resonant tunnel splitting with a transverse magnetic field along the hard axis is smeared by the finite distribution, which subsequently affects the quantum steps of the hysteresis curve evaluated in terms of the modified Landau-Zener model of spin flipping induced by the sweeping field. We conclude that the dipolar-dipolar interaction drives decoherence of quantum tunneling in the molecular magnet Fe8, which explains why the quenching points of tunnel splitting between odd and even resonant tunneling predicted theoretically were not observed experimentally.

  10. Theoretical study of diaquamalonatozinc(II) single crystal for applications in non-linear optical devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mitesh; Rai, Vineet Kumar

    2017-12-01

    The aim of the present paper is to employ theoretical methods to investigate the zero field splitting (ZFS) parameter and to investigate the position of the dopant in the host. These theoretical calculations have been compared with the empirical results. The superposition model (SPM) with the microscopic spin-Hamiltonian (MSH) theory and the coefficient of fractional parentage have been employed to investigate the dopant manganese(II) ion substitution in the diaquamalonatozinc(II) (DAMZ) single crystal. The magnetic parameters, viz. g-tensor and D-tensor, has been determined by using the ORCA program package developed by F Neese et al. The unrestricted Kohn-Sham orbitals-based Pederson-Khanna (PK) as the unperturbed wave function is observed to be the most suitable for the computational calculation of spin-orbit tensor (D^{SO}) of the axial ZFS parameter D. The effects of spin-spin dipolar couplings are taken into account. The unrestricted natural orbital (UNO) is used for the calculation of spin-spin dipolar contributions to the ZFS tensor. A comparative study of the quantum mechanical treatment of Pederson-Khanna (PK) with coupled perturbation (CP) is reported in the present study. The unrestricted Kohn-Sham-based natural orbital with Pederson-Khanna-type of perturbation approach validates the experimental results in the evaluation of ZFS parameters. The theoretical results are appropriate with the experimental ones and indicate the interstitial occupancy of Mn^{2+} ion in the host matrix.

  11. Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy

    PubMed Central

    Vallurupalli, Pramodh; Hansen, D. Flemming; Kay, Lewis E.

    2008-01-01

    Molecular function is often predicated on excursions between ground states and higher energy conformers that can play important roles in ligand binding, molecular recognition, enzyme catalysis, and protein folding. The tools of structural biology enable a detailed characterization of ground state structure and dynamics; however, studies of excited state conformations are more difficult because they are of low population and may exist only transiently. Here we describe an approach based on relaxation dispersion NMR spectroscopy in which structures of invisible, excited states are obtained from chemical shifts and residual anisotropic magnetic interactions. To establish the utility of the approach, we studied an exchanging protein (Abp1p SH3 domain)–ligand (Ark1p peptide) system, in which the peptide is added in only small amounts so that the ligand-bound form is invisible. From a collection of 15N, 1HN, 13Cα, and 13CO chemical shifts, along with 1HN-15N, 1Hα-13Cα, and 1HN-13CO residual dipolar couplings and 13CO residual chemical shift anisotropies, all pertaining to the invisible, bound conformer, the structure of the bound state is determined. The structure so obtained is cross-validated by comparison with 1HN-15N residual dipolar couplings recorded in a second alignment medium. The methodology described opens up the possibility for detailed structural studies of invisible protein conformers at a level of detail that has heretofore been restricted to applications involving visible ground states of proteins. PMID:18701719

  12. Interparticle coupling effect of silver-gold heterodimer to enhance light harvesting in ultrathin perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Hu, Zhaosheng; Ma, Tingli; Hayase, Shuzi

    2018-01-01

    Thin perovskite solar cells are under intensive interest since they reduce the amount of absorber layer, especially toxic lead in methylammonium lead iodide (MAPbI3) devices and have wide application in semitransparent and tandem solar cells. However, due to the decrease of the layer thickness, thin perovskite devices with weak light-harvesting have poor performance. Moreover, the performance of plasmonic thin perovskite devices by incorporating noncoupling metal NPs cannot give comparable performance with normal devices. In this perspective, we discuss the implication of employing random silver-gold heterodimers in MAPbI3 solar cells with the aim of establishing some guidelines for the efficient ultrathin perovskite solar cells. This method induces an extraordinarily high light-harvesting for ultrathin perovskite film. And the underlying physical mechanism behind the enhanced absorption is deeply investigated by plasmon hybridization, dipolar-dipolar coupling method and FDTD simulation. We notice that perovskite embedded silver-gold heterodimer overcomes the vanished antibonding plasmon resononse (σ * ) in nonjunction area of gold/silver homodimer. A 150-nm perovskite film with embedded random silver-gold heterodimers with 80 nm size and 25 nm gap distance processes 28.15% absorption enhancement compared to the reference film, which is higher than the reported 10% for gold homodimers. And we also predict a realistic solution-processed, easy, and low-cost fabrication method, which provide a means to realize highly efficient ultrathin perovskite solar cell including other absorber-based photovoltaics.

  13. Interlayer-coupled spin vortex pairs and their response to external magnetic fields

    NASA Astrophysics Data System (ADS)

    Wintz, Sebastian; Bunce, Christopher; Banholzer, Anja; Körner, Michael; Strache, Thomas; Mattheis, Roland; McCord, Jeffrey; Raabe, Jörg; Quitmann, Christoph; Erbe, Artur; Fassbender, Jürgen

    2012-06-01

    We report on the response of multilayer spin textures to static magnetic fields. Coupled magnetic vortex pairs in trilayer elements (ferromagnetic/nonmagnetic/ferromagnetic) are imaged directly by means of layer-selective magnetic x-ray microscopy. We observe two different circulation configurations with parallel and opposing senses of magnetization rotation at remanence. Upon application of a field, all of the vortex pairs investigated react with a displacement of their cores. For purely dipolar coupled pairs, the individual core displacements are similar to those of an isolated single-layer vortex, but also a noticeable effect of the mutual stray fields is detected. Vortex pairs that are linked by an additional interlayer exchange coupling (IEC), which is either ferromagnetic or antiferromagnetic, mainly exhibit a layer-congruent response. We find that, apart from a possible decoupling at higher fields, these strict IEC vortex pairs can be described by a single-layer model with effective material parameters. This result implies the possibility to design multilayer spin structures with arbitrary effective magnetization.

  14. Logic operations based on magnetic-vortex-state networks.

    PubMed

    Jung, Hyunsung; Choi, Youn-Seok; Lee, Ki-Suk; Han, Dong-Soo; Yu, Young-Sang; Im, Mi-Young; Fischer, Peter; Kim, Sang-Koog

    2012-05-22

    Logic operations based on coupled magnetic vortices were experimentally demonstrated. We utilized a simple chain structure consisting of three physically separated but dipolar-coupled vortex-state Permalloy disks as well as two electrodes for application of the logical inputs. We directly monitored the vortex gyrations in the middle disk, as the logical output, by time-resolved full-field soft X-ray microscopy measurements. By manipulating the relative polarization configurations of both end disks, two different logic operations are programmable: the XOR operation for the parallel polarization and the OR operation for the antiparallel polarization. This work paves the way for new-type programmable logic gates based on the coupled vortex-gyration dynamics achievable in vortex-state networks. The advantages are as follows: a low-power input signal by means of resonant vortex excitation, low-energy dissipation during signal transportation by selection of low-damping materials, and a simple patterned-array structure.

  15. Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers.

    PubMed

    Lerch, Sarah; Reinhard, Björn M

    2018-04-23

    Capacitive plasmon coupling between noble metal nanoparticles (NPs) is characterized by an increasing red-shift of the bonding dipolar plasmon mode (BDP) in the classical electromagnetic coupling regime. This model breaks down at short separations where plasmon-driven charge transfer induces a gap current between the NPs with a magnitude and separation dependence that can be modulated if molecules are present in the gap. Here, we use gap contained DNA as a scaffold for the growth of palladium (Pd) NPs in the gap between two gold NPs and investigate the effect of increasing Pd NP concentration on the BDP mode. Consistent with enhanced plasmon-driven charge transfer, the integration of discrete Pd NPs depolarizes the capacitive BDP mode over longer interparticle separations than is possible in only DNA-linked Au NPs. High Pd NP densities in the gap increases the gap conductance and induces the transition from capacitive to conductive coupling.

  16. Composite-pulse and partially dipolar dephased multiCP for improved quantitative solid-state 13C NMR

    NASA Astrophysics Data System (ADS)

    Duan, Pu; Schmidt-Rohr, Klaus

    2017-12-01

    Improved multiple cross polarization (multiCP) pulse sequences for quickly acquiring quantitative 13C NMR spectra of organic solids are presented. Loss of 13C magnetization due to imperfect read-out and storage pulses in multiCP has been identified as a significant mechanism limiting polarization enhancement for 13C sites with weak couplings to 1H. This problem can be greatly reduced by composite 90° pulses with non-orthogonal phases that flip the magnetization onto the spin-lock field and back to the longitudinal direction for the 1H repolarization period; the observed loss is <3% for over ±10 kHz resonance offset and up to 20% flip-angle error. This composite-pulse multiCP (ComPmultiCP) sequence consistently provides performance superior to that of conventional multiCP, without any trade-off. The longer total CP time enabled by the composite pulses allows for a wider amplitude ramp during CP, which decreases the sensitivity to Hartmann-Hahn mismatch by a factor of two, with a <7% root-mean-square deviation within a 1-dB range for Boc-alanine. In samples with very short T1ρ, under-polarization of non-protonated carbons can be compensated by slight dipolar dephasing of CHn signals resulting from relatively weak decoupling during the Hahn spin echo period before detection. Quantitative spectra have been obtained by ComPmultiCP for low-crystallinity branched polyethylene at 4.5 kHz MAS, and in combination with partial dipolar dephasing for soil organic matter at 14 kHz MAS.

  17. Dipolar excitation in the third stability region.

    PubMed

    Konenkov, Nikolai V; Chernyak, Eugenii Ya; Stepanov, Vladimir A

    Dipole resonant excitation of ions creates instability bands which follow iso-β lines where β is the characteristic exponent (stability parameter). Instability bands are exited most effectively on the fundamental frequency π= βΩ/2. Here π is the angle resonance frequency of the dipolar voltage applied to x or y pair rods of the analyzer, and Ω is the angle frequency of the main drive voltage. Our goal is to study the mass peak shape in the third stability region with dipolar resonance excitation of the instability band with respect to the resonance frequency π and the dipolar potential amplitude. Numerical integration of the ion motion equations with a given ion source emittance is used to investigate peak shapes and ion transmission. We show that it is possible to vary the resolution power at any part of the third stability region. A change of the dipolar potential phase leads to a periodical variation of the resolution with period π.The most effective dipolar excitation in the y direction is along βy near the stability boundary. The mass peak shape is calculated also for a quadrupole with round rods. The best peak shape (small tails and high resolution) takes place for the rod set with r/r0=1.130. Dipolar excitation increases the transmission by approximately 5-10% at a given resolution.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, Michael F.; Currier, Robert P.; Peery, Travis B.

    Intermolecular coupling of dipole moments is studied for a model system consisting of two diatomic molecules (AB monomers) arranged co-linearly and which can form non-covalently bound dimers. The dipolar coupling is a function of the bond length in each molecule as well as of the distance between the centers-of-mass of the two molecules. The calculations show that intermolecular coupling of the vibrations results in an isotope-dependent modification of the AB-AB intermolecular potential. This in turn alters the energies of the low-lying bound states of the dimers, producing isotope-dependent changes in the AB-AB dimer partition function. Explicit inclusion of intermolecular vibrationalmore » coupling then changes the predicted gas-dimer isotopic fractionation. In addition, a mass dependence in the intermolecular potential can also result in changes in the number of bound dimer states in an equilibrium mixture. This in turn leads to a significant dimer population shift in the model monomer-dimer equilibrium system considered here. Finally, the results suggest that intermolecular coupling terms should be considered when probing the origins of isotopic fractionation.« less

  19. Free-Flight-Tunnel Investigation of the Dynamic Stability and Control Characteristics of a Chance Vought F7U-3 Airplane in Towed Flight

    NASA Technical Reports Server (NTRS)

    Grana, David C.; Shanks, Robert E.

    1952-01-01

    As part of a program to determine the feasibility of using a fighter airplane as a parasite in combination with a Consolidated Vultee RB-36 for long-range reconnaissance missions (project FICON), an experimental investigation has been made in the Langley free-flight tunnel to determine the dynamic stability and control characteristics of a 1/17.5-scale model of a Chance Vought F7U-3 airplane in several tow configurations. The investigation consisted of flight tests in which the model was towed from a strut in the tunnel by a towline and by a direct coupling which provided complete angular freedom. The tests with the direct coupling also included a study of the effect of spring restraint in roll in order to simulate approximately the proposed full-scale arrangement in which the only freedom is that permitted by the flexibility of the launching and retrieving trapeze carried by the-bomber. For the tow configurations in which a towline was used (15 and 38 feet full scale), the model had a very unstable lateral oscillation which could not be controlled. The stability was also unsatisfactory for the tow configuration in Which the model was coupled directly to the strut with complete angular freedom. When spring restraint in roll was added, however, the stability was satisfactory. The use of the yaw damper which increased the damping in yaw to about six times the normal value of the model appeared to have no appreciable effect on the lateral oscillations in the towline configurations, but produced a slight improvement in the case of the direct coupling configurations. The longitudinal stability was satisfactory for those cases in which the lateral stability was good enough to permit study of longitudinal motions.

  20. Spin-locking and cross-polarization under magic-angle spinning of uniformly labeled solids.

    PubMed

    Hung, Ivan; Gan, Zhehong

    2015-07-01

    Spin-locking and cross-polarization under magic-angle spinning are investigated for uniformly (13)C and (15)N labeled solids. In particular, the interferences from chemical shift anisotropy, and (1)H heteronuclear and (13)C homonuclear dipolar couplings are identified. The physical origin of these interferences provides guidelines for selecting the best (13)C and (15)N polarization transfer rf fields. Optimal settings for both the zero- and double-quantum cross-polarization transfer mechanisms are recommended. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Contribution of Dipolar Coupling to the Mechanism of the Triplet-Triplet Energy Transfer Process at Long Distances: A Doluble Resonance and Laser Line Narrowing Study.

    DTIC Science & Technology

    1986-12-16

    COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Technical Report FROM TO December 16, 1986 29 16 SUPPLEMENTARY NOTATION Acta Physica ... Polonica , in press. 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if inecessary and identify by block number) FIELD GROUP SUB-GROUP Energy Transfer...Chan-Lon Yang and M. A. EI-Sayed Department of Chemistry and Biochemistry University of California Los Angeles, California 90024 Acts Physics Polonica

  2. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    DOE PAGES

    Perras, Frederic A.

    2015-12-15

    Here, nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities.

  3. The Impact of 'Being There': Psychiatric Staff Attitudes on the Use of Restraint.

    PubMed

    Dahan, Sagit; Levi, Galit; Behrbalk, Pnina; Bronstein, Israel; Hirschmann, Shmuel; Lev-Ran, Shaul

    2018-03-01

    The practice of mechanically restraining psychiatric patients is constantly under debate, and staff attitudes are considered a central factor influencing restraining practices. The aim of this study was to explore associations between psychiatric staff members' presence and participation in incidences of restraint and attitudes towards mechanical restraints. Staff members (psychiatrists, nurses, paramedical staff; N = 143 working in a government psychiatric hospital in Israel) completed a questionnaire including personal information, participation in incidents of restraint and attitudes towards mechanical restraints. Items were categorized into the following categories: security and care; humiliation and offending; control; order; education and punishment. Compared to those who were not present during restraint, staff members who were present agreed significantly less with statements indicating that restraints are humiliating and offending and agreed more with statements indicating that restraints are used primarily for security and care (p < .05). Among those present in incidences of restraint, staff members who physically participated in restraint agreed significantly more with statements indicating that restraints are a means for security, care and order, and less with statements indicating restraints are humiliating and offending, compared to those present but not physically participating in restraint (p < .05). These findings highlight the importance of proximity of staff members to incidences of restraints. This may have implications in understanding the professional and social discourse concerning mechanical restraints.

  4. Structures and dynamics in a two-dimensional dipolar dust particle system

    NASA Astrophysics Data System (ADS)

    Hou, X. N.; Liu, Y. H.; Kravchenko, O. V.; Lapushkina, T. A.; Azarova, O. A.; Chen, Z. Y.; Huang, F.

    2018-05-01

    The effects of electric dipole moment, the number of dipolar particles, and system temperature on the structures and dynamics of a dipolar dust particle system are studied by molecular dynamics simulations. The results show that the larger electric dipole moment is favorable for the formation of a long-chain structure, the larger number of dipolar dust particles promotes the formation of the multi-chain structure, and the higher system temperature can cause higher rotation frequency. The trajectories, mean square displacement (MSD), and the corresponding spectrum functions of the MSDs are also calculated to illustrate the dynamics of the dipolar dust particle system, which is also closely related to the growth of dust particles. Some simulations are qualitatively in agreement with our experiments and can provide a guide for the study on dust growth, especially on the large-sized particles.

  5. Conformational response of the phosphatidylcholine headgroup to bilayer surface charge: torsion angle constraints from dipolar and quadrupolar couplings in bicelles.

    PubMed

    Semchyschyn, Darlene J; Macdonald, Peter M

    2004-02-01

    The effects of bilayer surface charge on the conformation of the phosphocholine group of phosphatidylcholine were investigated using a torsion angle analysis of quadrupolar and dipolar splittings in, respectively, (2)H and (13)C NMR spectra of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) labelled in the phosphocholine group with either deuterons (POPC-alpha-d(2), POPC-beta-d(2) and POPC-gamma-d(9)) or carbon-13 (POPC-alpha-(13)C and POPC-alphabeta-(13)C(2)) and incorporated into magnetically aligned bicelles containing various amounts of either the cationic amphiphile 1,2-dimyristoyl-3-trimethylammoniumpropane (DMTAP) or the anionic amphiphile 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG). Three sets of quadrupolar splittings, one from each of the three deuteron labelling positions, and three sets of dipolar splittings ((13)C(alpha)-(31)P, (13)C(alpha)-(13)C(beta), (13)C(beta)-(14)N), were measured at each surface charge, along with the (31)P residual chemical shift anisotropy. The torsion angle analysis assumed fast anisotropic rotation of POPC about its long molecular axis, thus projecting all NMR interactions onto that director axis of motion. Dipolar, quadrupolar and chemical shift anisotropies were calculated as a function of the phosphocholine internal torsion angles by first transforming into a common reference frame affixed to the phosphocholine group prior to motional averaging about the director axis. A comparison of experiment and calculation provided the two order parameters specifying the director orientation relative to the molecule, plus the torsion angles alpha(3), alpha(4) and alpha(5). Surface charge was found to have little effect on the torsion angle alpha(5) (rotations about C(alpha)-C(beta)), but to have large and inverse effects on torsion angles alpha(3) [rotations about P-O(11)] and alpha(4) [rotations about O(11)-C(alpha)], yielding a net upwards tilt of the P-N vector in the presence of cationic surface charge, and a downwards tilt in the presence of anionic surface charge, relative to neutrality. Copyright 2004 John Wiley & Sons, Ltd.

  6. Magnetic Field Dipolarization and Its Associated Ion Flux Variations in the Inner Magnetosphere: Simultaneous Observations by Arase and Michibiki Satellites

    NASA Astrophysics Data System (ADS)

    Nose, M.; Matsuoka, A.; Kasahara, S.; Yokota, S.; Higashio, N.; Koshiishi, H.; Imajo, S.; Teramoto, M.; Nomura, R.; Fujimoto, A.; Keika, K.; Tanaka, Y.; Shinohara, M.; Shinohara, I.; Yoshizumi, M.

    2017-12-01

    Recent satellite observations by MDS-1 and Van Allen Probes statistically revealed that magnetic field dipolarization can be detected over a wide range of L in the deep inner magnetosphere (i.e., L = 3.5-6.5, which is far inside the geosynchronous altitude). It is accompanied by magnetic field fluctuations having a characteristic timescale of a few to 10 s, which is comparable to the local gyroperiod of O+ ions. These magnetic field fluctuations are considered to cause nonadiabatic local acceleration of ions. In this study, we intend to confirm the above-mentioned characteristics of magnetic field dipolarization in the inner magnetosphere, using the magnetic field data and the energetic ion flux data measured by the Exploration of energization and Radiation in Geospace (ERG) "Arase" satellite. The Arase satellite was launched on December 20, 2016 into an elliptical orbit having an apogee of 6.0 Re, a perigee of 440 km altitude, an orbital period of 9.5 h, and an orbital inclination of 32 degrees. During the first magnetic storm of March 27, 2017 after Arase started scientific operation, Arase observes clear dipolarization signatures around 1500 UT at L 4.6 and MLT 5.7 hr. Strong magnetic field fluctuations are embedded in the magnetic field dipolarization and their characteristic frequency is close to the local gyrofrequency of O+ ions. Both H+ and O+ flux enhancements are observed in accordance with the dipolarization. These results are consistent with the previous results. In this event, the Quasi-Zenith Satellite (QZS)-1 "Michibiki" satellite was located at L 7.0 and MLT 23.8 hr, and observes similar dipolarization signatures with a few minute time difference. Simultaneous observations by both Arase and Michibiki provides us a unique opportunity to investigate how fast and wide the dipolarization propagates in the inner magnetosphere. In the presentation, we will show detailed analysis results of the dipolarization event on March 27, 2017 as well as similar events.

  7. The economic cost of using restraint and the value added by restraint reduction or elimination.

    PubMed

    Lebel, Janice; Goldstein, Robert

    2005-09-01

    The purpose of this study was to calculate the economic cost of using restraint on one adolescent inpatient service and to examine the effect of an initiative to reduce or eliminate the use of restraint after it was implemented. A detailed process-task analysis of mechanical, physical, and medication-based restraint was conducted in accordance with state and federal restraint requirements. Facility restraint data were collected, verified, and analyzed. A model was developed to determine the cost and duration of an average episode for each type of restraint. Staff time allocated to restraint activities and medication costs were computed. Calculation of the cost of restraint was restricted to staff and medication costs. Aggregate costs of restraint use and staff-related costs for one full year before the restraint reduction initiative (FY 2000) and one full year after the initiative (FY 2003) were calculated. Outcome, discharge, and recidivism data were analyzed. A comparison of the FY 2000 data with the FY 2003 data showed that the adolescent inpatient service's aggregate use of restraint decreased from 3,991 episodes to 373 episodes (91 percent), which was associated with a reduction in the cost of restraint from $1,446,740 to $117,036 (a 92 percent reduction). In addition, sick time, staff turnover and replacement costs, workers' compensation, injuries to adolescents and staff, and recidivism decreased. Adolescent Global Assessment of Functioning scores at discharge significantly improved. Implementation of a restraint reduction initiative was associated with a reduction in the use of restraint, staff time devoted to restraint, and staff-related costs. This shift appears to have contributed to better outcomes for adolescents, fewer injuries to adolescents and staff, and lower staff turnover. The initiative may have enhanced adolescent treatment and work conditions for staff.

  8. Adjustable, physiological ventricular restraint improves left ventricular mechanics and reduces dilatation in an ovine model of chronic heart failure.

    PubMed

    Ghanta, Ravi K; Rangaraj, Aravind; Umakanthan, Ramanan; Lee, Lawrence; Laurence, Rita G; Fox, John A; Bolman, R Morton; Cohn, Lawrence H; Chen, Frederick Y

    2007-03-13

    Ventricular restraint is a nontransplantation surgical treatment for heart failure. The effect of varying restraint level on left ventricular (LV) mechanics and remodeling is not known. We hypothesized that restraint level may affect therapy efficacy. We studied the immediate effect of varying restraint levels in an ovine heart failure model. We then studied the long-term effect of restraint applied over a 2-month period. Restraint level was quantified by use of fluid-filled epicardial balloons placed around the ventricles and measurement of balloon luminal pressure at end diastole. At 4 different restraint levels (0, 3, 5, and 8 mm Hg), transmural myocardial pressure (P(tm)) and indices of myocardial oxygen consumption (MVO2) were determined in control (n=5) and ovine heart failure (n=5). Ventricular restraint therapy decreased P(tm) and MVO2, and improved mechanical efficiency. An optimal physiological restraint level of 3 mm Hg was identified to maximize improvement without an adverse affect on systemic hemodynamics. At this optimal level, end-diastolic P(tm) and MVO2 indices decreased by 27% and 20%, respectively. The serial longitudinal effects of optimized ventricular restraint were then evaluated in ovine heart failure with (n=3) and without (n=3) restraint over 2 months. Optimized ventricular restraint prevented and reversed pathological LV dilatation (130+/-22 mL to 91+/-18 mL) and improved LV ejection fraction (27+/-3% to 43+/-5%). Measured restraint level decreased over time as the LV became smaller, and reverse remodeling slowed. Ventricular restraint level affects the degree of decrease in P(tm), the degree of decrease in MVO2, and the rate of LV reverse remodeling. Periodic physiological adjustments of restraint level may be required for optimal restraint therapy efficacy.

  9. Extended Bose-Hubbard model with dipolar and contact interactions

    NASA Astrophysics Data System (ADS)

    Biedroń, Krzysztof; Łącki, Mateusz; Zakrzewski, Jakub

    2018-06-01

    We study the phase diagram of the one-dimensional boson gas trapped inside an optical lattice with contact and dipolar interaction, taking into account next-nearest terms for both tunneling and interaction. Using the density-matrix renormalization group, we calculate how the locations of phase transitions change with increasing dipolar interaction strength for average density ρ =1 . Furthermore, we show the emergence of pair-correlated phases for a large dipolar interaction strength and ρ ≥2 , including a supersolid phase with an incommensurate density wave ordering manifesting the corresponding spontaneous breaking of the translational symmetry.

  10. Do organisational constraints explain the use of restraint? A comparative ethnographic study from three nursing homes in Norway.

    PubMed

    Øye, Christine; Jacobsen, Frode Fadnes; Mekki, Tone Elin

    2017-07-01

    To investigate (1) what kind of restraint is used in three nursing homes in Norway and (2) how staff use restraint under what organisational conditions. Restraint use in residents living with dementia in nursing homes is controversial, and at odds with fundamental human rights. Restraint is a matter of hindering residents' free movement and will by applying either interactional, physical, medical, surveillance or environmental restraint. Previous research has identified use of restraint related to individual resident characteristics such as agitation, aggressiveness and wandering. This model is embedded in an overall mixed-method education intervention design study called Modelling and evaluating evidence-based continuing education program in dementia care (MEDCED), applying ethnography postintervention to examine the use of restraint in 24 nursing homes in Norway. Based on restraint diversity measured in the trial, ethnographic investigation was carried out in three different nursing homes in Norway over a 10-month period to examine restraint use in relation to organisational constraints. Several forms of restraint were observed; among them, interactional restraint was used most frequently. We identified that use of restraint relates to the characteristics of individual residents, such as agitation, aggressiveness and wandering. However, restraint use should also be explained in relation to organisational conditions such as resident mix, staff culture and available human resources. A fluctuating and dynamic interplay between different individual and contextual factors determines whether restraint is used - or not in particular situations with residents living with dementia. Educational initiatives targeting staff to reduce restraint must be sensitive towards fluctuating organisational constraints. © 2016 John Wiley & Sons Ltd.

  11. Moderation: an alternative to restraint as a mode of weight self-regulation.

    PubMed

    Stotland, S

    2012-12-01

    This study considered two types of eating and weight self-regulation, in five groups, including four types of weight controllers and one non-dieting group. New scales were developed to measure eating moderation and restraint. Moderation was largely uncorrelated with restraint in 4 groups and had a fairly strong positive relation in 1 group. The moderation scale was unrelated to the Dutch Eating Behavior Questionnaire (DEBQ) restraint scale and the Three Factor Eating Questionnaire (TFEQ) rigid restraint subscale and weakly positively related to TFEQ flexible restraint. The restraint scale was strongly correlated to the DEBQ restraint scale, and to both flexible and rigid restraint subscales of the TFEQ. Across the five groups, moderation had exclusively positive relationships with attitude, behavior and emotion variables, while restraint had primarily negative relationships. The study supports moderation as a new dimension of weight self-regulation, independent of restraint. The new measures of moderation and restraint can be used together in research on the processes of change in weight management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Stepwise π-extension of meso-alkylidenyl porphyrins through sequential 1,3-dipolar cycloaddition and redox reactions.

    PubMed

    Park, Dowoo; Jeong, Seung Doo; Ishida, Masatoshi; Lee, Chang-Hee

    2014-08-25

    Several regioselectively π-extended, pyrrole fused porphyrinoids have been synthesized by the 1,3-dipolar cycloaddition of meso-alkylidene-(benzi)porphyrins. Pd(II) complexes gave oxidation resistant, bis-pyrrole fused adducts. The repeated 1,3-dipolar cycloaddition followed by oxidation-reduction of pentaphyrin analogs afforded π-extended porphyrin analogs.

  13. Co- and contra-directional vertical coupling between ferromagnetic layers with grating for short-wavelength spin wave generation

    NASA Astrophysics Data System (ADS)

    Graczyk, Piotr; Zelent, Mateusz; Krawczyk, Maciej

    2018-05-01

    The possibility to generate short spin waves (SWs) is of great interest in the field of magnonics nowadays. We present an effective and technically affordable way of conversion of long SWs, which may be generated by conventional microwave antenna, to the short, sub-micrometer waves. It is achieved by grating-assisted resonant dynamic dipolar interaction between two ferromagnetic layers separated by some distance. We analyze criteria for the optimal conversion giving a semi-analytical approach for the coupling coefficient. We show by the numerical calculations the efficient energy transfer between layers which may be either of co-directional or contra-directional type. Such a system may operate either as a short spin wave generator or a frequency filter, moving forward possible application of magnonics.

  14. Phase locking of vortex cores in two coupled magnetic nanopillars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Qiyuan; Liu, Xianyin; Zheng, Qi

    2014-11-15

    Phase locking dynamics of the coupled vortex cores in two identical magnetic spin valves induced by spin-polarized current are studied by means of micromagnetic simulations. Our results show that the available current range of phase locking can be expanded significantly by the use of constrained polarizer, and the vortices undergo large orbit motions outside the polarization areas. The effects of polarization areas and dipolar interaction on the phase locking dynamics are studied systematically. Phase locking parameters extracted from simulations are discussed by theoreticians. The dynamics of vortices influenced by spin valve geometry and vortex chirality are discussed at last. Thismore » work provides deeper insights into the dynamics of phase locking and the results are important for the design of spin-torque nano-oscillators.« less

  15. Safety and efficacy of physical restraints for the elderly. Review of the evidence.

    PubMed Central

    Frank, C.; Hodgetts, G.; Puxty, J.

    1996-01-01

    OBJECTIVE: To critically review evidence on the safety and efficacy of physical restraints for the elderly and to provide family physicians with guidelines for rational use of restraints. DATA SOURCES: Articles cited on MEDLINE (from 1989 to November 1994) and Cinahl (from 1982 to 1994) under the MeSH heading "physical restraints." STUDY SELECTION: Articles that specifically dealt with the safety and efficacy of restraints and current patterns of use, including prevalence, risk factors, and indications, were selected. Eight original research articles were identified and critically appraised. DATA EXTRACTION: Data extracted concerned the negative sequelae of restraints and the association between restraint use and fall and injury rates. General data about current patterns of restraint use were related to safety and efficacy findings. DATA SYNTHESIS: No randomized, controlled trials of physical restraint use were found in the literature. A variety of study design, including retrospective chart review, prospective cohort studies, and case reports, found little evidence that restraints prevent injury. Some evidence suggested that restraints might increase risk of falls and injury. Restraint-reduction programs have not been shown to increase fall or injury rates. Numerous case reports document injuries or deaths resulting from restraint use or misuse. CONCLUSIONS: Although current evidence does not support the belief that restraints prevent falls and injuries and questions their safety, further prospective and controlled studies are needed to clarify these issues. Information from review and research articles was synthesized in this paper to produce guidelines for the safe and rational use of restraints. PMID:8969858

  16. Restraint reduction in a nursing home and its impact on employee attitudes.

    PubMed

    Sundel, M; Garrett, R M; Horn, R D

    1994-04-01

    To reduce physical restraint use in a nursing home and increase employee support for the restraint-reduction program. A one-group pretest-posttest design with repeated measures was used to determine changes in restraint use with participants over a 14-month interval. All individuals employed at the nursing home were surveyed at two time periods to determine their opinions on restraint use. A 265-bed private, non-profit nursing home in Dallas, Texas. A restrained cohort of 170 residents with a mean age of 84 years; 84% were female. A total of 182 employees participated in the first survey and 209 in the second. Formation of a project team that planned and supervised restraint removal. Inservice training on restraint use was conducted for all employees. Type and frequency of restraint use among the restrained cohort at four evaluation points within a 14-month interval. The frequency of restraint use in the nursing home population was also recorded. Survey measures included employee responses to a 16-item closed-end questionnaire before and after training. The mean number of restraints used with each resident in the restrained cohort decreased from 1.56 to 0.67. The number of residents on restraints in the nursing home was reduced during the course of the study (67.5% vs. 36.7%, P < 0.0001). Changes in employee opinions about restraint use were found after training. On the second survey, more than twice as many employees indicated that restraints should be removed from almost all residents who have them (15.2% vs 36.3%, P < 0.0001). A restraint-reduction program in a nursing home can produce positive results in terms of decreased restraint use and supportive employee attitudes. More practical alternatives to restraints need to be developed for application in the training of nursing home employees. Future studies on resident, employee, and family attitudes about restraint use are suggested.

  17. Spectroscopic studies of transition metal ions in molten alkali metal carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroni, V.A.; Maciejewski, M.L.

    Electronic absorption and C-13 NMR spectroscopic studies were carried out to investigate the structure of (i) alkali metal formate (Fm) and acetate (Ac) eutectic melts and (ii) solutions of 3d transition metal (TM) cations in these eutectics. Measurements were made over the temperature range 90..-->..190/sup 0/C. The most stable oxidation states of the individual TMs in the Fm and Ac eutectics were: Ti/sup 3 +/, V/sup 3 +/, VO/sup 2 +/, Cr/sup 3 +/, Mn/sup 2 +/, Fe/sup 2 +/, Co/sup 2 +/, Ni/sup 2 +/, and Cu/sup 2 +/. The ligand field absorption spectra obtained in these carboxylate meltsmore » bore a consistent resemblance to the spectra of these same cations in aqueous media, but the absorptivities were generally higher than are observed for the hexaquo complexes. The results were interpreted in terms of the existence of bidentate coordination in some (if not all) cases, leading to noncentrosymmetric complexation geometries. Key results of the NMR measurements included the apparent observation of two different carboxylate anion environments in Ni/sup 2 +/ solutions. C-13 spin-lattice relaxation of the carboxylate anions in the TM-free eutectics was found to be controlled by dipolar coupling to another nucleus. In the TM-containing solutions, the spin-lattice relaxation times were reduced by a factor of 10 to 1000, evidencing the expected shift to electron-nuclear dipolar coupling. Activation energies for viscous flow derived from the spin-lattice relaxation measurements on TM-free melts were in the 10..-->..11 kcal/mol range, reflecting the highly ordered, glassy nature of the eutectics studied.« less

  18. Direct Investigation of Slow Correlated Dynamics in Proteins via Dipolar Interactions

    PubMed Central

    Fenwick, R. Bryn; Schwieters, Charles D.; Vögeli, Beat

    2016-01-01

    The synchronization of native state motions as they transition between microstates influences catalysis kinetics, mediates allosteric interactions and reduces the conformational entropy of proteins. However, it has proven difficult to describe native microstates because they are usually minimally frustrated and may interconvert on the μs-ms time scale. Direct observation of concerted equilibrium fluctuations would therefore be an important tool for describing protein native states. Here we propose a strategy that relates NMR cross-correlated relaxation (CCR) rates between dipolar interactions to residual dipolar couplings (RDCs) of individual consecutive HN–N and Hα–Cα bonds, which act as a proxy for the peptide planes and the side chains respectively. Using Xplor-NIH ensemble structure calculations restrained with the RDC and CCR data we observe collective motions on time scales slower than nanoseconds in the backbone for GB3. To directly access the correlations from CCR we develop a structure-free data analysis. The resulting dynamic correlation map is consistent with the ensemble-restrained simulations and reveals a complex network. In general we find that the bond motions are on average slightly correlated, and that the local environment dominates many observations. Despite this, some patterns are typical over entire secondary structure elements. In the β-sheet, nearly all bonds are weakly correlated and there is an approximately binary alternation in correlation intensity corresponding to the solvent exposure/shielding alternation of the side chains. For α-helices there is also a weak correlation in the HN-N bonds and the degree of correlation involving Hα-Cα bonds is directly affected by side-chain fluctuations, while loops show complex and non-uniform behavior. PMID:27331619

  19. Direct 1H NMR evidence of spin-rotation coupling as a source of para → ortho-H2 conversion in diamagnetic solvents.

    PubMed

    Terenzi, Camilla; Bouguet-Bonnet, Sabine; Canet, Daniel

    2017-04-21

    At ambient temperature, conversion from 100% enriched para-hydrogen (p-H 2 ; singlet state) to ortho-hydrogen (o-H 2 ; triplet state) leads necessarily to the thermodynamic equilibrium proportions: 75% of o-H 2 and 25% of p-H 2 . When p-H 2 is dissolved in a diamagnetic organic solvent, conversion is very slow and can be considered as arising from nuclear spin relaxation phenomena. A first relaxation mechanism, specific to the singlet state and involving a combination of auto-correlation and cross correlation spectral densities, can be retained: randomly fluctuating magnetic fields due to inter-molecular dipolar interactions. We demonstrate here that (i) this dipolar mechanism is not sufficient for accounting for the para→ortho conversion rate, (ii) spin-rotation interaction, an intra-molecular mechanism, behaves similarly to random-field interaction and, thus, may be involved in the singlet relaxation rate. Also, as the para→ortho conversion is monitored by proton nuclear magnetic resonance (NMR) of dissolved o-H 2 (p-H 2 is NMR-silent), one has to account for H 2 exchange between the liquid phase and the gas phase within the NMR tube, as well as for dissolution effects. Experimental evidence of the above statements is brought here in the case of two organic solvents: acetone-d 6 and carbon disulfide. The observed temperature dependence of the para→ortho conversion rate shows that spin-rotation can be the dominant contribution to the p-H 2 relaxation rate in the absence of tangible dipolar interactions. Our findings shed new light on the "mysterious" mechanism of the para→ortho conversion which has been searched for several decades.

  20. The extreme dipolarization during the Galaxy 15 spacecraft anomaly

    NASA Astrophysics Data System (ADS)

    Loto'aniu, P. T. M.; Redmon, R. J.; Welling, D. T.; Rodriguez, J. V.; Haiducek, J. D.

    2016-12-01

    The substorm just prior to the Galaxy 15 spacecraft anomaly on 5 April 2010 was intriguing for a number of reasons, including that multiple spacecraft were well located near-midnight to observe the event. Another reason is that the associated dipolarization was one of the most severe ever observed by GOES satellites, even though the solar wind conditions were moderate. In this study, we compare the Galaxy 15 event to other substorms in order to understand why the dipolarization was so extreme. Presented will be simulations from the Space Weather Modeling Framework (SWMF) of different storms and comparisons made to model results for the Galaxy 15 anomaly event. The SWMF does well in predicting some storms, particularly when heavier O+ ions outflowing from the ionosphere are included. However, the SWMF significantly under-predicts the magnitude of the Galaxy 15 event, regardless of the inclusion of a heavy ion outflow model. The model dipolarization occurs around 30 minutes later than the observed event, while the strength of the dipolarization in terms of the magnetic field was not predicted by the model, although, the model does well overall predicting Dst and Kp. We will also present statistical results representing a survey of dipolarizations observed by the GOES spacecraft over a solar cycle when the satellites were located in the near-midnight local time region. The statistical results are used to determine the occurrence rate and characteristics of similar events to the Galaxy 15 dipolarization event.

  1. Vertical Phase Segregation Induced by Dipolar Interactions in Planar Polymer Brushes

    DOE PAGES

    Mahalik, Jyoti P.; Sumpter, Bobby G.; Kumar, Rajeev

    2016-09-13

    In this paper, we present a generalized theory for studying structural properties of a planar dipolar polymer brush immersed in a polar solvent. We show that an explicit treatment of the dipolar interactions yields a macroscopic concentration dependent effective “chi” (the Flory–Huggins-like interaction) parameter. Furthermore, it is shown that the concentration dependent chi parameter promotes phase segregation in polymer solutions and brushes so that the polymer-poor phase consists of a finite/nonzero polymer concentration. Such a destabilization of the homogeneous phase by the dipolar interactions appears as vertical phase segregation in a planar polymer brush. In a vertically phase segregated polymermore » brush, the polymer-rich phase near the grafting surface coexists with the polymer-poor phase at the other end. Predictions of the theory are directly compared with prior reported experimental results for dipolar polymers in polar solvents. Excellent agreements with the experimental results are found, hinting that the dipolar interactions play a significant role in vertical phase segregation of planar polymer brushes. We also compare our field theoretical approach with the two-state and other models invoking ad hoc concentration dependence of the chi parameter. Interplay between the short-ranged excluded volume interactions and long-ranged dipolar interactions is shown to play an important role in affecting the vertical phase separation. Finally, effects of mismatch between the dipole moments of the polymer segments and the solvent molecules are investigated in detail.« less

  2. Restraint use in acute and extended mental health services for older persons.

    PubMed

    Gerace, Adam; Mosel, Krista; Oster, Candice; Muir-Cochrane, Eimear

    2013-12-01

    Restraint of older persons in inpatient and residential care is used to control aggression, and prevent falls and other adverse outcomes. Initiatives to reduce these practices are being implemented worldwide. However, there has been little examination of restraint practice in psychiatric services for older persons. This paper reports a retrospective comparative analysis of restraint use in three acute and two extended care psychiatric inpatient wards in Australia. The analysis involved examination of restraint incidents and comparison of restrained and non-restrained patients. There was significant variation in restraint use between wards. On one acute ward, 12.74% of patients were restrained, although restraint use declined during the data collection period. Patients with dementia were restrained at higher rates than patients with other diagnoses, and restrained patients stayed in hospital for a longer duration. Restraint occurred early in admission, and few differences emerged between those restrained once or multiple times. Mechanical restraint was more prevalent than physical restraint, with restraint predominantly used to manage aggression and falls. Findings provide new data on restraint in older persons' psychiatric services. Greater conceptual understandings of behaviours associated with dementia and the unique needs of patients with these disorders may assist in reducing restraint use in these settings. © 2012 The Authors; International Journal of Mental Health Nursing © 2012 Australian College of Mental Health Nurses Inc.

  3. Physical restraint: perceptions of nurse managers, registered nurses and healthcare assistants.

    PubMed

    Leahy-Warren, P; Varghese, V; Day, M R; Curtin, M

    2018-02-09

    To examine the perceptions of nurse managers, registered nurses and healthcare assistants of physical restraint use on older people in a long-term care setting in the Republic of Ireland. The use of physical restraint, although controversial, persists in long-term care settings, despite recommendations for restraint-free environments. Perception and attitude of staff can influence use of physical restraint. A descriptive cross-sectional design was used. A total of 250 nursing and healthcare assistant staff were recruited. A questionnaire incorporating demographics and the Perceptions of Restraint Use Questionnaire was used. Descriptive and inferential statistical analyses were conducted. Mean age of respondents (n = 156) was 41 years, and the majority were female. Overall, a low level of importance was attached to the use of restraint. Nurse managers and registered nurses compared favourably with healthcare assistants who attached a higher importance to use of restraint. Across all three staff groups, greatest importance was attached to the use of physical restraint for reducing falls, followed by prevention of treatment interference. Restraint was least favoured as a means of impairment management. Education was not an explanatory factor in perceived importance of physical restraint use. Nurse managers and registered nurses are unlikely to use physical restraint. However, there is concern regarding perception of healthcare assistants on use of restraint. Results from this study compare favourably with those in countries that have no policy on physical restraint use. Educational programmes alone are insufficient to address use of physical restraint. Attention to skill mix with adequate support for healthcare assistants in long-term care settings is recommended. © 2018 International Council of Nurses.

  4. Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating

    PubMed Central

    van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; Lupton, John M.; Boehme, Christoph

    2015-01-01

    Weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices, which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair's zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm. PMID:25868686

  5. Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating

    DOE PAGES

    van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; ...

    2015-04-14

    Here, weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices,more » which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair’s zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm.« less

  6. Geometry-dependent distributed polarizability models for the water molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loboda, Oleksandr; Ingrosso, Francesca; Ruiz-López, Manuel F.

    2016-01-21

    Geometry-dependent distributed polarizability models have been constructed by fits to ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set for the water molecule in the field of a point charge. The investigated models include (i) charge-flow polarizabilities between chemically bonded atoms, (ii) isotropic or anisotropic dipolar polarizabilities on oxygen atom or on all atoms, and (iii) combinations of models (i) and (ii). For each model, the polarizability parameters have been optimized to reproduce the induction energy of a water molecule polarized by a point charge successivelymore » occupying a grid of points surrounding the molecule. The quality of the models is ascertained by examining their ability to reproduce these induction energies as well as the molecular dipolar and quadrupolar polarizabilities. The geometry dependence of the distributed polarizability models has been explored by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For each considered model, the distributed polarizability components have been fitted as a function of the geometry by a Taylor expansion in monomer coordinate displacements up to the sum of powers equal to 4.« less

  7. Atomic-scale sensing of the magnetic dipolar field from single atoms

    NASA Astrophysics Data System (ADS)

    Choi, Taeyoung; Paul, William; Rolf-Pissarczyk, Steffen; MacDonald, Andrew J.; Natterer, Fabian D.; Yang, Kai; Willke, Philip; Lutz, Christopher P.; Heinrich, Andreas J.

    2017-05-01

    Spin resonance provides the high-energy resolution needed to determine biological and material structures by sensing weak magnetic interactions. In recent years, there have been notable achievements in detecting and coherently controlling individual atomic-scale spin centres for sensitive local magnetometry. However, positioning the spin sensor and characterizing spin-spin interactions with sub-nanometre precision have remained outstanding challenges. Here, we use individual Fe atoms as an electron spin resonance (ESR) sensor in a scanning tunnelling microscope to measure the magnetic field emanating from nearby spins with atomic-scale precision. On artificially built assemblies of magnetic atoms (Fe and Co) on a magnesium oxide surface, we measure that the interaction energy between the ESR sensor and an adatom shows an inverse-cube distance dependence (r-3.01±0.04). This demonstrates that the atoms are predominantly coupled by the magnetic dipole-dipole interaction, which, according to our observations, dominates for atom separations greater than 1 nm. This dipolar sensor can determine the magnetic moments of individual adatoms with high accuracy. The achieved atomic-scale spatial resolution in remote sensing of spins may ultimately allow the structural imaging of individual magnetic molecules, nanostructures and spin-labelled biomolecules.

  8. Long-range interactions in magnetic bilayer above the critical temperature

    NASA Astrophysics Data System (ADS)

    de Souza, R. M. V.; Pereira, T. A. S.; Godoy, M.; de Arruda, A. S.

    2018-01-01

    In this paper we have studied the stabilization of the long-range order in (z ; x) -plane of two isotropic Heisenberg ferromagnetic monolayers coupled by a short-range exchange interaction (J⊥), by a long range dipole-dipole interactions and a magnetic field. We have applied a magnetic field along of the z-direction to study the thermodynamic properties above the critical temperature. The dispersion relation ω and the magnetization are given as function of dipolar anisotropy parameter defined as Ed =(gμ) 2 S /a3J∥ and for other Hamiltonian parameters, and they are calculated by the double-time Zubarev-Tyablikov Green's functions in the random-phase approximation (RPA). The results show that the system is unstable for values of Ed ≥ 0.012 with external magnetic field ranging between H /J∥ = 0 and 10-3. The instability appears for Ed larger then Edc = 0.0158 with H /J∥ = 10-5, Edc = 0.02885 with H /J∥ = 10-4, and Edc = 0.115 with H /J∥ = 10-3, i.e., a small magnetic field is sufficient to maintain the magnetic order in a greater range of the dipolar interaction.

  9. Observation of Dipolar Spin-Exchange Interactions with Polar Molecules in a Lattice

    DTIC Science & Technology

    2013-01-01

    extend beyond nearest neighbours. This allows coherent spin dynamics to persist even for gases with relatively high entropy and low lattice filling...dynamics to persist even for gases with relatively high entropy and low lat- tice filling. While measured effects of dipolar interactions in ultracold...limits superexchange to nearest-neighbor interactions and requires extremely low temperature and entropy . In contrast, long-range dipolar

  10. Lorentz microscopy sheds light on the role of dipolar interactions in magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Campanini, M.; Ciprian, R.; Bedogni, E.; Mega, A.; Chiesi, V.; Casoli, F.; de Julián Fernández, C.; Rotunno, E.; Rossi, F.; Secchi, A.; Bigi, F.; Salviati, G.; Magén, C.; Grillo, V.; Albertini, F.

    2015-04-01

    Monodispersed Fe3O4 nanoparticles with comparable size distributions have been synthesized by two different synthesis routes, co-precipitation and thermal decomposition. Thanks to the different steric stabilizations, the described samples can be considered as a model system to investigate the effects of magnetic dipolar interactions on the aggregation states of the nanoparticles. Moreover, the presence of magnetic dipolar interactions can strongly affect the nanoparticle efficiency as a hyperthermic mediator. In this paper, we present a novel way to visualize and map the magnetic dipolar interactions in different kinds of nanoparticle aggregates by the use of Lorentz microscopy, an easy and reliable in-line electron holographic technique. By exploiting Lorentz microscopy, which is complementary to the magnetic measurements, it is possible to correlate the interaction degrees of magnetic nanoparticles with their magnetic behaviors. In particular, we demonstrate that Lorentz microscopy is successful in visualizing the magnetic configurations stabilized by dipolar interactions, thus paving the way to the comprehension of the power loss mechanisms for different nanoparticle aggregates.Monodispersed Fe3O4 nanoparticles with comparable size distributions have been synthesized by two different synthesis routes, co-precipitation and thermal decomposition. Thanks to the different steric stabilizations, the described samples can be considered as a model system to investigate the effects of magnetic dipolar interactions on the aggregation states of the nanoparticles. Moreover, the presence of magnetic dipolar interactions can strongly affect the nanoparticle efficiency as a hyperthermic mediator. In this paper, we present a novel way to visualize and map the magnetic dipolar interactions in different kinds of nanoparticle aggregates by the use of Lorentz microscopy, an easy and reliable in-line electron holographic technique. By exploiting Lorentz microscopy, which is complementary to the magnetic measurements, it is possible to correlate the interaction degrees of magnetic nanoparticles with their magnetic behaviors. In particular, we demonstrate that Lorentz microscopy is successful in visualizing the magnetic configurations stabilized by dipolar interactions, thus paving the way to the comprehension of the power loss mechanisms for different nanoparticle aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00273g

  11. Real-time adjustment of ventricular restraint therapy in heart failure.

    PubMed

    Ghanta, Ravi K; Lee, Lawrence S; Umakanthan, Ramanan; Laurence, Rita G; Fox, John A; Bolman, Ralph Morton; Cohn, Lawrence H; Chen, Frederick Y

    2008-12-01

    Current ventricular restraint devices do not allow for either the measurement or adjustment of ventricular restraint level. Periodic adjustment of restraint level post-device implantation may improve therapeutic efficacy. We evaluated the feasibility of an adjustable quantitative ventricular restraint (QVR) technique utilizing a fluid-filled polyurethane epicardial balloon to measure and adjust restraint level post-implantation guided by physiologic parameters. QVR balloons were implanted in nine ovine with post-infarction dilated heart failure. Restraint level was defined by the maximum restraint pressure applied by the balloon to the epicardium at end-diastole. An access line connected the balloon lumen to a subcutaneous portacath to allow percutaneous access. Restraint level was adjusted while left ventricular (LV) end-diastolic volume (EDV) and cardiac output was assessed with simultaneous transthoracic echocardiography. All nine ovine successfully underwent QVR balloon implantation. Post-implantation, restraint level could be measured percutaneously in real-time and dynamically adjusted by instillation and withdrawal of fluid from the balloon lumen. Using simultaneous echocardiography, restraint level could be adjusted based on LV EDV and cardiac output. After QVR therapy for 21 days, LV EDV decreased from 133+/-15 ml to 113+/-17 ml (p<0.05). QVR permits real-time measurement and physiologic adjustment of ventricular restraint therapy after device implantation.

  12. Physical Restraint Use With Elderly Patients: Perceptions of Nurses and Nursing Assistants in Spanish Acute Care Hospitals.

    PubMed

    Fariña-López, Emilio; Estévez-Guerra, Gabriel J; Polo-Luque, M Luz; Hanzeliková Pogrányivá, Alica; Penelo, Eva

    Physical restraint is often used during the hospitalization of elderly people. However, this procedure is associated with adverse outcomes; therefore, it is necessary to be aware of the circumstances that promote restraint use, such as the perceptions of professionals who use it. The purpose of the research was to determine the situations in which nursing staff considered the use of physical restraint as most important and to evaluate the possible associations with the sociodemographic and professional variables. A descriptive cross-sectional multicenter study was carried out in 52 units of eight Spanish acute hospitals. A survey of registered nurses and nursing assistants was used to collect data related to sociodemographic characteristics, experience, training in restraint use, and the Perception of Restraint Use Questionnaire (PRUQ)-which assesses the perceived importance of reasons frequently given for the use of physical restraint. The sample comprised 508 registered nurses and 347 nursing assistants. Almost all (98%) had used physical restraint, and 82% thought their training in the use of physical restraint was insufficient. Nursing assistants scored higher than registered nurses (p < .005, d = .68) on PRUQ total score and individual item scores, suggesting they thought the factors were more important in restraint use. Both registered nurses and nursing assistants considered restraint as most important in the prevention of falls and in the removal of medical devices such as intravenous lines and urinary catheters. Associations between PRUQ total score and other variables (unit type, sociodemographic factors, hospital) were nonsignificant. The professionals considered restraint as very important in preventing safety problems. In order to improve the quality of care, it is essential to identify the factors that can have an effect on the application of physical restraint. Educational programs are of fundamental importance, but to be more effective in reducing the use of physical restraint, they should address commonly held views on rationale for restraint use and be accompanied by institutional policies promoting a restraint-free environment.

  13. Evaluating the Performance of the ff99SB Force Field Based on NMR Scalar Coupling Data

    PubMed Central

    Wickstrom, Lauren; Okur, Asim; Simmerling, Carlos

    2009-01-01

    Abstract Force-field validation is essential for the identification of weaknesses in current models and the development of more accurate models of biomolecules. NMR coupling and relaxation methods have been used to effectively diagnose the strengths and weaknesses of many existing force fields. Studies using the ff99SB force field have shown excellent agreement between experimental and calculated order parameters and residual dipolar calculations. However, recent studies have suggested that ff99SB demonstrates poor agreement with J-coupling constants for short polyalanines. We performed extensive replica-exchange molecular-dynamics simulations on Ala3 and Ala5 in TIP3P and TIP4P-Ew solvent models. Our results suggest that the performance of ff99SB is among the best of currently available models. In addition, scalar coupling constants derived from simulations in the TIP4P-Ew model show a slight improvement over those obtained using the TIP3P model. Despite the overall excellent agreement, the data suggest areas for possible improvement. PMID:19651043

  14. 2JHH-resolved HSQC: Exclusive determination of geminal proton-proton coupling constants

    NASA Astrophysics Data System (ADS)

    Marcó, Núria; Nolis, Pau; Gil, Roberto R.; Parella, Teodor

    2017-09-01

    The measurement of two-bond proton-proton coupling constants (2JHH) in prochiral CH2 groups from the F2 dimension of 2D spectra is not easy due to the usual presence of complex multiplet J patterns, line broadening effects and strong coupling artifacts. These drawbacks are particularly pronounced and frequent in AB spin systems, as those normally exhibited by the pair of diastereotopic CH2 protons. Here, a novel 2JHH-resolved HSQC experiment for the exclusive and accurate determination of the magnitude of 2JHH from the doublet displayed along the highly-resolved indirect F1 dimension is described. A pragmatic 2JHH NMR profile affords a fast overview of the full range of existing 2JHH values. In addition, a 2JHH/δ(13C)-scaled version proves to be an efficient solution when severe signal overlapping complicate a rigorous analysis. The performance of the method is compared with other current techniques and illustrated by the determination of challenging residual dipolar 2DHH coupling constants of small molecules dissolved in weakly orienting media.

  15. First-order dipolar phase transition in the Dicke model with infinitely coordinated frustrating interaction

    NASA Astrophysics Data System (ADS)

    Mukhin, S. I.; Gnezdilov, N. V.

    2018-05-01

    We found analytically a first-order quantum phase transition in a Cooper pair box array of N low-capacitance Josephson junctions capacitively coupled to resonant photons in a microwave cavity. The Hamiltonian of the system maps on the extended Dicke Hamiltonian of N spins 1 /2 with infinitely coordinated antiferromagnetic (frustrating) interaction. This interaction arises from the gauge-invariant coupling of the Josephson-junction phases to the vector potential of the resonant photons field. In the N ≫1 semiclassical limit, we found a critical coupling at which the ground state of the system switches to one with a net collective electric dipole moment of the Cooper pair boxes coupled to a super-radiant equilibrium photonic condensate. This phase transition changes from the first to second order if the frustrating interaction is switched off. A self-consistently "rotating" Holstein-Primakoff representation for the Cartesian components of the total superspin is proposed, that enables one to trace both the first- and the second-order quantum phase transitions in the extended and standard Dicke models, respectively.

  16. Bound and resonance states of the dipolar anion of hydrogen cyanide: Competition between threshold effects and rotation in an open quantum system

    DOE PAGES

    Fossez, K.; Michel, N.; Nazarewicz, W.; ...

    2015-01-12

    In this paper, bound and resonance states of the dipole-bound anion of hydrogen cyanide HCN – are studied using a nonadiabatic pseudopotential method and the Berggren expansion technique involving bound states, decaying resonant states, and nonresonant scattering continuum. We devise an algorithm to identify the resonant states in the complex energy plane. To characterize spatial distributions of electronic wave functions, we introduce the body-fixed density and use it to assign families of resonant states into collective rotational bands. We find that the nonadiabatic coupling of electronic motion to molecular rotation results in a transition from the strong-coupling to weak-coupling regime.more » In the strong-coupling limit, the electron moving in a subthreshold, spatially extended halo state follows the rotational motion of the molecule. Above the ionization threshold, the electron's motion in a resonance state becomes largely decoupled from molecular rotation. Finally, the widths of resonance-band members depend primarily on the electron orbital angular momentum.« less

  17. Restraint Theory: The Search for a Mechanism.

    ERIC Educational Resources Information Center

    Lowe, Michael R.

    A review of research indicates that cognitive restraint is insufficient in accounting for the relationship between restraint and negative affect eating. To explore what mechanism may be responsible for restraint effects, college students in two samples (Total N=378) completed the Three-Factor Eating Questionnaire (TEQ), a restraint scale…

  18. Measurement of Dietary Restraint: Validity Tests of Four Questionnaires

    PubMed Central

    Williamson, Donald A.; Martin, Corby K.; York-Crowe, Emily; Anton, Stephen D.; Redman, Leanne M.; Han, Hongmei; Ravussin, Eric

    2007-01-01

    This study tested the validity of four measures of dietary restraint: Dutch Eating Behavior Questionnaire, Eating Inventory (EI), Revised Restraint Scale (RS), and the Current Dieting Questionnaire. Dietary restraint has been implicated as a determinant of overeating and binge eating. Conflicting findings have been attributed to different methods for measuring dietary restraint. The validity of four self-report measures of dietary restraint and dieting behavior was tested using: 1) factor analysis, 2) changes in dietary restraint in a randomized controlled trial of different methods to achieve calorie restriction, and 3) correlation of changes in dietary restraint with an objective measure of energy balance, calculated from the changes in fat mass and fat-free mass over a six-month dietary intervention. Scores from all four questionnaires, measured at baseline, formed a dietary restraint factor, but the RS also loaded on a binge eating factor. Based on change scores, the EI Restraint scale was the only measure that correlated significantly with energy balance expressed as a percentage of energy require d for weight maintenance. These findings suggest that that, of the four questionnaires tested, the EI Restraint scale was the most valid measure of the intent to diet and actual caloric restriction. PMID:17101191

  19. Giant Electrocaloric Effect in Ferroelectrics with Tailored Polaw-Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qiming

    2015-06-24

    Electrocaloric effect (ECE) is the temperature and/or entropy change in a dielectric material caused by an electric field induced polarization change. Although ECE has been studied since 1930s, the very small ECE observed in earlier studies in bulk materials before 2007 makes it not attractive for practical cooling applications. The objectives of this DOE program are to carry out a systematical scientific research on the entropy change and ECE in polar-dielectrics, especially ferroelectrics based on several fundamental hypotheses and to search for answers on a few scientific questions. Especially, this research program developed a series of polar-dielectric materials with controlledmore » nano- and meso-structures and carried out studies on how these structures affect the polar-ordering, correlations, energy landscapes, and consequently the entropy states at different phases and ECE. The key hypotheses of the program include: (i) Whether a large ECE can be obtained near the ferroelectric-paraelectric (FE-PE) transition in properly designed ferroelectrics which possess large polarization P and large ß (the coefficient in the thermodynamic Landau theory where the Gibbs free energy G = G = G 0+ ½ a P 2 +1/4 b P 4 + 1/6 c P 6 – EP, and a = ß (T-T c), where b,c,ß and Tc are constants)? (ii) What determines/determine ß? Whether a ferroelectric material with built-in disorders, which disrupt the polar-correlations and enabling a large number of local polar-states, such as a properly designed ferroelectric relaxor, can achieve a large ECE? (iii) How to design a ferroelectric material which has flat energy landscape so that the energy barriers for switching among different phases are vanishingly small? What are the necessary conditions to maximize the number of coexisting phases? (iv) How to design ferroelectric materials with a large tunable dielectric response? That is, at zero electric field, the material possesses very low polar-correlation and hence a very small dielectric constant, under the application of electric field, the material develops long range polar-correlation and hence a high dielectric response. Studying and developing these materials will deepen our understanding on the polarization responses in strongly coupled materials and the roles of molecular and nano, meso-, and micro-scale defects and structures on the polarization responses. On the application front, besides ECE, these dielectrics will also have great impact on micro-electronics and communications. (v) The multi-field effect, besides the electric, elastic and even magnetic effects, could be made use of to tune the energy landscape of polar-materials and hence enhance the ECE. Hence the question is what are the suitable material systems to develop and maximize the multi-field effects? (vi) Besides solid dielectric, liquid dielectrics with properly designed molecular structures and dipolar coupling can also exhibit a large ECE near the dipolar order-disorder transition. The study of order-disorder transition and their influence on entropy change and ECE will provide additional avenue to study dielectrics and understand relationship between the polar-ordering and dipolar entropy in dielectrics. (vii) Besides the regular ECE in which applying an electric field will induce dipolar ordering, there are dielectric material systems which can exhibit negative ECE in which the applied field will reduce the dipolar ordering and anomalous ECE in which applying an electric field pulse will generate cooling only. The question is how to control and balance the nano- and meso-scale polar coupling in dielectrics to achieve such effects? ECE in dielectrics provides an interesting and effective avenue to probe the polar-correlation in dielectrics. Thus the study of ECE in polar-dielectrics, besides the application values, will also deepen our understanding of strongly coupled materials systems, phase transitions, and materials systems with nano- and meso-scale disorders. Through the efforts of this DoE program, we have developed understandings for many questions and materials approaches for many hypotheses listed above. The major accomplishments include: (i) The first one to show that a giant ECE can be obtained in bulk materials of ferroelectric P(VDF-TrFE) copolymer, which has a large ß coefficient and high polarization, near FE-PE transition.[1,3,12] (ii) The first who developed the theoretical analyses on the upper bound of dipolar entropy change in polar-materials and the general approach to maximize the coexisting phases with vanishingly small switching fields among the coexisting phases[10,23] Experimental results confirm these theoretical predictions.[24] (iii) The first to show that the relaxor ferroelectrics, due to built-in defects structures at nano- and meso scale, exhibit a giant ECE over a broad temperature range.[1,3,7,14] (iv) The first to show that a large ECE can be obtained near order-disorder transition in dielectric fluids such as liquid crystals with large dielectric anisotropy. Also the study developed a general approach for developing dielectric fluids to achieve a large electric field induced entropy change.[26] (v) We are starting to explore the multi-field effect (multiferroic effect) in nanocomposites in which there exist large dielectric contrasts between the matrix and nanofilelrs and showed that a significantly enhanced ECE compared with polymer matrix.[36] (vi) By facially tuning the nano- and meso-scale dipolar coupling, we are the first to show that an anomalous ECE can be obtained in a relaxor/normal ferroelectric blend.[39] (vii) Introduced and demonstrated that the internal bias field approach can be effective in enhancing the EC response at low electric field. The result is significant since for practical applications, a low applied field is highly desired. (viii) A high sensitivity ECE characterization system has been developed. This program has made major contributions to the advancement of the EC materials and understandings of EC phenomena. To reflect the advancement in the EC materials development and scientific understandings on ECE through in this time period (from Sept. 1, 2007 to May 2015), this final report is written based on the reports complied each year through the program. Some early works on the ECE which were obtained using the indirect method are not included in this report.« less

  20. Electrostatic contribution to the persistence length of a semiflexible dipolar chain.

    PubMed

    Podgornik, Rudi

    2004-09-01

    We investigate the electrostatic contribution to the persistence length of a semiflexible polymer chain whose segments interact via a screened Debye-Hückel dipolar interaction potential. We derive the expressions for the renormalized persistence length on the level of a 1/D-expansion method already successfully used in other contexts of polyelectrolye physics. We investigate different limiting forms of the renormalized persistence length of the dipolar chain and show that, in, general, it depends less strongly on the screening length than in the context of a monopolar chain. We show that for a dipolar chain the electrostatic persistence length in the same regime of the parameter phase space as the original Odijk-Skolnick-Fixman (OSF) form for a monopolar chain depends logarithmically on the screening length rather than quadratically. This can be understood solely on the basis of a swifter decay of the dipolar interactions with separation compared to the monopolar electrostatic interactions. We comment also on the general contribution of higher multipoles to the electrostatic renormalization of the bending rigidity.

  1. Internal structure of vortices in a dipolar spinor Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Borgh, Magnus O.; Lovegrove, Justin; Ruostekoski, Janne

    2017-04-01

    We demonstrate how dipolar interactions (DI) can have pronounced effects on the structure of vortices in atomic spinor Bose-Einstein condensates and illustrate generic physical principles that apply across dipolar spinor systems. We then find and analyze the cores of singular non-Abelian vortices in a spin-3 52Cr condensate. Using a simpler spin-1 model system, we analyze the underlying dipolar physics and show how a dipolar healing length interacts with the hierarchy of healing lengths of the contact interaction and leads to simple criteria for the core structure: vortex core size is restricted to the shorter spin-dependent healing length when the interactions both favor the ground-state spin condition, but can conversely be enlarged by DI when interactions compete. We further demonstrate manifestations of spin-ordering induced by the DI anisotropy, including DI-dependent angular momentum of nonsingular vortices, as a result of competition with adaptation to rotation, and potentially observable internal vortex-core spin textures. We acknowledge financial support from the EPSRC.

  2. Ferrotoroidic ground state in a heterometallic {CrIIIDyIII6} complex displaying slow magnetic relaxation.

    PubMed

    Vignesh, Kuduva R; Soncini, Alessandro; Langley, Stuart K; Wernsdorfer, Wolfgang; Murray, Keith S; Rajaraman, Gopalan

    2017-10-18

    Toroidal quantum states are most promising for building quantum computing and information storage devices, as they are insensitive to homogeneous magnetic fields, but interact with charge and spin currents, allowing this moment to be manipulated purely by electrical means. Coupling molecular toroids into larger toroidal moments via ferrotoroidic interactions can be pivotal not only to enhance ground state toroidicity, but also to develop materials displaying ferrotoroidic ordered phases, which sustain linear magneto-electric coupling and multiferroic behavior. However, engineering ferrotoroidic coupling is known to be a challenging task. Here we have isolated a {Cr III Dy III 6 } complex that exhibits the much sought-after ferrotoroidic ground state with an enhanced toroidal moment, solely arising from intramolecular dipolar interactions. Moreover, a theoretical analysis of the observed sub-Kelvin zero-field hysteretic spin dynamics of {Cr III Dy III 6 } reveals the pivotal role played by ferrotoroidic states in slowing down the magnetic relaxation, in spite of large calculated single-ion quantum tunneling rates.

  3. Velocity Enhancement by Synchronization of Magnetic Domain Walls

    NASA Astrophysics Data System (ADS)

    Hrabec, Aleš; Křižáková, Viola; Pizzini, Stefania; Sampaio, João; Thiaville, André; Rohart, Stanislas; Vogel, Jan

    2018-06-01

    Magnetic domain walls are objects whose dynamics is inseparably connected to their structure. In this Letter, we investigate magnetic bilayers, which are engineered such that a coupled pair of domain walls, one in each layer, is stabilized by a cooperation of Dzyaloshinskii-Moriya interaction and flux-closing mechanism. The dipolar field mediating the interaction between the two domain walls links not only their position but also their structure. We show that this link has a direct impact on their magnetic-field-induced dynamics. We demonstrate that in such a system the coupling leads to an increased domain wall velocity with respect to single domain walls. Since the domain wall dynamics is observed in a precessional regime, the dynamics involves the synchronization between the two walls to preserve the flux closure during motion. Properties of these coupled oscillating walls can be tuned by an additional in-plane magnetic field enabling a rich variety of states, from perfect synchronization to complete detuning.

  4. High Sensitivity Crosslink Detection Coupled With Integrative Structure Modeling in the Mass Spec Studio *

    PubMed Central

    Sarpe, Vladimir; Rafiei, Atefeh; Hepburn, Morgan; Ostan, Nicholas; Schryvers, Anthony B.; Schriemer, David C.

    2016-01-01

    The Mass Spec Studio package was designed to support the extraction of hydrogen-deuterium exchange and covalent labeling data for a range of mass spectrometry (MS)-based workflows, to integrate with restraint-driven protein modeling activities. In this report, we present an extension of the underlying Studio framework and provide a plug-in for crosslink (XL) detection. To accommodate flexibility in XL methods and applications, while maintaining efficient data processing, the plug-in employs a peptide library reduction strategy via a presearch of the tandem-MS data. We demonstrate that prescoring linear unmodified peptide tags using a probabilistic approach substantially reduces search space by requiring both crosslinked peptides to generate sparse data attributable to their linear forms. The method demonstrates highly sensitive crosslink peptide identification with a low false positive rate. Integration with a Haddock plug-in provides a resource that can combine multiple sources of data for protein modeling activities. We generated a structural model of porcine transferrin bound to TbpB, a membrane-bound receptor essential for iron acquisition in Actinobacillus pleuropneumoniae. Using mutational data and crosslinking restraints, we confirm the mechanism by which TbpB recognizes the iron-loaded form of transferrin, and note the requirement for disparate sources of restraint data for accurate model construction. The software plugin is freely available at www.msstudio.ca. PMID:27412762

  5. High Sensitivity Crosslink Detection Coupled With Integrative Structure Modeling in the Mass Spec Studio.

    PubMed

    Sarpe, Vladimir; Rafiei, Atefeh; Hepburn, Morgan; Ostan, Nicholas; Schryvers, Anthony B; Schriemer, David C

    2016-09-01

    The Mass Spec Studio package was designed to support the extraction of hydrogen-deuterium exchange and covalent labeling data for a range of mass spectrometry (MS)-based workflows, to integrate with restraint-driven protein modeling activities. In this report, we present an extension of the underlying Studio framework and provide a plug-in for crosslink (XL) detection. To accommodate flexibility in XL methods and applications, while maintaining efficient data processing, the plug-in employs a peptide library reduction strategy via a presearch of the tandem-MS data. We demonstrate that prescoring linear unmodified peptide tags using a probabilistic approach substantially reduces search space by requiring both crosslinked peptides to generate sparse data attributable to their linear forms. The method demonstrates highly sensitive crosslink peptide identification with a low false positive rate. Integration with a Haddock plug-in provides a resource that can combine multiple sources of data for protein modeling activities. We generated a structural model of porcine transferrin bound to TbpB, a membrane-bound receptor essential for iron acquisition in Actinobacillus pleuropneumoniae Using mutational data and crosslinking restraints, we confirm the mechanism by which TbpB recognizes the iron-loaded form of transferrin, and note the requirement for disparate sources of restraint data for accurate model construction. The software plugin is freely available at www.msstudio.ca. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Energetic electron acceleration and injection during dipolarization events in Mercury's magnetotail

    NASA Astrophysics Data System (ADS)

    Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Baker, D. N.; Lawrence, D. J.

    2017-12-01

    MESSENGER frequently observed bursts of energetic electrons (>10 keV to 300 keV) within Mercury's miniature terrestrial-like magnetosphere. These bursts are observed most often in the post-midnight sector near the magnetic equator, suggestive of the acceleration and injection of electrons from the magnetotail and their eastward drift about the planet. We use the Gamma-Ray Spectrometer's high-time resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetospheric dynamics in Mercury's magnetotail. We find that these electron injections were observed most frequently in association with magnetic field dipolarization. Between March 2013 and April 2015, we identified 2976 magnetotail electron events of which 538 were coincident with the leading edge of a dipolarization event. These dipolarization fronts were detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. We find electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarization events, reaching energies 160 keV and contributing to nightside precipitation. Dipolarization events, and subsequently, the electron acceleration associated with them, display a strong dawn-dusk asymmetry, suggestive of a post-midnight maximum in magnetotail reconnection.

  7. Interactive effects of dietary restraint and adiposity on stress-induced eating and the food choice of children.

    PubMed

    Roemmich, James N; Lambiase, Maya J; Lobarinas, Christina L; Balantekin, Katherine N

    2011-12-01

    The Individual Differences Model posits that individual differences in physiological and psychological factors explain eating behaviors in response to stress. The purpose was to determine the effects of individual differences in adiposity, dietary restraint and stress reactivity on children's energy intake and food choices. A total of 40 boys and girls, age 8-12 years, with wide ranges of dietary restraint, adiposity, and stress reactivity were measured for total energy intake and choice of energy dense 'comfort' and lower density 'healthy' foods following reading and speech stressor manipulations. When exploring the interaction of dietary restraint and stress reactivity, lower restraint/lower reactivity and lower restraint/higher reactivity were associated with reductions in energy intake (37-62 kcal) and comfort food (33-89 kcal). Higher restraint/lower reactivity was associated with consuming 86 fewer total kcal and 45 fewer kcal of comfort food. Only higher restraint/higher reactivity predicted increased energy intake (104 kcal) and comfort food (131 kcal). The interaction of dietary restraint and percentage body fat revealed that lower restraint/lower adiposity was associated with consuming 123 fewer kcal after being stressed with the entire reduction due to a decrease in comfort food. Lower restraint/higher adiposity was associated with consuming 116 kcal more after being stressed with 70% (81 kcal) of the increase in the form of comfort foods. Higher restraint/lower adiposity and higher restraint/higher adiposity were associated with smaller changes in total energy intake of 22 kcal and 1 kcal; respectively. Both restraint and adiposity moderated the effect of stress on energy intake and food choice. Children with greater adiposity may be at risk for stress-induced eating to contribute to their obesity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Bias-free spin-wave phase shifter for magnonic logic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louis, Steven; Tyberkevych, Vasyl; Slavin, Andrei

    2016-06-15

    A design of a magnonic phase shifter operating without an external bias magnetic field is proposed. The phase shifter uses a localized collective spin wave mode propagating along a domain wall “waveguide” in a dipolarly-coupled magnetic dot array with a chessboard antiferromagnetic (CAFM) ground state. It is demonstrated numerically that the remagnetization of a single magnetic dot adjacent to the domain wall waveguide introduces a controllable phase shift in the propagating spin wave mode without significant change to the mode amplitude. It is also demonstrated that a logic XOR gate can be realized in the same system.

  9. Direct measurement of magnon temperature: new insight into magnon-phonon coupling in magnetic insulators.

    PubMed

    Agrawal, M; Vasyuchka, V I; Serga, A A; Karenowska, A D; Melkov, G A; Hillebrands, B

    2013-09-06

    We present spatially resolved measurements of the magnon temperature in a magnetic insulator subject to a thermal gradient. Our data reveal an unexpectedly close correspondence between the spatial dependencies of the exchange magnon and phonon temperatures. These results indicate that if--as is currently thought--the transverse spin Seebeck effect is caused by a temperature difference between the magnon and phonon baths, it must be the case that the magnon temperature is spectrally nonuniform and that the effect is driven by the sparsely populated dipolar region of the magnon spectrum.

  10. Electromagnetically induced transparency in planar metamaterials based on guided mode resonance

    NASA Astrophysics Data System (ADS)

    Sun, Yaru; Chen, Hang; Li, Xiangjun; Hong, Zhi

    2017-06-01

    We present and numerically demonstrate a novel, electromagnetically induced transparency (EIT) in planar metamaterials (MMs) based on guided mode resonance (GMR). The unit cell of the MM consists of two metallic ring resonators. The GMR with high quality factor (Q) is achieved by changing the distance between the two rings of the MM. Narrow EIT-like spectral response is realized by coupling between a high Q GMR and a low Q dipolar resonance of the MM. Our work could provide another efficient way towards the realization of EIT with large group index using very simple structures.

  11. Rydberg Excitation of a Single Trapped Ion.

    PubMed

    Feldker, T; Bachor, P; Stappel, M; Kolbe, D; Gerritsma, R; Walz, J; Schmidt-Kaler, F

    2015-10-23

    We demonstrate excitation of a single trapped cold (40)Ca(+) ion to Rydberg levels by laser radiation in the vacuum ultraviolet at a wavelength of 122 nm. Observed resonances are identified as 3d(2)D(3/2) to 51F, 52F and 3d(2)D(5/2) to 64F. We model the line shape and our results imply a large state-dependent coupling to the trapping potential. Rydberg ions are of great interest for future applications in quantum computing and simulation, in which large dipolar interactions are combined with the superb experimental control offered by Paul traps.

  12. Ion Transport and Acceleration at Dipolarization Fronts: High-Resolution MHD/Test-Particle Simulations

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, A. Y.; Sorathia, K.; Merkin, V. G.; Sitnov, M. I.; Mitchell, D. G.; Wiltberger, M. J.; Lyon, J.

    2017-12-01

    Much of plasma heating and transport from the magnetotail into the inner magnetosphere occurs in the form of mesoscale discrete injections associated with sharp dipolarizations of magnetic field (dipolarization fronts). In this study we investigate the mechanisms of ion acceleration at dipolarization fronts in a high-resolution global magnetospheric MHD model (LFM). We use large-scale three-dimensional test-particle simulations (CHIMP) to address the following science questions: 1) what are the characteristic scales of dipolarization regions that can stably trap ions? 2) what role does the trapping play in ion transport and acceleration? 3) how does it depend on particle energy and distance from Earth? 4) to what extent ion acceleration is adiabatic? High-resolution LFM was run using idealized solar wind conditions with fixed nominal values of density and velocity and a southward IMF component of -5 nT. To simulate ion interaction with dipolarization fronts, a large ensemble of test particles distributed in energy, pitch-angle, and gyrophase was initialized inside one of the LFM dipolarization channels in the magnetotail. Full Lorentz ion trajectories were then computed over the course of the front inward propagation from the distance of 17 to 6 Earth radii. A large fraction of ions with different initial energies stayed in phase with the front over the entire distance. The effect of magnetic trapping at different energies was elucidated with a correlation of the ion guiding center and the ExB drift velocities. The role of trapping in ion energization was quantified by comparing the partial pressure of ions that exhibit trapping to the pressure of all trapped ions.

  13. Effects of Behavior-Contingent and Fixed-Time Release Contingencies on Frequency and Duration of Therapeutic Restraint

    ERIC Educational Resources Information Center

    Luiselli, James K.; Pace, Gary M.; Dunn, Erin K.

    2006-01-01

    Reducing therapeutic restraint is a desirable outcome for programs that serve individuals who exhibit challenging behaviors. This study investigated the effects of modifying the criterion for release from therapeutic restraint on frequency and duration. Release from restraint was changed from a behavior-contingent criterion (restraint terminated…

  14. 32 CFR 636.34 - Restraint systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Restraint systems. 636.34 Section 636.34 National... Restraint systems. (a) Restraint systems (seat belts) will be worn by all operators and passengers of U.S. Government vehicles on or off the installations. (b) Restraint systems will be worn by all civilian personnel...

  15. Nurses' perceptions and practice of physical restraint in China.

    PubMed

    Jiang, Hui; Li, Chen; Gu, Yan; He, Yanan

    2015-09-01

    There is controversy concerning the use of physical restraint. Despite this controversy, some nurses still consider the application of physical restraint unavoidable for some of their clients. Identify the perceptions and practice of physical restraint in China. This was a descriptive study that combined qualitative interviews with a quantitative cross-sectional survey. A total of 18 nurses were interviewed and 330 nurses were surveyed. Approval of the study was obtained from the hospital ethics committee. Permission to conduct the study was obtained from the director of nursing. Participants were assured that their participation is voluntary. Physical restraint was commonly used to protect patients' safety. Naturally, intensive care unit nurses used physical restraint much more frequently than general medical/surgical ward nurses (p < 0.01). In addition, night shift nurses tended to use physical restraint more frequently. Nursing managers should be aware of the role nurses play in the use of physical restraint. In-service training regarding the proper use of physical restraint should be strengthened and nurse staffing levels should be improved in order to minimize the use of physical restraint in China. © The Author(s) 2014.

  16. Homonuclear Hartmann-Hahn transfer with reduced relaxation losses by use of the MOCCA-XY16 multiple pulse sequence

    NASA Astrophysics Data System (ADS)

    Furrer, Julien; Kramer, Frank; Marino, John P.; Glaser, Steffen J.; Luy, Burkhard

    2004-01-01

    Homonuclear Hartmann-Hahn transfer is one of the most important building blocks in modern high-resolution NMR. It constitutes a very efficient transfer element for the assignment of proteins, nucleic acids, and oligosaccharides. Nevertheless, in macromolecules exceeding ˜10 kDa TOCSY-experiments can show decreasing sensitivity due to fast transverse relaxation processes that are active during the mixing periods. In this article we propose the MOCCA-XY16 multiple pulse sequence, originally developed for efficient TOCSY transfer through residual dipolar couplings, as a homonuclear Hartmann-Hahn sequence with improved relaxation properties. A theoretical analysis of the coherence transfer via scalar couplings and its relaxation behavior as well as experimental transfer curves for MOCCA-XY16 relative to the well-characterized DIPSI-2 multiple pulse sequence are given.

  17. Homonuclear Hartmann-Hahn transfer with reduced relaxation losses by use of the MOCCA-XY16 multiple pulse sequence.

    PubMed

    Furrer, Julien; Kramer, Frank; Marino, John P; Glaser, Steffen J; Luy, Burkhard

    2004-01-01

    Homonuclear Hartmann-Hahn transfer is one of the most important building blocks in modern high-resolution NMR. It constitutes a very efficient transfer element for the assignment of proteins, nucleic acids, and oligosaccharides. Nevertheless, in macromolecules exceeding approximately 10 kDa TOCSY-experiments can show decreasing sensitivity due to fast transverse relaxation processes that are active during the mixing periods. In this article we propose the MOCCA-XY16 multiple pulse sequence, originally developed for efficient TOCSY transfer through residual dipolar couplings, as a homonuclear Hartmann-Hahn sequence with improved relaxation properties. A theoretical analysis of the coherence transfer via scalar couplings and its relaxation behavior as well as experimental transfer curves for MOCCA-XY16 relative to the well-characterized DIPSI-2 multiple pulse sequence are given.

  18. Investigation of crew restraint system biomechanics. Report for May 79-Mar 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.S.; Thomson, R.A.; Fiscus, I.B.

    1982-05-01

    Experimental data were collected and analyses were performed to study the influence of the dynamic mechanical properties of restraint system components on human response to impact and restraint system haulback. Tests were accomplished to isolate the characteristics of the restraint system and the human body. Three restraint webbing materials were studied at varied strain rates. A pyrotechnically powered inertia reel was tested, but could not be analytically modeled successfully. Analytical models of the human and restraint system were used to study the influence of restraint material properties changes on human response parameters. An analytical model of a rhesus monkey wasmore » also used to study the efficacy of animal tests and scaling techniques to evaluate restraint systems for human use applications.« less

  19. Restraint use in older adults in home care: A systematic review.

    PubMed

    Scheepmans, Kristien; Dierckx de Casterlé, Bernadette; Paquay, Louis; Milisen, Koen

    2018-03-01

    To get insight into restraint use in older adults receiving home care and, more specifically, into the definition, prevalence and types of restraint, as well as the reasons for restraint use and the people involved in the decision-making process. Systematic review. Four databases (i.e. Pubmed, CINAHL, Embase, Cochrane Library) were systematically searched from inception to end of April 2017. The study encompassed qualitative and quantitative research on restraint use in older adults receiving home care that reported definitions of restraint, prevalence of use, types of restraint, reasons for use or the people involved. We considered publications written in English, French, Dutch and German. One reviewer performed the search and made the initial selection based on titles and abstracts. The final selection was made by two reviewers working independently; they also assessed study quality. We used an integrated design to synthesise the findings. Eight studies were reviewed (one qualitative, seven quantitative) ranging in quality from moderate to high. The review indicated there was no single, clear definition of restraint. The prevalence of restraint use ranged from 5% to 24.7%, with various types of restraint being used. Families played an important role in the decision-making process and application of restraints; general practitioners were less involved. Specific reasons, other than safety for using restraints in home care were noted (e.g. delay to nursing home admission; to provide respite for an informal caregiver). Contrary to the current socio demographical evolutions resulting in an increasing demand of restraint use in home care, research on this subject is still scarce and recent. The limited evidence however points to the challenging complexity and specificity of home care regarding restraint use. Given these serious challenges for clinical practice, more research about restraint use in home care is urgently needed. Copyright © 2017. Published by Elsevier Ltd.

  20. Use of physical restraint: Nurses' knowledge, attitude, intention and practice and influencing factors.

    PubMed

    Eskandari, Fatemeh; Abdullah, Khatijah Lim; Zainal, Nor Zuraida; Wong, Li Ping

    2017-12-01

    To investigate the knowledge, attitude, intention and practice of nurses towards physical restraint and factors influencing these variables. A literature review showed a lack of studies focused on the intention of nurses regarding physical restraint throughout the world. Considering that very little research on physical restraint use has been carried out in Malaysia, assessment of nurses' knowledge, attitude, intention and practice is necessary before developing a minimising programme in hospitals. A cross-sectional study was used. A questionnaire to assess the knowledge, attitude, intention and practice was completed by all nurses (n = 309) in twelve wards of a teaching hospital in Kuala Lumpur. Moderate knowledge and attitude with strong intention to use physical restraint were found among the nurses. Less than half of nurses considered alternatives to physical restraint and most of them did not understand the reasons for the physical restraint. Nurses' academic qualification, read any information source during past year and nurses' work unit showed a significant association with nurses' knowledge. Multiple linear regression analysis found knowledge, attitude and intention were significantly associated with nurses' practice to use physical restraint. This study showed some important misunderstandings of nurses about using physical restraint and strong intention regarding using physical restraint. Findings of this study serve as a supporting reason for importance of educating nurses about the use of physical restraint. Exploring the knowledge, attitude, intention and current practice of nurses towards physical restraint is important so that an effective strategy can be formulated to minimise the use of physical restraints in hospitals. © 2017 John Wiley & Sons Ltd.

  1. Recent progress and future directions in protein-protein docking.

    PubMed

    Ritchie, David W

    2008-02-01

    This article gives an overview of recent progress in protein-protein docking and it identifies several directions for future research. Recent results from the CAPRI blind docking experiments show that docking algorithms are steadily improving in both reliability and accuracy. Current docking algorithms employ a range of efficient search and scoring strategies, including e.g. fast Fourier transform correlations, geometric hashing, and Monte Carlo techniques. These approaches can often produce a relatively small list of up to a few thousand orientations, amongst which a near-native binding mode is often observed. However, despite the use of improved scoring functions which typically include models of desolvation, hydrophobicity, and electrostatics, current algorithms still have difficulty in identifying the correct solution from the list of false positives, or decoys. Nonetheless, significant progress is being made through better use of bioinformatics, biochemical, and biophysical information such as e.g. sequence conservation analysis, protein interaction databases, alanine scanning, and NMR residual dipolar coupling restraints to help identify key binding residues. Promising new approaches to incorporate models of protein flexibility during docking are being developed, including the use of molecular dynamics snapshots, rotameric and off-rotamer searches, internal coordinate mechanics, and principal component analysis based techniques. Some investigators now use explicit solvent models in their docking protocols. Many of these approaches can be computationally intensive, although new silicon chip technologies such as programmable graphics processor units are beginning to offer competitive alternatives to conventional high performance computer systems. As cryo-EM techniques improve apace, docking NMR and X-ray protein structures into low resolution EM density maps is helping to bridge the resolution gap between these complementary techniques. The use of symmetry and fragment assembly constraints are also helping to make possible docking-based predictions of large multimeric protein complexes. In the near future, the closer integration of docking algorithms with protein interface prediction software, structural databases, and sequence analysis techniques should help produce better predictions of protein interaction networks and more accurate structural models of the fundamental molecular interactions within the cell.

  2. Isospin equilibration processes and dipolar signals: Coherent cluster production

    NASA Astrophysics Data System (ADS)

    Papa, M.; Berceanu, I.; Acosta, L.; Agodi, C.; Auditore, L.; Cardella, G.; Chatterjee, M. B.; Dell'Aquila, D.; De Filippo, E.; Francalanza, L.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Martorana, N.; Pagano, A.; Pagano, E. V.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifiró, A.; Trimarchi, M.; Verde, G.; Vigilante, M.

    2017-11-01

    The total dipolar signal related to multi-break-up processes induced on the system ^{48}Ca +{^{27}Al} at 40MeV/nucleon has been investigated with the CHIMERA multi-detector. Experimental data related to semi-peripheral collisions are shown and compared with CoMD-III calculations. The strong connection between the dipolar signal as obtained from the detected fragments and the dynamics of the isospin equilibration processes is also shortly discussed.

  3. Third-harmonic generation from Mie-type resonances of isolated all-dielectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Melik-Gaykazyan, Elizaveta V.; Shcherbakov, Maxim R.; Shorokhov, Alexander S.; Staude, Isabelle; Brener, Igal; Neshev, Dragomir N.; Kivshar, Yuri S.; Fedyanin, Andrey A.

    2017-03-01

    Subwavelength silicon nanoparticles are known to support strongly localized Mie-type modes, including those with resonant electric and magnetic dipolar polarizabilities. Here we compare experimentally the efficiency of the third-harmonic generation from isolated silicon nanodiscs for resonant excitation at the two types of dipolar resonances. Using nonlinear spectroscopy, we observe that the magnetic dipolar mode yields more efficient third-harmonic radiation in contrast to the electric dipolar (ED) mode. This is further supported by full-wave numerical simulations, where the volume-integrated local fields and the directly simulated nonlinear response are shown to be negligible at the ED resonance compared with the magnetic one. This article is part of the themed issue 'New horizons for nanophotonics'.

  4. Attitudes of nurses towards the use of physical restraints in geriatric care: a systematic review of qualitative and quantitative studies.

    PubMed

    Möhler, Ralph; Meyer, Gabriele

    2014-02-01

    To examine nurses' attitudes towards the use of physical restraints in geriatric care. Systematic review and synthesis of qualitative and quantitative studies. The following databases were searched: Medline, CINAHL, EMBASE, Psyndex, PsychInfo, Social SciSearch, SciSearch, Forum Qualitative Social Research (1/1990 to 8/2013). We performed backward and forward citation tracking to all of the included studies. We included in the present review all qualitative and quantitative studies in English and German that investigated nurses' attitudes towards the use of physical restraints in geriatric care. Two independent reviewers selected the studies for inclusion and assessed the study quality. We performed a thematic synthesis for the qualitative studies and a content analysis of the questionnaires' items as well as a narrative synthesis for the quantitative surveys. We included 31 publications in the review: 20 quantitative surveys, 10 qualitative and 1 mixed-method study. In the qualitative studies, nurses' attitudes towards the use of physical restraints in geriatric care were predominately characterised by negative feelings towards the use of restraints; however, the nurses also described a perceived need for using restraints in clinical practice. This discrepancy led to moral conflicts, and nurses described several strategies for coping with these conflicts when restraints were used. When nurses were in doubt regarding the use of restraints, they decided predominantly in favour of using restraints. The results of the quantitative surveys were inconsistent regarding nurses' feelings towards the use of restraints in geriatric care. Prevention of falls was identified as a primary reason for using restraints. However, the items of the questionnaires focussed primarily on the reasons for the use of restraints rather than on the attitudes of nurses. Despite the lack of evidence regarding the benefits of restraints and the evidence on the adverse effects, nurses often decided in favour of using restraints when in doubt and they used strategies to cope with negative feelings when they used restraints. A clear policy change in geriatric care institutions towards restraint-free care seems to be warranted to change clinical practice. The results of this review should also be considered in the development of interventions aimed at reducing the use of restraints. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Restraint prevalence and perceived coercion among psychiatric inpatients from South India: A prospective study.

    PubMed

    Gowda, Guru S; Lepping, Peter; Noorthoorn, Eric O; Ali, Syed Farooq; Kumar, Channaveerachari Naveen; Raveesh, Bevinahalli Nanjegowda; Math, Suresh Bada

    2018-05-22

    The Indian Mental Health Care Act 2017 (MHCA -2017) advocates the duty to provide treatment in the least coercive manner. Little data exists on how Indian patients perceive coercion in medical settings. To study the prevalence of restraint in a Indian psychiatric inpatient unit, and to examine the level of perceived coercion correlating to various forms of restraint. This is a hospital based prospective observational study. Two hundred patients were recruited through computer generated random number sampling. In eligible subjects, demographic and clinical data, restraints used and assessments related to perceived coercion were completed within 3 days of admission. Perceived coercion was reassessed at the time or within 3 days before discharge. In 66.5% one or more restraint measures were used, physical restraints in 20%, chemical restraints in 58%, seclusion in 18%, and involuntary medication in 32%. ECT is associated with the lowest level of perceived coercion followed by isolation/seclusion, chemical restraint, involuntary medication and physical restraint. Male gender, being married, rural background, low socioeconomic status, having a mood disorder, and alcohol or drug dependence was associated with an increased risk of physical or chemical restraint. Having a mood disorder, being from a rural area and a lower socioeconomic status was associated with being subjected to more than one form of coercion. Restraint measures are more prevalent in psychiatric hospital care in India than in Europe. Physical restraint is particularly associted with higher perceived coercion. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Physical restraints in an Italian psychiatric ward: clinical reasons and staff organization problems.

    PubMed

    Di Lorenzo, Rosaria; Baraldi, Sara; Ferrara, Maria; Mimmi, Stefano; Rigatelli, Marco

    2012-04-01

    To analyze physical restraint use in an Italian acute psychiatric ward, where mechanical restraint by belt is highly discouraged but allowed. Data were retrospectively collected from medical and nursing charts, from January 1, 2005, to December 31, 2008. Physical restraint rate and relationships between restraints and selected variables were statistically analyzed. Restraints were statistically significantly more frequent in compulsory or voluntary admissions of patients with an altered state of consciousness, at night, to control aggressive behavior, and in patients with "Schizophrenia and other Psychotic Disorders" during the first 72 hr of hospitalization. Analysis of clinical and organizational factors conditioning restraints may limit its use. © 2011 Wiley Periodicals, Inc.

  7. Predictors of restraint use among child occupants.

    PubMed

    Benedetti, Marco; Klinich, Kathleen D; Manary, Miriam A; Flannagan, Carol A

    2017-11-17

    The objective of this study was to identify factors that predict restraint use and optimal restraint use among children aged 0 to 13 years. The data set is a national sample of police-reported crashes for years 2010-2014 in which type of child restraint is recorded. The data set was supplemented with demographic census data linked by driver ZIP code, as well as a score for the state child restraint law during the year of the crash relative to best practice recommendations for protecting child occupants. Analysis used linear regression techniques. The main predictor of unrestrained child occupants was the presence of an unrestrained driver. Among restrained children, children had 1.66 (95% confidence interval, 1.27, 2.17) times higher odds of using the recommended type of restraint system if the state law at the time of the crash included requirements based on best practice recommendations. Children are more likely to ride in the recommended type of child restraint when their state's child restraint law includes wording that follows best practice recommendations for child occupant protection. However, state child restraint law requirements do not influence when caregivers fail to use an occupant restraint for their child passengers.

  8. Repeated handling, restraint, or chronic crowding impair the hypothalamic-pituitary-adrenocortical response to acute restraint stress.

    PubMed

    Gadek-Michalska, A; Bugajski, J

    2003-09-01

    The purpose of the present study was to assess whether, and to what extent prior handling, restraint or social crowding stress during 3-10 days affects the hypothalamic-pituitary-adrenocortical (HPA) response to an acute short-lasting restraint stress. Also the effect of a feedback inhibitory mechanism of corticosterone in the impairment of HPA axis by these stressors was investigated. Male Wistar rats were pretreated with handling 1 min/day for 3-10 days, restraint 2 times daily for 3-7 days and crowding stress for 7 days before exposure to acute restraint stress in metal tubes for 10 min. Some group of rats received exogenous s.c. corticosterone either once 25 mg/kg or 2 times daily 10 mg/kg for 3-10 days before restraint stress. After the last restraint the rats were decapitated and their trunk blood was collected for the measurement of plasma ACTH and serum corticosterone levels. Handling for 3-7 days, restraint for 3-7 days, and crowding for 7 days and a single pretreatment with corticosterone--all significantly and to a similar extent inhibited the restraint stress-induced increase in ACTH and corticosterone secretion. Chronic pretreatment with corticosterone blunted the restraint stress-induced increase in HPA axis activity. These results indicate that repeated short-lasting stress induced by handling, restraint, or crowding potently attenuates the acute restraint stress-induced stimulatory action of the HPA axis. They also indicate adaptive action of moderate stress on the HPA axis response to acute stress. The results also suggest that a short-lasting hypersecretion of corticosterone during psychological stress may induce a prolonged feedback inhibition of the HPA axis activity. The attenuation of HPA axis response by prior handling has also obvious methodological implications.

  9. Dietary restraint, anxiety, and the relative reinforcing value of snack food in non-obese women.

    PubMed

    Goldfield, Gary S; Legg, Christine

    2006-11-01

    This study tested the independent and interactive effects of anxiety and dietary restraint on the relative reinforcing value of snack food. Thirty non-obese, female university students were assigned to one of four groups based on median split scores on measures of dietary restraint and state-anxiety: low-restraint/low-anxiety (n=7), low-restraint/high-anxiety (n=7), high-restraint/low-anxiety (n=9), and high-restraint/high-anxiety (n=7). Participants were provided the choice to earn points for palatable snack foods or fruits and vegetables using a computerized concurrent schedules choice task. The behavioural cost to gain access to snack foods increased across trials, whereas the cost to gain access to fruits and vegetables was held constant across trials. The relative reinforcing value of palatable snack food in relation to fruits and vegetables was defined as the total amount of points earned for snack food. Two-way analysis of covariance, with hunger and hedonic snack food ratings as covariates, showed that dietary restraint and anxiety had a significant interactive effect on the relative reinforcing value of snack food, indicating that the effect of anxiety on snack food reinforcement is moderated by dietary restraint. Specifically, the high-anxiety/low-restraint women found snack food significantly less reinforcing than low-anxiety/low-restraint women, but no differences emerged between high- and low-anxiety women with high-restraint. Neither restraint nor anxiety had an independent effect on the relative reinforcing value of snack food. These findings indicate that anxiety may have a suppressive effect on the relative reinforcing value of snack food in low-restrained eaters, but not an enhancing effect on snack food reinforcement in high-restrained eaters. Clinical implications of these findings are discussed.

  10. Response of energetic particles to local magnetic dipolarization inside geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Motoba, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.

    2017-12-01

    Magnetic field dipolarization and energetic particle injections are the most distinct phenomena observed in the inner magnetosphere during the substorm expansion phase. Compared to a wealth of knowledge about the phenomenology of magnetic dipolarizations and particle injections at/outside geosynchronous orbit (GEO), our understanding of them inside GEO remains incomplete because of a very limited number of previous studies. In the present study, we statistically examine the response of 1-1000 keV energetic particles to local magnetic dipolarization by performing a superposed epoch analysis of energetic particle fluxes with the zero epoch defined as the dipolarization onset times. Based on data from the Van Allen Probes tail seasons in 2012-2016, we identified a total of 97 magnetic dipolarization events which occurred closer to the magnetic equator (i.e., BH, which is antiparallel to the Earth's dipole axis, is the dominant component of the local magnetic field at least for 5 min before the onset). For major ion species (hydrogen, helium, and oxygen ions), the relative flux intensity to the pre-onset level increases at > 50 keV and decreases at < 30 keV. The hydrogen and helium ion fluxes in the hundreds of keV range sharply increase within a minute after the onset and then decay. Compared to the short-lived nature of hydrogen and helium ion flux enhancements, oxygen ion fluxes are enhanced more gradually (on the order of several minutes). The relative ion flux intensity and peak energy generally tend to increase for stronger dipolarization-related impulsive westward electric field. This suggests that the impulsive electric field is responsible for the energization and/or transport of energetic ions inside GEO. On the other hand, the electron flux enhancement first appears from several tens of keV to a few hundreds of keV, and then exhibits an inverse energy dispersion. For dipolarizations with strong impulsive westward electric fields, the relative electron flux intensity increases up to 5-10 times, in particular most significant at several tens of keV. This result suggests that the impulsive electric field acts as an efficient factor in the rapid energization of the tens-of-keV electrons. We also discuss how the response of energetic particles to dipolarization depends on MLT, radial distance, and pitch angle.

  11. Pitch angle distributions of electrons at dipolarization sites during geomagnetic activity: THEMIS observations

    NASA Astrophysics Data System (ADS)

    Wang, Kaiti; Lin, Ching-Huei; Wang, Lu-Yin; Hada, Tohru; Nishimura, Yukitoshi; Turner, Drew L.; Angelopoulos, Vassilis

    2014-12-01

    Changes in pitch angle distributions of electrons with energies from a few eV to 1 MeV at dipolarization sites in Earth's magnetotail are investigated statistically to determine the extent to which adiabatic acceleration may contribute to these changes. Forty-two dipolarization events from 2008 and 2009 observed by Time History of Events and Macroscale Interactions during Substorms probes covering the inner plasma sheet from 8 RE to 12 RE during geomagnetic activity identified by the AL index are analyzed. The number of observed events with cigar-type distributions (peaks at 0° and 180°) decreases sharply below 1 keV after dipolarization because in many of these events, electron distributions became more isotropized. From above 1 keV to a few tens of keV, however, the observed number of cigar-type events increases after dipolarization and the number of isotropic events decreases. These changes can be related to the ineffectiveness of Fermi acceleration below 1 keV (at those energies, dipolarization time becomes comparable to electron bounce time). Model-calculated pitch angle distributions after dipolarization with the effect of betatron and Fermi acceleration tested indicate that these adiabatic acceleration mechanisms can explain the observed patterns of event number changes over a large range of energies for cigar events and isotropic events. Other factors still need to be considered to assess the observed increase in cigar events around 2 keV. Indeed, preferential directional increase/loss of electron fluxes, which may contribute to the formation of cigar events, was observed. Nonadiabatic processes to accelerate electrons in a parallel direction may also be important for future study.

  12. Phenomenology of self-restraint.

    PubMed

    Oliver, Chris; Murphy, Glynis; Hall, Scott; Arron, Kate; Leggett, Janice

    2003-03-01

    Self-restraint is often reported in individuals with mental retardation who show self-injurious behavior (SIB). In this study, the phenomenology and prevalence of self-restraint in individuals showing self-injury and wearing protective devices and those showing self-injury but not wearing protective devices were compared. A high prevalence of self-restraint in the whole sample of individuals showing self-injury was identified (67/88, 76.1%), and self-restraint was more prevalent in a group showing self-injury but not wearing protective devices (43/47, 91.5%) than in a group showing self-injury and wearing protective devices (24/41, 58.5%). Individuals not wearing protective devices showed a greater number of topographies of self-restraint than those who did wear them. Results are discussed with reference to the purely topographical definition of self-restraint employed and the potential equivalence of protective devices and self-restraint.

  13. Modulating RNA Alignment Using Directional Dynamic Kinks: Application in Determining an Atomic-Resolution Ensemble for a Hairpin using NMR Residual Dipolar Couplings.

    PubMed

    Salmon, Loïc; Giambaşu, George M; Nikolova, Evgenia N; Petzold, Katja; Bhattacharya, Akash; Case, David A; Al-Hashimi, Hashim M

    2015-10-14

    Approaches that combine experimental data and computational molecular dynamics (MD) to determine atomic resolution ensembles of biomolecules require the measurement of abundant experimental data. NMR residual dipolar couplings (RDCs) carry rich dynamics information, however, difficulties in modulating overall alignment of nucleic acids have limited the ability to fully extract this information. We present a strategy for modulating RNA alignment that is based on introducing variable dynamic kinks in terminal helices. With this strategy, we measured seven sets of RDCs in a cUUCGg apical loop and used this rich data set to test the accuracy of an 0.8 μs MD simulation computed using the Amber ff10 force field as well as to determine an atomic resolution ensemble. The MD-generated ensemble quantitatively reproduces the measured RDCs, but selection of a sub-ensemble was required to satisfy the RDCs within error. The largest discrepancies between the RDC-selected and MD-generated ensembles are observed for the most flexible loop residues and backbone angles connecting the loop to the helix, with the RDC-selected ensemble resulting in more uniform dynamics. Comparison of the RDC-selected ensemble with NMR spin relaxation data suggests that the dynamics occurs on the ps-ns time scales as verified by measurements of R(1ρ) relaxation-dispersion data. The RDC-satisfying ensemble samples many conformations adopted by the hairpin in crystal structures indicating that intrinsic plasticity may play important roles in conformational adaptation. The approach presented here can be applied to test nucleic acid force fields and to characterize dynamics in diverse RNA motifs at atomic resolution.

  14. Probing Na+ Induced Changes in the HIV-1 TAR Conformational Dynamics using NMR Residual Dipolar Couplings: New Insights into the Role of Counterions and Electrostatic Interactions in Adaptive Recognition†

    PubMed Central

    Casiano-Negroni, Anette; Sun, Xiaoyan; Al-Hashimi, Hashim M.

    2012-01-01

    Many regulatory RNAs undergo large changes in structure upon recognition of proteins and ligands but the mechanism by which this occur remains poorly understood. Using NMR residual dipolar coupling (RDCs), we characterized Na+ induced changes in the structure and dynamics of the bulge-containing HIV-1 transactivation response element (TAR) RNA that mirror changes induced by small molecules bearing a different number of cationic groups. Increasing the Na+ concentration from 25 mM to 320 mM led to a continuous reduction in the average inter-helical bend angle (from 46° to 22°), inter-helical twist angle (from 66° to −18°) and inter-helix flexibility (as measured by an increase in the internal generalized degree of order from 0.56 to 0.74). Similar conformational changes were observed with Mg2+, indicating that non-specific electrostatic interactions drive the conformational transition, although results also suggest that Na+ and Mg2+ may associate with TAR in distinct modes. The transition can be rationalized based on a population-weighted average of two ensembles comprising an electrostatically relaxed bent and flexible TAR conformation that is weakly associated with counterions, and a globally rigid coaxial conformation which has stronger electrostatic potential and association with counterions. The TAR inter-helical orientations that are stabilized by small molecules fall around the metal-induced conformational pathway, indicating that counterions may help predispose the TAR conformation for target recognition. Our results underscore the intricate sensitivity of RNA conformational dynamics to environmental conditions and demonstrate the ability to detect subtle conformational changes using NMR RDCs. PMID:17488097

  15. Solution Structure of the 128 kDa Enzyme I Dimer from Escherichia coli and Its 146 kDa Complex with HPr Using Residual Dipolar Couplings and Small- and Wide-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwieters, Charles D.; Suh, Jeong-Yong; Grishaev, Alexander

    2010-09-17

    The solution structures of free Enzyme I (EI, {approx}128 kDa, 575 x 2 residues), the first enzyme in the bacterial phosphotransferase system, and its complex with HPr ({approx}146 kDa) have been solved using novel methodology that makes use of prior structural knowledge (namely, the structures of the dimeric EIC domain and the isolated EIN domain both free and complexed to HPr), combined with residual dipolar coupling (RDC), small- (SAXS) and wide- (WAXS) angle X-ray scattering and small-angle neutron scattering (SANS) data. The calculational strategy employs conjoined rigid body/torsion/Cartesian simulated annealing, and incorporates improvements in calculating and refining against SAXS/WAXS datamore » that take into account complex molecular shapes in the description of the solvent layer resulting in a better representation of the SAXS/WAXS data. The RDC data orient the symmetrically related EIN domains relative to the C{sub 2} symmetry axis of the EIC dimer, while translational, shape, and size information is provided by SAXS/WAXS. The resulting structures are independently validated by SANS. Comparison of the structures of the free EI and the EI-HPr complex with that of the crystal structure of a trapped phosphorylated EI intermediate reveals large ({approx}70-90{sup o}) hinge body rotations of the two subdomains comprising the EIN domain, as well as of the EIN domain relative to the dimeric EIC domain. These large-scale interdomain motions shed light on the structural transitions that accompany the catalytic cycle of EI.« less

  16. Intermolecular interactions between imidazole derivatives intercalated in layered solids. Substituent group effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, M.; Lemus-Santana, A.A.; Rodríguez-Hernández, J.

    2013-08-15

    This study sheds light on the intermolecular interactions between imidazole derive molecules (2-methyl-imidazole, 2-ethyl-imidazole and benzimidazole) intercalated in T[Ni(CN){sub 4}] layers to form a solid of formula unit T(ImD){sub 2}[Ni(CN){sub 4}]. These hybrid inorganic–organic solids were prepared by soft chemical routes and their crystal structures solved and refined from X-ray powder diffraction data. The involved imidazole derivative molecules were found coordinated through the pyridinic N atom to the axial positions for the metal T in the T[Ni(CN){sub 4}] layer. In the interlayers region ligand molecules from neighboring layers remain stacked in a face-to-face configuration through dipole–dipole and quadrupole–quadrupole interactions. Thesemore » intermolecular interactions show a pronounced dependence on the substituent group and are responsible for an ImD-pillaring concatenation of adjacent layers. This is supported by the structural information and the recorded magnetic data in the 2–300 K temperature range. The samples containing Co and Ni are characterized by presence of spin–orbit coupling and pronounced temperature dependence for the effective magnetic moment except for 2-ethyl-imidazole related to the local distortion for the metal coordination environment. For this last one ligand a weak ferromagnetic ordering ascribed to a super-exchange interaction between T metals from neighboring layers through the ligands π–π interaction was detected. - Graphical abstract: In the interlayers region imidazole derivative molecules are oriented according to their dipolar and quadrupolar interactions and minimizing the steric impediment. Highlights: • Imidazole derivatives intercalation compounds. • Intermolecular interaction between intercalated imidazole derivatives. • Hybrid inorganic–organic solids. • Pi–pi interactions and ferromagnetic coupling. • Dipolar and quadrupolar interactions between intercalated imidazole derivatives.« less

  17. Observing the Plasma-Physical Processes of Pulsar Radio Emission with Arecibo

    NASA Astrophysics Data System (ADS)

    Rankin, Joanna M.

    2017-01-01

    With their enormous densities and fields, neutron stars entail some of the most exotic physics in the cosmos. Similarly, the physical mechanisms of pulsar radio emission are no less exotic, and we are only now beginning to understand them. The talk will provide an introduction to the phenomenology of radio pulsar emission and focus on those aspects of the exquisite Arecibo observations that bear on their challenging emission physics.The commonalities of the radio beamforms of most slow pulsars (and some millisecond pulsars) argue strongly that their magnetic fields have a nearly dipolar structure at the height of their radio emission regions. These heights can often be determined by aberration/retardation analyses. Similarly, measurement of the orientation of the polarized radio emission with respect to the emitting magnetic field facilitates identification of the physical(X/O) emission modes and study of the plasma coupling to the electromagnetic radiation.While the physics of primary plasma generation above the pulsar polar cap is only beginning to be understood, it is clear that the radio pulsars we see are able to generate copious amounts of electron-positron plasma in their emission regions. Within the nearly dipolar field structure of these emission regions, the plasma density is near to that of the Goldreich-Julian model, and so the physical conditions in these regions can be accurately estimated.These conditions show that the plasma frequencies in the emission regions are much higher than the frequency of the emitted radiation, such that the plasma couples most easily to the extraordinary mode as observed. Therefore, the only surviving emission mechanism is curvature radiation from charged solitons, produced by the two-stream instability. Such soliton emission has probably been observed directly in the Crab pulsar; however, a physical theory of charged soliton radiation does not yet exist.

  18. Adaptation of a 3-D Quadrupole Ion Trap for Dipolar DC Collisional Activation

    PubMed Central

    Prentice, Boone M.; Santini, Robert E.; McLuckey, Scott A.

    2011-01-01

    Means to allow for the application of a dipolar DC pulse to the end-cap electrodes of a three-dimensional (3-D) quadrupole ion trap for as short as a millisecond to as long as hundreds of milliseconds are described. The implementation of dipolar DC does not compromise the ability to apply AC waveforms to the end-cap electrodes at other times in the experiment. Dipolar DC provides a nonresonant means for ion acceleration by displacing ions from the center of the ion trap where they experience stronger rf electric fields, which increases the extent of micro-motion. The evolution of the product ion spectrum to higher generation products with time, as shown using protonated leucine enkephalin as a model protonated peptide, illustrates the broad-band nature of the activation. Dipolar DC activation is also shown to be effective as an ion heating approach in mimicking high amplitude short time excitation (HASTE)/pulsed Q dissociation (PQD) resonance excitation experiments that are intended to enhance the likelihood for observing low m/z products in ion trap tandem mass spectrometry. PMID:21953251

  19. Pressure and compressibility factor of bidisperse magnetic fluids

    NASA Astrophysics Data System (ADS)

    Minina, Elena S.; Blaak, Ronald; Kantorovich, Sofia S.

    2018-04-01

    In this work, we investigate the pressure and compressibility factors of bidisperse magnetic fluids with relatively weak dipolar interactions and different granulometric compositions. In order to study these properties, we employ the method of diagram expansion, taking into account two possible scenarios: (1) dipolar particles repel each other as hard spheres; (2) the polymer shell on the surface of the particles is modelled through a soft-sphere approximation. The theoretical predictions of the pressure and compressibility factors of bidisperse ferrofluids at different granulometric compositions are supported by data obtained by means of molecular dynamics computer simulations, which we also carried out for these systems. Both theory and simulations reveal that the pressure and compressibility factors decrease with growing dipolar correlations in the system, namely with an increasing fraction of large particles. We also demonstrate that even if dipolar interactions are too weak for any self-assembly to take place, the interparticle correlations lead to a qualitative change in the behaviour of the compressibility factors when compared to that of non-dipolar spheres, making the dependence monotonic.

  20. Anxiolytic-like effects of restraint during the dark cycle in adolescent mice.

    PubMed

    Ota, Yuki; Ago, Yukio; Tanaka, Tatsunori; Hasebe, Shigeru; Toratani, Yui; Onaka, Yusuke; Hashimoto, Hitoshi; Takuma, Kazuhiro; Matsuda, Toshio

    2015-05-01

    Stress during developmental stage may cause psychological morbidities, and then the studies on stress are important in adolescent rodents. Restraint is used as a common stressor in rodents and the effects of restraint during the light cycle have been studied, but those of restraint during the dark cycle have not. The present study examined the effects of restraint during the light and dark cycles on anxiety behaviors in adolescent mice. Restraint for 3h during either the light or dark cycle impaired memory function in the fear conditioning test, but did not affect locomotor activity. In the elevated plus-maze test, restraint during the dark cycle reduced anxiety-like behaviors in mice. Repeated exposure to a 3-h period dark cycle restraint for 2 weeks had a similar anxiolytic-like effect. In contrast, restraint for 3h during the light cycle produced anxiety behavior in adolescent, but not adult, mice. The light cycle stress increased plasma corticosterone levels, and elevated c-Fos expression in the prefrontal cortex, paraventricular hypothalamic nucleus, basolateral amygdala and dentate gyrus, and enhanced serotonin turnover in the hippocampus and striatum, while the dark cycle stress did not. There was no difference in the stress-mediated reduction in pentobarbital-induced sleeping time between dark and light cycle restraint. These findings suggest that the anxiolytic effect of dark cycle restraint is mediated by corticosterone, serotonin or γ-aminobutyric acid-independent mechanisms, although the anxiogenic effect of light cycle restraint is associated with changes in plasma corticosterone levels and serotonin turnover in specific brain regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Scissors Mode of Dipolar Quantum Droplets of Dysprosium Atoms

    NASA Astrophysics Data System (ADS)

    Ferrier-Barbut, Igor; Wenzel, Matthias; Böttcher, Fabian; Langen, Tim; Isoard, Mathieu; Stringari, Sandro; Pfau, Tilman

    2018-04-01

    We report on the observation of the scissors mode of a single dipolar quantum droplet. The existence of this mode is due to the breaking of the rotational symmetry by the dipole-dipole interaction, which is fixed along an external homogeneous magnetic field. By modulating the orientation of this magnetic field, we introduce a new spectroscopic technique for studying dipolar quantum droplets. This provides a precise probe for interactions in the system, allowing us to extract a background scattering length for 164Dy of 69 (4 )a0 . Our results establish an analogy between quantum droplets and atomic nuclei, where the existence of the scissors mode is also only due to internal interactions. They further open the possibility to explore physics beyond the available theoretical models for strongly dipolar quantum gases.

  2. Quantum Hall signatures of dipolar Mahan excitons

    NASA Astrophysics Data System (ADS)

    Schinner, G. J.; Repp, J.; Kowalik-Seidl, K.; Schubert, E.; Stallhofer, M. P.; Rai, A. K.; Reuter, D.; Wieck, A. D.; Govorov, A. O.; Holleitner, A. W.; Kotthaus, J. P.

    2013-01-01

    We explore the photoluminescence of spatially indirect, dipolar Mahan excitons in a gated double quantum well diode containing a mesoscopic electrostatic trap for neutral dipolar excitons at low temperatures down to 250 mK and in quantizing magnetic fields. Mahan excitons in the surrounding of the trap, consisting of individual holes interacting with a degenerate two-dimensional electron system confined in one of the quantum wells, exhibit strong quantum Hall signatures at integer filling factors and related anomalies around filling factor ν=(2)/(3),(3)/(5), and (1)/(2), reflecting the formation of composite fermions. Interactions across the trap perimeter are found to influence the energy of the confined neutral dipolar excitons by the presence of the quantum Hall effects in the two-dimensional electron system surrounding the trap.

  3. Adrenocortical response in rats subjected to a stress of restraint by immobilization whether accompanied by hypothermia or not

    NASA Technical Reports Server (NTRS)

    Buchel, L.; Prioux-Guyonneau, M.; Libian, L.

    1980-01-01

    The restraint associated with hypothermia which increases the adrenal activity in rats was investigated. In rats with nomothermia or light hypothermia, the plasma and adrenal corticosterone levels increase at least threefold whatever the duration of restraint. Their return to normal values depends on the duration of the restraint. Exposure to cold produces in free rats a light hypothermia with an increase of the plasma and adrenal corticosterone levels, and in restraint animals an important hypothermia which does not potentiate the stimulation of adrenocortical activity induced by the restraint alone.

  4. On the Usage of Locally Dense Basis Sets in the Calculation of NMR Indirect Nuclear Spin-Spin Coupling Constants

    NASA Astrophysics Data System (ADS)

    Sanchez, Marina; Provasi, Patricio F.; Aucar, Gustavo A.; Sauer, Stephan P. A.

    Locally dense basis sets (

  5. Efficiency for preforming molecules from mixtures of light Fermi and heavy Bose atoms in optical lattices: The strong-coupling-expansion method

    NASA Astrophysics Data System (ADS)

    Hu, Anzi; Freericks, J. K.; Maśka, M. M.; Williams, C. J.

    2011-04-01

    We discuss the application of a strong-coupling expansion (perturbation theory in the hopping) for studying light-Fermi-heavy-Bose (like K40-Rb87) mixtures in optical lattices. We use the strong-coupling method to evaluate the efficiency for preforming molecules, the entropy per particle, and the thermal fluctuations. We show that within the strong interaction regime (and at high temperature), the strong-coupling expansion is an economical way to study this problem. In some cases, it remains valid even down to low temperatures. Because the computational effort is minimal, the strong-coupling approach allows us to work with much larger system sizes, where boundary effects can be eliminated, which is particularly important at higher temperatures. Since the strong-coupling approach is so efficient and accurate, it allows one to rapidly scan through parameter space in order to optimize the preforming of molecules on a lattice (by choosing the lattice depth and interspecies attraction). Based on the strong-coupling calculations, we test the thermometry scheme based on the fluctuation-dissipation theorem and find the scheme gives accurate temperature estimation even at very low temperature. We believe this approach and the calculation results will be useful in the design of the next generation of experiments and will hopefully lead to the ability to form dipolar matter in the quantum degenerate regime.

  6. 49 CFR 575.201 - Child restraint performance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Child restraint performance. 575.201 Section 575... Recall Enhancement, Accountability, and Documentation Act; Consumer Information § 575.201 Child restraint... performance of child restraints. The agency makes the information developed under this rating program...

  7. 49 CFR 575.201 - Child restraint performance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Child restraint performance. 575.201 Section 575... Recall Enhancement, Accountability, and Documentation Act; Consumer Information § 575.201 Child restraint... performance of child restraints. The agency makes the information developed under this rating program...

  8. 49 CFR 575.201 - Child restraint performance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Child restraint performance. 575.201 Section 575... Recall Enhancement, Accountability, and Documentation Act; Consumer Information § 575.201 Child restraint... performance of child restraints. The agency makes the information developed under this rating program...

  9. 49 CFR 575.201 - Child restraint performance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Child restraint performance. 575.201 Section 575... Recall Enhancement, Accountability, and Documentation Act; Consumer Information § 575.201 Child restraint... performance of child restraints. The agency makes the information developed under this rating program...

  10. 49 CFR 575.201 - Child restraint performance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Child restraint performance. 575.201 Section 575... Recall Enhancement, Accountability, and Documentation Act; Consumer Information § 575.201 Child restraint... performance of child restraints. The agency makes the information developed under this rating program...

  11. Quality of harness fit for normal and low birthweight infants observed among newborns in infant car seats.

    PubMed

    Brown, Julie; Sinn, John Kam Hung; Chua, Aileen; Clarke, Elizabeth Clare

    2017-04-01

    Child restraint fit is important for crash protection. For newborns, standards universally require a rear-facing restraint and some upper limit on size, but historically there has been no specification of a lower design limit and there is concern over whether low birthweight infants (LBW) are adequately restrained. The aim of this study was to determine the quality of harness fit for newborns of low and normal weight in a range of modern child restraints. A convenience sample of infants (1.657-4.455 kg) were recruited from the postnatal ward and special care nursery <1 week from discharge. Infants (n=84) were assessed for harness fit in rear-facing-only restraints, convertible rear/forward restraints and a subset were assessed in a restraint specifically designed to accommodate LBW infants. Measures of harness fit were based on shoulder strap, crotch strap and buckle positioning. Less than 20% of infants achieved good harness fit, regardless of whether they were categorised as low (<2.5 kg) or normal weight. Rear-facing-only restraints were less likely to provide good fit than convertible restraints, in all measures of fit other than shoulder strap width. The proportions of infants achieving good fit were greater in the restraint designed for LBW infants than other restraint types. Poor accommodation continues to be a problem for LBW infants but is rectified in specifically designed restraints. Better specification of harness configuration for all rearward-facing restraints may be required to ensure adequate accommodation of normal birthweight infants. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Restraint Use in Older Adults Receiving Home Care.

    PubMed

    Scheepmans, Kristien; Dierckx de Casterlé, Bernadette; Paquay, Louis; Van Gansbeke, Hendrik; Milisen, Koen

    2017-08-01

    To determine the prevalence, types, frequency, and duration of restraint use in older adults receiving home nursing care and to determine factors involved in the decision-making process for restraint use and application. Cross-sectional survey of restraint use in older adults receiving home care completed by primary care nurses. Homes of older adults receiving care from a home nursing organization in Belgium. Randomized sample of older adults receiving home care (N = 6,397; mean age 80.6; 66.8% female). For each participant, nurses completed an investigator-constructed and -validated questionnaire collecting information demographic, clinical, and behavioral characteristics and aspects of restraint use. A broad definition of restraint was used that includes a range of restrictive actions. Restraints were used in 24.7% of the participants, mostly on a daily basis (85%) and often for a long period (54.5%, 24 h/d). The most common reason for restraint use was safety (50.2%). Other reasons were that the individual wanted to remain at home longer, which necessitated the use of restraints (18.2%) and to provide respite for the informal caregiver (8.6%). The latter played an important role in the decision and application process. The physician was less involved in the process. In 64.5% of cases, there was no evaluation after restraint use was initiated. Use of restraints is common in older adults receiving home care nursing in Belgium. These results contribute to a better understanding of the complexity of use of restraints in home care, a situation that may be even more complex than in nursing homes and acute hospital settings. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  13. Axial Tension Testing Forged Horizontal Connectors for Use with Intermodal ISO (International Organization for Standardization) Containers

    DTIC Science & Technology

    1985-09-01

    Standardization (ISO). Horizontal connectors are used to couple these containers for shipping by sea, highway, or rail . To determine whether a certain...capacity rating of 50,000 pounds. The Marine Corps requirement is 48,000 pounds (page 69 of Ref 3). Longitudinal restraint in the rail mode is the...the standard 96 inches. The quad will be certified in the marine, highway, and rail modes of transportation in accordance with ISO 1496/1-1978(E) (Ref 4

  14. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    PubMed

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  15. Design, Synthesis, and Biological Functionality of a Dendrimer-based Modular Drug Delivery Platform

    PubMed Central

    Mullen, Douglas G.; McNerny, Daniel Q.; Desai, Ankur; Cheng, Xue-min; DiMaggio, Stassi C.; Kotlyar, Alina; Zhong, Yueyang; Qin, Suyang; Kelly, Christopher V.; Thomas, Thommey P.; Majoros, Istvan; Orr, Bradford G.; Baker, James R.; Banaszak Holl, Mark M.

    2011-01-01

    A modular dendrimer-based drug delivery platform was designed to improve upon existing limitations in single dendrimer systems. Using this modular strategy, a biologically active platform containing receptor mediated targeting and fluorescence imaging modules was synthesized by coupling a folic acid (FA) conjugated dendrimer with a fluorescein isothiocyanate (FITC) conjugated dendrimer. The two different dendrimer modules were coupled via the 1,3-dipolar cycloaddition reaction (‘click’ chemistry) between an alkyne moiety on the surface of the first dendrimer and an azide moiety on the second dendrimer. Two simplified model systems were also synthesized to develop appropriate ‘click’ reaction conditions and aid in spectroscopic assignments. Conjugates were characterized by 1H NMR spectroscopy and NOESY. The FA-FITC modular platform was evaluated in vitro with a human epithelial cancer cell line (KB) and found to specifically target the over-expressed folic acid receptor. PMID:21425790

  16. Characterizing RNA ensembles from NMR data with kinematic models

    PubMed Central

    Fonseca, Rasmus; Pachov, Dimitar V.; Bernauer, Julie; van den Bedem, Henry

    2014-01-01

    Functional mechanisms of biomolecules often manifest themselves precisely in transient conformational substates. Researchers have long sought to structurally characterize dynamic processes in non-coding RNA, combining experimental data with computer algorithms. However, adequate exploration of conformational space for these highly dynamic molecules, starting from static crystal structures, remains challenging. Here, we report a new conformational sampling procedure, KGSrna, which can efficiently probe the native ensemble of RNA molecules in solution. We found that KGSrna ensembles accurately represent the conformational landscapes of 3D RNA encoded by NMR proton chemical shifts. KGSrna resolves motionally averaged NMR data into structural contributions; when coupled with residual dipolar coupling data, a KGSrna ensemble revealed a previously uncharacterized transient excited state of the HIV-1 trans-activation response element stem–loop. Ensemble-based interpretations of averaged data can aid in formulating and testing dynamic, motion-based hypotheses of functional mechanisms in RNAs with broad implications for RNA engineering and therapeutic intervention. PMID:25114056

  17. Characterization of heteronuclear decoupling through proton spin dynamics in solid-state nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    De Paëpe, Gaël; Eléna, Bénédicte; Emsley, Lyndon

    2004-08-01

    The work presented here aims at understanding the performance of phase modulated heteronuclear decoupling sequences such as Cosine Modulation or Two Pulse Phase Modulation. To that end we provide an analytical description of the intrinsic behavior of Cosine Modulation decoupling with respect to radio-frequency-inhomogeneity and the proton-proton dipolar coupling network. We discover through a Modulation Frame average Hamiltonian analysis that best decoupling is obtained under conditions where the heteronuclear interactions are removed but notably where homonuclear couplings are recoupled at a homonuclear Rotary Resonance (HORROR) condition in the Modulation Frame. These conclusions are supported by extensive experimental investigations, and notably through the introduction of proton nutation experiments to characterize spin dynamics in solids under decoupling conditions. The theoretical framework presented in this paper allows the prediction of the optimum parameters for a given set of experimental conditions.

  18. Local gauge symmetry on optical lattices?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuzhi; Meurice, Yannick; Tsai, Shan-Wen

    2012-11-01

    The versatile technology of cold atoms confined in optical lattices allows the creation of a vast number of lattice geometries and interactions, providing a promising platform for emulating various lattice models. This opens the possibility of letting nature take care of sign problems and real time evolution in carefully prepared situations. Up to now, experimentalists have succeeded to implement several types of Hubbard models considered by condensed matter theorists. In this proceeding, we discuss the possibility of extending this effort to lattice gauge theory. We report recent efforts to establish the strong coupling equivalence between the Fermi Hubbard model andmore » SU(2) pure gauge theory in 2+1 dimensions by standard determinantal methods developed by Robert Sugar and collaborators. We discuss the possibility of using dipolar molecules and external fields to build models where the equivalence holds beyond the leading order in the strong coupling expansion.« less

  19. Experimental realization of a subwavelength optical potential based on atomic dark state

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Subhankar, Sarthak; Rolston, Steven; Porto, James

    2017-04-01

    As a well-established tool optical lattice (OL) provides the unique opportunity to exploit the rich manybody physics. However, ``traditional'' OL, either via laser beam interference or direct projection with spatial light modulator, has a length scale around the wavelength (0.1 10 λ) that is set by diffraction, a fundamental limit from the wave nature of the light. Recent theoretical proposals suggest an alternative route, where the geometric potential, stemming from light-atom interaction, can be engineered to generate a much finer potential landscape which is essentially limited by the wave nature of the slow moving cold atoms. We report on the progress towards an experimental realization of these ideas using degenerate fermionic ytterbium atoms. Such subwavelength optical potential could open the gate to study physics beyond currently available parameter regimes, such as enhanced super-exchange coupling, magnetic dipolar coupling, and tunnel junction in atomtronics.

  20. Spin interactions in Graphene-Single Molecule Magnets Hybrids

    NASA Astrophysics Data System (ADS)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Aña; Luis, Fernando; Rauschenbach, Stephan; Dressel, Martin; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2014-03-01

    Graphene is a potential component of novel spintronics devices owing to its long spin diffusion length. Besides its use as spin-transport channel, graphene can be employed for the detection and manipulation of molecular spins. This requires an appropriate coupling between the sheets and the single molecular magnets (SMM). Here, we present a comprehensive characterization of graphene-Fe4 SMM hybrids. The Fe4 clusters are anchored non-covalently to the graphene following a diffusion-limited assembly and can reorganize into random networks when subjected to slightly elevated temperature. Molecules anchored on graphene sheets show unaltered static magnetic properties, whilst the quantum dynamics is profoundly modulated. Interaction with Dirac fermions becomes the dominant spin-relaxation channel, with observable effects produced by graphene phonons and reduced dipolar interactions. Coupling to graphene drives the spins over Villain's threshold, allowing the first observation of strongly-perturbative tunneling processes. Preliminary spin-transport experiments at low-temperature are further presented.

  1. Effects of dietary restraint and body mass index on the relative reinforcing value of snack food.

    PubMed

    Goldfield, Gary S; Lumb, Andrew

    2009-01-01

    The present study examined the independent and interactive association between dietary restraint, body mass index (BMI) and the relative reinforcing value of food. Four hundred and three introductory psychology students completed questionnaires assessing age, gender, BMI, hunger, smoking status, nicotine dependence, dietary restraint, hedonic ratings for snack food and fruits and vegetables and the relative reinforcing value of snack food and fruits and vegetables. In the overall sample, results indicated a dietary restraint x BMI interaction after controlling for age, hunger, nicotine dependence, and hedonics. However, when regression models were separated by gender, the BMI x restraint interaction emerged only for females and not for males. Findings suggest that BMI moderates the relationship between dietary restraint and snack food reinforcement in females only, such that restraint and snack food reinforcement are inversely correlated in females with lower BMI, but restraint is positively correlated with snack food reinforcement in females with higher BMI. Theoretical and clinical implications of these findings are discussed.

  2. Optimization of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction

    NASA Astrophysics Data System (ADS)

    Nijhuis, A.; van Lanen, E. P. A.; Rolando, G.

    2012-01-01

    The ITER cable-in-conduit conductors (CICCs) are built up from sub-cable bundles, wound in different stages, which are twisted to counter coupling loss caused by time-changing external magnet fields. The selection of the twist pitch lengths has major implications for the performance of the cable in the case of strain-sensitive superconductors, i.e. Nb3Sn, as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. At present, this is a great challenge for the ITER central solenoid (CS) CICCs and the solution presented here could be a breakthrough for not only the ITER CS but also for CICC applications in general. After proposing longer twist pitches in 2006 and successful confirmation by short sample tests later on, the ITER toroidal field (TF) conductor cable pattern was improved accordingly. As the restrictions for coupling loss are more demanding for the CS conductors than for the TF conductors, it was believed that longer pitches would not be applicable for the conductors in the CS coils. In this paper we explain how, with the use of the TEMLOP model and the newly developed models JackPot-ACDC and CORD, the design of a CICC can be improved appreciably, particularly for the CS conductor layout. For the first time a large improvement is predicted not only providing very low sensitivity to electromagnetic load and thermal axial cable stress variations but at the same time much lower AC coupling loss. Reduction of the transverse load and warm-up-cool-down degradation can be reached by applying longer twist pitches in a particular sequence for the sub-stages, offering a large cable transverse stiffness, adequate axial flexibility and maximum allowed lateral strand support. Analysis of short sample (TF conductor) data reveals that increasing the twist pitch can lead to a gain of the effective axial compressive strain of more than 0.3% with practically no degradation from bending. This is probably explained by the distinct difference in mechanical response of the cable during axial contraction for short and long pitches. For short pitches periodic bending in different directions with relatively short wavelength is imposed because of a lack of sufficient lateral restraint of radial pressure. This can lead to high bending strain and eventually buckling. Whereas for cables with long twist pitches, the strands are only able to react as coherent bundles, being tightly supported by the surrounding strands, providing sufficient lateral restraint of radial pressure in combination with enough slippage to avoid single strand bending along detrimental short wavelengths. Experimental evidence of good performance was already provided with the test of the long pitch TFPRO2-OST2, which is still until today, the best ITER-type cable to strand performance ever without any cyclic load (electromagnetic and thermal contraction) degradation. For reduction of the coupling loss, specific choices of the cabling twist sequence are needed to minimize the area of linked strands and bundles that are coupled and form loops with the applied changing magnetic field, instead of simply avoiding longer pitches. In addition we recommend increasing the wrap coverage of the CS conductor from 50% to at least 70%. A larger wrap coverage fraction enhances the overall strand bundle lateral restraint. The long pitch design seems the best solution to optimize the ITER CS conductor within the given restrictions of the present coil design envelope, only allowing marginal changes. The models predict significant improvement against strain sensitivity and substantial decrease of the AC coupling loss in Nb3Sn CICCs, but also for NbTi CICCs minimization of the coupling loss can obviously be achieved. Although the success of long pitches to transverse load degradation was already demonstrated, the prediction of the elegant innovative combination with low coupling loss needs to be validated by a short sample test.

  3. The role of rs2237781 within GRM8 in eating behavior.

    PubMed

    Gast, Marie-Therese; Tönjes, Anke; Keller, Maria; Horstmann, Annette; Steinle, Nanette; Scholz, Markus; Müller, Ines; Villringer, Arno; Stumvoll, Michael; Kovacs, Peter; Böttcher, Yvonne

    2013-09-01

    The glutamate receptor, metabotropic 8 gene (GRM8) encodes a G-protein-coupled glutamate receptor and has been associated with smoking behavior and liability to alcoholism implying a role in addiction vulnerability. Data from animal studies suggest that GRM8 may be involved in the regulation of the neuropeptide Y and melanocortin pathways and might influence food intake and metabolism. This study aimed to investigate the effects of the genetic variant rs2237781 within GRM8 on human eating behavior. The initial analysis included 548 Sorbs from Germany who have been extensively phenotyped for metabolic traits and who completed the German version of the three-factor eating questionnaire. In addition, we analyzed two independent sample sets comprising 293 subjects from another German cohort and 430 Old Order Amish individuals. Genetic associations with restraint, disinhibition, and hunger were assessed in an additive linear regression model. Among the Sorbs the major G allele of rs2237781 was significantly associated with increased restraint scores in eating behavior (P = 1.9 × 10(-4); β = +1.936). The German cohort and the Old Order Amish population revealed a trend in the same direction for restraint (P = 0.242; β = +0.874; P = 0.908; β = +0.096; respectively). A meta-analysis resulted in a combined P = 3.1 × 10(-3) (Z-score 2.948). Our data suggest that rs2237781 within GRM8 may influence human eating behavior factors probably via pathways involved in addictive behavior.

  4. Demixing in simple dipolar mixtures: Integral equation versus density functional results

    NASA Astrophysics Data System (ADS)

    Range, Gabriel M.; Klapp, Sabine H. L.

    2004-09-01

    Using reference hypernetted chain (RHNC) integral equations and density functional theory in the modified mean-field (MMF) approximation we investigate the phase behavior of binary mixtures of dipolar hard spheres. The two species ( A and B ) differ only in their dipole moments mA and mB , and the central question investigated is under which conditions these asymmetric mixtures can exhibit demixing phase transitions in the fluid phase regime. Results from our two theoretical approaches turn out to strongly differ. Within the RHNC (which we apply to the isotropic high-temperature phase) demixing does indeed occur for dense systems with small interaction parameters Γ=mB2/mA2 . This result generalizes previously reported observations on demixing in mixtures of dipolar and neutral hard spheres (Γ=0) to the case of true dipolar hard sphere mixtures. The RHNC approach also indicates that these demixed fluid phases are isotropic at temperatures accessible by the theory, whereas isotropic-to-ferroelectric transitions occur only at larger Γ . The MMF theory, on the other hand, yields a different picture in which demixing occurs in combination with spontaneous ferroelectricity at all Γ considered. This discrepancy underlines the relevance of correlational effects for the existence of demixing transitions in dipolar systems without dispersive interactions. Indeed, supplementing the dipolar interactions by small, asymmetric amounts of van der Waals-like interactions (and thereby supporting the systems tendency to demix) one finally reaches good agreement between MMF and RHNC results.

  5. 76 FR 16472 - Consumer Information; Program for Child Restraint Systems; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ...-00062] Consumer Information; Program for Child Restraint Systems; Correction AGENCY: National Highway... caregivers find a child restraint system (``child safety seat'') that fits their vehicle. This document...-legal issues related to the Vehicle-Child Restraint System (CRS) Fit program, you may contact Ms...

  6. Weak Long-Range Correlated Motions in a Surface Patch of Ubiquitin Involved in Molecular Recognition

    PubMed Central

    2011-01-01

    Long-range correlated motions in proteins are candidate mechanisms for processes that require information transfer across protein structures, such as allostery and signal transduction. However, the observation of backbone correlations between distant residues has remained elusive, and only local correlations have been revealed using residual dipolar couplings measured by NMR spectroscopy. In this work, we experimentally identified and characterized collective motions spanning four β-strands separated by up to 15 Å in ubiquitin. The observed correlations link molecular recognition sites and result from concerted conformational changes that are in part mediated by the hydrogen-bonding network. PMID:21634390

  7. Quadrupole radiation from terahertz dipole antennas.

    PubMed

    Rudd, J V; Johnson, J L; Mittleman, D M

    2000-10-15

    We report what is to our knowledge the first detailed investigation of the polarization state of radiation from lens-coupled terahertz dipole antennas. The radiation exhibits a weak but measurable component that is polarized orthogonally to the orientation of the emitter dipole. The angular radiation pattern of this cross-polarized emission reveals that it is quadrupolar, rather than dipolar, in nature. One can understand this result by taking into account the photocurrent flowing in the strip lines that feed the dipole antenna. A Fresnel-Kirchhoff scalar diffraction calculation is used for calculating the frequency-dependent angular distribution of the radiation pattern, providing satisfactory agreement with the measurements.

  8. Dipolar ordering and glassy freezing in methanol-{beta}-hydroquinone-clathrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woll, H.; Rheinstadter, M. C.; Kruchten, F.

    2001-06-01

    The dielectric, structural, and thermodynamic properties of single crystals of methanol-{beta}-hydroquinone-clathrates have been studied as function of temperature and of the concentration x of the polar guest molecules. At higher temperatures the dielectric response along the threefold crystal axis is of the quasi-one-dimensional Ising type. At lower temperatures the higher concentrated samples order antiferroelectrically whereas the lower concentrated ones freeze into dipole glasses. The behavior is interpreted in terms of the methanol dipole moments coupled by the electric dipole-dipole interaction which is highly frustrated because of the rhombohedral symmetry of the lattice. The dielectric relaxations have been analyzed.

  9. POF-yarn weaves: controlling the light out-coupling of wearable phototherapy devices

    PubMed Central

    Quandt, Brit M.; Pfister, Marisa S.; Lübben, Jörn F.; Spano, Fabrizio; Rossi, René M.; Bona, Gian-Luca; Boesel, Luciano F.

    2017-01-01

    Neonatal jaundice (hyperbilirubinaemia) is common in neonates and, often, intensive blue-light phototherapy is required to prevent long-term effects. A photonic textile can overcome three major incubator-related concerns: Insulation of the neonate, human contact, and usage restraints. This paper describes the development of a homogeneous luminous textile from polymer optical fibres to use as a wearable, long-term phototherapy device. The bend out-coupling of light from the POFs was related to the weave production, e.g. weave pattern and yarn densities. Comfort, determined by friction against a skin model and breathability, was investigated additionally. Our textile is the first example of phototherapeutic clothing that is produced sans post-processing allowing for faster commercial production. PMID:29082067

  10. Factors Associated With the Trend of Physical and Chemical Restraint Use Among Long-Term Care Facility Residents in Hong Kong: Data From an 11-Year Observational Study.

    PubMed

    Lam, Kuen; Kwan, Joseph S K; Wai Kwan, Chi; Chong, Alice M L; Lai, Claudia K Y; Lou, Vivian W Q; Leung, Angela Y M; Liu, Justina Y W; Bai, Xue; Chi, Iris

    2017-12-01

    Negative effects of restraint use have been well-documented. However, the prevalence of restraints use has been high in long-term care facilities in Hong Kong compared with other countries and this goes against the basic principles of ethical and compassionate care for older people. The present study aimed to review the change in the prevalence of physical and chemical restraint use in long-term care facilities (LTCFs) over a period of 11 years in Hong Kong and to identify the major factors associated with their use. This is an observational study with data obtained from the Hong Kong Longitudinal Study on LTCF Residents between 2005 and 2015. Trained assessors (nurses, social workers, and therapists) used the Minimum Data Set Resident Assessment Instrument to collect the data from 10 residential LTCFs. Physical restraint was defined as the use of any of the following: full bedside rails on all open sides of bed, other types of bedside rails used, trunk restraint, limb restraint, or the use of chair to prevent rising during the past 7 days. Chemical restraint was defined as the use of any of the following medications: antipsychotic, antianxiety, or hypnotic agents during past 7 days, excluding elder residents with a diagnosis of psychiatric illness. Annual prevalence of restraint use over 11 years and factors that were associated with the use of physical and chemical restraints. We analyzed the data for 2896 older people (978 male individuals, mean age = 83.3 years). Between 2005 and 2015, the prevalence of restraint use was as follows: physical restraint use increased from 52.7% to 70.2%; chemical restraint use increased from 15.9% to 21.78%; and either physical or chemical restraint use increased from 57.9% to 75.7%. Physical restraint use was independently associated with older age, impaired activities of daily living or cognitive function, bowel and bladder incontinence, dementia, and negative mood. Chemical restraint use was independently associated with older age, falls, bladder incontinence, use of feeding tube, dementia, poor cognitive function, delirium, behavioral problems, and negative mood. The increasing time-trend of physical but not chemical restraint use remained significant after adjusting for other factors as mentioned above (coefficient = 0.092, P < .001). Use of physical and chemical restraint was highly prevalent among LTCF residents in Hong Kong, with an increasing trend over a period of 11 years, especially targeting the most physically and cognitively frail older people. Appropriate healthcare staff education and policy change are urgently needed to ensure personal care that is characterized by respect, dignity, empathy, and compassion for the older generation. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  11. An investigation of the structure and bond rotational potential of some fluorinated ethanes by NMR spectroscopy of solutions in nematic liquid crystalline solvents.

    PubMed

    Emsley, J W; Longeri, M; Merlet, D; Pileio, G; Suryaprakash, N

    2006-06-01

    NMR spectra of 1,2-dibromo-1,1-difluoroethane and 1-bromo-2-iodo-tetrafluoroethane dissolved in nematic liquid crystalline solvents have been analysed to yield the magnitudes and signs of the scalar couplings, J(ij), and total anisotropic couplings, T(ij), between all the (1)H, (19)F, and (13)C nuclei, except for those between two (13)C nuclei. The values obtained for T(ij) in principle contain a contribution from J(ij)(aniso), the component along the static applied magnetic field of the anisotropic part of the electron-mediated spin-spin coupling. Neglecting this contribution allows partially averaged dipolar couplings, D(ij), to be extracted from the T(ij), and these were used to determine the structure, orientational order, and the conformational distribution generated by rotation about the C-C bond. The values obtained are compared with the results of calculations by ab initio and density functional methods. The differences found are no greater than those obtained for similar compounds which do not contain fluorine, so that there is no definitive evidence for significant contributions from J(CF)(aniso) or J(FF)(aniso) in the two compounds studied.

  12. An investigation of the structure and bond rotational potential of some fluorinated ethanes by NMR spectroscopy of solutions in nematic liquid crystalline solvents

    NASA Astrophysics Data System (ADS)

    Emsley, J. W.; Longeri, M.; Merlet, D.; Pileio, G.; Suryaprakash, N.

    2006-06-01

    NMR spectra of 1,2-dibromo-1,1-difluoroethane and 1-bromo-2-iodo-tetrafluoroethane dissolved in nematic liquid crystalline solvents have been analysed to yield the magnitudes and signs of the scalar couplings, Jij, and total anisotropic couplings, Tij, between all the 1H, 19F, and 13C nuclei, except for those between two 13C nuclei. The values obtained for Tij in principle contain a contribution from Jijaniso, the component along the static applied magnetic field of the anisotropic part of the electron-mediated spin-spin coupling. Neglecting this contribution allows partially averaged dipolar couplings, Dij, to be extracted from the Tij, and these were used to determine the structure, orientational order, and the conformational distribution generated by rotation about the C-C bond. The values obtained are compared with the results of calculations by ab initio and density functional methods. The differences found are no greater than those obtained for similar compounds which do not contain fluorine, so that there is no definitive evidence for significant contributions from JCFaniso or JFFaniso in the two compounds studied.

  13. Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas-Utilization of Optimal Spectral Detuning of Fano Resonances.

    PubMed

    Mesch, Martin; Weiss, Thomas; Schäferling, Martin; Hentschel, Mario; Hegde, Ravi S; Giessen, Harald

    2018-05-25

    We analyze and optimize the performance of coupled plasmonic nanoantennas for refractive index sensing. The investigated structure supports a sub- and super-radiant mode that originates from the weak coupling of a dipolar and quadrupolar mode, resulting in a Fano-type spectral line shape. In our study, we vary the near-field coupling of the two modes and particularly examine the influence of the spectral detuning between them on the sensing performance. Surprisingly, the case of matched resonance frequencies does not provide the best sensor. Instead, we find that the right amount of coupling strength and spectral detuning allows for achieving the ideal combination of narrow line width and sufficient excitation strength of the subradiant mode, and therefore results in optimized sensor performance. Our findings are confirmed by experimental results and first-order perturbation theory. The latter is based on the resonant state expansion and provides direct access to resonance frequency shifts and line width changes as well as the excitation strength of the modes. Based on these parameters, we define a figure of merit that can be easily calculated for different sensing geometries and agrees well with the numerical and experimental results.

  14. Increase in best practice child car restraint use for children aged 2-5 years in low socioeconomic areas after introduction of mandatory child restraint laws.

    PubMed

    Brown, Julie; Keay, Lisa; Hunter, Kate; Bilston, Lynne E; Simpson, Judy M; Ivers, Rebecca

    2013-06-01

    To examine changes in child car restraint practices in low socioeconomic areas following the introduction of mandatory child car restraint legislation in New South Wales (NSW), Australia. Data from two cross-sectional studies of child car restraint use at pre-schools, early childhood centres and primary schools before and after the introduction of legislating mandatory age-appropriate car restraint use for children up to the age of seven years was used in this analysis. All included observations were from local government areas with socioeconomic status in the lowest 30% of urban Sydney. Children aged 2-5 years were observed in their vehicles as they arrived at observation sites (107 pre-legislation, 360 post-legislation). Multilevel logistic regression was used to examine changes in observed age-appropriate and correct use of car restraints. Age-appropriate car restraint use was higher post-legislation than pre-legislation. After controlling for child's age, parental income, language spoken at home and adjusting for clustering, the odds of children being appropriately restrained post-legislation were 2.3 times higher than in the pre-legislation sample, and the odds of them being correctly restrained were 1.6 times greater. Results indicate an improvement in car restraint practices among children aged 2-5 in low socioeconomic areas after introduction of child restraint laws. Implications : Despite improvements observed with enhanced legislation, further efforts are required to increase optimal child car restraint use. © 2013 The Authors. ANZJPH © 2013 Public Health Association of Australia.

  15. Physical Restraint Initiation in Nursing Homes and Subsequent Resident Health

    ERIC Educational Resources Information Center

    Engberg, John; Castle, Nicholas G.; McCaffrey, Daniel

    2008-01-01

    Purpose: It is widely believed that physical restraint use causes mental and physical health decline in nursing home residents. Yet few studies exist showing an association between restraint initiation and health decline. In this research, we examined whether physical restraint initiation is associated with subsequent lower physical or mental…

  16. Intense Current Structures Observed at Electron Kinetic Scales in the Near-Earth Magnetotail During Dipolarization and Substorm Current Wedge Formation

    NASA Astrophysics Data System (ADS)

    Grigorenko, E. E.; Dubyagin, S.; Malykhin, A. Yu.; Khotyaintsev, Yu V.; Kronberg, E. A.; Lavraud, B.; Ganushkina, N. Yu

    2018-01-01

    We use data from the 2013-2014 Cluster Inner Magnetosphere Campaign, with its uniquely small spacecraft separations (less than or equal to electron inertia length, λe), to study multiscale magnetic structures in 14 substorm-related prolonged dipolarizations in the near-Earth magnetotail. Three time scales of dipolarization are identified: (i) a prolonged growth of the BZ component with duration ≤20 min; (ii) BZ pulses with durations ≤1 min during the BZ growth; and (iii) strong magnetic field gradients with durations ≤2 s during the dipolarization growth. The values of these gradients observed at electron scales are several dozen times larger than the corresponding values of magnetic gradients simultaneously detected at ion scales. These nonlinear features in magnetic field gradients denote the formation of intense and localized (approximately a few λe) current structures during the dipolarization and substorm current wedge formation. These observations highlight the importance of electron scale processes in the formation of a 3-D substorm current system.

  17. Magnetic braking of stellar cores in red giants and supergiants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeder, André; Meynet, Georges, E-mail: andre.maeder@unige, E-mail: georges.meynet@unige.ch

    2014-10-01

    Magnetic configurations, stable on the long term, appear to exist in various evolutionary phases, from main-sequence stars to white dwarfs and neutron stars. The large-scale ordered nature of these fields, often approximately dipolar, and their scaling according to the flux conservation scenario favor a fossil field model. We make some first estimates of the magnetic coupling between the stellar cores and the outer layers in red giants and supergiants. Analytical expressions of the truncation radius of the field coupling are established for a convective envelope and for a rotating radiative zone with horizontal turbulence. The timescales of the internal exchangesmore » of angular momentum are considered. Numerical estimates are made on the basis of recent model grids. The direct magnetic coupling of the core to the extended convective envelope of red giants and supergiants appears unlikely. However, we find that the intermediate radiative zone is fully coupled to the core during the He-burning and later phases. This coupling is able to produce a strong spin down of the core of red giants and supergiants, also leading to relatively slowly rotating stellar remnants such as white dwarfs and pulsars. Some angular momentum is also transferred to the outer convective envelope of red giants and supergiants during the He-burning phase and later.« less

  18. Berry Curvature in Magnon-Phonon Hybrid Systems.

    PubMed

    Takahashi, Ryuji; Nagaosa, Naoto

    2016-11-18

    We study theoretically the Berry curvature of the magnon induced by the hybridization with the acoustic phonons via the spin-orbit and dipolar interactions. We first discuss the magnon-phonon hybridization via the dipolar interaction, and show that the dispersions have gapless points in momentum space, some of which form a loop. Next, when both spin-orbit and dipolar interactions are considered, we show anisotropic texture of the Berry curvature and its divergence with and without gap closing. Realistic evaluation of the consequent anomalous velocity is given for yttrium iron garnet.

  19. Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.

    PubMed

    Sahin, Buyukdagli; Ralf, Blossey

    2014-07-16

    We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Băloi, Mihaela-Andreea, E-mail: mihaela.baloi88@e-uvt.ro; Crucean, Cosmin

    The production of fermions in dipolar electric fields on de Sitter universe is studied. The amplitude and probability of pair production are computed using the exact solution of the Dirac equation in de Sitter spacetime. The form of the dipolar fields is established using the conformal invariance of the Maxwell equations. We obtain that the momentum conservation law is broken in the process of pair production in dipolar electric fields. Also we establish that there are nonvanishing probabilities for processes in which the helicity is conserved/nonconserved. The Minkowski limit is recovered when the expansion factor becomes zero.

  1. 1,3-Dipolar Cycloadditions of Diazo Compounds in the Presence of Azides.

    PubMed

    Aronoff, Matthew R; Gold, Brian; Raines, Ronald T

    2016-04-01

    The diazo group has untapped utility in chemical biology. The tolerance of stabilized diazo groups to cellular metabolism is comparable to that of azido groups. However, chemoselectivity has been elusive, as both groups undergo 1,3-dipolar cycloadditions with strained alkynes. Removing strain and tuning dipolarophile electronics yields diazo group selective 1,3-dipolar cycloadditions that can be performed in the presence of an azido group. For example, diazoacetamide but not its azido congener react with dehydroalanine residues, as in the natural product nisin.

  2. Synthesis of Trifluoromethylated Isoxazolidines: 1,3-Dipolar Cycloaddition of Nitrosoarenes, (Trifluoromethyl)diazomethane, and Alkenes

    PubMed Central

    Molander, Gary A.; Cavalcanti, Livia N.

    2013-01-01

    Isoxazolidines have proven to be important substrates in synthetic organic chemistry. Limited examples in the literature that provide trifluoromethylated versions of these compounds have prompted us to investigate a 1,3-dipolar cycloaddition route providing access to N-functionalized isoxazolidines containing a trifluoromethyl group. Thus, a 1,3-dipolar cycloaddition of nitrosoarenes, (trifluoromethyl)diazomethane, and alkenes was developed. The starting materials can be synthesized from easy to handle and accessible reagents. The reaction proved to be tolerant of a variety of electron-deficient alkenes and nitrosoarenes. PMID:24490778

  3. Behavioral Effects of Acclimatization To Restraint Protocol Used for Awake Animal Imaging

    PubMed Central

    Reed, Michael D.; Pira, Ashley S.; Febo, Marcelo

    2013-01-01

    Functional MRI of awake rats involves acclimatization to restraint to minimize motion. We designed a study to examine the effects of an acclimatization protocol (5 days of restraint, 60 minutes per day) on the emission of 22-kHz ultrasonic vocalizations and performance on a forced swim test (FST). Our results show that USV calls are reduced significantly by day 3, 4 and 5 of acclimatization. Although rats show less climbing activity (and more immobility) in FST on day 5 compared to the 1st day of restraint acclimatization, the difference is gone once animals are given a 2 week hiatus. Overall, we show that animals adapt to the restraint over the five day period, however, restraint may introduce confounding behavioral outcomes that may hinder the interpretation of results derived from awake rat imaging. The present data warrant further testing of the effects of MRI restraint on behavior. PMID:23562621

  4. Public Policy on Physical Restraint of Children with Disabilities in Public Schools

    ERIC Educational Resources Information Center

    McAfee, James K.; Schwilk, Christopher; Mitruski, Megan

    2006-01-01

    The US Constitution, federal and state legislatures, courts, and regulations permit physical restraint for both therapeutic (i.e., behavior change) and risk prevention purposes. Although most venues limit restraint as punishment, no government entity prohibits use of physical restraint as a response to imminent danger. This paper provides a…

  5. Direct and Collateral Effects of Restraints and Restraint Fading.

    ERIC Educational Resources Information Center

    Fisher, Wayne W.; And Others

    1997-01-01

    A study of three individuals with self-injurious behavior (SIB) evaluated a device designed for restraint fading with individuals who display hand-to-head SIB. Results demonstrated that stimulus control of SIB occurred in all individuals subsequent to restraint fading. The study also examined the effects of the rigid arm sleeves and restraint…

  6. The Effects of Non-Contingent Self-Restraint on Self-Injury

    ERIC Educational Resources Information Center

    Kerth, Denise Marzullo; Progar, Patrick R.; Morales, Sabrina

    2009-01-01

    Background: Self-restraint is a pervasive phenomenon among individuals who engage in self-injurious behaviour (SIB). Materials and Methods: The present study examined the use of clothing as a socially acceptable alternative to self-restraint to reduce SIB and other topographies of self-restraint in an adolescent diagnosed with autism. Two separate…

  7. Astronaut Anna Fisher demonstrates sleep restraints on shuttle

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Anna L. Fisher demonstrates the versatility of shuttle sleep restraints to accommodate the preference of crewmembers as she appears to have configured hers in a horizontal hammock mode. Stowage lockers, one of the middeck walls, another sleep restraint, a jury-rigged foot and hand restraint are among other items in the frame.

  8. Evaluation of New York state's mandatory occupant restraint law. Volume 1, Observational surveys of safety restraint use in New York State

    DOT National Transportation Integrated Search

    1985-12-01

    This is the final report on the results of three observational surveys of restraint use by front seat occupants conducted as part of the evaluation of New York's Mandatory Occupant Restraint Law. Observations were conducted at a probability sample of...

  9. The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes.

    PubMed

    Szekely, Or; Steiner, Ariel; Szekely, Pablo; Amit, Einav; Asor, Roi; Tamburu, Carmen; Raviv, Uri

    2011-06-21

    In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M(-1). One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar membranes and charged proteins or biopolymers for encapsulation and delivery applications. © 2011 American Chemical Society

  10. Quantum Theory of Atoms in Molecules Charge-Charge Transfer-Dipolar Polarization Classification of Infrared Intensities.

    PubMed

    Duarte, Leonardo J; Richter, Wagner E; Silva, Arnaldo F; Bruns, Roy E

    2017-10-26

    Fundamental infrared vibrational transition intensities of gas-phase molecules are sensitive probes of changes in electronic structure accompanying small molecular distortions. Models containing charge, charge transfer, and dipolar polarization effects are necessary for a successful classification of the C-H, C-F, and C-Cl stretching and bending intensities. C-H stretching and in-plane bending vibrations involving sp 3 carbon atoms have small equilibrium charge contributions and are accurately modeled by the charge transfer-counterpolarization contribution and its interaction with equilibrium charge movement. Large C-F and C═O stretching intensities have dominant equilibrium charge movement contributions compared to their charge transfer-dipolar polarization ones and are accurately estimated by equilibrium charge and the interaction contribution. The C-F and C-Cl bending modes have charge and charge transfer-dipolar polarization contribution sums that are of similar size but opposite sign to their interaction values resulting in small intensities. Experimental in-plane C-H bends have small average intensities of 12.6 ± 10.4 km mol -1 owing to negligible charge contributions and charge transfer-counterpolarization cancellations, whereas their average out-of-plane experimental intensities are much larger, 65.7 ± 20.0 km mol -1 , as charge transfer is zero and only dipolar polarization takes place. The C-F bending intensities have large charge contributions but very small intensities. Their average experimental out-of-plane intensity of 9.9 ± 12.6 km mol -1 arises from the cancellation of large charge contributions by dipolar polarization contributions. The experimental average in-plane C-F bending intensity, 5.8 ± 7.3 km mol -1 , is also small owing to charge and charge transfer-counterpolarization sums being canceled by their interaction contributions. Models containing only atomic charges and their fluxes are incapable of describing electronic structure changes for simple molecular distortions that are of interest in classifying infrared intensities. One can expect dipolar polarization effects to also be important for larger distortions of chemical interest.

  11. Exploring perspectives on restraint during medical procedures in paediatric care: a qualitative interview study with nurses and physicians

    PubMed Central

    Svendsen, Edel Jannecke; Pedersen, Reidar; Moen, Anne; Bjørk, Ida Torunn

    2017-01-01

    ABSTRACT The aim of this study was to explore nurses’ and physicians’ perspectives on and reasoning about the use of restraint during medical procedures on newly admitted preschoolers in somatic hospital care. We analysed qualitative data from individual interviews with a video recall session at the end with seven physicians and eight nurses. They had earlier participated in video recorded peripheral vein cannulations on preschool children. The data were collected between May 2012 and May 2013 at a paediatric hospital unit in Norway. The analysis resulted in three main themes: (1) disparate views on the concept of restraint and restraint use (2), ways to limit the use of physical restraint and its negative consequences, and (3) experience with the role of parents and their influence on restraint. Perspectives from both healthcare professions were represented in all the main themes and had many similarities. The results of this study may facilitate more informed and reflective discussions of restraint and contribute to higher awareness of restraint in clinical practice. Lack of guidance and scientific attention to restraint combined with conflicting interests and values among healthcare providers may result in insecurity, individual dogmatism, and a lack of shared discussions, language, and terminology. PMID:28889788

  12. Exploring perspectives on restraint during medical procedures in paediatric care: a qualitative interview study with nurses and physicians.

    PubMed

    Svendsen, Edel Jannecke; Pedersen, Reidar; Moen, Anne; Bjørk, Ida Torunn

    2017-12-01

    The aim of this study was to explore nurses' and physicians' perspectives on and reasoning about the use of restraint during medical procedures on newly admitted preschoolers in somatic hospital care. We analysed qualitative data from individual interviews with a video recall session at the end with seven physicians and eight nurses. They had earlier participated in video recorded peripheral vein cannulations on preschool children. The data were collected between May 2012 and May 2013 at a paediatric hospital unit in Norway. The analysis resulted in three main themes: (1) disparate views on the concept of restraint and restraint use (2), ways to limit the use of physical restraint and its negative consequences, and (3) experience with the role of parents and their influence on restraint. Perspectives from both healthcare professions were represented in all the main themes and had many similarities. The results of this study may facilitate more informed and reflective discussions of restraint and contribute to higher awareness of restraint in clinical practice. Lack of guidance and scientific attention to restraint combined with conflicting interests and values among healthcare providers may result in insecurity, individual dogmatism, and a lack of shared discussions, language, and terminology.

  13. Direct 1H NMR evidence of spin-rotation coupling as a source of para → ortho-H2 conversion in diamagnetic solvents

    NASA Astrophysics Data System (ADS)

    Terenzi, Camilla; Bouguet-Bonnet, Sabine; Canet, Daniel

    2017-04-01

    At ambient temperature, conversion from 100% enriched para-hydrogen (p-H2; singlet state) to ortho-hydrogen (o-H2; triplet state) leads necessarily to the thermodynamic equilibrium proportions: 75% of o-H2 and 25% of p-H2. When p-H2 is dissolved in a diamagnetic organic solvent, conversion is very slow and can be considered as arising from nuclear spin relaxation phenomena. A first relaxation mechanism, specific to the singlet state and involving a combination of auto-correlation and cross correlation spectral densities, can be retained: randomly fluctuating magnetic fields due to inter-molecular dipolar interactions. We demonstrate here that (i) this dipolar mechanism is not sufficient for accounting for the p a r a →o r t h o conversion rate, (ii) spin-rotation interaction, an intra-molecular mechanism, behaves similarly to random-field interaction and, thus, may be involved in the singlet relaxation rate. Also, as the p a r a →o r t h o conversion is monitored by proton nuclear magnetic resonance (NMR) of dissolved o-H2 (p-H2 is NMR-silent), one has to account for H2 exchange between the liquid phase and the gas phase within the NMR tube, as well as for dissolution effects. Experimental evidence of the above statements is brought here in the case of two organic solvents: acetone-d6 and carbon disulfide. The observed temperature dependence of the p a r a →o r t h o conversion rate shows that spin-rotation can be the dominant contribution to the p-H2 relaxation rate in the absence of tangible dipolar interactions. Our findings shed new light on the "mysterious" mechanism of the p a r a →o r t h o conversion which has been searched for several decades.

  14. Optimising product advice based on age when design criteria are based on weight: child restraints in vehicles.

    PubMed

    Anderson, R W G; Hutchinson, T P

    2009-03-01

    The motivation for this paper is the high rate of inappropriate child restraint selection in cars that is apparent in published surveys of child restraint use and how the public health messages promoting child restraints might respond. Advice has increasingly been given solely according to the child's weight, while many parents do not know the weight of their children. A common objection to promoting restraint use based on the age of the child is the imprecision of such advice, given the variation in the size of children, but the magnitude of the misclassification such advice would produce has never been estimated. This paper presents a method for estimating the misclassification of children by weight, when advice is posed in terms of age, and applies it to detailed child growth data published by the Centers for Disease Control and Prevention. In Australia, guidelines instructing all parents to promote their children from an infant restraint to a forward-facing child seat at 6 months, and then to a belt-positioning booster at 4 years, would mean that 5% of all children under the age of 6 years would be using a restraint not suited to their weight. Coordination of aged-based advice and the weight ranges chosen for the Australian Standard on child restraints could reduce this level of misclassification to less than 1%. The general method developed may also be applied to other aspects of restraint design that are more directly relevant to good restraint fit.

  15. Dipolar eddies in a decaying stratified turbulent flow

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Fernando, H. J. S.; Morrison, R.

    2008-02-01

    Laboratory experiments on the evolution of dipolar (momentum) eddies in a stratified fluid in the presence of random background motions are described. A turbulent jet puff was used to generate the momentum eddies, and a decaying field of ambient random vortical motions was generated by a towed grid. Data on vorticity/velocity fields of momentum eddies, those of background motions, and their interactions were collected in the presence and absence of the other, and the main characteristics thereof were parametrized. Similarity arguments predict that dipolar eddies in stratified fluids may preserve their identity in decaying grid-generated stratified turbulence, which was verified experimentally. Possible applications of the results include mushroomlike currents and other naturally/artificially generated large dipolar eddies in strongly stratified layers of the ocean, the longevity of which is expected to be determined by the characteristics of the eddies and random background motions.

  16. Quantum phases of dipolar soft-core bosons

    NASA Astrophysics Data System (ADS)

    Grimmer, D.; Safavi-Naini, A.; Capogrosso-Sansone, B.; Söyler, Ş. G.

    2014-10-01

    We study the phase diagram of a system of soft-core dipolar bosons confined to a two-dimensional optical lattice layer. We assume that dipoles are aligned perpendicular to the layer such that the dipolar interactions are purely repulsive and isotropic. We consider the full dipolar interaction and perform path-integral quantum Monte Carlo simulations using the worm algorithm. Besides a superfluid phase, we find various solid and supersolid phases. We show that, unlike what was found previously for the case of nearest-neighbor interaction, supersolid phases are stabilized by doping the solids not only with particles but with holes as well. We further study the stability of these quantum phases against thermal fluctuations. Finally, we discuss pair formation and the stability of the pair checkerboard phase formed in a bilayer geometry, and we suggest experimental conditions under which the pair checkerboard phase can be observed.

  17. Improved heteronuclear dipolar decoupling sequences for liquid-crystal NMR

    NASA Astrophysics Data System (ADS)

    Thakur, Rajendra Singh; Kurur, Narayanan D.; Madhu, P. K.

    2007-04-01

    Recently we introduced a radiofrequency pulse scheme for heteronuclear dipolar decoupling in solid-state nuclear magnetic resonance under magic-angle spinning [R.S. Thakur, N.D. Kurur, P.K. Madhu, Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR, Chem. Phys. Lett. 426 (2006) 459-463]. Variants of this sequence, swept-frequency TPPM, employing frequency modulation of different types have been further tested to improve the efficiency of heteronuclear dipolar decoupling. Among these, certain sequences that were found to perform well at lower spinning speeds are demonstrated here on a liquid-crystal sample of MBBA for application in static samples. The new sequences are compared with the standard TPPM and SPINAL schemes and are shown to perform better than them. These modulated schemes perform well at low decoupler radiofrequency power levels and are easy to implement on standard spectrometers.

  18. Parents' experience with child safety restraint in China.

    PubMed

    Chen, Xiaojun; Yang, Jingzhen; Peek-Asa, Corinne; Li, Liping

    2014-04-07

    Child safety restraints are effective measures in protecting children from an injury while traveling in a car. However, the rate of child restraint use is extremely low in Chinese cities. Parent drivers could play an important role in promoting child safety restraint use, but not all of them take active responsibility. This study used a qualitative approach and included 14 in-depth interviews among parents with a child, under the age of 6, living in Shantou City (7 child safety restraint users and 7 non-users). Purposive sampling was used to recruit eligible parent drivers who participated in a previous observation study. Interview data were collected from March to April 2013. The audio taped and transcribed data were coded and analyzed to identify key themes. Four key themes on child safety restraint emerged from the in-depth interviews with parents. These included 1) Having a child safety restraint installed in the rear seat with an adult sitting next to the restrained child is ideal, and child safety restraint is seen as an alternative when adult accompaniment is not available; 2) Having effective parental education strategies could help make a difference in child safety restraint use; 3) Inadequate promotion and parents' poor safety awareness contribute to the low rate of child safety restraint in China; 4) Mandatory legislation on child safety restraint use could be an effective approach. Inadequate promotion and low awareness of safe traveling by parents were closely linked to low child safety seat usage under the circumstance of no mandatory legislation. Future intervention efforts need to focus on increasing parents' safe travel awareness combined with CSS product promotion before the laws are enacted.

  19. Parents’ experience with child safety restraint in China

    PubMed Central

    2014-01-01

    Background Child safety restraints are effective measures in protecting children from an injury while traveling in a car. However, the rate of child restraint use is extremely low in Chinese cities. Parent drivers could play an important role in promoting child safety restraint use, but not all of them take active responsibility. Methods This study used a qualitative approach and included 14 in-depth interviews among parents with a child, under the age of 6, living in Shantou City (7 child safety restraint users and 7 non-users). Purposive sampling was used to recruit eligible parent drivers who participated in a previous observation study. Interview data were collected from March to April 2013. The audio taped and transcribed data were coded and analyzed to identify key themes. Results Four key themes on child safety restraint emerged from the in-depth interviews with parents. These included 1) Having a child safety restraint installed in the rear seat with an adult sitting next to the restrained child is ideal, and child safety restraint is seen as an alternative when adult accompaniment is not available; 2) Having effective parental education strategies could help make a difference in child safety restraint use; 3) Inadequate promotion and parents’ poor safety awareness contribute to the low rate of child safety restraint in China; 4) Mandatory legislation on child safety restraint use could be an effective approach. Conclusion Inadequate promotion and low awareness of safe traveling by parents were closely linked to low child safety seat usage under the circumstance of no mandatory legislation. Future intervention efforts need to focus on increasing parents’ safe travel awareness combined with CSS product promotion before the laws are enacted. PMID:24708776

  20. Torsional Restraint Problem of Steel Cold-Formed Beams Restrained By Planar Members

    NASA Astrophysics Data System (ADS)

    Balázs, Ivan; Melcher, Jindřich; Pešek, Ondřej

    2017-10-01

    The effect of continuous or discrete lateral and torsional restraints of metal thinwalled members along their spans can positively influence their buckling resistance and thus contribute to more economical structural design. The prevention of displacement and rotation of the cross-section results in stabilization of the member. The restraints can practically be provided e.g. by planar members of cladding supported by metal members (purlins, girts). The rate of stabilization of a member can be quantified using values of shear and rotational stiffness provided by the adjacent planar members. While the lateral restraint effected by certain shear stiffness can be often considered as sufficient, the complete torsional restraint can be safely considered in some practical cases only. Otherwise the values of the appropriate rotational stiffness provided by adjacent planar members may not be satisfactory to ensure full torsional restraint and only incomplete restraint is available. Its verification should be performed using theoretical and experimental analyses. The paper focuses on problem of steel thin-walled coldformed beams stabilized by planar members and investigates the effect of the magnitude of the rotational stiffness provided by the planar members on the resistance of the steel members. Cold-formed steel beams supporting planar members of cladding are considered. Full lateral restraint and incomplete torsional restraint are assumed. Numerical analyses performed using a finite element method software indicate considerable influence of the torsional restraint on the buckling resistance of a steel thin-walled member. Utilization of the torsional restraint in the frame of sizing of a stabilized beam can result in more efficient structural design. The paper quantifies this effect for some selected cases and summarizes results of numerical analysis.

  1. Repeated Neck Restraint Stress Bidirectionally Modulates Excitatory Transmission in the Dentate Gyrus and Performance in a Hippocampus-dependent Memory Task.

    PubMed

    Spyrka, Jadwiga; Hess, Grzegorz

    2018-05-21

    The consequences of stress depend on characteristics of the stressor, including the duration of exposure, severity, and predictability. Exposure of mice to repeated neck restraint has been shown to bidirectionally modulate the potential for long-term potentiation (LTP) in the dentate gyrus (DG) in a manner dependent on the number of restraint repetitions, but the influence of repeated brief neck restraint on electrophysiology of single DG neurons has not yet been investigated. Here, we aimed at finding the effects of 1, 3, 7, 14, or 21 daily neck restraint sessions lasting 10 min on electrophysiological characteristics of DG granule cells as well as excitatory and inhibitory synaptic inputs to these neurons. While the excitability of DG granule cells and inhibitory synaptic transmission were unchanged, neck restraint decreased the frequency of spontaneous excitatory currents after three repetitions but enhanced it after 14 and 21 repetitions. The consequences of repeated neck restraint on hippocampus-dependent memory were investigated using the object location test (OLT). Neck restraint stress impaired cognitive performance in the OLT after three repetitions but improved it after 14 and 21 repetitions. Mice subjected to three neck restraint sessions displayed an increase in the measures of depressive and anxiety-like behaviors, however, prolongation of the exposure to neck restraint resulted in a gradual decline in the intensity of these measures. These data indicate that stress imposed by an increasing number of repeated neck restraint episodes bidirectionally modulates both excitatory synaptic transmission in the DG and cognitive performance in the object location memory task. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Design and optimization for the occupant restraint system of vehicle based on a single freedom model

    NASA Astrophysics Data System (ADS)

    Zhang, Junyuan; Ma, Yue; Chen, Chao; Zhang, Yan

    2013-05-01

    Throughout the vehicle crash event, the interactions between vehicle, occupant, restraint system (VOR) are complicated and highly non-linear. CAE and physical tests are the most widely used in vehicle passive safety development, but they can only be done with the detailed 3D model or physical samples. Often some design errors and imperfections are difficult to correct at that time, and a large amount of time will be needed. A restraint system concept design approach which based on single-degree-of-freedom occupant-vehicle model (SDOF) is proposed in this paper. The interactions between the restraint system parameters and the occupant responses in a crash are studied from the view of mechanics and energy. The discrete input and the iterative algorithm method are applied to the SDOF model to get the occupant responses quickly for arbitrary excitations (impact pulse) by MATLAB. By studying the relationships between the ridedown efficiency, the restraint stiffness, and the occupant response, the design principle of the restraint stiffness aiming to reduce occupant injury level during conceptual design is represented. Higher ridedown efficiency means more occupant energy absorbed by the vehicle, but the research result shows that higher ridedown efficiency does not mean lower occupant injury level. A proper restraint system design principle depends on two aspects. On one hand, the restraint system should lead to as high ridedown efficiency as possible, and at the same time, the restraint system should maximize use of the survival space to reduce the occupant deceleration level. As an example, an optimization of a passenger vehicle restraint system is designed by the concept design method above, and the final results are validated by MADYMO, which is the most widely used software in restraint system design, and the sled test. Consequently, a guideline and method for the occupant restraint system concept design is established in this paper.

  3. Multipurpose Crew Restraints for Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Baggerman, Susan; Ortiz, M. R.; Hua, L.; Sinnott, P.; Webb, L.

    2004-01-01

    With permanent human presence onboard the International Space Station (ISS), a crew will be living and working in microgravity, interfacing with their physical environment. Without optimum restraints and mobility aids (R&MA' s), the crewmembers may be handicapped for perfonning some of the on-orbit tasks. In addition to weightlessness, the confined nature of a spacecraft environment results in ergonomic challenges such as limited visibility and access to the activity area and may cause prolonged periods of unnatural postures. Thus, determining the right set of human factors requirements and providing an ergonomically designed environment are crucial to astronauts' well-being and productivity. The purpose of this project is to develop requirements and guidelines, and conceptual designs, for an ergonomically designed multi-purpose crew restraint. In order to achieve this goal, the project would involve development of functional and human factors requirements, design concept prototype development, analytical and computer modeling evaluations of concepts, two sets of micro gravity evaluations and preparation of an implementation plan. It is anticipated that developing functional and design requirements for a multi-purpose restraint would facilitate development of ergonomically designed restraints to accommodate the off-nominal but repetitive tasks, and minimize the performance degradation due to lack of optimum setup for onboard task performance. In addition, development of an ergonomically designed restraint concept prototype would allow verification and validation of the requirements defined. To date, we have identified "unique" tasks and areas of need, determine characteristics of "ideal" restraints, and solicit ideas for restraint and mobility aid concepts. Focus group meetings with representatives from training, safety, crew, human factors, engineering, payload developers, and analog environment representatives were key to assist in the development of a restraint concept based on previous flight experiences, the needs of future tasks, and crewmembers' preferences. Also, a catalog with existing IVA/EVA restraint and mobility aids has been developed. Other efforts included the ISS crew debrief data on restraints, compilation of data from MIR, Skylab and ISS on restraints, and investigating possibility of an in-flight evaluation of current restraint systems. Preliminary restraint concepts were developed and presented to long duration crewmembers and focus groups for feedback. Currently, a selection criterion is being refined for prioritizing the candidate concepts. Next steps include analytical and computer modeling evaluations of the selected candidate concepts, prototype development, and microgravity evaluations.

  4. Knowledge and application of correct car seat head restraint usage among chiropractic college interns: a cross-sectional study.

    PubMed

    Taylor, John Am; Burke, Jeanmarie; Gavencak, John; Panwar, Pervinder

    2005-03-01

    Cervical spine injuries sustained in rear-end crashes cost at least $7 billion in insurance claims annually in the United States alone. When positioned correctly, head restraint systems have been proven effective in reducing the risk of whiplash associated disorders. Chiropractors should be knowledgeable about the correct use of head restraint systems to educate their patients and thereby prevent or minimize such injuries. The primary objective of this study was to determine the prevalence of correct positioning of car seat head restraints among the interns at our institution. The secondary objective was to determine the same chiropractic interns' knowledge of the correct positioning of car seat head restraints. It was hypothesized that 100 percent of interns would have their head restraint correctly positioned within an acceptable range and that all interns would possess the knowledge to instruct patients in the correct positioning of head restraints. Cross-sectional study of a convenient sample of 30 chiropractic interns from one institution. Interns driving into the parking lot of our health center were asked to volunteer to have measurements taken and to complete a survey. Vertical and horizontal positions of the head restraint were measured using a beam compass. A survey was administered to determine knowledge of correct head restraint position. The results were recorded, entered into a spreadsheet, and analyzed. 13.3 percent of subjects knew the recommended vertical distance and only 20 percent of subjects knew the recommended horizontal distance. Chi Square analyses substantiated that the majority of subjects were unaware of guidelines set forth by the National Highway Traffic Safety Administration (NHTSA) for the correct positioning of the head restraint (chi(2) (vertical) = 16.13, chi(2) (horizontal) = 10.80, p <.05). Only 6.7 percent of the subjects positioned their head restraint at the vertical distance of 6 cm or less (p <.05). However, 60 percent of the subjects positioned their head restraint at the recommended horizontal distance of 7 cm or less, but this was no different than could be expected by chance alone (p >.05). Interestingly, the 13.3 percent of the subjects who were aware of the vertical plane recommendations did not correctly position their own head restraint in the vertical plane. Similarly, only half of the subjects who were aware of the horizontal plane recommendations correctly positioned their head restraint in the horizontal plane. The data suggest that chance alone could account for the correct positioning of the head restraint in our subjects. The results of this cross-sectional study raise concerns about chiropractic intern knowledge and application of correct head restraint positioning. The importance of chiropractors informing patients of the correct head restraint position should be emphasized in chiropractic education to help minimize or prevent injury in patients involved in motor vehicle collisions.

  5. Chain Dynamics in Magnetorheological Suspensions

    NASA Technical Reports Server (NTRS)

    Gast, A. P.; Furst, E. M.

    1999-01-01

    Magnetorheological (MR) suspensions are composed of colloidal particles which acquire dipole moments when subjected to an external magnetic field. At sufficient field strengths and concentrations, the dipolar particles rapidly aggregate to form long chains. Subsequent lateral cross-linking of the dipolar chains is responsible for a rapid liquid-to-solid-like rheological transition. The unique, magnetically-activated rheological properties of MR suspensions make them ideal for interfacing mechanical systems to electronic controls. Additionally, the ability to experimentally probe colloidal suspensions interacting through tunable anisotropic potentials is of fundamental interest. Our current experimental work has focused on understanding the fluctuations of dipolar chains. It has been proposed by Halsey and Toor (HT) that the strong Landau-Peierls thermal fluctuations of dipolar chains could be responsible for long-range attractions between chains. Such interactions will govern the long-time relaxation of MR suspensions. We have synthesized monodisperse neutrally buoyant MR suspensions by density matching stabilized ferrofluid emulsion droplets with D2O. This allows us to probe the dynamics of the dipolar chains using light scattering without gravitational, interfacial, and polydispersity effects to resolve the short-wavelength dynamics of the dipolar chains. We used diffusing wave spectroscopy to measure these dynamics. The particle displacements at short times that show an independence to the field strength, but at long times exhibit a constrained, sub-diffusive motion that slows as the dipole strength is increased. The experiments are in good qualitative agreement with Brownian dynamics simulations of dipolar chains. Although there have been several important and detailed studies of the structure and interactions in MR suspensions, there has not been conclusive evidence that supports or contradicts the HT model prediction that long-range interactions exist between fluctuating chains of dipolar particles. Resolving this issue would contribute greatly to the understanding of these interesting and important materials. We have begun to test the predictions of the HT model by both examining the dynamics of individual chains and by measuring the forces between dipolar chains directly to accurately and quantitatively assess the interactions that they experience. To do so, we employ optical trapping techniques and video-microscopy to manipulate and observe our samples on the microscopic level. With these techniques, it is possible to observe chains that are fluctuating freely in three-dimensions, independent of interfacial effects. More importantly, we are able to controllably observe the interactions of two chains at various separations to measure the force-distance profile. The techniques also allow us to study the mechanical properties of individual chains and chain clusters. Our work to this point has focused on reversibly-formed dipolar chains due to field induced dipoles where the combination of this chaining, the dipolar forces, and the hydrodynamic interactions that dictate the rheology of the suspensions. One can envision, however, many situations where optical, electronic, or rheological behavior may be optimized with magneto-responsive anisotropic particles. Chains of polarizable particles may have the best properties as they can coil and flex in the absence of a field and stiffen and orient when a field is applied. We have recently demonstrated a synthesis of stable, permanent paramagnetic chains by both covalently and physically linking paramagnetic colloidal particles. The method employed allows us to create monodisperse chains of controlled length. We observed the stability, field-alignment, and rigidity of this new class of materials. The chains may exhibit unique rheological properties in an applied magnetic field over isotropic suspensions of paramagnetic particles. They are also useful rheological models as bead-spring systems. These chains form the basis for our current experiments with optical traps.

  6. The Plasma Sheet as Natural Symmetry Plane for Dipolarization Fronts in the Earth's Magnetotail

    NASA Astrophysics Data System (ADS)

    Frühauff, D.; Glassmeier, K.-H.

    2017-11-01

    In this work, observations of multispacecraft mission Time History of Events and Macroscale Interactions during Substorms are used for statistical investigation of dipolarization fronts in the near-Earth plasma sheet of the magnetotail. Using very stringent criteria, 460 events are detected in almost 10 years of mission data. Minimum variance analysis is used to determine the normal directions of the phase fronts, providing evidence for the existence of a natural symmetry of these phenomena, given by the neutral sheet of the magnetotail. This finding enables the definition of a local coordinate system based on the Tsyganenko model, reflecting the intrinsic orientation of the neutral sheet and, therefore, the dipolarization fronts. In this way, the comparison of events with very different background conditions is improved. Through this study, the statistical results of Liu, Angelopoulos, Runov, et al. (2013) are both confirmed and extended. In a case study, the knowledge of this plane of symmetry helps to explain the concave curvature of dipolarization fronts in the XZ plane through phase propagation speeds of magnetoacoustic waves. A second case study is presented to determine the central current system of a passing dipolarization front through a constellation of three spacecraft. With this information, a statistical analysis of spacecraft observations above and below the neutral sheet is used to provide further evidence for the neutral sheet as the symmetry plane and the central current system. Furthermore, it is shown that the signatures of dipolarization fronts are under certain conditions closely related to that of flux ropes, indicating a possible relationship between these two transient phenomena.

  7. Does Brief Bradycardia at the Onset of Arm-Restraint Predict Infants' Emotional Reactivity during Restraint?

    ERIC Educational Resources Information Center

    Porter, Christin L.; Jones, Blake L.

    2011-01-01

    Using electrocardiogram data with 78 six-month-old infants, this study examined the presence or absence of brief orienting bradycardia during the onset of maternal arm-restraint and subsequent differences between infants on behavioral organization during restraint. Results showed that 45 of the infants exhibited brief episodes of bradycardia at…

  8. Functional Analysis of Self-Injurious Behavior and Its Relation to Self-Restraint

    ERIC Educational Resources Information Center

    Rooker, Griffin W.; Roscoe, Eileen M.

    2005-01-01

    Some individuals who engage in self-injurious behavior (SIB) also exhibit self-restraint. In the present study, a series of three functional analyses were conducted to determine the variables that maintained a participant's SIB, one without restraint items available, one with a preferred and effective form of self-restraint (an airplane pillow)…

  9. Quantifying the relationship between vehicle interior geometry and child restraint systems.

    PubMed

    Sherwood, C P; Abdelilah, Y; Crandall, J R

    2006-01-01

    The prevention of interactions of children or child restraints with other vehicle structures is critical to child passenger safety. Fifteen current vehicles and seven rear and forward facing child restraint systems were measured in an attempt to quantify the available distance between child restraints and these vehicle structures. Rear facing child restraints exhibited such small amounts of clearance that contact would be expected in the majority of frontal crashes. Upper tethers are critical in the prevention of head contact, while head contact is likely when the upper tether is not used.

  10. Frontal sled tests comparing rear and forward facing child restraints with 1-3 year old dummies.

    PubMed

    Sherwood, C P; Crandall, J R

    2007-01-01

    Although most countries recommend transitioning children from rear facing (RF) to forward facing (FF) child restraints at one year of age, Swedish data suggests that RF restraints are more effective. The objective of this study was to compare RF and FF orientations in frontal sled tests. Four dummies (CRABI 12 mo, Q1.5, Hybrid III 3 yr, and Q3) were used to represent children from 1 to 3 years of age. Restraint systems tested included both 1) LATCH and 2) rigid ISOFIX with support leg designs. Rear facing restraints with support legs provided the best results for all injury measures, while RF restraints in general provided the lowest chest displacements and neck loads.

  11. Dynamic nuclear polarization assisted spin diffusion for the solid effect case.

    PubMed

    Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon

    2011-02-21

    The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP-assisted spin diffusion process on variations of the relevant parameters. In particular, the effect of the spin lattice relaxation times on the polarization buildup times and the resulting end polarization are discussed, and the quenching of the polarizations by the hyperfine interaction is demonstrated.

  12. Thermal restraint of a bacterial exopolysaccharide of shallow vent origin.

    PubMed

    Caccamo, Maria Teresa; Zammuto, Vincenzo; Gugliandolo, Concetta; Madeleine-Perdrillat, Claire; Spanò, Antonio; Magazù, Salvatore

    2018-07-15

    To dynamically characterize the thermal properties of the fructose-rich exopolysaccharide (EPS1-T14), produced by the marine thermophilic Bacillus licheniformis T14, the Attenuated Total Reflectance Fourier Transform Infra-Red spectroscopy was coupled to variable temperature ranging from ambient to 80°C. The spectra were analyzed by the following innovative mathematical tools: i) non-ideal spectral deviation, ii) OH-stretching band frequency center shift, iii) spectral distance, and iv) wavelet cross-correlation analysis. The thermal restraint analysis revealed that the whole EPS1-T14 system possessed high stability until 80°C, and suggested that fucose was mainly involved in the EPS1-T14 thermal stability, whereas glucose was responsible for its molecular flexibility. Our results provide novel insights into the thermal stability properties of the whole EPS1-T14 and into the role of its main monosaccharidic units. As a new biopolymer, the thermostable EPS1-T14 could be used in traditional biotechnology fields and in new biomedical areas, as nanocarriers, requiring high temperature processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The appropriate and inappropriate use of child restraint seats in Manitoba.

    PubMed

    Blair, John; Perdios, Angeliki; Babul, Shelina; Young, Kevin; Beckles, Janice; Pike, Ian; Cripton, Peter; Sasges, Debbie; Mulpuri, Krishore; Desapriya, Ediriweera

    2008-09-01

    The objective of this research was to describe the use and incorrect use of child restraint systems in Manitoba, Canada. In 2004, a team of inspectors made up of Royal Canadian Mounted Police officers and trained car seat technicians from the Manitoba child seat coalition conducted a descriptive survey of types and frequency of child restraint systems' incorrect use. The setting was 10 roadside inspection sites located around the city of Winnipeg, Manitoba. The subjects were parents and primary caregivers of children using child restraint systems. The main outcome measured was the reported appropriate use rate as determined by the compliance to safety standards for correct installation and use of child restraints. A total of 340 child restraint systems were assessed. The overall rate of incorrect use was 70%. The errors present in stage III systems (booster seats) are much lower than the errors present in stage I systems (rear-facing child safety seats) and stage II systems (forward-facing child safety seats). The data presented illustrate that incorrect use of child restraint systems in the province of Manitoba is a large problem and must be dealt with immediately in order to ensure child safety now and in the future. Community-wide information and enhanced enforcement campaigns, consisting of activities such as mass media, information and publicity, child restraint systems displays and special enforcement strategies (check points, dedicated law enforcement officials, alternative penalties) should be used to increase the correct use of child restraint systems. Failure to use child restraint systems properly can contribute to serious injury or death of a child.

  14. Use of a pitch adjustable foot restraint system: Operator strength capability and load requirements

    NASA Technical Reports Server (NTRS)

    Wilmington, Robert P.; Poliner, Jeffrey; Klute, Glenn K.

    1994-01-01

    The zero-gravity environment creates a need for a proper human body restraint system to maintain a comfortable posture with less fatigue and to maximize productivity. In addition, restraint systems must be able to meet the loading demands of maintenance and assembly tasks performed on orbit. The shuttle's primary intravehicular astronaut restraint system is currently a foot loop design that attaches to flat surfaces on the shuttle, allowing for varying mounting locations and easy egress and ingress. However, this design does not allow for elevation, pitch, or foot loop length adjustment. Several prototype foot restraint systems are being evaluated for use aboard the space station and the space shuttle. The JSC Anthropometry and Biomechanics Laboratory initiated this study to quantify the maximum axial forces and moments that would be induced on a foot loop type of restraint while operators performed a torque wrench task, also allowing for angling the restraint pitch angle to study yet another effect. Results indicate that the greatest forces into the torque wrench and into the foot restraint system occur while the operator performs an upward effort. This study did not see any significant difference in the operators' force due to pitch orientation. Thus, in a work environment in which hand holds are available, no significant influence of the pitch angle on forces imparted to the restraint system existed.

  15. [Vision on and use of physical restraints and 'smart technology' in nursing homes in Flanders].

    PubMed

    Carlassara, V; Lampo, E; Degryse, B; Van Audenhove, C; Spruytte, N

    2017-04-01

    The STAFF-project investigates in what way 'smart technology' can offer an alternative for physical restraints in nursing homes. A survey is realized aimed at gaining more insight into the vision on and the use of physical restraints and 'smart technology'. Two partly overlapping structured questionnaires were developed and sent to nursing home staff in Flanders (Belgium). One hundred fifty six administrators (managers or assistant-managers) and 238 caregiving staff (nurses, nursing aids, paramedical staff and other) completed the online questionnaire. In general there is a low acceptability of physical restraint use, however, a more nuanced picture of acceptability is present depending on the specific motivation for using physical restraints and on the specific means of physical restraints. About half of the administrators say they use smart technology in the nursing home. The two main reasons for not applying (yet) smart technology are 'too high price for smart technology' and 'inadequate infrastructure of the nursing home'. All respondents underscore the importance of multiple strategies to diminish the use of physical restraints in nursing homes. Physical restraint use is a complex theme and needs a nuanced analysis and management. This study shows that there is still room for improvement in diminishing the use of physical restraints and that nursing homes in Flanders are open to use smart technology.

  16. Weight loss in rats exposed to repeated acute restraint stress is independent of energy or leptin status.

    PubMed

    Harris, Ruth B S; Mitchell, Tiffany D; Simpson, Jacob; Redmann, Stephen M; Youngblood, Bradley D; Ryan, Donna H

    2002-01-01

    Acute release of corticotropin-releasing factor (CRF) during repeated restraint (3-h restraint on each of 3 days) causes temporary hypophagia but chronic suppression of body weight in rats. Here we demonstrated that a second bout of repeated restraint caused additional weight loss, but continuing restraint daily for 10 days did not increase weight loss because the rats adapted to the stress. In these two studies serum leptin, which suppresses the endocrine response to stress, was reduced in restrained rats. Peripheral infusion of leptin before and during restraint did not prevent stress-induced weight loss, although stress-induced corticosterone release was suppressed. Restrained rats were hyperthermic during restraint, but there was no evidence that fever or elevated free interleukin-6 caused the sustained reduction in weight. Restraining food-restricted rats caused a small but significant weight loss. Food-restricted rats fed ad libitum after the end of restraint showed a blunted hyperphagia and slower rate of weight regain than their controls. These results indicate that repeated acute stress induces a chronic change in weight independent of stress-induced hypophagia and may represent a change in homeostasis initiated by repeated acute activation of the central CRF system.

  17. Physical and mechanical restraint in psychiatric units: Perceptions and experiences of nursing staff.

    PubMed

    Vedana, Kelly Graziani Giacchero; da Silva, Danielle Maria; Ventura, Carla Aparecida Arena; Giacon, Bianca Cristina Ciccone; Zanetti, Ana Carolina Guidorizzi; Miasso, Adriana Inocenti; Borges, Tatiana Longo

    2018-06-01

    Physical restraint in psychiatric units is a common practice but extremely controversial and poorly evaluated by methodologically appropriate investigations. The cultural issues and professionals' perceptions and attitudes are substantial contributors to the frequency of restraint that tend to be elevated. Aim In this qualitative study, we aimed to understand the experiences and perceptions of nursing staff regarding physical restraint in psychiatric units. Through theoretical sampling, 29 nurses from two Brazilian psychiatric units participated in the study. Data were collected from 2014 to 2016 from individual interviews and analyzed through thematic analysis, employing theoretical presuppositions of symbolic interactionism. Physical restraint was considered unpleasant, challenging, risky, and associated with dilemmas and conflicts. The nursing staff was often exposed to the risks and injuries related to restraint. Professionals sought strategies to reduce restraint-related damages, but still considered it necessary due to the lack of effective options to control aggressive behavior. This study provides additional perspectives about physical restraint and reveals the need for safer, humanized and appropriate methods for the care of aggressive patients that consider the real needs and rights of these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Low speed vehicle passenger ejection restraint effectiveness.

    PubMed

    Seluga, Kristopher J; Ojalvo, Irving U; Obert, Richard M

    2005-07-01

    Current golf carts and LSV's (Low Speed Vehicles) produce a significant number of passenger ejections during sharp turns. These LSV's do not typically possess seatbelts, but do provide outboard bench seat hip restraints that also serve as handholds. However, many current restraint designs appear incapable of preventing passenger ejections due to their low height and inefficient handhold position. Alternative handhold and hip restraint designs may improve passenger safety. Accordingly, this paper examines minimum size requirements for hip restraints to prevent passenger ejection during sharp turns and evaluates the effectiveness of a handhold mounted at the center of the bench seat. In this study, a simulation of a turning cart supplies the dynamic input to a biomechanical model of an adult male seated in a golf cart. Various restraint combinations are considered, both with and without the central handhold, to determine the likelihood of passenger ejection. It is shown that only the largest restraint geometries prevent passenger ejection. Adequate hip restraints should be much larger than current designs and a central handhold should be provided. In this way, golf cart and LSV manufacturers could reduce passenger ejections and improve fleet safety by incorporating recommendations provided herein.

  19. Dipolar ferromagnetic phase transition in Fe3O4 nanoparticle arrays observed by Lorentz microscopy and electron holography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuo; Hogg, Charles R.; Yamamuro, Saeki; Hirayama, Tsukasa; Majetich, Sara A.

    2011-02-01

    Dipolar ferromagnetism formed in Fe3O4 nanoparticle arrays is revealed by Fresnel Lorentz microscopy and electron holography. Dipolar domain walls do not lie preferentially along macrograin boundaries but depend on the overall shape of the assembly, meaning magnetostatic energy dominates. The domain structures are imaged at different temperatures for both monolayer and bilayer arrays. The domain wall contrast in the monolayer region is visible until 575 °C, and the magnetic order parameter steeply drops toward the temperature. In the bilayer region, finer and more complicated domains are formed.

  20. Dipolar particles in a double-trap confinement: Response to tilting the dipolar orientation

    NASA Astrophysics Data System (ADS)

    Bjerlin, J.; Bengtsson, J.; Deuretzbacher, F.; Kristinsdóttir, L. H.; Reimann, S. M.

    2018-02-01

    We analyze the microscopic few-body properties of dipolar particles confined in two parallel quasi-one-dimensional harmonic traps. In particular, we show that an adiabatic rotation of the dipole orientation about the trap axes can drive an initially nonlocalized few-fermion state into a localized state with strong intertrap pairing. With an instant, nonadiabatic rotation, however, localization is inhibited and a highly excited state is reached. This state may be interpreted as the few-body analog of a super-Tonks-Girardeau state, known from one-dimensional systems with contact interactions.

  1. Gas-liquid coexistence in a system of dipolar soft spheres.

    PubMed

    Jia, Ran; Braun, Heiko; Hentschke, Reinhard

    2010-12-01

    The existence of gas-liquid coexistence in dipolar fluids with no other contribution to attractive interaction than dipole-dipole interaction is a basic and open question in the theory of fluids. Here we compute the gas-liquid critical point in a system of dipolar soft spheres subject to an external electric field using molecular dynamics computer simulation. Tracking the critical point as the field strength is approaching zero we find the following limiting values: T(c)=0.063 and ρ(c)=0.0033 (dipole moment μ=1). These values are confirmed by independent simulation at zero field strength.

  2. Ground-state candidate for the classical dipolar kagome Ising antiferromagnet

    NASA Astrophysics Data System (ADS)

    Chioar, I. A.; Rougemaille, N.; Canals, B.

    2016-06-01

    We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.

  3. Spin coherence in a Mn3 single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Abeywardana, Chathuranga; Mowson, Andrew M.; Christou, George; Takahashi, Susumu

    2016-01-01

    Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn3O(O2CEt)3(mpko)3]+ (abbreviated Mn3) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn3 was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn3 SMMs. The temperature dependence of spin decoherence time (T2) revealed that the dipolar decoherence is the dominant source of decoherence in Mn3 and T2 can be extended up to 267 ns by quenching the dipolar decoherence.

  4. Dietary restraint in college women: fear of an imperfect fat self is stronger than hope of a perfect thin self.

    PubMed

    Dalley, Simon E; Toffanin, Paolo; Pollet, Thomas V

    2012-09-01

    We predicted that the perceived likelihood of acquiring a hoped-for thin self would mediate perfectionistic strivings on dietary restraint, and that the perceived likelihood of acquiring a feared fat self would mediate perfectionistic concerns on dietary restraint. We also predicted that the mediation pathway from perfectionistic concerns to dietary restraint would have a greater impact than that from perfectionistic strivings. Participants were 222 female college students who reported their height and weight and completed measures of perfectionism, the likelihood of acquiring the feared fat and hoped-for thin selves, and dietary restraint. Statistical analyses revealed that the perceived likelihood of acquiring the feared fat self mediated both perfectionistic concerns and perfectionistic strivings on dietary restraint, and that the mediating pathway from perfectionistic concerns to dietary restraint was greater than that from perfectionistic strivings. Implications for future research and eating pathology interventions are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Movement Limitation and Immune Responses of Rhesus Monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Morton, Darla S.; Swiggett, Jeanene P.; Hakenewerth, Anne M.; Fowler, Nina A.

    1993-01-01

    The effects of restraint on immunological parameters was determined in an 18 day ARRT (adult rhesus restraint test). The monkeys were restrained for 18 days in the experimental station for the orbiting primate (ESOP), the chair of choice for Space Shuttle experiments. Several immunological parameters were determined using peripheral blood, bone marrow, and lymph node specimens from the monkeys. The parameters included: response of bone marrow cells to GM-CSF (granulocyte-macrophage colony stimulating factor), leukocyte subset distribution, and production of IFN-alpha (interferon-alpha) and IFN-gamma (interferon-gamma). The only parameter changed after 18 days of restraint was the percentage of CDB+ T cells. No other immunological parameters showed changes due to restraint. Handling and changes in housing prior to the restraint period did apparently result in some restraint-independent immunological changes. Handling must be kept to a minimum and the animals allowed time to recover prior to flight. All experiments must be carefully controlled. Restraint does not appear to be a major issue regarding the effects of space flight on immune responses.

  6. Spaceflight and immune responses of rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Morton, Darla S.; Swiggett, Jeanene P.; Hakenewerth, Anne M.; Fowler, Nina A.

    1995-01-01

    The effects of restraint on immunological parameters was determined in an 18 day ARRT (adult rhesus restraint test). The monkeys were restrained for 18 days in the experimental station for the orbiting primate (ESOP), the chair of choice for Space Shuttle experiments. Several immunological parameters were determined using peripheral blood, bone marrow, and lymph node specimens from the monkeys. The parameters included: response of bone marrow cells to GM-CSF (granulocyte-macrophage colony stimulating factor), leukocyte subset distribution, and production of IFN-a (interferon-alpha) and IFN-gamma (interferon-gamma). The only parameter changed after 18 days of restraint was the percentage of CD8+ T cells. No other immunological parameters showed changes due to restraint. Handling and changes in housing prior to the restraint period did apparently result in some restraint-independent immunological changes. Handling must be kept to a minimum and the animals allowed time to recover prior to flight. All experiments must be carefully controlled. Restraint does not appear to be a major issue regarding the effects of space flight on immune responses.

  7. Behavioral effects of acclimatization to restraint protocol used for awake animal imaging.

    PubMed

    Reed, Michael D; Pira, Ashley S; Febo, Marcelo

    2013-07-15

    Functional MRI in awake rats involves acclimatization to restraint to minimize motion. We designed a study to examine the effects of an acclimatization protocol (5 days of restraint, 60 min per day) on the emission of 22-kHz ultrasonic vocalizations and performance in a forced swim test (FST). Our results showed that USV calls are reduced significantly by days 3, 4 and 5 of acclimatization. Although the rats showed less climbing activity (and more immobility) in FST on day 5 compared to the 1st day of restraint acclimatization, the difference was not detected once the animals were given a 2-week hiatus. Overall, we showed that animals adapt to the restraint over a five-day period; however, restraint may introduce confounding behavioral outcomes that may hinder the interpretation of results derived from awake rat imaging. The present data warrants further testing of the effects of MRI restraint on behavior. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Research study on neck injury lessening with active head restraint using human body FE model.

    PubMed

    Kitagawa, Yuichi; Yasuki, Tsuyoshi; Hasegawa, Junji

    2008-12-01

    The objective of this study is to examine the effectiveness of the active head restraint system in reducing neck injury risk of car occupants in low-speed rear impacts. A human body FE model "THUMS" was used to simulate head and neck kinematics of the occupant and to evaluate loading to the neck. Joint capsule strain was calculated to predict neck injury risk as well as NIC. The validity of the model was confirmed comparing its mechanical responses to those in human subjects in the literatures. Seat FE models were also prepared representing one with a fixed head restraint and the other one with an active head restraint system. The active head restraint system was designed to move the head restraint forward and upward when the lower unit was lower unit was loaded by the pelvis. Rear impact simulations were performed assuming a triangular acceleration pulse at a delta-V of 25 km/h. The model reproduced similar head and neck motions to those measured in the human volunteer test, except for active muscular responses. The calculated joint capsule strain also showed a good match with those of PMHS tests in the literature. A rear-impact simulation was conducted using the model with the fixed head restraint. The result revealed that NIC was strongly correlated with the relative acceleration between the head and the torso and that its maximum peak appeared when the head contacted the head restraint. It was also found that joint capsule strain grew in later timing synchronizing with the relative displacement. Another simulation with the active head restraint system showed that both NIC and joint capsule strain were lowered owing to the forward and upward motion of the head restraint. A close investigation of the vertebral motion indicated that the active head restraint reduced the magnitude of shear deformation in the facet joint, which contributed to the strain growth in the fixed head restraint case. Rear-impact simulations were conducted using a human body FE model, THUMS, representing an average-size male occupant. The cervical system including the facet joint capsules was incorporated to the model. The validity of the model was examined comparing its mechanical responses to those in the literature such as the whole body motion of the volunteer subject and the vertebral motion in the PMHS tests. Rear-impact simulations were conducted using the validated THUMS model and two prototype seat models; one had a fixed head restraint and the other one was equipped with an active head restraint system. The active head restraint system works moving the head restraint forward and upward when the lower unit is loaded by the pelvis. The head and neck kinematics and responses were analyzed from the simulation results. The force and acceleration rose at the pelvis first, followed by T1 and the head. The early timing of force rise and its magnitude indicated that the pelvis force was a good trigger for the active head restraint system. The results showed that the head was supported earlier in a case with the active head restraint system, and both NIC and joint capsule strain were lowered. The study also analyzed the mechanism of strain growth in the joint capsules. Relatively greater strain was observed in the direction of the facet joint surface, which was around 45 degrees inclined to the spinal column. The forward and upward motion of the active head restraint were aligned with the direction of the joint deformation and contributed to lower strain in the joint capsules. The results indicated that the active head restraint could help reduce the neck injury risk not only by supporting the head at an early timing but also through its trajectory stopping the joint deformation.

  9. Characteristics of psychiatric hospitalizations with multiple mechanical restraint episodes versus hospitalization with a single mechanical restraint episode.

    PubMed

    Guzman-Parra, Jose; Guzik, Justyna; Garcia-Sanchez, Juan A; Pino-Benitez, Isabel; Aguilera-Serrano, Carlos; Mayoral-Cleries, Fermin

    2016-10-30

    We investigated the characteristics of multiple episodes of mechanical restraint versus a single episode in a psychiatric ward of a public general hospital. The following characteristics were associated with multiple restraints: young age, length of hospital stay, not being readmitted within 30 days from previous discharge, and admission in the previous year before the implementation of an intervention program to reduce mechanical restraint. The study suggests that both organizational factors and patients' disturbed behaviour are associated with the risk of being mechanically restrained several times. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. 32 CFR 636.34 - Restraint systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicle is responsible for ensuring the use of seat belts, shoulder restraints, and child restraining... age of 16) are responsible for ensuring that their seat belts/shoulder restraints are used when...

  11. 32 CFR 636.34 - Restraint systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vehicle is responsible for ensuring the use of seat belts, shoulder restraints, and child restraining... age of 16) are responsible for ensuring that their seat belts/shoulder restraints are used when...

  12. Designing and evaluating a persuasive child restraint television commercial.

    PubMed

    Lewis, Ioni; Ho, Bonnie; Lennon, Alexia

    2016-01-01

    Relatively high rates of child restraint inappropriate use and misuse and faults in the installation of restraints have suggested a crucial need for public education messages to raise parental awareness of the need to use restraints correctly. This project involved the devising and pilot testing of message concepts, filming of a television advertisement (the TVC), and the evaluation of the TVC. This article focuses specifically upon the evaluation of the TVC. The development and evaluation of the TVC were guided by an extended theory of planned behavior that included the standard constructs of attitudes, subjective norms, and perceived behavioral control as well as the additional constructs of group norms and descriptive norms. The study also explored the extent to which parents with low and high intentions to self-check restraints differed on salient beliefs regarding the behavior. An online survey of parents (N = 384) was conducted where parents were randomly assigned to either the intervention group (n = 161), and therefore viewed the advertisement within the survey, or the control group (n = 223), and therefore did not view the advertisement. Following a one-off exposure to the TVC, the results indicated that, although not a significant difference, parents in the intervention group reported stronger intentions (M = 4.43, SD = 0.74) to self-check restraints than parents in the control group (M = 4.18, SD = 0.86). In addition, parents in the intervention group (M = 4.59, SD = 0.47) reported significantly higher levels of perceived behavioral control than parents in the control group (M = 4.40, SD = 0.73). The regression results revealed that, for parents in the intervention group, attitudes and group norms were significant predictors of parental intentions to self-check their child restraint. Finally, the exploratory analyses of parental beliefs suggested that those parents with low intentions to self-check child restraints were significantly more likely than high intenders to agree that they did not have enough time to check restraints or that having a child in a restraint is more important than checking the installation of the restraint. Overall, the findings provide some support for the persuasiveness of the child restraint TVC and provide insight into the factors influencing reported parental intentions as well as salient beliefs underpinning self-checking of restraints. Interventions that attempt to increase parental perceptions of the importance of self-checking restraints regularly and brevity of the time involved in doing so may be effective.

  13. Geometry of rear seats and child restraints compared to child anthropometry.

    PubMed

    Bilston, Lynne E; Sagar, Nipun

    2007-10-01

    The objective of this study was to evaluate the geometry of a wide range of restraints (child restraints, booster seats and rear seats) used by children, and how these match their anthropometry, and to determine limitations to restraint size for the population of children using them. The study is motivated by the widespread premature graduation from one restraint type to another, which parents often attribute to children outgrowing their previous restraint. Currently, recommended transitions are based on a small sample of vehicles and children. Outboard rear seat and seat belt geometry (anchorage locations, sash belt angles) from 50 current model vehicles were measured using a custom-developed measuring jig. For 17 child restraints, a 3-dimensional measuring arm was used to measure the geometry of the restraint including interior size and strap slot locations (where relevant). These measurements were compared to anthropometric measurements, to determine the suitability of a given restraint for children of particular ages. The results for the rear seat geometry indicate that all seat cushions were too deep for a child whose upper leg length is at the 50th percentile until approximately 11.5 years, and half of vehicle seat cushions were too deep for a 15 year old child whose upper leg length is at the 50th percentile. Sash belt geometry was more variable, with approximately a third of vehicles accommodating 6-8 year olds who approximate the shoulder geometry measurements at the 50th percentile. Dedicated child restraints accommodated most children within recommended age groups, with two exceptions. Several high back booster seats were not tall enough for a child whose seated height is at the 50th percentile for 8 year olds (who is still too short for an adult belt according to current guidelines and the results from the rear seat geometry study), and a small number of forward facing restraints and high back boosters were too narrow for children at the upper end of the recommended age ranges. Analysis of the results from this study indicates that alterations in restraint geometry, particularly shortening the seat cushion, allowing for adjustable upper sash belt anchorages in the rear seat of vehicles, and increasing the height of high back booster seats would substantially improve the fit of restraints for child occupants. This data confirms findings from a recent study that looked only at rear seat cushion depths and provides new data on seat belt and child restraint geometry for child occupants.

  14. Mental health inpatients' and staff members' suggestions for reducing physical restraint: A qualitative study.

    PubMed

    Wilson, C; Rouse, L; Rae, S; Kar Ray, M

    2018-04-01

    WHAT IS KNOWN ON THE SUBJECT?: Restraint has negative psychological, physical and relational consequences for mental health patients and staff. Restraint reduction interventions have been developed (e.g., "Safewards"). Limited qualitative research has explored suggestions on how to reduce physical restraint (and feasibility issues with implementing interventions) from those directly involved. WHAT DOES THIS PAPER ADD TO EXISTING KNOWLEDGE?: This paper explores mental health patients' and staff members' suggestions for reducing physical restraint, whilst addressing barriers to implementing these. Findings centred on four themes: improving communication and relationships; staffing factors; environment and space; and activities and distraction. Not all suggestions are addressed by currently available interventions. Barriers to implementation were identified, centring on a lack of time and/or resources; with the provision of more time for staff to spend with patients and implement interventions seen as essential to reducing physical restraint. WHAT ARE THE IMPLICATIONS FOR PRACTICE?: Improving communication and relationships between staff/patients, making staffing-related changes, improving ward environments and providing patient activities are central to restraint reduction in mental healthcare. Fundamental issues related to understaffing, high staff turnover, and lack of time and resources need addressing in order for suggestions to be successfully implemented. Introduction Physical restraint has negative consequences for all involved, and international calls for its reduction have emerged. Some restraint reduction interventions have been developed, but limited qualitative research explores suggestions on how to reduce physical restraint (and feasibility issues with implementation) from those directly involved. Aims To explore mental health patients' and staff members' suggestions for reducing physical restraint. Methods Interviews were conducted with 13 inpatients and 22 staff members with experience of restraint on adult mental health inpatient wards in one UK National Health Service Trust. Results Findings centred on four overarching themes: improving communication and relationships between staff/patients; making staff-related changes; improving ward environments/spaces; and having more activities. However, concerns were raised around practicalities/feasibility of their implementation. Discussion Continued research is needed into best ways to reduce physical restraint, with an emphasis on feasibility/practicality and how to make time in busy ward environments. Implications for Practice Improving communication and relationships between staff/patients, making staffing-related changes, improving ward environments and providing patient activities are central to restraint reduction in mental healthcare. However, fundamental issues related to understaffing, high staff turnover and lack of time/resources need addressing in order for these suggestions to be successfully implemented. © 2018 John Wiley & Sons Ltd.

  15. [Physical and pharmacological restraints in geriatric and gerontology services and centers].

    PubMed

    Ramos Cordero, Primitivo; López Trigo, José Antonio; Maíllo Pedraz, Herminio; Paz Rubio, José María

    2015-01-01

    Physical and pharmacological restraints are a controversial issue in the context of geriatric care due to their moral, ethical, social and legal repercussions and, despite this fact, no specific legislation exists at a national level. The use of restraints is being questioned with growing frequency, as there are studies that demonstrate that restraints do not reduce the number of falls or their consequences, but rather can increase them, cause complications, injuries and potentially fatal accidents. Restraints are not always used rationally, despite compromising a fundamental human right, that is, freedom, protected in the Constitution, as well as values and principles, such as dignity and personal self-esteem. There are centers where restraints are applied to more than 50% of patients, and in some cases without the consent of their legal representatives. On some occasions, restraints are used for attaining organizational or environmental objectives, such as complying with tight schedules, and for reducing or avoiding the supervision of patients who walk erratically and, at times, are used indefinitely. Even greater confusion exists with respect to the emerging concept of chemical or pharmacological restraints, since no conceptual framework exists based on scientific evidence, and with sufficient consensus for guiding healthcare workers. In this context, the Sociedad Española de Geriatría y Gerontología (SEGG--Spanish Geriatrics and Gerontology Society), aware of the significance and transcendence of the issue, and in an attempt to preserve and guarantee maximum freedom, dignity and self-esteem, on the one hand, and to ensure the maximum integrity and legal certainty of the persons cared for in geriatric and gerontology services and centers, on the other, decided to create an "Interdisciplinary Committee on Restraints" made up by members from different disciplines and members of SEGG Working Groups or Committees, external health care workers, groups, organizations, and associations, who are experts in restraints, as well as the main "anti-restraint" movements. An outcome of this decision is the Consensus document on physical and pharmacological restraints, together with the Consensus on physical and pharmacological restraints, published by the SEGG, which should signify a qualitative leap forward in care for the elderly, and serving as a best practice guide for healthcare workers. Copyright © 2014 SEGG. Published by Elsevier Espana. All rights reserved.

  16. High levels of incorrect use of car seat belts and child restraints in Fife--an important and under-recognised road safety issue.

    PubMed

    Campbell, H; Macdonald, S; Richardson, P

    1997-03-01

    To pilot data collection instruments and to make a preliminary estimate of the level of incorrect use of car seat belts and child restraints in Fife, Scotland. Cross sectional survey of cars containing adults and children at a number of public sites across Fife in 1995 to assess use of car occupant restraints. Trained road safety officers assessed whether seat restraints were appropriate for the age of the passengers and whether restraints were used correctly. These assessments were based on standards published by the Child Accident Prevention Trust. The survey gathered data from 596 occupants in 180 cars: 327 adults and 269 children. Ten per cent of drivers who were approached refused to participate. Car occupant restraint was assessed in 180 drivers, 151 front seat passengers, and 265 rear seat passengers. Three hundred and sixty one occupants wore seat belts, 68 were restrained by a seat belt and booster cushion, 63 in toddler seats, 25 in two way seats, and 18 in rear facing infant carriers. Ninety seven per cent of drivers, 95% of front seat passengers, and 77% of rear seat passengers were restrained. However, in 98 (52%) vehicles at least one passenger was restrained by a device that was used incorrectly. Seven per cent of adults and 28% of children were secured incorrectly. The commonest errors were loose seat belts and restraint devices not adequately secured to the seat. Rates of incorrect use were highest in child seat restraints, reaching 60% with two way seats and 44% with rear facing infant seats. The incorrect use of car occupant restraints is an under-recognised problem, both by health professionals, and the general public. Incorrect use has been shown to reduce the effectiveness of restraints, can itself result in injury, and is likely to be an important factor in child passenger injuries. The correct use of car seat restraints merits greater attention in strategies aiming to reduce road traffic casualties. Areas of intervention that could be considered include raising public awareness of this problem, improving information and instruction given to those who purchase child restraints, and encouraging increased collaboration between manufacturers of cars and child restraints, in considering safety issues.

  17. High levels of incorrect use of car seat belts and child restraints in Fife--an important and under-recognised road safety issue.

    PubMed Central

    Campbell, H.; Macdonald, S.; Richardson, P.

    1997-01-01

    OBJECTIVE: To pilot data collection instruments and to make a preliminary estimate of the level of incorrect use of car seat belts and child restraints in Fife, Scotland. DESIGN: Cross sectional survey of cars containing adults and children at a number of public sites across Fife in 1995 to assess use of car occupant restraints. Trained road safety officers assessed whether seat restraints were appropriate for the age of the passengers and whether restraints were used correctly. These assessments were based on standards published by the Child Accident Prevention Trust. PARTICIPANTS: The survey gathered data from 596 occupants in 180 cars: 327 adults and 269 children. Ten per cent of drivers who were approached refused to participate. Car occupant restraint was assessed in 180 drivers, 151 front seat passengers, and 265 rear seat passengers. MAIN RESULTS: Three hundred and sixty one occupants wore seat belts, 68 were restrained by a seat belt and booster cushion, 63 in toddler seats, 25 in two way seats, and 18 in rear facing infant carriers. Ninety seven per cent of drivers, 95% of front seat passengers, and 77% of rear seat passengers were restrained. However, in 98 (52%) vehicles at least one passenger was restrained by a device that was used incorrectly. Seven per cent of adults and 28% of children were secured incorrectly. The commonest errors were loose seat belts and restraint devices not adequately secured to the seat. Rates of incorrect use were highest in child seat restraints, reaching 60% with two way seats and 44% with rear facing infant seats. CONCLUSIONS: The incorrect use of car occupant restraints is an under-recognised problem, both by health professionals, and the general public. Incorrect use has been shown to reduce the effectiveness of restraints, can itself result in injury, and is likely to be an important factor in child passenger injuries. The correct use of car seat restraints merits greater attention in strategies aiming to reduce road traffic casualties. Areas of intervention that could be considered include raising public awareness of this problem, improving information and instruction given to those who purchase child restraints, and encouraging increased collaboration between manufacturers of cars and child restraints, in considering safety issues. PMID:9113842

  18. Are automobile head restraints used effectively?

    PubMed Central

    Lubin, S.; Sehmer, J.

    1993-01-01

    Observation of 992 motor vehicles and their drivers revealed that most drivers do not have their head restraints effectively positioned. Improper positioning was more common with adjustable restraints, in commercial vehicles, and among male drivers. Some head restraints could not be adjusted properly. Improvements in headrest adjustment might help decrease morbidity in motor vehicle accidents. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8053992

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majetich, Sara

    In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magneticmore » order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500 MHz), and high frequency (up to 20 GHz) regimes. Our results will demonstrate whether a DC dipolar ferromagnet shows collective frequency-dependent reponse similar to that of an exchange-based ferromagnet, and will provide data for comparison of optimal nanocomposite properties with those of ferrites used in high frequency applications. Both the magnetic and electronic response of the composites will be examined in order to determine the frequency range where hopping conductivity leads to significant eddy current power losses. In the high frequency regime we will look for evidence of spin wave quantization and the resulting decrease in non-linear spin wave processes that could affect the performance of high frequency magnetic devices.« less

  20. Validity and measurement invariance of the Physical Restraint Use Questionnaire (PRUQ) in nursing staff.

    PubMed

    Penelo, Eva; Estévez-Guerra, Gabriel J; Fariña-López, Emilio

    2018-03-01

    To study the internal structure and measurement invariance of the Physical Restraint Use Questionnaire and to compare perceptions, experience and training, regarding use of physical restraint on the older people between nursing staff working in hospitals and nursing homes. Physical restraint of patients is still common in many countries, and thus, it is important to study the attitudes of nursing staff. One of the most common tools used to assess perceptions regarding its use is the Physical Restraint Use Questionnaire. However, gaps exist in its internal structure and measurement invariance across different groups of respondents. Cross-sectional multicentre survey. Data were collected from nurses working in eight Spanish hospitals and 19 nursing homes. All registered nurses and nurse assistants (N = 3,838) were contacted, of whom 1,635 agreed to participate. Confirmatory factor analysis was performed to determine internal structure and measurement invariance of Physical Restraint Use Questionnaire, after which scale scores and other measures of experience and training were compared between hospital-based (n = 855) and nursing homes-based (n = 780) nurses. The Physical Restraint Use Questionnaire showed three invariant factors across type of facility, and also professional category and sex. Nursing staff working in both types of facility scored similarly; prevention of therapy disruption and prevention of falls were rated more important. Nurses working in nursing homes reported using restraint "many times" more frequently (52.9% vs. 38.6%), less severe lack of training (18.2% vs. 58.7%) being perceived as more adequate (33.4% vs. 17.7%), than hospital-based nurses. These findings support Physical Restraint Use Questionnaire as a valid and reliable tool for assessing the importance given to the use of physical restraint in the older people by nursing professionals, regardless of the setting being studied. The information would help design more specifically the physical restraint training of nursing staff and to plan institutional interventions aimed at reducing its use. © 2018 John Wiley & Sons Ltd.

  1. Restraint use in motor vehicle crash fatalities in children 0 year to 9 years old.

    PubMed

    Lee, Lois K; Farrell, Caitlin A; Mannix, Rebekah

    2015-09-01

    Despite improvements in child passenger safety legislation and equipment, motor vehicle crashes (MVCs) continue to be the leading cause of death in children younger than 10 years. The objective of this study was to describe factors associated with restraint use in fatal MVC in children 0 year to 9 years old. The Fatality Analysis Reporting System, maintained by the National Highway Transportation Safety Administration, was used to obtain data on MVC fatalities from 2001 to 2010 in children 0 year to 9 years old. The main outcome was restraint use. Demographic information (age, sex, and race) and crash characteristics including vehicle type (sedan, van, truck, sports utility vehicle) and seat position in the vehicle were analyzed with the χ statistic to evaluate these factors for any restraint use compared with no restraint use in MVC fatalities. There were 7,625 MVC fatalities in children 0 year to 9 years old from 2001 to 2010.Among these fatalities, 4,041 (53%) had any restraint use. Front seat passengers accounted for 20.9% (1,595 of 7,625) of the fatalities. Children 0 year to 3 years old had a higher proportion of restraint use than children 4 years to 9 years old (p < 0.001). White children compared with black children had higher use of restraints (p < 0.001). Children riding in sedans/vans compared with sport utility vehicles/trucks and those riding in the rear seats of the vehicle compared with those in front seats were significantly more likely to use restraints (p < 0.001). Overall, only half of children 0 year to 9 years old who died in an MVC were wearing any child restraint in the vehicle, and 20% were sitting in the front seat. Continued efforts must be made to enforce legislation and educate the public about best practices regarding child passenger safety to improve proper restraint use and to decrease MVC fatalities in children. Prognostic/epidemiologic study, level II.

  2. Evaluation of restraint system concepts for the Japanese Experiment Module flight demonstration

    NASA Technical Reports Server (NTRS)

    Sampaio, Carlos E.; Fleming, Terence F.; Stuart, Mark A.; Backemeyer, Lynn A.

    1995-01-01

    The current International Space Station configuration includes a Japanese Experiment Module which relies on a large manipulator and a smaller dexterous manipulator to operate outside the pressurized environment of the experiment module. The module's flight demonstration is a payload that will be mounted in the aft flight deck on STS-87 to evaluate a prototype of the dexterous manipulator. Since the payload operations entail two 8-hour scenarios on consecutive days, adequate operator restraint at the workstation will be critical to the perceived success or failure of the payload. Simulations in reduced gravity environment on the KC-135A were the only way to evaluate the restraint systems and workstation configuration. Two astronaut and two non-astronaut operators evaluated the Advanced Lower Body Extremities Restraint Test and a foot loop restraint system by performing representative tasks at the workstation in each of the two restraint systems; at the end of each flight they gave their impressions of each system and the workstation. Results indicated that access to the workstation switch panels was difficult and manipulation of the hand controllers forced operators too low for optimal viewing of the aft flight deck monitors. The workstation panel should be angled for better visibility, and infrequently used switches should be on the aft flight deck panel. Pitch angle and placement of the hand controllers should optimize the operator's eye position with respect to the monitors. The lower body restraint was preferred over the foot loops because it allowed operators to maintain a more relaxed posture during long-duration tasks, its height adjustability allowed better viewing of aft flight deck monitors, and it provided better restraint for reacting forces imparted on the operator at the workstation. The foot loops provide adequate restraint for the flight demonstration tasks identified. Since results will impact the design of the workstation, both restraints should be flown and used during operation of the flight demonstration payload to evaluate the effect of restraint during long-duration tasks.

  3. Van Allen Probes observations of magnetic field dipolarization and its associated O + flux variations in the inner magnetosphere at L<6.6: Dipolarization in Inner Magnetosphere

    DOE PAGES

    Nosé, M.; Keika, K.; Kletzing, C. A.; ...

    2016-07-20

    Here we investigate the magnetic field dipolarization in the inner magnetosphere and its associated ion flux variations, using the magnetic field and energetic ion flux data acquired by the Van Allen Probes. From a study of 74 events that appeared at L=4.5–6.6 between 1 October 2012 and 31 October 2013, we reveal the following characteristics of the dipolarization in the inner magnetosphere: (1) its time scale is approximately 5 min; (2) it is accompanied by strong magnetic fluctuations that have a dominant frequency close to the O + gyrofrequency; (3) ion fluxes at 20–50 keV are simultaneously enhanced with largermore » magnitudes for O + than for H +; (4) after a few minutes of the dipolarization, the flux enhancement at 0.1–5keV appears with a clear energy-dispersion signature only for O +; and (5) the energy-dispersed O + flux enhancement appears in directions parallel or antiparallel to the magnetic field. From these characteristics, we discuss possible mechanisms that can provide selective acceleration to O + ions at >20keV. We conclude that O + ions at L = 5.4–6.6 undergo nonadiabatic local acceleration caused by oscillating electric field associated with the magnetic fluctuations and/or adiabatic convective transport from the plasma sheet to the inner magnetosphere by the impulsive electric field. At L = 4.5–5.4, however, only the former acceleration is plausible. Finally, we also conclude that the field-aligned energy-dispersed O + ions at 0.1–5 keV originate from the ionosphere and are extracted nearly simultaneously to the onset of the dipolarization.« less

  4. Van Allen Probes observations of magnetic field dipolarization and its associated O + flux variations in the inner magnetosphere at L<6.6: Dipolarization in Inner Magnetosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosé, M.; Keika, K.; Kletzing, C. A.

    Here we investigate the magnetic field dipolarization in the inner magnetosphere and its associated ion flux variations, using the magnetic field and energetic ion flux data acquired by the Van Allen Probes. From a study of 74 events that appeared at L=4.5–6.6 between 1 October 2012 and 31 October 2013, we reveal the following characteristics of the dipolarization in the inner magnetosphere: (1) its time scale is approximately 5 min; (2) it is accompanied by strong magnetic fluctuations that have a dominant frequency close to the O + gyrofrequency; (3) ion fluxes at 20–50 keV are simultaneously enhanced with largermore » magnitudes for O + than for H +; (4) after a few minutes of the dipolarization, the flux enhancement at 0.1–5keV appears with a clear energy-dispersion signature only for O +; and (5) the energy-dispersed O + flux enhancement appears in directions parallel or antiparallel to the magnetic field. From these characteristics, we discuss possible mechanisms that can provide selective acceleration to O + ions at >20keV. We conclude that O + ions at L = 5.4–6.6 undergo nonadiabatic local acceleration caused by oscillating electric field associated with the magnetic fluctuations and/or adiabatic convective transport from the plasma sheet to the inner magnetosphere by the impulsive electric field. At L = 4.5–5.4, however, only the former acceleration is plausible. Finally, we also conclude that the field-aligned energy-dispersed O + ions at 0.1–5 keV originate from the ionosphere and are extracted nearly simultaneously to the onset of the dipolarization.« less

  5. 32 CFR 636.34 - Restraint systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ensuring the use of seat belts, shoulder restraints, and child restraining systems when applicable and may... for ensuring that their seat belts/shoulder restraints are used when applicable and may be cited for...

  6. 32 CFR 636.34 - Restraint systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ensuring the use of seat belts, shoulder restraints, and child restraining systems when applicable and may... for ensuring that their seat belts/shoulder restraints are used when applicable and may be cited for...

  7. PDBStat: a universal restraint converter and restraint analysis software package for protein NMR.

    PubMed

    Tejero, Roberto; Snyder, David; Mao, Binchen; Aramini, James M; Montelione, Gaetano T

    2013-08-01

    The heterogeneous array of software tools used in the process of protein NMR structure determination presents organizational challenges in the structure determination and validation processes, and creates a learning curve that limits the broader use of protein NMR in biology. These challenges, including accurate use of data in different data formats required by software carrying out similar tasks, continue to confound the efforts of novices and experts alike. These important issues need to be addressed robustly in order to standardize protein NMR structure determination and validation. PDBStat is a C/C++ computer program originally developed as a universal coordinate and protein NMR restraint converter. Its primary function is to provide a user-friendly tool for interconverting between protein coordinate and protein NMR restraint data formats. It also provides an integrated set of computational methods for protein NMR restraint analysis and structure quality assessment, relabeling of prochiral atoms with correct IUPAC names, as well as multiple methods for analysis of the consistency of atomic positions indicated by their convergence across a protein NMR ensemble. In this paper we provide a detailed description of the PDBStat software, and highlight some of its valuable computational capabilities. As an example, we demonstrate the use of the PDBStat restraint converter for restrained CS-Rosetta structure generation calculations, and compare the resulting protein NMR structure models with those generated from the same NMR restraint data using more traditional structure determination methods. These results demonstrate the value of a universal restraint converter in allowing the use of multiple structure generation methods with the same restraint data for consensus analysis of protein NMR structures and the underlying restraint data.

  8. Activation of the HPA Axis and Depression of Feeding Behavior Induced by Restraint Stress Are Separately Regulated by PACAPergic Neurotransmission in the Mouse

    PubMed Central

    Jiang, Sunny Zhihong; Eiden, Lee E.

    2016-01-01

    We measured serum CORT elevation in wild-type and PACAP-deficient C57Bl/6N male mice after acute (1 hr) or prolonged (2–3 hr) daily restraint stress for seven days. The PACAP-dependence of CORT elevation was compared to that of stress-induced hypophagia. Daily restraint induced unhabituated peak CORT elevation, and hypophagia/weight loss, of similar magnitude for 1, 2 and 3 hr of daily restraint, in wild-type mice. Peak CORT elevation, and hypophagia, were both attenuated in PACAP-deficient mice for 2 and 3 hrs daily restraint. Hypophagia induced by 1-hr daily restraint was also greatly reduced in PACAP-deficient mice, however CORT elevation, both peak and during recovery from stress, was unaffected. Thus, hypothalamic PACAPergic neurotransmission appears to affect CRH gene transcription and peptide production, but not CRH release, in response to psychogenic stress. A single exposure to restraint sufficed to trigger hypophagia over the following 24 hours. PACAP deficiency attenuated HPA axis response (CORT elevation) to prolonged (3 hr) but not acute (1 hr) single-exposure restraint stress, while hypophagia induced by either a single 1 hr or a single 3 hr restraint were both abolished in PACAP-deficient mice. These results suggest that PACAP’s actions to promote suppression of food intake following an episode of psychogenic stress is unrelated to the release of CRH into the portal circulation to activate the pituitary-adrenal axis. Furthermore, demonstration of suppressed food intake after a single 1-hr restraint stress provides a convenient assay for investigating the location of the synapses and circuits mediating the effects of PACAP on the behavioral sequelae of psychogenic stress. PMID:27228140

  9. Activation of the HPA axis and depression of feeding behavior induced by restraint stress are separately regulated by PACAPergic neurotransmission in the mouse.

    PubMed

    Jiang, Sunny Zhihong; Eiden, Lee E

    2016-07-01

    We measured serum CORT elevation in wild-type and PACAP-deficient C57BL/6N male mice after acute (1 h) or prolonged (2-3 h) daily restraint stress for 7 d. The PACAP dependence of CORT elevation was compared to that of stress-induced hypophagia. Daily restraint induced unhabituated peak CORT elevation, and hypophagia/weight loss, of similar magnitude for 1, 2, and 3 h of daily restraint, in wild-type mice. Peak CORT elevation, and hypophagia, were both attenuated in PACAP-deficient mice for 2 and 3 h daily restraint. Hypophagia induced by 1-h daily restraint was also greatly reduced in PACAP-deficient mice, however CORT elevation, both peak and during recovery from stress, was unaffected. Thus, hypothalamic PACAPergic neurotransmission appears to affect CRH gene transcription and peptide production, but not CRH release, in response to psychogenic stress. A single exposure to restraint sufficed to trigger hypophagia over the following 24 h. PACAP deficiency attenuated HPA axis response (CORT elevation) to prolonged (3 h) but not acute (1 h) single-exposure restraint stress, while hypophagia induced by either a single 1 h or a single 3 h restraint were both abolished in PACAP-deficient mice. These results suggest that PACAP's actions to promote suppression of food intake following an episode of psychogenic stress is unrelated to the release of CRH into the portal circulation to activate the pituitary-adrenal axis. Furthermore, demonstration of suppressed food intake after a single 1-h restraint stress provides a convenient assay for investigating the location of the synapses and circuits mediating the effects of PACAP on the behavioral sequelae of psychogenic stress.

  10. "I cry every day and night, I have my son tied in chains": physical restraint of people with schizophrenia in community settings in Ethiopia.

    PubMed

    Asher, Laura; Fekadu, Abebaw; Teferra, Solomon; De Silva, Mary; Pathare, Soumitra; Hanlon, Charlotte

    2017-07-11

    A primary rationale for scaling up mental health services in low and middle-income countries is to address human rights violations, including physical restraint in community settings. The voices of those with intimate experiences of restraint, in particular people with mental illness and their families, are rarely heard. The aim of this study was to understand the experiences of, and reasons for, restraint of people with schizophrenia in community settings in rural Ethiopia in order to develop constructive and scalable interventions. A qualitative study was conducted, involving 15 in-depth interviews and 5 focus group discussions (n = 35) with a purposive sample of people with schizophrenia, their caregivers, community leaders and primary and community health workers in rural Ethiopia. Thematic analysis was used. Most of the participants with schizophrenia and their caregivers had personal experience of the practice of restraint. The main explanations given for restraint were to protect the individual or the community, and to facilitate transportation to health facilities. These reasons were underpinned by a lack of care options, and the consequent heavy family burden and a sense of powerlessness amongst caregivers. Whilst there was pervasive stigma towards people with schizophrenia, lack of awareness about mental illness was not a primary reason for restraint. All types of participants cited increasing access to treatment as the most effective way to reduce the incidence of restraint. Restraint in community settings in rural Ethiopia entails the violation of various human rights, but the underlying human rights issue is one of lack of access to treatment. The scale up of accessible and affordable mental health care may go some way to address the issue of restraint. Clinicaltrials.gov NCT02160249 Registered 3rd June 2014.

  11. PDBStat: A Universal Restraint Converter and Restraint Analysis Software Package for Protein NMR

    PubMed Central

    Tejero, Roberto; Snyder, David; Mao, Binchen; Aramini, James M.; Montelione, Gaetano T

    2013-01-01

    The heterogeneous array of software tools used in the process of protein NMR structure determination presents organizational challenges in the structure determination and validation processes, and creates a learning curve that limits the broader use of protein NMR in biology. These challenges, including accurate use of data in different data formats required by software carrying out similar tasks, continue to confound the efforts of novices and experts alike. These important issues need to be addressed robustly in order to standardize protein NMR structure determination and validation. PDBStat is a C/C++ computer program originally developed as a universal coordinate and protein NMR restraint converter. Its primary function is to provide a user-friendly tool for interconverting between protein coordinate and protein NMR restraint data formats. It also provides an integrated set of computational methods for protein NMR restraint analysis and structure quality assessment, relabeling of prochiral atoms with correct IUPAC names, as well as multiple methods for analysis of the consistency of atomic positions indicated by their convergence across a protein NMR ensemble. In this paper we provide a detailed description of the PDBStat software, and highlight some of its valuable computational capabilities. As an example, we demonstrate the use of the PDBStat restraint converter for restrained CS-Rosetta structure generation calculations, and compare the resulting protein NMR structure models with those generated from the same NMR restraint data using more traditional structure determination methods. These results demonstrate the value of a universal restraint converter in allowing the use of multiple structure generation methods with the same restraint data for consensus analysis of protein NMR structures and the underlying restraint data. PMID:23897031

  12. Reconstruction of interatomic vectors by principle component analysis of nuclear magnetic resonance data in multiple alignments

    NASA Astrophysics Data System (ADS)

    Hus, Jean-Christophe; Bruschweiler, Rafael

    2002-07-01

    A general method is presented for the reconstruction of interatomic vector orientations from nuclear magnetic resonance (NMR) spectroscopic data of tensor interactions of rank 2, such as dipolar coupling and chemical shielding anisotropy interactions, in solids and partially aligned liquid-state systems. The method, called PRIMA, is based on a principal component analysis of the covariance matrix of the NMR parameters collected for multiple alignments. The five nonzero eigenvalues and their eigenvectors efficiently allow the approximate reconstruction of the vector orientations of the underlying interactions. The method is demonstrated for an isotropic distribution of sample orientations as well as for finite sets of orientations and internuclear vectors encountered in protein systems.

  13. Two-dimensional dispersion of magnetostatic volume spin waves

    NASA Astrophysics Data System (ADS)

    Buijnsters, Frank J.; van Tilburg, Lennert J. A.; Fasolino, Annalisa; Katsnelson, Mikhail I.

    2018-06-01

    Owing to the dipolar (magnetostatic) interaction, long-wavelength spin waves in in-plane magnetized films show an unusual dispersion behavior, which can be mathematically described by the model of and and refinements thereof. However, solving the two-dimensional dispersion requires the evaluation of a set of coupled transcendental equations and one has to rely on numerics. In this work, we present a systematic perturbative analysis of the spin wave model. An expansion in the in-plane wavevector allows us to obtain explicit closed-form expressions for the dispersion relation and mode profiles in various asymptotic regimes. Moreover, we derive a very accurate semi-analytical expression for the dispersion relation of the lowest-frequency mode that is straightforward to evaluate.

  14. Use of physical restraint in nursing homes: clinical‐ethical considerations

    PubMed Central

    Gastmans, C; Milisen, K

    2006-01-01

    This article gives a brief overview of the state of the art concerning physical restraint use among older persons in nursing homes. Within this context we identify some essential values and norms that must be observed in an ethical evaluation of physical restraint. These values and norms provide the ethical foundation for a number of concrete recommendations that could give clinical and ethical support to caregivers when they make decisions about physical restraint. Respect for the autonomy and overall wellbeing of older persons, a proportional assessment of the advantages and disadvantages, a priority focus on the alternatives to physical restraint, individualised care, interdisciplinary decision making, and an institutional policy are the central points that make it possible to deal responsibly with the use of physical restraint for older persons in nursing homes. PMID:16507658

  15. Full body restraint system

    NASA Technical Reports Server (NTRS)

    Ryder, Susan (Inventor)

    1990-01-01

    A body restraint system (30) allows the user's body (10) to be in the zero gravity neutral posture. The system (30) includes a waist restraint (32) in the form of a curved, padded unit (34) containing a retractable belt (36) coiled on a spring loaded capstan (38) with a buckle (40) extending from front (42) of the unit (34). A second belt (44) is fastened around the user's waist (16). A clasp (46) is configured to engage the buckle (40). The waist restraint (32) is positioned near foot restraints (52). The foot restraints (52) have foot platforms (59) with pads (60) of a suitable two part attaching material, such as the fasteners available from Minnesota Mining and Manufacturing Company under the trademark Scotchmate Duallock. A mating pad (62) of the material is provided on soles (64) of cotton net shoes (66).

  16. Fatal Pediatric Motor Vehicle Crashes on U.S. Native American Indian Lands Compared to Adjacent Non-Indian Lands: Restraint Use and Injury by Driver, Vehicle, Roadway and Crash Characteristics.

    PubMed

    Oh, Shin Ah; Liu, Chang; Pressley, Joyce C

    2017-10-25

    There are large disparities in American Indian pediatric motor vehicle (MV) mortality with reports that several factors may contribute. The Fatality Analysis Reporting System for 2000-2014 was used to examine restraint use for occupants aged 0-19 years involved in fatal MV crashes on Indian lands ( n = 1667) and non-Indian lands in adjacent states ( n = 126,080). SAS GLIMMIX logistic regression with random effects was used to generate odds ratios (OR) with 95% confidence intervals (CI). Restraint use increased in both areas over the study period with restraint use on Indian lands being just over half that of non-Indian lands for drivers (36.8% vs. 67.8%, p < 0.0001) and for pediatric passengers (33.1% vs. 59.3%, p < 0.0001). Driver restraint was the strongest predictor of passenger restraint on both Indian and non-Indian lands exerting a stronger effect in ages 13-19 than in 0-12 year olds. Valid licensed driver was a significant predictor of restraint use in ages 0-12 years. Passengers in non-cars (SUVs, vans and pickup trucks) were less likely to be restrained. Restraint use improved over the study period in both areas, but disparities failed to narrow as restraint use remains lower and driver, vehicle and crash risk factors higher for MV mortality on Indian lands.

  17. Fatal Pediatric Motor Vehicle Crashes on U.S. Native American Indian Lands Compared to Adjacent Non-Indian Lands: Restraint Use and Injury by Driver, Vehicle, Roadway and Crash Characteristics

    PubMed Central

    Oh, Shin Ah; Liu, Chang

    2017-01-01

    There are large disparities in American Indian pediatric motor vehicle (MV) mortality with reports that several factors may contribute. The Fatality Analysis Reporting System for 2000–2014 was used to examine restraint use for occupants aged 0–19 years involved in fatal MV crashes on Indian lands (n = 1667) and non-Indian lands in adjacent states (n = 126,080). SAS GLIMMIX logistic regression with random effects was used to generate odds ratios (OR) with 95% confidence intervals (CI). Restraint use increased in both areas over the study period with restraint use on Indian lands being just over half that of non-Indian lands for drivers (36.8% vs. 67.8%, p < 0.0001) and for pediatric passengers (33.1% vs. 59.3%, p < 0.0001). Driver restraint was the strongest predictor of passenger restraint on both Indian and non-Indian lands exerting a stronger effect in ages 13–19 than in 0–12 year olds. Valid licensed driver was a significant predictor of restraint use in ages 0–12 years. Passengers in non-cars (SUVs, vans and pickup trucks) were less likely to be restrained. Restraint use improved over the study period in both areas, but disparities failed to narrow as restraint use remains lower and driver, vehicle and crash risk factors higher for MV mortality on Indian lands. PMID:29068393

  18. Dipolarization in the inner magnetosphere during a geomagnetic storm on 7 October 2015

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Erickson, P. J.; Foster, J. C.; Torbert, R. B.; Argall, M. R.; Anderson, B. J.; Blake, J. B.; Cohen, I. J.; Ergun, R.; Farrugia, C. J.; Khotyaintsev, Y. V.; Korth, H.; Lindqvist, P. A.; Magnes, W.; Marklund, G. T.; Mauk, B.; Paulson, K. W.; Russell, C.; Strangeway, R. J.; Turner, D. L.

    2016-12-01

    A dipolarization event was observed by the Magnetospheric Multiscale (MMS) spacecraft at L=3.8 and 19.8 magnetic local time (MLT) starting at 23:42:36 UT on 7 October 2015. The magnetic and electric fields showed initially coherent variations between the spacecraft. The sunward convection turned tailward after the dipolarization. The observation is interpreted in terms of the pressure balance or the momentum equation. This was followed by a region traversed where the fields were irregular. The scale length was of the order of the ion gyroradius, suggesting the kinetic nature of the fluctuations. Combination of the multi-instrument, multi-spacecraft data reveals a more detailed picture of the dipolarization event in the inner magnetosphere. Conjunction ionosphere-plasmasphere observations from DMSP, two-dimensional GPS TEC, the Millstone Hill mid-latitude incoherent scatter radar, and AMPERE measurements imply that MMS observations are located on the poleward edge of the ionospheric trough where Region 2 field aligned currents flow.

  19. Dipolarization in the inner magnetosphere during a geomagnetic storm on 7 October 2015

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Erickson, P. J.; Foster, J. C.; Torbert, R. B.; Argall, M. R.; Anderson, B. J.; Blake, J. B.; Cohen, I. J.; Ergun, R. E.; Farrugia, C. J.; Khotyaintsev, Yu. V.; Korth, H.; Lindqvist, P.-A.; Magnes, W.; Marklund, G. T.; Mauk, B. H.; Paulson, K. W.; Russell, C. T.; Strangeway, R. J.; Turner, D. L.

    2016-09-01

    A dipolarization event was observed by the Magnetospheric Multiscale (MMS) spacecraft at L = 3.8 and 19.8 magnetic local time starting at ˜23:42:36 UT on 7 October 2015. The magnetic and electric fields showed initially coherent variations between the spacecraft. The sunward convection turned tailward after the dipolarization. The observation is interpreted in terms of the pressure balance or the momentum equation. This was followed by a region traversed where the fields were irregular. The scale length was of the order of the ion gyroradius, suggesting the kinetic nature of the fluctuations. Combination of the multi-instrument, multispacecraft data reveals a more detailed picture of the dipolarization event in the inner magnetosphere. Conjunction ionosphere-plasmasphere observations from DMSP, two-dimensional GPS total electron content, the Millstone Hill midlatitude incoherent scatter radar, and AMPERE measurements imply that MMS observations are located on the poleward edge of the ionospheric trough where Region 2 field-aligned currents flow.

  20. High-Temperature and High-Energy-Density Dipolar Glass Polymers Based on Sulfonylated Poly(2,6-dimethyl-1,4-phenylene oxide).

    PubMed

    Zhang, Zhongbo; Wang, David H; Litt, Morton H; Tan, Loon-Seng; Zhu, Lei

    2018-02-05

    A new class of high-temperature dipolar polymers based on sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide) (SO 2 -PPO) was synthesized by post-polymer functionalization. Owing to the efficient rotation of highly polar methylsulfonyl side groups below the glass transition temperature (T g ≈220 °C), the dipolar polarization of these SO 2 -PPOs was enhanced, and thus the dielectric constant was high. Consequently, the discharge energy density reached up to 22 J cm -3 . Owing to its high T g  , the SO 2 -PPO 25 sample also exhibited a low dielectric loss. For example, the dissipation factor (tan δ) was 0.003, and the discharge efficiency at 800 MV m -1 was 92 %. Therefore, these dipolar glass polymers are promising for high-temperature, high-energy-density, and low-loss electrical energy storage applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Quasi-molecular bosonic complexes-a pathway to SQUID with controlled sensitivity

    NASA Astrophysics Data System (ADS)

    Safavi-Naini, Arghavan; Capogrosso-Sansone, Barbara; Kuklov, Anatoly; Penna, Vittorio

    2016-02-01

    Recent experimental advances in realizing degenerate quantum dipolar gases in optical lattices and the flexibility of experimental setups in attaining various geometries offer the opportunity to explore exotic quantum many-body phases stabilized by anisotropic, long-range dipolar interaction. Moreover, the unprecedented control over the various physical properties of these systems, ranging from the quantum statistics of the particles, to the inter-particle interactions, allow one to engineer novel devices. In this paper, we consider dipolar bosons trapped in a stack of one-dimensional optical lattice layers, previously studied in (Safavi-Naini et al 2014 Phys. Rev. A 90 043604). Building on our prior results, we provide a description of the quantum phases stabilized in this system which include composite superfluids (CSFs), solids, and supercounterfluids, most of which are found to be threshold-less with respect to the dipolar interaction strength. We also demonstrate the effect of enhanced sensitivity to rotations of a SQUID-type device made of two CSF trapped in a ring-shaped optical lattice layer with weak links.

  2. Colloidal Random Terpolymers: Controlling Reactivity Ratios of Colloidal Comonomers via Metal Tipping

    DOE PAGES

    Pavlopoulos, Nicholas G.; Dubose, Jeffrey T.; Hartnett, Erin D.; ...

    2016-07-26

    We report on a versatile synthetic m-shell nanoparticles (NPs) in the backbone, along with semiconductor CdSe@CdS nanorod (NR), or tetrapod (TP) side chain groups. A seven-step colloidal total synthesis enabled the synthesis of well-defined colloidal comonomers composed of a dipolar Au@CoNP attached to a single CdSe@CdS NR, or TP, where magnetic dipolar associations between Au@CoNP units promoted the formation of colloidal co- or terpolymers. The key step in this synthesis was the ability to photodeposit a single AuNP tip onto CdSe@CdS NR or TP that enables selective seeding of a dipolar CoNP onto the AuNP seed. In conclusion, we showmore » that the variation of the AuNP size directly controlled the size and dipolar character of the CoNP tip, where the size modulation of the Au and Au@CoNP tips is analogous to control of comonomer reactivity ratios in classical copolymerization processes.« less

  3. Dietary restraint of 5-year-old girls: Associations with internalization of the thin ideal and maternal, media, and peer influences.

    PubMed

    Damiano, Stephanie R; Paxton, Susan J; Wertheim, Eleanor H; McLean, Siân A; Gregg, Karen J

    2015-12-01

    Understanding socio-cultural factors associated with the development of dieting tendencies is important for preventing future disordered eating. We explored individual and socio-cultural factors associated with weight-focussed dietary restraint tendencies (described as dietary restraint) in 5-year-old girls. Participants were 111 5-year-old girls and 109 of their mothers. Girls were interviewed about their dietary restraint, body image, appearance ideals, positive weight bias (attributing positive characteristics to thinner figures), and peer conversations. Mothers completed self-report questionnaires assessing dietary restraint and appearance ideals, as well as measures reporting on their daughter's media exposure and peer appearance interest. Thirty-four percent of girls reported at least a moderate level of dietary restraint. While most girls were satisfied with their body size, half showed some internalization of the thin ideal. Girls' dietary restraint was correlated with weight bias favoring thinner bodies, and greater internalization of the thin ideal, media exposure, and appearance conversations with peers. Media exposure and appearance conversations were the strongest predictors of dietary restraint. These cross-sectional findings suggest that the socio-cultural environment of young girls may be important in the very early development of unhealthy dieting tendencies. Longitudinal research is necessary to identify whether these are prospective risk factors. © 2015 Wiley Periodicals, Inc.

  4. A daily diary study of perceived social isolation, dietary restraint, and negative affect in binge eating.

    PubMed

    Mason, Tyler B; Heron, Kristin E; Braitman, Abby L; Lewis, Robin J

    2016-02-01

    Negative affect and dietary restraint are key predictors of binge eating, yet less is known about the impact of social factors on binge eating. The study sought to replicate and extend research on the relationships between negative affect, dietary restraint, perceived social isolation and binge eating using a daily diary methodology. College women (N = 54) completed measures of dietary restraint, negative affect, perceived social isolation, and binge eating daily for 14 days. Participants completed the measures nightly each day. A series of generalized estimating equations showed that dietary restraint was associated with less binge eating while controlling for negative affect and for perceived social isolation separately. Negative affect and perceived social isolation were associated with greater binge eating while controlling for restraint in separate analyses, but only perceived social isolation was significant when modeled simultaneously. All two-way interactions between negative affect, dietary restraint, and perceived social isolation predicting binge eating were nonsignificant. This study furthers our understanding of predictors of binge eating in a nonclinical sample. Specifically, these data suggest perceived social isolation, negative affect, and dietary restraint are important variables associated with binge eating in daily life and warrant further research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. An editor for the generation and customization of geometry restraints

    DOE PAGES

    Moriarty, Nigel W.; Draizen, Eli J.; Adams, Paul D.

    2017-02-01

    Chemical restraints for use in macromolecular structure refinement are produced by a variety of methods, including a number of programs that use chemical information to generate the required bond, angle, dihedral, chiral and planar restraints. These programs help to automate the process and therefore minimize the errors that could otherwise occur if it were performed manually. Furthermore, restraint-dictionary generation programs can incorporate chemical and other prior knowledge to provide reasonable choices of types and values. However, the use of restraints to define the geometry of a molecule is an approximation introduced with efficiency in mind. The representation of a bondmore » as a parabolic function is a convenience and does not reflect the true variability in even the simplest of molecules. Another complicating factor is the interplay of the molecule with other parts of the macromolecular model. Finally, difficult situations arise from molecules with rare or unusual moieties that may not have their conformational space fully explored. These factors give rise to the need for an interactive editor for WYSIWYG interactions with the restraints and molecule. Restraints Editor, Especially Ligands (REEL) is a graphical user interface for simple and error-free editing along with additional features to provide greater control of the restraint dictionaries in macromolecular refinement.« less

  6. An editor for the generation and customization of geometry restraints.

    PubMed

    Moriarty, Nigel W; Draizen, Eli J; Adams, Paul D

    2017-02-01

    Chemical restraints for use in macromolecular structure refinement are produced by a variety of methods, including a number of programs that use chemical information to generate the required bond, angle, dihedral, chiral and planar restraints. These programs help to automate the process and therefore minimize the errors that could otherwise occur if it were performed manually. Furthermore, restraint-dictionary generation programs can incorporate chemical and other prior knowledge to provide reasonable choices of types and values. However, the use of restraints to define the geometry of a molecule is an approximation introduced with efficiency in mind. The representation of a bond as a parabolic function is a convenience and does not reflect the true variability in even the simplest of molecules. Another complicating factor is the interplay of the molecule with other parts of the macromolecular model. Finally, difficult situations arise from molecules with rare or unusual moieties that may not have their conformational space fully explored. These factors give rise to the need for an interactive editor for WYSIWYG interactions with the restraints and molecule. Restraints Editor, Especially Ligands (REEL) is a graphical user interface for simple and error-free editing along with additional features to provide greater control of the restraint dictionaries in macromolecular refinement.

  7. Determining the Orientation and Localization of Membrane-Bound Peptides

    PubMed Central

    Hohlweg, Walter; Kosol, Simone; Zangger, Klaus

    2012-01-01

    Many naturally occurring bioactive peptides bind to biological membranes. Studying and elucidating the mode of interaction is often an essential step to understand their molecular and biological functions. To obtain the complete orientation and immersion depth of such compounds in the membrane or a membrane-mimetic system, a number of methods are available, which are separated in this review into four main classes: solution NMR, solid-state NMR, EPR and other methods. Solution NMR methods include the Nuclear Overhauser Effect (NOE) between peptide and membrane signals, residual dipolar couplings and the use of paramagnetic probes, either within the membrane-mimetic or in the solvent. The vast array of solid state NMR methods to study membrane-bound peptide orientation and localization includes the anisotropic chemical shift, PISA wheels, dipolar waves, the GALA, MAOS and REDOR methods and again the use of paramagnetic additives on relaxation rates. Paramagnetic additives, with their effect on spectral linewidths, have also been used in EPR spectroscopy. Additionally, the orientation of a peptide within a membrane can be obtained by the anisotropic hyperfine tensor of a rigidly attached nitroxide label. Besides these magnetic resonance techniques a series of other methods to probe the orientation of peptides in membranes has been developed, consisting of fluorescence-, infrared- and oriented circular dichroism spectroscopy, colorimetry, interface-sensitive X-ray and neutron scattering and Quartz crystal microbalance. PMID:22044140

  8. Contrasting dynamics of electrons and protons in the near-Earth plasma sheet during dipolarization

    NASA Astrophysics Data System (ADS)

    Malykhin, Andrey Y.; Grigorenko, Elena E.; Kronberg, Elena A.; Koleva, Rositza; Ganushkina, Natalia Y.; Kozak, Ludmila; Daly, Patrick W.

    2018-05-01

    The fortunate location of Cluster and the THEMIS P3 probe in the near-Earth plasma sheet (PS) (at X ˜ -7-9 RE) allowed for the multipoint analysis of properties and spectra of electron and proton injections. The injections were observed during dipolarization and substorm current wedge formation associated with braking of multiple bursty bulk flows (BBFs). In the course of dipolarization, a gradual growth of the BZ magnetic field lasted ˜ 13 min and it was comprised of several BZ pulses or dipolarization fronts (DFs) with duration ≤ 1 min. Multipoint observations have shown that the beginning of the increase in suprathermal ( > 50 keV) electron fluxes - the injection boundary - was observed in the PS simultaneously with the dipolarization onset and it propagated dawnward along with the onset-related DF. The subsequent dynamics of the energetic electron flux was similar to the dynamics of the magnetic field during the dipolarization. Namely, a gradual linear growth of the electron flux occurred simultaneously with the gradual growth of the BZ field, and it was comprised of multiple short ( ˜ few minutes) electron injections associated with the BZ pulses. This behavior can be explained by the combined action of local betatron acceleration at the BZ pulses and subsequent gradient drifts of electrons in the flux pile up region through the numerous braking and diverting DFs. The nonadiabatic features occasionally observed in the electron spectra during the injections can be due to the electron interactions with high-frequency electromagnetic or electrostatic fluctuations transiently observed in the course of dipolarization. On the contrary, proton injections were detected only in the vicinity of the strongest BZ pulses. The front thickness of these pulses was less than a gyroradius of thermal protons that ensured the nonadiabatic acceleration of protons. Indeed, during the injections in the energy spectra of protons the pronounced bulge was clearly observed in a finite energy range ˜ 70-90 keV. This feature can be explained by the nonadiabatic resonant acceleration of protons by the bursts of the dawn-dusk electric field associated with the BZ pulses.

  9. Behavioral and physiological adaptation to repeated chair restraint in rhesus macaques.

    PubMed

    Ruys, J D; Mendoza, S P; Capitanio, J P; Mason, W A

    2004-09-15

    Physical restraint is a commonly used procedure when working closely with nonhuman primates. Nonhuman primates show rapid behavioral changes when learning the restraint procedure, and these changes have been taken to reflect behavioral and physiological habituation to the procedure. This study examined the behavioral and adrenocortical responses to repeated physical restraint in a large sample of adult male rhesus monkeys. Subjects showed a decline in behavioral agitation and cortisol concentrations across seven consecutive days of restraint. The changes in adrenocortical responsiveness were also coincident with an increased sensitivity to dexamethasone and a change in early morning basal cortisol secretion. The subjects were restrained for a single session 6 months later, and while the reduction in behavioral agitation was still present, the majority of changes in adrenocortical responsiveness were no longer present. These data show that behavior is not necessarily an indicator of underlying physiological processes and that the reduction of hypothalamic-pituitary-adrenal (HPA) activity with repeated restraint is due to physiological adaptation to high glucocorticoid concentrations and not to psychological habituation to the restraint procedures.

  10. Restraint status improves the predictive value of motor vehicle crash criteria for pediatric trauma team activation.

    PubMed

    Bozeman, Andrew P; Dassinger, Melvin S; Recicar, John F; Smith, Samuel D; Rettiganti, Mallikarjuna R; Nick, Todd G; Maxson, Robert T

    2012-12-01

    Most trauma centers incorporate mechanistic criteria (MC) into their algorithm for trauma team activation (TTA). We hypothesized that characteristics of the crash are less reliable than restraint status in predicting significant injury and the need for TTA. We identified 271 patients (age, <15 y) admitted with a diagnosis of motor vehicle crash. Mechanistic criteria and restraint status of each patient were recorded. Both MC and MC plus restraint status were evaluated as separate measures for appropriately predicting TTA based on treatment outcomes and injury scores. Improper restraint alone predicted a need for TTA with an odds ratios of 2.69 (P = .002). MC plus improper restraint predicted the need for TTA with an odds ratio of 2.52 (P = .002). In contrast, the odds ratio when using MC alone was 1.65 (P = .16). When the 5 MC were evaluated individually as predictive of TTA, ejection, death of occupant, and intrusion more than 18 inches were statistically significant. Improper restraint is an independent predictor of necessitating TTA in this single-institution study. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Risk for physical restraint or seclusion in the psychiatric emergency service (PES).

    PubMed

    Simpson, Scott A; Joesch, Jutta M; West, Imara I; Pasic, Jagoda

    2014-01-01

    We describe risk factors associated with patients experiencing physical restraint or seclusion in the psychiatric emergency service (PES). We retrospectively reviewed medical records, nursing logs and quality assurance data for all adult patient encounters in a PES over a 12-month period (June 1, 2011-May 31, 2012). Descriptors included demographic characteristics, diagnoses, laboratory values, and clinician ratings of symptom severity. χ(2) and multivariate logistic regression analyses were performed. Restraint/seclusion occurred in 14% of 5335 patient encounters. The following characteristics were associated with restraint/seclusion: arrival to the PES in restraints; referral not initiated by the patient; arrival between 1900 and 0059 hours; bipolar mania or mixed episode; and clinician rating of severe disruptiveness, psychosis or insight impairment. Severe suicidality and a depression diagnosis were associated with less risk of restraint or seclusion. Acute symptomatology and characteristics of the encounter were more likely to be associated with restraint/seclusion than patient demographics or diagnoses. These findings support recent guidelines for the treatment of agitation and can help clinicians identify patients at risk of behavioral decompensation. © 2014.

  12. Optimizations of Human Restraint Systems for Short-Period Acceleration

    NASA Technical Reports Server (NTRS)

    Payne, P. R.

    1963-01-01

    A restraint system's main function is to restrain its occupant when his vehicle is subjected to acceleration. If the restraint system is rigid and well-fitting (to eliminate slack) then it will transmit the vehicle acceleration to its occupant without modifying it in any way. Few present-day restraint systems are stiff enough to give this one-to-one transmission characteristic, and depending upon their dynamic characteristics and the nature of the vehicle's acceleration-time history, they will either magnify or attenuate the acceleration. Obviously an optimum restraint system will give maximum attenuation of an input acceleration. In the general case of an arbitrary acceleration input, a computer must be used to determine the optimum dynamic characteristics for the restraint system. Analytical solutions can be obtained for certain simple cases, however, and these cases are considered in this paper, after the concept of dynamic models of the human body is introduced. The paper concludes with a description of an analog computer specially developed for the Air Force to handle completely general mechanical restraint optimization programs of this type, where the acceleration input may be any arbitrary function of time.

  13. Ergonomic Evaluation of the Foot Restraint Equipment Device (FRED)

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Chmielewski, Cindy; Qazi, A. S.; Mount, Francis

    1999-01-01

    Within the scope of the Microgravity Workstation and Restraint Evaluation project, funded by the NASA Headquarters Life Sciences Division, evaluations were proposed to be conducted in ground, KC-135, and/or Shuttle environments to investigate the human factors engineering (HFE) issues concerning confined/unique workstations, including crew restraint requirements. As part of these evaluations, KC-135 flights were conducted to investigate user/ workstation/ restraint integration for microgravity use of the FRED with the RMS workstation. This evaluation was a pre-cursor to Detailed Supplementary Objective (DSO) - 904 on STS-88. On that mission, a small-statured astronaut will be using the FRED restraint while working at the Aft RMS workstation. The DSO will collect video for later posture analyses, as well as subjective data in the form of an electronic questionnaire. This report describes the current FRED KC-135 evaluations. The primary objectives were to evaluate the usability of the FRED and to verify the DSO in-flight setup. The restraint interface evaluation consisted of four basic areas of restraint use: 1) adjustability; 2) general usability and comfort; 3) usability at the RMS workstation; and 4) assembly and disassembly.

  14. Diazo Compounds as Highly Tunable Reactants in 1,3-Dipolar Cycloaddition Reactions with Cycloalkynes†

    PubMed Central

    McGrath, Nicholas A.

    2012-01-01

    Diazo compounds, which can be accessed directly from azides by deimidogenation, are shown to be extremely versatile dipoles in 1,3-dipolar cycloaddition reactions with a cyclooctyne. The reactivity of a diazo compound can be much greater or much less than its azide analog, and is enhanced markedly in polar-protic solvents. These reactivities are predictable from frontier molecular orbital energies. The most reactive diazo compound exhibited the highest known second-order rate constant to date for a dipolar cycloaddition with a cycloalkyne. These data provide a new modality for effecting chemoselective reactions in a biological context. PMID:23227302

  15. Effects of rotor parameter variations on handling qualities of unaugmented helicopters in simulated terrain flight

    NASA Technical Reports Server (NTRS)

    Talbot, P. D.; Dugan, D. D.; Chen, R. T. N.; Gerdes, R. M.

    1980-01-01

    A coordinated analysis and ground simulator experiment was performed to investigate the effects on single rotor helicopter handling qualities of systematic variations in the main rotor hinge restraint, hub hinge offset, pitch-flap coupling, and blade lock number. Teetering rotor, articulated rotor, and hingeless rotor helicopters were evaluated by research pilots in special low level flying tasks involving obstacle avoidance at 60 to 100 knots airspeed. The results of the experiment are in the form of pilot ratings, pilot commentary, and some objective performance measures. Criteria for damping and sensitivity are reexamined when combined with the additional factors of cross coupling due to pitch and roll rates, pitch coupling with collective pitch, and longitudinal static stability. Ratings obtained with and without motion are compared. Acceptable flying qualities were obtained within each rotor type by suitable adjustment of the hub parameters, however, pure teetering rotors were found to lack control power for the tasks. A limit for the coupling parameter L sub q/L sub p of 0.35 is suggested.

  16. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbiotti, G., E-mail: gubbiotti@fisica.unipg.it; Tacchi, S.; Del Bianco, L.

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence ofmore » the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.« less

  17. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadivand, Arash, E-mail: aahma011@fiu.edu; Sinha, Raju; Pala, Nezih

    Here, we examine the electromagnetic (EM) energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as “nanomatryoshka” (NM) units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD) analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer), plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer), due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition givesmore » rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.« less

  18. Effect of habituation on the susceptibility of the rat to restraint ulcers

    NASA Technical Reports Server (NTRS)

    Martin, M. S.; Martin, F.; Lambert, R.

    1980-01-01

    The frequency and gravity of restraint ulcers were found to significantly diminish in rats previously exposed to brief periods of immobilization. The rats' becoming habituated to restraint conditions probably explains this phenomenon.

  19. Factors affecting consumer acceptance and use of child restraint systems

    DOT National Transportation Integrated Search

    1982-01-01

    The causes of consumer satisfaction or dissatisfaction with child restraint systems were studied, and factors contributing to non-use and misuse were identified. Thirty-two families used several different child restraint models for extended periods, ...

  20. Reduction of restraint of people with intellectual disabilities: an organizational behavior management (OBM) approach.

    PubMed

    Williams, Don E; Grossett, Deborah L

    2011-01-01

    We used an organizational behavior management (OBM) approach to increase behavior intervention plans and decrease the use of mechanical restraint. First, recipients were tracked as a member of the priority group if they engaged in frequent self-injurious behavior or physical aggression toward others and/or if they had been placed in mechanical restraint as a result of the problem behaviors. Second, a behavior data monitoring and feedback system was put in place. Third, organizational contingencies for the use of mechanical restraint or the occurrence of frequent self-injurious behavior or physical aggression toward others were initiated. Over the course of 17 months, behavior intervention plans were more than doubled to 124 and mechanical restraints decreased by almost 80%. This study represents the first to use an organizational behavior management (OBM) to reduce restraint with people who have intellectual disabilities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Seclusion and restraint in psychiatry: patients' experiences and practical suggestions on how to improve practices and use alternatives.

    PubMed

    Kontio, Raija; Joffe, Grigori; Putkonen, Hanna; Kuosmanen, Lauri; Hane, Kimmo; Holi, Matti; Välimäki, Maritta

    2012-01-01

    This study explored psychiatric inpatients' experiences of, and their suggestions for, improvement of seclusion/restraint, and alternatives to their use in Finland. The data were collected by focused interviews (n= 30) and were analyzed with inductive content analysis. Patients' perspectives received insufficient attention during seclusion/restraint processes. Improvements (e.g., humane treatment) and alternatives (e.g., empathetic patient-staff interaction) to seclusion/restraint, as suggested by the patients, focused on essential parts of nursing practice but have not been largely adopted. Patients' basic needs have to be met, and patient-staff interaction has to also continue during seclusion/restraint. Providing patients with meaningful activities, planning beforehand, documenting the patients' wishes, and making patient-staff agreements reduce the need for restrictions and offer alternatives for seclusion/restraint. Service users must be involved in all practical development. © 2011 Wiley Periodicals, Inc.

  2. Reducing seclusion and restraint: meeting the organizational challenge.

    PubMed

    Visalli, H; McNasser, G

    2000-07-01

    The Mohawk Valley Psychiatric Center has experienced a major reduction in the use of seclusion and restraint in the past five years. It has used the traditional quality improvement (QI) tools like the Plan Do Check Act, Flowcharts, Fishbone diagrams, and Parieto Charts as suggested in the QI literature. The original work to reduce seclusion and restraint are described in two previous articles by Visalli and McNasser. This article describes the additional work since that time. The seclusion/restraint rate in adult service per 1,000 patient days is 0.13 for restraint and 0.15 for seclusion for calendar year 1998. Children and youth service also has comparatively minimal use of seclusion and restraint. The success of this program is attributed to the organizational leadership and the interdisciplinary approach taken to provide individualized treatment. Many of the initiatives stem from a working relationship with patients on how to improve customer service.

  3. Restraint and the question of validity.

    PubMed

    Paterson, Brodie; Duxbury, Joy

    2007-07-01

    Restraint as an intervention in the management of acute mental distress has a long history that predates the existence of psychiatry. However, it remains a source of controversy with an ongoing debate as to its role. This article critically explores what to date has seemingly been only implicit in the debate surrounding the role of restraint: how should the concept of validity be interpreted when applied to restraint as an intervention? The practice of restraint in mental health is critically examined using two post-positivist constructions of validity, the pragmatic and the psychopolitical, by means of a critical examination of the literature. The current literature provides only weak support for the pragmatic validity of restraint as an intervention and no support to date for its psychopolitical validity. Judgements regarding the validity of any intervention that is coercive must include reference to the psychopolitical dimensions of both practice and policy.

  4. Using Child Age or Weight in Selecting Type of In-Vehicle Restraint: Implications For Promotion And Design

    PubMed Central

    Anderson, Robert W. G.; Hutchinson, T. Paul; Edwards, Sally A.

    2007-01-01

    A survey of motor vehicle child restraint use found around 28% of children under the age of six using weight-inappropriate restraints. Many parents did not know when a child was likely to outgrow a booster seat nor the weight of their child, but they did know the child’s age. Anthropometric data show that, if advice on restraint transition, given solely in terms of age (6 months, 4 years, 8 years) were followed in Australia, incorrect restraint selection would occur in 5% of children under the age of six. Further analysis suggests how rewriting the Standard could reduce this number. We present an argument for placing age-based transitions at the heart of the strategy to improve child restraint compliance. This may be superior to one based on the child’s weight or other anthropometric measurement. Our argument may be summarized as follows: 1 Age-based rules for selecting child restraints are simple, require less information to be retained, and might be more natural criteria for parents. They might have a greater chance of being adopted as norms, and of encouraging good peer cues. Anthropometric rules, on the other hand, assume that parents know the current dimensions of their children and have the tools at their disposal to measure these dimensions. 2 The consequences of age-based promotion for the proportion of children in a restraint suitable for their weight can be estimated for alternative regulatory frameworks. We will report such Calculations below and show that this rate can potentially be very high. The rate would be even higher if child restraint design standards were drafted with age-based transitions in mind. Age-based transitions imply restraint specifications (weight and height limits) that can be determined from anthropometric survey data. 3 Such standards would necessarily imply overlapping anthropometric ranges for the different types of restraint. However, we emphasize that these overlaps would exist to facilitate age-based transitions, not to feature in publicity advising on the correct selection of child restraints. Under such a regime, promotion is driven by what information is readily usable by parents, and ceases being consequential to the standards-setting process. In support of this argument we shall report a survey of restraint use among parents of pre-school and school aged children, and an analysis of the weights (or other dimensions) of children that provides a technique for estimating how well age-based transition could work. The remainder of this paper is divided into sections covering the survey and the anthropometric study. These are synthesized in a discussion of their implications for restraint promotions and standards setting. PMID:18184492

  5. Predictors of Physical Restraint Use in Hospitalized Veterans at End of Life: An Analysis of Data from the BEACON Trial.

    PubMed

    Kvale, Elizabeth; Dionne-Odom, J Nicholas; Redden, David T; Bailey, F Amos; Bakitas, Marie; Goode, Patricia S; Williams, Beverly R; Haddock, Kathlyn Sue; Burgio, Kathryn L

    2015-06-01

    The use of physical restraints in dying patients may be a source of suffering and loss of dignity. Little is known about the prevalence or predictors for restraint use at end of life in the hospital setting. The objective was to determine the prevalence and predictors of physical restraint use at the time of death in hospitalized adults. Secondary analysis was performed on data from the "Best Practices for End-of-Life Care for Our Nation's Veterans" (BEACON) trial conducted between 2005 and 2011. Medical record data were abstracted from six Veterans Administration Medical Centers (VAMCs). Data on processes of care in the last seven days of life were abstracted from the medical records of 5476 who died in the six VAMCs. We prospectively identified potential risk factors for restraint use at the time of death from among the variables measured in the parent trial, including location of death, medications administered, nasogastric tube, intravenous (IV) fluids, family presence, and receipt of a palliative care consultation. Physical restraint use at time of death was documented in 890 decedents (16.3%). Restraint use varied by location of death, with patients in intensive settings being at higher risk. Restraint use was significantly more likely in patients with a nasogastric tube and those receiving IV fluids, benzodiazepines, or antipsychotics. This is the first study to document that one in six hospitalized veterans were restrained at the time of death and to identify predictors of restraint use. Further research is needed to identify intervention opportunities.

  6. Predictors of Physical Restraint Use in Hospitalized Veterans at End of Life: An Analysis of Data from the BEACON Trial

    PubMed Central

    Dionne-Odom, J. Nicholas; Redden, David T.; Bailey, F. Amos; Bakitas, Marie; Goode, Patricia S.; Williams, Beverly R.; Haddock, Kathlyn Sue; Burgio, Kathryn L.

    2015-01-01

    Abstract Background: The use of physical restraints in dying patients may be a source of suffering and loss of dignity. Little is known about the prevalence or predictors for restraint use at end of life in the hospital setting. Objective: The objective was to determine the prevalence and predictors of physical restraint use at the time of death in hospitalized adults. Methods: Secondary analysis was performed on data from the “Best Practices for End-of-Life Care for Our Nation's Veterans” (BEACON) trial conducted between 2005 and 2011. Medical record data were abstracted from six Veterans Administration Medical Centers (VAMCs). Data on processes of care in the last seven days of life were abstracted from the medical records of 5476 who died in the six VAMCs. We prospectively identified potential risk factors for restraint use at the time of death from among the variables measured in the parent trial, including location of death, medications administered, nasogastric tube, intravenous (IV) fluids, family presence, and receipt of a palliative care consultation. Results: Physical restraint use at time of death was documented in 890 decedents (16.3%). Restraint use varied by location of death, with patients in intensive settings being at higher risk. Restraint use was significantly more likely in patients with a nasogastric tube and those receiving IV fluids, benzodiazepines, or antipsychotics. Conclusions: This is the first study to document that one in six hospitalized veterans were restrained at the time of death and to identify predictors of restraint use. Further research is needed to identify intervention opportunities. PMID:25927909

  7. Administration of exogenous acylated ghrelin or rikkunshito, an endogenous ghrelin enhancer, improves the decrease in postprandial gastric motility in an acute restraint stress mouse model

    PubMed Central

    Nahata, M; Saegusa, Y; Sadakane, C; Yamada, C; Nakagawa, K; Okubo, N; Ohnishi, S; Hattori, T; Sakamoto, N; Takeda, H

    2014-01-01

    Background Physical or psychological stress causes functional disorders in the upper gastrointestinal tract. This study aims to elucidate the ameliorating effect of exogenous acylated ghrelin or rikkunshito, a Kampo medicine which acts as a ghrelin enhancer, on gastric dysfunction during acute restraint stress in mice. Methods Fasted and postprandial motor function of the gastric antrum was wirelessly measured using a strain gauge force transducer and solid gastric emptying was detected in mice exposed to restraint stress. Plasma corticosterone and ghrelin levels were also measured. To clarify the role of ghrelin on gastrointestinal dysfunction in mice exposed to stress, exogenous acylated ghrelin or rikkunshito was administered, then the mice were subjected to restraint stress. Key Results Mice exposed to restraint stress for 60 min exhibited delayed gastric emptying and increased plasma corticosterone levels. Gastric motility was decreased in mice exposed to restraint stress in both fasting and postprandial states. Restraint stress did not cause any change in plasma acylated ghrelin levels, but it significantly increased the plasma des-acyl ghrelin levels. Administration of acylated ghrelin or rikkunshito improved the restraint stress-induced delayed gastric emptying and decreased antral motility. Ameliorating effects of rikkunshito on stress-induced gastric dysfunction were abolished by simultaneous administration of a ghrelin receptor antagonist. Conclusions & Inferences Plasma acylated/des-acyl ghrelin imbalance was observed in acute restraint stress. Supplementation of exogenous acylated ghrelin or enhancement of endogenous ghrelin signaling may be useful in the treatment of decreased gastric function caused by stress. PMID:24684160

  8. Restraint use law enforcement intervention in Latino communities.

    PubMed

    Schaechter, Judy; Uhlhorn, Susan B

    2011-11-01

    Motor vehicle crashes are the leading cause of death for U.S. Latinos aged 1 to 35 years. Restraint use is an effective means of prevention of motor vehicle crash injury. Effective interventions to raise restraint use include the following: legislation, law enforcement, education, and equipment distribution. The effects of law enforcement interventions in Latino immigrant communities are understudied. We measured the community-level effect of a combined intervention that included warnings and citations phase enforcement in Latino communities. We designed and implemented in two of three Latino-majority communities a multicomponent intervention consisting of a community awareness campaign, restraint use education with equipment distribution, and a two-staged law enforcement intervention. Restraint use observations were conducted in all three communities at baseline, after the warnings phase and again after the citations phase of the intervention were completed. The combined intervention of community awareness, education, child passenger restraint distribution, and law enforcement focused on educational traffic stops with incentives and warnings was associated with a significant increase in both driver and child passenger restraint use in one intervention community, but only driver restraint increased to a level of significance in the other intervention community; significant increase was also noted among nonintervention drivers. The citations phase of the intervention did not result in a significant increase in restraint use and was complicated by interruptions due to unlicensed drivers. The combined effort of community awareness, education, equipment distribution and law enforcement intervention that included incentives and warnings may be effective at increasing seat belt use in Latino communities without the need for citations.

  9. The relationship between dietary restraint and binge eating: Examining eating-related self-efficacy as a moderator.

    PubMed

    Linardon, Jake

    2018-05-01

    Although dietary restraint has been shown to be a robust predictor of binge eating among women, many women report elevated levels of dietary restraint but do not concurrently exhibit symptoms of binge eating. Moderating variables could therefore interact with dietary restraint to affect its relation to binge eating. One potential factor that may attenuate this relationship is eating-related self-efficacy, defined as the tendency to feel confident in the ability to control eating behaviour under a diverse set of circumstances (e.g., under negative affect, social conflicts). This cross-sectional study examined whether eating-related self-efficacy moderated the relationship between flexible (i.e., a graded approach to dieting, defined by behaviour such as taking smaller servings to regulate body weight, yet still enjoying a variety of foods) and rigid restraint (i.e., an all-or-none approach to eating, characterised by inflexible diet rules) and binge eating. Data were analysed from 237 women. Greater levels of rigid restraint, flexible restraint, and a poorer self-efficacy were shown to predict unique variance in binge eating severity. A significant interaction effect was observed between flexible (but not rigid) restraint and self-efficacy scores on binge eating. Contrary to expectations, however, the flexible restraint-binge eating relationship was largest for those with moderate to strong self-efficacy, and was non-significant for those with poor self-efficacy. Overall, findings suggest that different mechanisms may be operating to maintain binge eating in those with varying levels of eating-related self-efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Aromatic Polythiourea Dielectrics with High Energy Density, High Breakdown Strength, and Low Dielectric Loss

    NASA Astrophysics Data System (ADS)

    Wu, Shan; Burlingame, Quinn; Lin, Minren; Zhang, Qiming

    2013-03-01

    There is an increasing demand on dielectric materials with high electric energy density and low loss for a broad range of applications in modern electronics and electrical power systems such as hybrid electric vehicles (HEV), medical defibrillators, filters, and switched-mode power supplies. One major challenge in developing dielectric polymers is how to achieve high energy density Ue while maintaining low dielectric loss, even at very high-applied electric fields. Here we show that amorphous polar-polymers with very low impurity concentration can be promising for realizing such a dielectric polymer. Polar-polymer with high dipole moment and weak dipole coupling can provide relatively high dielectric constant for high Ue, eliminate polarization and conduction losses due to weak dipolar coupling and strong polar-scattering to charge carriers. Indeed, an aromatic polythiourea thin film can maintain low loss to high fields (>1 GV/m) with a high Ue (~ 24 J/cm3) , which is very attractive for energy storage capacitors.

  11. Novel insights into the mechanism of the ortho/para spin conversion of hydrogen pairs: implications for catalysis and interstellar water.

    PubMed

    Limbach, Hans-Heinrich; Buntkowsky, Gerd; Matthes, Jochen; Gründemann, Stefan; Pery, Tal; Walaszek, Bernadeta; Chaudret, Bruno

    2006-03-13

    The phenomenon of exchange coupling is taken into account in the description of the magnetic nuclear spin conversion between bound ortho- and para-dihydrogen. This conversion occurs without bond breaking, in contrast to the chemical spin conversion. It is shown that the exchange coupling needs to be reduced so that the corresponding exchange barrier can increase and the given magnetic interaction can effectively induce a spin conversion. The implications for related molecules such as water are discussed. For ice, a dipolar magnetic conversion and for liquid water a chemical conversion are predicted to occur within the millisecond timescale. It follows that a separation of water into its spin isomers, as proposed by Tikhonov and Volkov (Science 2002, 296, 2363), is not feasible. Nuclear spin temperatures of water vapor in comets, which are smaller than the gas-phase equilibrium temperatures, are proposed to be diagnostic for the temperature of the ice or the dust surface from which the water was released.

  12. Relation between native ensembles and experimental structures of proteins

    PubMed Central

    Best, Robert B.; Lindorff-Larsen, Kresten; DePristo, Mark A.; Vendruscolo, Michele

    2006-01-01

    Different experimental structures of the same protein or of proteins with high sequence similarity contain many small variations. Here we construct ensembles of “high-sequence similarity Protein Data Bank” (HSP) structures and consider the extent to which such ensembles represent the structural heterogeneity of the native state in solution. We find that different NMR measurements probing structure and dynamics of given proteins in solution, including order parameters, scalar couplings, and residual dipolar couplings, are remarkably well reproduced by their respective high-sequence similarity Protein Data Bank ensembles; moreover, we show that the effects of uncertainties in structure determination are insufficient to explain the results. These results highlight the importance of accounting for native-state protein dynamics in making comparisons with ensemble-averaged experimental data and suggest that even a modest number of structures of a protein determined under different conditions, or with small variations in sequence, capture a representative subset of the true native-state ensemble. PMID:16829580

  13. Child restraint workshop series. Volume 1

    DOT National Transportation Integrated Search

    1979-09-01

    This final report describes the planning and implementing details of the Child Restraint Workshop series. A child restraint workshop was conducted in each of the : ten NHTSA regions. The purpose of the workshops was to improve the effectiveness of gr...

  14. The performance of child restraint devices in transport airplane passenger seats.

    DOT National Transportation Integrated Search

    1994-09-01

    The performance of child restraint devices (CRDs) in commercial transport airplane passenger seats was evaluated by a dynamic impact test program. Background information on the policies and regulations related to child restraints is summarized. Tests...

  15. Effectiveness of restraint equipment in enclosed areas.

    DOT National Transportation Integrated Search

    1972-02-01

    A series of 20-g decelerations of a crash sled was conducted to determine the magnitude of head impact decelerations while wearing various types of restraint equipment in small confined areas. Restraint webbing loads and head impact decelerations are...

  16. Coupling between the Voltage-sensing and Pore Domains in a Voltage-gated Potassium Channel

    PubMed Central

    Schow, Eric V.; Freites, J. Alfredo; Nizkorodov, Alex; White, Stephen H.; Tobias, Douglas J.

    2012-01-01

    Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence. PMID:22425907

  17. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.

    PubMed

    Schow, Eric V; Freites, J Alfredo; Nizkorodov, Alex; White, Stephen H; Tobias, Douglas J

    2012-07-01

    Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.

  18. The detrimental effects of physical restraint as a consequence for inappropriate classroom behavior.

    PubMed

    Magee, S K; Ellis, J

    2001-01-01

    Functional analyses produced inconclusive results regarding variables that maintained problem behavior for 2 students with developmental disabilities. Procedures were modified to include a contingent physical restraint condition based on in-class observations. Results indicated that tinder conditions in which physical restraint (i.e., basket-hold timeout) was applied contingent on problem behavior, rates of these behaviors increased across sessions for both subjects. Implications for the use of physical restraint in the classroom are discussed.

  19. [Therapeutic restraint management in Intensive Care Units: Phenomenological approach to nursing reality].

    PubMed

    Acevedo-Nuevo, M; González-Gil, M T; Solís-Muñoz, M; Láiz-Díez, N; Toraño-Olivera, M J; Carrasco-Rodríguez-Rey, L F; García-González, S; Velasco-Sanz, T R; Martínez-Álvarez, A; Martin-Rivera, B E

    2016-01-01

    To identify nursing experience on physical restraint management in Critical Care Units. To analyse similarities and differences in nursing experience on physical restraint management according to the clinical context that they are involved in. A multicentre phenomenological study was carried out including 14 Critical Care Units in Madrid, classified according to physical restraint use: Common/systematic use, lacking/personalised use, and mixed use. Five focus groups (23 participants were selected following purposeful sampling) were convened, concluding in data saturation. Data analysis was focused on thematic content analysis following Colaizzi's method. Six main themes: Physical restraint meaning in Critical Care Units, safety (self-retreat vital devices), contribution factors, feelings, alternatives, and pending issues. Although some themes are common to the 3 Critical Care Unit types, discourse differences are found as regards to indication, feelings, systematic use of pain and sedation measurement tools. In order to achieve real physical restraint reduction in Critical Care Units, it is necessary to have a deep understanding of restraints use in the specific clinical context. As self-retreat vital devices emerge as central concept, some interventions proposed in other settings could not be effective, requiring alternatives for critical care patients. Discourse variations laid out in the different Critical Care Unit types could highlight key items that determine the use and different attitudes towards physical restraint. Copyright © 2015 Elsevier España, S.L.U. y SEEIUC. All rights reserved.

  20. The Efficacy of an In-Service Education Program Designed to Enhance the Effectiveness of Physical Restraints.

    PubMed

    Chang, Yin-Yin; Yu, Hsiu-Hui; Loh, El-Wui; Chang, Li-Yin

    2016-03-01

    Physical restraints are used to enhance the safety of patients and to avoid injury. However, physical restraints may cause injuries if improperly used or if they are used in the absence of continuous monitoring. Nursing staff who use physical restraints often lack sufficient related knowledge, which may increase the risk to patient safety. This study investigates the impact of an in-service education program for nursing staff that is designed to improve physical-restraint-related knowledge, attitudes, behaviors, and techniques. A pretest-posttest design and a quasi-experimental method were employed to evaluate the effectiveness of the in-service education program. One hundred thirty-six nursing staff from four adult intensive care units (ICUs), including two medical ICUs and two surgical ICUs, in a medical center in central Taiwan were enrolled as participants. The experimental group (EG) and the control group (CG) were composed of patients from one randomly assigned medical ICU and one randomly assigned surgical ICU each. The pretest data on physical-restraint-related knowledge, attitudes, behaviors, and techniques were collected before the in-service education program. The EG received 2 hours of classroom education on guidelines and techniques related to physical restraints. The posttest data for the two groups were collected a month after implementation of the in-service education program. General Estimation Equation was used to measure and analyze the data repeatedly. The posttest scores of the EG for knowledge and technique were significantly higher than the pretest scores (p < .0001). However, the posttest scores of the EG for attitudes and behaviors did not significantly differ from the pretest scores. In-service education for physical restraints enhances relevant knowledge and techniques but does not significantly affect attitudes or behaviors. Correct implementation of physical restraints not only promotes the quality of nursing care for patients in the ICU but also reduces the risk of physical-restraint-related complications. This study highlights the importance of changing the thoughts and concepts related to the use of physical restraints within the overall caring strategy of hospitals.

  1. Unveiling Inherent Degeneracies in Determining Population-weighted Ensembles of Inter-domain Orientational Distributions Using NMR Residual Dipolar Couplings: Application to RNA Helix Junction Helix Motifs

    PubMed Central

    Yang, Shan; Al-Hashimi, Hashim M.

    2016-01-01

    A growing number of studies employ time-averaged experimental data to determine dynamic ensembles of biomolecules. While it is well known that different ensembles can satisfy experimental data to within error, the extent and nature of these degeneracies, and their impact on the accuracy of the ensemble determination remains poorly understood. Here, we use simulations and a recently introduced metric for assessing ensemble similarity to explore degeneracies in determining ensembles using NMR residual dipolar couplings (RDCs) with specific application to A-form helices in RNA. Various target ensembles were constructed representing different domain-domain orientational distributions that are confined to a topologically restricted (<10%) conformational space. Five independent sets of ensemble averaged RDCs were then computed for each target ensemble and a ‘sample and select’ scheme used to identify degenerate ensembles that satisfy RDCs to within experimental uncertainty. We find that ensembles with different ensemble sizes and that can differ significantly from the target ensemble (by as much as ΣΩ ~ 0.4 where ΣΩ varies between 0 and 1 for maximum and minimum ensemble similarity, respectively) can satisfy the ensemble averaged RDCs. These deviations increase with the number of unique conformers and breadth of the target distribution, and result in significant uncertainty in determining conformational entropy (as large as 5 kcal/mol at T = 298 K). Nevertheless, the RDC-degenerate ensembles are biased towards populated regions of the target ensemble, and capture other essential features of the distribution, including the shape. Our results identify ensemble size as a major source of uncertainty in determining ensembles and suggest that NMR interactions such as RDCs and spin relaxation, on their own, do not carry the necessary information needed to determine conformational entropy at a useful level of precision. The framework introduced here provides a general approach for exploring degeneracies in ensemble determination for different types of experimental data. PMID:26131693

  2. Tuning the Origin of Magnetic Relaxation by Substituting the 3d or Rare-Earth Ions into Three Isostructural Cyano-Bridged 3d-4f Heterodinuclear Compounds.

    PubMed

    Zhang, Yan; Guo, Zhen; Xie, Shuang; Li, Hui-Li; Zhu, Wen-Hua; Liu, Li; Dong, Xun-Qing; He, Wei-Xun; Ren, Jin-Chao; Liu, Ling-Zhi; Powell, Annie K

    2015-11-02

    Three isostructural cyano-bridged 3d-4f compounds, [YFe(CN)6(hep)2(H2O)4] (1), [DyFe(CN)6(hep)2(H2O)4] (2), and [DyCo(CN)6(hep)2(H2O)4] (3), were successfully assembled by site-targeted substitution of the 3d or rare-earth ions. All compounds have been structurally characterized to display slightly distorted pentagonal-bipyramidal local coordination geometry around the rare-earth ions. Magnetic analyses revealed negligible magnetic coupling in compound 1, antiferromagnetic intradimer interaction in 2, and weak ferromagnetic coupling through dipolar-dipolar interaction in 3. Under an applied direct-current (dc) field, 1 (Hdc = 2.5 kOe, τ0 = 1.3 × 10(-7) s, and Ueff/kB = 23 K) and 3 (Hdc = 2.0 kOe, τ0 = 7.1 × 10(-11) s, and Ueff/kB = 63 K) respectively indicated magnetic relaxation behavior based on a single [Fe(III)]LS ion and a Dy(III) ion; nevertheless, 2 (Hdc = 2.0 kOe, τ0 = 9.7 × 10(-8) s, and Ueff/kB = 23 K) appeared to be a single-molecule magnet based on a cyano-bridged DyFe dimer. Compound 1, which can be regarded as a single-ion magnet of the [Fe(III)]LS ion linked to a diamagnetic Y(III) ion in a cyano-bridged heterodimer, represents one of the rarely investigated examples based on a single Fe(III) ion explored in magnetic relaxation behavior. It demonstrated that the introduction of intradimer magnetic interaction of 2 through a cyano bridge between Dy(III) and [Fe(III)]LS ions negatively affects the energy barrier and χ″(T) peak temperature compared to 3.

  3. 3D Double-Quantum/Double-Quantum Exchange Spectroscopy of Protons under 100 kHz Magic Angle Spinning.

    PubMed

    Zhang, Rongchun; Duong, Nghia Tuan; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2017-06-22

    Solid-state 1 H NMR spectroscopy has attracted much attention in the recent years due to the remarkable spectral resolution improvement by ultrafast magic-angle-spinning (MAS) as well as due to the sensitivity enhancement rendered by proton detection. Although these developments have enabled the investigation of a variety of challenging chemical and biological solids, the proton spectral resolution is still poor for many rigid solid systems owing to the presence of conformational heterogeneity and the unsuppressed residual proton-proton dipolar couplings even with the use of the highest currently feasible sample spinning speed of ∼130 kHz. Although a further increase in the spinning speed of the sample could be beneficial to some extent, there is a need for alternate approaches to enhance the spectral resolution. Herein, by fully utilizing the benefits of double-quantum (DQ) coherences, we propose a single radio frequency channel proton-based 3D pulse sequence that correlates double-quantum (DQ), DQ, and single-quantum (SQ) chemical shifts of protons. In addition to the two-spin homonuclear proximity information, the proposed 3D DQ/DQ/SQ experiment also enables the extraction of three-spin and four-spin proximities, which could be beneficial for revealing the dipolar coupled proton network in the solid state. Besides, the 2D DQ/DQ spectrum sliced at different isotropic SQ chemical shift values of the 3D DQ/DQ/SQ spectrum will also facilitate the identification of DQ correlation peaks and improve the spectral resolution, as it only provides the local homonuclear correlation information associated with the specific protons selected by the SQ chemical shift frequency. The 3D pulse sequence and its efficiency are demonstrated experimentally on small molecular compounds in the solid state. We expect that this approach would create avenues for further developments by suitably combining the benefits of partial deuteration of samples, selective excitation/decoupling pulses, heteronuclear spins for spectral editing, and nonuniform sampling.

  4. Spatial reorientation experiments for NMR of solids and partially oriented liquids.

    PubMed

    Martin, Rachel W; Kelly, John E; Collier, Kelsey A

    2015-11-01

    Motional reorientation experiments are extensions of Magic Angle Spinning (MAS) where the rotor axis is changed in order to average out, reintroduce, or scale anisotropic interactions (e.g. dipolar couplings, quadrupolar interactions or chemical shift anisotropies). This review focuses on Variable Angle Spinning (VAS), Switched Angle Spinning (SAS), and Dynamic Angle Spinning (DAS), all of which involve spinning at two or more different angles sequentially, either in successive experiments or during a multidimensional experiment. In all of these experiments, anisotropic terms in the Hamiltonian are scaled by changing the orientation of the spinning sample relative to the static magnetic field. These experiments vary in experimental complexity and instrumentation requirements. In VAS, many one-dimensional spectra are collected as a function of spinning angle. In SAS, dipolar couplings and/or chemical shift anisotropies are reintroduced by switching the sample between two different angles, often 0° or 90° and the magic angle, yielding a two-dimensional isotropic-anisotropic correlation spectrum. Dynamic Angle Spinning (DAS) is a related experiment that is used to simultaneously average out the first- and second-order quadrupolar interactions, which cannot be accomplished by spinning at any unique rotor angle in physical space. Although motional reorientation experiments generally require specialized instrumentation and data analysis schemes, some are accessible with only minor modification of standard MAS probes. In this review, the mechanics of each type of experiment are described, with representative examples. Current and historical probe and coil designs are discussed from the standpoint of how each one accomplishes the particular objectives of the experiment(s) it was designed to perform. Finally, applications to inorganic materials and liquid crystals, which present very different experimental challenges, are discussed. The review concludes with perspectives on how motional reorientation experiments can be applied to current problems in chemistry, molecular biology, and materials science, given the many advances in high-field NMR magnets, fast spinning, and sample preparation realized in recent years. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Restraint stress delays endometrial adaptive remodeling during mouse embryo implantation.

    PubMed

    Liu, Guanhui; Dong, Yulan; Wang, Zixu; Cao, Jing; Chen, Yaoxing

    2015-01-01

    In mice, previously, we showed that restraint stress reduces the number of embryo implantation sites in the endometrium. Here, we hypothesized that the uterine microenvironment is altered by restraint stress and consequently is suboptimal for embryo implantation. On embryonic day 1 (E1), 60 of 154 pregnant CD1 mice underwent restraint stress (4 h), repeated daily to E3, E5 or E7 (n = 10 mice per group). Restraint stress decreased food intake and suppressed body weight gain on E3, E5 and E7. Restraint stress decreased the actual and relative weight (percent body weight) of uterus and ovary on E5 (by 14.9%, p = 0.03; 16.1%, p = 0.004) and E7 (by 16.8%, p = 0.03; 20.0%, p = 0.01). Morphologically, restraint stress decreased relative endometrial area (by 8.94-18.8%, p = 0.003-0.021) and uterine gland area (by 30.6%, p < 0.01 on E3 and 44.5%, p < 0.01 on E5). Immunohistochemistry showed that restraint stress decreased microvessel density (by 12.9-70.5%, p < 0.01) and vascular endothelial growth factor expression (by 14.6-45.9%, p = 0.007-0.02). Restraint stress decreased by 32.4-39.8% (p = 0.002-0.01) the mean optical density ratio for proliferating cell nuclear antigen/terminal deoxynucleotidyl transferase dUTP nick end labeling. Methyl thiazolyl tetrazolium assay showed a dose-dependent decrease in proliferative activity of endometrial stromal cells (from 52 of 154 pregnant E5 control mice) incubated with H2O2 (100-1000 μM) in vitro. These findings supported the hypothesis that restraint stress negatively influences endometrial adaptive remodeling via an oxidative stress pathway, which resulted in fewer implantation sites.

  6. Nursing staff members' intentions to use physical restraints with older people: testing the theory of reasoned action.

    PubMed

    Werner, P; Mendelsson, G

    2001-09-01

    To examine nursing staff members' attitudes, subjective norms, moral obligations and intentions to use physical restraints, using the Theory of Reasoned Action (TRA). During the last two decades an extensive body of research has examined nurses' attitudes as one of the main factors affecting the decision to use or not to use physical restraints with older persons. However, no studies have examined empirically the antecedents to nurses' intentions to use physical restraints within a theoretically based framework. A correlational design was used with 303 nursing staff members from an 800-bed elder care hospital in central Israel. Participants completed a questionnaire including questions based on the TRA as well as socio-demographic and professional characteristics. Regression analyses found attitudes, subjective norms and moral considerations to be significantly associated to intention to use physical restraints with older people. The TRA explained 48% of the variance in nurses' intentions. The TRA proved to be a useful framework for examining nurses' intentions to use physical restraints. Nurses' attitudes, beliefs and expectations of significant others should be examined before implementing educational programmes regarding the use of physical restraints.

  7. Mixed selection. Effects of body images, dietary restraint, and persuasive messages on females' orientations towards chocolate.

    PubMed

    Durkin, Kevin; Hendry, Alana; Stritzke, Werner G K

    2013-01-01

    Many women experience ambivalent reactions to chocolate: craving it but also wary of its impact on weight and health. Chocolate advertisements often use thin ideal models and previous research indicates that this exacerbates ambivalence. This experiment compared attitudes to, and consumption of, chocolate following exposure to images containing thin or overweight models together with written messages that were either positive or negative about eating chocolate. Participants (all female) were categorised as either low- or high-restraint. Approach, avoidance and guilt motives towards chocolate were measured and the participants had an opportunity to consume chocolate. Exposure to thin ideal models led to higher approach motives and this effect was most marked among the high restraint participants. Avoidance and guilt scores did not vary as a function of model size or message, but there were clear differences between the restraint groups, with the high restraint participants scoring substantially higher than low restraint participants on both of these measures. When the participants were provided with an opportunity to eat some chocolate, those with high restraint who had been exposed to the thin models consumed the most. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, Nigel W.; Draizen, Eli J.; Adams, Paul D.

    Chemical restraints for use in macromolecular structure refinement are produced by a variety of methods, including a number of programs that use chemical information to generate the required bond, angle, dihedral, chiral and planar restraints. These programs help to automate the process and therefore minimize the errors that could otherwise occur if it were performed manually. Furthermore, restraint-dictionary generation programs can incorporate chemical and other prior knowledge to provide reasonable choices of types and values. However, the use of restraints to define the geometry of a molecule is an approximation introduced with efficiency in mind. The representation of a bondmore » as a parabolic function is a convenience and does not reflect the true variability in even the simplest of molecules. Another complicating factor is the interplay of the molecule with other parts of the macromolecular model. Finally, difficult situations arise from molecules with rare or unusual moieties that may not have their conformational space fully explored. These factors give rise to the need for an interactive editor for WYSIWYG interactions with the restraints and molecule. Restraints Editor, Especially Ligands (REEL) is a graphical user interface for simple and error-free editing along with additional features to provide greater control of the restraint dictionaries in macromolecular refinement.« less

  9. Interventions to reduce the use of seclusion and restraint in inpatient psychiatric settings: what we know so far a review of the literature.

    PubMed

    Scanlan, Justin Newton

    2010-07-01

    In recent times, much attention has been focused on the reduction of seclusion and restraint in psychiatric settings. This paper analyzes evidence available from evaluations of single seclusion and/or restraint reduction programmes. A total of 29 papers were included in the review. Seven key strategy types emerged from the analysis: (i) policy change/leadership; (ii) external review/debriefing; (iii) data use; (iv) training; (v) consumer/family involvement; (vi) increase in staff ratio/crisis response teams; and (vii) programme elements/changes. Outcomes indicate that a range of reduction programmes are successful in reducing the frequency and duration of seclusion and restraint use, while at the same time maintaining a safe environment. The development of new seclusion and restraint reduction programmes should include strong leadership from local management; external seclusion and restraint review committees or post-incident debriefing and analysis; broad-based staff training and programme changes at a local level. Behavioural and cognitive-behavioural programmes appear to be very useful in child and adolescent services. Further systematic research should be conducted to more fully understand which elements of successful programmes are the most powerful in reducing incidents of seclusion and restraint.

  10. integrating Solid State NMR and Computations in Membrane Protein Science

    NASA Astrophysics Data System (ADS)

    Cross, Timothy

    2015-03-01

    Helical membrane protein structures are influenced by their native environment. Therefore the characterization of their structure in an environment that models as closely as possible their native environment is critical for achieving not only structural but functional understanding of these proteins. Solid state NMR spectroscopy in liquid crystalline lipid bilayers provides an excellent tool for such characterizations. Two classes of restraints can be obtained - absolute restraints that constrain the structure to a laboratory frame of reference when using uniformly oriented samples (approximately 1° of mosaic spread) and relative restraints that restrain one part of the structure with respect to another part such as torsional and distance restraints. Here, I will discuss unique restraints derived from uniformly oriented samples and the characterization of initial structures utilizing both restraint types, followed by restrained molecular dynamics refinement in the same lipid bilayer environment as that used for the experimental restraint collection. Protein examples will be taken from Influenza virus and Mycobacterium tuberculosis. When available comparisons of structures to those obtained using different membrane mimetic environments will be shown and the causes for structural distortions explained based on an understanding of membrane biophysics and its sophisticated influence on membrane proteins.

  11. Protein addressing on patterned microchip by coupling chitosan electrodeposition and 'electro-click' chemistry.

    PubMed

    Shi, Xiao-Wen; Qiu, Ling; Nie, Zhen; Xiao, Ling; Payne, Gregory F; Du, Yumin

    2013-12-01

    Many applications in proteomics and lab-on-chip analysis require methods that guide proteins to assemble at surfaces with high spatial and temporal control. Electrical inputs are particularly convenient to control, and there has been considerable effort to discover simple and generic mechanisms that allow electrical inputs to trigger protein assembly on-demand. Here, we report the electroaddressing of a protein to a patterned surface by coupling two generic electroaddressing mechanisms. First, we electrodeposit the stimuli-responsive film-forming aminopolysaccharide chitosan to form a hydrogel matrix at the electrode surface. After deposition, the matrix is chemically functionalized with alkyne groups. Second, we ''electro-click' an azide-tagged protein to the functionalized matrix using electrical signals to trigger conjugation by Huisgen 1,3-dipolar cycloadditions. Specifically, a cathodic potential is applied to the matrix-coated electrode to reduce Cu(II) to Cu(I) which is required for the click reaction. Using fluorescently-labeled bovine serum albumin as our model, we demonstrate that protein conjugation can be controlled spatially and temporally. We anticipate that the coupling of polysaccharide electrodeposition and electro-click chemistry will provide a simple and generic approach to electroaddress proteins within compatible hydrogel matrices.

  12. Electric Dipolar Kondo Effect Emerging from a Vibrating Magnetic Ion

    NASA Astrophysics Data System (ADS)

    Hotta, Takashi; Ueda, Kazuo

    2012-06-01

    When a magnetic ion vibrates in a metal, it inevitably introduces a new channel of hybridization with conduction electrons, and in general, the vibrating ion induces an electric dipole moment. In such a situation, we find that magnetic and nonmagnetic Kondo effects alternatively occur due to the screening of the spin moment and electric dipole moment of the vibrating ion. In particular, the electric dipolar two-channel Kondo effect is found to occur for a weak Coulomb interaction. We also show that a magnetically robust heavy-electron state appears near the fixed point of the electric dipolar two-channel Kondo effect. We believe that the vibrating magnetic ion opens a new door in Kondo physics.

  13. Ionic-liquid-induced ferroelectric polarization in poly(vinylidene fluoride) thin films

    NASA Astrophysics Data System (ADS)

    Wang, Feipeng; Lack, Alexander; Xie, Zailai; Frübing, Peter; Taubert, Andreas; Gerhard, Reimund

    2012-02-01

    Thin films of ferroelectric β-phase poly(vinylidene fluoride) (PVDF) were spin-coated from a solution that contained small amounts of the ionic liquid (IL) 1-ethyl-3-methylimidazolium nitrate. A remanent polarization of 60 mC/m2 and a quasi-static pyroelectric coefficient of 19 μC/m2K at 30 °C were observed in the films. It is suggested that the IL promotes the formation of the β phase through dipolar interactions between PVDF chain-molecules and the IL. The dipolar interactions are identified as Coulomb attraction between hydrogen atoms in PVDF chains and anions in IL. The strong crystallinity increase is probably caused by the same dipolar interaction as well.

  14. Dipolar and spinor bosonic systems

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.

    2018-05-01

    The main properties and methods of describing dipolar and spinor atomic systems, composed of bosonic atoms or molecules, are reviewed. The general approach for the correct treatment of Bose-condensed atomic systems with nonlocal interaction potentials is explained. The approach is applied to Bose-condensed systems with dipolar interaction potentials. The properties of systems with spinor interaction potentials are described. Trapped atoms and atoms in optical lattices are considered. Effective spin Hamiltonians for atoms in optical lattices are derived. The possibility of spintronics with cold atom is emphasized. The present review differs from the previous review articles by concentrating on a thorough presentation of basic theoretical points, helping the reader to better follow mathematical details and to make clearer physical conclusions.

  15. Child restraint workshop series. Volume 2, Ongoing and planned programs

    DOT National Transportation Integrated Search

    1979-09-01

    This final report describes the planning and implementing details of the Child Restraint Workshop series. A child restraint workshop was conducted in each of the : ten NHTSA regions. The purpose of the workshops was to improve the effectiveness of gr...

  16. The Effects of Soldier Gear Encumbrance on Restraints in a Frontal Crash Environment

    DTIC Science & Technology

    2015-08-31

    their gear poses a challenge in restraint system design that is not typical in the automotive world. •The weight of the gear encumbrance may have a...Distribution Statement A. Approved for public release. TEST METHODOLOGY •A modified rigid steel seat similar to the type used for ECE R16 compliance testing...structure were non-deformable. 6 Shoulder Restraints Steel Non Deformable D-Rings 5th Point Restraint 5th Point Exiting Through the Seat

  17. Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

    NASA Astrophysics Data System (ADS)

    Poulin, Jerome; Light, Philip S.; Kashyap, Raman; Luiten, Andre N.

    2011-11-01

    We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow beam can confine cold atoms to the darkest regions of the beam, thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and a guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-μm-radius core hollow fiber, it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When the MOT is positioned farther away, coupling efficiencies over 50% can be achieved with larger core fibers.

  18. Evaluation of rebound tonometry in red-eared slider turtles (Trachemys scripta elegans).

    PubMed

    Delgado, Cherlene; Mans, Christoph; McLellan, Gillian J; Bentley, Ellison; Sladky, Kurt K; Miller, Paul E

    2014-07-01

    To evaluate feasibility and accuracy of intraocular pressure (IOP) measurement by rebound tonometry in adult red-eared slider turtles and determine the effects of manual and chemical restraint on IOP. Seventeen adult red-eared slider turtles. Intraocular pressure was measured with TonoLab® and TonoVet® tonometers in conscious, unrestrained turtles. To evaluate the effects of manual restraint, turtles were restrained by digital pressure on the rostral head or proximal neck. The effect of two chemical restraint protocols (dexmedetomidine, ketamine, midazolam [DKM] and dexmedetomidine, ketamine [DK] subcutaneously) on IOP was evaluated. Triplicate TonoLab® and TonoVet® readings were compared with direct manometry in three ex vivo turtle eyes. TonoLab® correlated better with manometry at IOPs < 45 mmHg than TonoVet® (linear regression slopes of 0.89 and 0.30, respectively). Mean (±SD) IOP in unrestrained conscious turtles was significantly lower (P < 0.01) with TonoLab® (10.02 ± 0.66 mmHg) than with TonoVet® (11.32 ± 1.57 mmHg). Manual neck restraint caused a significant increase in IOP (+6.31 ± 5.59 mmHg), while manual rostral head restraint did not. Both chemical restraint protocols significantly reduced IOP (DKM: −1.0 ± 0.76 mmHg; DK: −1.79 ± 1.17) compared with measurements in conscious unrestrained turtles. Chemical and manual neck restraint affected IOP. Rostral head restraint had no significant effect on IOP and is, therefore, recommended as the appropriate restraint technique in red-eared slider turtles. TonoLab® measurements estimated actual IOP more accurately, within physiologic range, than measurements obtained using the TonoVet®. © 2013 American College of Veterinary Ophthalmologists.

  19. EVALUATION OF REBOUND TONOMETRY IN RED-EARED SLIDER TURTLES (TRACHEMYS SCRIPTA ELEGANS)

    PubMed Central

    Delgado, Cherlene; Mans, Christoph; McLellan, Gillian J.; Bentley, Ellison; Sladky, Kurt K.; Miller, Paul E.

    2013-01-01

    Objective To evaluate feasibility and accuracy of intraocular pressure (IOP) measurement by rebound tonometry in adult red-eared slider turtles and determine the effects of manual and chemical restraint on IOP. Animal studied Seventeen adult red-eared slider turtles. Procedures IOP was measured with TonoLab® and TonoVet® tonometers in conscious, unrestrained turtles. To evaluate the effects of manual restraint, turtles were restrained by digital pressure on the rostral head or proximal neck. The effect of two chemical restraint protocols (dexmedetomidine, ketamine, midazolam [DKM] and dexmedetomidine, ketamine [DK] subcutaneously) on IOP was evaluated. Triplicate TonoLab® and TonoVet® readings were compared to direct manometry in 3 ex vivo turtle eyes. Results TonoLab® correlated better with manometry at IOPs <45 mm Hg than TonoVet® (linear regression slopes of 0.89 and 0.30 respectively). Mean (±SD) IOP in unrestrained conscious turtles was significantly lower (P<0.01) with TonoLab® (10.02 ± 0.66 mmHg) than with TonoVet® (11.32 ± 1.57 mmHg). Manual neck restraint caused a significant increase in IOP (+6.31 ± 5.59 mmHg), while manual rostral head restraint did not. Both chemical restraint protocols significantly reduced IOP (DKM: −1.0 ± 0.76 mmHg,; DK: −1.79 ± 1.17) compared to measurements in conscious unrestrained turtles. Conclusions Chemical and manual neck restraint affected IOP. Rostral head restraint had no significant effect on IOP and is, therefore, recommended as the appropriate restraint technique in red-eared-slider turtles. TonoLab® measurements estimated actual IOP more accurately, within physiologic range, than measurements obtained using the TonoVet®. PMID:25097909

  20. Educational intervention on physical restraint use in long-term care facilities - Systematic review and meta-analysis.

    PubMed

    Lan, Shao-Huan; Lu, Li-Chin; Lan, Shou-Jen; Chen, Jong-Chen; Wu, Wen-Jun; Chang, Shen-Peng; Lin, Long-Yau

    2017-08-01

    "Physical restraint" formerly used as a measure of protection for psychiatric patients is now widely used. However, existing studies showed that physical restraint not only has inadequate effect of protection but also has negative effects on residents. To analyzes the impact of educational program on the physical restraint use in long-term care facilities. A systematic review with meta-analysis and meta-regression. Eight databases, including Cochrane Library, ProQuest, PubMed, EMBASE, EBSCO, Web of Science, Ovid Medline and Physiotherapy Evidence Database (PEDro), were searched up to January 2017. Eligible studies were classified by intervention and accessed for quality using the Quality Assessment Tool for quantitative studies. Sixteen research articles were eligible in the final review; 10 randomize control trail studies were included in the analysis. The meta-analysis revealed that the use of physical restraint was significantly less often in the experimental (education) group (OR = 0.55, 95% CI: 0.39 to 0.78, p < 0.001) compared to the control group. Meta-regression revealed the period of post education would have decreased the effect of the restraint educational program (β: 0.08, p = 0.002); instead, the longer education period and more times of education would have a stronger effect of reducing the use of physical restraint (β: -0.07, p < 0.001; β: -0.04, p = 0.056). The educational program had an effect on the reduced use of physical restraint. The results of meta-regression suggest that long-term care facilities should provide a continuous education program of physical restraint for caregivers. Copyright © 2017. Published by Elsevier Taiwan.

  1. Prehospital chemical restraint of a noncommunicative autistic minor by law enforcement.

    PubMed

    Ho, Jeffrey D; Nystrom, Paul C; Calvo, Darryl V; Berris, Marc S; Norlin, Jeffrey F; Clinton, Joseph E

    2012-01-01

    When responders are dealing with an agitated patient in the field, safety for all involved may sometimes only be accomplished with physical or chemical restraints. While experiences using chemical restraint in the prehospital setting are found in the medical literature, the use of this by law enforcement as a first-response restraint has not previously been described. We report a case of successful law enforcement-administered sedation of a noncommunicative, autistic, and violent minor using intramuscular droperidol and diphenhydramine. Although this case has some unique characteristics that allowed chemical restraint to be given by the law enforcement agency, it calls attention to some specific prehospital issues that need to be addressed when dealing with autistic patients with extreme agitation.

  2. The relative contributions of body image evaluation and investment in the prediction of dietary restraint in men.

    PubMed

    Ozimok, Brianne; Lamarche, Larkin; Gammage, Kimberley L

    2015-05-01

    This study examined the importance of body image evaluation and investment to predict dietary restraint in men (N = 272). Measures of physical activity, evaluation, investment and dietary restraint were completed. A hierarchical regression was conducted to predict dietary restraint from physical activity and body mass index (entered on the first step), body image evaluation (entered on the second step) and investment (entered on the final step). The overall regression was significant, F(4, 271) = 15.12, p < .001, R (2) adj = .17). Body mass index, physical activity and body image investment were significant positive predictors of dietary restraint. The present findings emphasize measuring body image investment. © The Author(s) 2015.

  3. Complex Dipolar Matter

    DTIC Science & Technology

    2014-11-10

    opportunities for advanced material development and quantum simulators. These molecules include (1) the already quantum degenerate bi- alkali singlet sigma...case potassium-rubidium (KRb) and related molecules; (2) opto-electrically trapped symmetric top molecules soon to reach quantum degeneracy and...rubidium; (C) a correction of phase diagrams for dipolar gases necessary to understand experimental measurements and build accurate quantum simulators

  4. Topological defect formation in rotating binary dipolar Bose–Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; University of Chinese Academy of Sciences, Beijing 100049; Department of Engineering Science, University of Electro-Communications, Tokyo 182-8585

    We investigate the topological defects and spin structures of a rotating binary Bose–Einstein condensate, which consists of both dipolar and scalar bosonic atoms confined in spin-dependent optical lattices, for an arbitrary orientation of the dipoles with respect to their plane of motion. Our results show that the tunable dipolar interaction, especially the orientation of the dipoles, can be used to control the direction of stripe phase and its related half-vortex sheets. In addition, it can also be used to obtain a regular arrangement of various topological spin textures, such as meron, circular and cross disgyration spin structures. We point outmore » that such topological defects and regular arrangement of spin structures arise primarily from the long-range and anisotropic nature of dipolar interaction and its competition with the spin-dependent optical lattices and rotation. - Highlights: • Effects of both strength and orientation of the dipoles are discussed. • Various topological defects can be formed in different parameter regions. • Present one possible way to obtain regular arrangements of spin textures.« less

  5. Random acoustic metamaterial with a subwavelength dipolar resonance.

    PubMed

    Duranteau, Mickaël; Valier-Brasier, Tony; Conoir, Jean-Marc; Wunenburger, Régis

    2016-06-01

    The effective velocity and attenuation of longitudinal waves through random dispersions of rigid, tungsten-carbide beads in an elastic matrix made of epoxy resin in the range of beads volume fraction 2%-10% are determined experimentally. The multiple scattering model proposed by Luppé, Conoir, and Norris [J. Acoust. Soc. Am. 131(2), 1113-1120 (2012)], which fully takes into account the elastic nature of the matrix and the associated mode conversions, accurately describes the measurements. Theoretical calculations show that the rigid particles display a local, dipolar resonance which shares several features with Minnaert resonance of bubbly liquids and with the dipolar resonance of core-shell particles. Moreover, for the samples under study, the main cause of smoothing of the dipolar resonance of the scatterers and the associated variations of the effective mass density of the dispersions is elastic relaxation, i.e., the finite time required for the shear stresses associated to the translational motion of the scatterers to propagate through the matrix. It is shown that its influence is governed solely by the value of the particle to matrix mass density contrast.

  6. Laboratory Study of Wave Generation Near Dipolarization Fronts

    NASA Astrophysics Data System (ADS)

    Tejero, E. M.; Enloe, C. L.; Amatucci, B.; Crabtree, C. E.; Ganguli, G.; Malaspina, D.

    2017-12-01

    Experiments conducted in the Space Physics Simulation Chamber at the Naval Research Laboratory (NRL) create plasma equilibria that replicate those found in dipolarization fronts. These experiments were designed to study the dynamics of boundary layers, such as dipolarization fronts, and it was found that there are instabilities generated by highly inhomogeneous plasma flows. It has previously been shown that these highly inhomogeneous flows can generate waves in the lower hybrid frequency range. Analysis of satellite observations indicate that the sheared flows are a plausible explanation for the observed lower hybrid waves at dipolarization fronts since they can generate longer wavelengths compared to the electron gyroradius, which is consistent with observations. Recent experiments at NRL have demonstrated that these flows can also generate electromagnetic waves in the whistler band. These waves are large amplitude, bursty waves that exhibit frequency chirps similar to whistler mode chorus. Recent results from these experiments and comparisons to in situ observations will be presented. * Work supported by the Naval Research Laboratory Base Program and NASA Grant No. NNH17AE70I.

  7. The effect of bottom friction on tidal dipolar vortices and the associated transport

    NASA Astrophysics Data System (ADS)

    Duran-Matute, Matias; Kamp, Leon; van Heijst, Gertjan

    2016-11-01

    Tidal dipolar vortices can be formed in a semi-enclosed basin as the tides flow in and out through an inlet. If they are strong enough to overcome the opposing tidal currents, these vortices can travel away from the inlet due to their self-propelling mechanism, and hence, act as an efficient transport agent for suspended material. We present results of two-dimensional numerical simulations of the flow through an idealized tidal inlet, with either a linear or a nonlinear parameterization of the bottom friction. We then quantify the effect of the bottom friction on the propagation of the dipolar vortex and on its ability as a transport agent by computing the flushing and residence times of passive particles. Bottom friction is detrimental to the ability of tidal dipolar vortices to propagate and hinders transport away from the inlet. The magnitude of this effect is related to the relative duration of the tidal period as compared to the typical decay time scale of the vortex dipole. This research is funded by NWO (the Netherlands) through the VENI Grant 863.13.022.

  8. Quantum Landau damping in dipolar Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Terças, H.; Gammal, A.

    2018-06-01

    We consider Landau damping of elementary excitations in Bose-Einstein condensates (BECs) with dipolar interactions. We discuss quantum and quasiclassical regimes of Landau damping. We use a generalized wave-kinetic description of BECs which, apart from the long-range dipolar interactions, also takes into account the quantum fluctuations and the finite-energy corrections to short-range interactions. Such a description is therefore more general than the usual mean-field approximation. The present wave-kinetic approach is well suited for the study of kinetic effects in BECs, such as those associated with Landau damping, atom trapping, and turbulent diffusion. The inclusion of quantum fluctuations and energy corrections changes the dispersion relation and the damping rates, leading to possible experimental signatures of these effects. Quantum Landau damping is described with generality, and particular examples of dipolar condensates in two and three dimensions are studied. The occurrence of roton-maxon excitations, and their relevance to Landau damping, are also considered in detail. The present approach is mainly based on a linear perturbative procedure, but the nonlinear regime of Landau damping, which includes atom trapping and atom diffusion, is also briefly discussed.

  9. Nuclear magnetic resonance signal dynamics of liquids in the presence of distant dipolar fields, revisited

    PubMed Central

    Barros, Wilson; Gochberg, Daniel F.; Gore, John C.

    2009-01-01

    The description of the nuclear magnetic resonance magnetization dynamics in the presence of long-range dipolar interactions, which is based upon approximate solutions of Bloch–Torrey equations including the effect of a distant dipolar field, has been revisited. New experiments show that approximate analytic solutions have a broader regime of validity as well as dependencies on pulse-sequence parameters that seem to have been overlooked. In order to explain these experimental results, we developed a new method consisting of calculating the magnetization via an iterative formalism where both diffusion and distant dipolar field contributions are treated as integral operators incorporated into the Bloch–Torrey equations. The solution can be organized as a perturbative series, whereby access to higher order terms allows one to set better boundaries on validity regimes for analytic first-order approximations. Finally, the method legitimizes the use of simple analytic first-order approximations under less demanding experimental conditions, it predicts new pulse-sequence parameter dependencies for the range of validity, and clarifies weak points in previous calculations. PMID:19425789

  10. Quantum spin ices and magnetic states from dipolar-octupolar doublets on the pyrochlore lattice

    NASA Astrophysics Data System (ADS)

    Chen, Gang

    We consider a class of electron systems in which dipolar-octupolar Kramers doublets arise on the pyrochlore lattice. In the localized limit, the Kramers doublets are described by the effective spin 1/2 pseudospins. The most general nearest-neighbor exchange model between these pseudospins is the XYZ model. In additional to dipolar ordered and octupolar ordered magnetic states, we show that this XYZ model exhibits two distinct quantum spin ice (QSI) phases, that we dub dipolar QSI and octupolar QSI. These two QSIs are distinct symmetry enriched U(1) quantum spin liquids, enriched by the lattice symmetry. Moreover, the XYZ model is absent from the notorious sign problem for a quantum Monte Carlo simulation in a large parameter space. We discuss the potential relevance to real material systems such as Dy2Ti2O7, Nd2Zr2O7, Nd2Hf2O7, Nd2Ir2O7, Nd2Sn2O7 and Ce2Sn2O7. chggst@gmail.com, Refs: Y-P Huang, G Chen, M Hermele, Phys. Rev. Lett. 112, 167203 (2014).

  11. Child Safety Programs: Implications Affecting Use of Child Restraints.

    ERIC Educational Resources Information Center

    Hoadley, Michael R.; And Others

    1981-01-01

    A study identified behavioral and attitudinal factors influencing the use of child restraints in automobiles. The data suggest that the focus of safety education needs to be aimed at both child and parent acceptance and understanding of the importance of restraint use. (JN)

  12. 28 CFR 552.24 - Use of four-point restraints.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 552.24 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT... be used to restrain an inmate, unless: (1) Such restraints previously have proven ineffective with respect to that inmate, or (2) Such restraints are proven ineffective during the initial application...

  13. 28 CFR 552.24 - Use of four-point restraints.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 552.24 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT... be used to restrain an inmate, unless: (1) Such restraints previously have proven ineffective with respect to that inmate, or (2) Such restraints are proven ineffective during the initial application...

  14. 78 FR 77554 - Reports, Forms and Record Keeping Requirements; Agency Information Collection Activity Under OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... information described is the ``Consolidated Child Restraint System Registration, Labeling and Defect...: National Highway Traffic Safety Administration Title: Consolidated Child Restraint System Registration... the Federal motor vehicle safety standard for child restraint systems (CRSs) to expand its...

  15. 76 FR 35266 - Reports, Forms and Record Keeping Requirements; Agency Information Collection Activity Under OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... ``Consolidated Child Restraint System Registration, Labeling and Defect Notification.'' (OMB Control Number: 2127... Traffic Safety Administration. Title: Consolidated Child Restraint System Registration, Labeling and... collection. Abstract: Child restraint manufacturers are required to provide an owner's registration card for...

  16. Evaluation of New York state's mandatory occupant restraint law. Volume 6, Final summary report

    DOT National Transportation Integrated Search

    1987-02-01

    This is the final report summarizing the evaluation of the first year of New York State's Mandatory Occupant Restraint Law. The results indicate that the major goals of the legislation were accomplished. Safety restraint use among front seat occupant...

  17. 28 CFR 570.44 - Supervision and restraint requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Supervision and restraint requirements... PROGRAMS AND RELEASE COMMUNITY PROGRAMS Escorted Trips § 570.44 Supervision and restraint requirements. Inmates under escort will be within the constant and immediate visual supervision of escorting staff at...

  18. 28 CFR 570.44 - Supervision and restraint requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Supervision and restraint requirements... PROGRAMS AND RELEASE COMMUNITY PROGRAMS Escorted Trips § 570.44 Supervision and restraint requirements. Inmates under escort will be within the constant and immediate visual supervision of escorting staff at...

  19. 28 CFR 570.44 - Supervision and restraint requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Supervision and restraint requirements... PROGRAMS AND RELEASE COMMUNITY PROGRAMS Escorted Trips § 570.44 Supervision and restraint requirements. Inmates under escort will be within the constant and immediate visual supervision of escorting staff at...

  20. 28 CFR 570.44 - Supervision and restraint requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Supervision and restraint requirements... PROGRAMS AND RELEASE COMMUNITY PROGRAMS Escorted Trips § 570.44 Supervision and restraint requirements. Inmates under escort will be within the constant and immediate visual supervision of escorting staff at...

Top